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In this paper we present an experiment on automatic detection of phona-
tion modes from recordings of sustained sung vowels. We created an open
dataset specifically for this experiment, containing recordings of nine vow-
els from multiple languages, sung by a female singer on all pitches in
her vocal range in phonation modes breathy, neutral, flow (resonant) and
pressed. The dataset is available under a Creative Commons license at
http://www.proutskova.de/phonation-modes/ .

First, glottal flow waveform is estimated via inverse filtering (IAIF) from
audio recordings. Then six parameters of the glottal flow waveform are calcu-
lated. A 4-class Support Vector Machine classifier is constructed to separate
these features into phonation mode classes. We automated the IAIF approach
by computing the values of the input arguments — lip radiation and formant
count — leading to the best-performing SVM classifiers (average classifica-
tion accuracy over 60%), yielding a physical model for the articulation of the
vowels.

We examine the steps needed to generalise and extend the experimental
work presented in this paper in order to apply this method in ethnomusico-
logical investigations.

1 Introduction

Phonation modes play an important role in singing: they are an essential characteristic
of a singing style; they are utilised as a means of expressive performance; they can



be indicative of voice disorders; subtle changes in phonation mode production are used
routinely by singing teachers to determine the progress of a student.

Johan Sundberg in his seminal work “The Science Of The Singing Voice” identifies
four different phonation modes in singing: breathy, neutral, flow (called resonant by
other authors) and pressed [Sundberg, 1987]. In this paper we present a method for
automatic extraction of phonation modes from audio recordings of sustained vowels.

The introduction begins with a detailed discussion of Sundberg’s definition of phona-
tion modes. Then, examples of use of phonation modes in performance practice and in
various disciplines are given. In particular, a possible ethnomusicological application of
phonation modes is outlined: a falsification of the link between the singing style and
the status of women in a society. We outline our method for supervised classification of
phonation modes in Section 2. Section 3 describes the dataset which we have created in
order to test this method, by means of the experiment presented and discussed in Section
4. We conclude with discussions and summaries in Section 5.

1.1 Phonation modes in singing: voice acoustic

The term phonation modes was coined by Johan Sundberg. In his classic book “The
Science Of The Singing Voice” [1987] he introduced four phonation modes: breathy,
neutral, flow (called resonant by other authors) and pressed. They are vocal production
qualities resulting from the voice source (the vibrating vocal folds). In particular they are
closely related to glottal resistance which is defined as the quotient of subglottal pressure
to glottal airflow. Generally speaking the phonation modes correspond to four regions
in the 2-D space spanned by glottal airflow and subglottal pressure (Figure 1.1). A
low subglottal pressure combined with a high glottal flow results in a breathy phonation.
Pressed phonation arises when a high subglottal pressure is accompanied by a low glottal
flow. The neutral mode corresponds to low airflow and low subglottal pressure, thus
requiring the least physical effort. The flow phonation combines a high subglottal pressure
and a high airflow.

In reality not all points of the above 2-D space can be realised physically. Each singer
is capable of vocal production in a subspace depending on the nature of their voice
apparatus, their habits and their training. In particular the flow phonation usually
displays a lower subglottal pressure than the pressed mode and also a lower airflow
than a breathy sound. This makes the flow phonation an economical voice production
mode, requiring less physical effort (less pressure, less air) than both pressed and breathy
modes. At the same time flow phonation enables the singer to gain a high sound level
comparable to pressed phonation, which is significantly higher than in a neutral or a
breathy mode. Also, flow phonation allows various resonances of the vocal tract to be
used most effectively, while pressed phonation tends to restrict some of them and in
breathy singing they are weak and obscured by non-harmonic parts of the spectrum.

This can be illustrated by means of the typical voice source signal waveforms. The
graphs in Figure 1.2 are taken from Sundberg’s book [1987, p. 85|; they show one full
cycle of the vocal folds vibration: beginning with the closed phase, when no or little air
escapes the vocal folds, followed by the opening phase when the vocal folds part and let
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Figure 1.1: Phonation modes defined by Sundberg in his book “The Science of the Singing
Voice” [Sundberg, 1987] schematically correspond to four regions in the 2-D
space spanned by glottal airflow and subglottal pressure. E.g., when a large
amount of air passes through the vocal folds by a low subglottal pressure,
the resulting phonation mode is called breathy. In contrast, a high subglottal
pressure with only a small amount of air passing the vocal folds gives rise to
pressed phonation.

through a stream of air. Pressed phonation displays a long closed phase, with reduced
airflow during the opening phase. In the neutral mode the closed phase is somewhat
shortened and the airflow during the opening phase is considerably increased. This trend
is continued in the flow phonation, with a still shorter, though evident, closed phase
followed by an opening phase with high glottal airflow. In the breathy vocalisation the
airflow is raised further, and the closed phase virtually disappears: the vocal folds never
close completely, which leads to the leakage of air at any time during the cycle. The
subglottal pressure is high for the pressed sound, approximately average for the neutral
and the flow sounds and low for the breathy. Flow phonation is described by Sundberg
as the sweetspot where the maximal airflow is achieved retaining a closure of the vocal
folds during the closed phase.

Phonation modes defined by Sundberg thus describe the distinctive vocal fold closure
and opening patterns. This term does not refer to the differences in phonation between
the modal and the falsetto registers, in which the physiology of sound production is
fundamentally different.

Several studies have been published attempting to determine dominant phonation
modes or typical values of glottal flow waveform descriptors for various singing styles.
For example Thalén and Sundberg [2001] and Sundberg et. al. [2004] studied Western
classical music, pop, jazz and blues. A female singer sung a triad pattern in four phona-
tion modes as well as in the above singing styles. Various glottal flow waveform derived
measures of glottal adduction were analysed in their relationship to perceived phonatory
pressedness, including Normalised Amplitude Quotient (NAQ), the difference between
the first and the second harmonics (H1-H2) and the closed quotient (C1Q). NAQ was
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Figure 1.2: Typical graphs of the glottal flow waveform pulse functions in various phona-
tion modes (from Sundberg 1987, p. 85, used with permission of Northern
Illinois University Press)

One full cycle of the vocal folds vibration is shown: beginning with the
closed phase, when no or little air escapes the vocal folds, followed by the
opening phase when the vocal folds part and let through a stream of air. On
the right side the values for subglottal pressure P (measured by means of the
Rothenberg mask), the signal pressure level SPL as well as for the transglottal
airflow amplitude maximum EPA are given.



found to account for over 70% of the variations in perceived pressedness. Also, samples
of blues singing were perceived by a panel of experts to be the most pressed, in contrast
to classical singing with least pressedness, pop and jazz residing in between. Mean sub-
glottal pressure for blues samples was higher than for other styles. The values of mean
NAQ were found to differentiate well between the styles of the samples.

