
Goldsmiths, University of London

Department of Computing

Dependence Communities in Source Code

James Alexander George Hamilton

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

July 2013

Supervised by Dr Sebastian Danicic



Declaration

I, James Hamilton, confirm that the work presented in this thesis is my own. Where

information has been derived from other sources, I confirm that this has been indi-

cated in the thesis.

Signature

2



Abstract

Dependence between components in natural systems is a well studied phenomenon

in the form of biological and social networks. The concept of community structure

arises from the analysis of social networks and has successfully been applied to

complex networks in other fields such as biology, physics and computing.

We provide empirical evidence that dependence between statements in source code

gives rise to community structure. This leads to the introduction of the concept of

dependence communities in software and we provide evidence that they reflect the

semantic concerns of a program.

Current definitions of sliced-based cohesion and coupling metrics are not defined

for procedures which do not have clearly defined output variables and definitions of

output variable vary from study-to-study. We solve these problems by introducing

corresponding new, more efficient forms of slice-based metrics in terms of maximal

slices. We show that there is a strong correlation between these new metrics and

the old metrics computed using output variables.

We conduct an investigation into dependence clusters which are closely related to

dependence communities. We undertake an empirical study using definitions of

dependence clusters from previous studies and show that, while programs do contain

large dependence clusters, over 75% of these are not ‘true’ dependence clusters.

We bring together the main elements of the thesis in a study of software quality,

investigating their interrelated nature. We show that procedures that are members of

multiple communities have a low cohesion, programs with higher coupling have larger

dependence communities, programs with large dependence clusters also have large

dependence communities and programs with high modularity have low coupling.

Dependence communities and maximal-slice-based metrics have a huge number of

potential applications including program comprehension, maintenance, debugging,

refactoring, testing and software protection.
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CHAPTER 1

Introduction

Dependence between software system components is a relation that determines how

components depend on and are affected by each other. Dependence analysis un-

derpins many activities in software engineering such as software maintenance [124],

testing [154], reverse engineering [71], program understanding [194], refactoring [15],

software protection [39] and plagiarism detection [121].

The concept of community structure arises from the analysis of social networks

in sociology [183], where dependence occurs in the form of relationships between

people. Community structure can be found in many real world graphs other than

social networks [155]. Informally, a graph is said to have community structure if

it can be grouped into sets of nodes that are densely connected internally to each

other, but sparsely connected to other groups [68].

Software systems can be modelled as complex networks where nodes are typically

components of a system and edges represent dependencies or interactions between

components [187]. Software graphs have been shown to have the non-trivial topo-

logical features of complex networks [114, 139, 156, 181], such as scale-free geometry

[30, 42, 92, 96, 114, 123, 178, 181, 188] and community structure [153, 180, 191].

16



17

The task of managing large software projects is becoming more challenging due to the

ever increasing size and complexity of industrial strength software systems. Software

clustering approaches can have an important role in the task of understanding large,

complex software systems by automatically decomposing them into smaller, easier-

to-manage subsystems. Previous research in the area has focused on the clustering

of high-level components in a software system to recover a modular structure or

re-modularise software. The Bunch tool [129, 133], for example, works on a Module

Dependency Graph (MDG) which includes high-level system components such as

Java classes or C files that are connected due to dependence. The purpose of the tool

is to help maintain and understand existing software by clustering related modules

together.

We believe that for a clustering technique to be useful in software engineering it

must provide what we call Semantic Separation, i.e. the clusters must, in some

sense, partition the system into its different functionalities.

Dependence between statements can be modelled as a complex network built of

program slices [186]; community structure has not previously been studied at this

statement-level. The study of statement-level community structure has a huge num-

ber of potential applications including program comprehension, maintenance, debug-

ging, software metrics, refactoring, testing and software protection. A strict form of

statement-level community within a software network has previously been studied

in the form of dependence clusters [16].

Software metrics provide another view of the dependence in a program and have

long been used in an attempt to quantify code quality, for example for quantifying

software development resources [55], refactoring [170], improving software [117] and

finding bugs [152]. A software metric is a quantitative measure of some aspect of

code, ranging from crude measures such as lines of code to measures of relation-

ships between software components such as cohesion and coupling [192]. Slice-based
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metrics are underpinned by program slicing which provides the dependence analysis

upon which values can be assigned to quantify the quality of source-code.

Cohesion and coupling metrics are closely related to the concept of communities

in software networks. Low coupling between two components would suggest that

those components are in two separate communities; while high cohesion between

components would suggest that the components are part of the same community.

1.1 Contributions

The major contributions of this thesis involve the study of software dependence

by modelling software as complex networks. Along with the System Dependence

Graph (SDG) [56], we use the notion of a Backward Slice Graph (BSG). A BSG is

a graph of a program’s backward slices, such that a is connected to b if b ∈ Slice(a).

A graph-based representation of software allows us to apply existing graph-theoretic

techniques commonly used in other fields, such as community detection. We intro-

duce the concept of dependence communities, redefine slice-based metrics in terms

of maximal slices and undertake an investigation into dependence clusters.

The contributions of this thesis are:

1. The concept of dependence communities in software. We apply a well known

community detection algorithm to BSGs. This algorithm is based on mod-

ularity maximisation and has previously been applied successfully to large

networks in other fields such as physics, biology and sociology. We provide

empirical evidence that dependence between statements in software gives rise

to community structure. We give examples which suggest that the dependence

communities reflect the semantic concerns of a program.
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2. A new, efficient form of slice-based metrics based on maximal slices. Pre-

viously, slice-based software metrics have been defined using the ambiguous

concept of output variables. It is difficult to define output variables and pre-

vious studies have used different definitions. We take a different approach –

using maximal slices as a basis for calculating slice-based metrics. We show

that there is a strong correlation between slice-based metrics as previously

computed and our new metrics. Furthermore, we introduce an approximation

which, not only is more efficient than calculating maximal-slice-based metrics

but is also more efficient than calculating output variable based metrics.

3. An investigation into dependence clusters and their approximations used in

previous studies. Continuing our graph-based approach in this thesis, we re-

define dependence clusters as maximal cliques within a BSG, and think of

them as stricter forms of dependence communities. We conduct an empirical

study using definitions of dependence clusters from previous studies. The re-

sults provide further evidence of the existence of large dependence clusters in

software. We also show, however, that over 75% of the dependence clusters

found are not, in fact, ‘true’ dependence clusters.

4. A study of sofware quality. We discuss the inter-connected nature of the three

main topics of this thesis. Are they all different aspects of the same quality

measurement? Do programs with large dependence clusters also have large

dependence communities? We show that procedures that are members of mul-

tiple communities have a low cohesion, programs with higher coupling have

larger dependence communities and clusters, programs with large dependence

clusters also have large dependence communities and programs with high mod-

ularity have low coupling.
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1.2 Structure of the Thesis

− Chapter 2 (Background) introduces the background of the subjects of this

thesis; namely, previous work in modelling software as complex networks,

community detection, program slicing, dependence clusters and software met-

rics.

− Chapter 3 (Dependence Communities) provides empirical evidence which shows

that dependence communities exist in software networks. We apply a well

known community detection algorithm to BSGs and show that dependence

communities tend to reflect the functional concerns of a program.

− Chapter 4 (Maximal-Slice-Based Cohesion and Coupling Metrics) introduces

maximal-slice-based metrics as an alternative to output variable based met-

rics. We show that there is a strong correlation between slice-based metrics

as previously computed and our new metrics. We introduce an efficient ap-

proximation to our new maximal-slice-based metrics which is also faster than

computing output variable based metrics.

− Chapter 5 (Dependence Clusters) confirms the results of previous dependence

cluster studies by providing evidence of the existence of large dependence

clusters in the set of programs used in chapters 3 and 4. We show that over

75% of dependence clusters found in our set of programs, calculated as defined

in studies, are not ‘true’ dependence clusters.

− Chapter 6 (A Study Of Software Quality) discusses the main themes of this

thesis and their relationships, as measures of software quality.

− Chapter 7 (Conclusion) reviews the findings of this thesis.

− Chapter 8 (Future Work) provides directions for future work including a road

map for future work with dependence communities.



CHAPTER 2

Background

Graph structure is useful for representing a wide variety of different systems, such as

social [59], biological [68], technological and information networks [57]. For example,

a social network contains people as nodes and the relationships between people, such

as friend, or colleague, as the edges. A graph can also be called a network [144],

which is typically used in the fields of social network analysis and community analysis

of graphs.

2.1 Complex Networks

Historically the study of networks has been mainly in the domain of the branch of

mathematics known as graph theory [25]. In addition to the mathematical domain,

the study of networks has been important in the area of social sciences; the study of

social networks began in the 1930s with work by a psychiatrist named Jacob Moreno

with a set of studies which are considered the first true social network studies [144].

The studies included diagrams known as sociograms which would now be called

social networks.

21
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The pattern of connections between components in systems can be represented as a

network where nodes represent the components and edges the interactions between

them. The nodes in a social network represent people while the edges describe many

different interactions between people, for example friend, colleague, acquaintance

etc. and the definition of an edge depends on the questions being asked. For

example, we may be interested in a network of friends or a network of acquaintances

but not both. Edges in the network can be also directed – although Bob may

consider Alice his friend, Alice may not consider Bob her friend.

Empirical studies of real-world networks revealed unexpected topological features

which existing graph models failed to replicate. Since 1998 the study of networks

has had a resurgence after the seminal papers of Watts and Strogatz [184] on small

world networks and Barabási and Albert [9] on scale-free behaviour in networks.

After the publication of these papers much of the research in complex networks has

been conducted within the physics communities, with applications of the results

finding uses in many areas from biology [5] to sociology [120] to computing [156].

A complex network is a network with non-trivial topological features such as having

the small world property [165, 184], a scale-free degree distribution [4, 9] and exhibit-

ing community structure [143]. These features do not appear in random networks,

such as in the Gilbert [66] or Rényi-Erdös models [53], and real-world networks are

typically complex networks [9, 11, 25, 141].

Figure 2.1, page 23 shows a real-world network detailing the interactions between

proteins in yeast [29]; compare this to the random Gilbert [66] network∗ in fig. 2.2,

page 23. A clear difference can be noted between the two graphs – the yeast graph

has several nodes with a high degree (the large nodes; known as hubs) but most

have a small degree. In the random graph the nodes are topologically equivalent

∗Gilbert’s random network model is of the form G(n, p) where n is the number of nodes in
the network and each potential edge is chosen to be included or excluded, independently of other
edges, based on the probability p.
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indicating a homogeneous underlying structure; there is an equal probability of there

being a link between two nodes. The degree distribution of the random graph is

Poissonian while many real-world networks tend to have a power-law distribution

[9].

Figure 2.1: The protein-protein interaction network in yeast [29]

Figure 2.2: Random Gilbert graph G(n, p) with n = 500 and p = 0.05
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2.1.1 Community Structure

The concept of community structure arises from the analysis of social networks in

sociology [183]. Community structure can be found in many real world graphs other

than social networks [155]. Informally, a graph is said to have community structure

if it can be grouped into sets of nodes that are densely connected internally to

each other, but sparsely connected to other groups [68]. A community can also be

described as a sub-graph which is more tightly connected than average, i.e. cohesive

[54].

Figure 2.3: A graph with various size
cliques.

The strongest definition is that all pairs of nodes

in a community must be connected to each other;

this is known as a clique. The term is derived

from social network analysis where it was coined

to describe a group of mutual friends [125]. Fig-

ure 2.3 shows a graph with 23 1-node cliques, 42

2-node cliques, 19 3-node cliques and 2 4-node

cliques.

Figure 2.4: Graph with highlighted
communities, Q = 0.489.

Beyond cliques, there are weak and strong defi-

nitions of community [158]. A strong community

has more connections within the community

than with the rest of the network. In a weak

community the sum of the degrees within the

community is larger than the sum of the de-

grees towards the rest of the network. Figure 2.4

shows 3 strong communities – each community

has more connections within the community

than with the rest of the network.
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2.1.1.1 Modularity

Modularity is a measure of the quality of a particular division of a network [142, 143]

that can be used to detect community structure, calculated as:

Q =
(fraction of edges that fall within

communities in the given graph)
− (expected number of edges within those

communities in the null model )
(2.1)

The value of the modularity lies in the range [−1, 1]. A modularity greater than 0

means that the graph does exhibit community structure; the higher the modularity

the stronger the communities. It is positive if the number of edges within communi-

ties exceeds the number expected on the basis of chance. An unpartitioned graph (a

graph of 1 community) always has a modularity of 0 and a graph where each node

is in it’s own community always has a negative modularity.

Modularity, of a weighted undirected graph, is defined as [57]

Q =
1

2m

∑
i,j

[
Aij − Eij

]
δ(ci, cj) (2.2)

where Aij is the weight of the edge incident to i and j, ki =
∑

j Aij is the sum of

the weights of the edges incident to node i, ci is the community to which node i is

assigned, δ(u, v) is the Kronecker δ-function so the value is 1 if i and j are in the

same community and 0 otherwise and m = 1
2

∑
i,j Aij. Eij is the expected number

of edges between i and j in a chosen null model.

The null model used is based on the configuration model [179] which is a randomised

realisation of a particular graph that retains the original degree distribution. Given

a graph where each node i has degree ki, each edge is divided into two halves called

stubs. Each stub is randomly connected to one of the other ln−1 stubs resulting in

a random graph with the same degree distribution. The total number of stubs ln is
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∑n
k=1 ki = 2m. Figure 2.5b depicts the 3 possible rewirings of the simple graph in

figure 2.5a.

(a) Q = 0.5 (b) 3 Possible Rewirings

Figure 2.5: A simple graph with 2 communities

In the null model a node can be attached to any other node, by connecting two

stubs together. The probability pi of picking at random a stub attached to node i is

ki
2m

since there are k stubs attached to i out of a total of 2m stubs. The probability

of a connection between i and j is pipj =
kikj
4m2 since edges are placed independently

of each other. Therefore the expected number of edges Eij between i and j is

2mpipj =
kikj
2m

[57].

Modularity, can therefore be written as [145]

Q =
1

2m

∑
i,j

[
Aij −

kikj
2m

]
δ(ci, cj) (2.3)

We can calculate the modularity for the graph of adjacency matrix 2.4 and figure

2.6. If there is only one community then Q = 0. If each node is placed in it’s own

community then Q = −0.130. The optimal value, Q = 0.389, is achieved when there

are two communities, c1 = {a, b, c, d} and c2 = {e, f, g, h}.

Figure 2.7 depicts variations of the community structure of fig. 2.4, page 24 along

with the modularity of each variation.
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Figure 2.6: Example community structure

A =



0 1 1 0 0 0 0 0

1 0 0 1 0 0 0 0

1 0 0 1 0 0 0 0

0 1 1 0 0 1 0 0

0 0 0 0 0 1 1 0

0 0 0 1 1 0 0 1

0 0 0 0 1 0 0 1

0 0 0 0 0 1 1 0



(2.4)
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(a) Q = 0.502 (b) Q = 0.490

(c) Q = 0.434 (d) Q = 0.655

(e) Q = 0.332 (f) Q = 0.385

Figure 2.7: Variations of the graph/community structure of fig. 2.4
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2.1.1.2 Community Detection

The Louvain method [24] is a fast algorithm for detecting communities in large net-

works based upon modularity maximisation. The algorithm combines neighbouring

nodes until a local maximum of modularity is reached and then creates a new net-

work of communities; these two steps are repeated until there is no further increase

in modularity. This creates a hierarchical decomposition of the network - at the

lowest level all nodes are in their own community, and at the highest level nodes

are in communities which gives the highest gain in modularity. This technique is

simple, fast and has good accuracy. It has been tested on networks with millions of

nodes/edges which is particularly important as software systems can be large. The

algorithm is extremely fast, and has a linear run-time on large, typical graphs –

the majority of the run-time is taken up by the first few iterations, after which the

number of communities dramatically decreases.

Blondel et al. [24] compared the algorithm to other modularity maximisation algo-

rithms and found the new algorithm to be faster and able to handle much larger

graphs. For example, the modularity of a graph containing 118 million nodes and 1

billion edges was computed by the Louvain method in 152 minutes.

Modularity optimisation, in general, has the so-called resolution limit problem where

the modularity optimisation fails to identify communities smaller than a certain scale

[58]. Using the Louvain method the problem is only partially relevant because the

algorithm provides a decomposition of the network into communities for different

levels of organisation [24]; thus, in the resulting hierarchical community structure

levels in between the highest and lowest may contain communities of interest.

The Louvain method is divided into two phases that are repeated iteratively. Starting

with a network with N nodes we first put each node into it’s own community, giving

N communities of size 1. Then each neighbour j of node i is considered and the gain
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in modularity after moving i to the community of j is evaluated. node i is placed

into the community that gives the greatest increase in modularity but only if the

increase is a positive value. If there is no positive increase obtained by place i into

the community of any of it’s neighbours then i remains in it’s original community.

This process is repeated and applied sequentially for all nodes in a randomised order

until no further improvement in modularity is possible.

The efficiency of the algorithm is due to the fact that the gain in modularity ∆Q

can be easily computed by:

∆Q =

[
Σin + ki,in

2m
−

(
Σtot + ki

2m

)2]
−

[
Σin

2m
−

(
Σtot

2m

)2
−

(
ki

2m

)2]

where Σin is the sum of the weights of the links inside community C, Σtot is the sum

of the weights of the edges incident to nodes in community C, ki is the sum of the

weights of the edges incident to node i (equivalent to the degree in an unweighted

network), ki,in is the sum of the weights of edges from i to nodes in community C

and 2m is the sum of the weights of all the edges in the network (the total number

of edges in an unweighted network).

The second phase of the algorithm involves building a new network whose nodes are

the communities discovered in the first phase. The weights of the edges between

two communities are the sum of the weights of the edges between the nodes in the

corresponding communities. After the nodes have been combined into communities

the first phase can be re-applied to the new network.

The two phases are iterated until there are no more changes and a maximum modu-

larity is achieved. Blondel et al. [24] notes that the algorithm “is reminiscent of the

self-similar nature of complex networks [167] and naturally incorporates a notion of

hierarchy”.
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2.1.1.2.1 Example

Figure 2.8, page 32 depicts the process of detecting the two communities in fig. 2.6,

page 27. In the first iteration of the algorithm each node is in it’s own community,

so there are 8 nodes and 8 communities. The modularity of the graph in this state

is Q = −0.1296. We can compute the modularity contribution for each community

Ci as

Σin

2m
−

(
Σtot

2m

)2

where Σin is the number of strictly internal links in community i, Σtot is the total

number of links internally and towards the rest of the network in community i and m

is the number of links in the network. In fig. 2.8 the numbers near a node indicate Σin

and Σtot. For example, the modularity contribution of C0 is 0−( 2
2×9)2 ≈ −0.0123456.

The first phase of the algorithm is places the nodes in communities that gives a local

maximum for modularity. We iterate through the nodes in the network, removing

the node from it’s current community and placing it in a neighbouring community

that gives the maximum increase in modularity (or keep it’s current community if

∆Q ≤ 0).

Beginning with moving va from C0 to C1 results in an increase in modularity from

−0.1296 to −0.0432 (alternatively, we could move va into C2 for the same increase in

modularity); now va and vb are in the same community C1. We now have the choice

of moving vc into C1, C3 or remaining in C2 – moving vc into C1 gives a modularity

of 0.0185 and into C3 gives a modularity of 0.0309, therefore we move vc into C3.

We now have C0 = ∅, C1 = {va, vb}, C2 = ∅, C3 = {vc, vd}, C4 = {ve}, C5 = {vf},

C6 = {vg}, C7 = {vh}. The node vd will stay in it’s current community and the

nodes on the other side of the graph will similarly form 2 communities, resulting in

C4 = ∅, C5 = {ve, vf}, C6 = ∅ and C7 = {vg, vh}.
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The first iteration is now complete with no more increases in modularity possible;

the modularity of this graph is now Q = 0.19136.

The next step is to produce a new graph in which the communities are nodes and

the weighted edges between the nodes represent the sum of the weight of the edges

between the nodes in the original graph. The new graph contains the four commu-

nities from the original graph – the weight between C0 and C1 is 4 because there

were two edges between communities C1 and C3 in the original graph; the weight

between C1 and C3 is 2 and the weight between C2 and C3 is also 4. The values of

Σin and Σtot are also updated to reflect the sum of the original values.

We now iterate through the nodes in the new graph, combining those which increase

modularity. This results in two final communities, C0 = {va, vb, vc, vd} and C1 =

{ve, vf , vg, vh}, with a modularity of Q = 0.3888 as depicted in c of fig. 2.8. As

can be seen from fig. 2.8 there are 3 levels in the hierarchical decomposition of this

network.

