
Cognitively-motivated geometric
methods of paern discovery and

models of similarity in music

James C. Forth

Submied in partial fulfilment of the requirements

for the degree of Doctor of Philosophy

of the University of London.

Department of Computing

Goldsmiths, University of London

March 2012



I certify that this dissertation, and the research to which it refers, are the result of

my own work.

1



Dedicated to Douglas Tingay (1927—2012)

2



Abstract

is thesis is concerned with cognitively-motivated representations of musical

structure. ree problems are addressed, each related in terms of their focus on

music as an object of perception, and in the application of geometrical methods of

knowledge representation.

e problem of paern discovery in discrete representations of polyphonicmu-

sic is first considered, and a heuristic proposed which seeks to assist musicological

analysis by identifying paerns that may be salient in perception, from a large

number of potential paerns. is work is based on geometric principles that

are far removed from plausible psychological models of paern induction, but the

method is motivated by psychological evidence for the importance of invariance

and repetition in perception.

e second and third problems explicitly adopt a cognitive theory of represen-

tation, namely the conceptual space framework developed by Gärdenfors (2000).

Within this framework, concepts can be represented geometrically within percep-

tually grounded quality dimensions, and where distance in the space corresponds

to similarity. e second problem concerns the prediction of melodic similarity,

and the theory of conceptual spaces is investigated in the novel context of point

set representations of melodic structure, employing the Earth Mover’s Distance

metric (Rubner et al. 2000). is work builds on the work of Typke (2007) concern-

ing the application of Earth Mover’s Distance to melodic similarity. Evaluation is

performed with respect to published psychological data (Müllensiefen and Frieler

2004), and the MIREX 2005 symbolic melodic similarity evaluation.

e third problem concerns the conceptual representation of metrical struc-

ture, informed by the psychological theory of metre developed by London (2004).

A symbolic formalisation of this theory is developed, alongside two geometrical

models of metrical-rhythmic structure, which are evaluated within a genre classi-

fication task.

3



Anowledgements

First and foremost, I would like to thank my supervisor Geraint Wiggins for his

support, generosity and unwavering optimism. I am also indebted to the Intelligent

Sound and Music Systems group, with which I am honoured to have been associ-

ated. anks in particular to: Marcus Pearce for his supervisory input; my collabo-

rator AlexMcLean; Daniel Müllensiefen for answeringmymany psychology ques-

tions; and David Lewis and Christophe Rhodes for their work on the AMuSE and

Gsharp soware that was used extensively throughout this research. anks to

Tim Crawford, Richard Lewis, Ben Fields, Ray Whorley, Polina Proutskova, Alas-

tair Cra, Bruno Gingras, and Dan Jones for the stimulating conversations and for

sharing with me their inspirational work. From the wider Department of Com-

puting, I would like to thank in particular Janis Jefferies, Sarah Rauchas, and Mark

D’Inverno for their support and encouragement. is dissertation also greatly ben-

efited from the careful reading of my examiners, Simon Dixon and Justin London.

Data used in some of the experiments reported in this dissertation (as well as

others that are not), was kindly provided by Rainer Typke, Klaus Keil, Stephan

Hirsch, Stephen Downie, Anja Volk, Anna Wolf and Daniel Cameron.

David Burnand, Michael Oliva and Ingrid Pearson at the Royal College ofMusic

were instrumental at the beginning stages of the research reported in this disser-

tation. I thank them for their feedback on my earlier work and composition, in

helping me to secure an AHRC doctoral award (number 118566), and for enabling

a smooth transition from South Kensington to New Cross.

I would like to thank my family and friends for their love and support. Last

but not least, thanks to Rose.

4



Related Publications

Some of the work contained within this dissertation has appeared in the following

publications.

An earlier version of the research reported in chapter 3 was also reported in:

J. Forth and G. A. Wiggins (2009). “An approache for identifying salient rep-

etition in multidimensional representations of polyphonic music”. In: London Al-
gorithmics 2008: eory and Practice. Ed. by J. Chan et al. Texts in Algorithmics.

London, UK: College Publications, pp. 44–58

Early work into conceptual space representations of musical structure was pub-

lished in:

J. Forth et al. (2008). “Musical creativity on the conceptual level”. In: Proceed-
ings of the 5th International Joint Workshop on Computational Creativity. Ed. by P.

Gervás et al., pp. 21–30

An earlier version of the conceptual space of metre presented in chapter 5 was

published in:

J. Forth et al. (2010). “Unifying conceptual spaces: Concept formation in musi-

cal creative systems”. In: Minds and Machines, pp. 11–30. : 10.1007/s11023-
010-9207-x

Related work concerning the design and implementation of the AMusE system,

which was used as the implementation framework for the experiments reported

in this dissertation, was published in:

D. Lewis et al. (2011). “Tools for music scholarship and their interactions: a case

study”. In: Proceedings of the Supporting Digital Humanities Conference (SDH 2011).
Ed. by B. Maegaard. : http://sldr.org/SLDRdata/doc/show/copenhagen/

SDH-2011/proceedings.html

5

http://dx.doi.org/10.1007/s11023-010-9207-x
http://dx.doi.org/10.1007/s11023-010-9207-x
http://sldr.org/SLDRdata/doc/show/copenhagen/SDH-2011/proceedings.html
http://sldr.org/SLDRdata/doc/show/copenhagen/SDH-2011/proceedings.html


Contents

1 Introduction 13

2 Music representation 15
2.1 Musical information . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Generality in representation . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Charm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 eory of conceptual space . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Levels of representation . . . . . . . . . . . . . . . . . . . 24

2.3.3 Music and conceptual space . . . . . . . . . . . . . . . . . 25

2.3.4 Formalisation . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Point set methods of pattern discovery 29
3.1 Algorithmic approaches to structure induction . . . . . . . . . . . 30

3.2 A novel method for the identification of salient paerns . . . . . . 34

3.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.2 Set-cover generation . . . . . . . . . . . . . . . . . . . . . 35

3.2.3 Paern evaluation heuristics . . . . . . . . . . . . . . . . . 38

3.3 Case study: Motivic analysis in Bach two-part Inventions . . . . . 41

3.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Conceptual space point set models of melodic similarity 49
4.1 Earth Mover’s Distance . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.2 A weighted point set representation of melody . . . . . . 51

4.1.3 EMD definition . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 EMD model definitions . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 Ground distance dimensions . . . . . . . . . . . . . . . . . 54

Basic aributes . . . . . . . . . . . . . . . . . . . . . . . . 54

6



Relative aributes . . . . . . . . . . . . . . . . . . . . . . 58

4.2.2 Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.3 Weighting schemes . . . . . . . . . . . . . . . . . . . . . . 60

4.2.4 Model specification . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Experiment 1: Pop melody similarity . . . . . . . . . . . . . . . . 65

4.3.1 Model fiing . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Preliminary analysis . . . . . . . . . . . . . . . . . . . . . 70

L1 vs. L2 norm . . . . . . . . . . . . . . . . . . . . . . . . 73

Partial vs. complete matching . . . . . . . . . . . . . . . . 76

Centred vs. original pitch height . . . . . . . . . . . . . . 77

Duration as EMD weight vs. quality dimension . . . . . . 79

ality dimension comparison . . . . . . . . . . . . . . . 81

4.4 Experiment 2: Melodic-based music information retrieval . . . . . 85

4.4.1 Original MIREX 2005 evaluation . . . . . . . . . . . . . . 85

4.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Conceptual space representations of perceived rhythmic structure 91
5.1 Notation and music theory . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Metre as entrainment . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2.1 Rhythm versus metre . . . . . . . . . . . . . . . . . . . . . 96

5.2.2 London’s representation of metre . . . . . . . . . . . . . . 99

5.2.3 Prototypical and individuated metre . . . . . . . . . . . . 102

5.3 A symbolic definition of London’s theory . . . . . . . . . . . . . . 106

5.3.1 Representational semantics of metrical trees . . . . . . . . 106

5.3.2 Notation and definitions of trees . . . . . . . . . . . . . . 108

5.3.3 Definition of tempo-metrical trees . . . . . . . . . . . . . 110

Onset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Pulse IOI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Aentional energy . . . . . . . . . . . . . . . . . . . . . . 113

Constraints on metrical tree structure . . . . . . . . . . . 114

Abstraction of sequential structure . . . . . . . . . . . . . 115

Node labels . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3.4 Representation of the tactus within metrical trees . . . . . 119

5.4 Conceptual space of periodic metrical structure . . . . . . . . . . 121

5.4.1 Domains of metrical periodicity . . . . . . . . . . . . . . . 122

__ . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7



__ . . . . . . . . . . . . . . . . . . . . . . . 126

_ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.5 Conceptual space of sequential metrical structure . . . . . . . . . 130

5.5.1 Domains of metrical sequence . . . . . . . . . . . . . . . . 130

_ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

_ . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.6.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.6.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6 Conclusions 148

A Notational conventions 151

B Müllensiefen and Frieler (2004) melodic similarity dataset 152

C Optimised EMD model parameters 153

D Undefined values in conceptual space 154

E Geerdes genre classification dataset 155

F Conceptual space genre classification data 159
F.1  optimised salience weights (k = 3) . . . . . . . . . . . . . 159

F.2  optimised salience weights (k = 3) . . . . . . . . . . . . . 159

F.3  classifier results (k = 3) . . . . . . . . . . . . . . . . . . . . 160

F.4  classifier results (k = 3) . . . . . . . . . . . . . . . . . . . 160

F.5  classifier results (k = 3) . . . . . . . . . . . . . . . . . . . 162

G Low-dimensional projections of distances in conceptual space 164

8



List of Tables

3.1 Number of notes and discovered TECs in J. S. Bach’s Two-Part In-
ventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Statistics of the best two EMD models . . . . . . . . . . . . . . . . 82

4.2 Average salience weights across EMD models containing all qual-

ity dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3 MIREX 2005 results . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.1 Mean pulse IOIs for cycles in a metre with a maximal number of

subdividing cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2 Mean pulse IOIs for cycles in a metre with a maximal number of

grouping cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3 Overview of the genre classification dataset . . . . . . . . . . . . 140

5.4 Mean classification accuracy . . . . . . . . . . . . . . . . . . . . . 144

5.5  vs.  within norm conditions . . . . . . . . . . . . 145

5.6 Comparison of norms within  . . . . . . . . . . . . . . . . 145

5.7 Comparison of norms within  . . . . . . . . . . . . . . . . 146

B.1 Müllensiefen and Frieler (2004) dataset . . . . . . . . . . . . . . . 152

C.1 Optimised EMD model parameters . . . . . . . . . . . . . . . . . . 153

E.1 Metrical-rhythmic genre classification dataset . . . . . . . . . . . 155

E.1 Metrical-rhythmic genre classification dataset . . . . . . . . . . . 156

E.1 Metrical-rhythmic genre classification dataset . . . . . . . . . . . 157

E.1 Metrical-rhythmic genre classification dataset . . . . . . . . . . . 158

F.1 Optimised  domain salience weights . . . . . . . . . . . . 159

F.2 Optimised  domain salience weights . . . . . . . . . . . . 159

F.3 (, k = 3) accuracy . . . . . . . . . . . . . . . . . . . . . . . . 160

F.4 (, k = 3) confusion matrix . . . . . . . . . . . . . . . . . . . 160

F.5 (, L1, k = 3) accuracy . . . . . . . . . . . . . . . . . . . . . 160

9



F.6 (, L1, k = 3) confusion matrix . . . . . . . . . . . . . . . . 160

F.7 (, L1 + L2, k = 3) accuracy . . . . . . . . . . . . . . . . . . 161

F.8 (, L1 + L2, k = 3) confusion matrix . . . . . . . . . . . . . 161

F.9 (, L2, k = 3) accuracy . . . . . . . . . . . . . . . . . . . . . 161

F.10 (, L2, k = 3) confusion matrix . . . . . . . . . . . . . . . . 161

F.11 (, L1, k = 3) accuracy . . . . . . . . . . . . . . . . . . . . . 162

F.12 (, L1, k = 3) confusion matrix . . . . . . . . . . . . . . . . 162

F.13 (, L1 + L2, k = 3) accuracy . . . . . . . . . . . . . . . . . . 162

F.14 (, L1 + L2, k = 3) confusion matrix . . . . . . . . . . . . . 162

F.15 (, L2, k = 3) accuracy . . . . . . . . . . . . . . . . . . . . . 163

F.16 (, L2, k = 3) confusion matrix . . . . . . . . . . . . . . . . 163

10



List of Figures

3.1 Compression ratio values of TEC paerns in BWV 772 . . . . . . 43

3.2 Sorted compression ratio values of TEC paerns in BWV 772 . . . 43

3.3 Compactness-v values of TEC paerns in BWV 772 . . . . . . . . 44

3.4 Compactness-v values of TEC paerns in BWV 772 . . . . . . . . 44

3.5 e primary and secondary paerns selected from the SIATEC anal-

ysis of BWV 772 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 A schematic representation of the primary and secondary paerns

selected from the SIATEC analysis of BWV 772 . . . . . . . . . . . 45

3.7 Paerns 2 and 2.1 in bars 16–20 of BWV 772 . . . . . . . . . . . . 46

3.8 Paerns 1 and 1.2 in bars 3–4 and 11–12 of BWV 772 . . . . . . . 46

4.1 Histogram of the difference in length between original and variant

melodies in the Müllensiefen and Frieler (2004) dataset . . . . . . 63

4.2 Histogram of the difference in length between query and candidate

melodies in the MIREX 2005 symbolic melodic similarity dataset . 64

4.3 Example stimulus melodies from Müllensiefen and Frieler (2004) . 67

4.4 Scaer plot of (× , L1, P ) . . . . . . . . . . . . . . . 71

4.5 Scaer plot of (× × , L1, P ) . . . . . . . . . . 71

4.6 Diagnostic plots for (× , L1, P ) . . . . . . . . . . . . 72

4.7 Diagnostic plots for (× × , L1, P ) . . . . . . . 72

4.8 L1 and L2 model variant comparison . . . . . . . . . . . . . . . . 75

4.9 Partial and complete matching EMD model variant comparison . 77

4.10  and c model variant comparison . . . . . . . . . . . 79

4.11 Duration model variant comparison . . . . . . . . . . . . . . . . . 81

4.12 Best two models comparison . . . . . . . . . . . . . . . . . . . . . 83

4.13 Best model comparison with all other spaces . . . . . . . . . . . . 84

5.1 Cyclical representation of metre, aer London (2004) . . . . . . . 100

5.2 Tree representation of metre . . . . . . . . . . . . . . . . . . . . . 118

11



5.3 Two examples of 8-cycle 100 bpmmetres with individuated micro-

timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.4 Two examples of 8-cycle metres with different paerns of aen-

tional energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.5 Pairwise comparison of  and  accuracy . . . . . . 144