In a later publication Borch and Sundberg [2011] looked at rock, pop, soul and Swedish
dance. Here the setting was closer to real life recordings: beyond the triad patterns, a
male singer sung songs in the named styles. In contrast to the previous work, it was
found that the mean NAQ values were similar among these singing styles. This might
be accounted for by the differences in range and loudness between those styles: e.g., rock
singing was expected to correspond to a lower NAQ due to more pressedness, but at the
same time it was sung on higher pitches, which in turn correspond to higher NAQ values.
Regarding subglottal pressure, rock displayed the highest values in contrast to low pres-
sure in Swedish dance, with pop and soul again residing in the middle. Also, significant
differences between styles were found in the long-term average spectrum (LTAS).

Like us these studies worked with recordings by just one singer. As a starting point this
approach is instructive. Unfortunately, the methodology suggested in these papers does
not scale to large datasets and batch processing applications. Also, the data on which
the results are based was not made available to other researchers, thus making direct
comparisons as well as iterative dataset expansion and methodology improvements by
others impossible.

1.2 Performance practice

In this Section we provide examples of uses of phonation modes from various sources to
illustrate the differences between them.

Breathy vocalisation is used skillfully by jazz and popular music singers to express
qualities like sweetness or sexuality: think of Marilyn Monroe’s most famous perfor-
mances like “I wanna be loved by you”! or “Happy birthday Mr President”?; or listen to
Chet Baker’s singing, such as “My funny Valentine”3. This mode of vocal production can
easily be distinguished by human listeners from the flow phonation mode, such as Ella
Fitzgerald’s resonant, vibrating vocalising, e.g., on “Mack the Knife™, or Liza Minelli’s
“New York, New York”®; or from the pressed phonation, e.g., the tense, forceful voice of
James Brown in “I feel good”®.

While the term phonation mode is borrowed from voice acoustics, the differentiation
between breathy and pressed voices, between tense and open singing is operational in
many voice-related research areas: ethnomusicology, singing education, medical research
(phoniatrics, vocology), linguistics (phonetics) as well as in singing performance. The use

Thttp://www.youtube.com/watch?v=MLUO0jndUGg4 (last accessed on 30/10/2012)
2http://www.youtube.com /watch?v=k4SLSISmW74 (last accessed on 30/10/2012)
Shttp:/ /www.youtube.com /watch?v=7iQQGBfbBO0k (last accessed on 30,/10/2012)
“http://www.youtube.com/watch?v=hRyDB4RWJdw (last accessed on 30/10/2012)
Shttp:/ /www.youtube.com/watch?v=rgusCINe260 (last accessed on 30/10/2012)
Shttp:/ /www.youtube.com /watch?v=XgDrJ5Z2rKw (last accessed on 30,/10/2012)



of breathy, pressed or resonant singing production can be representative of an individual
singing style as well as of a particular musical repertoire. In the experience of the
first author as an ethnomusicologist and a singer, while each voice is different and two
singers never sing the same way, repertoires within a music tradition (or sometimes
across music traditions, e.g., Muslim call for prayer) display cultural preferences for the
use of particular phonation mode(s), which are imposed on the singers performing in
these repertoires. The first author’s performance practice in a number of vocal traditions
suggests, that in many cases flow phonation - the most economical way of producing loud
and resonant sounds - is encouraged: for example baritone singers in Western operatic
repertoire are trained to sing in flow phonation (using the neutral mode occasionally to
cover the register break) and move through their singing career using just this phonation
mode. In contrast, in the classical Ottoman tradition a singer is expected to operate in
all four phonation modes.

Apart from being a stylistic characteristic, breathy or tense vocalisation can be in-
dicative of vocal disorders: hypofunction and hyperfunction of the glottis |Froeschels,
1943]. Their diagnostics and treatment are a prime concern in the disciplines of vocol-
ogy (voice rehabilitation) and phoniatrics (in case of functional or anatomic pathologies)
[Ramig and Verdolini, 1998|.

Voice therapists specialise in vocal production and could therefore serve as expert lis-
teners for manual rating of phonation modes. In practice, though, their work is often tai-
lored more to the needs of speech professionals. In singing it is singing teachers/educators
who have the deepest operational knowledge of all the issues related to vocal production
and in particular to phonation modes. Most singing students display various kinds of
voice hypo- and/or hyperfunction during the stages of their progress [Froeschels, 1943].
The students’ perception mechanisms are not sufficient for self-control (in absence of
any visual or any reliable auditory indicators). It is therefore the task of the teacher
to identify and to correct the subtlest dysfunction, over and over again, until the stu-
dent has gained the bodily controls necessary to regulate the voice source function on an
automatic level.

1.3 Ethnomusicological motivation

In this section, we describe one possible application of phonation modes and their auto-
mated detection in a wider interdisciplinary investigation.

Ethnomusicologist Alan Lomax denotes the dichotomy between tense and relaxed vo-
calisation as the vocal tension parameter. In his Cantometrics textbook [Lomax, 1976]
he describes relaxed singing as mellow, wide and richly resonant, while tense voices sound
narrow, pinched and restricted in resonance (p. 125). In a large-scale experiment carried
out on over 5000 audio clips representing more than 500 musical traditions, Lomax and
his team sought for correlations between the singing style prevalent in a society and its
societal traits (such as stratification or attitude to child rearing). The idea behind the
Cantometrics project was that singing, being a mode of communication which is highly
regulated and encapsulating peoples values and traditions, must reflect general commu-
nication patterns typical for the given society. A parametrization system of 36 singing



Musical factor ‘ Societal descriptor ‘ # cultures | p-value

Differentiation Productive scale 157 .001
(information load)

Ornamentation Large domesticated animals 97 .001
Orchestral organisation States 82 .001
Cohesiveness Community solidarity 143 .001
Choral organisation Solidarity 102 .01
Noise/Tension in voice Severity of sex sanctions 117 .001
production

Energy level (volume, Extra-local government 151 .001
accent, pitch) hierarchies

Irregular to regular Infant /child indulgence 40 | .001/.01
rhythm

Melody Large/small settlement 124 .001
(complex/simple)

Table 1: Correlations between musical and societal parameters discovered in Cantomet-
rics. This table gives an overview of general relationships for groups of Canto-
metric parameters (factors). For more details on correlation see Lomax [1976],
pp- 22-28 and 260-269

style descriptors was laid out and statistical analysis of correlations between those and
the anthropological data was performed. The Cantometrics team found that in societies
where narrow, squeezed, tense vocalisation is the norm, pre-marital sex is strongly for-
bidden for women and vice versa, where singing is relaxed and open-throated, the rules
regarding the pre-marital behaviour of women are also more relaxed. A hypothesis about
the relationship between vocal tension and subordination of women was put forward.

