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13.1 Introduction

The multi-agent systems approach has become recognized as a useful approach for modeling
and simulating biological complex systems. In this chapter we provide an example of such
an approach, which concerns the modeling and simulation of the Hematopoietic Stem Cell
(HSC) system in adults. We are specifically interested in how local cell interactions give rise
to well understood properties of systems of stem cells, such as the ability to maintain their
own population and to maintain a population of fully differentiated functional cells. There
is a need to establish key cell mechanisms that can produce self-regulating behavior of HSC
systems using different theoretical techniques. It is our belief that modeling the behavior of
HSCs in the adult human body as an agent-based system is the most appropriate way of
understanding these mechanisms and the consequent process of self-organization.
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390 Multi-Agent Systems: Simulation and Applications

In recent years there has been a growing debate about how stem cells behave in the
human body; whether the fate of stem cells is pre-determined or stochastic, and whether
the fate of cells relies on their internal state, or on extra-cellular micro-environmental fac-
tors. However, current experimental limitations mean that stem cells cannot be tracked in
the adult human body. There is no way of “observing” micro-level behavior. Models and
simulations have a crucial role therefore in explaining the relationship of micro-behavior
to macro-behavior and it now seems that the importance of computational modeling and
simulation for understanding stem cells is beginning to be realized in many wet-labs. There
have been several attempts to build formal models of these theories, so that predictions can
be made about how and why stem cells behave, both individually or collectively. In this
chapter we propose an agent based model which describes at the same time the intracellular
behavior of the cell (i.e., intra-cellular networks) and the cellular level where all the systemic
interactions are developed. This enables us to build a multi-level model.

13.1.1 Overview

In Section 13.2 we provide an overview of the background biology for this investigation. We
then discuss the current experimental limitations and how these motivate the significance for
using formal, computational models. We then describe the main approaches of formalizing
conceptual models of stem cells, which can be classified as single cell vs population models,
stochastic vs deterministic models. By discussing these limitations we are able to clearly
promote the advantages of the agent approach. Not only in understanding how cell-cell
interactions give rise to overall system behavior but also because they provide an appropriate
level of abstraction for collaborating with biologists.

Then we describe out agent modeling framework and how we have used it to take exist-
ing formal modeling approaches and “agentify” them to address certain weaknesses in the
model. Finally, we will provide details of the simulation and discuss our results to date and
plans for future work.

This chapter is intended for an interdisciplinary audience and so we include introductory
material about the background biology as well as about why the agent approach is most
suitable in this domain.

13.2 The Biological Domain – HSC Biology

Due to the natural life-cycle of cells, a tissue has to be self-renewing: in order to guarantee a
continuous replacement of cells that die, naturally or after injury, a cellular population must
contain cells that are able to proliferate, generating a mixture of progeny. The population of
daughter cells then includes cells that remain undifferentiated, i.e., self-renew the identity
of their parent, and cells that differentiate, i.e., change their properties. Cells with the
potential for both self-renewal and differentiation are called stem cells.

Even though no commonly agreed phenotypic or molecular definition of a stem cell exists,
there is a general consent on their functional capabilities. A stem cell is an undifferentiated
cell that is able to (i) proliferate, (ii) self-renew, i.e., able to go through numerous cycles
of cell division while maintaining the undifferentiated state, (iii) differentiate, i.e., able to
produce a progeny of distinct cell types, (iv) recover the tissue after injury or disease.
Those capabilities and their importance for a functional definition of tissue stem cells has
extensively been discussed by [Potten and Loeffler, 1990] and [Loeffler and Roeder, 2002].

It is still not clear whether stem cell types for different tissues are strictly committed
to these tissues or whether the can flexibly adopt features of other tissues under certain
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circumstances. However, there is increasing experimental evidence for the flexibility and
the reversibility of stem cell function and phenotype [Blau and Blakely, 1999; Quesenberry
et al., 2001].

Furthermore, it is evident (see citation given above) that the emergent behavior of the
stem cell system depends on multiple factors, such as their own actual cellular state, their
interaction with other cells or environmental cues.

13.2.1 The Hematopoietic System

Hematopoietis is the entire process of production and maintenance of all types of blood cells
which exhibit very different functions, such as transport of oxygen, production of antibodies
to fight infection and blood clotting. The life-span of blood cells, however, is limited so that
they must be continuously produced throughout the life of the animal. The hematopoietic
stem cells (HSCs), which can be found mostly in the bone marrow, are responsible for the
constant replacement of blood cells lost to normal turnover processes as well as to illness or
trauma.

HSCs are able to generate every lineage found in the hematopoietic system through a
successive series of intermediate progenitors. An exhaustive representation of the HSCs
lineage tree is published in the Kyoto Encyclopedia of Genes and Genomes, see [Kanehisa
and Goto, 2000]. Although the process of lineage specification is continuous, it is possible
to identify some main phases, the first of which includes common lymphoid progenitors
(CLPs), which can generate only B, T, NK cells, and common myeloid progenitors (CMPs)
which can generate only red cells, platelets, granulocytes, and monocytes. In the following
phases there are more mature progenitors that are further restricted in the number and type
of lineages that they can generate. The last phase is the terminally differentiated cell that
cannot divide and that undergoes apoptosis, i.e., programmed cell death, after a period of
time ranging from hours to years.

In this way, during homoeostasis, a proportion of stem cells is expected to balance the
fundamental processes of self-renewal, differentiation, apoptosis and quiescence to maintain
(i) a constant flow of short-lived progenitors that can generate enough cells to replace those
that are constantly lost during normal turnover and (ii) a constant number of primitive cells
to sustain hematopoiesis. Under homoeostatic conditions this results in a number of tissue
stem cells, as well as blood cells, that fluctate around a relatively constant average value.
During times of physiologic stress, the entire hematopoietic system is then able to provide
the mature cells required to fight infections or to replenish cells lost during a hemorrhage.
When the stress is resolved the number of cells returns again to normal levels.

A variety of homoeostatic mechanisms allow blood cell production to maintain homeosta-
sis or to respond quickly to stress such as bleeding or infection; the next section provides a
brief account of some of these mechanisms.

13.2.2 The Hematopoiesis Control Mechanisms

The process of hematopoiesis involves a complex interplay between the intrinsic genetic
processes of HSCs, progenitors and mature blood cells, that can be either deterministic or
stochastic, and their microenvironment dynamics, responsible for cell to cell interactions.
As a consequence of these internal and external processes, these cells remain quiescent,
differentiate, self-renew, or undergo apoptosis.

Cell intrinsic regulatory processes are cell autonomous and are determined by the cell’s
developmental state, which translates into specific levels of genes and protein expression.
With these processes we refer to intracellular pathways and gene regulatory networks. De-
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pending on the number of molecules involved they appear to be deterministic or stochastic.
The intracellular events are in fact determined by the interactions between molecules: as the
number of reacting molecules increases the probability of their interaction increases until a
threshold over which the process can be considered deterministic.

The role of the microenvironmental dynamics is also crucial. The specific microenviron-
ment of stem cells has been historically called “stem-cell niche” [Schofield, 1978]. A niche
is composed of a dynamically changing chemical environment, containing a range of dif-
ferent molecules. Cells maintain this environment by secreting and absorbing molecules, in
order to send and receive signals. The information passed in these signals influences the au-
tonomous behavior of the cells, e.g., growth factors stimulate cells to divide and differentiate
to produce more terminally differentiated cells.

