Linked Data And You:
Bringing music research software into the Semantic Web

Chris Cannam, Mark Sandler
Centre for Digital Music
Queen Mary University of London
Mile End Road, London, E1 4NS

Michael O. Jewell, Christophe Rhodes, Mai
Department of Computing

Goldsmiths, University of Londor
New Cross, London, SE14 6NW

{chris.cannam, mark.sandler}@elec.gmul.ac.uk {m.jewell, c.rhodes, dinverno}@golc

Abstract

The promise of the Semantic Web is to democratise access
to data, allowing anyone to make use of and contribute back
to the global store of knowledge. Within the scope of the
OMRAS?2 Music Information Retrieval project, we have made
use of and contributed to Semantic Web technologies for
purposes ranging from the publication of music recording
metadata to the online dissemination of results from audio
analysis algorithms. In this paper, we assess the extent to
which our tools and frameworks can assist in research and

facilitate distributed work among audio and music researchers,

and enumerate and motivate further steps to improve collab-
orative efforts in music informatics using the Semantic Web.
To this end, we review some of the tools developed by the
OMRAS?2 project, examine the extent to which our work re-
flects the Semantic Web paradigm, and discuss some of the
remaining work needed to fulfil the promise of online music
informatics research.

1 Introduction and Motivation

As researchers and developers in the field of audio analysis
and music informatics, the authors have worked on many
software tools and applications which involve the interchange
of data extracted from audio and music. Examples include
Sonic Visualiser, an application for interactive visualisation
and automated analysis of music audio; audioDB, a database
that provides fast localised search of audio recordings; and
the Vamp plugin system for audio analysis.

One general issue in the field of music informatics is the
difficulty of sharing musical data, particularly because of
copyright protections. While this is most obvious with re-
spect to commercial audio recordings, it extends to anything
with significant originality, such as typeset scores, MIDI
performance transcriptions, and other symbolic representa-
tions of music, even if the original composition is itself out
of copyright.

This difficulty is an impediment to the development of

music informatics as a rigorous field. It is difficult to inde-
pendently reproduce the results of experiments performed
by other researchers, even if those researchers provide a full
and precise description of their methods, because the experi-
ment often involves a particular corpus of non-redistributable
media. In addition, there is no sizeable standardised cor-
pus within the music informatics community for testing and
competition purposes, unlike in the text and image informa-
tion retrieval disciplines.

OMRAS?2 (Online Music Recognition and Search II) is

an EPSRC-funded research project covering annotation, search,

and collaborative research using online collections of recorded
audio and symbolic music data. One of the goals of the
OMRAS?2 project is to provide a framework for enabling
researchers in music informatics to collaborate and share
data meaningfully, and consequently to improve the abil-
ity of music informatics researchers to test and discriminate
between new algorithms and techniques.

One part of the development of this framework has been
to take existing tools and applications that were developed
without features for online or collaborative working, and to
extend them to facilitate online use. The core idea behind
our work is to maximise the ability of researchers to ex-
change outputs from their tools and results of their experi-
ments in a mutually intelligible way. This has two benefits:
if researchers have access to the same media but different
tools, the outputs of those tools can be meaningfully com-
pared and integrated; in contrast, if researchers have access
to the same tools (for example some software licenced un-
der Open Source terms) but different media, then the out-
puts from those tools can be accumulated to provide base-
line performance measurements on a larger collection for a
particular task.

Working from the principle that the advantages of em-
ploying standard and widely accepted formats may outweigh
any inefficiencies in the data representation itself, we have
found ourselves testing the suitability of the Semantic Web
and Linked Data concepts for use with some of our more
technically traditional music information retrieval applica-
tions and tools. Why did we choose to use Semantic Web

technologies rather than, for example, focusing on Web Ser-
vices methods such as SOAP? !

e Much work has already been done in describing musi-
cal metadata for the Semantic Web [1]. This presents
an alluring vision of a future in which we can reli-
ably associate analytical results with other informa-
tion about the source material.

e A substantial quantity of data about music is already
available in the Semantic Web, including data from
the MusicBrainz database of artists and recordings, >
BBC broadcast data, > and information from Wikipedia
resources. * [2] Using a compatible framework for
our data will make it easy to augment results with
links to these existing resources.

e Semantic Web languages are widely supported by ex-
isting, free library code for data structure, storage,
syntax, serialisation, and querying. This means we
can use existing implementations for all of these rather
than having to provide and test our own code.

e The human-readable and extensible nature of RDF
makes it attractive for use in published work, and par-
ticularly for early publication of exploratory work.

e The Semantic Web deals with documents and data
rather than services, which makes it attractive as a
means of one-off or ad-hoc publication — especially
of work done by researchers who may not be in a po-
sition to provide ongoing support of a live service.

Because of this last aspect — the document-centric, rather
than service-oriented, nature of the Semantic Web — an ap-
proach based on Semantic Web technologies also provides
more flexibility in deployment than service-oriented archi-
tectures. It is straightforward to publish data on the Seman-
tic Web; a standard Web server (such as Apache) serving up
static files suffices. However, if it does transpire that pro-
viding a service to query or generate data is a good idea, it
can often be added after the fact as a SPARQL > endpoint —
a mechanism by which an RDF data store may be queried
remotely using syntax somewhat like that for a traditional
SQL database.