Though a consistent and statistically sound picture of relationships between musical
style and societal traits was reported by the Cantometrics team (see Table 1), the project
was widely criticised by ethnomusicologists (see, e.g., Nettl, 2008 for a summary of a
discussion between Lomax and Herndon). The main critique points were: the subjectivity
of human ratings of Cantometrics musical parameters; that the musical examples chosen
by Lomax do not represent the diversity within the given cultures adequately [O’Henry,
1976]; that correlations between the production mode and the musical organisation found
by Lomax do not hold for some societies |Feld, 1984]; that focusing exclusively on musical
surface and leaving out the cultural context and practices leads to superficialities |Feld,
1984]. The authors would add to this list inconsistencies in the definition of vocal tension
(tense vocalisation can be produced with a wide, open throat) as well as in the training
examples for the parameter raters. At the same time major thinkers in ethnomusicology
acknowledge the value of Cantometrics and the unique and unsurpassed scope of the
project [Nettl, 2005].

No systematic verification of Cantometrics methodologies and results has ever been
attempted. This task has been especially unapproachable, because the data which was



used in the Cantometrics project and its complete methodology and results have never
been published.

Recently, a new discussion involving Cantometrics has emerged. In a truly vast attempt
to outline his views of the global history of human musical style, its origins and evolution,
Victor Grauer [2006b] (who was Lomax’s assistant and the co-inventor of Cantometrics in
1960s) relies heavily on Cantometric analysis and on his experience of working with Alan
Lomax on the Cantometrics project. He also draws on modern genetic, archaeological and
linguistic research [Grauer, 2007]. Publication of this work in the World Of Music journal
caused a lively discussion and resulted in two issues of the journal devoted exclusively to
this subject [Nettl, 2006; Stock, 2006; Cooke, 2006; Grauer, 2006a; Rahaim, 2006; Cross,
2006; Mundy, 2006].

Phonation modes might provide a suitable physiological /acoustical model for the per-
ceptual categories (tense, narrow vs. wide, relaxed) applied by Lomax to define vocal
tension; they might be used to reformulate the vocal tension definition to make it more
objective and measurable. Automatic extraction of phonation modes from recordings of
singing could then provide the basis for a new approach to a revision of the Cantometrics
experiment. It would help to address the main methodological weaknesses of the Canto-
metrics approach: the subjectivity of human ratings as well as the limited representation
of each culture in the sample. With automatic phonation mode extraction, any number
of new musical samples could be included in the experiment revision without the need
for a subjective and labour-intensive human rating procedure.

2 Methodology

Generally in MIR, automatic detection of high-level musical qualities such as phonation
modes, keys or genres is achieved in a two-step process. First, low-level audio features
are extracted from music recordings; this step can be thought of as compressing original
data into a much smaller sample which still retains the relevant information. Second, a
machine learning or other statistical classification method is applied to determine which
low-level features correspond to which high-level classes.

To implement this approach using a supervised learning classification algorithm in
the statistical component, a so-called training dataset is required. It is a collection of
audio recordings with semantic labels attached to audio tracks or fragments indicating
the high-level classes (such as ‘key: D major” or ‘phonation mode: pressed”) to which
this audio belongs.

A training dataset was specifically produced for this experiment and is described in
detail in Section 3. Our feature selection strategy is discussed in the next subsection. For
the statistical component we use Support Vector Machines with a 10-fold cross-validation
employed for performance evaluation. Parametrisation of the models and automation of
the approach are outlined in Section 2.2.



2.1 Feature extraction

In choosing the low-level feature for our experiment we had to account for the fact that
phonation modes result primarily from the glottal activity and are less affected by the
form of the vocal tract. Thus the standard spectral features such as MFCCs and chroma
are not well suited for the task. In contrast to live singing, where phonation modes
can be determined through measurements (using the Rothenberg mask [Rothenberg,
1973] or indirectly by means of non-invasive electroglottographs [Howard 2010, Pulakka
2005]), for audio recordings of previous events these techniques are not applicable. In
this case, either the voice source waveform can be estimated or expert listeners such
as phoniatricians and singing teachers can be surveyed to label recording samples with
corresponding phonation modes. For an automated solution we have opted for the first
approach.

We took Gunnar Fant’s source-filter model of sound production as a basis, which
assumes that the voice excitation and the vocal tract are linearly separable |Fant, 1960].
The volume velocity of airflow through the glottis (the space between the vocal folds),
the glottal flow, is the excitation source for voiced speech and singing. The voice source
signal, i.e. the glottal flow, is filtered by the vocal tract to yield the airflow at the mouth;
this airflow is then converted to a pressure waveform at the lips and propagated as a
sound signal (see the upper row of Figure 2.1). The source-filter model assumes that
glottal airflow is controlled mostly (though not entirely) by glottal area and subglottal
pressure, and not by vocal tract acoustics.

It has been shown that in reality the voice source and the vocal tract interact, and
the interaction is even vital in supporting the vocal fold vibration. Thus the source-
filter theory should be considered a simplification of the actual voice production process
|[Rothenberg 1980, Childers and Wong 1994]. However, despite its theoretical shortcom-
ings, it is being widely used for speech analysis and re-synthesis in mobile phone trans-
mission, for lossless audio compression such as MPEG-4 and FLAC, as well as in many
research studies.