All of the genetic and environmental mechanisms that govern blood cells production op-
erate by affecting the intracellular level dynamics, resulting in different cell actions and
behaviors. Under normal conditions, the majority of HSCs and many progenitors are qui-
escent. In the event of a physiologic stress quiescent progenitors and HSCs are stimulated
by a variety of growth factors to proliferate and differentiate into mature white cells, red
cells, and platelets. When the bleeding or infection ceases and the demand for blood cells
returns to normal, the antiapoptotic and proliferative stimuli decreases and the kinetics of
hematopoiesis return to baseline levels [Wichmann and Loeffler, 1985; Smith, 2003; Attar
and Scadden, 2004; Wilson and Trumpp, 2006].

13.3 Stem Cell Modeling

To understand the behavior of hematopoietic systems, it is not enough to study the single
cell behavior, but we need a complete view of the system, with the overall mechanisms that
govern the internal dynamics of the cells and their communications through the microenvi-
ronment.

13.3.1 Experimental Limitations

We believe that recent experimental evidence makes it clear that it is increasingly necessary
to use formal, computational models to investigate the nature of stem cell systems rather
than stem cells in isolation. This is for several key reasons. First, adult stem cells cannot be
easily isolated, indeed it may be that it is only by looking at their behavior in a system, not
isolated, can we tell what kind of cell we were originally looking at. Second, any attempt
to determine the properties of stem cells requires a functional test, which itself feeds back
on the cells and changes their properties [Potten and Loeffler, 1990; Loeffler and Roeder,
2002]. Third, even if we were able to track the behavior of a cell in the body, it would only
tell us about one of the possible behaviors of the original cell; it tells us nothing about
the potentially considerably larger array of behaviors that may have been possible if the
environment and the chance elements had been different. Fourth, by removing a cell from its
original and natural habitat the new environmental conditions will influence future behavior
and lead to misleading results [Theise, 2005]. Fifth, it is the totality of the stem cells as a
system in the human body that is important. A key quality of the system is its ability to
maintain exactly the right production of cells in all manner of different situations.

In response, therefore, we have developed a formal model that reflects many of the key
experimental and recent theoretical developments in stem cell research. Using techniques
from multi-agent systems, we are currently building a complex adaptive system to simulate
stem cell systems in order to provide a testbed from which to be able to investigate key
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properties of them in general and to formulate new experiments to identify the underlying
physiological mechanisms of tissue maintenance and repair.

We next outline some of the techniques that have been employed up till now.

13.3.2 What a Model Can Be Useful For

The mathematical modeling, conceptualization and simulation of stem cell behavior is be-
ginning to receive a substantial amount of interest from an increasing number of researchers.
As has been pointed out by others, predictive models of stem cell systems could provide
important new understandings of the self-regulating mechanisms that result in the global
properties of stem cells.

There has been a growing debate about how stem cells behave in the human body;
whether the fate of stem cells is pre-determined [Nicola and Johnson, 1982] or stochastic
[Ogawa, 1999; Thornley et al., 2003], and whether the fate of cells relies on their internal
state [Novak and Stewart, 1991], or on extra-cellular micro-environmental factors [Trentin,
1970]. There have been several attempts to build formal models of these theories, so that
predictions can be made about how and why stem cells behave as they do, either individually
or collectively. Reviews of these formal approaches can be found in recent publications
[Sowmya and Zandstra, 2003; Loeffler and Roeder, 2004; Roeder, 2006] and we do not
propose to review these models in this chapter.

It is worth noting, however, that the first model we know of was published in 1964 ([Till
et al., 1964]) and that there has been surprisingly little work in this field until the last couple
of years. There has been a noticeable climate change in this respect, and there is now a
growing awareness of the need to use mathematical modeling and computer simulation to
understand the processes and behaviors of stem cells in the body.

We summarize what we see are the key reasons for the systematic development of models
and simulations to consider hypotheses about the nature and behavior of stem cells.

1. The size and complexity of stem cell systems mean that without simulation, it
is practically impossible to consider the whole system. Simulations provide an
important tool for understanding the global behavior of complex systems.

2. Clearly any model, and resulting simulation, of stem cells will necessarily incur
massive simplifications and abstractions about the machinations of the human
body. It is our belief, however, that theoretical simplifications are often key to
understanding fundamental properties of natural systems.

3. It is the potential of cells to behave in lots of different ways which makes them
more or less stem like. It may be that stem cell is a notion rather than a concrete
entity and refers to the wide-ranging set of potential behaviors that a cell might
have that are influenced by internal, environmental, and stochastic processes.
Simulations provide a way of determining which behaviors are essential to stem
cells and which are incidental in systems that have been studied in the laboratory.

4. When you consider experimental evidence you have seen only one behavior. This
behavior may have been one of many, and it is the potential for cells to behave
in certain ways that might be key to defining them. Modeling and simulation
is a much more effective device for understanding “behavioral potential” than
looking at completed chains of events in the lab.

5. Simulation is cheap.
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13.4 Drawbacks of Existing Models and Why Agents

As we have pointed out in the previous sections, we believe that studying the behavior of
hematopoietic system needs the comprehension of both intracellular processes and interact-
ing events among cells that are mediated by the cells dynamic microenvironment. In order
to understand the evolution of the cellular population, we should look at the system at least,
at two levels: the intracellular level and the extracellular one. We therefore require a multi-
level model, which is the one that best fits with the biological problem we are proposing
[Uhrmacher et al., 2005].

Most of the existing approaches to modeling and simulating biological systems can capture
details at only one level. The most common approach concerns differential equations, in
different forms: ordinary, partially or stochastic differential equations (ODE, PDE, SDE).
A huge amount of literature, especially in the systems biology discipline, describes ODE
models of metabolic pathways, signalling pathways and gene regulatory networks [Conrad
and Tyson, 2006]. The results obtained at this level with this approach gave good insights on
biological systems behavior. When the system shows non-deterministic dynamics, then the
introduction of stochastic approaches such as chemical master equations (CME), stochastic
simulation algorithms (SSA), tau leaping, chemical Langevin equations and so on [Gillespie,
2008] allow the study of stochastic events. Alternatively a lot of other different approaches
have been applied: random boolean networks [Kauffman, 1993], Bayesian networks and more
recently, computational models such as different process algebras (an interesting example
is the work that has been done with stochastic pi -calculus [Regev et al., 2001] and its
extensions [Dematte et al., 2008]), or petri-nets [Talcott, 2008; Heiner et al., 2008]. An
excellent review is given by [De Jong, 2002].

All of these approaches have their peculiarities, advantages and drawbacks, which make
them useful under certain circumstances, and for specific biological systems. But they share
a property: they hardly can be used for a multi-level model.

In this context we can motivate the agent approach by noting the following,

1. An agent-based approach provides more flexibility than other more limited ap-
proaches and so delivers greater potential for modeling more sophisticated, glob-
ally emergent, behavior both on the individual cell and on the cell population
level.