1.1 About this paper

In the rest of this paper we will first introduce in more de-
tail the technical background of the Semantic Web (section

"http://www.w3.0rg/TR/2007/
REC-soapl2-part0-20070427/
2nttp://dbtune.org/musicbrainz/
3nttp://www.bbc.co.uk/music/developers
4http://dbpedia.org/
Shttp://www.w3.org/TR/rdf-sparql-query/

2); we then describe some of the software tools for audio
and music analysis we have developed and published during
the course of the OMRAS?2 project, and examine how far
Semantic Web technologies and methods have been, or can
be, applied to make these tools useful in new interactive and
collaborative contexts, drawing conclusions and highlight-
ing unsolved problems in section 6.
The tools we will look at are:

e The Vamp audio analysis plugin API (section 3.1);

e Sonic Annotator, a “universal audio feature extractor”
using Vamp plugins (section 3.2);

e Sonic Visualiser, an interactive user application for
audio analysis and annotation which is also a modular
set of software libraries for building new interactive
applications (section 4);

e AudioDB, a contextual search database for audio col-
lections (section 5).

2 The Semantic Web

2.1 Ontologies

An ontology in information science is a vocabulary of terms
used to model a domain of knowledge [3]. This vocabulary
typically consists of terms for classes (or sets), properties,
and relationships. The acceptance of a common vocabulary
provides a semantics, making it possible to apply abstrac-
tions based on the common properties of sets of data.

The terms used in an ontology usually also exist in En-
glish or other natural languages: this provides convenience
and mnemonic power, but does not itself convey meaning;
the meaning of a term resides in the fact that statements
using it have that term in common. The specification of a
particular ontology does usually include a natural language
summary of each term, but this is a hint or an attempt at
normative definition rather than a descriptive definition.

2.2 RDF and URIs

RDF (Resource Description Framework) is a system for mod-
elling data relationships using subject—predicate—object state-
ments.

To make a statement about a real object or concept, it is
necessary to have or invent a Uniform Resource Identifier or
URI which will represent that object or concept. Predicates
are also represented by URIs. A statement therefore takes
the form subject-uri predicate-uri object-uri, or subject-uri
predicate-uri literal-text.

The text of a URI can be almost anything: its purpose
is not to be read, but to be a “proper noun” which we can
agree upon to stand in for the real object. For historical and

@prefix myplugins: <http://example.org/rdf/plugins/mine#> .
@prefix vamp: <http://purl.org/ontology/vamp/> .
@prefix cc: <http://web.resource.org/cc/> .

@prefix dc: <http://purl.org/dc/elements/1.1/> .

myplugins:note_estimator a vamp:Plugin ;
vamp:identifier "notes" ;
dc:title "Note Estimator" ;
cc:license <http://creativecommons.org/licenses/BSD/> .

:mylibrary a vamp:PluginLibrary ;
vamp:identifier "myplugins" ;
vamp:available_plugin myplugins:note_identifier .

Listing 1. RDF/Turtle fragment describing a Vamp plugin.

practical reasons, URIs usually resemble the HTTP URLs
used for the traditional Web. URIs such as

http://my.example.org/resource/me

may be used more conveniently after separating it into a

@prefix owl: <http://www.w3.0rg/2002/07/owl#>.
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>.
@prefix vamp: <http://purl.org/ontology/vamp/>.

vamp:Plugin a owl:Class ;

rdfs:label "Vamp Plugin" ;

rdfs:comment """
A Vamp plugin is an implementation of an audio feature
extraction algorithm using the Vamp APT.

nnn

Listing 2. The Vamp Plugin type defined.

of their power arises from the links between documents about
data, rather than the documents themselves.

The term Linked Data is appropriate for much of the
database and data-centric work we are interested in, though
we will continue to use Semantic Web to refer to the tech-
nologies in general.

common prefix and variable suffix, suchashttp://my.example.org/resource/

and me. By declaring example as an abbreviation for this
prefix, we can write the above URI as example :me, and
reuse the examp 1 e abbreviation for other URIs sharing that
prefix.

RDF does not define a single syntax. Listing 1 provides
an example using the Turtle syntax,® which we will use
throughout. Here the URImyplugins:note_estimator
identifies an object whose type is “Vamp plugin” (section
3.1). Its name is “Note Estimator”, and it is published under
aliberal open-source license identified using a URI provided
by the Creative Commons project. The plugin has a partic-
ular identifier string, and there exists a library, also with a
particular identifier, that contains it: these two statements
relate the plugin URI (which we just invented) to the actual
plugin in the “real” world.

We can then supply more information about this plugin
by providing further statements using the same plugin URI
as subject, either in the same document or elsewhere.

This example works because we are prepared to accept
the URI vamp: identifier as representing the relation-

ship “has the Vamp plugin identifier”, the URI vamp : P1ugin

as representing “the type of a Vamp plugin”, and so on. The
reason we can readily accept the meanings of these URIs is
that they have been defined elsewhere, as terms in an on-
tology. Listing 2 shows a fragment of the ontology which
defines the Vamp plugin type.

2.3 Linked Data

Although the technologies described here are generally re-
ferred to as driving the “Semantic Web”, the alternative term
“Linked Data” is also used to emphasise the fact that much

Shttp://www.w3.org/TeamSubmission/turtle/

2.4 Ontologies for Describing Audio

A number of ontologies for describing audio and musical
features and metadata have been created, many of them within
the OMRAS?2 project.

The Music Ontology’ [1] provides terms for describing
musical metadata such as artist or performance. The Simi-
larity ontology® [4] permits the expression of the similarity
between things as a class with its own properties, such as
to describe the quality of that similarity, in a manner flexi-
ble enough to be able to encompass concepts as diverse as
artistic influence and timbral similarity.