Figure 2.8: Community detection with the Louvain method



2.2. Software as Complex Networks 33

2.2 Software as Complex Networks

Software systems can be modelled as complex networks where nodes are typically

components of a system and edges represent dependencies or interactions between

components [187]. There a many different types of relationships in software and

previous studies have mainly focused on four types of software network –

Class dependency graphs

In object-oriented programming nodes can represent classes and edges repre-

sent the dependencies between classes, such as A extends B, or A uses B.

Object dependency graphs

In object-oriented programming object graphs contain object instances as

nodes that are linked to each other by one object either owning or containing

another object or holding a reference to another object.

Call graphs

In a call graph nodes are procedures and edges represent procedure calls, such

as f calls g.

Package dependency graphs

At a higher level package dependency graphs represent software packages as

nodes and edges representing dependencies between packages.

Software graphs have been shown to have the non-trivial topological features of

complex networks [114, 139, 156, 181]. For example, conventionally, object-oriented

software is thought of as being built from many small components, like bricks, that

when put together form the whole; however, previous studies have found that such

software is built from objects that are scale-free and quite unlike bricks [156].

Software graphs that have not previously been studied as complex networks in-

clude System Dependence Graphs (SDGs) and Backward Slice Graphs (BSGs) (see
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section 2.2.2, page 35 for an introduction to SDGs and section 3.2, page 71 for

definitions of Backward Slice Graphs (BSGs)).

2.2.1 Communities in Software Networks

The problem of clustering software components has long been studied [82], for exam-

ple with the use of hill climbing [128] and genetic algorithms [48] applied to software

modules. Previous research in the area has focused on the clustering of high-level

components in a software system to recover a modular structure or re-modularise

software. The Bunch tool [129, 133], for example, works on a Module Dependency

Graph (MDG) which includes high-level system components such as Java classes or

C files that are connected due to dependence. The purpose of the tool is to help

maintain and understand existing software by clustering related modules together.

After a resurgence in interest in complex networks in recent years, graph theoretic

techniques pioneered in areas such as physics and biology have been applied to

software; one such area is the development of fast, efficient community detection

algorithms and the measure of community structure in complex networks.

Previous studies have shown that software graphs exhibit community structure.

Yakovlev [191] studied Java class dependency graphs where nodes in the graphs were

grouped using different clustering methods: grouping by namespace, grouping into

clusters using a community detection algorithm and grouping into clusters using

rules. Discrepancies between the clusterings revealed candidates for refactoring.

Šubelj and Bajec [180] studied Java class dependency graphs and found that they

exhibited significant community structure, as found in other complex networks. The

results showed that the communities did not exactly correspond to the software

packages. The authors conclude by suggesting applications of the work to software

engineering such as revealing the high level modular packaging of software.
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Paymal et al. [153] conducted a similar study on the Java software JHotDraw ; this

study, however, considered 6 versions of the software in order to understand how

JHotDraw code evolved over time. The results showed that the top two communities

contained most of the nodes in each version and there was significant overlap between

corresponding communities across consecutive versions. This stability over time

suggests that the design was stable, however, as the communities cut across packages

a restructuring could be needed.

2.2.2 System Dependence Graph

An SDG [73, 91] is an inter-connected collection of Procedure Dependence Graphs

(PDGs) [56]. The nodes of a PDG represent the statements and predicates of a

procedure; the edges of a PDG represent the intra-procedural control and data

dependencies between statements and predicates. An SDG connects a collection of

PDGs by inter-procedural control and data dependence edges.

In addition to the nodes representing statements and predicates each PDG contains

explicit entry & exit nodes, variable declarations, nodes representing parameters

and return values, and pseudo-nodes representing globals modified by a function.

A PDG contains formal-in nodes representing the parameters to the procedure

and formal-out nodes representing the variables returned by the procedure.

There is an intra-procedural control-dependence edge between a control node and

a second node if the condition controls whether the second point will be executed.

If the control node is the condition of a loop the node will have a self-loop as the

condition in one iteration influences whether the condition will be executed again.

There is an intra-procedural data-dependence edge between two nodes if the first

may assign a value to a variable that may be used by the second.

A function call is represented by a call-site node and there is an inter-procedural
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control-dependence edge from each call point to the corresponding entry point of

the callee. There is also a control-dependence edge from a procedure’s entry node

to each of the top-level statements and conditions in that procedure; this is due to

the fact that any of the top-level statements are only reachable by the execution of

the function.

There is an intra-procedural control-dependence edge between a procedure’s en-

try node and it’s formal parameters. There is also an intra-procedural control-

dependence edge between each call-site and the actual parameters associated with

that call. There is an inter-procedural data-dependence edge between the actual-in

parameters associated with a call-site and the formal-in parameters of a procedure.

There is an inter-procedural data-dependence edge between a PDG’s formal-out

nodes and the associated actual-out nodes in the calling procedure.

The use of global variables are represented by pseudo-nodes in PDGs. For each global

variable used or modified by a procedure there is a global-formal-in node

and for each variable modified by a procedure there is a global-formal-out

node. There is an inter-procedural data-dependence edge between the global-

actual-in parameters associated with a call-site and the global-formal-in

parameters of a procedure. There is an inter-procedural data-dependence edge be-

tween PDGs global-formal-out nodes and the associated global-actual-

out nodes in the calling procedure.

2.2.2.1 Summary Edges

There is a lack of transitive dependence information at call sites. This means that

a node after calling a procedure may depend on a variable used before calling the

procedure but there would be no indication of this in the graph because only direct

dependencies are included in a PDG. To solve this issue an SDG contains summary

edges [7, 91, 164] which represent the transitive data dependence at call sites.
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A summary edge starts at an actual-in node and ends at the corresponding

actual-out node. The summary edge indicates that the actual-in node may

affect the values of variables at the actual-out node. The summary edges allow

us to know which variables after a procedure call depend on variables before a

procedure call.

2.2.2.2 Example SDG

Figure 2.9 shows the SDG for the simple program in listing 2.1. This program

calculates the sum of the numbers 1 to 10 using a procedure, add, to do the addition

instead of using the primitive + directly; this allows us to discuss an SDG containing

two PDGs.

The entry point to the program is the main function’s entry node; from this node

all other nodes are reachable. Control dependence is shown as green edges and data

dependence is shown as pink edges. There is a control dependence from the entry

node to the top-level nodes: the global-formal-in and global-formal-out

for sum, the declaration of the local variables sum and i, the body of the procedure

and the exit node.

The main procedure returns an integer which is represented by the formal-out

node. The use of a global variable for the sum variable introduces pseudo-nodes in

the form of the global-formal-in and global-formal-out – these nodes

do not actually exist in the real program but they model the behaviour of the

global variable. The global-formal-in is a copy of the sum variable which is

copied into the local variable also called sum. The local variable is declared in the

procedure. The global-formal-out node has a data dependence on the local

variable and on the global-formal-in node.

The body of the procedure consists of a while loop, which contains two function calls,
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Listing 2.1: Simple C Program

int sum = 0;

int add(int a, int b) {
return a + b;

}

int main(void) {
int i;
i = 1;
while(i<11) {

sum = add(sum, i);
i = add(i, 1);

}
printf(sum);
printf(i);

}

and print calls to print out the results. The body has a control dependence on the

entry node and there is a control dependence from the body to the top-level nodes

in the body. The control-point node is the predicate controlling the execution

of the loop; thus there is a control dependence from it to the nodes contained within

the loop.

The control-point has a data dependence on the declaration of the variable i

and the assignments to i because the value of i determines whether or not the loop

executes.

There are two expressions within the loop: exp1 sum = add() and exp2 i = add();

these expressions contain procedure calls which are represented in the SDG as

call-site nodes. The two calls are to the same procedure, add, which takes

two parameters. The parameters for exp1 are sum and i and the parameters for

exp2 are i and the constant 1. These parameters are represented by actual-in

nodes in the calling procedure; the actual-ins have a control dependence on the

associated call-site and a data dependence on the nodes which may affect the

variable used at the actual-in.

The actual-in nodes are connected by a summary edge to the corresponding
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actual-out nodes because the value of the variables after the procedure call

depend on the values of the variables before the procedure call.

There is a control dependence between each call-site and the add procedure’s

entry node because calling a procedure is the only way that the procedure will be

executed. The body of the add procedure simply sums the two parameters and then

the result is returned.

The two parameters are represented by formal-in nodes – one for each parameter.

The values of the actual parameters (represented by the actual-in nodes attached

to each call site) are copied to the formal parameters of the procedure. There is a

data dependence from the actual parameters to the formal parameters.

The formal-out of the add procedure represents the value of the sum of the two

parameters; each function in an SDG has a formal-out node and zero or more

global-formal-out nodes. The formal-out node has a data dependence on

the return node and a control dependence on the entry node.

The two actual-out nodes in the main procedure have a control dependence on

the formal-out node of the add procedure. Each actual-out represents the

return value of a single call to a procedure.

At the end of the program the results are printed by calling the printf procedure.

Each call-site is associated with the actual-ins containing the values to be

output to the screen. The actual-ins have a control dependence on the associated

call-sites.

The main procedure modifies the global variable sum therefore there is a global-

formal-out which represents the global variable modified by the procedure.
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Figure 2.9: System Dependence Graph for the simple program in listing 2.1
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2.3 Program Slicing

Program slicing is a technique which computes a set of program statements, known

as a slice, that may affect a point of interest known as the slicing criterion. Program

slicing simplifies the analysis of a program by producing a semantically equivalent

subset of the program, with respect to some slicing criterion.

Program slicing was introduced by Weiser in his PhD Thesis [186]. Informally, a

program P is sliced with respect to a slicing criterion which is a pair (V, i) where V

is a set of program variables and i is a program point. The slice s of P is obtained

by removing statements from p such that s is semantically equivalent to P with

respect to the slicing criterion (V, i).

Slicing has been applied to structured programs as well as programs with arbitrary

control flow (i.e. programs that use goto statements) [2, 8, 35, 83, 112, 116], con-

current programming languages [32–34, 65, 88, 106–108, 140, 160, 161, 174, 195]

and object-oriented languages [6, 12, 31, 51, 110, 118, 134, 135, 147, 147, 159–

162, 169, 173, 174, 182, 195, 196].

A slice can be either executable or non-executable. A non-executable slice is simply

the set of statements that may affect the value of a variable x at a program point

i. For applications such as program understanding a non-executable slice is usually

sufficient.

Program slices are either backward or forward slices [84, 189] – a backward slice

consists of the program points that may affect a criterion whereas a forward slice

consists of the program points that may be affected by a criterion.

Weiser originally defined static slicing where slices are computed to agree with all

initial states of a program. Korel and Laski [102] introduced the concept of dynamic

slicing [3, 12, 26, 98, 101–105, 135–138, 171, 182, 193, 196] where a slice is computed
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using information from a trace of an execution of the program with a particular

initial state.

Program slices were originally computed as a solution to a data-flow problem using

a program’s Control Flow Graph (CFG) [185]. The nodes of a CFG [89] represent

basic blocks in a program† and the edges represent jumps between basic blocks.

Later, program slicing algorithms were defined as a solution to a reachability problem

on a program’s PDG [56, 151].

Ottenstein and Ottenstein [151] only considered slicing on single procedures as a

PDG only represents dependencies between statements in a single procedure. Hor-

witz et al. [91] introduced the SDG which is an extension of the PDG and introduced

a traversing algorithm based on the SDG to compute inter-procedural slices.

Horwitz et al.’s algorithm involves two steps: (1) the SDG is firstly augmented with

summary edges, which represent transitive dependencies due to procedure calls; then

(2) slices can be computed using the augmented SDG with a reachability analysis.

The construction of the SDG and the slicing together require time polynomial in

the size of the program. The cost of the first step - computing summary edges -

dominates the cost of the second step and a more efficient algorithm for computing

summary edges was proposed by Reps et al. [164].

†a basic block is a consecutive sequence of instructions that begin with a jump target, end with
a jump and do not contain jumps or jump targets in between
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2.3.1 Slice Example

Consider program P1 in listing 2.2 and the two slices s1 and s2 of P1 in listings 2.3

and 2.4. The two slices are semantically equivalent to P1 with respect to different

slicing criteria. The slice s1 is semantically equivalent with respect to the variable

sum and the program point given by line 11; s2 is semantically equivalent with

respect to the variable product and the program point given by line 12.

The slices contain any portion of the code which may affect the slicing criterion

– therefore in each slice we see the variables on which there is a data dependence

and the loop on which there is a control dependence. These slices are executable

backward slices of program P1. Executing s1 will result in the same value for sum

as produced by P1 and executing s2 will result in the same value for product as

produced by P1. This is a simple example but applies to large programs where slices

can provide a convenient way to analyse portions of code.

Listing 2.2: Sum and Product Program

1 int main() {

2 const int N = 10;

3 int sum = 0;

4 int product = 1;

5 int i = 1;

6 while(i < N) {

7 sum = sum + i;

8 product = product * i;

9 i = i + 1;

10 }

11 printf("%d\n", sum);

12 printf("%d\n", product);

13 }



2.3. Program Slicing 44

Listing 2.3: Slice of listing 2.2 with re-

spect to the variable sum at line 11

int main() {

const int N = 10;

int sum = 0;

int i = 0;

while(i < N) {

sum = sum + i;

i = i + 1;

}

printf("%d\n", sum);

}

Listing 2.4: Slice of listing 2.2 with respect to the

variable product at line 12

int main() {

const int N = 10;

int product = 1;

int i = 0;

while(i < N) {

product = product * i;

i = i + 1;

}

printf("%d\n", product);

}

2.3.2 Program Slicing Tools

2.3.2.1 CodeSurfer

CodeSurfer [72] is “a code browser that understands pointers, indirect function calls,

and whole-program effects.” It can be used to compute precise inter-procedural slices

and has been used in many previous studies [14, 16, 36, 44, 49, 50, 94, 95, 100, 127,

131, 132, 146, 152] to analyse C and C++ code. The algorithm used by CodeSurfer

computes precise slices by “tracking dependencies transmitted through the program

only along paths that reflect the fact that when a procedure call finishes, control

returns to the site of the most recently invoked call” [7, 73].

2.3.2.2 Indus

Indus [163] is a program slicing tool for the Java object-oriented programming lan-

guage. Indus computes slices using the Jimple [175] intermediate language provided

by the Soot Toolkit [52, 176, 177].
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2.4 Dependence Clusters

A dependence cluster is a maximal set of program statements all of which are mu-

tually dependent [16]. Large dependence clusters may hinder software maintenance

as a change in any of the members in a dependence cluster could affect any other

member. Although some dependence clusters may naturally occur in a program, un-

wanted dependence clusters may be the result of bad programming practice which

could be refactored away. Binkley and Harman [16] use the term ‘dependence pol-

lution’ for such unwanted and avoidable dependence clusters, and large dependence

clusters are an example of a ‘dependence anti-pattern’ [21]. Global variables have

been shown to be a cause of ‘dependence pollution’ [22]. Binkley and Harman define

dependence clusters in terms of CFG nodes and SDG nodes [87].

Listing 2.5 is a (statement-level) dependence cluster because any statement may

affect any other statement.

Listing 2.5: Example Dependence Cluster

1 while(i < 10)

2 if(A[i] > 0)

3 i = i + 1;

Definition 2.1 (Dependence Cluster [16]) A dependence cluster is a set of nodes,

{N1, . . . , Nm} (m > 1), of the Control Flow Graph (CFG) such that for all i,

1 ≤ i ≤ m and for all j, 1 ≤ j ≤ m Ni depends on Nj.

Harman et al. [87] later re-define dependence clusters in terms of Mutually Depen-

dent Sets (MDSs) and a dependence cluster as a maximal MDS‡.

‡the original definition [16] was not maximal
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Definition 2.2 (Mutually Dependent Set [87]) A Mutually Dependent Set is

a set of statements, {s1, . . . , sm} (m > 1), such that for all i, j, 1 ≤ i, j ≤ m si

depends on sj.

Definition 2.3 (Dependence Cluster [87]) A dependence cluster is an MDS not

properly contained within any other MDS.

The focus of work into dependence clusters has been rooted in the control and data

dependence that exists between nodes in an SDG. Harman et al. [87] define depen-

dence clusters in terms of a program’s slices computed on the SDG. Definition 2.4

satisfies definition 2.2 as all nodes in a slice-based MDS depend upon all others in

the MDS (including themselves).

Definition 2.4 (Slice-Based Mutually Dependent Set [87]) A slice-based

MDS is a set of SDG nodes {n1, . . . , nm} (m > 1), such that for all i, j, 1 ≤ i, j ≤ m,

ni ∈ Slice(nj).

Definition 2.5 (Slice-Based Dependence Cluster [87]) A slice-based

dependence cluster is a slice-based MDS not properly contained within any other

slice-based MDS.

Binkley and Harman [16] calculate (slice-based) dependence clusters in empirical

studies, using CodeSurfer, by saying that nodes are in a dependence cluster if and

only if they have the same slice; Binkley and Harman define dependence clusters

in this way because two nodes that depend on each other must have the same slice

- since a slice contains its own slicing criterion then where two criteria have the

same slice each criterion must be in the slice of the other and therefore must depend



2.4. Dependence Clusters 47

on each other§. For clarity, in this thesis, we refer to these as Type 2 dependence

clusters.

Definition 2.6 (Type 2 Slice-Based Dependence Cluster)

A Type 2 slice-based dependence cluster is a set of SDG nodes {n1, . . . , nm} (m > 1),

such that for all i, j, 1 ≤ i, j ≤ m, Slice(ni) = Slice(nj).

In order to reduce the computational effort required to obtain such dependence

clusters an approximation to Type 2 dependence clusters was introduced by Binkley

and Harman, where nodes are in a dependence cluster if and only if their slices

are the same size. Finding Type 2 dependence clusters would require O(n3) time

whereas computing Type 1 dependence clusters would require O(n2) time (excluding

the slicing phase) where n is the number of SDG nodes.

Their conjecture was based upon the assumption that sufficiently large slices that

are the same size are likely to be the same slice. This is a conservative approximation

to Type 2 dependence clusters as any cluster identified may contain real clusters and

no real clusters will fail to be identified. For clarity, in this thesis, we refer to this

approximation to Type 2 dependence clusters as Type 1 dependence clusters.

Definition 2.7 (Type 1 Slice-Based Dependence Cluster)

A Type 1 slice-based dependence cluster is a set of SDG nodes {n1, . . . , nm} (m > 1),

such that for all i, j, 1 ≤ i, j ≤ m, |Slice(ni)| = |Slice(nj)|.

A verification study was conducted to provide evidence to support the Type 1 ap-

proximation. The study analysed 36 out of the 45 programs used in the full depen-

dence cluster empirical study. It was found that 99.55% of slices of the same size,

from the 36 programs, differed by only up to 1%. The difference was measured in

§this definition satisfies definition 2.4 but not definition 2.5, and is therefore an approximation
to ‘true’ dependence clusters; more on this in chapter 5 (Dependence Clusters)
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Figure 2.10: Example Monotonic Slice-size Graph

terms of the Jaccard similarity between slices therefore most slices that have the

same size required very few nodes to be removed before they could achieve 100%

similarity. This evidence suggested to Harman et al. that ‘same size’ is a good proxy

for ‘same slice’.

The approximation led to the introduction of the Monotonic Slice-size Graph (MSG),

which is a graph of the function of slice size, plotted for monotonically increasing

size. This is a useful visualisation for locating dependence clusters in a program – a

plateau (created by a set of slices that are the same size) indicates the presence of

a dependence cluster. The size of the plateau indicates the size of the dependence

cluster and the height shows how much of the program is covered by the dependence

cluster.

Definition 2.8 (Monotonic Slice-size Graph [16]) An MSG is a graph of the

function of slice size, plotted for monotonically increasing size.

The lack of ‘sharpness’, for example slices that differ by 1 node will appear on the

same plateau, in the visualisation is suggested to be an advantage as the dominant

features of the dependence cluster landscape are more readily identified [17, 87].

Figure 2.10 shows an example MSG that contains several possible dependence clus-

ters.

Islam et al. [95] introduced the concept of coherent dependence clusters that al-
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low a fine-grained analysis of the relationships between clusters of dependence in

a program. A coherent dependence cluster “is a set of statements all of which are

mutually dependent on each other, the same set of statements depend on them, and

they all depend on the same set of statements” [95].

Definition 2.9 (Coherent MDS/Dependence Cluster [95]) A Coherent MDS

is a set of statements S, such that ∀x, y ∈ S : x depends on a implies y depends on

a and a depends on x implies a depends on y. A Coherent Cluster is a Coherent

MDS contained within no other Coherent MDS.