2. We can explicitly represent an environment.
3. An agent-based approach provides more biological plausibility than existing ap-

proaches such as cellular automata and other mathematical approaches. One of
the main reasons that biological plausibility is important is to attract biologists
to use and work with any models and simulations that are created.

4. We can build multi-layer models that capture micro- and macro-level features of
the biological system.

5. Stem cells are a prime example of a self-organizing system where individual cells
react to their local physical, chemical and biological environment. The system
should therefore be most suitably modeled as a system of interacting reactive
agents, where the reaction at the micro level gives rise to the emergent behavior
at the system level.

6. Even though we are simulating cells and environment, the Brooksian idea of an
agent being something which is both situated and embodied [Brooks, 1991] is
a fundamental driving force of our use of agents as the appropriate modeling
paradigm. Cells modeled as agents have a physical, chemical and biological pres-
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ence and are situated in a physical, chemical and biological environment in which
they react. The way in which they react will then influence the way other cells
react in the future and so on.

7. Agent-based models and simulation provide us with an easy facility to perform
“what if” experiments. By changing the behavior of individual cells or environ-
mental conditions we can perform experiments to see how system behaviors might
be affected.

8. Agent systems lend themselves to elegant visualizations which have meaning to
and impact on, the stem cell biologist.

In addition, by situating our simulation work in a wider formal framework, the SMART
agent modeling framework, based on years of previous investigation [d’Inverno and Luck,
2004; d’Inverno et al., 2004] we can compare and evaluate different models. We believe
that this is necessary for this new field to develop in a systematic manner. Moreover, the
formal framework allows us to “agentify” existing models, making it very clear what the
relationship between the existing version and the agent version is. We shall see this later in
the chapter. Finally, by building a formal model of stem cell behavior in an agent framework
and using a specification language from software engineering, there are techniques to ensure
that the simulation correctly implements the model.

The application of multi-agent based simulation for the analysis of biological systems is
quite recent, but already some work has been done in this area, for example, [Merelli et al.,
2007; Montagna et al., 2007, 2008].

13.5 Overview of Our Agent Modeling Framework

We begin the overview of our stem cell agent modeling framework by first describing and
explaining the purpose of the the main components of the framework: cell agents, the
environment and the simulation engine. Next we describe the interfaces between the various
components and finally we describe the behavior of the components.

A diagrammatic overview of the framework is given in Figure 13.1. The role of each of
these framework components is as follows:

Cell Agents: these are used to model the individual cells of the system being modeled.
Environment: represents the biological, chemical and physical environment that the

cells exist in.
Simulation Engine: the purpose of this is to “drive” a simulation of a stem cell

system. It does this by updating the environment in response to requests and
signals from the individual cell agents.

An important point to note is that the introduction of an environment that includes
chemical and topological information allows us to reduce the need to rely on stochastic
processes, i.e., probability functions. Moreover, it allows us to actually model the physical
movement of cells which clearly provides us with a more sophisticated and detailed model
of self-organization in stem cell systems. We will see examples of the advantage of modeling
physical aspects in agent-based models later in this chapter as we agentify existing formal
models.
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FIGURE 13.1 The Agent Framework for Stem Cell modeling. Where the ri are regions and ci are cell
agents.

13.5.1 Framework Components

In this section we describe the state information that is contained in each of the three
framework components: cell agents, the environment and the simulation engine.

These components can be viewed as forming subsystems: the Agent World State that
comprises the cell agents and the environment; and the Stochastic World State which adds
the stochastic processes to Agent World State.

The Agent World State is defined as a combination of the cell agents, the environment
and the locations of the cell agents in the environment:

• The agent world state is composed of two components the cell agents and the
environment.

• A cell is modeled as an agent and consequently a cell agent’s state consists of
biological and operational information.

• In addition, a cell agent has a number of physical properties, for example, loca-
tion, orientation and possibly velocity and momentum as a result of being in the
environment.

• The environment is composed of the following sub-components chemical and
physical laws and a topology of regions.

• The individual regions of a topology have attributes that can be perceived by the
cell agents.
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The request mechanism, described later in this chapter, allows the modeling of cells to
focus on the logic of their operation and leaves questions of physical simulation, e.g., collision
detection, to the simulation engine.

Cell Agent
A cell agent is used to model a biological cell, but it is also necessary that it include

sufficient attributes to be able to function as an autonomous agent. So in our framework a
cell agent’s state is composed of four main components:

• The internal state of the cell that represents its biological state.
• The cell agent’s percepts, that is the information that a cell can perceive from

its environment.
• The cell agent’s plan, these are the actions that the cell has decided to attempt.
• A cell may also have a globally defined stochastic component that needs to be

added purely for modeling purposes.

The second and third components are concerned with the operational aspects of a cell
agent, that is the perceive, plan and act agent behavioral cycle. At this level of model
description the precise nature of the plans developed by the agents is left open. Planning
may be implemented using approaches like those typically used in Belief-Desire-Intention
(BDI) agents or, as in the case of the work described later, using a reactive planner. The
last component is not consistent with a true agent approach because it introduces a global
level of control but is a necessary component when agentifying existing systems, e.g., the
Roeder/Loeffler model [Roeder and Loeffler, 2002].

Environment
We define the notion of an environment using the general notion of a topology, which

is defined as a set of adjacent regions. Cells are located within a region, and each region may
contain from zero up to a predetermined maximum number of cells. Further each region
has associated with it chemical concentrations, physical forces and so on. So for example,
in a particular model a region may contain at most one cell, thus it may be either empty
or contain a stem, progenitor, determined or stromal cell.

So the environment is composed of the following components:

• A topology, defined in terms of a set of regions and an adjacency relationship
between them. These properties are fixed for a particular model.

• An individual region’s static attributes, e.g., how many cells it can contain. These
properties are fixed for a region in a particular model.

• An individual region’s dynamic attributes, e.g., chemical concentrations and the
cells it contains. These properties can vary for a region in a particular model.

• A mapping which represents the location of the cells within the environment, i.e.,
the region it is currently in.

• Chemical and physical laws, e.g., chemical diffusion rates. These properties are
fixed across all models.

Simulation Engine
The simulation engine is able to see the state of all components in the system being

modeled, in particular the cell agents and the environment, thus it is able to extract any
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system state information it requires from these components. In addition, the simulation
engine also has the following internal state information:

• The signals and requests it has received from the cell agents.
• The state of any stochastic processes that it is using to provide stochastic inputs

to the cell agents.

The simulation engine used in the following implementations works in a discrete step-wise
manner, but the high level of description used at the modeling phase permits for other types
of simulation engines, including discrete event simulations with asynchronous execution. For
more information on different types of simulation engines see the chapter by Theodoropoulos
et al. in this book [Theodoropoulos et al., 2008].

13.5.2 Interfaces between the Framework Components

We now describe the interfaces between the cell agents, environment and simulation engine.

Cell Agent and Environment
Each cell agent perceives information from its environment, that is it inputs the “state”

of its current environment. Its current environment is defined as its current location which
will consist of at least its current region and possibly the adjacent regions. This information
is input in the form of percepts. In general these will be chemical, physical and biological
information. For example, a cell agent can perceive its current location (region) as well as
the chemical concentration in that location.

Cell Agent and Simulation Engine
The cell agents issue requests to the simulation engine to perform a “global” event

and send signals to notify the “environment” that it has performed a unilateral action, for
example secrete chemicals.