At a signal and feature description level, the Audio Fea-
tures,® Event,'® and Timeline'' ontologies provide terms
to represent features of audio signals and of data extracted
from them, such as note or key change events or spectral
features. The Chord ontology'* provides vocabulary for
describing chords and chord sequences. The Vamp Plug-
ins ontology '3 describes properties of the Vamp audio fea-
ture extraction plugin system defined for OMRAS?2 (section
3.1), and also specifies a Transform ontology which pro-
vides terms for describing how to configure a plugin and
how a particular result (presumably expressed using the Au-
dio Features ontology) was obtained. Finally, the Opaque
Feature File ontology (section 3.2.2) addresses the problem
of separating bulky data from descriptive metadata in RDF.

Thttp://musicontology.com/
8http://purl.org/ontology/similarity/
http://purl.org/ontology/af/

O http://purl.org/NET/c4dm/event .owl
Unttp://purl.org/NET/c4dm/timeline.owl
2http://purl.org/ontology/chord/
Bnttp://omras2.org/VampOntology

3 Automated Analysis

In this section we will discuss the Vamp plugin format, de-
veloped for publishing audio analysis methods in a modular
system, and Sonic Annotator, a tool for applying these plu-
gins to perform batch analysis of audio. We will describe
some means by which we can provide enhanced data with
these tools using Semantic Web technologies, and consider
some of the limitations of this approach.

3.1 Vamp Plugins

The Vamp audio analysis plugin format '* provides a gen-
eral way to make efficient binary implementations of audio
analysis and feature extraction methods available to appli-
cations. A Vamp plugin is a dynamic library of platform-
native binary code which can be loaded by a host applica-
tion; once a plugin is loaded, the host can feed it audio data
and receive analysis results in return. The meaning of those
results depends entirely on the plugin.

The result features calculated by a plugin are not just
streams of values; the plugin also defines some structure for
each feature, such as whether it has a start time and duration
distinct from its values, how many values it contains, what
its units are, and whether it has a label. This structure, al-
though fairly simple, is enough to permit a number of useful
audio features to be represented, ranging from “high level”
features such as beats, notes, or song structure segments, to
“low level” features such as the spectral centroid, amplitude
envelope, or a constant-Q spectrogram.

The Vamp plugin system consists of a C language inter-
face and portable C++ software development kit under a lib-
eral open source licence, and a significant number of Vamp
plugins and host applications are available from the authors
and several other publishers. !>

3.1.1 Structure and Semantics

Although features returned by Vamp plugins are structured
by the plugin, they do not come with any explicit semantics
attached to them. A plugin that estimates note pitch and tim-
ing information cannot explicitly identify its result features
as representing the concept “note”, it can only express the
properties of a note by giving the feature a time, duration,
and a frequency value expressed in hertz.

To make the connection between the structure and the se-
mantic concept it represents, we can supply a separate meta-
data document about this plugin in RDF, giving an event
type for the plugin’s output. An example is shown in list-
ing 3.

Here the note_estimator plugin defined earlier is
described as having an output that returns events of type

“http://vamp-plugins.org/
Bnttp://vamp-plugins.org/download.html

@prefix myplugins: <http://example.org/rdf/plugins/mine#> .
@prefix vamp: <http://purl.org/ontology/vamp/> .
@prefix af: <http://purl.org/ontology/af/> .

myplugins:note_estimator
vamp:output myplugins:estimated notes .

myplugins:estimated notes
vamp:computes_event_type af:Note .

Listing 3. Defining the output feature type for a plugin.

http://purl.org/ontology/af/Note. Provided
that we accept this URI as representing the concept “note”,
this suffices to identify the structured features returned in
the plugin’s output as notes. Even if we do not accept the
semantics of this representation, the use of a common type
URI still serves the practical purpose of showing that these
features are interchangeable with other events of the same

type.

3.2 Sonic Annotator

Sonic Annotator '® (figure 2) is a flexible command-line
utility for feature estimation and extraction from audio files
using Vamp plugins, developed within the OMRAS?2 project.
It is generally intended to be used within the scope of larger
systems where its function is to apply a particular configu-
ration of a plugin repeatably and efficiently across multiple
audio files.

In addition to the source audio, Sonic Annotator needs as
input a description of the specific Vamp plugin (or plugins)
to run and of the parameters to use when configuring the
plugin and processing the data. This bundle of information
is referred to as a “transform” description and is expressed
using the Transform ontology (section 2.4).

Sonic Annotator also needs a format in which to write its
feature output: something that can express all of the feature
structures that may be returned by a Vamp plugin. The Au-
dio Features ontology (section 2.4) provides terms for this.

Finally, Sonic Annotator can make use of information
about the plugin itself, such metadata about the purpose of
a plugin which may help it to make the right decision about
how to describe the output. This information can be pro-
vided using the Vamp Plugin ontology. For example, the
description in listing 3 above indicates that a plugin’s output
returns features that should be written using the af : Note
object class.

3.2.1 Audio features in RDF

Listing 4 is an example of output from Sonic Annotator
showing a single note, together with the contextual mate-

"®http://omras2.org/SonicAnnotator

/’
Ww\w

(cue O WM ORE CitAmNELS) { MUI—TIPVE

POCS\RLE

outeuTs

AND ourpPuT
TvPes)

Figure 1. Overview of a Vamp plugin.

& oy @

—AUADIO
e &
TTRAANSFOR M
oNTOLOGY i\ o |
So~nC

vmg} = 'MNW

PLM(Q\NS {} AuDio
FEATURES |+ ’\’L%CDN
ST @] _ONTOLOGY NTOLOGY

//I""\.

S
SEMN\!'HQ_WE:B {/ l/

._.——.

i-__-'

Figure 2. Sonic Annotator in context.

rial that reports how the note was calculated (which would
remain the same for any number of notes).