G.1 MDS projection of the distances between prototypical common

metres in  space. Allmetres are at tactus = 600ms (100 bpm),

and include two levels of tactus subdivision . . . . . . . . . . . . . 165

G.2 MDS projection of the distances between prototypical 2
4,

3
4 and 4

4

metres across the tempo range 80–180 bpm in  space . . . 165

G.3 MDS projection of the distances between prototypical common

metres in  space. Allmetres are at tactus = 600ms (100 bpm),

and include two levels of tactus subdivision . . . . . . . . . . . . . 166

G.4 MDS projection of the distances between prototypical 2
4,

3
4 and 4

4

metres across the tempo range 80–180 bpm in  space . . . 166

12



Chapter 1

Introduction

e research reported in this dissertation demonstrates a general approach for

the representation and modelling of music informed by psychological and cogni-

tive principles. Music is fundamentally a psychological phenomenon, which is the

perspective taken in the development of computational methods for investigating

aspects of music and musical behaviour.

ree problems are addressed, each related in terms of their focus on music as

an object of perception, and in the application of geometrical methods of knowl-

edge representation. e problem of paern discovery in discrete representations

of polyphonic music is first considered, building on the SIATEC structure induction

algorithm. SIATEC is an algorithm for discovering paerns in multidimensional

point sets (Meredith et al. 2002). is algorithm has been shown to be particularly

useful for analysing musical works. However, in raw form, the results generated

by SIATEC are large and difficult to interpret. We propose an approach, based on

the generation of set-covers, which aims to identify particularly salient paerns

that may be of musicological interest. Our method is capable of identifying prin-

cipal musical themes in Bach Two-Part Inventions, and is able to offer a human

analyst interesting insight into the structure of a musical work. is work is based

on geometric principles that are far removed from plausible psychological models

of paern induction, but the method is motivated by psychological evidence for

the importance of invariance and repetition in perception.

e second and third problems that are addressed explicitly adopt a cognitive

theory of representation, namely the conceptual space framework developed by

Gärdenfors (2000). Within this framework, concepts can be represented geomet-

rically within perceptually-grounded quality dimensions, and where distance in

the space corresponds to similarity. We follow an existing abstract vector space

formalisation of the conceptual space theory, but the application in the domain of

13



music represents a novel contribution.

e second problem concerns the prediction of melodic similarity, and the the-

ory of conceptual space is investigated in the novel context of point set represen-

tations of melodic structure. Melodies are represented as point sets in low dimen-

sional spaces. ality dimensions representing the basic event aributes of onset,

pitch and duration are defined, as well as dimensions representing relations be-

tween basic aributes. e usefulness of the individual dimensions in affording

prediction of melodic similarity is evaluated. e Earth Mover’s Distance met-

ric (Rubner et al. 2000) is employed as the measure of distance between point set

representations of melodies. Different weighting schemes are defined, giving dif-

ferent EMD measures based on partial or complete matching between point sets.

is represents an additional factor in our evaluation. Evaluation is performed

with respect to published psychological data (Müllensiefen and Frieler 2004), and

the MIREX 2005 symbolic melodic similarity evaluation.

e third problem concerns the conceptual representation of metrical struc-

ture, informed by the psychological theory of metre developed by London (2004).

London’s theory is based on a psychological, cognitive, neuroscientific, and musi-

cological understanding of metre as a process of entrainment. We develop a sym-

bolic formalisation of this theory as metrical tree structures, which forms the basis

of two conceptual space representations. e first represents metrical concepts as

hierarchical structures of periodic components. e second extends this represen-

tation to include the internal sequential structure of periodic cycles. e geometry

is defined in terms of the symbolic formulation, and the mappings between the

levels of representation associates symbolic metrical tree structures with points

in geometrical space. Expressively varied metres are naturally represented in the

space as regions surrounding prototypical metrical points. e developed models

of metrical-rhythmic structure are evaluated within a standard genre classification

task involving stratified 10x10-fold cross-validation over a labelled dataset using

k-nearest-neighbour clustering.

Following this introduction, chapter 2 considers general issues within music

representation, before introducing Gärdenfors’ theory of conceptual space. Chap-

ter 3 addresses the problem of paern discovery. Chapter 4 concerns the prob-

lem of melodic similarity. Chapter 5, the most substantial portion of the thesis,

considers the conceptual representation of metre. Conclusions arising from the

individual chapters are brought together and considered in chapter 6.
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Chapter 2

Music representation

A representation is a formal language used to express information. Honing (1993)

identifies four categories of approaches to the subject of representation within

music research. e first pair of categories concerns the motivations of those in-

terested in music representation. e first are those for whom the representation

of musical information supports their music research, for example, musicologists

or composers. e second are those for whom the subject of representational lan-

guages itself is the area of research. e overall aim of this thesis is concerned

with the issue of musical representation itself.

e second pair of categories identified byHoning concern the types of the rep-

resentations proposed for music. Representations are either predominantly tech-

nical, that is, are designed in response to a particular technical problem, or else

aim to represent conceptual or mental musical structures. e former category

emphasises observable and measurable musical aributes, such as the key press

of a piano keyboard, or the position of a note head on a musical score. e lat-

ter seeks to capture aspects of the listening experience of music, predominantly as

part of a computational theory aiming to predict aspects of musical behaviour. e

representations pursued here naturally fall into this laer category, and are moti-

vated by the aim of capturing some of the perceptual qualities salient to musical

perception and conceptualisation.

2.1 Musical information

In an early paper discussing the application of computer technology to music re-

search, Babbi (1965, p. 76) employs the terms graphemic, acoustic, and auditory to

distinguish three related domains of musical information. e acoustic domain en-

compasses the physical manifestations of music, such as the propagation of sound
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waves, and representations of such properties, such as the analogue representa-

tion of music stored on electromagnetic tape, or the stream of bits resulting from

analogue-to-digital conversion. e representation of acoustic information most

naturally falls withinHoning’s category of technical representations (Honing 1993,

p. 222), since there exists concrete referents in the world to which the representa-

tional language refers.

e graphemic domain pertains to the graphical notation of music, such as

conventional musical scores and tablature. Graphical notations are themselves

representations of music, serving primarily as musical aide-mémoires and for the

communication of musical ideas. From the computational perspective, there is

scope here for both technical and cognitive representational approaches. Where

the aim is simply to represent the exact layout of notation symbols on a score, a

purely technical representation is adequate. However, if the aim is to also rep-

resent associated music-theoretical meaning, or possible performance interpreta-

tions, then the representation language must necessarily express, at least in part,

the musical knowledge assumed by each notation system. Such information could

also be described as declarative knowledge or procedural knowledge. For example,

the representation could describe a trill declaratively as an object of ornamenta-

tion, or alternatively, as a form of procedural knowledge describing how the trill

is created (Honing 1993, p. 229).

e auditory domain covers information about music as perceived by the lis-

tener, aligning with Honing’s category of conceptual and mental representations.

e characterisation of musical information into the domains of the acoustic,

graphemic, and auditory is not exhaustive; for example, gestures made by per-

formers would be another potentially relevant domain of information (Selfridge-

Field 1997, p. 7). However, the distinctions are nonetheless important categories

of musical information, and help to clarify the issues of what is entailed in rep-

resenting “music”. e phenomenon of music itself cannot be said to exist in any

one domain exclusively, but instead can be understood as something that exists

between the domains, with each one offering a particular perspective from which

to study music (Wiggins 2008).

Most representations of music are designed for a particular task, which oen

remains within one of the domains characterised by Babbi. ewell known prob-

lem inmusic information retrieval of music synchronisation aims to bridge the gap

between at least two domains, the graphemic and acoustic. Systems such as Sync-

Player (Fremerey et al. 2007) aim to allow users to navigate through a library of

audio recordings using automatically aligned digital images ofmusical scores. Bab-
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bi notes the difficulty in automatically translating knowledge between domains,

and the problem is still very much present today.

2.2 Generality in representation

To consider the issue of music representation at the most general level is to ques-

tion the nature of music itself, and is arguably ‘chimerical and counterproduc-

tive’ (Huron 1992, p. 34). Huron advocates a practical goal-oriented approach, in

which the question of what aspects of music to represent is largely determined

by the intended application. Huron (1992, p. 20) states that ‘the problem of mu-

sic representation hinges on elucidating finite sets of properties which are suited

to the achievement of certain goals.’ is statement is equally applicable to the

problem of knowledge representation in other fields of discourse. However, the

multifaceted nature of musical information may require, for certain tasks, quite

different forms of knowledge to be expressed and interrelated. For example, the

requirements of a representation suitable for manipulating audio recordings are

very different to those necessary to represent medieval music notation. However,

one could argue that for an applicationwhose intended purpose is to allow the user

to relate information across different domains of musical information, such as be-

tween graphemic and acoustic information, then a certain degree of generality is

beneficial, if not necessary, to facilitate such mappings.

Further problems can also be identified in taking a strictly goal-oriented ap-

proach to music representation. Defining a representation for one specific task

potentially limits the sharing of data and tools, as inevitably information consid-

ered irrelevant for one task will be necessary for another. is is perhaps not a

serious issue for individual researchers, but is potentially inhibiting of progress

across the research field as a whole. Furthermore, it is impossible to anticipate

all possible situations in which users might want to use a representation, and in-

deed Huron states extensibility as one of the qualities of a good representation.

However, there are arguably beer and worse ways to facilitate user extensibil-

ity. In the worse case, users may be able to implement ad hoc extensions to meet

their immediate needs, at the expense of portability. A beer approach to allow

customisation is to employ a suitably general framework within which extensions

can be defined within the semantics of the representation itself.

One possible way to resolve these tensions is to clarify where exactly generality

should be sought. Huron (1992) seems to be referring to all possible manifestations

ofmusicwhenwarning against generality. When one considers the potential scope
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of music information—from the range of world musics as well as the numerous

ways of thinking about and analysing musical phenomena—this position seems

ultimately to be the only tenable approach. However, even within a goal-oriented

approach, generality can still be sought within the representation itself, which

overcomes many of the potential problems associated with a plethora of bespoke

representational schemes.

In order to assist answering such questions, Wiggins et al. (1993) propose a

framework for the evaluation of music representation systems based on the two

dimensions of expressive completeness and structural generality. Expressive com-

pleteness refers to the ‘range of raw musical data that can be represented’, and

structural generality refers to the ‘range of high-level structures that can be rep-

resented and manipulated’ (Wiggins et al. 1993, p. 31). According to these criteria,

audio recordings of musical performances are high in expressive completeness be-

cause they capture in great detail the raw physical manifestation of music. How-

ever, audio recordings are also very low in structural generality because there is no

explicit representation of the structural components of the music, such as notes,

instrumentation, or metrical grouping. Representations designed for graphemic or

auditorymusical information necessarily require a higher level of structural gener-

ality since the information directly concerns identifiable musical objects and con-

cepts. For example, a representation designed to express the perceptually salient

features of a melody will require at least the means of representing discrete note

events, together with their pitch and duration. However, such representations are

low in expressive completeness since they lack the means of recreating the con-

tinuous waveform corresponding to a musical performance.

2.2.1 Charm

A simple, yet powerful approach to a general representation of music is proposed

byWiggins et al. (1989), Harris et al. (1991), and Smaill, Wiggins, and Harris (1993).

eCommonHierarchical Abstract Representation forMusic (Charm) aims to sup-

port a high degree of generality within the representation itself, which is a distinct

notion to the quest of representing music in the most general sense, which would

ultimately require a representation capable of encompassing all possible mental,

physical, and cultural manifestations of music andmusical behaviour. e need for

stated objectives for any representational formalism is maintained, and indeed is

considered necessary for evaluating differences between representations (Wiggins

et al. 1993). Charm is defined initially as a representation of music at the symbolic

level, in which identifiable aspects of music are represented by discrete symbols.
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As such, Charm is appropriate for representing a wide range of graphemic infor-

mation, but may appear less appropriate for acoustic or other continuously-valued

musical information. However, as a general framework for musical representation,

developing Charm compliant representation of acoustic and auditory information

is perfectly feasible. Symbolic, or discrete, representations are particularly appro-

priate for the high-level description of a range of perceptual aributes and con-

cepts, such as for representing discrete musical events, groupings of events, and

for expressing the formal properties of relationships between such structures. e

representations developed in chapters 4 and 5 seek to extend the purely symbolic

approach of Charm with perceptually-grounded geometrical forms of representa-

tion, in order to capture more fluid and continuous music-psychological phenom-

ena.

Charm is based on the computer science concept of abstract data typing. e

authors note that despite the direct incompatibility of many music representation

schemes, that a considerable degree of commonality exists at an abstract level.

For example, most schemes define some way of representing pitch, whether in

terms of MIDI note numbers, scale degree, microtonal divisions of the octave, or

frequency. However, at an abstract level, common paerns of operations can be

observed, which are irrespective of the underlying implementation. erefore,

the authors propose an abstract representation, in which musically meaningful

operations can be defined in terms of abstract data types. Harris et al. (1991) define

basic data types for pitch (and pitch interval), time (and duration), amplitude (and

relative amplitude) and timbre. erefore, the abstract event representation is the

Cartesian product:

Pitch× Time× Duration× Amplitude× Timbre

In the case of time, the following functions can be defined where the arguments

in {t, d} denote Time or Duration data types respectively.

adddd : Duration× Duration→ Duration
addtd : Time× Duration→ Time
subtt : Time× Time→ Duration
subdd : Duration× Duration→ Duration

(2.1)

Typed equivalents of arithmetic relational operators (e.g., ≤,≥,=, ̸=) are also de-

fined, permiing ordering and equality relations to be determined. With the excep-

tion of timbre, the internal structure of each basic data type is the same, allowing

comparable functions to be defined modulo renaming (Harris et al. 1991).
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Given a specification of abstract musical data types, a user can implement

specific functionality required for their data and application according to the ab-

stract definitions. Implementing specific functionality effectively means supply-

ing a concrete implementation for each operation defined on each abstract type.

Or beer still, given a suitable high-level language capable of expressing the type

information, one could declaratively specify concrete types, with the additional

benefit of being able to infer mappings between types.

e abstract data type approach to representing music extends beyond the rep-

resentation of surface level events. Charm formally defines the concept of the con-
stituent, which allows arbitrary hierarchical structures to be specified (Harris et al.