Examples of cell agent requests would be:

• to move to another location; or
• a parent cell to divide and be replaced by two daughter cells; or
• a cell to die and be removed from the environment.

In practice this is achieved by a cell agent sending its request to the simulation engine,
which then appends the request to its list of pending requests. Some of a cell agent’s planned
(internal) actions do not require the simulation engine to do anything, and hence no request
is generated.

Depending on the model under consideration a cell agent would be required to input
stochastically generated information from the simulation engine.

Simulation Engine and Environment
The simulation engine simply retrieves state information from the environment and

updates the state of the environment as a result of processing the cell agents’ requests and
signals. The simulation of physical processes, such as chemical diffusion, are handled by
the simulation engine, rather than being embedded in the environment, allowing freedom
of implementation.
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13.5.3 Behavior of the Framework Components

In this section we discuss the behavior of the cell agents and the simulation engine. The en-
vironment is a passive repository of information and hence does not have an active behavior
as such.

Cell Agent Behavior

In agent-based computing the operation of an agent is given by the perceive, plan
and act cycle. In particular, what an agent perceives depends on its internal state and
that of the local environment; what it plans to do depends on its perceptions and internal
state; and what action it actually does depends on what it plans to do and the state of the
environment.

The above general agent behavior cycle is refined for a cell agent as follows:

• The perceive action is a passive engagement with the environment, that simply
involves inputting percepts. In general we aim to model chemical, physical and
biological perceptual abilities. For example, a cell agent can perceive the chemical
concentration in its current location (region).

• A plan to perform one of its possible actions is formulated after the cell agent
has perceived its environment, and then which action it decides to add to its
plan is determined by these percepts and its internal state. The types of actions
that a cell agent can choose to do are remain in its current location, move to a
new location, divide, secrete chemicals or ultimately die. In the framework a cell
agent’s plan consists of several types (see below) of actions: internal actions and
their corresponding requests and signals to the simulation engine. The requests
and signals are determined by the planned internal action.

• The agent acts by performing the first action in its plan, the remaining plan is
then just what is left after this action has been removed. The generalized cell
agent’s action behavior can further be divided into the following sub-actions of
send requests, send signals and do action. Where these represent the cell agent
sending a request and signal respectively to the simulation engine, and the per-
formance of the cell’s planned internal action respectively.

Note that in some types of system the cell agent’s behavior cycle would include the
inputting of stochastically generated information calculated globally by the simulation en-
gine, in a true agent model this would not be necessary. This is not part of the cell agent’s
perceptions but part of the stochastic modeling technique for certain models. When the
cell agent’s behavior cycle is implemented we assume that it would be atomic, in the sense
that after an agent has perceived its environment the information that it has perceived, i.e.,
percepts, remain true throughout the remainder of its behavior cycle.

In our framework we have identified three types of “actions” that can form a cell agent’s
plan:

Internal actions: these are actions that a cell agent can perform independently of
its environment, these actions only effect its internal state and do not require
the participation of its environment.

Signals: these represent a cell agent signaling to its environment. These signals do
not require the environment’s participation in the sense of a joint action, but
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only that the environment records the effect of the signal having occurred∗.
For example, when a cell decides to secrete a chemical, this would be modeled
by a signal.

External requests: these are requests that a cell agent makes to its environment.
They are associated with the cell’s (internal) actions and are used when a cell’s
chosen action requires the participation of the environment for the complete
effect of the action to occur. If the environment is unwilling or unable to col-
laborate with the action, i.e., grant the request, then it can not be performed,
in these circumstances the agent would continue to wait for the request to be
granted. This allows us to model an action that effects the state of the cell and
environment, for example, cell division or death.

Simulation Engine Behavior
In the current model the main purpose of the simulation engine is to “run” the simula-

tion, it does this by processing the action requests and signals generated by the cell agents.
For example, each request is processed as appropriate by either:

• moving a cell to a new location (region); or
• deleting a dead cell from the system; or
• deleting the parent cell from the system and creating and adding two new daugh-

ter cells; or
• if the request can not be granted taking no action.

In general the simulation engine may have to deal with any conflicts that might arise due
to incompatible requests.

The simulation engine is also responsible for:

• Updating the state of the environment, for example, a regions chemical concen-
trations when a cell agent has secreted a chemical.

• It is also responsible for generating stochastic information using stochastic pro-
cesses, e.g., probability functions, when this is required by the system under
consideration.

13.5.4 Extending Our Agent Modeling Framework

We are not fixed on this model. It is important that as we incorporate different models,
perspectives and experimental findings into our approach that the model can develop. One
of the ways we validate and grow this model is to apply this agent-based modeling approach
to “agentify” other formal models. We discuss two case studies in the next section.

13.6 Agentifying Existing Approaches

To demonstrate the validity and applicability of our agent approach we consider two recent
models in more detail.

∗This is similar to Roscoe’s [Roscoe, 1997] view of the process termination event tick, in the process
algebra CSP.
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13.6.1 A Cellular Automata Approach to Modeling Stem Cells

In recent work, Agur et al. [Agur et al., 2002] built a cellular automata (CA) model to show
how the number of stem cells in the bone marrow could be maintained and how they could
produce a continuous output of determined cells. The bone marrow is considered to be a
stem cell niche where most biologists believe that the human body’s supply of hematopoietic
stem cells are situated and maintained.

This work is important because it is one of the few examples where a mathematical model
has been used to investigate properties of stem cells that might be required to enable the
maintenance of the system’s homeostasis. The model demonstrates a possible mechanism
that allows a niche to maintain a reasonably fixed number of stem cells, produce supply
of mature (determined) cells, and to be capable of returning to this state even after very
large perturbations that might occur through injury or disease. The behavior of a cell is
determined (equally differentiated) by both internal (intrinsic) factors, e.g., a local counter,
and external (extrinsic) factors, e.g., the prevalence of stem cells nearby, as stated by the
authors as follows.

1. Cell behavior is determined by the number of its stem cell neighbors. This as-
sumption is aimed at simply describing the fact that cytokines, secreted by cells
into the micro-environment are capable of activating quiescent stem cells into
proliferation and determination.

2. Each cell has internal counters that determine stem cell proliferation and stem
cell transition into determination as well as the transit time of a differentiated
cell before migrating to the peripheral blood.

In order to demonstrate this model we will provide a small part of an existing specification
of this system. The specification is written in the Z specification language [Spivey, 1992].
The full specification can be found elsewhere [d’Inverno and Saunders, 2006] but we provide
a taste since the formal background to our agent-based approach is a key part of this work.
In the cellular automata model, the stem cell niche is modeled as a connected, locally finite,
undirected graph.

graph : Node ↔ Node
neighbors : Node → (P Node)

Any Node is either empty, or it is occupied by either a stem cell or a determined cell.

TypeAg ::= EmptyAg | StemAg | DeterminedAg

The state of any node is given by the node location, the state, and an internal clock.

NodeStateAg
node : Node
type : TypeAg
counter : N

The set of all such nodes is then given below, and defines the system state. We also define
a function that returns the neighboring node states for any given node state.