This representation in RDF has some advantages. It can
be read by humans and parsed by common library code. It
is very rich: the description of each note is linked to infor-
mation about the audio signal it was derived from and the
plugin and parameters used to generate it. The audio file ob-
ject itself may be linked to further musical metadata such as
title and artist information, via further terms from the Music
Ontology. (Sonic Annotator facilitates this with additional
options to specify track and artist URI to be included in the
output.)

Perhaps the most powerful advantage is that this rich meta-
data is expressed in the same syntax and structure as the data
itself. This makes it very much harder to “lose” the context
of a set of result data. All of the metadata will be preserved
by any serialisation or storage that the data undergoes. This
would not be the case if the data and metadata were sepa-
rated and stored in different documents or different formats.

The representation also uses standardised encodings for
the note timing, based on the Timeline ontology; this and the
use of standard XML Schema (XSD '7) data types — the type
tags suffixed after ~~ — also appear beneficial for reliable
interchange.

On the other hand, some disadvantages of this represen-
tation are also obvious. It is very verbose. Although the
example of listing 4 is exaggerated because the whole con-
text is reported even though there is only one note, the note
object alone takes many times the space it would need in a
simpler scheme. Also, the relationship between note data,
generating plugin and parameters, and audio signal is com-
plex and cannot be readily extracted from the data without a
complete parse and query process.

There are further issues with RDF and SPARQL in rep-
resenting and querying numerical data. XSD provides many
data types for numerical values: our choices of int and
float reflect the internal data types of the program that
wrote the data, but we could have chosen the unbounded
integer and decimal. This matters because literals are
considered identical in a subsequent query only if their types
match. '8 Our sample rate "44100" " "xsd: float will
fail to match any query that searches for "44100" " "xsd:int,
"44100"" "xsd:decimal, or "44100". If two people
or programs emit sample rates with different types, query-
ing becomes harder (in many cases calling for a filter with
an explicit type cast rather than a simple literal match — but
the real problem is to know in advance which queries may
require special treatment).

This problem is in principle solvable, because the type of
the expected literal for a property term can be specified in
its ontology. Unfortunately many ontologies, including the

Thttp://www.w3.org/TR/xmlschemall-2/
Bhttp://www.w3.org/TR/rdf-concepts/\#
section-Literal-Equality

@prefix tl: <http://purl.org/NET/c4dm/timeline.owl#> .
@prefix mo: <http://purl.org/ontology/mo/> .

@prefix af: <http://purl.org/ontology/af/> .

@prefix event: <http://purl.org/NET/c4dm/event.owl#> .
@prefix vamp: <http://purl.org/ontology/vamp/> .

:note_1
a af:Note ;
vamp:computed by :notes_transform ;
event:time [
a tl:Interval ;
tl:onTimeLine :signal timeline .
tl:beginsAt "PT0.75"" "xsd:duration ;
tl:duration "PT0.25"" "xsd:duration ;
1.

:signal_timeline
a tl:Timeline .

:notes_transform
a vamp:Transform ;
vamp:output myplugins:estimated notes ;
vamp:plugin myplugins:note_estimator ;
vamp:sample_rate "44100"" "xsd:float ;
vamp:step_size "512"" "xsd:int ;
vamp:block_size "1024"""xsd:int .

raudio_signal
a mo:Signal ;
mo:time [
a tl:Interval
tl:onTimeLine :signal timeline ;

1.

<file:///home/chris/Music/example.wav>
a mo:AudioFile ;
mo:encodes :audio_signal .

Listing 4. Output from Sonic Annotator of a single note.

Vamp plugin one at the time of writing, fail to do this, and
even if they are fixed, existing data may remain incompati-
ble. This is not a problem with the framework itself so much
as with the incompleteness and fluidity of those ontologies
in use and the fact that such details of the ontology are not
widely interpreted by data generation tools, leaving the user
to ensure that types are enforced manually.

(It is also possible to attach a language tag to textual lit-
erals, with equally awkward consequences: "note"@en is
not the same literal as "note", and SPARQL provides no
way to match a literal but ignore its language. In this case
the problem cannot be avoided in the ontology.)

There is no very effective way to represent numerical
data in quantity directly in RDF; a textual representation of
a large sequence of numbers is overwhelming for humans
to absorb and inefficient for computers to parse, transmit
and store. Listing 5 shows the start of an output feature
from a spectrogram plugin. Despite its length, this exam-
ple fails to convey any of the useful “self-describing” in-
formation found in the earlier note example. The data in

:spectrum a <http://purl.org/ontology/af/Signal> ;
vamp:computed by :spectrum transform ;
af:dimensions "513 0" ;
af:value "4.07493e-11 4.12334e-11 4.26514e-11 4.49015e-1
4.7819%-11 5.11895e-11 5.47518e-11 5.82221e-11 6.13073e-11

L

Listing 5. Fragment of the output from Sonic Annotator of
a spectrogram.

the af : value literal has no useful RDF type and is effec-
tively opaque: no generic timeline-mapping or visualisation
application, for example, would be able to use it without fur-
ther information about its format. Other information that is
normally useful when handling numerical data is also miss-
ing, such as the floating point precision. The only potential
advantage of this encoding is that it keeps the data and infor-
mation about its provenance together in a single document.

An improvement in principle might be to use an RDF col-
lection ' to express a sequence of typed numerical values.
In practice this would be prohibitively costly even by the
standards of the earlier examples, requiring two statements
for every value. This represents the “dark side” of the often
advantageous situation of expressing data and metadata in
the same format.

