
Modelling Personalisable Hypermedia : The Goldsmiths Model

February 17, 2003

Abstract

This paper addresses the issue of how hypermedia systems such as the WWW can be endowed

with features which allow the personalisation of the interaction process between the hypermedia

and the user. The approach taken is unique in formally modelling a rich set of abstract user-

initiated personalisation actions which enable individual users to come closer to satisfying their

specific, and often dynamic, information retrieval goals.

The model proposed is descriptive, rather than prescriptive, and is cast at a level of abstraction

above that of concrete systems exploring current technologies. Such an approach, it is hoped, will

allow for user and system-initiated personalisation actions to be studied with greater conceptual

clarity than is possible with technology-driven experimentation.

In this paper also describes the development of a personalisable hypermedia system called PAS.

Developed at Goldsmiths College, University of London, PAS embodies the main concepts under-

lying the model proposed.

1 Introduction

Research into personalisable hypermedia aims to enhance the functionality of hypermedia systems by

making the user interaction process personalisable [3, 6]. This research is motivated by the need

(both scientific and commercial) to increase the effectiveness of hypermedia systems as a platform for

information retrieving tasks when users have different information goals and histories [4, 5].

Broadly, the approach taken is to endow hypermedia systems with personalisation features which

may be initiated by the users or by the system itself. Such personalisation features are assumed to

be useful in areas, such as learning, where users have different information seeking goals, histories

and preferences. Personalisable hypermedia systems (PHSs) aim to use knowledge provided by (or

captured about) specific users to tailor the information and the links presented to each specific user. By

applying the knowledge of users, personalisation features can be employed to support user navigation

by limiting the options for traversal to information units, tailoring content, suggesting relevant links

to follow and providing additional information on links and information units. For the purpose of this

paper Personalisation is defined to be the user-initiated tailoring of hyperdocuments.

This paper we first addresses the issue of how to characterise precisely the emergent properties of

1

hypermedia, thereby making possible a systematic, principled and exhaustive elicitation of the space

of possible personalisation actions within hypermedia systems. A rich set of abstract user-initiated

personalisation actions are then modelled. These enable users to come closer to satisfying their specific

and often dynamic, information retrieval goals.

The rest of the paper is structured as follows: To motivate the contributions of the paper, Section 2

outlines key issues and concepts that underpin our research; Section 3 provides an introduction to the

model contributed by this paper; Sections 4 to 5 present the model; Section 6 describes the development

of a personalisable hypermedia system, PAS, that embodies the main concepts underlying the model;

Section 7 compares our results with those obtained by other researchers; Section 8 draws conclusions.

2 Motivation

This section details the motivation for the formal approach taken towards understanding hypermedia

personalisation by outlining some of the key issues, concepts and principles underpinning our research.

It is now generally accepted [4] that users of hypermedia systems may differ in their information goals

insofar as they may have preferences as to what information is provided and which links are used to

navigate the information space. Users may also differ in their histories in that they are likely to have

different knowledge of the information contained within the hypermedia system, of the information

space and how it may be navigated.

Most of the interaction a user might experience with a hyperdocument is determined by the design

decisions that shape the hyperdocument in terms of its content, rendering and navigation possibilities

(i.e., its links). As a consequence of the fact that these decisions are unilateral and irreversible (i.e.,

cannot be overridden by users as they interact with the hyperdocument), it can be said that the

designers own the hyperdocument.

An approach to overcoming this impediment is proposed by extending hypermedia systems with

formally defined personalisation actions that effect a transfer of ownership from designers of the

hyperdocument to each of its users, thereby enabling the latter to redesign the former, completely if

necessary, according to their specific information goals and histories.

The scope for personalisation actions, it is argued, comprises exactly the emergent properties of

hypermedia systems when these are viewed as only loosely coupled to a variety of servers, in each of

which the scope for orthogonal personalisation actions can also be characterised.

As there is no prior reason to constrain the space of possibilities, one is led to conclude that, in

principle, all the decisions that designers make when composing hyperdocuments are potentially within

the scope of personalisation actions.

At present, the claim that making hypermedia personalisable increases their efficiency and effectiveness

as information retrieval systems suffers from a lack of empirical evidence. For researchers to provide

this empirical evidence they must address the question of what is the subject of personalisation actions,

2

and which personalisation actions could be made available to users.

The challenge is, therefore, how to model, at a suitable level of abstraction, the space of possibilities

for personalisation actions that could be made available to users. Furthermore, the choice of person-

alisation actions we argue should fall out from this abstract model of personalisable interaction and

should ultimately be subject to empirical tests for effectiveness gains.

The research reported here aims to respond to these shortcomings by characterising a core of hyperlink-

based functionality viewed as a client technology. Personalisation actions are viewed as ranging over

entities within this core and as effecting the transfer of ownership from designers of hyperdocuments

to their users. Personalisation is defined to be the user-initiated tailoring of hyperdocuments.

3 Introduction to the the Goldsmiths Model

This section describes the architectural assumptions made and the technical approach taken in mod-

elling personalisable interaction with hyperdocuments.

3.1 Architectural Assumptions

A general open architecture for hypermedia systems of the kind depicted in Figure 1 as a simplified

data flow diagram1 is assumed. This architecture reflects the predominant approach to the design of

hypermedia systems.

As depicted in Figure 1, it is assumed that a core of hyperlink functionality is a client technology

loosely-coupled to (at least) a user-interface server (UIS) and a database server (DBS). The classical

example of a UIS is a WWW browser. Among other functions, browsers broker requests and render

formal texts (e.g., rendering expressions authored in HTML or XML). Examples of DBSs are Database

Management Systems (DBMSs) which support client server architectures (e.g., Oracle).

Broadly, the dynamics associated with Figure 1 are as follows. The UISs capture requests for desired

hyperpages. The UISs channel requests for hyperpages into the hypermedia system proper. If a

request is for a hyperpage which resides in a remote hypermedia system, then the core of hyperlink

functionality interacts with it to obtain the requested hyperpage in the form of a rendering expression

that the core can pass back for the UISs to render. If the request is for a local hyperpage (e.g., one

which is known to the core) then the latter responds by composing a rendering expression that can

be rendered by UISs, possibly after querying one or more DBSs to fetch some or all of the content

specified for the requested hyperpage.

1The notational conventions should be familiar from classical structural analysis (see, e.g., [22], p. 17/15), and can

be characterised as follows. A square denotes an external entity, i.e., a producer or consumer of data that lies beyond

the boundary of the function being described. An oval denotes a sub-function of the function being described. An arrow

denotes the flow of the data whose name labels the arrow. In diagrams to follow, two parallel lines denote a data store

into which data flows and where it is left waiting until it flows out again.

3

INTERFACE
USER

SERVER

DATA
BASE

SERVER

USER

rendered−content

content

request

rendering−expression

hyperlink−based functionality

request

query−expression

request

rendering−expression

Hyperpage

DESIGNER

REMOTE

HYPERMEDIA
SERVER

Figure 1: A General, Open Architecture for Hypermedia Systems

Implicit in Figure 1 is the assumption that personalisation actions in hypermedia systems should

not, and need not, be compounded with personalisation actions that might be provided by user-

interface and database components in hypermedia system architectures. The shaded oval in Figure 1

is responsible for what users experience as hyperlink-based information retrieval. Notwithstanding the

fact that users may well want to personalise database and user-interface features, it can be strongly

argued that whatever is in the scope for personalisation actions in hypermedia systems resides in the

shaded oval.

To model personalisable interaction with hyperdocuments, a model is proposed in which the shaded

oval in Figure 1 is partitioned into two regions. The H-region (see Section 4) that models a core of

hypermedia functionality and the P-region (see Section 5) that models personalisable hypermedia-

based interaction.

3.2 Technical Approach

Technically, the approach taken is to formally model a core of hypermedia functionality as a composer

from specifications, i.e., what the designer of a hyperpage designs is not a hyperpage, but rather

a specification of how to build the hyperpage upon request. Hyperpages are modelled as formal

specifications and a formal language is defined for this purpose.

The semantics of hyperpage specifications are given with reference to a formal abstract machine whose

operation and instruction set is specified in Section 4.

Personalisation is modelled as the user-initiated process of annotating and rewriting a hyperpage

specification into a version thereof that is associated with the user who took that action. It follows

that the hyperpages users see rendered may, if they wish, reflect their preferences, shaped by their

information goals and their histories.

When personalisation functionality is layered over the core, a designer can annotate a hyperpage in

preparation for differences in users’ goals and histories. A user can request to personalise not only

4

such annotations, but the hyperpage specifications as well.

Hyperpage annotations and personalisation requests are modelled as formal specifications and formal

languages has been defined for this purpose. Set-theoretic and relational algebraic expressions are

used to represent the semantics of personalisation requests.

In summary, the model proposed is an abstract model, as many steps removed from concrete

implementations as necessary to allow a systematic, exhaustive investigation of personalisation issues.