SystemStateAg
nodes : P NodeStateAg
neighborsAg : NodeStateAg → (P NodeStateAg)
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There are three constant values, we will call them LeaveNicheAg , CyclingPhaseAg , and
NeighborEmptyAg in our specification, that are used to reflect experimental observation.
LeaveNicheAg represents the time taken for a determined cell to leave the niche. Cycling-
PhaseAg represents the cycling phase of a stem cell; a certain number of ticks of the counter
are needed before the cell is ready to consider dividing. Finally, NeighborEmptyAg represents
the amount of time it takes for an empty space that is continuously neighbored by a stem
cell, to be populated by a descendent from the neighboring stem cell.

LeaveNicheAg ,CyclingPhaseAg ,NeighborEmptyAg : N

We now specify how the system changes over time. Whenever there is a change of state in
the system, we identify the node that we are considering as node. All locations are updated
simultaneously.

The rules of this model, which determine what happens at a node based on internal and
external factors are described and specified below.

1. Determined cell nodes

(a) If the internal counter of a node representing a determined cell has reached
LeaveNicheAg then the cell leaves the niche; the internal counter of the node
is reset to 0, and the new state at the node becomes empty.
In the schema below, the variable node represents the node determining
its next state, and the variable newnode is that new state. We show one
operation only, the rest are very similar.

DeterminedLeaveNicheAg
∆SystemStateAg

node.type = DeterminedAg
node.counter = LeaveNicheAg
newnode.type = EmptyAg
newnode.counter = 0

(b) If the internal counter has not yet reached LeaveNicheAg then the internal
counter is incremented.

2. Stem cells nodes

(a) If the internal counter of a node representing a stem cell has reached the
constant CyclingPhaseAg , and all of the nodes neighbors are stem cells, then
the state of the node becomes a determined cell and the internal counter is
reset to 0.

(b) If the internal counter of a node representing a stem cell is equal to Cycling-
PhaseAg but not all the node’s neighbors are stem cells then do nothing;
leave the internal counter unchanged.

3. Empty nodes

(a) If the internal counter at an empty node has reached NeighborEmptyAg and
there is a stem cell neighbor then introduce, i.e., give birth to, a stem cell
in that location. The internal counter of the node is reset to 0.

(b) If the counter at an empty grid has not reached NeighborEmptyAg and there
is exists a stem cell neighbor then increment the counter by 1.
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(c) If there are no stem cell neighbors at all then reset the internal counter to
0.

A simulation of this model, together with its source code, can be found at:

http://doc.gold.ac.uk/~mas02md/cell/simulations/agur/index.html

13.6.2 Discussion about the Cellular Automata Approach

The specification of the cellular automata model reveals the following issues:

1. Empty niche spaces must do computational work, i.e., to maintain counters
2. Stem cell division is not explicitly represented, stem cells are brought into being

by empty space
3. Individual stem cells are not explicitly tracked before they give rise to new stem

cells
4. The state of the stem cell after division is not defined

The specification clearly reveals that niche spaces, i.e., empty nodes, must have counters
for this model to work. In a sense, empty space is having to do some computational work.
Clearly this lacks biological feasibility and is against what the authors state about modeling
cells, rather than empty locations, having counters.

Stem cell division is not explicitly represented, instead stem cells are brought into being by
empty space. More subtly, these stem cells appear when empty nodes have been surrounded
by at least one stem cell for a period of time. The location of the neighboring stem cell,
however, can vary at each step.

The model details the fact that if a stem cell is next to an empty space long enough then
it will divide so that it’s descendent occupies this space, however, the rule does not state
that the neighboring stem cell must be the same stem cell for every tick of the counter.
It states something much weaker; that there must be a neighboring cell, possibly different
each time, for each tick of the counter, from 1 to NeighborEmptyAg . Biologically, it would
seem more intuitive that the same stem cell should be next to an empty niche space for
this length of time in order for “division” to occur into the space but the model lacks a
“directional component”.

The state of a stem cell after division is not defined. Let us for a moment assume that
the neighboring stem cell (S) is fixed for all counts from 1 to NeighborEmptyAg from some
specific location (N). Nothing is said about what happens to S after a new stem cell appears
in N. For example, should the counter of S be reset after division? Neither does it give any
preconditions on S. For example, does S’s local counter need to have reached an appropriate
point in its cycling phase for this to happen?

So the basic problem is that this model relies on allowing both unfilled niche locations
as well as stem and determined cells to have counters. Moreover, it does not investigate or
model the nature of a stem cell before and after division. We now attempt to re-interpret
these rules using an agent-based approach that still retains the overall qualities of the model.

13.6.3 Re-formulation Using an Agent-Based Approach

One of the biggest differences between the original cellular automata model and our re-
formulation is the change in the role of graph nodes. In the cellular automata model each
node represents either a cell or an empty space. In our re-formulation, each node represents
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FIGURE 13.2 A comparison of the original Agur cellular automata model and our reformulation as
a grid-based agent model. In the original model the nodes maintain the state of the cells, whereas in our
re-formulation the nodes contain agents and it is the agents that maintain the state of the cells.

a space that may or may not contain an agent that represents a cell. This difference in the
two models is illustrated in Figure 13.2.

With the agent approach we also provide each cell with a unique identifier. We model
all cells as having one internal counter as before. In addition, each cell maintains a counter
associated with each of its neighboring nodes. The counters associated with neighboring
nodes record how long the neighboring location has been empty. Moreover, cells can sense
the type of cell at each of its neighbors, although this perception ability is only used by
stem cells. If an agent represents a stem cell then it can potentially divide into any location
where the counter has reached NeighborEmptyAg .

A cell agent is specified formally as:

[AgentId ]

AgentCellAg
id : AgentId
type : TypeAg
counter : N
nscounter : Node #→ N
nstype : Node #→ TypeAg

type = StemAg ∨ type = DeterminedAg
domnscounter = domnstype
∀n : Node | nstype n ̸= EmptyAg • nscounter n = 0

A stem cell agent is defined as follows. Other types are defined similarly.

AgentStemCellAg
AgentCellAg

type = StemAg

The system state consists of the niche where some nodes are filled with cells. The first
predicate simply states that the empty nodes are those nodes which do not contain a cell.
The second predicate states that the neighbors are defined by the graph to which the cells
are attached.
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AgentSystemStateAg
cells : Node → AgentCellAg
emptynodes : P Node

emptynodes = Node \ (dom cells)
∀n : Node; c : AgentCellAg | (n, c) ∈ cells ∧ c.type = StemAg•

dom c.nscounter = ran({n} ▹ graph)

13.6.4 Operation

Space does not permit us giving a full treatment, but we outline the basic operations here.

1. Cells set/update counters.
2. Mature stem cells that are surrounded by empty neighbors and have neighbor

counters that have reached NeighborEmptyAg will make a request to the envi-
ronment to divide into two daughter stem cells.

3. The environment resolves any conflicts where several cells wish to divide into
the same node (region) and informs those mature stem cells that can divide and
those that are not able to.

4. Mature stem cells that are able to divide do so. Mature stem cells that are
surrounded by stem cells become new determined cells. Mature determined cells
which are ready to leave the niche do so.

Our agent-based approach to modeling forces us to consider what happens when two
stem cells attempt to divide into the same location. In our model, we specify that when
the internal counter reaches CyclingPhaseAg , it signals to the environment the niche spaces
that it is prepared to divide into.