Nevertheless, assuming separability of the model components, an estimate of the glottal
flow can be acquired by removing the effects of the estimated vocal tract and the lip
radiation from a measured airflow or pressure waveform. This process is called inverse
filtering |Fritzell 1992, Walker and Murphy 2007, Drugman et al. 2012, Gudnason et al.
2012]. The vocal tract (throat, mouth and in some cases nose) forms the tube, which is
characterized by its resonances. The resonances of the vocal tract give rise to formants,
or enhanced frequency bands in the sound produced. Inverse filtering can be considered
roughly as the process of removing the formants (Figure 2.1).

A number of publications dedicated to detection of pressed and breathy phonation
modes (mostly in speech) employed descriptors derived from the glottal flow waveform
such as amplitude quotient (AQ), normalised amplitude quotient (NAQ) and the dif-
ference between the first two harmonics (H1-H2) [Walker and Murphy 2007, Orr et al.
2003, Drugman et al. 2008, Lehto et al. 2007, Sundberg et al. 2004]. These descriptors
are considered particularly suitable for glottal flow waveform estimation because they are
relatively robust to some estimation errors. While these coefficients were found useful for
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Figure 2.1: Inverse filtering: the upper row represents the separated speech production
model; the lower row illustrates the corresponding inverse filtering process,
in which the lip radiation and vocal tract filters are inverted to acquire an
estimate for the glottal flow waveform (reproduced from Airas 2008, p. 50,
with permission by Informa Group)

phonation mode estimation, there is no explicitly defined correspondence between their
values and phonation modes; thus a classification method needs to be employed to detect
the implicit relationship.

2.2 Parametrisation

Long established implementations of glottal flow waveform estimation require an ex-
tensive manual parametrisation with a large number of input values [Granqvist, 2003].
Fortunately, in recent years semi-automatic and automatic algorithms have been in-
troduced. We opted for a semi-automatic approach called Iterative Adaptive Inverse
Filtering (IAIF) [Alku, 1992]. It requires a manual setting of two input parameters:
the number of concatenating segments to model the form of the vocal tract and the lip
radiation factor. This algorithm showed a performance comparable to that of a well
established manual method [Lehto et al., 2007]. A publically-available Matlab package
called TKK Aparat by Matti Airas [2008| that implements IAIF offered us a platform for
further development. We optimised the values of the input parameters via grid search.
The optimization criteria were, in order of importance: classification accuracy; results
stability ( low standard deviation); and model simplicity.

Interestingly, parametrisation of an IAIF model corresponds to physical properties of
vowel articulation. The number of vocal tract segments determines the complexity of the
vocal tract form in the model; lip radiation factor is related to lip and mouth opening.
Thus, acquiring optimal values for input parameters means parametrising the physical
model of articulation. This fact also constitutes a limitation of this modelling approach
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- for each articulation class a separate model has to be produced.

It is obvious that different vowel sounds require different articulation: while A is
wide open, U is quite closed; while for O the mouth is rounded, for I it is flattened.
The situation is less obvious for one vowel sound sung at different pitches: though the
mouth is usually opened wider at high pitches, the differences in the middle region are
usually less significant. Considering utterances of the same vowel in different phonation
modes, the variation in articulation depends on the vowel: while for A it will vary only
slightly between phonation modes, articulation of sounds like I and U in flow and pressed
phonation differs from that in breathy and neutral phonation considerably. One should
therefore expect at best blurred results if different pitches are represented in the same
training set.

Our current experiment is based on the assumption that there is only slight variation
in articulation for the same vowel sung at various pitches in various phonation modes.
Though only an approximation, it has allowed us to make the first step to the solution
of the general problem of automatic phonation mode extraction.

3 The dataset

For our experiment we constructed a dataset of audio recordings of sustained vowels which
is described in this section. While datasets on phonation modes in speech exist, such
resources for singing are not available. Our dataset closes this gap and offers researchers
in various disciplines a reference and a training set. It is available online under a Creative
Commons license at http://www.proutskova.de/phonation-modes/ .

3.1 The recordings

The dataset consists of 763 WAV files. Each file contains a single recording of a sustained
sung vowel. Recordings are of 1 sec length on average. 500 ms around the middle of the
samples were considered suitable for analysis—they displayed a relative stability in pitch,
intensity, phonation and articulation (beginnings and ends of the samples are often less
stable).

The vowel sounds represented on the recordings are listed in Table 2. These sounds
were sung on all pitches on a semitone scale from A3 to G5, in every phonation mode
given in Table 3. The phonation modes correspond to Sundberg’s definitions of breathy,
neutral, flow and pressed phonation [Sundberg, 1987|, (see Section 1.1).

3.2 The singer

All the recordings were produced by one female singer. This excludes any variation
that would necessarily arise between singers, which is useful particularly at the initial
stages of classification model training and testing. The singer was professionally trained,
with expertise in Western popular and in Russian traditional singing and a profound
experience in a number of other music traditions.
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Sound
(TPA examples Symbols
notation) used in
the labels
/a/ - low front unrounded sound, as in English father,
[a:] : ) A
German Rat or in Russian mawm
/e/ - high-mid front unrounded vowel, as in English get,
le:] ) E
German FE'sel, Russian mecmo
. /i/ - high front unrounded, as in English free, German
[i:] . : I
Genie, Russian eud
o] /o/ - high-mid back rounded, like in German rot, 0
' Russian xom, somewhat similar to English caught
/u/ - high back rounded, as in English boot, German
[u:] . U
Fuf, Russian naye
[o:] High-mid front rounded vowel, as German /6/ in schon OE
High front rounded sound, as German or Turkish /ii/,
[y:] . " UE
e.g., in German mdide
e Low-mid front unrounded, German /4/ as in Ahre, AE
' Russian /3/ like in amom, similar to [e] in English cat
: High central unrounded vowel, Russian /b1/ as in mwt,
[£] . . Y
similar to English roses

Table 2: The vowels represented in the dataset.