Coherent dependence clusters are formulated in terms of backward and forward

slices:

Definition 2.10 (Coherent-Slice MDS/Dependence Cluster) A Coherent-Slice

MDS is a set of statements, S, such that

∀x, y ∈ S : BSlice(x) = BSlice(y) ∧ FSlice(x) = FSlice(y)

A Coherent-Slice Cluster is a Coherent-Slice MDS contained within no other Coherent-

Slice MDS.

Islam et al. [95] introduced two new visualisations: Monotone Cluster-Size Graph

(MCG) and Slice/Cluster-Size Graph (SCG), where cluster sizes are plotted in mono-

tonically increasing order, to provide a greater precision than MSGs.

An empirical study was conducted using a set of 8 open-source programs to discover

if coherent dependence clusters occur in real-world programs. The results showed

that 6 out of the 8 programs contain coherent dependence clusters that encompass

more than 25% of the program and 3 that encompass more than 50%. The clusters

in the program bc were manually inspected and it was discovered that the clusters

mapped to the functionalities of the program; for example, one cluster encompassed

the ‘calculator’ code, another the parser code.
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Harman et al. [16, 87] conducted the first large scale study of dependence clusters in

programs, with a study of 45 programs totalling just over 1.2 million lines of code.

The study considered Type 1 dependence clusters computed using backward and

forward slicing. The study computed MSGs for the 45 programs to provide visual

evidence of dependence clusters in programs.

The study defined a large dependence cluster as one which consumes more than 10%

of the program. Large dependence clusters were found to be surprisingly common

with 40 out of 45 programs containing clusters that consume 10% or more of the

program. Several programs contained dependence clusters consuming up to 80% of

the program.

The causes of large dependence clusters were briefly considered with a large scale

investigation left for future work. For each node in a program’s SDG, its effect on

large dependence clusters was assessed by recomputing the slices without traversing

the node. This provided a way of finding nodes which caused large dependence

clusters; for most nodes this caused no effect but several nodes had large effects. In

one example, a single node caused a large dependence cluster; this node turned out

to be a switch statement that created a mutual recursion which involved most of

the functionality of the program.

Binkley and Harman [18] conducted a study into the wider causes of dependence

clusters; they identified the ‘linchpin’ nodes in the SDG that cause large dependence

clusters. The search for dependence clusters was conducted by computing the MSG

while ignoring the specific nodes and edges. The area under the MSG was computed

with the components removed; the nodes and edges that produced the biggest drop

were noted – many of the nodes that caused at least a 20% drop in area were control

points.

The effect of global variables on dependence clusters was further considered by Islam

[93] in his MSc thesis and later extended in a larger study by Binkley, Harman,
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Hassoun, Islam, and Li [22]. Binkley et al. conducted an empirical study of 21

programs totalling just over 50,000 lines of code and considered 849 global variables

to determine the effect that they have on dependence clusters. The results of the

study showed that over half of the programs include global variables that cause large

dependence clusters and contain a single global variable that is solely responsible

for a dependence cluster.
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2.5 Slice-Based Cohesion and Coupling Metrics

Software metrics have long been used in an attempt to quantify code quality, for

example for quantifying software development resources [55], refactoring [170], im-

proving software [117] and finding bugs [152]. A software metric is a quantitative

measure of some aspect of code, ranging from crude measures such as Lines of Code

to measures of relationships between software components such as cohesion and

coupling [192].

Cohesion metrics attempt to quantify the inter-relatedness of code in a program

module. A highly cohesive module suggests that its statements are highly inter-

related and perform one job; whereas a poorly cohesive module may be performing

multiple jobs.

Coupling metrics attempt to quantify the inter-relatedness of modules in a program.

High coupling between two modules suggests that there is a large dependence be-

tween the two modules; removing or changing one module would greatly affect the

other; whereas low coupling between two modules suggests that they are performing

separate tasks without a large dependence on each other.

Ideally, program modules should have a high cohesion and a low coupling correspond-

ing to a modular design - where each task is separated into individual modules -

which reduces complexity and allows programmers to work on modules in isolation

[168].
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2.5.1 Cohesion

Sliced-based cohesion metrics attempt to determine the cohesiveness of a program

module by calculating the intersection of slices. Using slices to calculate cohesion

metrics works well due to the relatedness definition of cohesion. If statements in a

module are related it is likely that their slices will share many statements. On the

other hand, if there are multiple tasks taking place in a module it is likely that the

intersection will be small or empty.

Weiser [185] defined several metrics, which were later found to be related to cohesion

[122], that have since been further studied, refined and added to by others [80, 149,

150]:

tightness

the ratio of the size of the slice intersection to the total module length.

minimum coverage

the ratio of the smallest slice to the total module length.

coverage

the ratio of the average slice size to the total module length.

maximum coverage

the ratio of the largest slice size to the total module length.

overlap

the average ratio of the intersection of all slices to slice size.

parallelism

the number of slices which have few statements in common.

clustering

the degree to which slices are reflected in the original code layout.

Tightness, coverage, overlap, parallelism and clustering were originally defined by

Weiser while minimum coverage and maximum coverage were later added by Ott
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and Thuss [150]. Longworth dismissed clustering as a measure of cohesion as it

is “an aspect of arrangement only” [122] and Meyers and Binkley suggest that

parallelism has “not proven useful in software reconstruction” [132]; for these reasons

previous research has focused on Tightness, MinCoverage, Coverage, MaxCoverage

and Overlap.

Early work on slice-based metrics focused on understanding the relationship between

slices and the metrics suggested by Weiser. Longworth [122] investigated several of

the slice based metrics defined by Weiser and found that they appeared to be related

to cohesion. Longworth studied a number of small programs comparing the values of

metrics and the expected cohesion and concluded that coverage is a good indicator

of low or high cohesion levels and overlap and tightness can be used to confirm the

level suggested by coverage.

In Weiser’s thesis slices where computed for each variable at all output statements

resulting in a large number of slices per program; these slices were clustered together

based on their size to reduce this number. Longworth also took slices for each

variable in a program but the slice was taken from the end of a program instead

of at each variable location (later named end-slices [115]); the number of slices was

also reduced by removing those with a size less than 10% of a module and combining

those which are at least 90% identical.

Ott and Thuss [150] took a different approach in their study of slice based cohesion

metrics: rather than removing slices or using some combination of slices, output

variables¶ were used as slicing criteria. These variables included “parameters and

globals modified, variables that are written by the module, and the return value of a

function” [150]. Other studies have used different definitions of output variable [74],

which are enumerated in table 2.1, page 55 and slice-based metrics are undefined for

modules with no output variables [20, 115]. These problems have been highlighted

¶called ‘principle variables’ in some literature.
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by studies attempting to replicate published studies [28] and a study of ‘Key State-

ments’ which was based on Ott and Thuss’s definition of output variables [20].

Paper(s) Definition of output variable
The Relationship Between Slices And Module
Cohesion, Ott and Thuss, 1989

“v is a reference parameter (or any variable which retains its as-
signed value after the module has completed execution). If M is
the main program module, v is any data object passed to the mod-
ule by the operating system, e.g., the standard output file. or more
outputs.” [149]

Rule-based approach to computing module cohesion,
Lakhotia, 1993

“A variable is termed output variable for a given procedure if it is
modified within it and is either a reference parameter or declared
outside the scope of that procedure.” [115]

Measuring functional cohesion, Bieman and Ott, 1994
Program slices as an abstraction for cohesion
measurement, Ott and Bieman, 1998

“An ‘output’ is any single value explicitly output to a file (or user
output), an output parameter, or an assignment to a global vari-
able.” [13, 148]

An examination of the behavior of slice based cohe-
sion measures, Karstu, 1994

“variable parameters, global variables. Also included in out-
puts would be any direct output from the module to files or de-
vices. . . the definition of output includes only variables and con-
stants” [99]

Cohesion Metrics, Harman et al., 1995 “we consider only those global variables and reference parameters
whose values are modified by the program component” [80]

Slice-based measurement of function coupling, Har-
man et al., 1997

“the only variables of interest are those output at the end of a
function”

Code Extraction Algorithms which Unify Slicing and
Concept Assignment, Harman et al., 2002

“A variable v in the set of statements S is a principle variable iff it
is either: global and assigned in S, call-by-reference and assigned
in S, the parameter to an output statement in S.” [86]

A longitudinal and comparative study of slice-based
metrics, Meyers and Binkley, 2004
Slice-based cohesion metrics and software
intervention, Meyers and Binkley, 2004
An empirical study of slice-based cohesion and
coupling metrics, Meyers and Binkley, 2007

“a function’s return value or those globals modified by the func-
tion” [130–132]

Bug Classification Using Program Slicing Metrics,
Pan et al., 2006

“An output variable of a function can be the function’s return value
or a non-local variable modified in the function” [152]

Statement-Level Cohesion Metrics and their
Visualization, Krinke, 2007

“variables that are used after the module M is left. For example,
these include the return value or global variables.” [109]

Evaluating Key Statements Analysis, Binkley et al.,
2008

“v is a global variable assigned in f or v is used in an output
statement (e.g., print or write)in f”
. . .
“The set of global variables potentially modified by a call to a
function f, is easily extracted because each such global variable
has a special global-formal-out node in the sub-graph representing
f . The set PVO is also easily determined from the SDG as each
output variable appears in an actual-in node (i.e.,is used as an
actual parameter). The set PVO includes those variables found in
the actual-in vertices of calls to output functions such as printf
and write.” [20]

Program Slice Metrics and Their Potential Role in
DSL Design, Counsell et al., 2009

“We analyzed multiple versions of the system and sliced its func-
tions in three separate ways (i.e., input, output and global vari-
ables). . . Formal-ins (Input parameters for the function), Formal
outs (The set of return variables) Global variables (The set of vari-
ables which are used by the module)” [46]

An Analysis of the ”Inconclusive’ Change Report Cat-
egory in OSS Assisted by a Program Slicing Metric,
Counsell et al., 2010

“We denote a set of variables used by a function K as VK and Vz
as the subset of VK representing output (return), input, global and
printf variables (i.e. variables used in printf statements)” [45]

Program Slicing-Based Cohesion Measurement: The
Challenges of Replicating Studies Using Metrics,
Bowes et al., 2011

“These variables include: 1. Formal Ins: Input parameters for
the function specified in the module declaration. 2. Formal Outs:
Return variables. 3. Globals: Variables used by or affected by
the module. 4. Printf: Variables which appear as Formal Outs in
the list of parameters in an output statement. . . We combined these
variable settings to collect data in 30 different ways for each of the
five cohesion metrics.” [28]

Table 2.1: Varying definitions of output variable
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Green et al. [74] compared 11 studies which used output variables and came to the

conclusion that there are four main types of output variables:

1. the return value of a function.

2. global variables modified by a function.

3. parameters passed by reference to, and modified by, a function.

4. any variables printed, written to a file, or otherwise output to the external

environment.

Out of the 11 studies that were investigated 7 different combinations of output

variable definitions found. Most of the previous studies in the area of slice-based

metrics have used CodeSurfer; the last category is the most difficult to capture with

CodeSurfer (as it is the most difficult to define). In the most recent large-scale study

by Meyers and Binkley [131] the set of output variables contained a function’s return

value and those globals modified by the function.

Ott and Thuss [150] formalised cohesion metrics in terms of the slices obtained from

the set of output variables and the size of a module. The set of variables used by

the module M is VM and the subset of VM that are output variables is VO. The

slice SLi is the slice given by the slicing criteria vi and SLint is the intersection of

all slices in a module:

SLint =

|VO|⋂
i=1

SLi

The length of a module M is given by length(M) which is calculated as the number

of Variable-Referent Executable Statements (VRESs) – these are statements which

reference the variables in VM .
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The 6 cohesion metrics were defined as:

Tightness(M) =
|SLint|

length(M)

MinCoverage(M) =
1

length(M)
min

i
|SLi|

Coverage(M) =
1

|VO|

|VO|∑
i=1

|SLi|
length(M)

MaxCoverage(M) =
1

length(M)
max

i
|SLi|

Overlap(M) =
1

|VO|

|VO|∑
i=1

|SLint|
SLi

Parallelism(M) = |{SLi such that |SLi

⋂
SLj| ≤ τ for all j 6= i}|

The values of Tightness, MinCoverage, Coverage, MaxCoverage are ratios of a par-

ticular slice size (or set of slices) to the length of the module and are thus related

such that Tightness(M) ≤ MinCoverage(M) ≤ Coverage(M) ≤ MaxCoverage(M);

the value of Overlap is not mathematically bound to these. The values of Tight-

ness, MinCoverage, Coverage, MaxCoverage and Overlap all lie within the range 0

to 1 but Parallelism will range from 0 upwards, depending on τ , with higher values

indicating that the module contains multiple unrelated or only slightly related tasks.

Ott and Thuss [150] compute the values of metrics using metric-slices which are the

union of the forward and backward slices of a module. The motivation for this is
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that when computing metrics the interest is in the uses and used by relationships in

a module. In order to validate the metrics, the values of the metrics where examined

using small example programs to see if they produced the desired results.

Karstu [99] studied the relationship between cohesion and revisions made to software

over time with findings that suggested highly cohesive modules are less likely to need

changes.

Bieman and Ott [13, 148] introduced data-slices which modify the concept of metric-

slices to use data tokens (variable and constant definitions and references) rather

than statements. The motivation for using data tokens as the basis of slices was

to ensure that all changes of interest in a module (i.e. any change that affects the

cohesiveness of the module) will cause a change in at least one slice. Bieman and

Ott define two types of data token – glue tokens are those that are common to more

than one slice in a procedure and super-glue tokens are those that are common to all

slices in a procedure. The distribution of glue and super-glue tokens indicates how

tightly bound the slices are and the stickiness (or adhesiveness) between tokens is

then used as a basis for defining cohesion metrics. Two metrics were defined: strong

functional cohesion is the ratio of super-glue tokens to the total number of tokens

in a module; and weak functional cohesion is the ratio of glue tokens to the total

number of tokens in a module.

Krinke [109] introduced a statement-level cohesion metric which is able to identify

areas of low cohesion within procedures, compared to other cohesion metrics which

identify module-level cohesion. The statement-level cohesion is the sum of the slice

sizes in which a statement appears as a proportion of the sum of all slice sizes in a

module.

Table 2.2, page 60 shows an example calculation of cohesion metrics by slicing with

respect to the output variables. The 3 variables sum, product and count are all

printed and are therefore output variables in this function. The slices are depicted
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in the slice profile next to the program code – a bar in the column indicates that

the line is included in the slice; the columns show, in order from left-to-right, slices

on sum, product and count. The intersection of all 3 slices is just 2 which indicates

that the program may be performing more than one task; this is reflected in the low

Tightness of 0.154. The mid-value Coverage indicates that the slices in the module

cover about half of the module, on average. The low value for Overlap indicates

that there is a low percentage of the module that is common to all slices.
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void main() {

const int N = 10; | | |
int sum = 0; |
int product = 1; |
int count = 0; |
int i = 1; | |

while(i < N) { | | |
sum = sum + i; |
product = product * i; |
count = count + 1 |
i = i + 1; | |

}

printf("%d\n", sum); |
printf("%d\n", product); |
printf("%d\n", count); |

}

Tightness(main) =
2

13
= 0.154

MinCoverage(main) =
5

13
= 0.385

Coverage(main) =
1

3

( 7

13
+

7

13
+

5

13

)
= 0.487

MaxCoverage(main) =
7

13
= 0.538

Overlap =
1

3

(2

7
+

2

7
+

2

5

)
= 0.324

Table 2.2: Example calculation of line-based cohesion metrics
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2.5.2 Coupling

Slice-based coupling was first introduced by Harman et al. [85] who provided a slice-

based version of Henry and Kafura’s information flow based coupling [90]. The

motivation for using slices to calculate coupling was based on the idea that slicing

provides a better measure of dependence between procedures than information flow.

Slice-based coupling gives rise to the notion of ‘bandwidth’ of dependence between

procedures. The number of statements in a slice given by a criteria in a procedure

f that appear in procedure g reflects how much f depends on g. The number of

statements from the slice in f that appear in g indicates the ‘bandwidth’ of the

information flow. The coupling between two functions is given as the normalised

values of the flow in each direction.

The flow between two modules f and g is given by

FF P
(f,g) =

#
(

(
⋃

v∈p(g)
SS(p, [v], E(g)))|N(f)

)
N(f)

where SS(p, [v], E(g)) is the slice on program p with respect to the set of output

variables [v] at the end of module g, p(g) is the set of output variables of g and N(f)

denotes number of CFG nodes in module f .

Green et al. [74] simplify the notation by introducing a new symbol N(f → g) to

mean the number of CFG nodes in a module f which are in the union of slices on

the output variables of the module g, thus flow can be written as

FF P
(f,g) =

N(f → g)

N(f)

Coupling between two modules f and g is then defined as
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Coupling(f, g) =
FF P

(f,g) ×N(f) + FF P
(g,f) ×N(g)

N(f) +N(g)
=
N(f → g) +N(g → f)

N(f) +N(g)

Meyers and Binkley [131] define coupling for a single module as a weighted average

of its coupling with each of the other modules in a program:

Coupling(f) =

∑
i Coupling(f, gi)×N(gi)∑

i |gi|

Table 2.3, page 63 shows an example of the calculation of coupling by slicing inter-

procedurally with respect to the output variables in each procedure. The output

variables in add and addOne are the function’s return value while in main they are

the two printed variables sum and i. The slice profile for each slice is shown, from

left-to-right, as the union of the slices w.r.t to sum and i in main, the slice w.r.t to

the return value in add and finally the slice w.r.t to the return value in addOne. We

are interested in the size of the slice that appears not in the originating procedure

but the other procedures in the program. A bar or underscore in a column indicates

that the line is included in the slice but an underscore indicates membership of

a slice in the originating procedure. The coupling between add and addOne is 1

because slicing in either procedure includes the whole of the other.
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int add(int a, int b) {
return a + b; | _ |

}

int addOne(int a) {
return add(a, 1); | | _

}

void main() {
int sum = 0; _ |
int i = 1; _ | |

while(i<11) { _ | |
sum = add(sum, i); _ |
i = addOne(i); _ | |

}

printf("%d\n", sum); _
printf("%d\n", i); _

}

N(main→ add) = 1 N(main→ addOne) = 1
N(add→ main) = 5 N(addOne→ main) = 3

N(add→ addOne) = 1 N(addOne→ add) = 1
N(main) = 7 N(add) = 1

N(addOne) = 1

Coupling(main, add) =
1 + 5

7 + 1
=

3

4
= 0.75

Coupling(main, addOne) =
1 + 3

7 + 1
=

1

2
= 0.5

Coupling(add, addOne) =
1 + 1

1 + 1
= 1

Coupling(main) =
3
4
× 1 + 1

2
× 1

1 + 1
=

5

8
= 0.625

Coupling(add) =
1 + 3

4

1 + 7
= 0.21875

Coupling(addOne) =
1 + 1

2

1 + 7
= 0.1875

Table 2.3: Example calculation of line-based coupling
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2.5.3 Empirical Studies

Meyers and Binkley [130, 131, 132] conducted the most extensive study of slice-based

cohesion and coupling metrics to-date. The studies used the CodeSurfer software

to calculate slices from which the values of slice-based metrics could be calculated.

Meyers and Binkley calculate Tightness, MinCoverage, Coverage, MaxCoverage,

Overlap and Parallelism metrics defined by Ott and Thuss [150] but do not use

metric-slices instead using traditional slices generated by the Horwitz et al. [91]

slicing algorithm. Meyers and Binkley suggest “a metric slice is likely to be larger

than a traditional slice with a corresponding drop in usefulness” [131].

Meyers and Binkley analysed a range of 63 programs containing a total of 22,651

procedures including open-source and commercial software. The studies provide

base-line values for cohesion and coupling metrics, providing a useful measure against

which others can compare metric values.

Meyers and Binkley performed a head-to-head comparison of slice-based metrics,

finding a very strong correlation between tightness and mincoverage, and strong

correlations between mincoverage and overlap; tightness and overlap; and maxcov-

erage and coverage. The study also considered the relationship between slice-based

metrics and Lines of Code finding no relationship between the two.

Two longitudinal studies were performed which showed that slice-based metrics can

be used to quantify the deterioration of software during development. The study

found that the value of cohesion tends to fall between minor releases of software

but recovers with a major release. This provided empirical evidence from real-world

software of the link suggested by Karstu [99] between on-going software maintenance

and cohesion.