3.2.2 Opaque Feature Files

Although there is no effective way to represent large quanti-
ties of numerical data directly in RDF, for many applications
the textual representation in Listing 5 is adequate, with the
major penalties being disk space requirements and the loss
of human-readability. The Opaque Feature File project 2
represents one attempt to improve representation of dense
data. This work aims to provide a common mechanism
for describing in RDF the location and context of data files
that are not in RDF, typically the results of some extrac-
tion or transformation process on audio data; this would al-
low the dense numerical data to be represented separately
from the rest, while still remaining fully linked, thus restor-
ing human-readability to the rest of the data and allowing
storage of the numerical data in a more compact form. De-
velopment of the Opaque Feature File ontology is incom-
plete at the time of writing, but this or a similar system will
be a valuable foundation for work using a mixture of RDF
description with more compact data formats.

Ynttp://www.w3.0rg/TR/REC-rdf-syntax/\#
section-Syntax-parsetype-Collection
O http://purl.org/ontology/off/

4 Data and Analysis Visualisation

Sonic Visualiser 2! (figure 3) [5] is an application for visual-
isation, annotation, and automated analysis of audio record-
ings. It can display one or more audio files in waveform or
spectral views, perform automated analysis using Vamp plu-
gins (section 3.1), and import, export, and edit annotations
such as point timings (for events like beats), notes, measure-
ment curves, and so on; while Sonic Annotator (discussed in
section 3.2) is a tool for batch analysis of audio collections,
Sonic Visualiser is an interactive tool, allowing the addition
and display of annotations from human subjects alongside
or on top of the audio and automated analysis.

Development began prior to the start of the OMRAS2
project as a means to assist researchers by providing a flexi-
ble visualisation tool and a platform for testing and dissemi-
nation of implementations of audio feature extraction meth-
ods. Sonic Visualiser is written in C++ using the Qt toolkit,
with RDF handled using Redland > libraries.

4.1 RDF usage in Sonic Visualiser

Sonic Visualiser uses the Vamp plugin format (section 3.1)
for automated analysis. During OMRAS2 we added the
ability to query Vamp plugin metadata (section 4.2 below)
and to import and export annotation data using the Audio
Features ontology, providing compatibility in both plugin
and data formats with Sonic Annotator. (Indeed, Sonic Vi-
sualiser is actually a set of modular libraries for building
visualisation and analysis applications as well as an appli-
cation in its own right; Sonic Annotator is a simpler appli-
cation of the same libraries.)

This provides quite a lot of power. Sonic Visualiser can
import RDF descriptions of audio features, and also load
both audio and annotation data from non-local HTTP URLs
as well as from local storage. Because RDF about audio can
link to the original audio file location and also provide audio
recording metadata, the Sonic Visualiser user can export an
entire session to an RDF document complete with automatic
and manual annotations, audio location, and metadata. Pub-
lishing this document enables anyone to recreate the whole
session, including audio and annotations, simply by giving
its URL to the application.

4.2

A straightforward facility we have added to Sonic Visualiser
is the “Find a Transform” window (figure 4). This enables
the user to search for Vamp plugins; for example, to type a
term like “segment” and see a list of all plugin outputs that
have something to do with segmentation. The term “trans-
form” is used rather than “plugin” because the search in fact

“Find a Transform”

2l http://www.sonicvisualiser.org/
2 http://wuw.librdf.org/

S T Blx + 1 2 A

Figure 3. Sonic Visualiser.

[+] [Find a Transform [%]

Find: | note|
Found 11 descriptions containing note

Tl

Note Onset Detector: Note Onsets
Estimate individual note onset positions using "Note Onsets" output of "Note Onset Detector” plugin (from Queen
Mary, Univarsity of Landon)
— Plugin type: Analysis
— Category. Time > Onsets
— System identifier: vamp:gm-vamp-plugins: gm-onsetdetector:onsets
— More i ion: hittp:) lugins. or g/plugin-d

m-varmp-plugins htmi# detector

Note Onset Detector: Smoothed Detection Function
.....ndividus| note onset p... Note Onset D...

MNote Onset Detector: Onset Detection Function
......ndividusl note onset p... Note Onset D...

Polyphonic Transcription
HNotes. estimated notes.

Aubio Note Tracker (not installed)
Estimate note onset p... Aubio Hote Tracker... .ubio:aubionotesnotes

Simple Percussion Onset Detector: Onsets
.....ercussive note onssts ...

v
=T =138

g Cancel @g(

Figure 4. Sonic Visualiser’s “Find a Transform” window.

identifies individual outputs of a plugin, rather than the plu-
gins themselves.

“Find a Transform” is driven by published descriptions,
using the Vamp plugins ontology, of “known” Vamp plugins
which may or may not be installed locally. These descrip-
tions are downloaded and collated by Sonic Visualiser and
searched by keyword. The documents used for this purpose
are the same as those used to describe the type of output for
each plugin, referred to in section 3.1.1 above. They do not
have to be written by the same author as the plugin, nor bun-
dled with the plugin; indeed, it is helpful if Sonic Visualiser
can obtain descriptions even of plugins that are not installed
on the user’s system. The question is, how does Sonic Visu-
aliser find out about them?

This simple problem (see figure 5) is a good example of
a general difficulty in locating relevant data and documents.
In order to know that your plugin is available, the host needs
to find and download the RDF document that describes it.
To do this, it needs to know that the document is available
and where it lives. This requires either a central registry or
a reliable search engine.

Alternatively, rather than publish documents about plug-
ins we may choose to make the same information available
via a service such as a SPARQL query endpoint. This poses
similar problems. If each author provides their own end-
point, we have the same discovery problem with the addi-
tional difficulty that SPARQL clients cannot currently query
multiple endpoints at once. If we propose a central database,
we need to make it easy and secure to update.