’Vowels ‘ breathy ‘ neutral ‘ flow ‘ pressed

A A3-G5 | A3-G5 | A3-H4 | A3-C5h
E A3-G5 | A3-G5 | A3-H4 | A3-C5
I A3-G5 | A3-G5 | A3-H4 | A3-C5
O A3-G5 | A3-G5 | A3-H4 | A3-C5
U A3-G5 | A3-GH | A3-H4 | A3-C5
OE A3-G5 | A3-GH | A3-H4 | A3-C5
UE A3-G5 | A3-G5 | A3-H4 | A3-H4
AE A3-G5 | A3-G5 | A3-H4 | A3-C5H
Y A3-G5 | A3-G5 | A3-H4 | A3-H4

Table 3: The range in which a given vowel in a given phonation mode is represented in
the dataset. Flow and pressed phonation could only be realised up to the upper
part of the modal register (H4-C4).
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The singer’s vocal range is approximately D3—C6, with the working range being usu-
ally limited to G3—F5. At both extreme ends of the range, phonation became unreliable
and the corresponding recordings were not included into the dataset. The singer’s break
between the modal and the falsetto register is around E5, thus the surrounding pitches
(D5 to F5) can also be less reliable. Still we decided to include vocalisation in the falsetto
register into the dataset to make it more representative, thus all pitches up to G5 were
included.

In the head voice the singer was unable to produce flow and pressed sounds, thus these
phonation modes are only represented up to the upper range of the modal register (see
Table 3). Above C5 it becomes impossible to sing most vowels in the flow and the pressed
modes; at the same time, the neutral mode in the middle and head voice partly gains
the qualities of the flow mode, such as intensity and richness in overtones, though it is
very different from the chesty flow phonation. The singer reported from her experience
of teaching Russian traditional singing, which heavily uses flow phonation, that this limit
is typical for female singers.

Why this is the case seems to be an unsolved problem. This seems to be common among
singers of various traditions in Europe and the Near East, but it is unclear whether in
other cultures (e.g. in East Asian traditions) the singers are in fact capable of producing
flow and pressed vocalisation in their head register. This observation leads to the question
whether the ability to use particular phonation modes on particular pitches is innate or
ontogenetic (learned through culture).

While the singer was confident in breathy, neutral and flow phonation, pressed vowels
seemed to present problems and were mostly exaggerated to the point where they were
considerably uncomfortable and unhealthy to produce. The reason for this is the fact
that the singer routinely used breathy, neutral and flow phonation in her singing practice
while pressed phonation was only used marginally.

In the lower range, at G3 and below, the neutral phonation becomes more chesty
and therefore quite similar to the low mode—for this reason recordings below A3 were
excluded from the dataset.

The singer apparently had more difficulties with some vowels than with others in
particular modes. For example, high front sounds like [i:] and [y:] proved to be harder
to achieve in flow phonation. The vocal results for the sounds [y:| and [i] in pressed
phonation on the highest pitches of the chest register were unstable and were not included
in the dataset.

3.3 Recording conditions

The recordings were made with a professional dynamic microphone from Electro-Voice,
model no. N/D375A. The model was chosen because of its flat response: +10dB + 1dB
between 200 Hz and 15000 Hz (Figure 3.1). The microphone was positioned horizontally
at the level of the singer’s mouth, at the distance of 100 ¢cm at which the response curve
given in Figure 3.1 was measured. Svec and Gramqvist [2010] give detailed instructions
on the choice and positioning of the microphone.

For digitisation of the analogue signal MobilePRE USB was used—a USB bus-powered
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Figure 3.1: N/D357A microphone frequency response curve (thick curve). The thin curve
marks the proximity effect which only takes effect at the distance of 12 inches
(30 cm) or closer.

pre-amplifier and audio interface from M-Audio. It was then connected to a MacBook
Pro via USB and the digital signal was recorded using the audio processing software
Audacity.

We chose 96 kHz sampling rate and 24 bits precision in compliance with the recommen-
dations for acoustic analysis and archiving by the International Association of Sound-
and Audiovisual Archives (IASA TC-04) [IAS, 2009]. The recording session took place
in a quiet room environment. The requirement of a signal-to-noise ratio of at least 15
dB has been adhered to [Svec and Granqvist, 2010].

3.4 The dataset availability

The dataset is available for download at http://www.proutskova.de/phonation-modes/
under Creative Commons CC BY-NC-SA license. This license allows free sharing of the
dataset as well as altering it or building new work based upon it. There are following
conditions for the use of the dataset according to this license:

e attribution — reference the creators;
e no commercial use;

e share alike — if you alter, transform or build upon it, you may distribute the result
only under the same license.

Further content additions and future support for the dataset are planned. Also, additions
from other parties will be welcome.

4 The experiment

The experiment we present investigates the performance of automatic phonation mode
classification for nine vowels. For each vowel there is a dataset that contains variation in
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pitch and in phonation mode only, while other parameters like recording conditions or
singer-specific articulation are controlled. The goal of this experiment is to demonstrate
that phonation mode detection can be automated for sustained sung vowels and to study
the limitations of such an automation. Our methodology is discussed in Section 2.

4.1 Experiment design

Because of the model constraints outlined in Section 2.2 the experiment was performed
separately for each vowel. The flow chart of the experiment is given in Figure 4.1.
We decided to use recordings in the pitch range between A3 and C5 only. There is a
number of reasons for this: first, the dataset becomes more balanced between phonation
modes, because for pitches above C5 only breathy and neutral phonation was recorded;
second, the variation in articulation between pitches for a given vowel is minimised; third,
including the register break in the training set seems problematic, because the values of
the low-level features are likely to change abruptly at the register transition; and fourth,
estimating the voice source signal through inverse filtering may become less reliable for
higher pitches with a smaller number of harmonics in the spectrum. Thus, for each of
the nine vowels we had a training set covering all pitches between A3 and C5 and all
phonation modes (with the exception of the flow mode and also the pressed mode for
vowels "UE’ and "Y’, which are represented at all pitches except C5).

For feature extraction we used an implementation of the TAIF algorithm (see Section
2.1) by Matti Airas called TKK Aparat [Airas, 2008|, which is available to download
online. We modified the code to allow for batch processing. We enabled the automatic
low pass filter, where frequencies lower than fO are filtered out. We used the samples
of 30 ms length for analysis (this parameter is called selection in TKK Aparat). This
value for the length of the analysis window was determined empirically, as a trade off
between the processing time (too long for long samples) and the amount of information
contained in the sample. The default value of 20 ms in TKK Aparat was too short, in
some instances fO could not be calculated.