The model is an open model, insofar as hypermedia systems are viewed as clients of a variety of servers,

and in particular of data and user-interface servers. Personalisation involves a transfer of ownership

of the process of interaction with a hyperdocument from designers to users. To ensure that the set of

personalisation actions is consistent, its elements are induced from the formal definition of the hyper-

documents they act upon. All design decisions are, in principle, within the scope of personalisation

actions.

4 The H-Region: Modelling Non-Personalisable hypermedia-

Based Interaction

This section introduces a group of functions that model a core of hypermedia functionality referred

to as the H-region. Within the H-region users can only request for hyperpages to be rendered. The

decisions that the designers of a hyperdocument have made with respect to content, navigation and

rendering cannot therefore be overridden.

4.1 The H-Region: A Conceptual Framework

This section presents the conceptual framework underlying the H-region using a bottom-up, construc-

tive approach in which primitive notions are presented before those derived from them.

A content specification (C-spec) defines content which is to appear in a hyperpage. A C-spec takes

the form of data values (e.g., numbers, text, etc.)2 or more generally, requests to DBSs (i.e., query

expressions which DBSs can evaluate into data values which are served back). A C-spec may be as

simple as a number or a string and as complex as a sequence of complex queries which are to be sent to

a variety of DBSs, possibly in many different query languages, and using many different client-server

protocols.

A C-spec may be associated with a set of template variables. Conceptually, a template variable is

a place holder for the content denoted by the C-spec it is associated with. This content becomes

available after the C-spec is evaluated.

2It is assumed that this could, in turn, take the form of a reference to a local data file (containing, e.g., images,

sounds, etc.). If this is the case, it is assumed that the UIS knows how to de-reference the name and get hold of the

file content for rendering. Under this assumption, values and references to files containing values are considered to be

conceptually the same from the point of view of the model.

5

A rendering specification (R-spec) defines how content is to be rendered by a UIS. Every R-spec is

paired with one, and only one, C-spec. An R-spec takes the form of formal text in a language which

the intended UIS can render, except that this renderable text may be interspersed with template

variables. Content associated with template variables may be retrieved via a DBS if necessary. After

a C-spec is evaluated, the retrieved content replaces the associated template variable in the R-spec.

The overall result is a renderable text (e.g., HTML).

A chunk is a pair, the first element of which is a C-spec and the second is an R-spec. A chunk may be

associated with two sets of hyperpage identifiers. The first set is referred to as the set of entry points

to the chunk, the second as the set of its exit points.

An entry point enables the hyperpage where the chunk occurs to be referenced in a request. If a chunk

has many entry points they are construed as aliases of one another. An exit point enables a chunk to

establish a navigable link to the hyperpage denoted by the exit point. In WWW parlance, an entry

point can be thought of as a URL (Uniform Resource Locator) or as an anchor within a hyperpage,

and an exit point as a link (e.g., an HREF tag in HTML).

A chunk is best thought of as a building block in the design of a hyperpage. Chunks are to hyperpages

as atoms are to molecules.

A hyperpage is a sequence of chunks. A hyper-library is a store of hyperpages. For the purposes of

the model, it is assumed that the implementation of the hyper-library provides the functionality of a

modern database system, even a DBS on par with, and perhaps indistinguishable from, those where

content is sourced. In particular, it is assumed that there exist mechanisms for scalable retrieval,

associative querying, security of access, concurrency, versioning, and transaction control.

Note, there is no need to postulate that hyperpages are further structured to form a hyperdocument,

i.e., a collection of hyperpages whose formal properties enable certain navigational operations to be

performed over it. For example, with reference to an unordered collection and one of its members,

one can only request another member. If, however, the collection is known to be totally ordered, then

requests for the next and previous member are meaningful.

A designer is an author of hyperpages. In this role, the designer is required to decide on the sequence

of chunks that make up the hyperpage. This, in turn, involves defining for each chunk its entry points,

if any, its exit points, if any, and its C-spec and R-spec. The specification of entry and exit points

binds the hyperpage being designed with other hyperpages, not necessarily local ones.

A user requests that hyperpages be rendered by interaction with a UIS. Thus, the user might click on a

BACK button, or click on a link or type a hyperpage identifier into a GO-TO window. The observable

result of processing such a request is the display of the hyperpage as specified by its designers.

6

4.2 The H-Region: Dynamics of the H-Region

The dynamic behaviour of a hypermedia system instantiating the H-region is now informally described.

Figure 2 is a simplified data flow diagram3 which expands the shaded oval in Figure 1.

hp rexp
parse

hyperpage

DATA
BASE

SERVER

hyperlibrary

rexp

hp
qexp

req

hp
content

hp−pgm

hp

DESIGNER

REMOTE

SERVER

req

rexp

rexp

req == request
rexp == rendering expression

hp−pgm == hyperpage program
qexp == query expression
hp == hyperpage
hp−r == hyperpage reference

hp−r

perform
retrieval

convert
to rexp

compose
hyperpageHYPERMEDIA

USER
INTERFACE
SERVER

Figure 2: The H-Region

Figure 2 illustrates that designers specify hyperpages and store them in the hyper-library. When a

well-formed user request comes from the UIS, the H-region resolves it into either a reference to a

hyperpage that resides in a remote hypermedia system, or a reference to a hyperpage that resides

in the hyper-library of the hypermedia system proper. In the latter case, the H-region fetches the

hyperpage from the hyperlibrary and proceeds to parse and compose it.

4.3 The H-Region: Formal Elements of the H-Region

The following subsection defines the formal elements of the H-region. These include an EBNF grammar

for hyperpage specifications and the formal semantics of hyperpage specifications given with reference

to a simple abstract machine. Subsection 4.4.1 formally defines this abstract machine.

The EBNF grammar in Figure 3 defines the formal syntax of hyperpage specifications. An example

of a hyperpage specification, i.e., a well-formed string in the language defined by the grammar in

Figure 3, is given in Figure 4.

Some choices taken in the grammar in figure 3 are as follows. Keywords that introduce component

parts are delimited by a pair of curly brackets. For example each chunk is headed by the keyword

chunk and has its scope delimited by the pair {. . . }.

In the example in Figure 4, string values are delimited by single-quote pairs (e.g., ’hello’). Other

values (e.g., integers, characters, etc.) are assumed to be representable as in modern programming

languages. Representations of values of primitive types are elements of the terminal class VALUE. Sim-

ilarly, the terminal class IDENTIFIER from which names for template-variables are drawn is assumed

3Notational conventions are the same as those of Figure 1.

7

hyperpage ::= page {

chunk∗

}

chunk ::= chunk {

entry-point∗

C-spec

R-spec

exit-point∗

}

entry-point ::= entry {

UIS-STRING+

}

C-spec ::= content {

content-assignment∗,

}

R-spec ::= rendering {

rendering-element∗

}

exit-point ::= exit {

UIS-STRING+

}

rendering-element ::= template-variable | UIS-STRING

content-assignment ::= template-variable := content-expression

template-variable ::= IDENTIFIER

content-expression ::= VALUE | DBS-STRING

Figure 3: An EBNF Grammar of Hyperpages

8

to be similar to the class of variable names in modern programming languages, although here there is

a preference for naming them with a single UPPERCASE-LETTER, possibly followed by an integer, drawn

from the end of the Latin alphabet (e.g., X, Y1, etc.).

The remaining classes of non-terminals are UIS-STRING and DBS-STRING. Their elements are elements

of the language which, respectively, the UIS can render and which the DBS can evaluate. In the

example above, elements of both UIS-STRING and DBS-STRING are delimited by a pair of square

brackets (e.g., [<I>], or [SELECT * FROM welcome]) so that they can be distinguished from

the context. In the example, the assumption is that the UIS can render HTML and that the DBS

can evaluate SQL queries. It may be that these strings may be more complex, e.g., a DBS-STRING

may need to indicate a protocol (e.g., ODBC) and a desired server. However, these strings have no

H-region specific semantics to allow appropriate languages to be incorporated as required. Therefore

their denotations are not further discussed in the model.

A hyperpage, of which Figure 4 is an example, is a specification of the content to be presented to the

user and the rendering of this content. The semantics of a hyperpage is an abstract program that

when interpreted, retrieves the specified content and constructs the rendering text intended by the

designers.

page{

chunk {

entry { []

}

content { X := ’hello’,

Y1 := ’, world’

}

rendering { [] X []

[<I>] Y1 [</I>]

}

}

chunk {

content { X := [SELECT * FROM welcome]

}

rendering { [<I>] X [</I>]

}

exit { [next]

}

}

}

Figure 4: An Example Hyperpage Specification

Note that, at this level of abstraction, a hyperpage specification need not have an identifier beyond

the one (e.g., a path name) which allows it to be fetched from the hyper-library. Analogously, the

constituent parts of a hyperpage specification can be referred to by their relative position in the

hyperpage specification.