Notice, that this approach is also agent-based in nature. Namely, the agent attempts to
do something but the environment is a dynamic and uncertain one. From the perspective
of a single cell with its limited sensory abilities the world is no longer deterministic like it
was in the cellular automata model, and not all attempts at action will be successful.

The agent-based model not only considers the nature of acting in a dynamic environment
but also addresses issues such as the basic physical limitations of the stem cell niche in
general. Once again, it’s difficult to see how such issues can be considered, at least explicitly,
with the cellular automata approach.

A stem cell agent that is ready to divide, signals to the environment those neighbors that
have been empty for long enough, and so are able to receive the new cell. Of course the
output may be empty.

The environment receives requests from cells to divide, and non-deterministically assigns
those cells that can divide and those that have insufficient space around them. There are
several safety properties that we can specify here:

1. all agents get a reply (first predicate)
2. no agent can be told to divide and not divide (second predicate)
3. no node ever has more than one agent dividing into it (third predicate)
4. cells only get to divide into a node they have requested (fourth predicate)
5. there is no remaining empty node that has been requested by any of the agents

not-granted division (fifth predicate).
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Cells that divide get told where they should divide into. We have two alternatives with
the assignment of identifiers to the daughter cells: we can either give both daughters new
identifiers or allow one of the daughter cells to keep the Id of its parent. For the purposes
of tracking the inheritance between parent and daughter cells, we prefer the first of these
alternatives and give each daughter cell a unique Id.

We have run many simulations of both the original CA model and of our agent reca-
pitulation to check that the behaviors of our agent model has the same properties of the
CA model. As we explained above, the agent model has allowed us to address the issues of
biological implausibility.

It is interesting to note that allowing cells to split into all available spaces, i.e., up to four
daughters, gives us the closest possible agent-based simulation match to the original CA
models, however, any biologically plausibility we may have introduced would be negated by
this. Going back to the original CA model we see that this four-way division is supported,
further reducing the plausibility of the model. By limiting cell division to result in a max-
imum of at most two daughter cells we still maintain the integrity of the original cellular
automata version.

All these simulations are available on the web site.

13.6.5 Roeder-Loeffler Model of Self-Organization

A recent example of an approach that uses a more sophisticated model that more successfully
addresses issues of biological implausibility, is that of Markus Loeffer and Ingo Roeder at
the University of Leipzig, who model hematopoietic stem cells using various, but limited,
parameters including representing both the growth environment within the marrow, one
particular stem cell niche, and the cycling status of the cell [Roeder and Loeffler, 2002;
Roeder et al., 2005; Roeder and Loeffler, 2004; Roeder et al., 2006]. In this model, the
ability of cells to both escape and re-enter the niche and to move between high and low
niche affinities, referred to as within-tissue plasticity, is stochastically determined.

The validity of this model is demonstrated by the fact that it produces results in global
behavior of the system that match experimental laboratory observations. The point is that
the larger patterns of system organization emerge from these few simple rules governing
variations in niche-affinity and coordinated changes in cell cycle.

In recent work it has been shown to model cases of chronic myloid leukemia [Roeder
et al., 2006]. Although the Roeder-Loeffler model is is rather sophisticated (it is formal,
there is a simulation, it addresses key issues of self-organization and much of the modeling
has an agent-like quality to it), there are a number of issues regarding this model that we
have addressed by extending it using our agent framework. Most significantly, the use of
a global probability function to control the movement of cells between environments, and
in the agent-view this is problematic; this probability is calculated from global information
relating to the numbers of various cells in the system. Although it useful to assume access
to this global information when developing the model of stem cell behavior, no mechanism
is known for how stem cells could have access to this information in real biological systems.

We will say more about this model when we discuss the implementation, but to summarize
we have extended the Roeder-Loeffler model to produce an agent-based model that increases
the biological intuition and plausibility of the model, and allows us to investigate emergence
due to the subtle changes in micro-environmental effects for each cell. Modeling cells as
agents responding autonomously to their local environment is much more fine grained than
the previous model using equations to model cell transitions and allows for a much greater
degree of sophistication in the possibilities of understanding how self-organization actually
takes place in the adult human body. The main point is that an agent does not rely on
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getting information about the system state, in keeping with the reactive multi-agent systems
approach, and we believe that this gives a more biologically plausible handle on how things
might be working at the micro-environmental level.

In general the agent models we produce suffer from none of the drawbacks of other
formal systems approaches. However, models of agents by themselves have no real practical
value as we do not have any method of determining how the individual behavior of agents
affects the overall system behavior. Formality is useful for building consistent clearly defined
models but they give us very little clue as to how the overall system of interacting agents
will actually evolve. Therefore we need to move from modeling to simulation, and this is
considered next.

13.7 From Agent Model to Simulation

To investigate the behavior of our models we have developed computational models to sim-
ulation populations of stem cells as a Multi-Agent Based Simulation (MABS). MABS is
an approach to simulation that builds on Agent-Based modeling (ABM) and Multi-Agent
Systems (MAS) to develop simulations of real-world phenomena as systems of multiple
interacting agents. Implementing MAS and MABS models is challenging∗ and several sim-
ulation frameworks have been developed to facilitate this process. In this section we will
describe our implementation of the agent-based model as a MABS using MASON [Luke
et al., 2004], a MAS/MABS development environment.

Examples of agent modeling tools that span different approaches to modeling multi-agent
systems include:

FIPA-compliant tools: The Foundation for Intelligent Physical Agents (FIPA) is
the standards organization for agents and multi-agent systems. It has estab-
lished a standard for inter-agent communication that is the core of the FIPA
agent system model. The FIPA approach to modeling agents has been widely
adopted by multi-agent system tool developers. FIPA-compliant tools include
JADE [Bellifemine et al., 1999], Aglets [Lange and Mitsuru, 1998].

StarLogo: StarLogo was developed as an educational tool by Mitchell Resnick to in-
troduce children to issues of emergence through computational modeling of turtles
and patches. Where patches model the environment and turtles represent agents
that inhabit patches. Since its introduction, StarLogo has inspired other environ-
ments for multi-agent simulations, most notably NetLogo [Wilensky, 1999].

Sugarscape: In 1996, Epstein and Axtell introduced Sugarscape, an initial attempt
to develop a “bottom up” social science [Epstein and Axtell, 1996]. Sugarscape
simulates the behavior of artificial people (agents) located on a landscape of a
generalized resource (sugar). Fundamental collective behaviors including group
formation, cultural transmission, combat, and trade are seen to “emerge” from
the interaction of individual agents following simple local rules.

Swarm: In the Swarm multi-agent simulation platform the basic unit of simulation is
the swarm, a collection of agents executing a schedule of actions. Swarm supports

∗In the early stages of this project we considered using Erlang [Armstrong et al., 1996], a language
based on Haskell, developed by Ericsson, that is well suited to modeling our agent framework but lacks a
MABS environment. Sadly, developing such a framework was outside the scope of this project, although
we are still very interested in using this powerful language in the future.
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hierarchical modeling, such that agents can be composed of swarms of other
agents. As a computational modeling approach, Swarm has inspired several other
popular simulation platforms, including Repast and MASON.