1991). At the abstract level, a constituent is defined as the tuple:

⟨Properties/Definition, Particles⟩

Particles is a set whose elements, called particles, are either events or other con-

stituents. No constituent can be a particle of itself, defining a structure of con-

stituents as a directed acyclic graph. Properties/Definition is the ‘logical speci-

fication of the relationship between the particles of this constituent in terms of

the membership of some class’ (Harris et al. 1991, p. 8). e distinction between

Properties and Definition is made explicit in a concrete implementation. However,

at the abstract level, they both logically describe the structure of the constituent.

Properties refer to ‘propositions which are derivably true of a constituent’ (Harris

et al. 1991, p. 10); for example, that no particle starts between the beginning and

end of any other particle, defined by Harris et al. (1991) as a stream:

stream ⇔ ∀p1 ∈ particles,¬∃p2 ∈ particles,
pi ̸= p2 ∧
GetTime(p1) ≤ GetTime(p2) ∧
GetTime(p2) < addtd(GetTime(p1),GetDuration(p1))

(2.2)

whereGetTime andGetDuration are selector functions returning the timepoint and

duration respectively of a given particle. Definitions are propositions that are true

by definition; for example, that a set of particles contains all the events notated in

a score of a particular piece of music.

An implementation of a Charm-compliant representation requires some ad-

ditional properties, both for computational efficiency and user convenience. e

following is an example of a simple ‘moti’ constituent (Smaill,Wiggins, andHarris

1993).
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constituent(c0, stream(0, t1), motif, [e1, e2, e3, e4])

Every event and constituent defined within the system must be associated with

a unique identifier, shown as c0, e0, e1 and so forth in the above example. e

constituent is a stream, with a start time and a duration, denoted by the property

stream(0, t1), which is derivably true from the events it contains. In contrast,

the constituent is defined as a motif, and a user is free to provide such definitions

for their own purposes.

Smaill, Wiggins, andMiranda (1993) present an application utilising the Charm

representation to support human creativity. e system is designed to aid explo-

ration of a timbral space, and utilises machine learning techniques to simulate the

human process of concept formation. Although concerning timbre, the motivation

behind the work is very close to that pursued in this thesis.

A wider benefit of adopting an abstract data type approach to music repre-

sentation is that it provides the basis for developing a common platform for the

sharing of data, as well as soware tools. is is demonstrated in Smaill, Wiggins,

and Harris (1993) in which both the implementation language and the concrete

representations of the data are shown to be immaterial given that the correct be-

haviour of the abstract data types is observed. From a formal perspective, many

issues of representation discussed in the field can be seen as concerning merely

arbitrary maers of encoding or data serialisation. Although encoding schemes

may well be designed to meet particular needs, such as to facilitate efficient hu-

man data entry or to be space efficient, the ontological commitments implicit in

the encoding can be le unstated, and therefore potentially ambiguous, or even

unquestioned, ultimately limiting potential usefulness. e Advanced MUSical

Encoding (AMusE) system (Lewis et al. 2011), a Charm-compliant soware frame-

work for music computation, is used for the implementation of all experiments

reported in this dissertation.

2.3 eory of conceptual space

Honing (1993, p. 221) notes the necessity of incorporating cognitive aspects of mu-

sic into its representation: ‘[s]ince a representation of the real world (represented
world) has to do with cognition, the image (representing world) will have most of

cognition’s characteristics.’ Constructing cognitively-informed representations is

no trivial problem, even within very confined domains. Computational systems

operate over representations of the real world, and have no access to meaning be-

yond what is formally defined within the representation language. In other words,
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a ‘representation is only syntax and should have all knowledge embodied in this

syntax’ (Honing 1993, pp. 224–225). We conjecture that perceptual groundedness

is one of the most important aspects for any cognitively-motivated representation

of music. e importance of similarity in mental processing is long established

(Shepard 1987), and is the guiding principle underlying the computational theories

proposed in this thesis. In short, representations that afford the efficient and flexi-

ble manipulation of conceptual similarity may prove generally useful in modelling

music. In order to pursue this task, we employ the representational framework of

conceptual space.

Peter Gärdenfors (2000) proposes the theory of conceptual space as a geometric

form of representation, which can be viewed as being situated between the levels

of sub-symbolic representation and symbolic representation. e theory states

that concepts, which are entirely mental entities, can be represented within sets

of dimensions with defined geometrical, topological or ordinal properties. is

formalism places betweenness at its core, upon which the notion of conceptual

similarity is derived. Similarity between concepts is implicitly represented in terms

of the distance between points or regions in a multidimensional space, in a manner

comparable to the spatial view of similarity proposed by Shepard (1962a, 1962b).

2.3.1 Definitions

Gärdenfors’ theory of conceptual space begins with an atomic but general notion

of betweenness, in terms of which he defines similarity, represented as (not nec-

essarily Euclidean) distance. is allows models of cognitive behaviours (such as

creative ones) to apply geometrical reasoning to represent, manipulate and reason

about concepts. Similarity is measured along quality dimensions, which ‘corre-

spond to the different ways stimuli are judged to be similar or different’ (Gärden-

fors 2000, p. 6). An archetypal example is a colour space with the dimensions hue,

saturation (or chromaticism), and brightness. Each quality dimension has a par-

ticular geometrical structure. For example, hue is circular, whereas brightness and

saturation correspond with measured points along finite linear scales. Identifying

the characteristics of a dimension allow meaningful relationships between points

to be derived, and it is important to note that the values on a dimension need not

be numbers—though how an appropriate algebra is then defined is not discussed.

ality dimensions may be grouped into domains. A domain is a set of integral
(as opposed to separable) dimensions, meaning that no dimension can take a value

without every other dimension in the domain also taking a value. erefore, hue,

saturation, and brightness in the above colour model form a single domain. A
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domain is also equipped with a distance measure, which may be a true metric,

or non-metric, such as a measure based on an ordinal relationship or the length

of a path between vertices in a graph. It follows that Gärdenfors’ definition of

a conceptual space is simply ‘a collection of one or more domains’ (2000, p. 26).

For example, a conceptual space of elementary coloured shapes could be defined

as a space comprising the above domain of colour and a domain representing the

perceptually salient features of a given set of shapes.

Since the quality dimensions originate in betweenness, similarity is directly re-

lated to proximity, though not necessarily Euclidean proximity. Such spatial rep-

resentations naturally afford reasoning in terms of spatial regions. For example, in

the domain of colour, one can identify a region that corresponds with the concept

. Boundaries between regions are fluid, an aspect of the representation that

may be usefully exploited by creative systems searching for new interpretations

of familiar concepts.

Gärdenfors identifies various types of regions with differing topological char-

acteristics. Convex regions allow us to define natural properties:
CRITERION P A natural property is a convex region of a domain in a conceptual

space. (Gärdenfors 2000, p. 71)

Again taking the example of  in the domain of colour: given any two shades of

, any shade between would also be . erefore, the region corresponding to

 must be convex. ese convex regions in conceptual domains can be closely

related to basic human perceptual experience.

For relatively straightforward domains such as the above three-dimensional

domain of colour, we can think of concepts as natural properties. However, more

complex concepts, such as coloured shapes or metrical structure, may exist over

multiple domains. To admit these more complex structures, Gärdenfors defines a

natural concept as follows:

CRITERION C A natural concept is represented as a set of regions in a number

of domains together with an assignment of salience weights to the domains

and information about how the regions in different domains are correlated.

(Gärdenfors 2000, p. 105)

Our interpretation of Criterion C is that a natural concept is a set of one or more

natural properties and salience weights for the dimensions and domains, and in-

formation about how they are correlated. Semantic distance between concepts is

determined by calculating the distance between points in the space. For purely

numerical dimensions, as a rule of thumb Gärdenfors suggests Euclidean distance

is appropriate for integral dimensions, while the city-block metric is appropriate
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for separable dimensions (Gärdenfors 2000, pp. 24–26).

2.3.2 Levels of representation

Gärdenfors (2000) presents the theory of conceptual space as a representational

tool for approaching problems concerning the modelling and understanding of

cognitive processes. As a representation, it is situated at a particular level of ab-

straction. He argues that conceptual structures should be represented using geom-

etry on what he terms the conceptual level. is level of representation is situated

between the symbolic level, which includes, for example, formal grammar, and the

sub-conceptual level of high-dimensional representations such as neural networks.

Symbolic representations are used within cognitive science to model cognitive

processes at a high level of abstraction. Discrete symbols, representing objects,

properties of objects, relationships, concepts and so forth, are precisely defined,

constituting the semantics of the representation. Sets of rules can also be defined,

operating over and manipulating the symbolic language. Within a symbolic repre-

sentation, meaning is internal to the representation itself; symbols have meaning

only in terms of other symbols, and not in terms of any real world objects or phe-

nomena they may represent.

Symbolic representations are oen associated with Good Old Fashioned AI

(GOFAI), yet symbolic representation in itself does not entail classic GOFAI

methodology, and plays a key role in contemporary cognitive science. An under-

lying assumption of GOFAI research is that human thinking can be understood

in terms of symbolic computation, in particular, computation based on formal

principles of logic. Expert systems are one particularly successful outcome based

on symbolic representations. A typical expert system will have access to a large

body of symbolically encoded knowledge, over which it is able to operate in or-

der to solve specific problems or to derive new facts. However, symbolic systems

have proved less successful in modelling aspects of human cognition beyond those

closely related to logical thinking. For example, cognitive processes closely related

to perception tend to require extremely large numbers of rules in order to account

for the vast range of perceptual input that a system situated in a real environment

may encounter. As well as being an implausible model for brain processing, such

systems can become brile, having limited ability to adapt their behaviour to new

input.

Conventionally termed sub-symbolic representations include artificial neural

networks, or more generally, connectionist representations. Connectionist ap-

proaches seek to model cognitive processes by exploiting the emergent properties
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of densely connected networks of primitive units. A particular strength of con-

nectionist networks is their ability to adapt their behaviour according to observed

data. However, since the learned behaviour is represented as weightings between

units in the network, they offer limited explanatory insight into the process being

modelled.

Gärdenfors acknowledges the strengths and weaknesses of different forms of

representation, but makes the more general point that different representational

formalisms should be seen as complementary, rather than competing, methodolo-

gies. As such, choices of representation should be made in accordance with scien-

tific aims and in response to the challenges of the particular problem at hand. Fur-

thermore, Gärdenfors takes the view that the conceptual level can unify traditional

symbolic and sub-symbolic representations, providing a means to develop hybrid

representations that combine the strengths of the various approaches, as investi-

gated by Aisbe and Gibbon (2001). A particular strength of a conceptual spaces

representation is its ability to offer a parsimonious account of concept combination

and acquisition (Gärdenfors 2004, pp. 114–126), both of which are closely related

to conceptual similarity. By defining dimensions in terms of perceptual qualities,

conceptual space representations are grounded in our experience of the physi-

cal world, providing a semantics closely aligned with a human sense of meaning.

erefore, hybrid representations comprising mappings between sub-symbolic (or

more appropriately sub-conceptual), conceptual, and symbolic forms of represen-

tation creates the possibility for grounding traditional representational formalisms

within a cognitive semantics framework.

2.3.3 Music and conceptual space

e theory of conceptual space is closely aligned with cognitive semantics, which

proposes that ‘meanings are mapping to conceptual structures, which themselves

refer to real-world entities’ (Raubal 2004, p. 154). Gärdenfors’ initial theory of con-

ceptual space concentrates primarily on tangible properties and concepts, where

quality dimensions typically relate to aributes directly available to our sensory

system, for example, the colour of apples. Although musical phenomena are

closely linked with physical events in the world, which are experienced via the

senses, musical understanding cannot be equated with the physical stimuli them-

selves. One consequence of this for any representation of musical understanding

is the necessity for relatively abstract quality dimensions—relative at least to the

dimensions required to represent tangible physical properties or concepts.

Music, and art in general, are interesting application domains in which to in-
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vestigate Gärdenfors’ theory of conceptual space, not least because of the primacy

of subjective experience within them. Music is notoriously difficult to describe

with language, although humans have very lile difficulty distinguishing between

music and non-music when heard. Music exists over time, and there is a delicate

interplay between what has gone before, and what might come next (Pearce and

Wiggins 2006). Furthermore, all musical experiences are shaped by past musical

experiences. Despite a long tradition within musicology of concentrating primar-

ily on notatedmusical structure, particularly within the analysis ofWesternmusic,

Gabrielsson (1993) points out that there is oen considerable overlap between the

perspectives of music theory and music psychology. erefore, much insight into

music conceptualisation can be gained from music theory, and usefully for the

theory of conceptual space, music theory offers a vocabulary for distinguishing

between what may be relatively abstract concepts, and provides clues as to possi-

ble structures of quality dimensions within which theymay be represented—which

may then be tested empirically.

In principle, an approach to the representation of music based on conceptual

space should not need to be confined to any one specific conceptualisation of mu-

sic. In fact, the conceptual space theory itself supports an elegant model of learn-

ing, which accords with evolutionary views of musical development (Bown and

Wiggins 2009), in which the process of developing understanding of unfamiliar

concepts is modelled by extending a conceptual space with additional quality di-

mensions, affording greater discrimination between novel stimuli. Furthermore,

the notion of dimensional salience, modelled byweightings associatedwith quality

dimensions and domains, allows for the possibility of adapting a conceptual space

to take into account individual musical backgrounds and experience. erefore, it

is assumed that differing conceptualisations of music, such as those evident across

Western classical or pop music, Balkan folk music, or Ghanian drumming (Pa-

tel 2008, pp. 97–99), can be represented consistently within the conceptual spaces

theory.

To briefly consider music in relation to natural language, a cognitive semantics

view of natural language implies that the meaning of words and sentences cannot

be understood as a direct mapping between symbols and real-world objects, but

is something that is inherently mediated by human minds. Within linguistics, a

distinguished set of concrete words is oen defined, where word meaning is under-

stood in terms of the ‘perceived physical aributes or properties associated with

the referents of words’ (Andrews et al. 2009, p. 463). Alternatively, the meaning

of more abstract concepts, such as truth or virtue, cannot be defined in terms of
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real world referents. In these cases, meaning is much more related to the function

of the words within the language itself. In this sense, meaning is intralinguistic—

context and the relationships between words is the primary determinant of mean-

ing. Such meaning can be derived from an analysis of the statistical distribution of

words in a suitable corpus. Andrews et al. (2009) argue that both the relationship

between words and real-world objects, and those between words themselves, play

necessary roles in the learning of the meaning of words in natural languages, with

abstract words affording generalisation, and concrete words serving to connect, or

ground, more abstract concepts in direct sensory experience.