In this case, we addressed the problem with a simple cen-
tral registry of Vamp plugin RDF document locations. This
is a text file served from the Vamp web server; 2> each docu-
ment whose URL is given there can describe any number of
plugins. However, this solution will not scale for situations
involving larger and more dynamic collaborative data sets.

5 Contextual Search

Vamp plugins (discussed in section 3.2) and other audio
analysis tools can generate feature vectors purporting to rep-
resent musical aspects (e.g. harmony, note onsets, timbre)
from audio files; those feature vectors can be results in and
of themselves, and displayed using Sonic Visualiser (sec-
tion 4), but can also be used for content-based search. Au-
dioDB is a feature-vector store and query engine for ap-
proximate matching in metric spaces, developed from obser-
vations about effective and efficient methods for perform-
ing similarity search on large collections of musical items
[6, 7, 8] and sequential multimedia. It is intended to scale
to millions of multimedia items, and to allow searching us-
ing sub-track fragments so that the entire database can be

23 The registry is found at http://vamp-plugins.org/rdf/
plugins/index.txt

N (,

= No‘;\ wl—\ou.u\

TR T pronide?

7 how Yo
D ok abet *?

Figure 5. How do we find out about new plugins?

searched for matches for a short segment, allowing for more
general searches than simple track-to-track matching.

For smaller collections, a linear search over the database
may be acceptable on modern hardware; depending on the
size of the collection and granularity of the features, search-
ing for similar segments to a 5-second snippet across 1000
tracks may take no more than a few seconds. Although this
search is eminently parallelisable, this will not be enough to
perform useful, interesting searches over Internet-sized, or
even modern consumer-device-sized, collections of musical
audio. AudioDB therefore also implements a probabilistic
indexing strategy, Locality Sensitive Hashing. If the length
of the search is defined in advance, then a single linear scan
of the database can produce an index data structure where
retrieval of similarity results scales sublinearly in the num-
ber of items in the database, even in very high-dimensional
spaces.

Access to this functionality is provided in a number of
ways. The core software is written in C++ and provides a
portable C library interface, with bundled bindings to Python,
Pure Data, and Common Lisp; existing implementations of
network interfaces to audioDB include a SOAP client/server
model, and an HTTP server returning JSON-formatted in-
formation.

5.1 AudioDB and the Semantic Web

The online, data sharing aspect of the OMRAS?2 project mo-
tivated us to provide reflective capabilities in order to share
data over the Semantic Web. Firstly we are able to import
dense feature data produced by Sonic Annotator, compress-
ing by a large factor in the process, to provide a search com-
ponent as part of an integrated workflow for researchers (see
figure 6). AudioDB is not an RDF data store and the im-
port process discards information not related to the feature
vectors, so the exported data from Sonic Annotator must be
preserved if desired.

Secondly, inspired by [9] we have implemented an au-

dioDB interface with the facade of an RDF store, reflecting
the implicit similarity judgments contained in an audioDB
data structure. The feature vector data, along with a dis-
tance metric, effectively encodes similarity judgments be-
tween audio sequences, with which we can build similar-
ity judgments between tracks. We can therefore think of
the feature vectors stored within an audioDB data structure
as encoding track-to-track similarity, which can in princi-
ple be exposed for Linked Data purposes as a set of state-
ments. Since it would be hugely inefficient to actually store
the O(N?) statements involved, we instead allow the user
to query the database instance using SPARQL, computing
similiarity judgments on demand.

To provide the query facility we have built a storage mod-
ule which may be used with the Redland >* RDF libraries.
Storage modules allow for the development of triple stores
that back a Redland model, and thus they need not be aware
of the querying approach being employed. Our current im-
plementation is read-only, but this may be easily extended
to provide writable functionality in future.

In the case of audioDB, we cannot use a traditional database-

backed store. There is some data which may be immediately
queried, namely metadata related to the database’s feature
vectors, but similarity information must be generated dy-
namically. We use an internal memory storage model as a
cache to store results and temporary objects for similarity
queries, with audioDB itself accessed for feature informa-
tion and to perform similarity searches.

Every sequence of feature vectors in the audioDB data
structure is reflected using the Signal type of the Music On-
tology (section 2.4); implementationally, the unique identi-
fier corresponding to each track acts as the URI of the Sig-
nal. When a query is received, the storage module is passed
a template statement with one or more of the subject, pred-
icate, or object omitted. The module is responsible for de-
termining what should be returned, which can be done all at

X http://wuw.librdf.org/

f.J.-\A_L AnnotaTol | RDE
—M,««L—w ——

Audlo

IS

:’LN? EXPORT
| (ot yet Prowi 3ad)

ROF
— RELULTS

Figure 6. RDF dataflow around audioDB.

PREFIX mo: <http://purl.org/ontology/mo/>

PREFIX af: <http://purl.org/ontology/at/>

PREFIX ksa_charm:
<http://omras2.gold.ac.uk/catalogue/ksa_charm/>

SELECT ?dimension ?vectors WHERE {
ksa_charm:KSA_CHARM 339 a mo:Signal;
af:dimension ?dimension;
af:vectors ?vectors.

PREFIX sim: <http://purl.org/ontology/similarity/>
PREFIX ksa_charm:
<http://omras2.gold.ac.uk/catalogue/ksa_charm/>

SELECT ?distance WHERE {
_:s a sim:Similarity;
sim:element ksa_charm:KSA CHARM 339;
sim:element ksa_charm:KSA CHARM 309;
sim:distance ?distance.