TKK Aparat implementation of the TAIF algorithm requires two input arguments,
which are called lip radiation and number of formants. While the term lip radiation
is applied similarly in the literature on inverse filtering, the use of the term formant
in number of formants by TKK Aparat is misleading: it does not in fact refer to the
formants of the vocal tract filtered out by inverse filtering, which is rather determined by
the frequency resolution. Instead it denotes the number of concatenated tubes of various
diameters used to model the form of the vocal tract. We refer to this parameter as the
number of vocal tract segments.

The allowed range for the number of vocal tract segments is between 4 and 30. We
implemented a grid search between 5 and 29. For lip radiation the range is not limited
by TKK Aparat (it only checks that the value is above zero). The default value is 0.99.
The values for lip radiation used in speech processing are usually between 0.95 and 1.0.
Since the mouth is often opened wider during singing than in speech, our grid search
runs between 0.9 and 1.0 with the step 0.005.

TKK Aparat extracts a number of time-related and frequency-related glottal flow
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Figure 4.1: Experiment flow chart. Our experiment utilises the standard MIR two-stage
strategy for automatic extraction of a high-level musical descriptor, consist-
ing of a low-level audio feature extraction and a statistical classification. For
the low-level feature extraction we use the IAIF algorithm implemented in
TKK Aparat. It requires two input arguments: lip radiation and number of
vocal tract segments (the latter denotes the number of concatenated tubes
in the vocal tract model). For statistical classification Support Vector Ma-
chines with a radial basis function kernel are used, again requiring two input
arguments: C and gamma. The values of the input arguments for each of the
algorithms are optimised by means of a grid search.

First, a grid search for lip radiation and number of vocal tract segments is
laid out. For each point of the grid, the voice source waveform is estimated
by means of IAIF algorithm with the input arguments given by the chosen
point of the grid. Six low-level features are calculated from the estimated
waveform. These are then fed into the libSVM implementation of radial ba-
sis function kernel SVM. SVM parametrisation is again solved by means of a
grid search: first, a grid for C and gamma is laid out; second, for each point
of the grid, a 10-fold cross-validation is performed utilasing the six low-level
features returned by IAIF and the phonation mode labels from the dataset
is performed; the mean classification accuracy is returned. The pair of C
and gamma producing the highest accuracy value is picked. This best accu-
racy value is then mapped back to the lip radiation * number of vocal tract
segments grid point used for feature extraction. Calculating best accuracy
for each combination of lip radiation and number of vocal tract segments in
this way constructs an optimisation function in the space spanned by their
domains. These optimisation functions were manually studied for each of the
vowels to pick a stable maximum and to avoid overfitting.

[TTATTT
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waveform descriptors. We use six of them as our low-level features:

1. amplitude quotient (AQ) is defined as the ratio of the flow peak-to-peak amplitude
and the minimum peak of the pulse derivative

2. Normalised Amplitude Quotient (NAQ) equals AQ normalised by dividing it by
the period length

3. closing quotient (ClQ) measures the ratio of the duration of the closing phase to
the period length

4. opening quotient (OQ1), the time between the primary opening instant and the
closing instant normalised by the period length

5. H1 — H2 (DHI12), the difference of the first and second harmonics of the glottal
flow waveform spectrum in decibels

6. harmonic richness factor (HRF), which is the ratio between the sum of the magni-
tudes of the harmonics above the fundamental frequency and the magnitude of the
fundamental in decibels:

21@2 Hy,

HRF =
Hy

For the details of the glottal flow waveform descriptors see Airas [2008]. Figure 4.2 shows
the distribution of the six voice source waveform descriptors for each phonation mode.

For the statistical component of our experiment we use the libSVM implementation
for Support Vector Machines in Matlab [Chang and Lin, 2001]. We employ radial basis
function kernel SVM, the values of C and gamma are optimised via grid search and passed
to libSVM. Grid search was implemented in two steps, with a coarse grid search providing
an overall picture, followed by a fine grid search around the maxima of the optimisation
function on the coarse grid. The optimisation function is the mean classification accuracy
of a 10-fold cross-validation.

4.2 Results

First, a coarse grid search for optimal values of number of vocal tract segments and
lip radiation was performed, in order to obtain the shape of the classification accuracy
function over the parameter space (Figure 4.3). When picking the end result points from
several maxima we took in account along with classification accuracy also the stability
of the result expressed in standard deviation, and the simplicity of the model, which is
reflected in the number of vocal tract segments. For 'I’; ’O’, "U’, Y’ the results were
blurred, there were one or more areas with high accuracy values in the coarse grid. Here
we opted for the more stable results. For A’ we chose of two maxima a solution which
was more stable and had a smaller number of vocal tract segments. At the same time,
for ’E’ and ’AE’ the maxima with the high number of vocal tract segments seem to be
genuine and not to result from overfitting, this is supported by a relatively low standard
deviation.
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Vowel A E I O U OE UE AE Y
accuracy in % 61.3 66.4 73.3 67.1 54.8 62.1 65.2 56.9 69.3
std in % 11.6 13.1 12.4 11.8 14.7 14.3 16.8 16.0 12.2

# vocal tract 22 28 7 13 23 22 22 29 28

segments

lip radiation 0.91 0.91 0.925 0.91 0.945 0.935 0.935 0.93 0.94

log, C 4.25 5 8.75 10 9.75 14 1.75 10 4
log, v -0.25 1 -2.5 -4 -3 -3.75 1.75 -1 -0.5

# training files 7 68 68 70 62 69 67 69 68

Table 4: Fine grid search results. For each vowel the average accuracy of a four-class
classification and its standard deviation in a 10-fold cross-validation are given
together with the optimal values of the input parameters: lip radiation and
number of vocal segments for IAIF /TKK Aparat and C and gamma for Support
Vector Machines/libSMV. Also, the number of files in the corresponding training
sets is indicated.

The average accurace of over 50% and for all but two vowels of over 60% was
achieved, which is well above chance (25% for a four-class classifier). These
results demonstrate that there is structure in the data.

Fine grid search results with the corresponding optimal values of input parameters are
given in Table 4. The average accurace of over 50% and for all but two vowels of over
60% was achieved, which is well above chance (25% for a four-class classifier).

Table 4 also gives the values of the input parameters leading to the highest phonation
mode classification accuracy. These optimal values for lip radiation and number of vocal
tract segments - the input parameters of the TAIF algorithm / TKK Aparat implemen-
tation - are plottet together in Figure 4.4 to allow comparison. Confusion matrices for
classification with the optimal input parameters are given in Figure 4.5.