In the case of music—that is, music as perceived—the issue of representational

grounding is mediated by subjective experience, since the phenomenon itself, or

any ‘objects’ which one might consider meaningful, are primarily psychological

or cultural in nature. erefore, the semantics of any representation of musical

responses to paerns of sound events in the world has more in common with the

representation of abstract concepts in language, rather than concretewords. is is

further evidenced by the success of statistical methods in modelling and predicting

musical behaviour (Pearce and Wiggins 2004).

To be explicit, the purpose of the representational theory pursued here should

not be confused with the representation of musical scores or of physical musical

sound. In both these cases, which are sometimes ambiguously referred to as ‘mu-

sic’, there are clear concrete referents, whose correspondence with the cognitive

constructs may not be straightforward. e aim of the conceptual space represen-

tations in chapters 4 and 5 is precisely to capture the cognitive constructs associ-

ated with aspects of musical experience, and in principle the theory of conceptual

space offers a viable approach for representing such fluid, yet richly structured

phenomena.

2.3.4 Formalisation

Two approaches to the mathematical formalisation of Gärdenfors’ theory of con-

ceptual space appear in the literature, both building on an initial formalisation by

Aisbe and Gibbon (2001). One strand of research, based on fuzzy set theory, is

presented in detail by Rickard et al. (2007b), drawing on previous work by Rickard

(2006) and Rickard et al. (2007a). Another strand of research, employing vector

spaces, is presented by Raubal (2004), with subsequent related work by Schwering

and Raubal (2005a, 2005b), and Raubal (2008a, 2008b).

e vector space formalisation is followed in this thesis. Firstly, we are inter-

ested in developing the theory of conceptual space in a direction suitable for the
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representation of melodic sequences. Towards this end, we build on the work of

Typke (2007) employing the Earth Mover’s Distance measure (Rubner et al. 2000),

which is ameasure of distances between sets of points in a vector spacemodel. Sec-

ondly, a vector space formalism provides us with a single general formalism with

which to define both the symbolic point set representation underlying the pat-

tern discovery algorithm developed in chapter 3, as well as the conceptual-space

representations of melodic structure and metrical-rhythmic structure developed in

chapters 4 and 5 respectively.

28



Chapter 3

Point set methods of pattern
discovery

is chapter concerns the problem of identifying perceptually salient instances of

repetition in symbolically represented polyphonic music. A geometrical approach

is adopted in which pieces of music are represented as multidimensional datasets.

Following the work of Meredith et al. (2002), Meredith et al. (2003), and Meredith

(2006), we have implemented SIATEC, a paern induction algorithm, and inves-

tigate the properties of the generated results in terms of musicological value and

perceptual salience. SIATEC is known to discover many more paerns than are

typically of interest to any musical analysis. In fact SIATEC guarantees the enu-

meration of all instances of maximal-length paerns that occur more than once

within a given dataset. is formally defined paern type has interesting charac-

teristics that may be exploited for the development of computational methods to

assist in the analysis of musical structure.

A known problemwith SIATEC is the volume of the discovered paerns, which

can be difficult to interpret (Meredith et al. 2002, p. 340). We propose a post-

processing step, similar in character to the NP-hard minimum-weighted set-cover

problem (Karp 1972), in which various heuristics can be employed in order to op-

timise the results in terms of specific music-analytic objectives. e generic set-

cover problem informally involves two finite sets: a set of basic elements; and a set

of candidate subsets of basic elements. A solution to the problem involves find-

ing the smallest number of candidate subsets that together contain, or cover, all
basic elements. In the present musical context, musical events are the basic ele-

ments, and SIATEC paerns are the candidate subsets of elements. e minimum-

weighted variant of the generic set-cover problem introduces aweight or cost asso-

ciated with each candidate subset, and the objective is to minimise the total weight

29



of a cover solution. In our case, weight is equated with structural salience, and the

objective is to maximise the total weight of a cover.

Set-covering problems are NP-hard, meaning that an exact solution cannot be

computed in polynomial time. A considerable amount of research, both theoret-

ical and applied in focus, has been conducted in trying to establish methods for

deriving solutions to set-covering problems within acceptable bounds of approxi-

mation. e standpoint of computer science informs understanding of the nature

of this problem, and provides examples of rigorously tested methods that may be

applicable to our case. e necessity for approximation within this approach pro-

vides the opportunity for involving domain-specific musically-informed heuris-

tics, which themselves may be parameterised to achieve a range of analytic ob-

jectives. Furthermore, the inherent ambiguity in set-covering problems accords

with the common situation in musical analysis whereby different interpretations

of a work may be considered equally valid and correct. In order for an analyst to

reach any firm conclusion, compromises must be made, which are oen informed

by conventions (heuristics) of music theory.

An applied aim of this research is to develop tools suitable for various music-

analytic tasks. Within the field of musicology such tools may assist conventional

score analysis, and may prove particularly useful for larger-scale corpus analysis.

e laer overlaps with interests of music information retrieval, where such tech-

niquesmay be applied in order to extract commonly occurring paerns as the basis

for classification. A composer may also be able to gain inspiration by analysing

a work in progress, arriving at a fresh perspective. Novel applications may also

be found in music psychology or artificial intelligence, where large collections of

music could be analysed in order to derive data for training or testing models of

musical behaviour.

3.1 Algorithmic approaes to structure induction

e concept of a musical paern entails repetition. e definition of SIATEC

ensures the enumeration of all maximal repeated paerns (Meredith et al. 2002,

pp. 331–333). A large number of these discovered paerns will usually prove to be

of lile interest from a musical or perceptual perspective, and this is one problem

our heuristics must address. Yet a more complicated issue concerns the many types
of salient repetitive paerns that may exist in a musical work. In other words, the

kinds of paerns that are likely to be of interest, and the ways in which they are

interesting, may vary considerably.
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ere is agreement amongst both musicologists and music psychologists as to

the importance of repetition in music (for example Jones 1981; Lerdahl and Jack-

endoff 1983; Naiez 1990; Krumhansl 1997). One cross-cultural study based on fiy

musical works found that 94% of all musical passages longer than a few seconds

in duration were repeated at some point in the work (Huron 2006, pp. 228–229).

However, this result does not account for the role of repetition in music in its en-

tirety, because repetition may exist in many forms beyond the exact repetition of

musical events in sequence. For example, melodies may still be perceived as in-

stances of the same basic melodic motif despite being transposed in pitch or scaled

in time. Indeed, perceptual similarity may pertain for any individual listener un-

der an arbitrary number of processes of elaboration and transformation. In the

context of computational analysis, therefore, careful consideration must be given

to the notion of paern equality.

Much previous work in this area has concentrated on techniques for string

matching, with considerable successes in certain specialised tasks, notably con-

cerning monophonic melodies. However, in the wider context various limitations

of string methods become apparent, particularly in the case of polyphonic music

as considered here (Lemström and Pienimäki 2007).

An alternative approach to string matching exists in the form of geometrically-

based algorithms. Within a geometrical framework, the individual note events of

a piece of music correspond to single points in an ordered vector space.1 A family

of Structure Induction Algorithms have been developed for paern discovery and

matching in multidimensional datasets by Meredith et al. (2002), Wiggins et al.

(2002), Meredith et al. (2003), and Meredith (2006).e initial development of these

techniques wasmotivated to a large extent for application to music, but are equally

applicable in other domains where objects may be adequately represented in a

multidimensional space.

FollowingMeredith et al. (2002, p. 328), we define a datapoint as a k-tuple of real

numbers, and a paern P or dataset D as a finite set of k-dimensional datapoints.

We reserve the term dataset in this chapter to refer to a complete set of datapoints

we wish to process, for example, a piece of music, while paern refers to a subset

of a dataset. A typical datapoint representation in a musical context will include

dimensions representing time and pitch aributes of musical events. A translator

is a vector that maps from one instance of a paern to another within a dataset.

More precisely, a vector t is a translator for P inD if and only if the translation of

1A variation on this approach, based on sets of line segments in space, is discussed by Ukkonen
et al. (2003).
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P by t is also a subset of D.

e basic SIA algorithm computes all maximal repeated paerns in a dataset

(Meredith et al. 2002, pp. 334–335).e algorithmfinds the largest non-empty set of

translatable datapoints for every positive translation possible within the dataset.

Hence, each paern discovered by SIA is called a maximal translatable paern
(MTP). For n datapoints, the worst case running time of SIA is O(kn2 log

2
n) and

its worst-case space complexity is O(kn2).

An important extension to SIA is SIATEC (Meredith et al. 2002, pp. 335–338).

SIATEC underlies both the approach to paern discovery adopted in the present

chapter, as well as the closely related COSIATEC algorithm, which will be discussed

below. Like SIA, the SIATEC algorithm enumerates all the maximal translatable

paerns in a dataset, but also groups them into equivalence classes. A translational
equivalence class (TEC) is represented compactly as an ordered pair ⟨P, T (P,D)⟩,
where P is a maximal translatable paern, and T (P,D) is the set of translators

for P in dataset D. e worst-case running time of SIATEC is O(kn3), and its

worst-case space complexity is O(kn2).

Even for small datasets, the raw output of SIATEC can quickly become unman-

ageably large. Table 3.1 shown the number of TECs discovered by SIATEC within

J. S. Bach’s Two-Part Inventions, where the notes of each piece are represented

within a two-dimensional space of onset and morphetic pitch.2 Furthermore, the

paerns are diverse in size and structure, and on the whole are not readily in-

tuitive. It would be straightforward to rank the discovered paerns based on a

set of criteria; for example, to sort by paern size |P |, or the number of paern

repetitions |T (P,D)|. However, such a simplistic approach presents two partic-

ular difficulties. Firstly, the method does not lend itself to any principled means

of deciding how many of the most highly ranked paerns should be selected as

being representative of the repetition in the dataset. Secondly, this method would

preclude the ability to make inter-paern judgments, that is, for the value of one

paern to influence the value of another, due to combinatorial explosion.

COSIATEC is one method for automatically identifying a subset of ‘interesting’

paerns from amongst the many paerns discovered by SIATEC (Meredith et al.

2003; Meredith 2006). COSIATEC is designed to generate compressed representa-

tions of datasets by representing them in terms of highly repetitious subsets. e

algorithmfirst runs SIATEC, generating a list of ⟨P, T (P,D)⟩ pairs, and then selects

the best paern based on heuristics. e algorithm then removes from the orig-

2Morphetic pitch represents the position of a note head on a staff. Both onset and morphetic
pitch are defined in section 3.2.1.
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Table 3.1: Number of notes (onset × mpitch datapoints) and the number of dis-
covered TECs in J. S. Bach’s Two-Part Inventions.

Composition Number of datapoints Number of TECs
BWV 772 458 9035
BWV 773 634 11724
BWV 774 494 9882
BWV 775 443 9304
BWV 776 733 15978
BWV 777 547 17209
BWV 778 473 11103
BWV 779 598 11731
BWV 780 558 11995
BWV 781 439 9038
BWV 782 568 11306
BWV 783 685 15969
BWV 784 564 12250
BWV 785 592 16782
BWV 786 477 10407

inal dataset all the datapoints that are members of the occurrences of the chosen

paern P . e process continues until all the datapoints have been removed from

the dataset. e resulting set of paerns are collectively termed a cover (Wiggins

et al. 2002). In this case, each datapoint is represented in a cover exactly once.

For each iteration of COSIATEC, the remaining paerns are evaluated accord-

ing to three heuristic measures: coverage; compression ratio; and compactness. e

most highly valued paern according to a factor combining these measures is se-

lected to become part of the resulting cover. Compression ratio is also employed in

the present work, alongwith amusic-specific variant of compactness, which incor-

porates voicing information. Both heuristic measures are defined in section 3.2.3.

A variant of coverage is also employed here, specific to our formulation of paern

selection as a weighted set-cover problem, and is defined in section 3.2.2.

Although motivated by compression, COSIATEC has been shown to identify

principal musical themes in pieces of music (Meredith et al. 2003; Meredith 2006).

is is explicable given the very nature of a musical theme, which will typically

appear numerous times during a work, making it an ideal paern for use in the

encoding of a compressed representation. erefore, COSIATEC offers a tidy so-

lution to the difficulties of siing through the output of SIATEC. e problem

becomes one of generating optimal covers given particular heuristics. Further-

more, being a greedy algorithm, the generation of covers entails a degree of pat-
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tern co-dependency, since previously selected paerns will affect the outcome of

later iterations.

3.2 A novel method for the identification of salient

patterns

e approach to paern discovery in the present work follows a similar strategy to

that of COSIATEC. We again formulate the problem as one of cover generation, but

explore possibilities created by shiing the emphasis away from purely optimis-

ing compression. e foremost difference in this approach is that we only apply

SIATEC once—to initially process the entire dataset. Furthermore, we evaluate the

structural salience of each paern discovered by SIATEC only once, prior to cover

generation. erefore, the value of each paern, with respect to a particularmusic-

analytic focus, is determined within the same initial context prior to selection. e

rationale being that, in contrast to COSIATEC, our selection process more closely

relates to the process of musical listening, since listeners perceive paerns in a

musical work in the context of all the notes. e heuristics used for determining

structural salience are based on measures of compression and compactness. ese

values, for each candidate paern, are scaled each iteration of a greedy selection

algorithm by a single varying factor equal to the number of currently uncovered

datapoints that are covered by the paern.

In further contrast to COSIATEC, our cover generation method relaxes the con-

straint requiring that each datapoint be included in a cover exactly once, enabling

us to consider datapoints as potentially belonging to multiple paerns within a

single cover. is creates the opportunity to make connections between paerns

based on intersecting elements, with the intention of revealing structural rela-

tionships between sets of repeated elements. A similar strategy could be pursued

within COSIATEC, but only within the context of each iteration as covered dat-

apoints are removed at each stage. We first introduce additional notational ele-

ments, then state the problem formally as an instance of the generic weighted set-

covering problem, before finally defining the paern evaluation heuristics used to

determine structural salience.

3.2.1 Definitions

To distinguish between the compact representation of TECs generated by SIATEC,

⟨P, T (P,D)⟩, and their set-theoretic definition, we introduce the symbol T to de-
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note a set of translationally equivalent paern occurrences. Set T can be thought

of as the enumeration of the compressed representation of TECs generated by

SIATEC, i.e., each set P ∈ T is an explicit representation of a maximal translatable

paern belonging to a particular TEC.

Definition 3.1. e set T is a set of maximal, translationally equivalent paern

occurrences, containing all instances of a paern discovered by SIATEC belonging

to a single translational equivalence class.