The hyperpage in Figure 4 has two chunks, the first of which has one entry point (viz.,) and no exit point, while the second has no entry point and one exit point

9

(viz., next). An entry point defines an access point

internal to the hyperpage. An exit point defines a hyperlink, i.e., a point at which access may be

gained to the corresponding hyperpage.

Every chunk has a possibly empty C-spec, and a possibly empty, R-spec. In the first chunk, the C-spec

consists of two assignments, the first assigns the value ’, hello’ to the template variable X and the

second assigns the value ’world’ to the template variable Y1.

Content assignments are very similar to standard destructive assignments in imperative languages,

hence the choice of the symbol :=. The scope of template variables is local to the chunk in which they

occur.

The R-spec in the first chunk uses HTML notation to render the content of X in boldface and the

content of Y1 in italic boldface. The occurrence of template variables within an R-spec signals that

textual replacement operations need to be carried out to obtain a rendering expression that can be

returned to the UIS.

The noteworthy feature of the second chunk is in its C-spec where a query expression (SELECT * FROM

welcome) is specified for the DBS. The results returned by the DBS are assigned to the template

variable X.

Using simple binding and textual replacement primitives, and assuming the ability to operate client-

server protocols, one can define a formal semantics of hyperpage specifications in terms of an extremely

simple state-based abstract machine. The composition function in Figure 2 denotes such an abstract

machine: it executes the program output by the parser of hyperpage specifications such as the one in

Figure 4.

4.4 Formal Semantics of Hyperpage Specifications

In this section the formal semantics of hyperpage specifications is given with reference to a abstract

machine whose instruction set is shown in Figure 5.

4.4.1 Hyperpage Abstract Machine

bind : IDENTIFIER’ × location

evaluate : content-expression’ × location

compose : rendering-expression’ × location

replace : IDENTIFIER’ × location1 × location2

append : location1 × location2 × location3

return : location

Figure 5: Abstract Machine Instructions for the Hyperpage Composition

In Figure 5, IDENTIFIER’, content-expression’, rendering-expression’ are the denotations of the corre-

sponding syntactic constructs and locationn denotes an address in the memory space of the abstract

machine.

10

Informally, the intended meaning of these instructions is as follows: bind allocates memory space

at location to the template variable whose denotation is IDENTIFIER’; evaluate writes onto location

the value of content-expression’; compose writes rendering-expression’ onto location; replace moves the

contents of location1 onto location2, replacing each occurrence of IDENTIFIER’ in location2 with the

contents of the memory space bound to IDENTIFIER’ into location1; append moves onto location3

the concatenation of location1 and location2; and return passes back location, which contains the

expression to be rendered, to the UIS.

Figure 6 shows the program produced by the parser in an assembly language postulated on the basis

of the abstract machine instructions.

compose(’’) → L1

bind(X1’) → L2

bind(Y1’) → L3

evaluate(’hello’) → L2

evaluate(’, world’) → L3

compose(’ L2* <I> L3* </I> ’) → L4

replace(L2, L4) → L5

replace(L3, L5) → L6

bind(X2’) → L7

evaluate(’SELECT * FROM welcome’) → L7

compose(’ <I> L7* </I> ’) → L8

replace(L7, L8) → L9

compose(’ next ’) → L10

append(L1, L6) → L11

append(L11, L9) → L12

append(L12, L10) → L13

return(L13)

Figure 6: An Example program

In Figure 6, the following notational conventions are adopted. The denotation of a rendering-expression

or of a content-expression is a string and a string is enclosed in single quotes. Memory locations are

denoted mnemonically by identifiers beginning with an upper-case L and followed by an integer. The

mnemonic of a memory location followed by a ‘*’ denotes the address of (i.e., a pointer to) that

location. Note that, by abuse of notation, strings may contain references to memory locations. The

denotation of a template variable has its scope resolved by appending to it the position of the chunk

where it occurs relative to the beginning of the source text.

In summary, the abstract, open model described in this section is one answer to the question of how to

characterise the emergent properties of hyermedia systems. It qualifies as one such answer insofar as

it does not model any capability that might be inherited from server technologies. The contribution

of this lies, in this respect, in providing one such characterisation and doing so explicitly, insofar as

the emergent properties defined are unambiguously set in contrast to the properties that such systems

can simply inherit from other technologies. In the model, hypermedia systems can be seen to multiply

inherit functionality from user-interface and database systems, but they exhibit specific functionality:

exactly that which is modelled by the H-region.

11

The scope for personalisation actions, taking this view, is the interaction emerging from the H-region.

This emergence is completely determined by hyperpage specifications. It follows that if one wants to

personalise that interaction all that is needed, and all that can be done, is to personalise hyperpage

specifications. Once a hyperpage specification is personalised by a user, the functionality of the

H-region delivers personalised interaction without requiring any change or redesign, let alone re-

implementation.

5 P-Region: Modelling Personalisable Hypermedia-Based In-

teraction

The P-region comprises a group of functions that are non-disruptively added to the H-region in order to

model personalisable hypermedia-based interaction. Within the P-region users can request, annotate

or rewrite a hyperpage. The decisions that the designers of that hyperpage have made with regard

to content, navigation and rendering of the hyperpage can therefore be overridden by users and this

kind of event characterises ownership transfer.

The kinds of personalisation actions modelled are based on annotating and rewriting the hyperpage

specifications. Annotation pairs a hyperpage specification with notes of interest to the user and, by

doing so, presumes that versioning takes place. Such notes take one of the following forms. Firstly,

a note can assign user-specific values to user-generic attributes of interest (e.g., that the level of

difficulty of a given page or component part is high, or that ‘Email’ is a keyword of relevance to a

given page). Secondly, a note can specify a rewriting action over the renderable text after it has been

composed by the H-region, i.e., after content has been fetched and made ready for display (e.g., to

map American into British spelling forms). Rewriting actions on hyperpage specifications allow any

part of any hyperpage to be updated.

5.1 The P-Region: A Conceptual Framework

This subsection presents the new concepts introduced by the P-region that form its conceptual frame-

work.

A note is a valuation of an attribute of a hyperpage or of one of its component parts. In the model

a set of attributes must be specified, but the set of attribute values need not be. In this sense, it can

be said that the set of attributes is user-generic and that the set of attribute values is user-specific.

Given an attribute and a hyperpage structure (i.e., an entire hyperpage or a component thereof), a

note is an assignment of a value to a given attribute in the scope of that structure. More generally, a

note can be viewed as a construct which provides user-specific semantics to some aspect of a hyperpage

which may, for example, inform the way preferences are enforced. Notes determine the current view

that designers or users have on different aspects of a hyperpage (e.g., what is its subject, what

level of complexity is associated with the content, what navigational alternatives are comparable in

12

content). When notes are attached to hyperpage components then a function in the P-region can be

parameterised by their values.

An annotation is a sequence of notes associated with a hyperpage.

A personalisation request is an editing command over hyperpage specifications that causes a modified

version of the hyperpage to be versioned by the user who issued the personalisation request. A

personalisation request specifies which hyperpages to personalise and what to transform them into. A

personalisation request is therefore a request to override the original decisions of the designers of the

hyperpage (and, of course, past expressions of preference by the user). Any design decision can, in

principle, be overridden (i.e., a set of personalisation requests can rewrite a hyperpage completely).

All the concepts introduced in Section 4.1 are retained without change, except that users and designers

now have more actions that they can perform. A user may also request a hyperpage to be annotated

or rewritten. It is also open to the designer to generate the hyperpage with annotations.

A hyper-library becomes a store of hyperpages and annotations. It is assumed that a P-region imple-

mentation enforces a one-to-one mapping between annotations and hyperpages versioned to the user

(or possibly group or users) that made the annotations. This, in turn, assumes a versioning capability,

as well as concurrency and transaction control.

This is the conceptual framework underlying the P-region.

5.2 The P-Region: Dynamics of the P-Region

The additional dynamic behaviour of a hypermedia system instantiating the P- and H-regions is now

informally defined. Figure 7 is a simplified data flow diagram4. P-region functions do not conflict

with H-region functions and, indeed, rely on their being exactly as defined in Figure 2, except for

the perform retrieval function that now handles more cases and the request data flow and the hyper-

library data store which are enriched as already discussed. This match is graphically represented by

super-imposition, with the functions and flows that are identical in Figure 2 and Figure 7 drawn with

solid lines and named with a lighter typeface.

Figures 7 illustrates that the P-region provides two basic processes: the personalisation of hyperpages

by annotation and rewriting and the enforcement over a renderable text of previously expressed

preferences (in the form of notes on a hyperpage). In Figure 7, the personalise function embodies the

former, while the apply preference function embodies the latter.

The personalisation process starts with a personalisation request which a user conveys to the UIS. A

personalisation request specifies a scope (i.e., which hyperpages it acts upon) and the actions (which

may simply be annotations) that the user wishes to effect.

The personalise function parses the request into a set of instructions that, when interpreted, retrieve

from the hyper-library the hyperpages in scope, carry out the actions specified in the personalisation

4Notational conventions are the same as those of Figure 1.