Several existing multi-agent simulation tools were considered for this part of the project,
including Swarm [Minar et al., 1996], NetLogo [Wilensky, 1999], Ascape [Inchiosa and
Parker, 2002] and Repast [Tatara et al., 2006]. We chose a relative newcomer to the simula-
tion frameworks, MASON, as we found that its carefully thought out architecture provided
the best framework for our research.

13.7.1 MASON

MASON (Multi-Agent Simulator Of Neighborhoods/Networks) is a multi-agent simulation
development environment and simulation tool [Luke et al., 2004]. MASON has been devel-
oped around a discrete-event multi-agent simulation library written in Java. This flexible
foundation allows for a range of simulation approaches, including discrete step and discrete
event simulations; so far, we have used it to develop discrete step simulations.

MASON was designed to be the foundation for large custom-purpose Java simulations.
MASON contains both the simulation library and an optional suite of visualization tools in
2D and 3D. Features of MASON that were particularly desirable for our development, that
affected our decision to use it, include:

Portability: The developers of MASON have taken great care to ensure that cross-
platform portability, going as far as implementing their own version of the
Merseinne-Twister algorithm for generating random numbers so that stochas-
tic elements of simulations will run identically across machines and platforms.

Speed and size: The MASON library has been developed to be fast and relatively
small, allowing many cells to be simulated at once using standard desktop and
notebook computers. This has allowed us to simulate relatively large stem cells
systems without the need for complex distributed computing solutions.

Separation of model and visualization: Models are completely independent from
visualization, which can be added, removed, or changed at any time. This has
allowed us to easily develop simulations that can be run either with a visualization
for demonstration purposes, or without a visualization for experimentation.

Checkpointing: Models may be checkpointed and recovered, or dynamically migrated
across platforms. This allows stem cell models to be tested by first running them
on a development machine, and then migrating them to a dedicated server for
long-term processing.

Embedding: Models are self-contained and can run inside other Java frameworks and
applications. This allows us to embed simulations in other Java applications and
applets. In addition, the MASON library sets no limits on the use of other li-
braries and frameworks, e.g., allowing the graphing libraries to be used to provide
numerical feedback as a visualization option.

Visualization: The MASON library includes support for several standard types of
2D and 3D visualizations, using the core Java libraries for 2D and 3D graphics.
These have provided a foundation for developing specific visualizations of stem
cells and their environments in our models.

Export of rich media: The MASON development environment and the MASON li-
brary support the export of images (PNG) and movies (Quicktime) for docu-
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menting particular simulation runs. In addition, MASON provides support for
the generation of other output data streams, e.g., XML.

Advantages of Using MASON

Combining the powerful features offered by MASON has provided us with an excellent
environment for development, presentation and experimentation. During development the
MASON development environment allows for rapid testing and evaluation of the simu-
lations. During presentations, the speed and size of the MASON library allow users to
demonstrate “live simulations” on standard notebook hardware. During experimentation
we run large-scale experiments using simulations without visualizations to automate “batch
processing” of stem cell models across clusters of machines.

13.7.2 Implementation of CELL in MASON

The MASON library provides a comprehensive foundation for developing our agent foun-
dation, the basis of which is a thin layer around the Steppable interface class. This is
described by the Unified Modeling Language (UML) [Rumbaugh et al., 1999] class diagram
in Figure 13.3.

step()p
Steppable

sense()
plan()
act()

state: int
patch: Patch

Agent
neighbours: Patch(0, *)
agent: Agent(0, 1)

Patch

FIGURE 13.3 Our framework is rooted with implementations of Agent and Patch that implement
the MASON interface Steppable.

The Agent class implements the Steppable interface to implement the base class for all
cell classes in models. The Agent class decomposes the step() method into a sequence of
three methods, sense(), plan() and act(), controlled by the state of the agent. Every
instance of Agent can be assigned to a single instance of Patch. The Patch class implements
the Steppable interface to provide the base class for decomposing space in simulations for
the simulation of processes over the space, e.g., chemical diffusion. Each instance of Patch
contains a set of neighbors that define the topology of the space.

The Patch class corresponds to a region in our framework, although the exact details
of a region for a model are left to the individual implementations. In accordance with
our formal framework, Patch is used as a base for building the environment, but apart
from easing certain implementation issues its inheritance from Steppable, e.g., allowing
the use of existing portrayals for visualization purposes, it acts as a passive element in the
implemented systems, simply recording the topology of the environment, as well as dynamic
features updated by the simulation engine.

The CELL framework provides a utility class for simulating the diffusion of chemicals,
the DoubleGrid2DDiffuser class acts on two-dimensional arrays of floating point numbers,
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i.e., doubles, to diffuse the values across the array. This class implements the Steppable
interface as illustrated in Figure 13.4 so that it can be inserted into schedules, just like
agents. In the simulations developed so far, the DoubleGrid2DDiffuser class is used to
simulate the diffusion of chemicals released by stem cells and stromal cells.

step()

evaporationRate: double
diffusionRate: double
grid1: DoubleGrid2D
grid2: DoubleGrid2D

DoubleGrid2DDiffuser

step()p
Steppable

FIGURE 13.4 UML diagram of the Double2DDiffuser class.

In MASON, agents and environments cannot directly render themselves to a visualization,
instead simulations are visualized using portrayals. The CELL framework defines two con-
venience portrayal classes for use by simulations, see Figure 13.5. CellPortrayal2D renders
cells within a visualization as a simple oval. ChemicalGridPortrayal2D renders chemical
concentrations, held in a DoubleGrid2D, using a gradient to indicate the concentration of
patches. Similarly to the implementation of Agent, these classes represent thin wrappers
around existing MASON classes; OvalPortrayal2D and FastObjectGridPortrayal2D.

draw()

ChemicalGridPortrayal2D

draw()

FastObjectGridPortrayal2Dj y

draw()

CellProtrayal2D

draw()

OvalPortrayal2Dy

FIGURE 13.5 UML diagram of the Portrayal2D subclasses.

13.7.3 Implementation of Roeder-Loeffler Model in MASON

The small set of classes described above forms the framework, built on MASON, that we
implement specific models upon. This section details the classes developed to implement the
Roeder-Loeffler model of stem cell organization. This implementation adds specific details
of the model of cells and their environment as described.

Figure 13.6 illustrates the implementation of the basic Cell class. The Cell class is
a subclass of the Agent class and overrides the sense(), plan(), and act() methods
to implement the standard agent cycle within the specific environment described for the
Roeder-Loeffler model. Each Cell class maintains an internal state within an instance of
the CellStateInternal class.
Cells communicate with the environment, simulation engine, visualization, etc. through

the use of CellEvents that CellListeners can subscribe to be notified about. Cells will
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age: int
stage: CellStage
instance: CellInstance

CellStateInternal

state: CellStateInternal
listeners: CellListeners

Cell

sense()
plan()
act()

state: int
patch: Patch

Agent

cellMoved()
cellUpdated()
cellStateChanged()

CellListenersource: Cell
type: int
MOVED: int
UPDATED: int
STAGE_CHANGED: int

CellEvent

sends

receives

*1

FIGURE 13.6 UML diagram of the Cell class.

generate events when they move (CellEvent.MOVED), have their internal state updated
(CellEvent.UPDATED), or when the stage that they are in changes (CellEvent.STAGE -
CHANGED).