Bowes et al. [27] studied the effect of the choice of output variable definitions on
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the values of slice-based cohesion metrics. The study found that the values of slice-

based metrics are sensitive to multiple factors including the level of abstraction at

which slices are taken (system or file levels) and the inclusion or exclusion of ‘printf’

statements, formal-ins, formal-outs, and global variables. The study investigated

the GNU Barcode program used in Meyers and Binkley’s study to compare the val-

ues of Tightness, Overlap, MinCoverage, Coverage and MaxCoverage using various

combinations output variable definitions. The results showed that the values drop

significantly when slicing files individually rather than as a whole project, especially

the Tightness value. MaxCoverage was found to be the least sensitive metric. The

exclusion of global variables as output variables increased the values of metrics sig-

nificantly but the inclusion or exclusion of ‘printfs’, formal-ins or formal-outs made

little difference.

Black et al. [23] investigated the 19 revisions of the GNU Barcode program using

slice-based Tightness and Overlap along with fault data extracted from online report

logs. The values of the metrics in procedures with at least one reported fault were

compared against fault-free procedures to determine whether any differences were

observed and to determine whether the metrics might allow prediction of faulty

modules. The results suggested that low values of Tightness seem to indicate fault-

prone procedures whereas the values of Overlap were not significantly different.

Counsell et al. [45] extended the study to consider a category excluded from the

analysis which comprised of 221 ‘inconclusive’ log reports where it was not clear

whether or not a fault occurred. The extended study presented a methodology to

allow conclusions to be drawn from the ‘inconclusive’ category. The results suggested

that the ‘inconclusive’ category is more strongly related to the fault-prone category

than the non-fault-prone category from the earlier study.

Bowes et al. [28] repeated the longitudinal study of GNU Barcode by Meyers and

Binkley in order to further validate the metrics and provide a replication of the



2.5. Slice-Based Cohesion and Coupling Metrics 66

study which adds to the corpus of metrics data available to researchers and software

maintainers. The study considered 49 versions of the program which contained 65

procedures. A total of 30 distinct combinations of output variable definition were

used in order to attempt to produce the values reported in the original study. The

closest match to the original study was obtained when slicing files individually with

only the inputs to ‘printf’ as output variables. However, these values were still

significantly different from the original study and the new study failed to reach

the same conclusions as the original. Bowes et al. were unable to conclude why

their values were so different from Meyers and Binkley and suggest that researchers

must present their work with sufficient detail for replication to be possible in future

studies.



CHAPTER 3

Dependence Communities

The concept of community structure arises from the analysis of social networks in

sociology. Community structure can be found in many real world graphs other than

social networks. Do Backward Slice Graphs (BSGs) have community structure?

We provide empirical evidence that dependence between statements in software

gives rise to community structure; this leads to the introduction of the concept

of dependence communities in software. We give examples where the dependence

communities approximate to the semantic concerns of a program.

The results of our empirical study provide compelling evidence that there is great

potential for using dependence communities as an alternative software clustering

methodology, applicable to a number of areas of software engineering including re-

engineering and re-factoring, maintenance, comprehension and metrics.

67
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3.1 Introduction

Community structure has been shown to exist in software networks, for example class

dependency networks [153, 180, 191]. In this chapter we apply the Louvain method

[24], used in fields such as social network analysis, to Backward Slice Graphs (BSGs)

to answer the question: do BSGs have community structure?

We believe that for a clustering technique to be useful in software engineering it must

provide what we call Semantic Separation, i.e. the clusters must in, some sense,

partition the system into its different functionalities. We manually inspect several

programs to answer the question: what do dependence communities in software

mean? Our hypothesis is that statements that are related due to control and data

dependence will form ‘communities’ and that such areas will approximate to the

semantic concerns of the program.

The Louvain method is a fast algorithm for detecting communities in large networks

based upon modularity maximisation (see section 2.1.1.2, page 29). The algorithm

combines neighbouring nodes until a local maximum of modularity is reached and

then creates a new network of communities; these two steps are repeated until there

is no further increase in modularity. This creates a hierarchical decomposition of

the network - at the lowest level all nodes are in their own community, and at the

highest level nodes are in communities which gives the highest gain in modularity.

This technique is simple, fast and has good accuracy.

Dependence communities are closely related to the previously studied dependence

clusters. A dependence cluster is a stricter form of community where every node

within a community is connected to every other node in that community (see chap-

ter 5, page 114).
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3.1.1 The Program Sample

The studies in this thesis are based on the analysis of 44 open-source C programs;

details of the programs are listed in figure table 3.1. The programs studied are a

collection of open-source software that cover a range of application domains such

as games, small and large utilities and operating system components. The smallest

program has 71 Analysed Lines of Code (ALoC)∗, while the largest has 76,369. The

total ALoC for the set of 44 programs is 464,621 and the average ALoC per program

is 10,559.57.

The 44 SDGs were computed using CodeSurfer. The smallest SDG, in terms of

nodes, has 499 nodes and the largest has 2,954,718 nodes. In terms of edges, the

smallest has 1,173 edges and the largest has 12,800,065 edges. The total number

of nodes for the set of 44 program SDGs is 13,949,332 and the average number of

nodes per SDGs is 39,222.73. The total number of edges for the set of 44 program

SDGs is 61,878,708 and the average number of edges per SDGs is 1,406,334.25.

The program with the smallest number of slices had 172 slices and the program

with the largest number of slices had 305,037 slices. The total number of slices

computed for the set of 44 programs was 1,725,800 and the average number of slices

per program is 317,030.28.

There are a total of 20,588 non-empty procedures† in the 44 programs and an average

of 469.73 procedures per program.

∗ALoC are the number of lines of code obtained by counting the unique number of lines of
code attached to System Dependence Graph (SDG) nodes generated by CodeSurfer.

†some procedures are empty, for example silent error logger in gettext-0.18
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3.2 Backward Slice Graphs (BSGs)

Program BSG

nodes Edges Density

a2ps-4.14 57,844 1,258,072,909 0.376

acct-6.5.5 6,324 5,499,790 0.138

acm-5.1 2,029 295,025 0.0717

adns-1.3 20,895 177,781,311 0.407

aeneas-1.2 8,315 20,658,335 0.299

anubis-4.1 19,510 149,296,932 0.392

archimedes-1.2.0 7,957 16,881,616 0.267

barcode-0.98 5,452 11,732,564 0.395

bc-1.06 11,037 62,116,117 0.510

cflow-1.3 17,135 101,597,540 0.346

combine-0.3.4 15,585 47,417,876 0.195

cppi-1.15 5,471 6,661,891 0.223

diction-1.11 3,283 3,334,634 0.309

diffutils-3.2 21,621 76,902,352 0.165

ed-1.5 7,274 37,419,735 0.707

empire-4.3.28 156,776 16,112,669,388 0.656

enscript-1.6.5 33,681 287,940,746 0.254

findutils-4.4.2 52,843 1,191,798,635 0.427

garpd-0.2.0 1,034 269,612 0.252

gettext-0.18 305,037 9,961,065,414 0.107

gforth-0.7.0 13,907 52,707,360 0.273

global-6.0 86,136 2,500,096,080 0.337

gnats-4.1.0 35,295 666,919,670 0.535

gnubik-2.4 9,417 805,652 0.00908

gnuchess-6.0.1 28,072 85,105,593 0.108

gnuedma-0.18.1 63,560 1,141,664,053 0.283

gnuit-4.9.5 29,792 356,982,854 0.402

gnujump-1.0.5 15,345 77,794,411 0.330

gnurobots-1.2.0 3,773 169,759 0.0119

gnushogi-1.3 9,597 34,527,979 0.375

gperf-3.0.4 8,976 13,394,816 0.166

inetutils-1.8 142,631 4,265,435,922 0.210

lame-3.99.1 39,736 580,705,172 0.368

ntp-4.2.6p5-RC1 167,394 8,053,207,729 0.287

pure-ftpd-1.0.32 18,591 130,914,642 0.379

rsync-3.0.9 142,962 16,449,155,234 0.805

sed-4.2 24,377 374,571,561 0.630

tar-1.23 97,435 4,946,266,842 0.521

time-1.7 826 127,281 0.187

userv-1.0.3 14,184 97,915,761 0.487

wc 172 9,296 0.314

wdiff-0.5 1,301 385,953 0.228

which-2.20 2,189 2,513,834 0.525

zlib-1.2.5 11,029 65,570,162 0.539

Table 3.2: Slice graph statistics for the 44 pro-
grams.

Before we can look for communities of

statements in software, we need a suit-

able graph in which to look for such

communities. We want edges to repre-

sent dependencies between statements.

Program slicing [186] is a technique

which computes a set of program state-

ments, known as a backward slice, that

may affect a point of interest known as

the slicing criterion. The backward slice

of a given statement s contains all the

other statements upon which s depends.

A natural choice was, therefore, to con-

nect node v1 to v2 if v1 is in the backward

slice of v2.

We call such a graph a Backward Slice

Graph (BSG). Communities in the BSG

will, thus, be sets of statements with

strong inter-dependencies. We call such

sets dependence communities.

We also considered looking for commu-

nities in the SDG [91]. Here nodes are

only connected if there is a direct data

or control dependence. Transitive de-
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pendencies are not connected. Intuitively, transitive dependencies are as important

as direct ones (their effect is just as important) and so we rejected this approach.

To back up our intuition, we applied the Louvain method directly to the SDG in a

number of cases and found there was a strong correlation between the communities

and the separate procedures in the programs. The reason for this is high ratio of

intra-procedural edges to inter-procedural edges in the SDG. Figure 8.1 shows the

SDG and the BSG of the wc program.

We exclude pseudo-nodes generated by CodeSurfer and retain the nodes that repre-

sent source-code statements (with the exception of global-formal-out‡). This

allows us to tie the results back to the source-code of a program as well as greatly

reducing the number slices required to be computed.

Definition 3.1 (Backward Slice Graph (BSG))

A Backward Slice Graph (BSG) G consists of a set of SDG nodes V and a set of

edges E of the form ei,j where ∀ei,j ∈ E, vj ∈ BackwardSlice(vi)

(a) System Dependence Graph (SDG) (b) Backward Slice Graph (BSG)

Figure 3.1: The wc program as two complex networks

‡these nodes are used for calculating metrics in chapter 4
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3.3 Dependence Communities in Backward Slice

Graphs

In this section, we show the result of applying the Louvain method to the BSG of a

simple program. In this small example, we found the results far from arbitrary: the

algorithm appeared to partition the graph into communities each of which approxi-

mated to different ‘semantic’ concerns of the program. This initial promising result

was the evidence which led us to investigate these communities more extensively.

The sumproduct program is shown in listing 3.1. The communities found in the

program are depicted in fig. 3.2. There are 3 communities detected in this program:

the ‘sum’ community, the ‘product’ community, and the ‘support’ community.

The ‘support’ community consists of the parts of the program which are not directly

involved in calculating the sum or product, such as the procedure body, exit, re-

turn, and the calls to printf. This community is separate because there are fewer

dependencies between itself and the sum/product code.

The ‘product’ community consists of the parts of the program which compute the

product, including the initialisation of the product variable, the updating of the

product variable and the actual-in to the printf call.

The ‘sum’ community consists of the parts of the program which compute the sum

but also the loop code and the counter N . Communities cannot overlap because

the algorithm partitions the graph therefore the loop code, which should intuitively

be in both communities, must be placed in one or the other; the choice of the sum

community is arbitrary.

The modularity of this partition of the graph is 0.227 - a positive value indicates

that the graph has community structure.
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Listing 3.1: Sum Product Program with 3 communities highlighted in different colours

int main() {

const int N = 10;

int sum = 0;

int product = 1;

int i = 1;

while(i < N) {

sum = sum + i;

product = product * i;

i = i + 1;

}

printf("%d\n" , product );

printf("%d\n" , sum );

}

Figure 3.2: Communities detected in the sumproduct program (listing 3.1), Q = 0.227
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3.4 Empirical Study

The study in this section is based on the analysis of 44 open-source programs. The

programs studied are a collection of open-source software that cover a range of

application domains including games, small and large utilities and operating system

components.

3.4.1 Research Questions

Do Backward Slice Graphs (BSGs) have community structure?

Community structure has been shown to exist in module-level software net-

works, for example class dependency networks [153, 180, 191]. Additionally,

a strict form of clustering at the statement-level has previously been stud-

ied in the form of dependence clusters. Our hypothesis is that dependence

at the statement-level may give rise to community structure, revealing less

strict groupings of statements in software compared to dependence clusters.

A positive result would have applications in all areas of software engineering

where system decomposition is important, including software comprehension

& maintenance, reverse engineering & restructuring, software evolution and

information recovery.

We show that the 44 BSGs generated from the set of programs in the empiri-

cal study have community structure, as evidenced by the positive modularity

obtained by partitioning them using the Louvain method.
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3.4.2 Method

In our empirical study, we used CodeSurfer to compute backward slices for SDG

nodes in a program, to generate BSGs for the set of 44 programs.

We then applied the Louvain algorithm to the BSG of each of the 44 programs.

As well as measuring the modularity we calculated the number of dependence com-

munities, the size of the smallest, the size of the largest and the average size of

communities measured as a percentage of program size.

3.4.3 Results

An important result of the study was that all 44 programs have a positive modu-

larity which suggests that dependence in software does, indeed, exhibit community

structure at the statement level. Details of the communities found in the 44 pro-

grams are listed in table 3.3, page 78 and fig. 3.3 plots the modularity for each of

the programs.

Figure 3.3: Modularity of the 44 Backward Slice Graphs.
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The highest modularity is 0.644 for gnurobots-1.2.0, the lowest is 7.47 × 10−5 for

global-6.0 and the average modularity for the 44 programs is 0.12.

The program ed-1.5, although not the smallest, has only 2 communities – one con-

suming about 10% and the other 90% of the program. This suggests that there

is a large section of code with a high dependence between statements. This result

is similar to the discovery of a large dependence cluster in the same program by

Binkley and Harman [16].

The largest community, on average, consumes 53.41% of a program; this echoes

the results of Binkley and Harman who found that programs contain large depen-

dence clusters [18]. Two programs (global-6.0 and gnujump-1.05 ) have a dependence

community that is > 90% of the program code. The larger program of the two has a

community that is 97.8% of the program and 57 other communities; and the smaller

has a community that is 92% of the program and only 11 other communities.

As program size increases (in terms of ALoC) so does the number of communities de-

tected; the Pearson correlation coefficient is R = 0.82 with p-value < 0.000001. This

could be due to larger programs performing more sub-tasks as part of the overall

function of the program. The largest program, gettext-0.18, contains 264 depen-

dence communities with a modularity of 0.294. The average number of dependence

communities in this set of programs is 32.91.
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Program Dependence Communities

Number Smallest Largest Average Modularity

a2ps-4.14 102 0.00346% 93.2% 0.980% 0.00101

acct-6.5.5 11 0.221% 28.2% 9.09% 0.282

acm-5.1 25 0.197% 32.4% 4.00% 0.306

adns-1.3 10 0.0239% 42.2% 10.0% 0.0535

aeneas-1.2 3 22.2% 43.8% 33.3% 0.0844

anubis-4.1 25 0.0256% 48.9% 4.00% 0.0257

archimedes-1.2.0 11 0.126% 43.2% 9.09% 0.103

barcode-0.98 4 0.514% 73.8% 25.0% 0.0277

bc-1.06 11 0.0634% 50.8% 9.09% 0.206

cflow-1.3 23 0.0117% 83.9% 4.35% 0.0454

combine-0.3.4 16 0.0321% 58.6% 6.25% 0.0935

cppi-1.15 24 0.0914% 46.6% 4.17% 0.123

diction-1.11 7 0.0609% 51.3% 14.3% 0.0539

diffutils-3.2 51 0.0278% 54.1% 1.96% 0.178

ed-1.5 2 10.3% 89.7% 50.0% 0.00692

empire-4.3.28 13 0.00383% 98.8% 7.69% 0.000247

enscript-1.6.5 27 0.00891% 54.6% 3.70% 0.481

findutils-4.4.2 40 0.00568% 91.5% 2.50% 0.00207

garpd-0.2.0 5 1.93% 43.2% 20.0% 0.108

gettext-0.18 264 0.00131% 53.1% 0.379% 0.294

gforth-0.7.0 10 0.0503% 61.3% 10.0% 0.0872

global-6.0 56 0.00348% 97.5% 1.79% 7.47e-05

gnats-4.1.0 25 0.0113% 97.2% 4.00% 0.000332

gnubik-2.4 39 0.0531% 16.2% 2.56% 0.483

gnuchess-6.0.1 78 0.0142% 35.3% 1.28% 0.486

gnuedma-0.18.1 60 0.00315% 64.7% 1.67% 0.0543

gnuit-4.9.5 32 0.0101% 85.6% 3.12% 0.00661

gnujump-1.0.5 12 0.0391% 92.0% 8.33% 0.00277

gnurobots-1.2.0 25 0.106% 18.9% 4.00% 0.644

gnushogi-1.3 13 0.0208% 66.4% 7.69% 0.0796

gperf-3.0.4 21 0.0334% 48.8% 4.76% 0.0730

inetutils-1.8 71 0.00210% 81.3% 1.41% 0.0694

lame-3.99.1 34 0.0126% 56.7% 2.94% 0.0482

ntp-4.2.6p5-RC1 70 0.00179% 97.4% 1.43% 8.38e-05

pure-ftpd-1.0.32 12 0.0377% 72.5% 8.33% 0.0595

rsync-3.0.9 33 0.00210% 55.1% 3.03% 0.00965

sed-4.2 11 0.0164% 53.5% 9.09% 0.0248

tar-1.23 58 0.00308% 95.8% 1.72% 0.00109

time-1.7 5 9.56% 37.7% 20.0% 0.0853

userv-1.0.3 6 0.0423% 79.4% 16.7% 0.0715

wc 2 48.8% 51.2% 50.0% 0.136

wdiff-0.5 4 15.1% 32.1% 25.0% 0.107

which-2.20 5 0.411% 67.6% 20.0% 0.0181

zlib-1.2.5 26 0.0272% 44.3% 3.85% 0.0407

Table 3.3: Dependence Community Statistics
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3.5 The Semantic Nature of Dependence

Communities

The empirical study found that dependence communities do exist in software but

what do these mean? Recall that a community is a sub-graph with a higher than

expected number of internal connections. In our situation this means sets of state-

ments in a program that have high dependence between them. It seems plausible

that such collections of statements will be part of the same functional behaviour of

the program.

In this section, we investigate this by manually inspecting a number of programs

and their dependence communities to see if, like the sumproduct example, the com-

munities closely approximated the separate semantic concerns of the program.
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3.5.1 GNU wc

In the GNU wc program - that counts lines, characters and words in a text file -

there are two communities detected; this can be seen graphically in fig. 3.4, page

80. The two communities are, broadly speaking, the ‘counting community’ and the

‘input/output community’.

Figure 3.4: Communities detected in the wc pro-
gram

The ‘counting community’ consists of

the parts of the program which deal with

counting the values of lines, characters

and words in a file; this includes nodes

that iterate through the characters in a

file, nodes that increment counters, and

nodes that deal with checking if a string

is a word.

The ‘input/output’ community contains nodes which deal with the opening of the

file, printing of error messages and printing of the results of the ‘counting community’.

It is clear from the diagram that there are two distinct communities - the advantage

of using a force-directed layout algorithm is that the nodes that are more tightly

connected are placed close together; this is exactly the same idea behind community

detection. Nodes that have more edges between them than with the rest of the

graph will be put into a community.
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3.5.2 GNU bc

Figure 3.5: GNU bc. Communities as a percent-
age of program size.

The program bc is an “arbitrary preci-

sion numeric processing language” [69]

which is a utility included in the POSIX

standard. The program parses input

from the user, translates it into byte-

code and executes the bytecode. In the

program there are two main communi-

ties detected – the parser and the cal-

culator. The communities can be seen

graphically in fig. 3.5 where each section

of the ring depicts a community as a percentage of program so. These two commu-

nities combined make up 96% of the program; the parser community is 51% of the

program and the calculator community is 45%.

3.5.3 GNU Chess

Figure 3.6: GNU Chess. Communities as a per-
centage of program size.

GNU Chess [70] is another program

that exhibits clearly defined communi-

ties which correspond to the modules of

the program. The program is composed

of three loosely-coupled modules: the

fronted, adapter and engine; the adapter

sits in between the front-end and the

engine. The three main communities

detected in the BSG correspond to the

three components of the software. The
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developers of the software intended the components to be loosely-coupled which

has resulted in the distinct communities. If coupling was high there would be more

edges in the BSG between components and it would therefore be less likely that they

would be separate communities. This indicates that community detection could po-

tentially be applied to the problem of software metrics for the calculation of coupling

between modules in software. If the program has a community that expands across

functional areas it may indicate that the program has high coupling; on the other

hand, if the detected communities closely match the functional areas of a program

we can be confident that the modules are loosely-coupled. The communities can be

seen graphically in fig. 3.6 where each section of the ring depicts a community as a

percentage of program so.