13

hyperlibrary

hyperlibrary

pr−pgm

pr
a/hp

a?

a/hp

a

req

preferences
apply

fetch

request

parse

a/hp

DESIGNER

req

hp

hp rexp

rexp

hp−pgm

content
SERVER

BASE

DATA

hp

qexp
hp

rexp

rexp

rexp

rexp

hp

hp

pr

rexp

SERVER

REMOTE

SERVER

INTERFACE

USER

req == request
rexp == rendering expression

hp == hyperpage

hp−r

hp−pgm == hyperpage program

qexp == query expression

hp == hyperpage reference

a == annotation
a? == annotation information request

perform
retrieval

personalisation

pr == personalisation request
pr−pgm == personalisation program

personalised

personalise

compose
parse

hyperpage

non−personalised
fetch

rexp

HYPERMEDIA

Figure 7: Superimposing the P-Region onto the H-Region

request over the retrieved hyperpages to generate their user-specific versions and write the latter into

the hyper-library.

The actions specifiable in a personalisation request are the rewriting and annotating of hyperpages

and hyperpage annotations. Thus, a versioned hyperpage may be an edited version, or its pairing

with an annotation or both, concomitantly or not.

One possible note is to specify a post-composition rewrite. When one such specification exists for a

hyperpage, the P- and H-regions interact under the control of the perform retrieval function. Thus,

when faced with a data retrieval request, the perform retrieval function queries the hyper-library

as to whether the required hyperpage is annotated with post-composition rewrites. If the required

hyperpage is annotated with post-composition rewrites, then the P-region ensures that after the

composition function returns the renderable text, the rewriting is effected by the apply preference

function before a response is dispatched to the UIS.

Other notes cause changes in the behaviour that would not be manifested in the absence of the

P-region. For example, given two hyperpages a note may specify that one is an alternative or is

comparable to another. This allows requests for alternative and comparable hyperpages to a given

one.

14

5.3 The P-Region: Formal Elements of the P-Region

The formal elements of the P-region are now introduced. These include formal grammars for the

specification of personalisation requests and hyperpage annotations. A recursive function that defines

the formal semantics of personalisation requests is then introduced. Broadly, this function traverses

an abstract syntax tree representation of a personalisation request and generates the corresponding

semantic representation as a sequence of assignments and relational algebraic expressions.

5.3.1 A Formal Grammar for the Specification of Hyperpage Annotations

Annotations (and notes) are formally defined in Figure 8. An annotation is a nonempty sequence of

notes. A note is either an attribute assignment or a (post-composition) rewriting specification, where

the rewriting can be unconditional or conditional on the state of the environment.

Figure 8, the non-terminals from-regular-expression and to-regular-expression are regular expressions.

If a note is an attribute assignment, then it must specify the scope of the assignment. This scope is

either the entire page, or one of its component parts. In the latter case, the exact component part

is specified by a data structure that completely determines the component part in the page using

relative displacements.

The set of attributes to which values can be assigned is fixed for all users, since only then can their

semantics be defined and made use of in, e.g., data requests. The set of values which attributes can

take might be fixed for all users, but it need not. A fixed set of attributes is modelled for hyperpages,

primarily to illustrate their use, however, there is nothing to preclude extensions, or the redefining of

this set to an appropriate set of attributes in particular contexts.

In general terms, fixing such domains has the effect of making more explicit knowledge available within

the hypermedia system, thereby expanding the range of informed actions that can be taken.

The intended meanings of each of the attributes chosen are: description lets users and designers

provide an abstract or summary; keyword lets users and designers tag content and thereby clarify the

information contained along different categories; level lets users and designers attach a measure, e.g.,

of complexity, to the information; see-as-well and see-instead allow users and designers to define

other hyperpages to be, respectively, comparable and alternatives to the hyperpage being annotated;

wherefrom and whereto allow users and designers to provide look-back and look-ahead information

so that navigational decisions can be more informed; and status lets users and designers record

information about the state of the page (e.g., expiry date on time-bound information).

An example of an annotation, i.e., a well-formed string in the language defined by the grammar in

Figure 8 is given in Figure 9.

15

annotation ::= annotation {

note∗;

}

note ::= scope attribute-assignment

| rewrite

| QUERY-ON-ENVIRONMENT rewrite

scope ::= page :

| [page-part] :

page-part ::= relevant-chunk

| relevant-chunk (relevant-single-part)

| relevant-chunk (relevant-multi-part)

relevant-chunk ::= shift , chunk

relevant-single-part | C-spec

| R-spec

relevant-multi-part ::= shift , entry-point

::= shift , exit-point

shift ::= any

| signed-integer

signed-integer ::= INTEGER

| sign INTEGER

sign ::= +

| -

attribute-assignment ::= attribute := attribute value

attribute ::= description | keyword | level

| see-as-well | see-instead

| wherefrom | whereto

| status

attribute value ::= VALUE

| entry-point*

| exit-point*

rewrite ::= scope from -> to

from ::= REGULAR EXPRESSION

to ::= REGULAR EXPRESSION

Figure 8: An EBNF Grammar of Hyperpage Annotations

16

annotation{

page : level := 1;

page : see-as-well := [http://www.nasa.gov/]

[any, chunk]: keyword := ‘dynamic content’;

[1, chunk]: keyword := ‘introduction’;

[2, chunk (C-spec)]: keyword := ‘clusters’, keyword := ‘galaxies’;

[2, chunk (1, exit-point)]: level := 1;

[2, chunk (any, exit-point)]: level := 5;

[2, chunk (R-spec)]: keyword :=‘JPEG’, keyword :=‘greyscale’;

[3, chunk (C-spec)]: keyword := ‘planets’, level := 5;

[4, chunk (C-spec)]: level := 1;

page : ‘‘center’’ -> ‘‘centre’’

}

Figure 9: An Example of a Hyperpage Annotation

5.3.2 A Formal Grammar for the Specification of Personalisation Requests

Personalisation requests allow a user to generate annotations, to update annotation (e.g., those pro-

vided at source by the designer), and to update (by versioning) the hyperpage specifications them-

selves. The EBNF grammar in Figure 10 defines the formal syntax of a personalisation request. Note

that this grammar extends (i.e., has shared non-terminals with) the grammars given in Figures 3

and 8.

There are two parts to a personalisation request: the specification of its scope, the semantics of which

is the selection of a subset of the hyperpage specifications in the hyper-library (possibly with their

accompanying notes and possibly taking into account user-specific versions already stored); and the

action to be performed over the hyperpage specifications in the scope.

The specification of scope is indicated by the token select-page-if. The set of hyperpage specifica-

tions which will be placed in scope contains every hyperpage specification that satisfies the associated

selection condition. In the model, selection conditions are built up from one primitive that specifies

a regular expression and is true if, and only if, the regular expression occurs in the specified page,

page-part or note occurrence. Primitives can be combined using Boolean connectives to form complex

selection conditions. There is also a vacuously true selection condition that caters for the need to

select an entire set.

The possible actions on hyperpage annotations are: updates on notes (insert or delete), with

which annotations can be built and maintained one by one; projections on sets of notes (drop-if or

retain-if), with which one can filter a set of notes using a selection condition.

The persistence of notes can be made conditional on the environment, in that they may be stipulated

to hold only if a condition on the environment holds (or does not hold). Furthermore, as a Note

is always associated with at least one hyperpage and the identification of a set of hyperpages is

determined by the selection condition, the EBNF grammar need not make a distinction between the

parameters associated with the update operators insert and delete.

Possible actions on hyperpage specifications are: actions on hyperpage structures, which resemble

17

personalisation-request ::= action-scope action-list

action-scope ::= select-page-if selection-condition

selection-condition ::= atomic-selection-condition

| not selection-condition

| selection-condition and selection-condition

| selection-condition or selection-condition

atomic-selection-condition ::= true

| atomic-selection-condition-on-page

| atomic-selection-condition-on-page-part

| atomic-selection-condition-on-note

atomic-selection-condition-on-page ::= page containment-expression

atomic-selection-condition-on-page-part ::= page-part containment-expression

atomic-selection-condition-on-note ::= relevant-note containment-expression

relevant-note ::= shift , note

containment-expression ::= contains REGULAR-EXPRESSION

action-list ::= action∗

action ::= ann-then-do { annotation-update }

| hp-then-do { hp-update }

annotation-update ::= update-operator condition note

| update-operator note

| note-projection

| annotation

update-operator ::= insert

| delete

condition ::= if-not QUERY-ON-ENVIRONMENT

| if QUERY-ON-ENVIRONMENT

note-projection ::= projection-operator

selection-condition-on-note

projection-operator ::= drop-if

| retain-if

selection-condition-on-note ::= atomic-selection-condition-on-note

| not selection-condition-on-note

| selection-condition-on-note and

selection-condition-on-note

| selection-condition-on-note or

selection-condition-on-note

hp-update ::= hp-structure-update

| hp-terminal-rewrite

hp-structure-update ::= insert page-part hp-constr

| delete page-part

| projection-operator

selection-condition-on-hp-constr

hp-constr ::= hyperpage

| chunk

| entry-point

| C-spec

| R-spec

| exit-point

selection-condition-on-hp-constr ::= atomic-selection-condition-on-hp-constr

| not selection-condition-on-hp-constr

| selection-condition-on-hp-constr and

selection-condition-on-hp-constr

| selection-condition-on-hp-constr or

selection-condition-on-hp-constr

atomic-selection-condition-on-hp-constr ::= page-part containment-expression

hp-terminal-rewrite ::= rewrite

Figure 10: An EBNF Grammar of Personalisation Requests

18

those on notes in that they can be updates or projections based on selection conditions; actions on

terminal strings, (i.e., post-composition rewrites).