Following the method of cover generation introduced in COSIATEC, covers are

constructed at the level of TECs, meaning that when a TEC is selected to become

part of the cover, the datapoints belonging to each occurrence of the paern P ⊂
D are considered covered. erefore, we introduce the symbol P ′ to denote the

subset of D that is covered by the union of all occurrences of paern P ∈ T .

Definition 3.2. e set P ′ ⊂ D is the union of a set of translationally equivalent

paerns P ∈ T .

P ′ =
∪
P∈T

P

We also assume a symbolic musical surface containing the following event at-

tributes:

• onset, the score-time (quantised) representation of event onset measured in

crotchets, where a crotchet is equal to one time unit;

• mpitch, the morphetic pitch representing the position of a note head on a

staff, where A♮0 is defined to be 0. erefore, themorphetic pitch ofmiddle-C

(C♮4) is 23;

• voice, a binary value indicating whether an event is notated in the le-hand

(= 0) or the right-hand (= 1) part.

3.2.2 Set-cover generation

e approach taken here for the generation of covers from musical paerns dis-

covered by SIATEC can be described in terms of the widely known NP-hard set-

covering problem. Cormen et al. (2001, pp. 1033–1034) state this problem as fol-

lows.

An instance (X,F) of the set-covering problem consists of a finite

set X and a family F of subsets of X , such that every element of X

belongs to at least one subset in F :
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X =
∪
S∈F

S. (3.1)

We say that a subset S ∈ F covers its elements. e problem is to

find a minimum-size subset C ⊆ F whose members cover all of X .

X =
∪
S∈C

S. (3.2)

In other words, the desired outcome of this optimisation problem is to find the

smallest number of subsets in F that account for (cover) each element in X at

least once.

Considering the generic set-cover problem in the context of SIATEC, set X is

equivalent to a datasetD. As in the selection process of COSIATEC, we consider all

datapoints that are members of paern occurrences in T , as constituting a single

subset of D, defined above as P ′ (3.2). erefore, F is equivalent to the entire set

of P ′ subsets of D discovered by SIATEC: F =
{
P ′
0, P

′
1, . . . , P

′
n−1

}
. A set-cover

solution C is equal to the set of P ′ subsets of D that optimally cover D.

e standard approach to set-cover generation utilises a greedy algorithm

based on the heuristic of selecting within each iteration the set S that covers the

largest number of currently uncovered elements in X . If this heuristic results in

a tie, the algorithm randomly selects a single subset from amongst the best-rated

candidate subsets to become part of the cover solution. is algorithm has an ap-

proximation ratio of lnn (Johnson 1973), meaning that the ratio between the size

of the discovered set-cover and the optimum cover is bounded by the natural log-

arithm of the size, n, of the input set. Feige (1998) shows that the approximation

ratio of lnn guaranteed by the greedy algorithm, among others, is the lower-bound

for polynomial time algorithms.

In the context of SIATEC, we define the above greedy selection heuristic

in terms of coveragei (3.4), based on the definition of coverage introduced for

COSIATEC. Meredith et al. (2003, p. 7) define coverage as ‘the number of data-

points in the dataset that are members of occurrences of the paern’, which we

can state equivalently here as the cardinality of P ′ (3.3).

coverage = |P ′| (3.3)

Since set C is constructed incrementally within a greedy strategy, we must update

the coverage of each candidate paern each iteration of the algorithm. We denote
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a partial set-cover solution Ci, where i ∈ Z+ indexes the iterations of the selec-

tion algorithm. We then define coveragei, where i ∈ Z+ again indexes algorithm

iterations, as an extension of coverage taking into account the set of previously

selected paerns P ′ ∈ Ci.

coveragei = |P ′ \ ∪P ′∈CiP
′| (3.4)

In the case C1 = ∅, where ∅ denotes the empty set, our definition of coveragei
is equivalent to coverage as defined by Meredith et al. (2003). To generate a set-

cover, the greedy algorithm therefore selects, for each iteration i, the paern with

the greatest coveragei.

We adopt a greedy strategy here, but for our purpose, simply finding a

minimum-sized subset C ⊆ F by maximising coveragei does not adequately char-

acterise the problem: we require an additional means of specifying which pat-

terns should be considered beer or worse by the selection algorithm in terms of

their musical characteristics. erefore, a more appropriate model for the prob-

lem is the equally well-known generalisation of the minimal set-cover problem:

the minimum-weighted set-cover problem (Chvatal 1979). Typically, a greedy al-

gorithm is also adopted, except that covering subsets are selected in the order that

minimises the ratio of cover weight to number of elements covered.

To place the SIATEC cover problem in this context, it is necessary to aach

weighting values to each of the discovered paerns inF . is step is similar to the

use of heuristics in COSIATEC, except that in this case the values are calculated only

once, prior to the actual selection process. e higher a paern scores according to

a heuristic, the more relevant it is considered to be to the analysis. e heuristics

used to calculate these values are discussed in the following section. Contrary to

the more typical formation of weighted set-cover problems, the selection process

in this case seeks to maximise weight thus,

coveragei ·weight (3.5)

where weight is equal to the structural salience of a paern with respect to the

evaluation heuristics defined in section 3.2.3.

A minimum coveragei threshold, which must be exceeded for a paern to be-

come a member of the cover, has proved a useful parameter in the generation of

set-covers. In practice, a minimum coveragei threshold of between 10 and 30 dat-

apoints is the typical useful range. Higher values in this range are particularly

useful in order to generate covers consisting of only a small number of paerns.
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High coveragei values may lead to not every datapoint in D being represented in

the set-cover solution. However, this is not necessarily unsatisfactory, since not

every note in a piece of music is necessarily part of a repeated paern.

Once it has been determined that a paern should become a member of the set-

cover, a final step is taken to determine whether a paern should be considered

a primary or secondary paern. is step is simply intended to make the gener-

ated results more comprehensible for the human analyst, by aempting to group

together similar paerns. If a paern is the first paern to be selected, it is simply

defined as primary. Each subsequently selected paern is compared to each exist-

ing primary paern in terms of the number of datapoints they commonly cover.

is is in order to identify the primary paern that is ‘most similar’ to the newly

selected paern, quantified in terms of overlapping coverage. If the proportion

of commonly covered datapoints is greater than an arbitrarily defined threshold—

50% in this case—then the newly selected paern is declared a secondary paern,

and grouped together with the most similar primary paern. If the newly selected

paern is not considered similar to any of the other primary paerns it is declared

a primary paern. Whether a paern is defined as primary or secondary has no

bearing on the actual selection process, it is purely a means of organising the se-

lected paerns, as well as offering an estimation of the number of distinct musical

ideas present in the work.

3.2.3 Pattern evaluation heuristics

As noted above, there may be many different forms of repetition in a piece of mu-

sic. It is therefore necessary to establish evaluation criteria in order to automate

the extraction of the kinds of repetitions that are considered relevant to an analyt-

ical objective. Here we describe two heuristics that are used to provide static, or

absolute, measures of the structural salience of paerns prior to cover generation.

Compression ratio is defined as ‘the compression ratio that can be achieved by

representing the set of points covered by all occurrences of a paern by specifying

just one occurrence of the paern together with all the non-zero vectors by which

the paern is translatable within the dataset’ (Meredith 2006, p. 13). Compression

ratio can, therefore, be stated as follows.

compression ratio =
|P ′|

|P |+ |T (P,D)| − 1
(3.6)

Compression ratio is particularly useful for identifying large, non-overlapping pat-

terns that have many occurrences in a dataset.
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e second heuristic used, denoted compactness-v (3.13), measures the com-

pactness of a paern, taking into account given voicing information. Meredith

(2006, p. 13) defines a generic notion of compactness as ‘the ratio of the number

of points in the paern to the number of points in the region spanned by the pat-

tern’. is measure applies to each occurrence of a paern P ∈ T . erefore,

unlike compression ratio, which generates a single value for each TEC, there are

|T | compactness values for each TEC.3 In order to arrive at a single value for a

TEC, since the selection algorithm generates covers by selecting P ′ subsets of D,

the obvious approach is to use either the mean or maximum compactness value

as the TEC weighting value. From a musical perspective, selecting the maximum

paern compactness value to determine the weighting of a TEC can be justified

on the principle that a significant musical theme will typically have at least one

relatively prominent (compact) occurrence in a work.

As discussed by Meredith et al. (2003) and Meredith (2006), the definition of

region, for example, as a segment, bounding box, or convex hull, has implications

for computing the value of compactness for any given paern occurrence. For our

purpose, we define a region as a segment of time bounded by the onset timepoints

associated with the first and last datapoints of a paern P , as defined in (3.7) and

(3.8), where onset(p) gives the timepoint of the onset of datapoint p.

start(P ) = min
p∈P

onset(p) (3.7)

end(P ) = max
p∈P

onset(p) (3.8)

erefore, all datapoints d ∈ D occurring inclusively between the start and end

timepoints of a segment are said to be members of the region spanned by a given

paern P (3.9).

segment(P,D) = {d ∈ D | start(P ) ≤ onset(d) ≤ end(P )} (3.9)

We can now state the generic form of compactness thus.

compactness = max
P∈T

|P |
| segment(P,D)|

(3.10)

However, unlike previous work, we wish to calculate the ratio using only those

notes in the region that are also members of the voices present in the paern. is

decision is based on the assumption that notes belonging to the musical voices

3Or equivalently, in terms of the compressed representation of TECs: |T (P,D)|.
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present in a paern are more likely to influence its perceptual salience, com-

pared with notes belonging to other musical voices. is assumption is consistent

with empirical findings related to melodic streaming (Bregman 1990, pp. 61–64).

Such a definition of compactness, relying to a certain degree on specific musi-

cal knowledge, is less generic than the original geometrical definition. However,

it has proved to be the most satisfactorily performing variant in our exploratory

study. Furthermore, our testing dataset consists of the fieen J. S. Bach Inventions.
Notwithstanding the caveat that the articulation of distinct voicing in timbrally

homogeneous textures, particularly in the case of keyboard instruments, should

not be general assumed, the strict two-part texture of the Inventions gives some

support for utilising voicing information during the selection process.

Extending the above definition of segment (3.9), we define segment-v (3.11),

restricting segment membership to datapoints that belong to a voice also present

in the paern,

segment-v(P,D) = {d ∈ D | start(P ) ≤ onset(d) ≤ end(P ) ∧
voice(d) ∈ voices(P )}

(3.11)

where voice(d) gives the notated voice of datapoint d, and voices(P ) gives the set

of voices in P (3.12).

voices(P ) =
∪
p∈P

voice(p) (3.12)

Our preferred measure of paern compactness can now be defined thus.

compactness-v = max
P∈T

|P |
| segment-v(P,D)|

(3.13)

e values of compression ratio and compactness-v are unit-normalised and

independently subject to minimum and maximum thresholds. Simple min-max

normalisation (equation (3.14); Jain et al. 2005, p. 2276) is used, which linearly

scales the weightings produced by each heuristic, Wh, to values between zero and

one, W
′

h.

W
′

h =
Wh −min

max−min
(3.14)

Minimum and maximum thresholds, defined over the interval [0, 1], and where

minimum < maximum, can be applied to the values of each heuristic indepen-

dently. If the value produced by a heuristic falls beyond the given range, the value

defaults to zero. Seing a minimum threshold for a heuristic is particularly use-

ful as a means of excluding a subset of obviously uninteresting paerns prior to
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generating a set-cover. e removal of redundant subsets is common in the litera-

ture (Caprara et al. 1998, p. 2). In the musical context, excluding very poorly rated

paerns prior to set-cover generation may lead covers that are overall more mu-

sically interesting, even if a smaller cover may be achieved by including a number

of more uninteresting paerns.

Normalised heuristic measures are combined into a final estimation of struc-

tural salience by multiplication.

weight = W
′

compression ratio ·W
′

compactness-v (3.15)

erefore, if a paern is rated maximally by both heuristics, it will have an overall

weighting of one. If a paern is given a rating of zero by either heuristic, the

overall weight will also be zero.

3.3 Case study: Motivic analysis in Ba two-part In-

ventions

We have applied the cover generation method and heuristics discussed above to

J. S. Bach’s Two-part Inventions (BWV 772–786). Each piece is represented as a set

of onset × mpitch × voice tuples. SIATEC was applied to the two-dimensional

projection of onset× mpitch, and voicing information was used only during set-

cover generation. Each piece was analysed using a range of heuristic thresholds.

Findings from the analysis of BWV 772 are reported below. is piece was also

subject to analysis by Meredith et al. (2003) and Meredith (2006), and comparisons

between the findings are noted below.

ere are a total of 9035 TECs discovered by SIATEC in BWV 772. 540 of these

are paerns of less than three notes, which we exclude from the study on the

grounds that at least three notes (a pair of note intervals) is a reasonable minimum

requirement for a paern to be considered as a potentially salient constituent of

musical structure. We then calculate the structural salience weight of each of the

remaining 8495 TECs according to equation (3.15), applying the following thresh-

olds:

• compression ratio (min: 0.2, max: 1.0);

• compactness-v (min: 0.2, max: 1.0).

Within these thresholds, only 268 TECs are assigned a non-zero weight. is con-

siderable reduction indicates that a very large proportion of the paerns discov-

ered by SIATEC are not relevant to this particular analytical focus. Figures 3.1—3.4
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show the distribution of structural salience values according to each heuristic mea-

sure. Both heuristics rate the majority of paerns as very low in salience, and as

can be seen in the sorted plots, the experimentally-determinedminimum threshold

of 0.2 intersects at a point above which salience dramatically increases.

We then generate a set-cover applying the following threshold:

• coveragei (min: 15 datapoints).

Generating a cover with the relatively high coveragei threshold of 15 datapoints

produces a cover consisting of only six paerns—three primary and three sec-

ondary. Seing a lower threshold in this case tends to increase the number of

secondary paerns selected, as considerable coverage is achieved by the first two

selected primary paerns.

Figure 3.5 shows the first occurrence of each selected paern in score notation.

Paerns 1 and 2, the first and second paerns discovered, are the inversion of

the subject, and subject itself respectively. ese paerns are the same as those

discovered by COSIATEC, and are labelled as the subject of the work as analysed by

Dreyfus (1996, p. 10).

e two secondary paerns, 1.1 and 2.1, are both clearly subsets of their parent

paerns. From an analytical perspective, the most interesting aspect of these pat-

terns is how their individual paern of occurrence differs from that of their parent,

as can be seen in the schematic representation of paern occurrence in figure 3.6.

is is particularly apparent for paern 2.1 in bars 16–20, figure 3.7, where many

instances of the paern overlap. As well as highlighting the high density of this

simple descending three-note quaver paern at the end of the piece, the change in

the translations of paern 2.1 in relation to paern 2 suggest some sort of develop-

mental change to the primary paern. In fact, this change corresponds to the note

that immediately follows an occurrence of paern 2, which in these closing bars

forms an interval of a 2nd. All previous occurrences, except for the occurrence

preceding bar 9, are followed by a larger interval, most commonly a 5th. Hence

the overlapping occurrences of paern 2.1 are not present at these locations.