3.5.4 GNU Robots

Figure 3.7: GNU Robots. Communities as a per-
centage of program size.no

GNU robots is a program with low cou-

pling between procedures. The user in-

terface is written in C which interacts

with an external Scheme program. This

causes the coupling between procedures

to be very low because many procedures

communicate with the external program

rather than with each other. In turn,

this causes a large number of communi-

ties as there are many areas of highly dependent code with few edges between them.

The communities can be seen graphically in fig. 3.7 where each section of the ring

depicts a community as a percentage of program so.
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3.5.5 Watermark Communities

Software watermarking involves embedding a unique identifier within a piece of

software, to discourage the copying of software [67, 75, 77]. Watermarking does not

prevent copyright infringement but instead discourages it by providing a means to

identify the creator of a piece of software and/or the origin of copied software. A

hidden watermark can be extracted, at a later date, to prove ownership.

Watermark code can be protected by opaque predicates [40] which attempt to force

the original program code to depend on the watermark and the watermark code to

depend on the original code. However, it is difficult to make the watermark fully

integrated into the original program. Preliminary work suggests that community de-

tection could be used to uncover hidden watermarks as the additional watermarking

code tends to reside in its own communities.

For example, fig. 3.8a shows the BSG of a Java program that has been injected with a

dynamic watermark [41]; fig. 3.8b shows the communities detected using the Louvain

method in which the majority of the watermark code is in its own community.

(a) Highlighted Watermark (b) Highlighted Communities

Figure 3.8: A Java program’s BSG with highlighted watermark (red) and detected communities
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3.6 Conclusion

This work is the first to investigate community structure at the statement-level in

software. We introduced the concept of a dependence community and have shown

that BSGs have community structure. We manually inspected a number of programs

and found that the communities seem to approximate to the semantic concerns of

those programs.

There is little point in breaking a piece of software into smaller components if these

components do not in some way reflect different functionalities. We, therefore,

believe that good semantic separation is the key to the usefulness of partitioning

techniques in software engineering.

Of course no automated approach can perform perfect semantic separation. Our

hypothesis is that dependence communities computed using community detection

algorithms applied to program graphs can give sufficiently good semantic separa-

tion to be highly applicable in a number of areas of software engineering. This

new approach has applications in all areas of software engineering where system de-

composition is important, including software comprehension & maintenance, reverse

engineering & restructuring, software evolution and information recovery.

We have described an empirical study of 44 open-source programs, analysing a

total of 464,621 lines of code; the study applied the well-known Louvain method to

program dependence graphs generated from a total of 1,725,800 backward slices.

The Louvain algorithm has previously been successfully used on large graphs of up

to 118 million nodes and 1 billion edges. We have successfully applied the algorithm

to graphs with up to 305,000 nodes and 16 billion edges. We showed that each of the

44 BSGs exhibited community structure, as evidenced by the positive modularity

obtained by partitioning them using the Louvain method.
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The modularity for the set of 44 programs in the empirical study varies, with some

programs showing a stronger community structure than others. It is not yet clear

what ‘stronger community structure’ means in terms of software dependence but the

positive findings merit further work. We suspect that there is a connection between

high modularity and how well a program is separated into its different semantic

concerns.

We manually inspected a number of programs to answer the question “what do

dependence communities in software mean?” The analysis revealed that dependence

communities found in those programs seem to reflect the functional behaviour or

semantics of the program; for example in the GNU wc program, we found two

dependence communities: the counting community, which consists of the parts of

the program which count the number of lines, characters and words in a file, and

the I/O community which contains statements which opens the file, prints error

messages and prints results.

Being able to break down software into meaningful sub-components is one of the

major challenges in software engineering. Previous research in the area has focused

on the clustering of high-level components in a software system to recover a mod-

ular structure or re-modularise software. The Bunch tool [129, 133], for example,

works on a Module Dependency Graph (MDG) which includes high-level system

components such as Java classes or C files that are connected due to dependence.

Our results provide compelling evidence that there is great potential for using depen-

dence communities as an alternative software clustering methodology. Our results

have shown that there is merit in further investigations of dependence communities

and their application to various software engineering areas.



CHAPTER 4

Maximal-Slice-Based Cohesion and Coupling

Metrics

Slice-based cohesion and coupling metrics attempt to quantify the inter-dependence

between statements in program modules and between modules. Current definitions

of sliced-based metrics are not defined for procedures which do not have clearly

defined output variables and definitions of output variable vary from study-to-study.

We solve these problems by introducing corresponding new, more efficient forms of

slice-based metrics in terms of maximal-slices. These metrics have the advantage

that they do not require a definition of output variable and are also, therefore,

defined for all procedures irrespective of whether or not output variables exist

We report on an empirical study which shows that where output variables exist,

there is a strong correlation between the values of the metrics computed using both

output-variables and maximal slices. We give a practical algorithm for computing

sliced-based metrics in terms of pseudo-maximal slices which is also more efficient

than calculating slice-based metrics using output variables.

86
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4.1 Introduction

4.1.1 The Output Variable Problem

The calculation of slice-based cohesion and coupling metrics poses a problem: what

are the slicing criteria? Previously, the concept of an output variable has been used.

There are several problems with the current definitions of slice-based metrics which

we call the ‘The Output Variable Problem’:

− It is difficult to define or capture output variables, especially of the type ‘any

variables printed, written to a file, or otherwise output to the external envi-

ronment’.

− The definition of output variables varies from study to study.

− Not all functions have output variables (for some definition of output vari-

ables).

− output variables do not always capture the true cohesion of a module.

The choice of slicing criteria is a difficult problem to solve and various combinations

of criteria may lead to different results for cohesion and coupling values. It turns out

that the values of the metrics for modules can be highly sensitive to the choice of

slices used in their computation. Many authors have grappled with the problem of

which slices to include in order to come up with meaningful values for the metrics.

We feel that the choices appear somewhat arbitrary and are in some sense trying to

second-guess what the slices of interest are.
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4.1.2 Definitions of Output Variable

Previous studies, and the study in this thesis, are based on a program’s System

Dependence Graph (SDG), generated by CodeSurfer.

Different studies have used different definitions for what ‘counts’ as an output vari-

able. In practice, choosing what counts as output variables is equivalent to deciding

which SDG nodes to slice with respect to.

Some [13, 80, 81, 99, 149] use a function’s return value, global variables modified by

a function and printed (or similarly output) variables (Definition 4.2). Others [130,

132, 152] use only a function’s return value and globals modified by a function

(Definition 4.3).

In addition to the first two definitions of output variable, for the purposes of our

study, we define two further sets (Definitions 4.4 and 4.5) which include the return

node of a function. These are included as it seems a more intuitive choice when

thinking about slicing for slice-based cohesion and coupling metrics (i.e. rather

than one slice, we have the same number of slices as return statements).

We do not attempt to exactly replicate the study by Meyers and Binkley [131] but

merely provide a base-line to compare the maximal slice metrics against. Bowes et al.

[27, 28] attempted to replicate the Meyers and Binkley study but failed to obtain

the same results. In this section we define output variables based on descriptions

in previous studies (see table 2.1, page 55 for definitions of output variable used in

previous literature).
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Definition 4.1 (Printed (or Similarily Output) Variable) An input

(actual-in) to an ANSI C stdio output function call, e.g. printf, puts,

fwrite etc.

Definition 4.2 (Output Variables 1 (OV1)) OV 1 is the set of SDG nodes

matching the following conditions: vi is a function’s return value or the return value

of a global variable modified by a function (formal-out and global-formal-out). Or vi

is an input (actual-in) to a C stdio output function call, e.g. printf.

Definition 4.3 (Output Variables 2 (OV2)) OV 2 is the set of SDG nodes

matching the following conditions: vi is a function’s return value or the return value

of a global variable modified by a function (formal-out and global-formal-out).

Definition 4.4 (Output Variables 3 (OV3)) OV 3 is the set of SDG nodes

matching the following conditions: vi is a function’s return or normal-return

node or the return value of a global variable modified by a function (global-formal-

out). Or vi is an input (actual-in) to a C stdio output function call, e.g. printf.

Definition 4.5 (Output Variables 4 (OV4)) OV 4 is the set of SDG nodes

matching the following conditions: vi is a function’s return or normal-return

node or the return value of a global variable modified by a function (global-formal-

out).
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4.1.2.1 The Effect of Different Definitions of Output Variable on

Slice-Based Metrics

Previous authors have used many different definitions of output variable which has

resulted in obtaining different results for slice-based metrics [27, 28]. Table 4.1

shows an example where the choice of output variable results in a large difference

in slice-based cohesion metrics.

int a, b, c, d,
e, f, g;

int example() {
||||||| | a = 0;
|||||| | b = a + 1;
||||| | c = b + 1;
|||| | d = c + 1;
||| | e = d + 1;
|| | f = e + 1;
| | g = f + 1;

| return g;
}

| a_out
| b_out
| c_out
| d_out
| e_out
| f_out
| g_out

| formal-out

int example() {
int a, b, c, d,

e, f, g;

| a = 0;
| b = a + 1;
| c = b + 1;
| d = c + 1;
| e = d + 1;
| f = e + 1;
| g = f + 1;

| return g;
}

| formal-out

tightness(example) =
1

16
tightness(example) = 1

Table 4.1: The choice of output variable can greatly affect the value of cohesion.

The tightness for the first example is 1
16

whereas for the second example is 1. This

difference results from the definition of tightness where the size of the intersection

of slices is the numerator and the size of the procedure the denominator. In the

first example, the intersection only includes the first line; in the second example
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there is only one slice so the intersection is equal to the size of the module. In

this example, it is clear that an arbitrary decision regarding the choice of output

variable can severely affect the value of the metrics. Whether, or not, the variables

used in the procedure are global or local has no bearing on the inter-relatedness of

the statements within the procedure; in each case the statements are inter-related

as much as the other.

In some cases the value of the metric may not reflect the expected value when anal-

ysed subjectively by a programmer, as is the case in table 4.1 if global-formal-

outs are used as slicing criteria.

Consider the program in listing 4.1, which does nothing but print the value passed

as a parameter to it. In this case, depending on the choice of output variables the

value of cohesion may be undefined.

Listing 4.1: Simple C Procedure

void g(int x) {

printf("%d\n", x);

}

If we use OV1 (definition 4.3), then in listing 4.1 we would then achieve the desired

tightness value of 1 as we would have 1 output variable. However, now consider

listing 4.2 – in this case we have a call to the GTK library printf procedure rather

than the C library call; we are back to having an undefined metric. It seems unrea-

sonable to be required to define all possible output procedures used in a program in

order to calculate slice-based metrics.

Listing 4.2: Simple C Procedure 2

void g(int x) {

g_printf("%d\n", x);

}
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4.1.2.2 Non-existence of Output Variables

In a previous study [20] that used the OV1 definition it was found that 1,071 of 1,444

procedures have no output variables. So for these procedures the slice-based metrics

are not defined at all. To verify this previous experiment, we conducted an empirical

study using the four definitions of output variable to our set of 44 programs.

Using each definition of output variable, we counted the percentage of procedures in

a number of programs which had output variables. The results of this experiment

can be seen in table 4.2.

Type
Mean percentage of pro-
cedures without output
variables per program

Percentage of procedures
without output variables
in worst-case program

OV1 5.23% 45.02%

OV2 7.6% 46.92%

OV3 4.87% 37.44%

OV4 7.02% 44.72%

Table 4.2: Percentage of procedures for which metrics are undefined using output variables, using
each definition.

Although our results were not as extreme as the previous study, they confirmed

that many procedures have no output variables and hence no values for slice-based

metrics. Furthermore, our experiment showed that even by changing the definition

of output variable the problem still persisted.

An alternative definition that avoids this problem is required. The next section

proposes a solution: maximal-slice-based metrics.



4.2. Maximal-Slice-Based Metrics 93

4.2 Maximal-Slice-Based Metrics

We propose the use of maximal slices as the basis of the definition of slice-based

cohesion and coupling metrics. In our definition there is no need to define the

concept of an output variable. This avoids the problems discussed in the previous

section. A maximal slice is simply a slice which is contained in no other slices∗.

The motivation for this is as follows: if a slice is not maximal it is, by definition, a

subset of another slice and rather than performing a ‘whole’ task of its own, could

be thought of as contributing towards the ‘larger’ task of the larger slice. We claim

that the output variables are not of interest in themselves. They are simply used

as slicing criteria to produce the slices on which the metrics are based. In our

approach we use the set of maximal slices (corresponding to ‘complete’ tasks) in a

module instead.

Disjoint maximal slices would suggest that the set of statements in each slice are

performing completely separate tasks; for example, if we calculate maximal slices for

a procedure which performs two distinct tasks we would find two disjoint maximal

slices. Ideally, the intersection of maximal slices of a procedure should be large,

corresponding to a highly inter-related set of program statements.

∗Previously, maximal decomposition slices [60–64, 111, 172] have been used for software main-
tenance. A decomposition slice with respect to variable v is the union of slices taken at all points
where v is output, and the last statement of the program. These are not the same as maximal
slices.
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4.2.1 Definitions

Definition 4.6 (Maximal Slice) A maximal slice is a slice that is not a subset

of any other slice. We define MaxSlices(M) to be the set of all maximal slices of

module M .

Definition 4.7 (Crucial Point) A crucial point is a slicing criterion which pro-

duces a maximal slice.

For cohesion metrics we use local slices [14] which are obtained by intersecting an

inter-procedural slice with a particular procedure.

Definition 4.8 (The Set of all Local Slices in a Module) Given a module M

we define LocalSlices(M) to be the set of all local slices of M .

LocalSlices(M) = {M ∩ k | k ∈ Slices(M)}

Definition 4.9 (The Set of all Maximal Local Slices) Given a module M we

define MaxLocSlices(M) to be the set of all maximal local slices of M . Formally,

s ∈ MaxLocSlices(M) ⇐⇒



s ∈ LocalSlices(M)

and

∀k ∈ LocalSlices(M),

s ⊆ k =⇒ s = k.

Definition 4.10 (The Intersection of all Maximal Local Slices) Given a mod-

ule M we write I(M) for the intersection of all maximal slices. Formally,
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I(M) =
⋂

s∈MaxLocSlices(M)

s

4.2.1.1 Maximal-slice-based Metrics

We now define our new maximal-sliced-based metrics. Importantly, these definitions

agree with the previous definitions in the sense that both the old and the new are

defined in terms of a set of slices. The only difference is that in the old, this set is

the intersection of all slices

∣∣∣∣∣ ⋂
v∈VO

SLv

∣∣∣∣∣ corresponding to output variables whereas in

the new it is the intersection of all maximal local slices (Definition 4.10).

Definition 4.11 (Maximal-slice-based Tightness)

The tightness of a module is the ratio of the intersection of all maximal local slices

to the size of the module:

tightness(M) =
|I(M)|
|M |

Tightness is, thus, the ratio of the intersection of all maximal slices to the size of

the module.

Definition 4.12 (Maximal-slice-based Minimum Coverage)

mincoverage(M) =
min{|s| : s ∈ MaxLocSlices(M)}

|M |

Definition 4.13 (Maximal-slice-based Coverage)
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The coverage is the ratio of the average maximal slice to the size of the module:

coverage(M) =

∑
s∈MaxLocSlices(M)

|s|

|M ||MaxLocSlices(M)|

Definition 4.14 (Maximal-slice-based Maximum Coverage)

The maximum coverage is the ratio of size of the largest maximal local slice to the

size of the module:

maxcoverage(M) =
max{|s| : s ∈ MaxLocSlices(M)}

|M |

Definition 4.15 (Maximal-slice-based Overlap)

The overlap is the average ratio of the intersection of all maximal local slices to slice

size:

overlap(M) =
|I(M)|

|MaxLocSlices(M)|
∑

s∈MaxLocSlices(M)

1

|s|

Maximal-slice-based coupling is defined in terms of maximal-slice-based flow between

two modules:

Definition 4.16 (Maximal-Slice-based Flow between two modules)

The maximal-slice-based flow between two modules M and N is written M ↪→ N , is

defined as

M ↪→ N = N ∩
⋃

c∈crucial(M)

Slice(c)

where crucial(M) are the set of points in M which give rise to the maximal local

slices of M and Slice(c) is the inter-procedural slice of the whole program with respect

to c.
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Definition 4.17 (The Maximal-slice-based coupling between two modules)

The maximal-slice-based coupling between two modules M and N is the normalised

values of the maximal-slice-based flow in each direction.

coupling(M,N) =
|M ↪→ N |+ |N ↪→M |

|M |+ |N |

We generalise coupling of a module M to be the weighted average of the coupling

between M and the other modules in the program:

Definition 4.18 (The Maximal-slice-based coupling of a Module)

coupling(M) =

∑
N ∈ modules(P )

|N | coupling(M,N)∑
N ∈ modules(P )

|N |
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4.2.2 Examples

For computing cohesion, consider the example in listing 4.3 which contains 2 max-

imal slices: {9, 7, 6, 4, 3, 2} and {8, 7, 5, 4, 3, 1}. The crucial points are lines

9 and 8 as these give the maximal slices. Notice that the crucial points contain

output variables. The length |M | of the module is 9 and the intersection I(M) of

the maximal slices is {7, 4, 3}, so the size of the intersection is 3.

Listing 4.3: Maximal-slice-based cohesion example

1 sum = 0;

2 product = 0;

3 i = 0;

4 while(i < 10) {

5 sum = sum + i;

6 product = product * i;

7 i = i + 1;}

8 print sum

9 print product

Now, using our definitions we can calculate cohesion metrics for this example:

tightness(M) =
|I(M)|
|M |

=
3

9
=

1

3

mincoverage(M) =
min{|s| : s ∈ MaxLocSlices(M)}

|M |
=

6

9
=

3

3

coverage(M) =

∑
s∈MaxLocSlices(M)

|s|

|M ||MaxLocSlices(M)|
=

3 + 3

9× 2
=

1

3
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maxcoverage(M) =
max{|s| : s ∈ MaxLocSlices(M)}

|M |
=

6

9
=

2

3

overlap(M) =
|I(M)|

|MaxLocSlices(M)|
∑

s∈MaxLocSlices(M)

1

|s|
=

3

2
(
1

6
+

1

6
) =

1

2

For computing coupling, consider the example in listing 4.4. The coupling between

f and g can be computed from the crucial points – the return statements on lines

3 and 9. The slice with line 9 as the criterion contains lines {9, 8, 7, 6, 3, 2, 1} and

the slice with line 3 as the criterion contains lines {3, 2, 1, 8, 6}.

Listing 4.4: Maximal-slice-based coupling example

1 int f(int x) {

2 x += x;

3 return x;

4 }

5

6 int g(int x) {

7 x +=

8 f(x);

9 return x;

10 }

The coupling between f and g is computed as the number of statements from maxi-

mal slices originating in g that are in f and the number of statements from maximal

slices originating in f that are in g divided by the total number of statements in f

and g. In this example, the coupling between f and g is 3+2
3+4

= 5
7
.



4.3. Empirical Study 100

4.3 Empirical Study

In this section we compute slice-based cohesion and coupling metrics for the same set

of 44 programs, used in chapter 3. In our study, we calculated the ‘old’ slice-based

metrics using four definitions of output variable (see section 4.1.2, page 88), and

the ‘new’ maximal-slice-based metrics (defined in section 4.2.1, page 94) for each of

procedures which contained output variables.

4.3.1 Research Questions

Is there a correlation between the values of metrics computed using max-

imal slices and those computed using output variables?

If we find a strong correlation between our new, maximal-slice-based metrics

and the old, output variable based metrics the new metrics would be applicable

for all procedures, including those without output variables. Additionally, this

would remove the need to define slicing criteria to compute slice-based metrics.

We show that there is a strong correlation between output-variable-based met-

rics and the new maximal-slice-based metrics, for procedures which contain

output variables

4.3.2 Method

In order to compute maximal-slice-based metrics, we used CodeSurfer to compute

backward slices for each SDG node, excluding pseudo-nodes generated by CodeSurfer

(except global-formal-outs), but retaining the nodes that represent source-

code statements. We calculated output variable based metrics using the subset
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of slices whose criterion corresponded to the output variable definitions. We then

computed the maximal slices from the set of slices obtained from CodeSurfer.

4.3.3 Results

Figure 4.1 shows the weighted average metric values using maximal slices, ordered

by tightness, showing the wide range of values for all metrics.

Figure 4.1: Weighted averages of the metrics calculated using maximal slices.

There is a strong correlation between the metric values obtained using maximal

slices and those obtained using the four definitions of output variable, for proce-

dures where metrics are defined; table 4.3 shows the Pearson correlation coefficient

for maximal slice metrics and the four output variable definitions. The minimum

correlation coefficient is 0.523 for overlap using maximal slices and OV2. The corre-

lation coefficient for coupling using maximal slices and all output variable definitions

is > 0.95 indicating that coupling is the least sensitive to the choice of slicing criteria.
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Figure 4.2 plots the values for metrics calculated using maximal slices against the

values calculated for output variables; the pair with the highest correlation coefficient

is plotted for each metric.