All actions on hyperpage specifications are destructive and their effect is manifested the next time the

H-region composition function is invoked to parse and interpret them. A few examples of personali-

sation requests that a user might issue are given with comments on their effect.

Example 1

select-page-if

page contains ‘‘2002’’

hp-then-do {

delete [2, chunk]

}

The personalisation request above applies to all hyperpages that contain the string “2002”. The effect

on each selected hyperpage is the deletion of its second chunk.

Example 2

select-page-if

true

hp-then-do {

retain-if [any, chunk] contains ‘‘2002’’

}

The personalisation request above applies to all hyperpages. The effect on each selected hyperpage is

the deletion of any chunk in which the string “2002” does not occur.

5.4 Formal Semantics of Personalisation Requests

This subsection introduces the approach taken to formally defining the semantics of personalisation

requests. The approach taken is now briefly described.

A parser has been developed to describe the analysis of the structure and meaning of the language for

personalisation requests (See Section 6). The parser consists of a lexical analyser, a syntactic analyser

and a semantic analyser. The lexical analyser groups the individual characters of a personalisation

request specification into tokens. The syntactic analyser parses the phrase structure generated by

the lexical analyser to determine whether the stream of tokens forms a valid personalisation request.

If a personalisation request is validated, then the lexical analyser outputs its abstract syntax tree.

Semantic analysis is the assignment of meaning. This is achieved by mapping the abstract syntax

19

tree of a personalisation request into a target language, whose meaning it is assumed the audience (or

machine) know.

The meaning of personalisation requests can be understood as requests to manipulate hyperpage

specifications and hyperpage annotations. To express the meaning of a personalisation request, it is

advantageous to model hyperpage specifications and annotations using a data structure that is well

understood and for which there exists a well understood language for manipulating data modelled

using such structures. For the purpose of defining the meaning of a personalisation request, the

hyper-library has been modelled using the relational data model.

In [24] a recursive function is defined that traverses an abstract syntax tree, represented as a term

generating the corresponding semantic representation of a personalisation request as a mapping into

relational algebra with assignments, examples of which are provided in Subsection 5.4.2.

5.4.1 Hyperpage and Hyperpage Annotation Relational Schemas

This subsection defines the relational schemas used to model hyperpages and hyperpage annotations.

Hyperpages and hyperpage annotations are input into a hyper-library as text files.

The transformation of hyperpage and hyperpage annotations text files into relation schemas is achieved

by retrieving in sequence each hyperpage (or hyperpage annotation) and then analysing its structure.

This analysis involves reading each hyperpage from top to bottom and then transforming each part

of its structure (i.e., entry-points, C-specs, R-specs and exit-points) into appropriate relations. When

reconstructed as relations each part of the structure of a hyperpage (or hyperpage annotation) is

given an extra attribute value as a unique identifier. This identifier acts as the primary key for

that relation. Identifiers are created in the same sequence as the transformation of hyperpages (or

hyperpage annotations). As a side effect these identifiers also hold the ordering in which page parts

were transformed and stored into their relations. Note that the definitions of the operations to project,

select and join relations are restricted so that they may not affect the ordering of the tuples in the

relations used as their parameters.

Hyper-library relation schemas are now defined. Relation names are denoted by a sequence of upper-

case SANS-SERIF letters, the corresponding name in lower-case sans-serif letters denotes an identifier

of an entity modelled by the relation. The primary key of each relation is underlined. Some remarks

are provided to increase readability.

PAGE(page, chunk, shift)

The relation PAGE has the following attributes: page uniquely identifies a page, chunk identifies a

chunk within that page, shift represents the position of that chunk within the page. chunk is a foreign

key to CHUNK.

CHUNK(chunk, entrypointset, c-spec, r-spec, exitpointset)

20

In the relation CHUNK the entrypointset attribute identifies the set of entry points for that chunk, c-

spec identifies the C-spec for the chunk, r-spec identifies the R-spec for the chunk, exitpointset identifies

the set of exit points for the chunk.

ENTRYPOINTSET(entrypointset, shift, entrypoint)

In the relation ENTRYPOINTSET the entrypoint attribute uniquely identifies an entry point for that

entry point set and is a foreign key to ENTRYPOINT.

ENTRYPOINT(entrypoint, e string)

In the relation ENTRYPOINT the e string attribute stores an entry point.

C-SPEC(c-spec,shift, c-element)

In the relation C-SPEC the c-element attribute uniquely identifies an element within that C-spec and

is a foreign key to C-ELEMENT.

C-ELEMENT(c-element, variable,c string)

In the relation C-ELEMENT the variable attribute stores a template variable and the c string stores a

content expression. Recall that a content expression may be either a DBS string or a value.

R-SPEC(r-spec, shift, r-element)

In the relation R-SPEC the r-element attribute uniquely identifies an element within that R-spec and

is a foreign key to R-ELEMENT.

R-ELEMENT(r-element, r string)

In the relation R-ELEMENT the r string attribute stores a rendering element. Recall that a rendering

element may be either a template variable or a UIS string.

EXITPOINTSET(exitpointset, shift, exitpoint)

In the relation EXITPOINTSET the exitpoint attribute uniquely identifies an exit point for that exit

point set and is a foreign key to EXITPOINT.

EXITPOINT(exitpoint, x string)

In the relation EXITPOINT the x string attribute stores an exit point.

NOTE(note,page, chunk, n type, scope, shift, lhs, n string, condition)

The relation NOTE has the following attributes: note uniquely identifies a note, page identifies the

page that note has been associated with and is a foreign key to the relation PAGE, chunk identifies a

chunk within that page and is a foreign key to the CHUNK, n type represents the type of note (i.e.,

21

attribute-assignment, or rewrite), scope represents the scope of a note which may be a page or a page

part and shift represents the position of that page part, lhs stores a note attribute or, in the case of a

rewrite note, the regular expression which is the subject of the rewrite, n string stores the note itself

or, in the case of a rewrite note the replacement string, condition stores a query on the state of the

environment.

ANNOTATION(annotation, page)

The relation ANNOTATION has the following attributes: annotation uniquely identifies an annotation,

page identifies the page that an annotation has been associated with and is a foreign key to the relation

PAGE.

5.4.2 Examples of Personalisation Request Programs

Examples are now given to illistrate that following the successful parsing of the personalisation requests

shown in subsection 5.3.2 their semantics may be represented as a mapping into relational algebra

with assignments.

In the examples that follow, “ foreach P ∈ S do E endfor” is written to mean that E is performed for

each P in the finite set S. “ for i := 1 to n do E endfor” is written to mean that E is performed with

i = 1, then with i = 2 and so on, up to i = n. “X := Y ” is written to denote the binding of a value

(or the value of an expression) Y to a denotation, X . Given two strings s and s′, s � s′ if s occurs in

(e.g., is a substring of) s′.

To generate new primary keys for tuples a function New is assumed that takes as a parameter the

name of a relation and returns a new primary key for that relation.

To generate the next value in the order defined over an attribute domain a function Next is assumed

that takes as parameters an attribute name and a relation name and returns the next value for that

attribute domain. The legitimate use of the function Next is therefore restricted to ordered domains

(i.e., numbers).

To insert a set of tuple representations of a hyperpage, hyperpage annotation or hyperpage part

into a relation, a function Insert is assumed. The Insert function allows the union of a relation R

with a set t of tuples. The insertion of a set of tuples t into R yields a new relation instance R′.

‘R′ = Insert(R, t)’ is written to denote the insertion of tuple t into relation R.

To delete a set of tuple representations of a hyperpage, hyperpage annotation or hyperpage part from

a relation a function Delete is assumed. The Delete function allows the difference between a relation

R and a set t of tuples to be obtained. The deletion of the tuple t from the relation R will yield a new

relation instance R′. ‘R′ = Delete(R, t)’ is written to denote the deletion of tuple t from relation R.