4.3 Discussion

The results clearly demonstrate that there is structure in the data and that our approach
is justifiable. We reached classification accuracy values of 65% on average for a four-class
classifier, and standard deviation was in most cases under 15%. At the same time, the
structure in the data is blurred for most vowels, which was expected due to assumptions
discussed in Section 2.2.

Figure 4.4 shows that optimal lip radiation values correspond approximately to the
relative mouth opening in the production of the vowels: while A’ and 'E’ require a wide
open mouth, for producing "U’ and ’OE’ the mouth is almost closed. Since this knowledge
was not part of the model, it is a further argument that justifies our approach. Thus,
as a side effect of our investigation, we have produced (indirect) evidence of physical
properties of the tested vowels - the opening of the mouth and the complexity of the
form of the vocal tract.
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Figure 4.3: Coarse grid search results. The graphs represent phonation mode classifi-
cation accuracy as a function of lip radiation (x axes) and number of vocal
tract segments (y axes). Number of vocal tract segments was iterated from
7 to 27 in 5-steps; lip radiation from 0.905 to 0.995 in steps of 0.015. The
darker (black) colours represent lower values of the accuracy function, with
the maxima in lighter (golden) colours.

A maximum of this accuracy function would represent optimal values of the
IAIF input arguments - lip radiation and number of vocal tract segments -
for a classification model for a given vowel. For most of the vowels results are
blurred, with several maxima or larger areas of high accuracy function val-
ues. This was expected due to simplifying assumptions discussed in Section
2.2. Optimal solutions were picked manually taking into account besides the
accuracy values illustrated here also the stability of the solution (expressed
in standard deviation) as well as the simplicity of the model.
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Figure 4.4: Optimal solutions for all vowels. For each of the nine vowels, the values of
the TAIF input arguments - lip radiation and number of vocal tract segments
- leading to the highest phonation mode classification accuracy have been
plotted in one space to allow comparison. The optimal lip radiation values
found in our experiment roughly correspond to the respective mouth opening
during singing of the given vowel: e.g., the lip radiation for A is smaller
(mouth opened wider) than for I, which is in turn wider and has a smaller
lip radiation than U. The confirmation of these physiological facts by our
findings is an indirect justification of the validity of our approach, which did
not include any prior physiological knowledge.

predict 275 8 25 % ZT_%
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Breathy 14 7 2 0 153 10 14 4 0 1
Neutral 6 11 1 0 4 9 3 1 313 10
Flow 3 1105 129 4 0 210 3
Pressed 0 1 4 12 01 312 00 413
(o] U OE
Breathy 16 2 1 0 15 2 1 1 16 2 10
Neutral 2 132 0 8 7 11 4101 2
Flow 1 112 4 0175 2 2103
Pressed 0 1 9 6 1255 05 47
UE AE Y
Breathy 13 5 0 1 15 3 10 19 100
Neutral 3122 0 3933 510 2 1
Flow 138 4 129 4 229 2
Pressed 0041 2 266 02409

Figure 4.5: Confusion matrices for phonation mode classification. There is more confu-
sion within two subgroups: breathy+neutral and flow+pressed, than there
is between these subgroups. Breathy phonation can be clearly distinguished
from pressed in the vast majority of cases.
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Interestingly, the vowels 'OE’ and 'UE’ display the same optimal lip radiation and
number of vocal tract segments. This means that one IAIF model can be used for
phonation mode detection in samples containing both vowels. The optimal input values
for other vowels differ, thus different models have to be used for each of them.

Confusion matrices demonstrate that there is generally more confusion between
breathy and neutral modes as well as between flow and pressed modes, and less con-
fusion across these two groups. For a better understanding of the model limitations, a
detailed misclassification analysis would be instructive.

To improve results of the presented experiment, the quality or the quantity of the
data would probably have to be extended. If the recordings are made with a special
condenser microphone suitable for acoustic research (see Svec and Granqvist [2010]) and
if the sound pressure level is measured and documented during the recording event (see,
e.g., Fritzell [1992]), higher quality glottal flow waveform estimations can be achieved. A
more diverse training set, on the other hand, would result in more robust classification.
Also, if enough recordings are available for each vowel and each pitch, differentiation of
the TAIF model in respect to pitch (such as wider mouth opening at higher pitches) can
be taken into account and investigated.

The obvious limitation of the chosen approach is the dependence of the IAIF model
on the physical properties of the vowels. This implies that if phonation mode detection
is attempted on real-life recordings, a component extracting and detecting vowels has
to precede feature extraction. This may introduce additional errors and have a negative
impact on the overall result. Alternatively, automatic inverse filtering approaches can
be applied, though their performance might be inferior to IAIF. Further generalisation
suggestions are given in Section 4.4.

The issue of acquiring more reliable ground truth will have to be considered. Cur-
rently the labels in the dataset are based on the first author’s understanding of what
phonation mode was sung. Ideally in future ratings from a larger number of experts
should be obtained. Apart from that, a new set of recordings could be produced with
EGG measurements gathered during recording. These measurements would provide an
additional argument in determining the phonation mode of a singing sample. A more
objective verification of phonation mode labels for one dataset would build up a golden
standard, allowing to test future experts who will rate new datasets and thus expand the
whole area of research on phonation modes.

In the presented experiment we have determined a method for automatic extraction
of phonation modes from idealised data. The problem of application of filtering, source
separation and other techniques from the signal processing literature to adjust the ap-
plication of our method to real-world data is reserved to future work.

An interesting subject for a future investigation, that was touched upon in our work,
is the relationship between phonation modes and registers. Though a whole chapter of
Sundberg’s book is devoted to registers, he does not specifically discuss the register in
regard to phonation modes. He neither states explicitly that his definitions of phonation
modes are only operational for the modal register or just the chest voice, nor does he
mention how they would work in the falsetto register or at the register break. In our
practice of singing performance and teaching, flow and pressed phonation are difficult to
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produce in the range close under the register break. The singers we have worked with can
sing in flow and pressed phonation up to a fifth below the break, some can go as high as
up to a third (see our discussion of this point in the dataset description 3.2). In Western
classical singing school flow phonation is used extensively in the chest voice, while in
the head voice and at the register break a technique called “covering” is used based on
neutral phonation to mask the transition between registers. In other repertoires such as
musical theatre “belting” is used instead, where the flow phonation is retained in the mix
of chest and head voice, resulting in a loud and tense vocalisation. It remains an open
question whether these limits for the flow and pressed sound production are culturally
specific or result from general human physiology.