Listing 6. A SPARQL query to retrieve feature metadata.

once or lazily (on-demand).

Two separate forms of retrieval query are provided. The
first is retrieval of metadata about the features from the database.
This has two stages:

e Given a Signal subject and a suitable predicate, the
object is filled in with the correct value from the database.
The available predicates, drawn from the Audio Fea-
tures ontology, are dimension and vector, repre-
senting the number of dimensions and the number of
vectors in the provided feature (see listing 6).

e Given the RDF type predicate and the Signal class
URI as object, all of the stored Signal URIs are re-
turned as an iterable list. This allows for the retrieval
of track IDs stored in the database, which may then
be incorporated into other queries.

The second, more complex, query process is that of distance-
based retrieval. We use the Similarity ontology ° to spec-
ify the signals which should be compared. The Similarity
class defined within this ontology has two element predi-
cates, which refer to the two resources to be compared, and
a distance predicate to either specify or retrieve the dis-
tance between these elements. In a divergence from true

B http://purl.org/ontology/similarity/

Listing 7. SPARQL query to retrieve the distance between
two signals.

SPARQL, the ordering of these predicates is critical at present;
both elements must be available before a distance predicate
is supplied. The following process is applied:

e Given the RDF type predicate and the Similarity
class URI, a blank node is created and cached in the
internal store.

e Given the above Similarity instance reference as the
subject, the element predicate, and a Signal URI,
this information is also cached in the internal store.

e Given the Similarity instance subject and element
predicate but no object, a statement is created for each
Signal URI, with the URI replacing the object.

e Given the Similarity instance subject and the di stance
predicate, the distance is calculated using the audioDB
API and the provided element URIs. An exhaustive
search is employed here, and a Euclidean distance
measure returned.

5.2 Issues

While this approach does provide the means to query au-
dioDB data structures via a standard SPARQL endpoint, it

PREFIX mo: <http://purl.org/ontology/mo/>

PREFIX af: <http://purl.org/ontology/af/>

PREFIX sim: <http://purl.org/ontology/similarity/>

PREFIX ksa_charm:
<http://omras2.gold.ac.uk/catalogue/ksa_charm/>

SELECT ?signal ?distance WHERE {
?signal a mo:Signal.
_:s a sim:Similarity;
sim:element ksa_charm:KSA CHARM 339;
sim:element ?signal;
sim:distance ?distance.
}
ORDER BY (?distance) LIMIT 5

Listing 8. SPARQL query to retrieve the 5 signals closest to
the input.

is not yet a viable solution for large databases. The distance
querying process currently compares tracks on an individual
basis, but in many cases (such as listing 8) it is possible to
perform the query with a single call to audioDB. Adapting
the storage module to support this form of optimisation is
difficult, however, as statement templates are supplied in-
dividually, and the results are expected immediately. This
is particularly inefficient in the above query, as every track
must be compared to every other track in separate calls to
the backend database.

Secondly, the query must be written in a specific order to
ensure that the storage model is able to perform the search.
As such, Similarity individuals must be declared prior to any
elements, and element predicates must be declared prior to
the distance predicate. The Similarity predicates should be
allowable in any order, but as the distance predicate relies
on knowing the two signals to compare, this is currently im-
possible.

Finally, as mentioned above, the feature import process
disregards metadata about the feature extractor and source
audio. This information must be obtained by querying against
an additional metadata store. This is straightforward when
using two queries with two separate SPARQL endpoints, but
techniques to execute queries against multiple endpoints are
not yet standardised.

6 Conclusions and Future Directions

In this paper, we have described some of the software tools
and applications developed during OMRAS2 and the ini-
tial steps we have taken to make them interoperable using
Semantic Web technologies. Our motivation in doing this
work was to make the interchange of data, experimental re-
sults, and tool outputs relatively easy.

We believe that enabling this interchange using open and
extensible technology will give researchers confidence that
they can work together without having to interpret diver-

gent data formats or move away from ways of working with
which they are already comfortable. The knowledge that
data, and descriptions of data, can persist and be understood
independently of any particular tools should be of great in-
terest to researchers and anyone with an interest in the out-
comes of research.

One way of assessing the progress and potential of this
work is to consider how much data of interest to music infor-
matics researchers is already available: for example, there
are about 14 billion statements in our music-related knowl-
edge storeathttp://dbtune.org/. This number should
of course be taken with a pinch of salt: many such state-
ments convey generic scénes a faire, transcodings of other
data sources, or connections between one datum of interest
and another, but it is nevertheless an indication of the gen-
eral scale enabled by work applying the technologies de-
scribed here.

A point to note about data published through these mech-
anisms is that so far for the most part it is musical metadata,
rather than data related to the content of musical artifacts.
This metadata information is certainly of interest to music
informatics researchers, as it allows exploration of relation-
ships and connections between artists, performers, works,
and listeners, but it leaves largely unexplored the publishing
of content-based metadata, for reasons that we have touched
on in this paper and summarise in section 6.1 below. One
notable exception is the publication of summary content-
based information from the SoundBite application,2® con-
taining single features for 152,410 tracks produced by 6,938
distinct artists [10], whose data is used in a recommender
system and open to other uses.

In the process of permitting the achievement of these
qualified successes, we have encountered some problems
and limitations in our approach. In the sections below, we
summarise these limitations, consider how they can be re-
solved, and outline some future work.