22

select-page-if

page contains ‘‘2002’’

hp-then-do {

delete [2, chunk]

}

‘foreach P ∈ ‘πpage(σ“2002”�pagePAGE)’ do

‘SC:=(CHUNK ?chunk (πchunk(σpage=P∧shift=2PAGE)));

Delete(CHUNK, SC)’

endfor’

Figure 11: Personalisation Program Example 1

select-page-if

true

hp-then-do {

retain-if [any, chunk] contains ‘‘2002’’

}

‘foreach P ∈‘πpage(σ∗PAGE)’ do

‘if ‘“2002”�chunkCHUNK(CHUNK ?chunk (πchunk(σpage=PPAGE)))’ = false then

SelectedPage :=(σpage=PPAGE);

Delete(PAGE,SelectedPage)

else

NOP

endif’

endfor’

Figure 12: Personalisation Program Example 2

23

6 PAS: A Personalisable Hypermedia System

This section describes the development of a personalisable hypermedia system, PAS, that embodies

the main concepts underlying the model described in this paper.

The aim of PAS is to allow for a principled, systematic empirical study to be carried out, in the future,

into the effects of personalisation actions. PAS consists of two major components: an instantiation of

the H-region as a WWW-based application for realising dynamically generated hyperdocuments; and

an instantiation of the P-region as a parser for personalisation requests.

The semantics of personalisation requests are implemented by a semantic analyser whose input is an

abstract syntax tree representation of a personalisation request output by the syntactic analysis phase

of the parsing process. The role of the semantic analyser is to generate for a given personalisation

request its corresponding representation as a sequence of Standard Query Language (SQL) expres-

sions5. Data structures for the storage and management of hyperpages and hyperpage annotations

have been implemented using the relational data model and these form the subject of personalisation

requests issued as SQL expressions.

The PAS adopts the strategy of separating out into different components the need to support: the

functionality afforded by the formal specification language for personalisation requests (back-end com-

ponent) and; a dynamic style of WWW-based hyperlink interaction (front-end component).

6.1 Architecture of PAS

The architecture of PAS is partitioned into a back-end component and a front-end component. Given

a text file containing a set of personalisation requests, the back-end component performs: lexical

analysis; syntactic analysis; and semantic analysis (the generation of SQL statement representations

of valid personalisation requests) on this set of personalisation requests. The front-end component

is responsible for executing SQL statement representations of valid personalisation requests over a

database containing hyperpages and hyperpage annotations. The front-end is also responsible for:

dynamically retrieving content, mark-ups and hyperpage annotations from the database; dynamically

composing that content into a rendering expression; applying post composition rewrites to rendering

expressions; and returning rendering expressions to a WWW browser (UIS). As such, the front-end

is the active component of PAS and the back-end is the stable component. Figure 13 depicts the

architecture of PAS.

6.2 The Back-End Component of PAS

The following Subsection describes the implementation of the processes of lexical analysis, syntactic

analysis and semantic analysis of personalisation requests. The parser has been implemented using

5SQL is a classical approach to implementing relational algebraic expressions, over a database composed of relations

defined using the relational data model.

24

Front-end componentBack-end component

�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������

����������

Read_Tokens (Lexical analysis)

specifications

3 Stage Parsing Process

(reads in text files and outputs
a token stream)

aphlbs_semantics (Semantics analysis)

(reads in abstract syntax tree
outputs SQL statements)

SQL Statement representations of

Abstract syntax tree (term)

Hyper-library

program

Generate hyperpage

(reads in token stream and
outputs an abstract syntax tree)

Text files ==

Content and mark-ups
(Hyperpage)

specifications as relations

Annotation
specifications

text file

Hyperpage
specifications

text file
request

text file

requests Hyperpages
Annotations

SQL Statement
representations

text file

WWW Browser (UIS)

P-region ==

Data flows ==

Program ==

H-region ==

DBMS ==

UIS ==

(Rendering expression)
WWW page

(Rendering expression)

SQL Queries

SQL Queries

SQL Queries

C
on

te
nt

(a
nn

ot
at

io
n) WWW page

Relational

DBMS
for hyperpages

and annotations

Phrase (Syntactic analysis)

Hyper-library ==

Apply preferences

H
yperpages and annotations

R
equest for hyperpage

or inform
ation request

Token stream

SQL Statement representations of

Personalisation

Personalisation

Personalisation

personalisation requestspersonalisation requests

Figure 13: Architecture of PAS

25

Prolog.

The process of lexical analysis has been implemented as a function, read tokens. The function

read tokens takes as input a text file containing a personalisation request and produces as output

a comma separated stream of tokens. Figures 14 and 15 show examples of the use of the function

read tokens.

Given a text file containing the personalisation request

select_page_if

page contains ’2002’

hp_then_do{

delete[2,chunk]

}

.

the function read_tokens yields the following token stream

select_page_if,page,contains,2002,hp_then_do,

’{’,delete,’[’,2,’,’,chunk,’]’,’}’,’.’

Figure 14: Personalisation Request and Generated Token Stream: Example 1

Given a text file containing the personalisation request

select_page_if

true

hp_then_do{

retain_if [2, chunk] contains ’2002’

}

.

the function read_tokens yields the following token stream

select_page_if,true,hp_then_do,’

{’,retain_if,’[’,2,’,’,chunk,’]’,contains,2002,’}’,’.’

Figure 15: Personalisation Request and Generated Token Stream: Example 2

The role of the syntax analyser is to determine if the stream of tokens output of the lexical analyser

form a valid sentence in the language’s grammar. The process of syntax analysis has been implemented

as a function, Phrase. The function Phrase takes as input a token stream and produces as output

an abstract syntax tree. For convenience, an abstract syntax tree may be represented as a term.

Figures 16 and 17 show a term representations of the personalisation requests shown in figures 14 and

15.

The remaining step is to assign meaning to the source language program (personalisation request).

This is achieved by mapping the term representation of abstract syntax into a formalism (target

language) of which the target audience (or machine) knows the meaning. For the purpose of imple-

menting the semantics of personalisation requests, the relational algebraic statements described in

section 5.4 are translated into SQL statements. These statements are then stored in a text file so that

subsequently, they may be referenced by the personalisation program that executes them over the

26

personalisation_request(’select_page_if’,

condition(atomic_condition(

atomic_condition_on_page(’page’,

containment_expression(’contains’, 2002)))),

action_list(action(’hp_then_do’,

hp_update(hp_structure_update(’delete’,

page_part(relevant_chunk(shift(signed_integer(+, 2)), ’chunk’)))))))

Figure 16: Term Representation of Abstract Syntax Tree: Example 1

personalisation_request(’select_page_if’,

condition(atomic_condition(’true’)),

action_list(action(’hp_then_do’,

hp_update(hp_structure_update(projection_operation(’retain_if’),

condition_on_hp_construct(atomic_condition_on_hp_construct(

page_part(relevant_chunk(shift(signed_integer(+, 2)), ’chunk’)),

containment_expression(’contains’, 2002))))))))

Figure 17: Term Representation of Abstract Syntax Tree: Example 2

database of hyperpages and hyperpage annotations to realise a personalisation request.

The process of semantic analysis has been implemented as a function, aphlbs semantics. The function

aphlbs semantics takes as input a term representation of an abstract syntax tree for a personalisation

request and returns a sequence of SQL statements that are stored in a text file. Figures 16 and 17

show example term representations. The corresponding SQL statement representations are detailed

in Figures 18 and 19. Figure 20 depicts the back-end component of PAS as a fragment of a Prolog

[11] program code.

In the following subsection, the processes of executing SQL statement representations of personalisa-

tion requests and the dynamic generation of personalised hyperpages is described. These processes

are the responsibility of the front-end component of PAS.

6.3 The Front-End Component of PAS

The front-end component is comprised of: a personalisation program; a hyperpage generator; and

a program to rewrite terminal strings in rendering expressions. All front-end processes have been

implemented using Cold Fusion (CF) [14].

A CF application is a collection of hyperpage specifications (programs) that are authored in CFML

and HTML. CFML provides the functionality to control the behaviour of applications, integrate

WWW server technologies and dynamically generate the content and presentation of WWW pages

before they are returned to a WWW browser. Broadly, when a hyperpage in a CF application is

requested by a WWW browser, it is pre-processed by the CF Application Server. Based on the

CFML in the hyperpage, the Application Server executes the application logic, interacts with other

server technologies and then dynamically generates an HTML rendering expression that is returned

to the WWW browser.