Figure 13.7 illustrates the classes that implement the cell typing system in the Roeder-
Loeffler model. The CellType class is the core of this system and allows different types of
cells, e.g., stem cells and stromal cells, to be defined with different cell cycles, using the
CellCycle class, for each stage in the cell’s life, represented using CellStage objects.

STEM: CellStage
PRECURSOR: CellStage
DIFFERENTIATED: CellStage
ORDER: CellStage[]

CellStage

getCellPhaseStart()
getCellPhaseEnd()

length: int
map: HashMap

CellCycle

id: int
CellId

id: CellId
type: CellType

CellInstance

G1: CellPhase
S: CellPhase
G2: CellPhase
M: CellPhase
ORDER: CellPhase[]

CellPhase

getCellCycle()
putCellCycle()

map: HashMap
CellType

contains contains

* 1*1

references

FIGURE 13.7 UML diagram of the CellType and related classes.

Possible CellStages in this implementation Roeder-Loeffler model are STEM, PRECURSOR
and DIFFERENTIATED. Hematopoetic cells in the simulation can potentially pass through all
of these stages. Stromal cells begin in the DIFFERENTIATED stage and remain in it throughout
simulation runs as defined in the model.

Cell cycles are defined as a sequence of phases that cells pass through, the different phases
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are represented by the CellPhase class. The phases that our cells pass through are: G1, S,
G2 and M. These are defined in this order in the CellPhase class. Different types of cells are
defined using the CellType class as spending different lengths of time in these phases.

Figure 13.8 illustrates the classes that form the top-level in the agent-based Roeder-
Leoffler simulation, i.e., WorldState that maintains all of the information about the en-
vironment and AgentRoeder that implements the top-level simulation engine and stand-
alone application. The AgentRoederWithUI class wraps the AgentRoeder class with a user-
interface for displaying visualizations produced using the portrayal classes defined in the
CELL framework. Using this pattern of developing a stand-alone application for running
on the command-line without a visualization, and a wrapper to add the necessary GUI
elements when desired, provides a powerful method for developing the simulations.

width: int
height: int
cells: SparseGrid2D
stemChemicals: DoubleGrid2D
stromalChemicals: DoubleGrid2D

WorldState

main()
start()

worldState: WorldState
worldWidth: int
worldHeight: int
nicheType: int
chemicalDiffusionRate: double
chemicalEvaporationRate: double
STEM: CellType
STROMAL: CellType

AgentRoeder

main()
start()
load()
init()
quit()

stemPortrayal: ChemicalGridPortrayal2D
stromalPortrayal: ChemicalGridPortrayal2D
cellPortrayal: CellPortrayal2D
display: Display2D
dispayFrame: JFrame

AgentRoederWithUI

controls

1

FIGURE 13.8 UML diagram of the WorldState container class, the AgentRoeder simulation class
and the AgentRoederWithUI visualization class.

Using the sophisticated library of components provided by MASON has allowed us to
build an agent framework comprised of some utility classes, and implement specific models
with relatively little code.

13.8 Discussion

We have spoken much in this chapter about why agents are “good” for modeling natural
systems but perhaps the best way to see the advantages is in the visualizations of the
simulations themselves. Again we encourage the reader to look at the visualizations for
themselves on the project web site∗, but we present some of the images here.

∗The CELL Project web site is located at http://doc.gold.ac.uk/~mas02md/cell/
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FIGURE 13.9 The visualization of the original model. We see cells switching between two compartments
according to the calculation of a probability function.

We have extended the Roeder model to incorporate a model of space so that we can
consider cell movement in more detail. The difference between the two approaches can best
be seen by looking at the visualizations online.

In Figure 13.9 we see a visualization of the Roeder-Loeffler model, based on an existing
visualization, where cells are in one of two compartments. The compartments represent
broad environments inside (α) and outside (Ω) the stem cell niche. Movement within the
compartments represents changes in niche affinity, as indicated by the scale, not physical
movement within the environments. Consequently, the visualization should be read more
like a 3D graph than a representation of 3D space. When the visualization moves in time, we
see cells switching between the two compartments. The particular simulation being shown
is a competition between two populations of stem cells, red and blue, competing for control
of the niche. The biological intuition behind what is actually happening is very difficult to
unpick.

In our agent view, shown in Figure 13.10, we get an understanding of the actual mechanics
of what is happening to individual systems and how the system as a whole is interacting.
Movements of agents in the simulated environment are represented as movements in the
visualization. The secretion of chemicals from stem cells and stromal (niche) cells is what
keeps this system continually generating new blood cells and maintaining the population
of stem cells. Chemical concentrations are represented in the visualization by the coloring
of regions according to the chemicals they contain. From this visualization, it is clear that
we can experiment with properties such as the physical shape of the stem cell niche by
changing the placement of stromal cells, something that isn’t directly possible with the
original model. The real value of visualizations like this is that biologists are attracted to
them.

One of the predictions that our agent-based visualization makes is that stem cell activity
pulses around the niche. Although not verified to date it is a testable prediction made about
the nature of stem cell activity. We are currently seeking interested biologists to investigate
whether this prediction can be verified.
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FIGURE 13.10 The visualization of our agent model. In our view a much more biologically intuitive
visualization.

Our next goal is to build an agent-based model of chronic myeloid leukemia which will
aim at providing an opportunity to evaluate the mechanisms which are taking place when
this cancer takes hold in the development of blood cells.

13.8.1 Concluding Remarks

Recent medical evidence suggests that the way to understand how stem cells organize them-
selves in the body is as a self-organizing system, whose global behavior is an emergent quality
of the massive number of interactions of cells with each other and of the environment of
which they are a part. We claim, therefore, that the multi-agent system approach to model-
ing is the most suitable one for exploring means to simulate the behavior of stem cells and
from resulting simulations [Theise and d’Inverno, 2004; d’Inverno et al., 2006], suggest how
tiny changes in individual stem cell behavior might lead to disease at the global, and hence
observable from an experimental perspective, system level. We have outlined the benefits
of this approach by comparing it to a cellular automata approach in detail.

Modeling and simulating stem cells promises much. Our intention is to build a common
conceptual framework from which integrated research can ensue. We believe that the agent
approach to modeling, coupled with the natural feel of the visualizations makes it a valuable
currency in this effort.

Indeed, the fact that the work came from an interdisciplinary project (rather than, say, a
team of mathematicians working in isolation) means that this work is ideally placed to be
the foundation from which we can produce this common conceptual framework so important
to harnessing the energies of research from different fields.

One last comment. Perhaps the greatest evidence for the impact of our work has been in
the language used by one of our collaborators on a recent paper in Nature [Theise, 2005].

Cells fulfill all the criteria necessary to be considered agents within a complex
system: they exist in great numbers; their interactions involve homeostatic, neg-
ative feedback loops; and they respond to local environmental cues with limited
stochasticity (‘quenched disorder’). Like any group of interacting individuals ful-
filling these criteria, they self-organize without external planning. What emerges
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is the structure and function of our tissues, organs and bodies.

Until working on this project the stem cell researcher Theise new nothing of agents. Now
they have become the currency in which he conceptualizes them.
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