6.1 Difficulties and Limitations

e Encoding data directly in RDF can be wasteful of space
and processing time (section 3.2.1). This is problem-
atic because much work in this field depends on ex-
changing very large data sets.

e There is no efficient means of structuring numerical
data such as vectors or matrices (section 3.2.1).

e Simple numerical data are sometimes encoded using
inconsistent data types (section 3.2.1), making queries
hard to write and, more seriously, unreliable when
used with real-world data from multiple sources.

e More sophisticated data types tend to have wildly dif-
ferent encodings across different sources: for exam-

6 http://www.omras2.org/SoundBite/

ple, there are many different ways to encode a “birth
date” literal type, most of which can be found in ex-
isting linked data repositories.

e Where it is desirable to separate data and metadata
(section 3.2.2), there is not yet any standard way to
link between the two for storage or delivery purposes.

e The unordered nature of RDF terms does not easily
lend itself to optimisation for queries such as distance
computation in audioDB (section 5.2). Further im-
plementation effort is required to ensure that queries
are performed in a manner that prioritises low-cost
searches.

e Ontologies are typically incomplete and “under con-
struction”, and updating them can be hard because of
the risk of orphaning already-published data and the
lack of effective methods for supporting multiple ver-
sions of an ontology.

e Querying across multiple data sets in order to make
use of existing linked data is difficult with current
tools (section 4.2). The standard SPARQL query lan-
guage does not support federated queries, and there
are no standard means of discovering, pooling, and
cacheing multiple documents about a subject.

6.2 What Next?

Our work on enhancing existing software tools has yielded
promising results, with some significant limitations. We be-
lieve that many of the current limitations are surmountable:

e Work on the Opaque Feature Files project or similar
(section 3.2.2) should be sustained, in order to provide
a reliable means for combining RDF data with data
not well suited to representation in RDF.

e AudioDB should be extended to support data export
using RDF, perhaps in conjunction with Opaque Fea-
ture Files.

e Published ontologies need to be improved to clarify
the intended data types for literal values (section 3.2.1),
and tools that write statements should be made to im-
port and follow the type information specified in on-
tologies in order to reduce the probability of failures
resulting from type mismatches.

e More work should be carried out into investigating re-
liable methods for querying across literals with mul-
tiple data types.

e Developers of tools that perform queries using SPARQL

should be encouraged to support federated query (sec-

tion 4.2). The Jena framework proposes one possible
extension for this. >’

Despite the issues raised in section 6.1, we are optimistic
about the future for this work and keen to develop it further.
The fact that these issues and limitations are an issue at all is
a reflection of how much is easily and transparently imple-
mentable. Also, many of the difficulties are independent of
the fact that we have used Semantic Web technologies: for
example, data file formats are changed or extended just as
ontologies are.

Further work includes integration of Sonic Annotator into
a web service for automated feature extraction (SAWA); a
Linked Data resource providing information about composers
and works from the classical canon, and applications for
structured browse and search among recordings of these works
using components from Sonic Visualiser and audioDB; and
deployment of our tools in the context of the Networked En-
vironment for Musical Analysis >® project.

7 Acknowledgements

The work in this paper was supported by the EPSRC through
the OMRAS?2 project EP/E017614/1, EP/E02274X/1.

Sonic Visualiser and the Vamp plugin format were ini-
tially developed by Chris Cannam as part of the European
Commission SIMAC project IST-FP6-507142. AudioDB
was originally conceived and developed by Michael Casey.

8 References

[1] Y. Raimond, S. Abdallah, M. Sandler, and F. Giasson.
The Music Ontology. In Proc. International Symposium
on Music Information Retrieval, pages 417-422, Vi-
enna, Austria, September 2007.

[2] G. Kobilarov, T. Scott, Y. Raimond, S. Oliver, C. Size-
more, M. Smethurst, C. Bizer, and R. Lee. Media meets
semantic web - how the BBC uses DBpedia and linked
data to make connections. In Proceedings of the Euro-
pean Semantic Web Conference In-Use track, 2009.

[3] T.R. Gruber. Toward principles for the design of ontolo-
gies used for knowledge sharing? Int. J. Hum.-Comput.
Stud., 43(5-6):907-928, 1995.

[4] K. Jacobson, Y. Raimond, and M. Sandler. An Ecosys-
tem for Transparent Music Similarity in an Open World.
In Proc. ISMIR, pages 33-38, Kobe, Japan, October
20009.

Yhttp://jena.sourceforge.net/ARQ/service.html
B http://nema.lis.uiuc.edu/

(5]

(6]

(7]

(8]

(9]

[10]

C. Cannam, C. Landone, M. B. Sandler, and J. P. Bello.
The sonic visualiser: A visualisation platform for se-
mantic descriptors from musical signals. In Proc. In-

ternational Symposium on Music Information Retrieval,
pages 324-327, 2006.

M. Casey and M. Slaney. The Importance of Sequences
in Music Similarity. In Proc. IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, vol-
ume V, pages 5-8, Toulouse, France, May 2006.

M. Casey, R. Veltkamp, M. Goto, M. Leman, C. Rhodes,
and M. Slaney. Content-Based Music Information Re-
trieval: Current Directions and Future Challenges. Pro-
ceedings of the IEEE, 96(4):668-696, 2008.

M. Casey, C. Rhodes, and M. Slaney. Analysis of Min-
imum Distances in High-Dimensional Musical Spaces.
IEEE Transactions on Audio, Speech and Signal Pro-
cessing, 16(5):1015-1028, 2008.

Y. Raimond, C. Sutton, and M. Sandler. Interlinking
Music-Related Data on the Web. IEEE Multimedia,
16(2):52-63, 2009.

D. Tidhar, G. Fazekas, S. Kolozali, and M. Sandler. Pub-
lishing Music Similarity Features on the Semantic Web.
In Proc. ISMIR, pages 447-452, Kobe, Japan, October
20009.