It cannot really be argued that paern 1.2 is a perceptually salient paern

when considered as a single occurrence. However, when taking into account the

larger paern that is formed by the overlapping occurrences, an important paern

emerges. Paern 1.2 is indicative of the gap-fill quaver paern that accompanies

paern 1 in bars 3–4 in the bass, and in bars 11–12 in the treble, shown in figure 3.8.

Paern 1.2 is also embedded in the structure of paern 1 itself, shown by the ar-

rows below the semi-quaver passages, each indicating an embedded occurrences

of paern 1.2 in paern 1.
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Figure 3.1: Compression ratio values for all three-note and above TEC paerns
discovered in BWV 772, presented in the order that paerns are discovered by
SIATEC. e doed line marks the experimentally-determined threshold below
which TECs are excluded from the set-cover generation phase.
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Figure 3.2: Compression ratio values for all three-note and above TEC paerns
discovered by SIATEC in BWV 772, sorted by value. e doed line marks the
experimentally-determined threshold below which TECs are excluded from the
set-cover generation phase.
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Figure 3.3: Compactness-v values for all three-note and above TEC paerns dis-
covered in BWV772, presented in the order that paerns are discovered by SIATEC.
e doed linemarks the experimentally-determined threshold belowwhich TECs
are excluded from the set-cover generation phase.
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Figure 3.4: Compactness-v values for all three-note and above TEC paerns dis-
covered by SIATEC in BWV 772, sorted by value. e doed line marks the
experimentally-determined threshold below which TECs are excluded from the
set-cover generation phase.
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a: Paern 1: bar 3 b: Paern 2: bar 1 c: Paern 3: bar 1

Figure 3.5: e primary and secondary paerns selected from the SIATEC analysis
of BWV 772. Each extract is shown as a complete bar, and rests have been inserted
to indicate the metrical position of each initial occurrence.
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Figure 3.6: A schematic representation of the primary and secondary paerns se-
lected from the SIATEC analysis of BWV 772. e filled boxes are primary paerns,
the empty boxes are secondary paerns. Each box represents a paern occurrence.
To aid clarity, paerns that overlap are draw alternately above and below the line.
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Figure 3.7: Paerns 2 and 2.1 in bars 16–20 of BWV 772. Arrows above each staff
indicate occurrences of paern 2, and arrows below indicate occurrences of paern
2.1. Blue note heads are also used to highlight the first occurrence of paern 2.1.
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Figure 3.8: Paerns 1 and 1.2 in bars 3–4 (above) and 11–12 (below) of BWV 772.
Arrows above each staff indicate occurrences of paern 1, and arrows below in-
dicate occurrences of paern 1.2. Green note heads are used to highlight the first
occurrence of paern 1, and blue note heads for the first occurrence of paern 1.2.

46



3.4 Future work

Applied examples from the literature present several variations on the greedy algo-

rithm that have proved useful in particular domains, which may similarly be ben-

eficial in our case. Marchiori and Steenbeek (1998) describe the Enhanced Greedy

algorithm, which has a more sophisticated heuristic for breaking ties when adding

new covering sets of equal size to the solution. At each iteration the algorithm

also checks for (and possibly removes) sets that become ‘nearly’ redundant in the

solution due to the addition of new sets. e Iterated Enhanced Greedy algo-

rithm is also described, in which a subset of the currently best (smallest) cover is

used as an initial partial solution for a further iteration of the algorithm. Another

approach that would also warrant empirical investigation in this context is the

multiple weighted set cover problem, which is a further generalisation of the ba-

sic set-cover problem where events must be covered a specified minimum number

of times (Yang and Leung 2005). Alternative approaches to the basic greedy al-

gorithm, including approximate linear programming and exact branch and bound

method, are discussed in Caprara et al. (1998).

3.5 Conclusion

A computational method for assisting in the structural analysis of music has been

presented. emethod is essentially a selection algorithm based on a set of heuris-

tics that aempt to determine the quality of discovered paerns in terms of musi-

cal salience. e SIATEC algorithm is integral to the process, since it provides the

initial set of discovered paerns from which the selection is made. Our method

also owes much to the COSIATEC algorithm, which is also a means of selecting im-

portant paerns from the paerns discovered by SIATEC. e primary difference

between our approach and COSIATEC is that our method is not based solely on the

principle of optimising compression, but instead allows musicological principles

to influence the outcome alongside information theoretic measures. As a result,

we are able to select paerns that are deemed to be of musicological interest, but

which may not lead to the generation of a complete or optimally compressed rep-

resentation of the dataset, as is generated by COSIATEC. For example, we are able

to select multiple paerns that share notes in common, but which have differ-

ent paerns of occurrence within a piece. e ability to analyse the occurrences

of closely related paerns within a work can provide interesting insight into the

compositional treatment of thematic ideas.

ere is still a great deal of work to be done in order to improve the qual-

47



ity and reliability of automated music analysis. However, even as it stands, our

system opens up some very interesting possibilities for future work. Automated

systems cannot currently hope to match the quality of analysis performed by pro-

fessional musicologists, but do have an advantage of being able to process very

large amounts of data. e ability to reliably isolate significant musical paerns

and infer basic structural relationships between paerns from across a database

of many thousands of pieces of music could form the basis of a rich source of

information—both in the sense of musical knowledge, with potential applications

in domains such as artificial intelligence and music information retrieval, but also

in the sense of data to be analysed by musicologists, potentially extending the

scope of traditional musicological enquiry.
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Chapter 4

Conceptual space point set models of
melodic similarity

is chapter employs a representational strategy for musical information based on

point sets in low-dimensional spaces, as in chapter 3, but one in which the space

is also equipped with a norm, plus a transformational distance measure capable of

measuring distance between sets of points. e objective of this approach is the

modelling of melodic similarity. e Earth Mover’s Distance (EMD) metric (Rub-

ner et al. 2000) is employed as the transformational similarity measure between

point set representations of melodies (Typke 2007). Evaluation is firstly conducted

against a dataset of human similarity rating between a set of existing popular mu-

sic melodies and a set of carefully constructed melodic variations. is dataset

originates from a psychological experiment reported by Müllensiefen and Frieler

(2004), and models developed therein provide the basis for comparison. Further

evaluation is performed over the dataset used in theMIREX 2005 symbolic melodic

similarity evaluation.4 e objective of the MIREX evaluation was to compare

the retrieval accuracy of a number of melodic similarity algorithms given a set

of query melodies. For each melodic query, the corresponding set of most similar

melodies was established in advance bymusical experts (Typke et al. 2005). A com-

parison between the performance of the models developed in this chapter against

the results of this MIREX evaluation is particularly appropriate as the evaluation

method and data originate from Typke’s work on EMD-based melodic similarity

(Typke 2007), on which the present research is based. e EMD-based algorithm

developed by Typke was also submied to the MIREX evaluation, thus afford-

ing direct comparison. e relationship between the two experiments reported in

the chapter, one psychologically oriented, the other towards music information

4hp://www.music-ir.org/evaluation/mirex-results/sym-melody/index.html
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retrieval, raises some interesting issues concerning the respective approaches of

each discipline towards music. In particular, we show that models motivated by

psychological concerns, and trained on psychological data, can exhibit compara-

ble performance to models trained directly over exemplar training sets, as is the

typical approach in machine learning and information retrieval communities. is

is not to argue that the approach adopted by one community is necessarily beer

than the other, since the motivations of each can be very different, but to highlight

the potential mutual benefits of multi-disciplinary perspectives in furthering the

scientific understanding of music.

In the context of the narrative of this thesis, the representation and consequent

models developed in this chapter can be understood as a hybridisation of the or-

dered vector space representation studied in chapter 3 and the normed vector space

representations explored in chapter 5.

4.1 Earth Mover’s Distance

4.1.1 Baground

e Earth Mover’s Distance, along with an associated compressed representation

of feature distributions called signatures, was first described as a distance metric

in the context of image retrieval by Rubner et al. (2000). EMD offers a means to

compare the difference between multidimensional distributions, based on the min-

imum cost required to transform one distribution into the other, an idea initially

proposed by Peleg et al. (1989).

Images are oen summarised bymultidimensional distributions over some fea-

ture space, ormore typically fixed-bin histograms of such distributions. A common

issue faced when using histograms is determining the optimal partitioning of the

feature space, resulting in a trade-off between expressiveness (too few bins to ac-

curately characterise the distribution) and time and space complexity (too many

bins). Signatures are instead proposed as a space efficient, adaptable represen-

tation. A signature
{
sj =

⟨
mj, wmj

⟩}
represents a set of feature clusters, where

mj is the mean (or mode) of cluster j, and wmj
the fraction of pixels belonging to

that cluster, corresponding to its prominence or weight in characterising the im-

age (Rubner et al. 2000, pp. 104–105). Clustering must first be performed for each

image to determine the representative clusters. e key point is that the length

of each signature depends on the complexity of the image, and EMD is a metric

capable of measuring distance between signatures of varying length.
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Rubner et al. (2000) provide a proof that EMD is a true metric when distribu-

tions are of equal mass, and present empirical evidence that EMD can offer a beer

account of perceptual similarity in the context of image retrieval, compared to a

number of preexisting histogram-based dissimilarity measures.5

In addition to improved retrieval accuracy, EMD naturally affords partial

matching. When two distributions differ in mass, EMD is the minimum cost of

transforming the smaller distribution into a subset of the larger. In this case EMD

is not a true metric, although metric variants have since been developed (Pele and

Werman 2008; Pele and Werman 2009).

e original description of EMD focuses on distances between distributions

because of the domain specific requirement of image processing. However, the

authors note that EMD can be viewed more generally as a method that ‘extends

the notion of a distance between single elements to that of a distance between

sets, or distributions, of elements’ (Rubner et al. 2000, p. 105). In the context of

discrete representations of music, viewing EMD as a measure of distance between

sets of elements, such as a set of points in a two-dimensional space of time and

pitch, is most appropriate for a number of reasons. First, as music exists over

time it is essential that sequentiality not be thrown away casually, as would be

the case if one were to analyse distributions of duration or IOI values. Second,

in comparison to images, symbolic music data is typically smaller, and can oen

be processed directly, without the need for summarising features. However, more

importantly, discrete representations of a musical surface are already situated at a

sufficiently high level to be considered as representations of objects of cognition,

unlike individual pixel information.

4.1.2 A weighted point set representation of melody

Before turning to the definition of EMD itself, it is necessary to first define a basic

representation appropriate to music over which EMD can be measured. is rep-

resentation will be developed further in section 4.2, developing Gärdenfors’ notion

of conceptual space in the context of point set representations of complex stimuli.

Based on Typke (2007), weighted point sets are defined as follows.

Definition 4.1. Let A = {⟨a1, w1⟩ , . . . , ⟨am, wm⟩} be a weighted point set of m

point-weight pairs, i = 1, . . . ,m, where ai ∈ Rk with wi ∈ R+ ∪ {0}. Let W =∑m
i=1wi be the total weight of set A.

5e histogram dissimilarity measures tested were: L1 distance, Jeffrey divergence, χ2 statistic,
and adratic-form distance.
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Typke represents each note of a melody as a point in a two-dimensional Eu-

clidean space of notated onset-time × pitch. Rests are not represented explicitly.

e onset time of each event is normalised with respect to the encoding timebase,

to ensure a common time scale. Pitch is represented in Hewle’s Base-40 notation

(Hewle 1992).6 Duration is then used as the weight associated with each point.

e point of departure for Typke’s representation is conventional score notation,

which broadly speaking represents pitch and time in two dimensions, and uses

different symbols to represent note duration. e rationale for the use of duration

as EMD weight is that longer notes are typically more salient in a melody, and

therefore deserve greater weight in determining overall melodic similarity.

4.1.3 EMD definition

Computing EMD relies on a solution to the well known transportation problem
(Hitchcock 1941). is problem involves finding the most cost-effective means of

transporting a quantity of goods from a given a number of suppliers, to a given

number of consumers. Each supplier has a stated amount of goods, while each

consumer has a limited amount of capacity. e demand for supply must be met

for each consumer, assuming sufficient quantity of goods are available. e cost

of transportation between each supplier-consumer pair is given. A solution to the

transportation problem describes a particular flow of goods between each pair of

suppliers and consumers. e amount of work involved is characterised by the

amount of flow, together with the cost of transportation, between all pairs. e

amount of work involved is used as a term in the definition of EMD.

Casting weighted point set representations of melodies into this scenario, one

melody point set is arbitrarily designated as the set of suppliers, and the other as

the set of consumers. e weight associated with each point becomes the respec-

tive supply or demand of goods to be transported, and the cost of transportation

between each supplier-consumer pair is the distance between the points in the

space. In the context of EMD, distance in this space is called the ground distance,
referring to the analogy characterising EMD as the amount of work required to

move piles of earth into holes in the ground. Rubner et al. (2000, p. 104) stress the

importance of defining a perceptually-motivated ground distance. is question is

addressed in terms of conceptual space representations in section 4.2. Intuitively,

this process can be thought of as the cost of transforming one point set (melody)

into another. When two identical point sets are considered, zero cost will be in-

curred because all pairs of supply and consumer points are co-located in the space,

6MIDI pitch number is used in the MIREX 2005 evaluation corpus.
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requiring no movement of weight.