Each plot shows a clear, strong correlation between the values of metrics calculated

using maximal slices and those calculated using output variables. Overlap has many

high values for both maximal slice metrics and output variable metrics and thus has

a large clustering of points in the top-right corner. Coupling has an extremely good

correlation and most points are clustered around the diagonal.



4.3. Empirical Study 103

Program Correlation
MX/OV1 MX/OV2 MX/OV3 MX/OV4

Tightness 0.839 0.809 0.939 0.934
Overlap 0.678 0.603 0.719 0.651
MinCoverage 0.851 0.823 0.941 0.937
Coverage 0.929 0.911 0.949 0.945
MaxCoverage 0.964 0.959 0.850 0.840
Coupling 0.974 0.964 0.975 0.966

Table 4.3: Correlation between metrics calculated using maximal slices and output variables.

(a) tightness (0.939) (b) overlap (0.719)

(c) mincoverage (0.941) (d) coverage (0.949)

(e) maxcoverage (0.964) (f) coupling (0.975)

Figure 4.2: Metrics calculated using maximal slices vs output variables
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4.3.4 Analysis of Results

We have shown a strong correlation between the values of metrics obtained using

maximal slices and output variables, for procedures that contain output variables.

These results provide evidence that using maximal slices is a valid technique for

computing slice-based cohesion and coupling metrics for all procedures, including

those without output variables.

The majority of the 44 programs have some procedures for which metrics are unde-

fined (see table 4.2, page 92). The highest number of procedures for which metrics

are undefined is 45.50% of the procedures in gnubik-2.4. Only 8 programs have

metrics defined for all procedures when using OV1 and OV3. This is due to the fact

that not all procedures print or ouput values to a file, and not all procedures return

a value. Some procedures could be said to print a value, such as in listing 4.5, page

104, but we must define which procedures print values. In this study the definition

of printing a value is the use of the standard C output functions; if a program calls

a different procedure to print a value or output to a file this will not be included in

the set of output variables.

Listing 4.5: Procedures from which-2.20.

1 /* Print error message and exit with error status. */
2 static void errf (char *fmt, ...) {
3 va_list ap;
4 va_start (ap, fmt);
5 error_print (0, fmt, ap);
6 va_end (ap);
7 }

We have shown a strong correlation between the values of metrics obtained using

maximal slices and output variables where metrics are defined but, from the scatter

plots in fig. 4.2, page 103, it can be seen that there are cases where these differ.

The requirement to define output variables and the use of different definitions of

output variable may lead to different slicing criteria. The choice of slicing criteria
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is crucial in obtaining intuitive values for cohesion and coupling; making arbitrary

choices about the inclusion or exclusion of certain nodes is not ideal.

Metrics using output variables, in many cases, produce values higher than one would

expect for cohesion because if a function contains no printed variables or modified

globals there will be only one slice (formal-out) in the module resulting in a high

intersection and high tightness. Maximal slices tend to give a lower value of tightness

due to the greater number of maximal slices in a module; for example, in tar there are

3 separate tests which form part of uc width – testing for ‘for non-spacing or control

character’, ‘for double-width character’ and ‘ancient CJK encodings’; the tightness

for this procedure is low with maximal slices, which seems to more accurately reflect

cohesion than a very high value given by output variables.

Most procedures do not have printed (or similarly output) variables which leaves

only formal-outs and global-formal-outs as the output variables; such slices

will tend to include the whole procedure in the slice as they are the last statement

in the procedure. Using output variable metrics, in a scenario where there are

many modified globals, would result in a slice for each global-formal-out and

potentially a high intersection value; whereas maximal-slice-based metrics will only

use the locally maximal slices, potentially giving a different result. Additionally,

procedures can have only 1 formal-out which means many procedures could have

a high cohesion even though internally they many be performing many sub-tasks

related to the calculation of the final value.

If a procedure uses few global variables (which is assumed to be a good thing)

and does not print (or similarly output any values) then using output variables to

calculate cohesion metrics will automatically give high values, with little relation to

the cohesion of the internal code (other than all the code contributes to the result

of the procedure). Procedures with multiple returns will have a lower tightness

value when using maximal slices compared with using just formal-outs as the
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output variables. Metrics calculated using maximal slices take into account other

slices in within the procedure, giving a more detailed analysis of the cohesion of the

procedure.
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4.4 Efficiency of Maximal-Slice-Based Metrics

Clearly, calculating maximal-slice-based metrics is less efficient than computing slice-

based metrics using output variables. This is for two reasons:

1. In order to compute maximal-slice base metrics for a procedure, we have to

slice at every point in the procedure to find which of the slices are maximal.

2. Having computed all the slices, finding the maximal ones takes considerable

computational effort. The problem of finding maximal subsets or extremal sets

as they are called has been studied [157]. Until recently the best algorithms

for doing this, as is the algorithm used in our study, were O(N2/log(N)) where

N is total number of elements in all the sets.

Figure 4.3, page 107 shows the run times for calculating the maximal slices for each

of the 44; many were computed in seconds, while the longest took 13 minutes.

Figure 4.3: ALoC vs Runtime, for calculating maximal-slice-based metrics

In our empirical study, the situation is worse than it needs to be: we produce slices

using CodeSurfer which we regard as a ‘black box’. It is unlikely that such a naive

approach would scale up.
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4.5 An Efficient Algorithm Using

Pseudo-Maximal Slices

We take advantage of the near transitivity of data and control dependence [47] to

develop a much more efficient approach to computing extremely accurate approxi-

mations to maximal-slice-based metrics. By near-transitivity we mean that if a is

in the slice of b and b is in the slice of c then a is almost always in the slice of c.

If we assume transitivity we can find maximal slices very quickly, since if slicing at

point p gives us the set S then slicing at any of the points in S cannot result in a set

bigger than S. So we can discard all elements of S (apart from p) in the search for

maximal slices. If we start looking at points at the end of the procedure first as this

is where the slicing criteria for maximal slices are most likely to be, we very quickly

eliminate other points in our procedure for further consideration. Algorithm 1 is

used to find all the pseudo-crucial points of a function f .

Algorithm 1 Pseudo-Maximal Slices

L← all the slice points in function f (in order)
T ← ∅
while L 6= ∅ do

p ← last(L)
K ← slice(p) ∩ f . K is the local slice
L ← L−K . remove all elements in K from L
T ← (T −K) ∪ {p}

end while

After executing this algorithm, T will be the set of pseudo-crucial points for f i.e.

the set of slicing criteria that give rise to the pseudo-maximal slices of f . We call

the slices returned by the algorithms pseudo-maximal as in some cases they will not

be maximal. For the purposes of calculating metrics this appears not to matter.
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4.5.1 Research Questions

Is there a correlation between pseudo-maximal-slice-based metrics and

maximal-slice-based metrics?

If there is a correlation between pseudo-maximal-slice-based metrics and maximal-

slice-based metrics these can be used in place of maximal-slice-based metrics.

We show that there is a very strong correlation between pseudo-maximal-slice-

based metrics and maximal-slice-based metrics; this provides strong evidence

that we can use pseudo-maximal-slice-based metrics in place of maximal-slice-

based metrics.

How many slices are required to compute pseudo-maximal-slice-based

metrics compared to maximal-slice-based metrics and output variable

based metrics?

The major bottle-neck in computing slice-based metrics is the number of slices

that need to be computed. We hypothesis that a far few number of slices will

need to be computed compared to maximal-slice-based metrics; if there is

a correlation this will allow the efficient computation of accurate slice-based

metrics.

We show that there are far fewer slices to compute using emphpseudo-maximal-

slice-based metrics compared to using maximal-slice-based metrics. We also

show that there are fewer slices required to be computed than when using

output-variable based metrics.
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4.5.2 Results

Figure 4.4 shows plots for each slice-based metric, comparing the values computed

using pseudo-maximal slices versus those computed using maximal slices. There is a

perfect correlation (a Pearson correlation coefficient of 1). What is more, the metrics

were identical in all but a few cases. The pseudo-maximal slice approach correlates

identically to the maximal-slice approach with all the output variable approaches

(OV1–OV4).

(a) tightness (b) overlap

(c) mincoverage (d) coverage

(e) maxcoverage (f) coupling

Figure 4.4: Metrics calculated by maximal slices vs pseudo-maximal slices

Using the maximal slice approach, we have to slice at every single program point.



4.5. An Efficient Algorithm Using Pseudo-Maximal Slices 111

Using the output variable approach we have to slice only at points corresponding

to output variables. The pseudo-maximal-slice algorithm requires far fewer slices to

be computed, when compared to using maximal slices (see table 4.4).

It also turns out that the pseudo-maximal-slice algorithm required fewer slices to be

computed than with the standard output variable approaches.

Method used for calculating slice-based metrics

Total number of slices calculated in
order to compute all the slice-based
metrics for every procedure in the
study

Maximal slices 1,725,800

Pseudo-maximal slices 487,453

OV1 723,031

OV2 670,953

OV3 743,758

OV4 691,680

Table 4.4: The number of slices computed to calculate the slice-based metrics for all the procedures
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4.6 Conclusion

We have introduced new forms of slice-based metrics based on maximal-slices, as a

solution to ‘The Output Variable Problem’. These metrics, unlike previous defini-

tions, are defined for all procedures in a system and are strongly-correlated with the

previous output-variable-based metrics.

There are several problems with the previous definitions (see section 2.5, page 52)

of slice-based metrics which we call the ‘The Output Variable Problem’:

− It is difficult to define or capture output variables, especially of the type ‘any

variables printed, written to a file, or otherwise output to the external envi-

ronment’.

− The definition of output variables varies from study to study.

− Not all functions have output variables (for some definition of output vari-

ables).

− output variables do not always capture the true cohesion of a module.

We undertook an empirical study where we calculated the cohesion and coupling

values for 20,588 procedures in 44 programs using both the old output-variable-based

definitions and our new maximal-slice-based definitions. We used 4 definitions of

output variable which were based on descriptions in previous studies.

In the empirical study we found that about 5% of the 20,588 procedures consid-

ered did not have output variables at all, and so the slice-based metrics for these

procedures is not defined.

Our results showed that there is a strong correlation between output-variable-based

metrics and the new maximal-slice-based metrics, for procedures which contain out-
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put variables. This is strong evidence that the new maximal-slice-based metrics are

a valid generalisation to all programs of the previous more restrictive sliced-based

metrics.

The use of maximal slices is appropriate because a maximal slice captures an ‘in-

teresting’ part of a program. Intersecting maximal slices represent inter-related

program statements, while disjoint maximal slices suggest multiple tasks are being

performed.

A limitation to the use of maximal-slice-based metrics is the greater number of slices

required to be computed for the computation of the metrics. Unlike output-variable-

based metrics slices must be computed for every slicing criterion, in order to be able

to calculate the maximal slices. The total number of slices computed for the set of 44

programs was 1,725,800 and the number of output variables in the set of programs

was between 670,953 and 743,758 (depending on which output variable definition is

used). Therefore, approximately 1 million more slices had to be computed for the

calculation of maximal-slice-based metrics, compared with output variable based

metrics.

We took advantage of the near transitivity of data and control dependence [47] to

develop a much more efficient approach to computing extremely accurate approxi-

mations to maximal-slice-based metrics. These were computed very quickly and led

to metrics which were almost identical to their maximal-slice-based counterparts.

Additionally, these pseudo-maximal-slice-based metrics required fewer slices to be

computed than previous output variable based metrics.



CHAPTER 5

Dependence Clusters

A dependence cluster is a maximal set of program statements all of which are mu-

tually dependent. Large dependence clusters may hinder software maintenance as

a change in any of the members in a dependence cluster could affect any other

member.

We conduct an empirical study using definitions of dependence clusters from previ-

ous studies. The results provide further evidence of the existence of large dependence

clusters in software.

We also show, however, that over 75% of the dependence clusters found are not, in

fact, ‘true’ dependence clusters.

114
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5.1 Introduction

A dependence cluster is a maximal set of program statements all of which are mutu-

ally dependent (see section 2.4, page 45). The presence of large dependence clusters

in a program could hinder software maintenance as changing any statement in a

cluster could potentially impact all other statements in that cluster; Binkley and

Harman [16] define a large dependence cluster as one that covers 10% or more of a

program.

Although some dependence clusters may naturally occur in a program, unwanted

dependence clusters may be the result of bad programming practice which could be

refactored away. Binkley and Harman [16] use the term ‘dependence pollution’ for

such unwanted and avoidable dependence clusters, and large dependence clusters are

an example of a ‘dependence anti-pattern’ [21]. Global variables have been shown

to be a cause of ‘dependence pollution’ [22].

Harman et al. [87] define a slice-based dependence cluster as a slice-based Mu-

tually Dependent Set (MDS) not properly contained within any other slice-based

MDS; where a slice-based MDS is a set of System Dependence Graph (SDG) nodes

{n1, . . . , nm} (m > 1), such that for all i, j, 1 ≤ i, j ≤ m, ni ∈ Slice(nj).

In the major empirical studies of dependence clusters [16, 87], slice-based dependence

clusters are calculated by saying that statements are in a dependence cluster if and

only if they have the same slice (which we refer to as a Type 2 dependence cluster);

and approximate to this by saying that statements are in a dependence cluster if and

only if they have a slice of the same size (which we refer to as a Type 1 dependence

cluster).

Type 2 dependence clusters, however, are not ‘true’ dependence clusters – a set of

SDG nodes whose slices are the same is an MDS but it is not always a maximal
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MDS.

In this chapter we think of a ‘true’ dependence cluster as a stricter form of depen-

dence community in a Backward Slice Graph (see section 3.2, page 71). A ‘true’

dependence cluster is a maximal community in a Backward Slice Graph (BSG) where

every node is connected to every other node – in other words, it is a maximal clique

in a BSG.

Definition 5.1 (True Dependence Cluster) A ‘true’ dependence cluster is a max-

imal clique in a Backward Slice Graph.

Not all Type 2 dependence clusters are ‘true’ dependence clusters and not all ‘true’

dependence clusters in a BSG are Type 2 dependence clusters. Consider the example

source code in listing 5.1 and its BSG in fig. 5.1. There is one Type 1 / 2 dependence

cluster (larger than size 1) in this program, {1, 5} – lines 1 and 5 both have the slice

{1, 2, 3, 4, 5}; both lines have the same size slice (Type 1) and the same slice (Type

2). The nodes {1, 5} form a maximal clique – a ‘true’ dependence cluster.

There are three further ‘true’ dependence clusters (i.e. maximal cliques): {1, 4},

{1, 3} and {1, 2}; however, these are neither Type 1 nor Type 2 dependence clusters,

as neither set contains nodes which give the same slices or same-size slices.

Now, consider the source code in listing 5.2 and its BSG in fig. 5.2. There are

two Type 1 / 2 dependence clusters in this program – {1, 4} and {2, 3, 5}; both

dependence clusters have nodes whose slices are the same. The first, {1, 4}, is a

maximal clique, however, {2, 3, 5} is not a maximal clique.

The clique {2, 3, 5} is not maximal because it can be extended by adding node 1,

resulting in the maximal clique {1, 2, 3, 5}.
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Listing 5.1: Dependence Cluster Example

1 f() { x=y+x; }
2 main() { x = f() + x;
3 x = k + x;
4 x = f() + x;
5 x = f() + x; }

Figure 5.1: Dependence cluster example: not all ‘true’ dependence clusters are Type 1 or Type 2
dependence clusters

Listing 5.2: Dependence Cluster Example 2

1 f(x) { return x; }
2 main() { while(i < 10) {
3 i = f(i);
4 f(1);
5 i = i + 1; }

Figure 5.2: Dependence cluster example: not all Type 1 or Type 2 dependence clusters are ‘true’
dependence clusters
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5.2 Empirical Study

In this section we calculate Type 1 and Type 2 dependence clusters for our set of 44

programs to find out if Type 1 dependence clusters are a good approximation to Type

2 dependence clusters and discover how many of the Type 2 dependence clusters are

maximal cliques in the BSG, i.e. how many are ‘true’ dependence clusters.

5.2.1 Research Questions

How prevelent are large dependence clusters in the set of 44 programs?

Harman et al. [87] have shown that large dependence clusters are prevelent in

real-world software. Finding large dependence clusters in our set of 44 pro-

grams will provide further evidence of the dependence pollution in real-world

software; if there are few, this may be evidence that there could have been a

bias in the set of programs used in previous studies.

We show that, like previous studies, many programs have large dependence

clusters; this result provides further evidence, supporting the findings of Har-

man et al. [87], of the dependence pollution created by dependence clusters in

programs.

Are Type 1 dependence clusters a good approximation to Type 2 depen-

dence clusters?

Harman et al. [87] introduced the Type 1 dependence cluster approximate to

Type 2 dependence clusters and analysed 36 out of the 45 programs used in

their empirical study to provide evidence that Type 1 dependence clusters are

a good approximation to Type 2 dependence clusters. Due to the increase

in computing power and the use of memory efficient data structures we can
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provide further evidence for or against this claim by computing both Type 1

and Type 2 dependence clusters for our whole set of programs.

We provide further evidence to support the findings of Harman et al. [87]

by showing that Type 1 dependence clusters are indeed a good approximation

to Type 2 dependence clusters. We show that there is a very strong correla-

tion between both the number and the size of Type 1 and Type 2 dependence

clusters and a high similarity of the Type 1 and Type 2 partitions of BSGs.

How many Type 2 dependence clusters are ‘true’ dependence clusters?

Neither Type 1 dependence clusters nor Type 2 dependence are ‘true’ depen-

dence clusters originally defined by Binkley and Harman [16]. We believe that

‘true’ dependence clusters are too strict a definition to be useful for finding

groupings of statements related by control and data dependence and depen-

dence clusters computed by previous studies have not been ‘true’ dependence

clusters. How many of the Type 2 dependence clusters found are actually

‘true’ dependence clusters?

We show that not all Type 2 dependence clusters are ‘true’ dependence clus-

ters – we show that over 75% of Type 2 dependence clusters in the set of 44

programs are not ‘true’ dependence clusters, i.e. they are not maximal cliques

in the BSGs.

5.2.2 Method

In order to compute Type 1 and Type 2 dependence clusters we used CodeSurfer to

compute backward slices for SDG nodes, as in chapter 3 (Dependence Communities)

and chapter 4 (Maximal-Slice-Based Cohesion and Coupling Metrics). We then store
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each slice as a compressed bitset [37] to allow us to efficiently store them in memory

and compare slices against one another (to test for slice equality).

5.2.3 Results

In the study we found that the program with the largest number of dependence

clusters was gettext-0.18 with 7,859 Type 1 and 3,780 Type 2 dependence clusters.

The program with the largest dependence cluster was ed-1.5 with a dependence

cluster that covers 70.6% of the program; this observation was previously made by

Binkley and Harman [16] who suggested that the program be refactored to group

operations that affect the main data structure to break the large dependence cluster

into smaller ones.

Figure 5.3a, page 121 shows the number of dependence clusters per program and

fig. 5.3b shows the number of programs with a dependence cluster size greater than

10% of the program. Most programs have less than 2,000 dependence clusters and

most have only 1 dependence cluster that is greater than 10% of the program size.

gforth is the only program that has fewer Type 2 than Type 1 dependence clusters

greater than 10% of the program code; two of the large Type 1 dependence clusters

are not Type 2 clusters.

Figure 5.4, page 124 shows the Type 1 (centre) and Type 2 (outer) dependence

clusters, scaled as a percentage of program size∗. The complete set of partition

charts for the 44 programs can be found in appendix A, page 160. Harman et al.

[87] previously found that the 6 programs in fig. 5.4 contain large Type 1 dependence

clusters.

The results of our study and Harman et al. study correspond well in some cases but

differ in others. We used the latest versions of the programs available at the time of

∗dependence clusters of size 1 are not included in the diagrams, leaving ‘blank’ areas in the
rings; these are SDG nodes which give unique slices when used as slicing criteria.
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(a) Number of Dependence Clusters

(b) Number of dependence clusters > 10%

Figure 5.3: The number of Type 1 and Type 2 dependence clusters (Type 1 - Red, Type 2 - Blue)
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the study but it is not clear which versions, of some of the programs, were used by

Harman et al.†.

GNU Barcode contains 1 large dependence cluster (both Type 1 and Type 2) and

many very small Type 1 clusters. There are also 3 small Type 1 dependence clusters.

This result is similar to that found by Harman et al.