27

INSERT PAGE.page, PAGE.chunk, PAGE.shift INTO SELECTEDPAGES

WHERE PAGE.page IN (SELECT PAGE.page FROM PAGE)

AND (PAGE.page IN % select page if

(SELECT PAGE.page FROM PAGE % page contains 2002

WHERE PAGE.chunk IN

(SELECT CHUNK.chunk FROM CHUNK

WHERE CHUNK.entrypointset IN

(SELECT ENTRYPOINTSET.entrypointset FROM ENTRYPOINTSET

WHERE ENTRYPOINTSET.entrypoint IN

(SELECT ENTRYPOINT.entrypoint FROM ENTRYPOINT

WHERE ENTRYPOINT.e_string LIKE ‘‘2002’’))))

OR PAGE.page IN

(SELECT PAGE.page FROM PAGE

WHERE PAGE.chunk IN

(SELECT CHUNK.chunk FROM CHUNK

WHERE CHUNK.cspec IN

(SELECT CSPEC.cspec FROM CSPEC

WHERE CSPEC.c-element IN

(SELECT C-ELEMENT.c-element FROM C-ELEMENT

WHERE C-ELEMENT.c_string LIKE ‘‘2002’’))))

OR PAGE.page IN

(SELECT PAGE.page FROM PAGE

WHERE PAGE.chunk IN

(SELECT CHUNK.chunk FROM CHUNK

WHERE CHUNK.rspec IN

(SELECT RSPEC.rspec FROM RSPEC

WHERE RSPEC.r-element IN

(SELECT R-ELEMENT.r-element FROM R-ELEMENT

WHERE R-ELEMENT.r_string LIKE ‘‘2002’’))))

OR PAGE.page IN

(SELECT PAGE.page FROM PAGE

WHERE PAGE.chunk IN

(SELECT CHUNK.chunk FROM CHUNK

WHERE CHUNK.exitpointset IN

(SELECT EXITPOINTSET.entrypointset FROM EXITPOINTSET

WHERE EXITPOINTSET.exitpoint IN

(SELECT EXITPOINT.exitpoint FROM EXITPOINT

WHERE EXITPOINT.x_string LIKE ‘‘2002’’))))

DELETE * FROM PAGE % delete the second chunk of pages selected

WHERE PAGE.page IN SELECTEDPAGES

AND (PAGE.shift = 2)

Figure 18: SQL Representation of Example 1

28

INSERT PAGE.page, PAGE.chunk, PAGE.shift INTO SELECTEDPAGES

WHERE PAGE.page IN (SELECT PAGE.page FROM PAGE)

AND (PAGE.page IN % select page if

(SELECT PAGE.page FROM PAGE) % true vacuously true

DELETE * FROM PAGE

WHERE SELECTEDPAGES.page IN % retain if

(SELECT PAGE.page FROM PAGE % second chunk contains 2002

WHERE PAGE.chunk NOT IN

(SELECT CHUNK.chunk FROM CHUNK

WHERE CHUNK.entrypointset IN

(SELECT ENTRYPOINTSET.entrypointset FROM ENTRYPOINTSET

WHERE ENTRYPOINTSET.entrypoint IN

(SELECT ENTRYPOINT.entrypoint FROM ENTRYPOINT

WHERE ENTRYPOINT.e_string LIKE ‘‘2002’’))))

AND (PAGE.shift = 2)

OR PAGE.page IN

(SELECT PAGE.page FROM PAGE

WHERE PAGE.chunk NOT IN

(SELECT CHUNK.chunk FROM CHUNK

WHERE CHUNK.cspec IN

(SELECT CSPEC.cspec FROM CSPEC

WHERE CSPEC.c-element IN

(SELECT C-ELEMENT.c-element FROM C-ELEMENT

WHERE C-ELEMENT.c_string LIKE ‘‘2002’’))))

AND (PAGE.shift = 2)

OR PAGE.page IN

(SELECT PAGE.page FROM PAGE

WHERE PAGE.chunk NOT IN

(SELECT CHUNK.chunk FROM CHUNK

WHERE CHUNK.rspec IN

(SELECT RSPEC.rspec FROM RSPEC

WHERE RSPEC.r-element IN

(SELECT R-ELEMENT.r-element FROM R-ELEMENT

WHERE R-ELEMENT.r_string LIKE ‘‘2002’’))))

AND (PAGE.shift = 2)

OR PAGE.page IN

(SELECT PAGE.page FROM PAGE

WHERE PAGE.chunk NOT IN

(SELECT CHUNK.chunk FROM CHUNK

WHERE CHUNK.exitpointset IN

(SELECT EXITPOINTSET.entrypointset FROM EXITPOINTSET

WHERE EXITPOINTSET.exitpoint IN

(SELECT EXITPOINT.exitpoint FROM EXITPOINT

WHERE EXITPOINT.x_string LIKE ‘‘2002’’))))

AND (PAGE.shift = 2)

Figure 19: SQL Representation of Example 2

29

aphlbs_read(What, Mode, Answer) :-

read_tokens(Tokens, _Vars),

(Tokens = []

-> Answer = end_of_file

; ((Phrase =.. [What, A, Tokens, []], call(Phrase))

-> Answer = A,

nl, write(What),

write(’ parsing succeeded’), nl,

aphlbs_feedback(Answer, Mode, _Reply),

aphlbs_semantics(Answer, SQL)

; nl, write(What),

write(’ parsing failed with this token sequence:’),

nl, nl, write(Tokens), nl, fail

)

).

Figure 20: The Back-End Component of PAS

Figure 21 depicts the front-end component of PAS as a collection of CF programs that interact with

a CF Application Server.

The personalisation program has been implemented as a CF program. This program retrieves SQL

statements stored in a text file and executes these over the relations for hyperpages and hyperpage

annotations. Execution is realised via the CF Application Server which provides the functionality to

integrate with: local and remote databases; file systems; and files held in directories.

The generate hyperpage program has been implemented as a CF program. On receiving a request

for a hyperpage, this program dynamically generates a hyperpage (rendering expression) by executing

a sequence of SQL statements. These statements are used to retrieve sequentially the component

parts of a hyperpage (i.e., entry points, C-specs, R-specs and exit points) from a relational database

comprised of relations over the relational schemas for hyperpages and hyperpages’ annotations, as

described in subsection 5.4.1. The generate hyperpage program also contains specifications of how

retrieved content should be presented.

If a hyperpage (or one of its component parts) is associated with an annotation, then an annotation

link6 is generated to indicate that a particular component part has a note associated with it. To

present annotations to the user, a program, generate annotation, has been developed. This program

retrieves the corresponding notes for a given component part of a hyperpage.

A program to apply preferences has been implemented. This program, given a hyperpage in the form

of a rendering expression, retrieves for that hyperpage its annotation. If the annotation retrieved

specifies one or more post-composition rewrite notes (i.e., has one or more notes, each of which specifies

that some terminal symbol be replaced by another terminal symbol), then the apply preferences

program executes a series of CFML statements that effect a regular expression search and replace over

6An annotation link is a special class of link represented by the image of a pin. When a mouse is moved over the pin,

the link is activated and a CF program is run, the purpose of which is to display a subset of notes for a given hyperpage

component part.

30

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��� ���

WWW
page

CF Application

ServerServer
WWW

DBMS
Relational

hyperpages /
annotations

Directories

WWW Server

Request for

SQL Queries

content (files)
Requests for

content (files)

remote content

Network
Internet /

Hyperpage request

Hyperpage request

request
Hyperpage

SQ
L

 Q
ueries

Content and
mark-ups

mark-ups
Content and

(for annotation)
SQ

L
 Q

ueries

C
ontent

(annotation)

(hyperpage)W
W

W
page

(R
endering expression)

WWW
page

WWW
page

WWW Browser

Request for

text file
SQL statement

SQ
L

 Q
ueries

(to personalize)

ServerNetworkClient

File system

text file)
(SQL statement

content
(SQ

L
statem

ents)

page
WWW

preferences
Apply

program
Personalization

Generate
hyperpage

Generate
hyperpage

UIS ==

DBMS ==

H-region ==

P-region ==

Data flows ==

CF Program == Online storage ==

Requests for

F
ig

u
re

2
1
:

T
h
e

F
ro

n
t-

E
n
d

C
o
m

p
o
n
en

t
o
f
P
A

S

3
1

the rendering expression. These statements use as parameters the from and to regular expressions

specified by each post-composition rewrite note. When all specified post-composition rewrites have

been executed, the rewritten rendering expression is returned to the UIS that issued the original

request for the hyperpage.

6.4 Future Work on PAS

For the purposes of bringing clarity and a greater understanding of the model, we are currently re-

specifying the model using a document-centric semi-structured approach supported by a peer-to-peer,

service-oriented distributed architecture. This work will allow for an implementation (based on XML

and related technologies, and on web services and related technologies) that is modern and can be

readily understood by a broader range of systems designers.

7 Related Work

This section compares and contrasts the proposed model with related work on modelling and imple-

menting personalisation in hypermedia systems.

Little research has been conducted into formalising personalisation in hypermedia systems themselves.

Work has concentrated on providing personalisation features via data querying mechanisms (e.g., [15]).

Although these contributions show how personalisation may be experienced, it can be argued that

they merely exploit DBMS functionality rather than accounting for how hyperlink-based interaction

can itself be tailored in a principled manner.

Since we have formalised (in [24]) a complete space of possibilities for personalisation actions, the

adoption of our model enables a system to support all the personalisation actions described in [4]

and many of those in [5]. Implemented systems such as Adaptive HyperMan [21], ELM-ART [8],

Hypadapter [16] and AHA [13, 12] can all be represented using our model.

In its aims, our model subsumes the work on the adaptive hypermedia reference model AHAM [12, 13].