Based on Rubner et al. (2000), the transportation problem can be formulated as

the following linear programming problem: Let P =
{⟨

p1, wp1

⟩
, . . . ,

⟨
pm, wpm

⟩}
be the first weighted point set with m points, where pi is a point representing

an event, and wpi is the associated weight; Q =
{⟨

q1, wq1

⟩
, . . . ,

⟨
qn, wqn

⟩}
the

second point set with n points; and D = [dij] the ground distance matrix where

dij is the ground distance between points pi and qj .
e optimal solution involves finding a flow F = [fij], where fij is the flow

between pi and qj , which minimises the overall cost

WORK (P,Q, F) =
m∑
i=1

n∑
j=1

dijfij, (4.1)

subject to the following constraints:

fij ≥ 0 1 ≤ i ≤ m, 1 ≤ j ≤ n (4.2)
n∑

j=1

fij ≤ wpi 1 ≤ i ≤ m (4.3)

m∑
i=1

fij ≤ wqj 1 ≤ j ≤ m (4.4)

m∑
i=1

n∑
j=1

fij = min

(
m∑
i=1

wpi ,

n∑
j=1

wqj

)
(4.5)

Constraint 4.2 ensures that all weight only flows in one direction, from the

suppliers to the consumers. Constraint 4.3 ensures that the flow from any supplier

cannot exceed its weight, and similarly constraint 4.4 ensures that no consumer

can receive more than its weight. Constraint 4.5 ensures that the maximumweight

possible is moved, which is equal to the total weight of all suppliers, or all con-

sumers, whichever is the smaller. is amount is called the total flow. Solving the

transportation problem results in the optimal flow F. EMD is then defined as the

resulting work normalised by the total flow:

EMD (P,Q) =

∑m
i=1

∑n
j=1 dijfij∑m

i=1

∑n
j=1 fij

. (4.6)

Normalising by total flow ensures that the resulting work remains proportional to

the weights of the point sets under consideration, thus avoiding favouring smaller

weighted point sets.

A number of approaches exist for efficiently solving EMD. Rubner et al. (2000)
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implement the streamlined transportation simplex (Hillier and Lieberman 1990),

taking advantage of the particular structure of the underlying transportation prob-

lem. We apply a standard simplex solver7, which provides more than adequate

performance for our purpose.

4.2 EMD model definitions

Building on the general weighted point set representation defined in section 4.1.2,

we now specify the models to be tested. Eachmodel consists of three variable com-

ponents: a space, a norm, and a weighting scheme. A space is a set of dimensions

within which the events of a melody are represented as points. A norm defines the

length of vectors in the space, which determines the distance between points in

the space—the ground distance. Finally, a weighting scheme defines how weight

is assigned to each point, which here is used primarily to determine whether EMD

measures are based on partial or complete matching between point sets.

4.2.1 Ground distance dimensions

Basic attributes

We begin with a symbolic definition of the musical surface from which we sub-

sequently derive a number of conceptual space representations. Let a melody

mj
i = ⟨e1, e2, . . . , ej⟩ be an ordered sequence of events of length j ∈ Z+, indexed

by i ≤ j. Each event is a 4-tuple ⟨onset, cpitch, cpitchc, dur⟩ consisting of four

basic aributes: onset time, chromatic pitch, centred chromatic pitch, and dura-

tion. A fixed-width font is used to distinguish the symbolic definition of aributes

from their derived conceptual-level geometric definition below.

Onset is defined as the score-time representation of an event onset relative to

the notional beginning of the melody, defined as timepoint zero, and measured in

crotchets, where a crotchet equals one time unit. Unlike Typke (2007) we do not

insist that the onset time of the first event of all melodies must be equal to zero. For

melodies that do not begin on the first beat of the bar, but are notated as beginning

equal to or before the mid-point of the bar, leading rests are respected. erefore,

in this situation, the onset of the first event will be greater than zero, but less

than or equal to the number of beats in the bar divided by two. For melodies that

are notated as beginning in the second half of the bar, we assume this represents

7glp_simplex from the GNU Linear Programming Kit (GLPK), using a custom foreign function
interface bindings from Common Lisp to the GLPK Graph API.
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an anacrusis figure, and shi the melody earlier in time by one bar, to the effect

that anacrusis events have negative onset values, and the first downbeat of the

melody is equal to zero. Where melodies contain multiple bars rest before the first

event, as is common in the RISM dataset, all leading empty bars are removed. It

is also common in the RISM dataset for leading rests not to be explicitly notated.

erefore, when the number of beats of the first notated bar is detected as being less

than the expected number of beats given the notated time-signature, the metrical

position of events in the opening short bar is computed relative to the downbeat

of the next bar, ensuring the correct metrical interpretation is derived. Duration

is defined as the interval between an event onset and offset as given in the score,

also measured in units of crotchets.

Chromatic pitch is simply represented by MIDI note number, providing a rep-

resentation of absolute pitch height. Centred chromatic pitch is the same as chro-

matic pitch, except transposed so that the duration-weighted mean pitch height of

each melody is equal to middle-C, represented byMIDI note number 60. Duration-

weighted mean pitch height is defined in equation (4.7), where mj
i is the melodic

sequence under consideration, and the functions cpitch(.) and dur(.) here return

the chromatic pitch and duration values respectively associated with eventmi. e

motivation for considering centred pitch height is to minimise the impact of dif-

ferent tessitura, and to some extent key, when comparing pitch height. Only one

absolute pitch representation is projected into a conceptual space in any model.

More musically sophisticated representations of pitch, such as pitch-class or scale-

degree, could also be used as the basis for alternative transposition-invariant pitch

height representations, and will be evaluated in future work. However, being an

absolute representation of pitch height, centred chromatic pitch has the additional

benefit of preserving melodic contour, without requiring additional dimensions.

DWMPH(mj
i ) =

∑j
i=1 cpitch(mi) · dur(mi)∑j

i=1 dur(mi)
(4.7)

It is perfectly possible to treat the above event tuples as points in a vector

space, analogous to the point set representation used by SIA in chapter 3. How-

ever, as our objective here is the construction of a conceptual space in which dis-

tance between points corresponds to a notion of psychological similarity, treating

the basic aributes directly as, for example, values in a three-dimensional space

of onset× cpitch× dur is unlikely to yield meaningful distances due to the dif-

ferent ranges and scales of each aribute. Furthermore, the perception of event

aributes need not necessarily manifest in the same linear form as their sym-
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bolic representation. For example, several authors have investigated the cognitive

structures associated with tonal pitch perception, and have proposed various mul-

tidimensional spiral-like representations (Jones 1981; Shepard 1982; Chew 2004;

Krumhansl 2005). More complex cognitive representations such as these, and those

developed in chapter 5 concerning metre, are not considered here. However, the

perceptually-motivated scaling of aribute values is investigated.

In order to project basic event aributes into a conceptual space, as opposed

to merely a geometrical space, it is necessary to scale the values of the aributes

appropriately so that all values are represented in the same relative unit of mea-

surement. Standardisation of variables is intended to serve two primary purposes.

First, it affords a degree of compatibility between dimensions. Intuitively, it al-

lows variance in one aribute to be meaningfully compared and combined with

variance in another. Second, we predict that using standardised dimensions will

afford a degree of model generality, meaning that models trained on one dataset

should be applicable to another broadly similar dataset, even if the underlying at-

tribute representation or overall corpus statistics differ. Standardising dimensions

is closely related to dimension salience weights introduced below. In fact, both

are identical processes applying a linear scaling to a dimension. However, each

serves a distinct purpose, and it is useful to consider them independently, as will

be discussed below.

Following the standardisation strategy recommended by Raubal (2004), we sim-

ply map aributes onto quality dimensions using a z-transformation (4.8).

zi =
xi − X̄

sX
(4.8)

Where xi is the aribute value to be transformed, zi is the standardised quality

dimension value, and X̄ and sX are respectively the mean and standard deviation

of aribute X . In the case of onset, the mean and standard deviation of melody

length over the corpus is used for standardisation. Each of the other basic at-

tributes are simply treated as distributions directly, and standardised according to

the mean and standard deviation computed over the corpus. is method assumes

that aribute values follow a normal distribution, which is a reasonable assump-

tion in our case. A alternative method would be to use distributional distance

(Müllensiefen 2009), whereby normalised aribute distance is defined in terms of

an empirically derived cumulative distribution function. e method would be

particularly useful for non-normal distributions, but it will not be considered fur-

ther here.

56



We can now define four quality dimensions, corresponding to the above four

z-transformed basic aributes thus:

•  = R
•  = R
• c = R
•  = R

e ground distance space of a model is defined as the Cartesian product of indi-

vidual dimensions, allowing different models to be specified combining different

dimensions. Two further dimensions representing relative aributes are defined

below, and these can be combined analogously. e space  × c is

taken as our baseline ground distance space, as onset and centred chromatic pitch

are the aributes investigated by Typke (2007).

Every quality dimension is also equipped with a salience weight. Salience

weights are not shown in the basic representation for clarity, but when it is neces-

sary to refer to them directly they will be notated as a preceding multiplying term,

for example, 0.5·×1.0·. Asmentioned above, salienceweights apply a

linear scaling to a dimension, in much the same way as dimension standardisation.

However, standardisation happens at the beginning of a modelling process, when

surface-level aributes aremapped to quality dimensions, and salience weights are

adjusted subsequently during model fiing. If standardisation were omied, the

fiing process should be able to still find the optimum scaling parameters. How-

ever, this collapses issues of dimensional scale and genuine perceptual salience into

a single factor, sacrificing both interpretation and potential model generality. For

example, one approach used by Typke addresses this issue from the perspective

of aribute scaling, whereby time values are multiplied by three in order to bias

the solution of the transportation problem by not making it ‘too cheap to move

weight in the time dimension in comparison to the pitch dimension’ (Typke 2007,

p. 33). In this case, the value three does not lend itself to further interpretation:

it is meaningless to consider it in relation to the relative importance of the time

and pitch dimensions in the model of similarity.8 is issue becomes more seri-

ous when further dimensions are added to the space, and standardisation offers

some assurance that a high salience weight as a result of model fiing is a gen-

uine indication of perceptual importance.9 Furthermore, when dimensional scale

8Another more sophisticated approach based on the optimal alignment of segmented queries
is use in Typke’s EMD-based retrieval algorithm submied to the MIREX 2005 symbolic melodic
similarity evaluation. is algorithm is discussed further in section 4.4.1.

9A post-hoc investigation into the information theoretic characteristics of individual dimen-
sions could prove useful here. If any such link was found to exist, it could lead to the ability to
predict salience weights, rather than relying on search.
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and salience are conflated, it becomes less likely that a model that works on one

dataset will exhibit comparable performance over different data, especially in cases

where different aribute representations are used. For example, representing on-

set values in milliseconds will require a very different scaling factor than onsets

represented in units of crotchets. However, using standardised values removes

this complication. Furthermore, it allows one to probe the question of whether

empirically discovered dimensional saliences generalise across corpora.

Relative attributes

All melodies are assumed to be Charm stream constituents, meaning that no events

overlap in time, and events are ordered by time (equation (2.2); Harris et al. 1991).

is allows us to construct two further relative aributes: inter-onset interval (ioi)
and pitch interval (cpint).10 Relative aributes represent relations between basic

aributes. However, in order to simplify the representation, they are treated as

properties of events in the same way as basic aributes. is process is formalised

in equations (4.9) and (4.10).

ioii =

onseti − onseti−1 if 1 < i ≤ j

⊤ otherwise.
(4.9)

cpinti =

cpitchi − cpitchi−1 if 1 < i ≤ j

⊤ otherwise.
(4.10)

e⊤ symbol denotes an undefined value. erefore, the above definitions specify

that relative aributes are undefined for the first event in a sequence. Moving from

symbolic aributes to a vector space, the presence of undefined values presents

a serious problem. A mathematically correct approach might be to keep basic

and relative aributes separate, in distinct spaces. However, this raises a question

regarding EMD, which assumes all points are represented in a single space. One

approach might be to compute EMD separately in basic and relative spaces, and

somehow combining the resulting distances into a single measure. However, this

is beyond the scope of the present work.

In order to investigate the inclusion of relative aributes into EMDmodels, we

adopt the following workaround, acknowledging its semantic inconsistency and

potential source of additional noise. When mapping undefined relative aributes

10e notion of relative aributes here is related to derived viewpoints in a multiple viewpoint
system (Conklin and Wien 1995) developed in the context of statistical modelling of symbol se-
quences.
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in the first event of each melody, the undefined value is replaced with the mean

value of that aribute in the melody under consideration. In this way, the ground

distance from the first event to all subsequent events in this dimension is min-

imised and evenly distributed. is gives us two further dimensions to investigate

when computing ground distance:

•  = R
•  = R.

Following Typke (2007), all spaces investigated here contain an onset dimen-

sion, and either a centred or non-centred chromatic pitch dimension, providing a

basic representation of melodies as an ordered sequences of events in time, where

each event contains a definite pitch height. All other defined dimensions are com-

bined in turn with the basic representation to test their impact independently on

the task of predicting melodic similarity. Two further spaces are defined, contain-

ing all additional dimensions along with a centred or non-centred chromatic pitch

dimension, in order to test the combined impact. erefore, the complete list of

spaces to be tested is as follows.

• × c

• × 

• × c × 

• × × 

• × c × 

• × × 

• × c × 

• × × 

• × c × × × 

• × × × × 

A consequence of including  within each ground distance space is that

the representation does not provide shi-invariance in time. As described in detail

in section 4.4.1, Typke (2007) addresses this issue algorithmically by segmenting

melodies, and then translating and scaling each segment in time to find an optimal

alignment. erefore, in cases where melodies under comparison contain identi-

cal segments, but which appear in a different order, they may still be matched. An

alternative approach to be pursed in future work will be to extend the representa-

tion to afford greater degrees of shi invariance by including metrical information.

In the most simple case, the inclusion of a quality dimension representing the po-

sition of events in the bar, either instead of or alongside , would allow for

more flexible matching that is less dominated by strict sequential ordering.
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4.2.2 Norms

We now have a number of different conceptual vector spaces within which to

represent melodies. Recall that the ground distance matrix D[dij] required in the

computation of EMD represents the distances from all the points representing the

notes of one melody, to all the points representing another. In order to measure

these distances, a norm must be specified defining the length of the vectors be-

tween points.

We use the common L1 norm, corresponding to city-block distance, and the

L2 norm, corresponding to Euclidean distance. Each space defined above will be

tested with both L1 and L2 norms for comparison. We predict that L1 norm will

provide the most accurate measure of perceptual distance based on Gärdenfors’

rule of thumb that city-block distance is more appropriate for modelling separable

dimensions, and that Euclidean distance is more appropriate for integral dimen-

sions (see section 2.3.1). While in one sense pitch and time dimensions are integral

because a sequence of perceived pitches exists in time, our intuition is that pitch

and time dimensions will be beer modelled as an additive combination because

the effect of change in either can be readily apparent as a distinct qualitative dif-

ference in perception.

4.2.3 Weighting semes

e weights associated with each point are integral to the computation of EMD,

since it is a measure of the amount of work required to move weight from the

points in one point set, to the points in another. One way to conceptualise weight

is as an extra dimension, external to the ground distance space, but exerting an

influence on the overall measure of distance between point sets from ‘outside’ the

vector space formalism. In applications of EMD, weight is typically described as

reflecting the relative importance of individual points in a point set. Typke (2007)

follows this logic by using note duration as weight, under the reasonable assump-

tion that longer notes aremore important in perception. In conceptual space terms,

in adopting this view weight becomes analogous to quality dimensions, because it

is a representation of a perceptually important variable quality.