GNU bc contains 3 large clusters; this version was used in previous studies and the

result is similar to the discovery of 3 large coherent dependence clusters by Islam

et al. [94] but not Harman et al. who found a large Type 1 dependence cluster that

covered ≈ 90% of the program.

GNU Chess has a very higher number of small Type 1 dependence clusters but also

contains 1 large dependence cluster (both Type 1 and Type 2) that covers ≈ 20% of

the program. Harman et al. found a dependence cluster that covered ≈ 80% of the

program. The smaller dependence cluster found could indicate that the code has

undergone a refactoring, since the study by Harman et al., to reduce the dependence

pollution in the code.

ed contains a very large dependence cluster (both Type 1 and Type 2) that covers

approximately 70% of the program. Harman et al. found a similar result caused

by code that operates on a common data structure [16]. Similarly, we found that

Empire contains a large dependence cluster which corresponds to the result found

by Harman et al.

time contains a small Type 2 dependence cluster and several small Type 1 depen-

dence clusters (as well as many very small Type 1 dependence clusters). The largest

of the small Type 1 dependence clusters is approximation 8% of the program size

and bigger than the largest Type 2 dependence cluster. Harman et al. found a Type

†Barcode 0.98, bc 1.06 and time 1.7 were used in the previous study and this study, the version
numbers for empire and GNU chess were not published, the version of ed used in the previous
study was 1.2 whereas in this study it is 1.5
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1 dependence cluster that covered approximately 20% of the program – it is not

clear what the cause of the difference is; perhaps the use of different slicing criteria

or CodeSurfer settings. Unlike the other 5 programs time contains very few Type 2

dependence clusters.
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(a) barcode-0.98 (b) bc-1.06

(c) gnuchess-6.0.1 (d) ed-1.5

(e) empire-4.3.28 (f) time-1.7

Figure 5.4: Dependence clusters, as a percentage of program size (inner ring – Type 1, outer –
Type 2)
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5.2.4 Are Type 1 Dependence Clusters a Good

Approximation to Type 2 Dependence Clusters?

Type 1 dependence clusters are an approximation to Type 2 dependence clusters

introduced by Harman et al. [87] to reduce computational time; are they a good

approximation to Type 2 dependence clusters?

Harman et al. [87] calculated Type 2 dependence clusters for only a subset of their

test programs; here we calculate Type 1 and Type 2 dependence clusters for all 44

of our programs, by efficiently storing slices as compressed bitsets.

Our empirical study has found a very strong correlation between both the number

and the size of Type 1 and Type 2 dependence clusters.

There is a very strong correlation (Pearson correlation coefficient 0.98, p = 2.37 ×

10−29) between the number of Type 1 and the number of Type 2 dependence clus-

ters in a program i.e. programs with more Type 1 clusters have more Type 2

clusters. There is also a very strong correlation (Pearson correlation coefficient 0.94

p = 2.75 × 10−21) between the number of procedures in a program and the num-

ber of dependence clusters which seems to suggest that the bigger the program (as

bigger programs get bigger the number of procedures is likely to increase) the more

dependence clusters there are. There is a very strong correlation between the size

of Type 1 and Type 2 dependence clusters – programs with large Type 1 depen-

dence clusters also have large Type 2 dependence clusters. The Pearson correlation

coefficient between average size of Type 1 and Type 2 dependence clusters is 0.96

(p = 2.14× 10−25).

Every program studied has a greater number of Type 1 than Type 2 dependence

clusters. This is due to the conservative nature of the Type 1 approximation – the

approximation may produce false positives. Large dependence clusters in software
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Figure 5.5: Type 1 and Type 2 dependence cluster BSG partition similarity

can be a cause of dependence pollution so it seems reasonable to be interested in the

largest dependence cluster in a program.

We measured the Jaccard similarity between the largest Type 1 and Type 2 depen-

dence clusters in each program and found that most had a similarity of 1, 3 had a

similarity of 0.99 and 4 had a similarity of 0; therefore, in most programs the largest

Type 1 dependence cluster is the same as the largest Type 2 dependence cluster.

In the 3 examples where the largest Type 1 dependence cluster does not exactly

match the largest Type 2 dependence clusters the Type 1 dependence cluster has

several nodes which are in only one of the other slices in the cluster; these are almost

Type 2 dependence clusters.

A set of a program’s Type 1 or Type 2 dependence clusters is a partition of the

program’s BSG‡; the similarity between these Type 1 and Type 2 dependence cluster

partitions is shown in fig. 5.5. This chart displays the values of the Rand Index,

Adjusted Rand Index and Information Gain Index – these are measures of partition

similarity.

‡‘true’ dependence clusters do not partition the graph, as nodes may be in more than 1 maximal
clique.
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In general Type 1 dependence clusters are a good approximation to Type 2 depen-

dence clusters. In several cases there is a low ARI value indicating a large discrep-

ancy between Type 1 and Type 2 dependence clusters. In most cases, however, the

value of the ARI is fairly high indicating a good similarity between the partition of

the graph as given by Type 1 and Type 2 dependence clusters.

5.2.5 How Many Type 2 Dependence Clusters Are ‘True’

Dependence Clusters?

We have shown that the Type 1 dependence cluster approximation to Type 2 depen-

dence clusters is valid, providing further evidence to support the findings of Harman

et al. [87]. However, Type 2 dependence clusters are not ‘true’ dependence clusters –

they are cliques but not, in general, maximal cliques. How many Type 2 dependence

clusters are ‘true’ dependence clusters?

In order to answer this question we investigated whether or not each Type 2 depen-

dence cluster, in our set of 44 programs, was a maximal clique (i.e. is the cluster

contained within another cluster or not?). The results are shown in table 5.1.

In total, there were 23,018 Type 2 dependence clusters found in the set of 44 pro-

grams but only 5,245 of these are maximal cliques; in other words, over 75% of the

Type 2 dependence clusters found are not ‘true’ dependence clusters.

In the worst case, the program rsync-3.0.9 contained 1,225 dependence clusters but

only 62 were found to be ‘true’ dependence clusters. Only the small wc program

contained 100% Type 2 dependence clusters that were found to be ‘true’ dependence

clusters.

On average programs contained only 36% of Type 2 dependence clusters that were

also ‘true’ dependence clusters.
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Program Dependence Cluster 2
Number Cliques M-Cliques

a2ps-4.14 1013 1013 216
acct-6.5.5 143 143 29
acm-5.1 39 39 36
adns-1.3 475 475 37
aeneas-1.2 292 292 233
anubis-4.1 414 414 106
archimedes-1.2.0 303 303 195
barcode-0.98 109 109 59
bc-1.06 95 95 41
cflow-1.3 325 325 56
combine-0.3.4 159 159 35
cppi-1.15 84 84 35
diction-1.11 58 58 44
diffutils-3.2 535 535 214
ed-1.5 41 41 21
empire-4.3.28 1027 1027 138
enscript-1.6.5 398 398 113
findutils-4.4.2 581 581 134
garpd-0.2.0 19 19 15
gettext-0.18 3780 3780 667
gforth-0.7.0 101 101 34
global-6.0 1193 1193 155
gnats-4.1.0 672 672 103
gnubik-2.4 79 79 53
gnuchess-6.0.1 823 823 347
gnuedma-0.18.1 382 382 72
gnuit-4.9.5 449 449 85
gnujump-1.0.5 343 343 196
gnurobots-1.2.0 37 37 23
gnushogi-1.3 188 188 99
gperf-3.0.4 202 202 86
inetutils-1.8 2392 2392 416
lame-3.99.1 1156 1156 236
ntp-4.2.6p5-RC1 1698 1698 495
pure-ftpd-1.0.32 223 223 47
rsync-3.0.9 1225 1225 62
sed-4.2 246 246 77
tar-1.23 1281 1281 154
time-1.7 17 17 8
userv-1.0.3 150 150 40
wc 8 8 8
wdiff-0.5 35 35 9
which-2.20 34 34 3
zlib-1.2.5 194 194 13

Table 5.1: The number of clusters, cliques and maximal cliques.
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5.3 Conclusion

In this chapter we have conducted an investigation into the approximations to de-

pendence clusters published in previous work. We have found, like previous studies,

that many programs have large dependence clusters; this result provides further

evidence of the dependence pollution created by dependence clusters in programs.

We have confirmed results of previous studies which used the Type 1 dependence

cluster approximation to Type 2 dependence clusters and provided further evidence

that Type 1 dependence clusters are a good approximation to Type 2 dependence

clusters.

We have shown that not all Type 2 dependence clusters are ‘true’ dependence clus-

ters; a ‘true’ dependence cluster is a maximal clique in a BSG and we think of

dependence clusters as a stricter form of dependence community in a BSG. We

found that over 75% of Type 2 dependence clusters in the set of 44 programs were

not ‘true’ dependence clusters, i.e. they were not maximal cliques. This result is

important for further understanding dependence clusters and how they are formed

by dependence between statements in programs.

We consider dependence clusters overly strict and a weaker interpretation of the

clustering of statements in source-code due to dependence, such as dependence

communities, would be more appropriate. The study of ‘clusters’ of dependence

in software has a huge number of potential applications including program compre-

hension, maintenance, debugging, refactoring, testing and software protection.



CHAPTER 6

A Study Of Software Quality

What makes good software?

We have introduced the concept of dependence communities, introduced a new form

of slice-based cohesion and coupling metrics, and investigated dependence clusters;

these techniques can all be used to quantify the quality of software.

In this chapter, we discuss the inter-connected nature of the three main topics of

this thesis. Are they all different measures of the same quality? Do programs with

high cohesion have low coupling? Do programs with large dependence clusters also

have large dependence communities?

We show that programs programs with higher coupling have larger dependence

communities, programs with large dependence clusters also have large dependence

communities and programs with high modularity have low coupling.

130
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6.1 Introduction

Software metrics can be used to quantify the quality of software; for example, pro-

grammers should strive to obtain high cohesion, which measures the amount depen-

dence between statements within a procedure, and low coupling between procedures,

which measures the amount of dependence between procedures.

Software with high cohesion and low coupling would be built of procedures that per-

form singular tasks in near isolation from other parts of the program; such modular

programs are easier to understand, maintain and allow for code re-use [192].

Another measure of the quality of a program is the presence or lack of large depen-

dence clusters [21]; large dependence clusters - sets of program statements that are

mutually dependent - can give rise to dependence pollution [16]. The presence of a

large dependence cluster can make a program harder to maintain as changing any

statement in a dependence cluster may affect all of the other statements in that

cluster.

A possible measure of software quality is the community structure of a program [78];

although further work is required in this area, the results of the empirical study in

chapter 3 suggest that dependence communities reflect the semantic concerns of a

program. A measure of the strength of the community structure of a program is

the modularity of its Backward Slice Graph (BSG). The results of the empirical

study showed that all 44 programs studied had a positive modularity, indicating

community structure, although some programs had a higher modularity than others

– a promising result as a measure of program quality, but clearly more work is needed

in this area; for example, the Louvain method may not be the best algorithm to use

for detecting communities in BSGs and a comparison of other community detection

algorithms is required.
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So good programs have high cohesion, low coupling, small dependence clusters and

communities that reflect the semantic concerns of a program. Is this the case? Are

these different methods of measuring the same thing?

Intuitively, from the definition of dependence clusters and dependence communities

we know that there is a connection to cohesion and coupling. Areas of high cohesion

in a BSG give rise to both dependence clusters and dependence communities, though

the former requires higher cohesion than the latter as a single edge is enough to bring

a node into a dependence community but an edge between a single node and every

other node in the dependence cluster is required.

In a program with very low coupling we would not expect large dependence clusters

or dependence communities. In fact, a program with 0 coupling could not contain a

cluster or community larger than the largest procedure (as there would be no edges

in the BSG connecting nodes in different procedures).

A program with low coupling may be more likely to have larger dependence commu-

nities than dependence clusters as dependence communities rely on a weaker relation

between nodes in a BSG; for example, a single edge between procedures could bring

statements from both procedures into the same community.

A program with very low cohesion would also be unlikely to have large dependence

clusters or dependence communities as, again, this could indicate few edges between

statements.

Are large dependence communities as bad as large dependence clusters? Dependence

clusters are a stricter form of dependence community and therefore we would expect

a program with large dependence clusters to have large dependence communities.

At first thought, the community structure of a program should correspond to the

procedures of that program – a good program should have procedures with high

cohesion and low coupling between those procedures; in a sense, this would be the
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perfect community structure for a program to have.

In most programs, areas of functionality are not confined to single procedures; rather,

a functional aspect of the program is broken down into smaller procedures. If de-

pendence communities are to reflect the semantic concerns of a program, the perfect

community structure for a program is therefore not the same as the procedures. We

would expect to see large communities covering a number of procedures that reflect

the semantic areas of the program that have been split across procedures.

However, there is a limit to the usefulness of the size of a dependence community;

several of the programs in the empirical study in chapter 3 contained a dependence

community that covered most of the program. A dependence community this large

would not be of any practical use in uncovering the different semantic concerns of

the program and would likely be the result of very high cohesion and/or coupling;

such a community would likely not reflect the semantic concerns of the program. A

result such as this may be useful for determining whether a program is well written;

a good program should have a community structure which reflects it’s semantic

concerns.

6.2 Research Questions

Is there a relationship between dependence communities and cohesion &

coupling?

Dependence between statements in software gives rise to dependence commu-

nities (see chapter 3). Cohesion & coupling are measures of the ‘strength’ of

dependence within and between groups of statements; intuitively, this seems

closely related to the definition of dependence communities (groups of highly

dependent statements that are weakly connected to other groups). Our hy-

pothesis is that there may be a relationship between cohesion & coupling and
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the number / size of dependence communities. Do procedures that are mem-

bers of multiple communities have a lower cohesion? Do programs with higher

coupling have larger communities?

We show that procedures which are part of multiple communities have a lower

cohesion than those with one community and that programs with higher cou-

pling have larger dependence communities.

Is there a relationship between dependence communities and dependence

clusters?

Binkley and Harman [16] found that large dependence are prevalent in soft-

ware and are a major cause of ‘dependence pollution’; we provided further

evidence to support this claim in chapter 5. We also provided evidence of the

community structure in BSGs in chapter 3. Is there a relationship between

the two? Dependence clusters are a stricter form of community in a BSG.

We hypothesis that programs with large dependence clusters will likely have

large dependence communities due to the large amount of dependence in the

program.

We show that there is a correlation between dependence clusters and depen-

dence communities; in fact, 99.94% of Type 2 dependence clusters are fully

contained within a single dependence community. We also show that depen-

dence communities give a stronger modularity than dependence clusters i.e.

the Louvain method partitions the BSG into areas of ‘tighter’ dependence.
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6.3 Dependence Communities and Cohesion

Given that a dependence community is a collection of dependent program statements

it seems, intuitively, as though a procedure with multiple communities may contain

distinct groups of semantically related statements. Do procedures that are members

of multiple communities have a low cohesion?

The average number of communities in a procedure is 1.15; a procedure that is

completely in one community only would suggest a high cohesion. If different parts

of a procedure are in different communities it would suggest that there are sub-

sections of code within the procedure which are strongly dependent internally but

weakly dependent on each other; this would suggest a low cohesion.

The average number of procedures in a community is 17.07. A large proportion of

communities have only 1 procedure in them but a smaller number have a very large

number of communities in them. In each program some of the procedures are there-

fore in their own community but large communities cut across several procedures.

Figure 6.1 shows the weighted average cohesion values for procedures with only 1

and multiple communities.

The results suggest that counting the number of communities that appear in a

procedure will give an indication of the cohesion of a procedure. Procedures that

are part of multiple communities tend to have a lower cohesion value than those that

are only in 1 community. This result matches the intuitive idea of a dependence

community – an area of code that is more dependent on itself that the rest of

the program. Having multiple communities in a procedure suggests that there are

multiple areas of code that are not highly dependent on each other; this is therefore

a measurement of cohesion.

For example, in the main procedure of the program time-1.7 the tightness is low at
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Figure 6.1: Weighted average cohesion values for procedures with one and multiple communities

0.36 and the number of procedures is greater than 1; the average community size is

25% of the procedure.

Although the results are encouraging, it is not always the case that having a single

community means high tightness, for example in the procedure usage from the

program time-1.7. The tightness for this procedure is 0.46 due to the multiple

actual-ins being crucial points. There is, however, only 1 community which

encompasses this whole procedure.
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6.4 Dependence Communities and Coupling

We have shown that procedures with only 1 community have higher cohesion than

those with multiple communities. How does coupling relate to dependence com-

munities? Recall that a dependence community is a set of statements that have

a high dependence on each other and low dependence on statements outside the

community. It seems that a program with high coupling would, intuitively, result

a program with larger dependence communities. High coupling between 2 or more

procedures will mean that it is more likely that those procedures are in the same

community.

A program containing two procedures with a coupling of 0 would mean that the

procedures could not be in the same dependence community. However, unlike de-

pendence clusters, a single edge between two procedures could, in theory, cause the

two procedures to be in the same dependence community.

Do programs with high coupling have larger dependence communities than those

will low coupling?

Figure 6.2: Coupling vs largest community size (R = 0.54, p < 0.0001)

Figure 6.2 plots weighted average coupling of a program against the size of the largest
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dependence cluster as a percentage of the program. There is a moderate correlation

between the weighted average of coupling of a program and the size of the largest

dependence community; the Pearson correlation coefficient is 0.54 (p < 0.0001).

This result means that as coupling increases the size of the largest dependence

community increases i.e. programs with higher coupling have larger dependence

communities. The result seems intuitive in the sense that procedures with greater de-

pendence on each other will be more likely to be in the same dependence community.

If the average coupling of a program is high it means that many procedures have a

high dependence on other procedures; in turn, this means that dependence commu-

nities will be larger.

Programs with very low coupling tend to have small dependence communities, while

those with high coupling will tend to have larger dependence communities. It is

interesting to note that this is not always the case and there are a few outliers in

the fig. 6.2 which have moderate coupling and very large dependence communities.

Figure 6.3: Modularity vs coupling (R = −0.66, p < 0.000001)

Modularity is a measure of the ‘strength’ of community structure in a graph. A high

modularity indicates a better community structure. A high coupling in a program

would indicate that many procedures are highly dependent on each other which
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intuitively would reduce the number of well-defined dependence communities. Do

programs with high modularity have a low coupling?

Figure 6.3 plots the BSG modularity, when partitioned using the Louvain method,

against weighted average coupling for each of the 44 programs. There is a strong

negative correlation between the modularity of a program’s BSG and the average

coupling; the Pearson correlation coefficient is −0.66 (p < 0.000001).

This result confirms the hypothesis that programs with a high modularity have a

low coupling, suggesting that modularity could be used as a metric in the field

of software maintenance. Programs with a high modularity will not have a high

coupling, therefore a well-written program should have high modularity.
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6.5 Dependence Communities and Dependence

Clusters

A ‘true’ dependence cluster is a maximal clique within a Backward Slice Graph in

which every node is connected to every other node; thus a dependence cluster can

be thought of as a stricter form of dependence community in a BSG.

Figure 6.4: Modularity of the 44 BSGs using 3 partitions

Figure 6.4 shows the modularity for the 44 BSGs when partitioned using dependence

communities and dependence clusters. It turns out that if we apply the Louvain

method to the same graphs we get a partition with higher modularity. In other words

it produces ‘clusters’ with a stronger ‘internal inter-dependence’ than those produced

by Type 1 and Type 2 dependence clusters. There is very little difference between

the modularity when partitioning the graph with Type 1 and Type 2 dependence

clusters (perhaps further evidence that Type 1 clusters are a good approximation

to Type 2 clusters).
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It could be argued, therefore, that dependence communities may be a better approx-

imation to dependence clusters or at least a better approximation to the properties

of programs that the authors are trying to capture using dependence clusters.

Figure 6.5: GNU bc dependence clusters and
communities as percentages of program size (in-
ner ring - Type 1, middle ring - Type 2, outer
ring - communities)

The rings in figs. 6.5 to 6.7 depict the

Type 1 and Type 2 dependence clusters,

and the dependence communities for 3

programs discussed in the chapter 3.

Each section corresponds to a depen-

dence cluster or dependence community

with its size as a percentage of the to-

tal program size (the inner ring depicts

Type 1 dependence clusters, middle ring

Type 2 and outer ring dependence

communities).

Figure 6.6: GNU Chess dependence cluster and
community BSG as percentages of program size
(inner ring - Type 1, middle ring - Type 2, outer
ring - communities)

GNU bc has similar dependence clus-

ters and dependence communities, ex-

cept that the dependence communities

are bigger – there are two large Type 1

and Type 2 dependence clusters and two

large dependence communities.

However, with GNU Chess there is

only one ‘large’ dependence cluster

and many small dependence clus-

ters; this is clearly a different re-

sult from dependence communities.