However, the explicit aim of the AHAM is to represent implemented techniques hence serving as a

primary reference for comparative studies. In contrast to AHAM, the work reported here aims to

induce a set of personalisation actions from a formal definition of a core of hyperlink functionality. In

this way, we provide a methodological approach to the area that goes beyond the effort embodied in

the AHAM.

The work presented herein concurs with that in [20] in which the Munich reference model (MRM)

for adaptive hypermedia applications is introduced. However, both the AHAM and MRM models are

based upon the notion that hypermedia applications are closed in nature and can be described using

the framework of the Dexter Model [23].

The model for the personalisation of hyperdocuments introduced by this paper can be contrasted with

the MRM proposed in [20] in that both seek to model personalisable hyperlink interaction. However,

32

whilst the MRM is a reference model, that characterises the architecture required for hyperlink-based

personalisation, the model proposed here characterises a set of formally defined personalisation actions.

Furthermore, whilst the model described in the MRM views hyperlink-based systems as comprising

user interface and database components, our work views these components as beyond the scope of

hyperlink-based personalisation.

In this paper, it is shown how the formal characterisation of hyperpage specifications induces a set of

personalisation actions that allows a user to override all the design decisions that a hyperpage speci-

fication embodies. It is shown that the P-region provides the functionality needed for personalisation

actions without disrupting and, in fact, relying on the functionality of the H-region remaining intact

and unaltered.

Specifically the model has shown how all personalisation techniques described in [4] may be formally

modelled and therefore understood. For example, the technique of link annotation [9, 10] (the rep-

resentation of availability of links and the incorporation of visual clues, indicating their status or

purpose) can be clearly represented in the model. The notion of not only controlling the visualisation

of links but also the ability to manipulate them (i.e., allowing them to be specified according to the

appropriateness of the situation [10]) can also be represented.

Classical personalisation techniques, such as the personalisation of content implemented in [2, 17],

can be clearly represented within the model. The action of selective content (i.e., hiding parts of

information about a particular concept which the user has expressed a wish not to see) can also

be modelled. Hyperpage annotations may be used to model comparative and variable content as

implementated in [18, 16].

Using the P-region fuctions it also possible to model the incorporation of additional explanations for

particular concepts found on a hyperpage. Such functionality is provided by systems such as KN-

AHS [19] and Anatom-Tutor [1]. Finally, although not explicitly addressed in the model presented,

approaches to pre-requisite content selection (supplementing a request for content with additional

content which describes all prerequisite concepts related to the request) and directed guidance [7]

could be modelled using the P-region if a topology were introduced which allowed for the notion of a

hyperdocument.

8 Contributions and Conclusions

The challenge which the research [24] underlying this paper aims to meet is how to model, at a suitable

level of abstraction, the space of possibilities for personalisation actions that could be made available

to users of hypermedia systems.

The abstract, additive model for personalisation described aims to answer the question of which per-

sonalisation actions could be made available to users. It does this by how, given a conceptual frame-

work such as that which underlies the H-region, it is possible to devise a language for personalisation

33

whose effects fall out as a consequence of that framework being adopted.

The language for personalisation is induced from the formal definition of the emergent properties of

hypermedia systems. It is complete, in the sense that it is expressive enough to override all design

decisions, and hence can be said to be an instrument for the transfer of ownership of every aspect of

the interaction with a hypermedia system.

Attention is drawn to the fact that even as the detail of the model could be presented in equivalent

ways, the methodological procedure of isolating the scope for personalisation, defining it formally and

then inducing from that formalisation the set of personalisation actions needed, is a contribution that

can be used in other settings, under different assumptions and using alternative conceptualisations of

hypermedia systems.

References

[1] I Beaumont. User Modeling in the Interactive Anatomy Aystem ANATOM-TUTOR. User Models

and User Adapted Interaction, 4(1):21–45, 1994.

[2] C Boyle and A Encarnacion. Metadoc: An adaptive hypertext reading system. User Models and

User Adapted Interaction, 4(1):1–19, 1994.

[3] P De Bra, P Brusilovsky, and R Conejo, editors. Aptive hypermedia and Web based systems:

Second International Conference, AH 2002, volume 2347 of LNCS, Malaga, Spain, May 29 - 31

2002. Springer.

[4] P Brusilovsky. Methods and Techniques of Adaptive Hypermedia. User Modeling and User-

Adapted Interaction, 6(2-3):87–129, 1996.

[5] P Brusilovsky. Adaptive Hypermedia. User Modeling and User-Adapted Interaction, 11(1-2):87–

110, 2001.

[6] P Brusilovsky, A Kobsa, and J Vassileva, editors. Adaptive Hypertext and Hypermedia. Kluwer

Academic Publishers, Dordrecht, February 1998. ISBN 0-7923-4843-5.

[7] P Brusilovsky and L Pesin. Isis-tutor: An adaptive hypertext learning environment. In Japanese-

CIS Symposium on Knowledge-based software engineering, pages 83–87, Pereslavl-Zalesski,Russia,

1994.

[8] P Brusilovsky, E Schwarz, and G Weber. ELM-ART: An Intelligent Tutoring System on World

Wide Web. Lecture Notes in Computer Science, 1086:261–269, 1996.

[9] Peter Brusilovsky and Leonid Pesin. Visual Annotation of Links in Adaptive Hypermedia. In

Proceedings of ACM CHI’95 Conference on Human Factors in Computing Systems, volume 2 of

Short Papers: Agents and Anthropomorphism, pages 222–223, 1995.

34

[10] Licia Calvi and Paul de Bra. Improving the usability of hypertext courseware through adaptive

linking. In Proceedings of the Eighth ACM Conference on Hypertext, pages 224–225, 1997.

[11] W Clocksin and C Mellish. Programming in PROLOG. Springer-Verlag Berlin and Heidelberg

GmbH and Co. KG, 1994. ISBN 3540583505.

[12] P De Bra, Ad Aerts, D Smits, and N Stash. AHA! meets AHAM. In P De Bra, P Brusilovsky,

and R Conejo, editors, Adaptive Hypermedia and Web-based systems: Second International Con-

ference, AH 2002, LNCS, pages 213–222, Malaga, Spain, May 29 - 31 2002. Springer.

[13] Paul de Bra, Geert-Jan Houben, and Hongjing Wu. AHAM: A Dexter-based Reference Model for

Adaptive Hypermedia. In Proceedings of the 10th ACM conference on Hypertext and Hypermedia,

Darmstadt, Germany, February 21-25 1999. ACM.

[14] B Forta. Advanced Cold Fusion 4 Application Development. Macmillan Computer Publishing,

1999. ISBN 0789718103.

[15] Cord Hockemeyer, Theo Held, and Dietrich Albert. RATH — A Relational Adaptive Tutoring

Hypertext WWW–Environment Based on Knowledge Space Theory. In Christer Alveg̊ard, editor,

Proc. CALISCE 98, pages 417–423, 1998.

[16] Hubertus Hohl, Heinz-Dieter Boecker, and Rul Gunzenhaeuser. Hypadapter: An Adaptive Hy-

pertext System for Exploratory Learning and Programming. User Modelling and User-Adapted

Interaction, 6(2-3):131–156, July 1996.

[17] K Höök, J Karlgren, A Waern, N Dahlback, C Jansson, K Karlgren, and B Lemaire. A glass box

approach to adaptive hypermedia. User Modeling and User Adapted Interaction: Special Issue

Adaptive Hypertext and Hypermedia, 6(2-3):225–261, July 1996.

[18] J Kay and B Kummerfeld. An Individualised Course for the C Programming Language. In

Proceedings of the Second International WWW Conference, 1994.

[19] A Kobsa, D Müller, and A Nill. KN-AHS: An Adaptive Hypertext Client of the User Modeling

System BGP-MS. In Proceedings of the 4th International Conference on User Modeling, pages

99–106, 1994.

[20] N Koch and M Wirsing. The Munich reference model for adaptive hypermedia applications. In

P De Bra, P Brusilovsky, and R Conejo, editors, Adaptive Hypermedia and Web based systems:

Second qInternational Conference, AH 2002, LNCS, pages 213–222, Malaga, Spain, May 29 - 31

2002. Springer.

[21] N Mathe and J Chen. User-centered Indexing for Adaptive Information Access. User Modeling

and User-Adapted Interaction, 6(2-3):225–261, July 1996.

[22] J A McDermid, editor. Software Engineer’s Reference Book. Butterworth-Heinemann Ltd., 1991.

Reprinted 1994, ISBN 0-7506-0813-7.

35

[23] J Moline, D Benigni, and J Baronas, editors. Proceedings of the Hypertext Standardization Work-

shop, volume 500–178 of NIST Special Publications, Gaithersburg, MD 20899 USA, January

1990.

[24] J Ohene-Djan. A Formal Approach to Personalisable, Adaptive Hyperlink-Based Interaction.

PhD thesis, Department of Computing, Goldsmiths College, University of London, University of

London, 2000. Available from http://homepages.gold.ac.uk/djan/jodthesis.pdf.

36