4.4 Automatic vocal tension estimation: how to get there

As we mentioned in the introduction, one of the motivations for us to take up research
on phonation modes has been the interest in the subordination of women hypothesis
put forward by Alan Lomax in the course of the Cantometrics experiment (Section 1.3).
Though our work on automatic extration of phonation modes from controlled recordings
of sustained vowels is valuable in its own right and opens up many avenues for futher
research, we would like to discuss the revision of Cantometrics in more detail here.

The Cantometrics project was a complex comparative music study of an unsurpassed
scope, whose potential has not been explored so far. The reason for this is that its results
have not been independently validated and that its methodology displays weaknesses
that have not been addressed (see Section 1.3 for more details). Automatic extraction of
phonation modes from audio by means of MIR methods might provide the basis for a new
approach to assessing one of the most speculative, controversial and political outcomes
of the Cantometrics experiment - the link between the tense, narrow singing style and
the subordination of women in a society.

The results presented in this paper were achieved on a set of specially produced record-
ings of sustained vowels. This is far away from automatic determination of prevalent
phonation modes for real-life, multipart singing recordings as they are present, e.g., in
the Cantometrics dataset. This subsection discusses the steps necessary to reach the
general solution.

Cantometrics dataset contains recordings from all around the world. There is a huge
variation in musical content - in fact the dataset was compiled to represent all the cultural
variation in musical style present in our human culture in the 20th Century. Cantometrics
measures this variation along 36 musical style descriptors (see Section 1.3). In MIR
related terms, there are monophonic as well as polyphonic recordings, solo and group
singing, male, female, children’s and mixed group singing. Singing can be a cappella
as well as accompanied, and the orchestras accompanying singers include all kinds of
instruments. Various rhythms and metres are present including polyrhythms and non-
metric pieces. There are recordings in scales that differ from the Western tempered
scale.

There is also a considerable variation in recording conditions. Many recordings in
the Cantometrics dataset were made in field conditions and origin from the first half
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of the 20th Century. They can be very noisy. They can also contain sounds from the
environment, such as nature sounds or musicians speaking during performance. Others
are studio recordings from a time period spanning 40 years and more

All sorts of audio formats and compression will have to be dealt with. While modern
recordings can be as good as 128 kHz and 32 bit precision uncompressed, older record-
ings are most certainly of a lower resolution. Digitisation of analogue recordings was
performed by various parties to differing specifications.

We are therefore faced by one of the most general MIR tasks: automatic extraction of a
high-level descriptor from a highly heterogeneous audio dataset. We suggest to approach
it by solving incremental problems. We start with controlled conditions, where variation
is introduced in pitch and in phonation only. There is just one singer, thus no inter-singer
variation is present; recording conditions are the same for all tracks; the singer sings only
sustained vowels, so non-harmonic sounds like consonants do not interfere. This is the
setting for the experiment presented in this paper.

The articulation of the vowel sound is crucial for the model used for feature extraction
in our approach. This means that the information about the vowel cannot be discarded or
automatically extracted from audio by the same method. Therefore, for a generalisation
of the presented experiment to real-life recordings other methods for vowel determination
will have to be used prior to feature extraction. The next step of generalisation could thus
be based on real-life recordings of the same singer and employ a method for automatic
vocal sample extraction and vowel determination. This experiment could also look at
the role of recording conditions in accurate phonation mode extraction.

In the following step recordings by more than one singer could be analysed and the
inter-singer variation studied. This can be further extended by including recordings by
singers from different cultures employing a variety of singing techniques. After that
group singing could be investigated, including various group mixtures and singing styles.
Accompanied singing will certainly present a problem: a method for automatic extraction
of relevant samples in which the voices are unaccompanied or highly dominant will have
to be introduced. At every stage the influence of recording quality and conditions will
have to be investigated and taken into account.

Given that all the incremental stages described above succeed, the most general task
of automatic extraction of phonation modes from a dataset as varied as the Cantometrics
collection can be addressed.

5 Conclusions

Phonation mode is an important characteristic of singing, playing a vital role in many
singing-related disciplines. It remains under-researched, one of the reasons being the
lack of reference and training data. Our paper closes this gap, approaching it in three
directions: we have created a publicly available dataset, we present initial classification
results and we place our current work into a wider interdisciplinary context, suggesting
further research directions.
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The dataset

We have recorded, annotated and provided online access to the first systematic dataset
on phonation modes in singing. It contains recordings of nine sustained vowels produced
by one female singer. Pitches from almost two octaves are covered, including the register
break. Recoding conditions were controlled and documented.

The dataset is available online under a clear license, making it easy for other researchers
to validate our findings and to suggest other strategies, whose performances can then
be compared on the basis of the dataset. This makes research more transparent and
facilitates competition as well as collaboration.

The initial classification results

In this paper we present the first experiment on automatic extraction of phonation modes
from audio recordings of sustained vowels, based on the dataset we created and made
available publicly. This is the first experiment that systematically includes all pitches and
phonation modes for nine vowels from three languages in the training set and calculates
the highest classification accuracy via batch processing. TAIF approach is automated
and optimal values for its input parameters for all vowels are reported.

The results of this initial classification experiment being above 60% accuracy for a four-
class classifier demonstrate that there is structure in the data and that further work on
improving classification is justified. The dataset together with the experiment’s results
provide a benchmark for future research on automatic classification of phonation modes
from audio recordings of singing.

Interdisciplinary context

We offer a discussion of a large-scale ethnomusicological investigation, that would answer
an open question in the discipline: whether cultural preferences for particular phonation
modes in singing are related to the status of women in a society. We believe it important
to build bridges between humanistic and scientific research and to study human behaviour
by means of quantitative methods. With the current work we have made the first step
on a long road to these goals. Our study was motivated by a humanistic question, as
opposed to the bottow-up approach mainly practiced in the MIR today, in which the
available technology defines the sorts of problems to be addressed. In the understanding
that the road we have chosen is indeed long and unpredictable, we have made the best
effort to make it as easy as possible for other researchers to pick up the thread.
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