In the GNU Robots program there are

no large dependence clusters, most likely due to the low coupling between proce-
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dures; there are however, moderately sized dependence communities.

Figure 6.7: GNU Robots dependence clusters and
communities as percentages of program size (in-
ner ring - Type 1, middle ring - Type 2, outer
ring - communities)

One reason for this difference results

from the fact that dependence clus-

ters must be cliques whereas dependence

communities are not as strict – this

means that there are more chances for

the semantically related statements in a

program to be grouped together.

In GNU Chess, and to a much greater

extent GNU Robots, a large proportion

of each program is ‘ignored’ when using

Type 2 dependence clusters; i.e. there

are many System Dependence Graph (SDG) nodes which produce unique slices

when used as slicing criterion and the focus is on the analysis of large dependence

clusters in a program.

When the BSG is partitioned into dependence communities, however, these nodes are

included in a community. These nodes do contribute to the program and therefore

should be ‘fairly represented’ in any form of dependence-based ‘clustering’.

Figure 6.8 plots the size of the largest dependence community (as a percentage of

program size) against the size of the largest dependence cluster (as a percentage of

program size). There is a correlation between the size of the largest dependence

community in a program and the size of the largest dependence cluster; the Pearson

correlation between these is 0.51 with a p-value < 0.0001.

It turns out that dependence communities tend to be larger than dependence clus-

ters. A dependence cluster is a stricter form of dependence community and a pro-

gram with large dependence clusters will have large dependence communities. In
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Figure 6.8: Largest dependence community vs largest Type 2 dependence cluster

fact, 99.94% of Type 2 dependence clusters are fully contained within a single de-

pendence community and there are, on average, 16.25 dependence clusters in a

dependence community. Perhaps this is not surprising when considering that a de-

pendence cluster is a fully connected sub-graph – the ‘strongest’ form of community

possible. It is therefore unlikely that splitting a dependence cluster will increase

modularity.

The presence of extremely large dependence clusters may hinder the usefulness of

community detection algorithms on BSGs; it may be a necessary to find the cause of

a large dependence cluster and eliminate any possible dependence pollution before

dependence communities are able to accurately reflect the semantic concerns of a

program. Of course, the presence of an extremely large dependence community is

therefore also an indication of dependence pollution.
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6.6 Conclusion

In this thesis we have discussed several methods of measuring software quality and

bought them together in this chapter:

high cohesion

procedures should be highly cohesive, allowing for code re-use and ease of

maintenance.

low coupling

procedures should have low coupling to other procedures, indicating a highly

modular design.

small dependence clusters

programs should not have large dependence clusters which result in dependence

pollution.

semantic dependence communities

programs should have communities which reflect the semantic concerns of the

program.

We have shown that procedures which are part of multiple communities have a lower

cohesion than those with one community; this result is intuitive because if there are

multiple communities within a procedure that procedure may be performing more

than one task. We would also expect a procedure performing more than one task

to have a low cohesion, as there would be statements which do not depend on one

another.

We have shown that programs with higher coupling have larger dependence commu-

nities. The link between coupling and larger dependence communities is intuitive in

the sense that the more connections there are between procedures, the more chances

there are of nodes in those procedures being in the same community.
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We have shown that dependence communities give a stronger modularity than de-

pendence clusters i.e. the Louvain method partitions the BSG into areas of ‘tighter’

dependence. We have shown that there is a correlation between dependence clusters

and dependence communities; in fact, 99.94% of Type 2 dependence clusters are

fully contained within a single dependence community.

We have also shown that programs with high modularity - a measure of the quality

of a partition of a network - have low coupling. This result suggests that modularity

is a promising measure of software quality; having a higher modularity indicates a

better community structure and a lower coupling.

We have discussed the connections between the different areas focused on in this

thesis. Clearly, there are links between communities, clusters, and cohesion and

coupling as they all come about due to dependence between statements in software

(and therefore also nodes in a BSG).

Future work requires a measure of software quality outside of the techniques inves-

tigated in this thesis. Such comparisons would likely involve comparing the quanti-

tative measures of software quality, used in this thesis, against information such as

bug reports, or software revision history.



CHAPTER 7

Conclusion

In this thesis we have introduced the concept of dependence communities, investi-

gated the closely related dependence clusters, and developed an efficient technique

for calculating slice-based cohesion and coupling.

We have used the notion of a Backward Slice Graph (BSG) as the basis for the

empirical studies in this thesis, which is a graph of a program’s backward slices such

that a is connected to b if b ∈ Slice(a). A graph-based representation of software

allows us to apply existing graph-theoretic techniques commonly used in other fields,

such as community detection.

The first major contribution of this thesis is the concept of a dependence community ;

this work is the first to investigate community structure at the statement-level in

software.

We applied a well known community detection algorithm to the BSGs of 44 open-

source programs, analysing a total of 464,621 lines of code. We have shown that

BSGs have community structure and in some examples we have observed that the

communities approximate to the semantic concerns of the program.

146
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The Louvain algorithm has previously been successfully used on large graphs of up

to 118 million nodes and 1 billion edges. We have successfully applied the algorithm

to graphs with up to 305,000 nodes and 16 billion edges.

The modularity for the set of 44 programs in the empirical study varies, with some

programs showing a stronger community structure than others. It is not yet clear

what ‘stronger community structure’ means in terms of software dependence but the

positive findings merit further work. We suspect that there is a connection between

high modularity and how well a program is separated into its different semantic

concerns. It is likely that programs with extremely large dependence clusters will not

have a good community structure and the presence of an extremely large dependence

cluster will be mirrored by the presence of an equally large dependence community.

The presence of an extremely large dependence community is further evidence of

dependence pollution in a program.

We manually inspected a number of programs to answer the question “what do

dependence communities in software mean?” The analysis revealed that dependence

communities seem to reflect the functional behaviour or semantics of the program;

for example in the GNU wc program, we found two dependence communities: the

counting community, which consists of the parts of the program which count the

number of lines, characters and words in a file, and the I/O community which

contains the code which opens the file, prints error messages and prints results.

Being able to break down software into meaningful sub-components is one of the

major challenges in software engineering. Previous research in the area has focused

on the clustering of high-level components in a software system to recover a mod-

ular structure or re-modularise software. The Bunch tool [129, 133], for example,

works on a Module Dependency Graph (MDG) which includes high-level system

components such as Java classes or C files that are connected due to dependence.

There is little point in breaking a piece of software into smaller components if these
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components do not in some way reflect different functionalities. We, therefore,

believe that good semantic separation is the key to the usefulness of partitioning

techniques in software engineering.

Of course no automated approach can perform perfect semantic separation. Our

hypothesis is that dependence communities computed using community detection

algorithms applied to program graphs can give sufficiently good semantic separa-

tion to be highly applicable in a number of areas of software engineering. This

new approach has applications in all areas of software engineering where system de-

composition is important, including software comprehension, maintenance, reverse

engineering, restructuring, software evolution and information recovery.

Our results provide compelling evidence that there is great potential for using depen-

dence communities as an alternative software clustering methodology. Our results

have shown that there is merit in further investigations of dependence communities

and their application to various software engineering areas.

The second major contribution of this thesis is a new, efficient form of slice-based

metrics based on maximal slices. Previously, slice-based software metrics have been

defined using the ambiguous concept of output variables; it is difficult to define

output variables, different studies have used different definitions of output variable

and slice-based metrics are undefined for procedures that do not contain output

variables.

Our new forms of slice-based metrics using maximal slices are defined for all pro-

cedures in a system and are strongly-correlated with the previous output variable

based metrics.

We undertook an empirical study where we calculated the cohesion and coupling

values for 20,588 procedures in 44 programs using both the old output variable

based definitions and our new maximal-slice-based definitions.
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In the empirical study we found that about 5% of the 20,588 procedures consid-

ered did not have output variables at all, and so the slice-based metrics for these

procedures are not defined.

Our results showed that there is a strong correlation between output variable based

metrics and the new maximal-slice-based metrics, for procedures which contain out-

put variables. This is strong evidence that the new maximal-slice-based metrics are

a valid generalisation to all programs of the previous more restrictive sliced-based

metrics.

The use of maximal slices is appropriate because a maximal slice captures an ‘in-

teresting’ part of a program; any code that occurs in a maximal slice cannot affect

code outside the maximal slice. Intersecting maximal slices represent inter-related

program statements, while disjoint maximal slices suggest multiple tasks are being

performed.

A limitation to the use of maximal-slice-based metrics is the greater number of slices

required to be computed for the computation of the metrics. Unlike output variable

based metrics, slices must be computed for every slicing criterion, in order to be able

to calculate the maximal slices. The total number of slices computed for the set of 44

programs was 1,725,800 and the number of output variables in the set of programs

was between 670,953 and 743,758 (depending on which output variable definition is

used). Therefore, approximately 1 million more slices had to be computed for the

calculation of maximal-slice-based metrics, compared with output variable based

metrics.

We took advantage of the near transitivity of data and control dependence [47] to

develop a much more efficient approach to computing extremely accurate approxi-

mations to maximal-slice-based metrics. These were computed very quickly and led

to metrics which were almost identical to their maximal-slice-based counterparts.

Additionally, these pseudo-maximal-slice-based metrics required fewer slices to be
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computed than previous output-variable-based metrics.

The third major contribution of this thesis is an investigation into dependence clus-

ters ; these are closely related to our new concept of dependence communities.

A dependence cluster is a maximal set of program statements all of which are mu-

tually dependent. The presence of large dependence clusters in a program could

hinder software maintenance as changing any statement in a cluster could poten-

tially impact all other statements in that cluster.

We conducted an empirical study which confirmed the results of previous studies.

Our results showed that programs contain large dependence clusters which provides

further evidence of the ‘dependence pollution’ created by dependence clusters in

programs.

However, we showed that over 75% of dependence clusters, as calculated by previous

studies, are not ‘true’ dependence clusters. Continuing our graph-based approach

in this thesis, we redefined ‘true’ dependence clusters as maximal cliques within a

BSG, and think of dependence clusters as stricter forms of dependence communities.

We consider dependence clusters overly strict and a weaker interpretation of the

clustering of nodes due to dependence would be more appropriate. Previous authors

have also suggested that an approximation to dependence clusters is, in fact, more

useful than ‘true’ dependence clusters due to the weaker definition [87].

The major contributions of this thesis are all based on the analysis of dependence

between statements in software; they also all provide a quantitative measure of

software quality:

high cohesion

procedures should be highly cohesive, allowing for code re-use and ease of

maintenance.
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low coupling

procedures should have low coupling to other procedures, indicating a highly

modular design.

small dependence clusters

programs should not have large dependence clusters which result in dependence

pollution.

semantic dependence communities

programs should have communities which reflect the semantic concerns of the

program.

We have shown that procedures which are part of multiple communities have a lower

cohesion than those with one community; this result is intuitive because if there are

multiple communities within a procedure that procedure may be performing more

than one task. We would also expect a procedure performing more than one task

to have a low cohesion, as there would be statements which do not depend on one

another.

We have shown that programs with higher coupling have larger dependence commu-

nities. The link between coupling and larger communities is intuitive in the sense

that the more connections there are between procedures, the more chances there are

of nodes in those procedures being in the same community or cluster.

We have shown that dependence communities give a stronger modularity than de-

pendence clusters i.e. the Louvain algorithm partitions the BSG into areas of

‘tighter’ dependence. We have shown that there is a correlation between depen-

dence clusters and dependence communities; in fact, 99.94% of Type 2 dependence

clusters are fully contained within a single dependence community.

We have also shown that programs with high modularity - a measure of the strength

of a partition of a network - have low coupling. This result suggests that modularity
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is a promising measure of software quality; having a higher modularity indicates a

better community structure and a lower coupling.

Measures of software quality do not always agree and further work requires a mea-

sure of software quality outside of the techniques investigated in this thesis. Such

comparisons would likely involve comparing the quantitative measures of software

quality, used in this thesis, against information such as bug reports, or software

revision history.



CHAPTER 8

Future Work

8.1 Dependence Communities

The results of the study using the Louvain algorithm show great potential in its use

for the detection of dependence communities but future work into the multitude of

other community detection algorithms [119] is merited, to investigate both efficiency

and accuracy for the purpose of finding dependence communities in software.

Further work will investigate the impact of community detection algorithms in soft-

ware engineering by measuring the resulting semantic separation and comparing it

with other approaches. Importantly, we need to understand why some approaches to

semantic separation are better than others so that the techniques can be improved.

Measuring semantic separation will be done by employing techniques similar to

watermark injection. ‘Intertwining’ a number of pieces of code with separate func-

tionality and measuring how well the pieces are separated again by the community

detection algorithm. This will give us the ability to measure semantic separation

(and hence usefulness) of other clustering and community detection algorithms.

153
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Further work can be done to optimise the implementation of algorithms for the

detection of dependence communities. For example, GraphChi [1, 113] is a recently

released framework for performing computations on very large graphs by using a

novel parallel sliding window technique to efficiently cache parts of the graph to disk;

implementing community detection algorithms using this framework would allow the

detection of dependence communities in large software using modest hardware.

The run-time costs of the slicing required to produce the Backward Slice Graphs

(BSGs) is another issue to be considered in future implementations. Binkley et al.

[19] studied techniques for such “massive slicing” of System Dependence Graphs

(SDGs) where slices are required for all possible slicing criteria, as in the case of

BSGs. Further work will need to consider optimisations to the slicing implemen-

tation, based on techniques used for “massive slicing” in order to more effectively

analyse large code-bases.

The combination of “massive slicing” optimisations and graph algorithm optimisa-

tions represent two major improvements, which require further study, to an imple-

mentation of a large-scale dependence community analysis tool.

An initial investigation into the dependence communities found in watermarked

programs provides promising evidence that dependence communities do partially,

at least, lead to the separation of the functionally independent watermark code;

further investigation is merited, as the ability to detect software watermarks will

reveal which watermarking techniques are and which are not suited for the protection

of intellectual property in software.

There is a large amount of research into community detection in various fields such as

physics and biology which could also be applicable to software. Any novel algorithms

developed for detecting dependence communities in software may also be applied in

these areas; providing opportunities for inter-disciplinary work with various groups.
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8.2 Dependence and the Topology of Slice

Graphs

Preliminary results suggest that BSGs, unlike other software networks, are not scale-

free due to the presence of dependence clusters. Figure 8.1 shows a visual comparison

between the scale-free SDG and the BSG of the wc program. In a scale-free network

there is no typical out degree and a common property of scale-free networks is the

presence of hubs [10] – these are important, influential nodes in the network.

(a) SDG (b) BSG

Figure 8.1: The wc program as two complex networks

The SDG clearly shows the presence of hubs – there are a few nodes that have a

very high out degree (larger/dark in the figure). In comparison the BSG contains

large groups of nodes with the same out degree and there are no clear hubs in the

graph.

Recall that a Type 2 dependence cluster is a set of SDG nodes that have the same

slice. In a BSG a set of nodes that have the same slice translates to a set of nodes

that have the same out degree. In other words, programs with large dependence

clusters cannot be scale-free.
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Figure 8.2 plots the degree distribution of the empire-4.3.28 on a log-log plot. In a

scale-free network we would expect to see values around a 45 degree line as in the

SDG plot (fig. 8.2a). The BSGs do start like this but there are a large number of

slices of similar sizes which disrupt the scale-free geometry of the graph (fig. 8.2b).

(a) SDG (b) BSG

Figure 8.2: Degree distributions in empire-4.3.28 (log-log scale)

Further work will involve verifying this result and conducting an empirical study to

investigate the effects that dependence clusters, and dependence in general, have on

the topology of BSGs.

8.2.1 The Topology of Watermarked Graphs

An application of the further work into topology of slice graphs is the detection

of watermarks embedded in software. It is important to know if an embedded

watermark is vulnerable to detection – if it can be detected by the embedder then

we must assume that the attacker can also detect the watermark. An attack vector

such as this is important to study for the development of secure and protected

software. Figure 8.3 shows the slice subset ordering graph∗ for a simple Tic Tac Toe

program, without and with watermark. It is clear that the embedded watermark has

had a large effect on the topology of the graph. Further work will investigate various

watermarking algorithms and their effect on the topology of a variety of program

∗a is connected to b iff slice(a) ⊆ slice(b) such that there is no r where slice(r) ⊆ slice(b)
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graphs. The results could be used to introduce novel watermarking algorithms which

remain hidden from attackers.

(a) before watermarking (b) after watermarking

Figure 8.3: Tic-Tac-Toe Program

8.2.2 Developing Models of Software

Barabási and Albert [9] developed a preferential attachment graph model to model

the expansion of scale-free networks. Further work will consider whether there ex-

ists a graph model which closely approximates the evolution of a software system

over time. For example, how does the topology of a slice graph change over time?

Do new nodes attach preferentially to already well connected sites? Wang et al.

[181] previously showed that the call graph of the Linux kernel evolves following a

preferential attachment model.
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8.2.3 Visualising Software Dependence With Slice Graphs

A fruitful avenue of research that we are now investigating is representing a program

module as a graph of slices. The visualisation of these graphs may give a better

intuitive insight into the cohesive properties of programs rather than a simple value.

These visualisations might also be useful for locating software watermarks [38, 75–

77] or malware [36, 166] within programs - allowing us to define better software

watermarks, or easily remove malware.

8.3 Software Metrics

We intend to investigate the relationship between standard graph metrics such as

density, centrality, clustering coefficient, network diameter and the dependence in

software graphs. Modelling dependence as a graph affords us the opportunity to ap-

ply such metrics which may have significance in the context of software dependence.

Graph metrics have already been successfully applied to object-oriented programs

[43, 79, 96, 97, 126, 190].

8.4 A Large-scale Study of Open-Source and

Commercial Software

We have conducted empirical studies using 44 open-source programs and although

these represent a variety of software applications a further study should consider a

larger sample. A large-scale study of both software metrics and dependence com-

munites using both open-source and commercial software will be undertaken.
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Future work will, like previous studies, use maximal-slice-based metrics to study the

evolution of metric values over different versions of software [131]; previous studies

have applied this technique, for example, to fault analysis [23].



APPENDIX A

Partition Charts

Chapter A is the full set of 44 partition charts described in chapters 3 and 5. The

inner ring shows Type 1 dependence clusters, the middle ring shows Type 2 depen-

dence clusters and the outer ring shows dependence communities; each section of

the ring depicts the size of the community/cluster as a percentage of program size.

Cohesion and coupling metrics, as calculated using maximal slices, are shown next

to the charts (see chapter 4, page 86); these are the weighted average and average

values for the program.

The modularity and the size of the largest community (see chapter 3, page 67) and

Type 1 / 2 dependence cluster (see chapter 5, page 114) is also shown.

160
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(1) a2ps-4.14 (2) acct-6.5.5

(3) acm-5.1 (4) adns-1.3

(5) aeneas-1.2 (6) anubis-4.1

(7) archimedes-1.2.0 (8) barcode-0.98

Figure A.1: Dependence cluster and dependence community BSG partitions (Type 1 - center, Type
2 - middle, communities - outside)



162

(9) bc-1.06 (10) cflow-1.3

(11) combine-0.3.4 (12) cppi-1.15

(13) diction-1.11 (14) diffutils-3.2

(15) ed-1.5 (16) empire-4.3.28

Figure A.1: Dependence cluster and dependence community BSG partitions (Type 1 - center, Type
2 - middle, communities - outside)
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(17) enscript-1.6.5 (18) findutils-4.4.2

(19) garpd-0.2.0 (20) gettext-0.18

(21) gforth-0.7.0 (22) global-6.0

(23) gnats-4.1.0 (24) gnubik-2.4

Figure A.1: Dependence cluster and dependence community BSG partitions (Type 1 - center, Type
2 - middle, communities - outside)



164

(25) gnuchess-6.0.1 (26) gnuedma-0.18.1

(27) gnuit-4.9.5 (28) gnujump-1.0.5

(29) gnurobots-1.2.0 (30) gnushogi-1.3

(31) gperf-3.0.4 (32) inetutils-1.8

Figure A.1: Dependence cluster and dependence community BSG partitions (Type 1 - center, Type
2 - middle, communities - outside)
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(33) lame-3.99.1 (34) ntp-4.2.6p5-RC1

(35) pure-ftpd-1.0.32 (36) rsync-3.0.9

(37) sed-4.2 (38) tar-1.23

(39) time-1.7 (40) userv-1.0.3

Figure A.1: Dependence cluster and dependence community BSG partitions (Type 1 - center, Type
2 - middle, communities - outside)
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(41) wc (42) wdiff-0.5

(43) which-2.20 (44) zlib-1.2.5

Figure A.1: Dependence cluster and dependence community BSG partitions (Type 1 - center, Type
2 - middle, communities - outside)
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