A potential problem with endowing weight with perceptual significance is de-

termining the appropriate level of influence weights have in the computation of

distance relative to the ground distance dimensions. is is an issue closely related

to the previous discussion of dimension standardisation and salience weights. For

quality dimensions, we have proposed a uniform mechanism for addressing the
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scaling and relative importance of dimensions, which is possible because qual-

ity dimensions are defined within a general vector space formalism. However,

weights exist outside this framework, and their influence on distance can not be

interpreted in terms of simple geometrical transformation. is is not to argue that

EMD weights should not represent perceptually relevant qualities at all, only that

to do so requires careful consideration of how ground distance andweighs interact,

a thorough investigation of which is out of the scope of the present study.

Our preferred method of assigning weight to points is to consider it in the

abstract, and not as a representation of a variable perceptual quality at all. In

doing so, we define two weighting schemes, each serving a well-defined purpose

entirely independent of variable melodic qualities.

Weighting scheme P assigns all points an equal weight. e value of the

weight is defined relative to the largest point set in the corpus (4.11).

wai =
1

maxX∈Y |X|
, ∀ai ∈ A, ∀A ∈ Y (4.11)

wai is the weight according to weighting scheme P for point ai in set A. X is a

point set from a corpus Y , and |X| is the cardinality of the point set X . e total

weight of the longest melody will therefore sum to one. All shorter melodies will

have a total weight of less than one.

Applying weighting scheme P in a comparison between melodies comprised

of different numbers of events will lead to all events from the shorted melody be-

ing matched to a subset of events from the longer melody. Within this scheme,

non-matched events from the longer melody do not contribute to the measure

of similarity. We refer to this scheme as the partial matching weighting scheme,
and the resulting measure of EMD employing this weighting scheme as partial
matching EMD, because for melodies of unequal length, longer melodies are only

partially matched in order to calculate EMD. All events of shorter melodies do

contribute to the resulting measure of similarity, and in this sense are completely

matched. However, the terminology used here reflects the fact that for unequal

length melodies, EMD is calculated based on partial matching with respect to the

longermelody. Wheremelodies under comparison are comprised of an equal num-

ber of events, this scheme does lead to complete matching between both melodies.

However, we reserve the label complete matching weighting scheme for the follow-

ing weighting scheme, which explicitly enforces complete matching between both

melodies irrespective of length.

Weighting scheme C assigns all points in a set an equal weight proportional to
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the cardinality of the set, as defined by equation (4.12). e total weight for each

point set will sum to one, giving an EMD measure based on complete matching

because all the weight of the source point set is able to flow to the sink point set.

An EMD measure incorporating this weighting scheme will be referred to in the

text as complete matching EMD. Although all points within a point set will have

equal weight, the specific weight value will vary between point sets depending on

their size, with the points representing the events of longer melodies receiving less

weight than those representing the events of shorter melodies.

wai =
1

|A|
, ∀ai ∈ A (4.12)

In partial matching EMD, all points have a weight in units of a common stan-

dard, which in the simplest case all events have the same unit weight, as adopted

here. is leads to a measure of distance based on the differences between the best

matching events across a pair of melodies. In psychological terms, this method em-

beds an assumption that common or similar elements between stimuli are more

important in determining psychological distance than very unrelated events. Fur-

thermore, the solution to the underlying partial matching transportation problem

can be given a more natural higher-level interpretation compared with complete

matching. In partial matching, weight is more likely to be transported on an event-

by-event basis due to the common unit of weight. Weight is in no way constrained

to flow exclusively between disjoint pairs of events, and is free to flow across mul-

tiple events in order to achieve the optimum solution. However, this is always

the case when applying the complete matching weighting scheme to melodies of

unequal length, because the weights associated with the points of each point set

are determined by the size of each set respectively, which must sum to a speci-

fied common amount. is leads to a flow that is more abstractly related to the

identifiable concepts captured in the representation.

e partial matching weighing scheme offers a means of ignoring unmatched

portions of melodies. For otherwise highly similar melodies only differing in

length by a small number of events, this offers a potential advantage over com-

plete matching. e addition of a small number of melodically coherent events

is likely not to greatly affect human judgements of similarity, and in the partial

matching scenario, the addition of such events would not affect the predicted sim-

ilarity. However, the presence of even a single additional event when applying the

completematchingweighting scheme can substantially alter the flow of weight be-

tween point sets, and disproportionately affect the prediction of similarly. How-
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ever, as the difference in melody length grows, additional events are likely to exert

an increasing influence on perceived similarity, which cannot be accounted for by

the partial matching EMD measure. In this situation, the more abstract notion of

EMD based on the complete transformation of one point set into another may of-

fer a beer account of perceptual similarity. A variant of EMD developed by Pele

and Werman (2009) does take into account unmatched weight within a partial-

matching weighting scheme. is algorithm may offer a compromise between the

two classical partial and complete matching EMD approaches, and should be con-

sidered in future work.

Returning to the present study, and in light of the above discussion, we would

expect partial matching EMD to perform well given the controlled nature of the

Müllensiefen and Frieler (2004) dataset. is dataset consists of original melodies

and variants, all of roughly equal length, as can be seen in figure 4.1. However,

the variation in melody length is substantially greater in the MIREX 2005 sym-

bolic melodic similarity dataset, as can be seen in figure 4.2. erefore, complete

matching EMDmay be beer suited to this dataset, due to the increased proportion

of potentially salient melodic content that is ignored in the calculation of partial

matching EMD.
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Figure 4.1: Histogram of the difference in length between original and variant
melodies in the Müllensiefen and Frieler (2004) dataset.

For means of comparison, two further weighting schemes are defined allowing

both partial and complete matching but where weight is also allocated proportion-
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Figure 4.2: Histogram of the difference in length between query and candidate
melodies in the MIREX 2005 symbolic melodic similarity dataset.

ally to note duration. In weighting scheme Pd (4.13), all events of equal duration

will have equal weight, and the total weight for each set will vary. e total weight

for the melody containing the greatest sum of durations will be equal to one. e

function dur(.) here returns the duration value associated with the event repre-

sented by each point.

wai =
dur(ai)

maxX∈Y
∑m

j=1 dur(xj)
, ∀ai ∈ A, ∀A ∈ Y (4.13)

In weighting scheme Cd (4.14), all events of equal duration within a melody will

have equal weight, but the specific amount will vary across melodies. e total

weight for each point set will sum to one, ensuring complete matching.

wai =
dur(ai)∑m
j=1 dur(aj)

, ∀ai ∈ A (4.14)

Defining these additional duration-based weighting schemes will afford direct

comparison betweenmodels incorporating duration information as quality dimen-

sions, and alternatively as EMD weight. We expect duration information to be

more useful as a quality dimension because this method allows for the optimum

scaled combination of dimensions to be discovered.
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4.2.4 Model specification

An EMD model is constructed from three components: a space, a norm and a

weighting scheme. Models are notated as a tuple within parentheses, for example:

(× c, L
1, P )

Combining the ten space definitions from section 4.2.1, with the two norms de-

fined in section 4.2.2, and the two preferred weighting schemes from section 4.2.3,

produces 40 separate models. A further eight models are constructed combining

the two spaces × c and ×  with the two norms, and the

two duration-based weighting schemes from section 4.2.3.

Each model also has a set of parameters that will be optimised during model

fiing. e parameters are the salience weights associated with each quality di-

mension in the space, and are assumed implicit in the above notation, as discussed

in section 4.2.1. One further global scaling parameter ϵ, is necessary for eachmodel

due to the use of regression methods in section 4.3 to compare model predictions

with human similarity ratings. e parameter ϵ is an exponent used to apply an

exponential transformation to EMD distance measures so that linearity between

predictions and human similarity ratings is maximised. e value of ϵ is deter-

mined empirically during model fiing, and across all models was found to take

on a value of between 0.28 and 0.69 (see appendix C). e value of ϵ is irrelevant

when dealing with only the rank order of predicted similarity, as is the case for

the MIREX experiment in section 4.4. Where it is necessary to explicitly refer to

ϵ using the model notation, it will be included as an exponent appended to the

model definition, as in the following example.

(× c, L
1, P )0.5

4.3 Experiment 1: Pop melody similarity

For the purposes of model fiing and evaluation, experiment 1 uses a corpus of

carefully selected pop melodies and associated expert human similarity ratings

gathered as part of a psychology experiment into melodic similarity conducted by

Müllensiefen and Frieler (2004). e corpus contains fourteen Western pop music

melodies, listed in appendix B, all of between seven and ten bars long (15–20 s).

For each original melody, six variations were constructed, giving a total of 84 com-

parison melodies.
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Similarity ratings were collected for all pairs of original and variationmelodies.

In order tomake the taskmore realistic, participants, all musicology students, were

asked to imagine a familiar aural training scenario. ey were told to imagine that

the first melody presented from each comparison pair (an original melody) corre-

sponded to a reference melody played by a teacher on a piano, and that the second

melody (a variation melody) corresponded to a student’s aempt to reproduce the

first from memory, which may contain between none and many errors. Partici-

pants were told then to rate, on a scale of 1 to 7, how accurately each variation

melody corresponded to the original, with 7 meaning that they judged the varia-

tion melody to be identical to the original, and 1 that it contained many errors.

Variation melodies were constructed according to known limitations of

melodic memory (see references in the original article). e “errors” introduced,

with respect to the hypothetical aural training scenario, are categorised as follows:

rhythmic errors; pitch errors not changing pitch contour; pitch errors changing

the contour; errors in phrase order; modulation errors (pitch errors that result in

a transition into a new tonality). An example original melody, along with a set of

variations are presented in figure 4.3. Variation D2 (omied in the figure) is iden-

tical to the original melody, and variations D1 and D3 contain subtle changes of

pitch, retaining the basic structure of the original melody. Variations D5 keeps the

same pitch structure as the original melody, but breaks up the even flows of qua-

vers by introducing semiquavers, changing the rhythmic character of the melody.

e phrase structure of D4 and D6 are altered from the original in the same man-

ner, with D4 introducing further variation through modulation of key. As can be

seen, all variations are coherent and stylistically plausible melodies in their own

right.

Similarity ratings were collected from 82musicology students. Since the aim of

the experiment was to investigate an expert notion of similarity, the subjects were

required to demonstrate consistency over multiple trials, and the ability to recog-

nise identical melodies with high accuracy. Out of the 82 subjects that participated,

only 23 proved sufficiently expert at the task. e inter-subject reliability of this

subset of subjects was analysed, and found to be high (Cronbach’s α = 0.962), giv-

ing some assurance that the notion of melodic similarity is at least a stable concept

for musical experts.

Müllensiefen and Frieler (2004) test a total of 39 models of melodic structure,

covering a range of algorithms, assessing their ability to predict the human sim-

ilarity ratings. Linear regression models between predicted and actual similarity

ratings are used to evaluate predictive ability. EMD-models are not considered in
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Figure 4.3: Example stimulus melodies from Müllensiefen and Frieler (2004). e
original melody (D orig.) in stimulus set D is taken from the song Passion Fruit by
Wonderland. Melodies D1–D6 are variation melodies. D2 is omied here as it is
identical to the original.
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the original study, but we adopt the same evaluation method so that our results

may be directly compared with the models used.

4.3.1 Model fitting

To reiterate, the free parameters in each model are the salience weights associated

with each quality dimension defined in the ground distance space, plus a global

exponent scaling parameter ϵ. At initialisation, all model parameters default to

1.0. We expect that different quality dimensions will be important to different

degrees in modelling human similarity judgements. From preliminary testing, it

was discovered that model predictions of similarity and human ratings tended to

be exponentially related. erefore, we also determine the optimum value of ϵ

empirically, along with the values of the salience weights of each model, within a

random sub-sampling cross-validation scheme to avoid overfiing.

e stochastic search technique Simulated Annealing (SA) (Kirkpatrick et al.

1983) is used to discover the approximate optimum parameter values. SA tries to

find a point in the parameter space that minimises a cost function. Each iteration,

the algorithm generates a new set of parameter values following a random walk.

If the parameters lead to a lower cost value according to the cost function, then

the algorithm accepts the new point. If not, the algorithm may still accept the

new point based on the probability of a Boltzmann distribution. Over time this

probability, or “temperature”, gradually decreases. e end solution is an approx-

imation, and is not guaranteed to be equal to the true global minimum, but the

strategy is known to perform well in avoiding local minima.

In our case, the parameter space consists of all but one of the salience weights

applicable to each model, plus ϵ. It is necessary to hold one salience weight con-

stant so that the search space does not include all trivial transformations of the

space. Or to put it another way, what we are interested in is the relative values

of salience weights, for which the held out parameter serves as the point of ref-

erence.11 In all cases the chromatic pitch salience weight is held constant at 1.0,

and all other parameters are free to take arbitrary positive real numbers. e cost

function is the standard error of ordinary least squares linear regression between

predicted and human similarity ratings. From examining the behaviour of the SA

algorithm on our data, 1000 iterations was shown to be more than sufficient for

the SA process to explore enough of the parameter space for us to be confident

of the validity of the optimisation. erefore, the SA algorithm was configured to

perform 1000 iterations in the generation of all results reported below.

11is strategy effectively fixes the scale of the ground distance relative to the EMD weights.
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Applying SA over the entire dataset would likely lead to overfiing, and since

one of our objectives is to subsequently test the generality of our models over dif-

ferent data, this must be avoided. A 5x2 cross validation (5x2cv) scheme is adopted

(Dieerich 1998), which consists of five iterations of 2-fold random sub-sampling

cross validation. Each cross validation run randomly partitions the data into two

equal halves, or folds. A model is first fied to one fold, and tested on the other.

e same random number generator seed is used for each model, ensuring that the

same random subsets are used in all cases.

e 5x2cv technique is useful here for key two reasons. First, given our evalu-

ation method, and consequently the optimisation cost function, both of which rely

on the linear relation between model predictions and human ratings, it is neces-

sary that the size of our testing and training subsets be as large as possible for each

run. Second, the 2x5cv method has been shown in general to lead to representative

samples of model performance. For evaluating model performance we require a

method that enables the statistical significance of the difference between models

to be quantified (not just the significance of how well individual models fit the hu-

man ratings). erefore, instead of only reporting individual model performance,

quantified in terms of standard error and R2, as an average across CV folds as is

common in the machine learning literature, we perform one further testing run

over the entire dataset using the mean parameter values discovered during 5x2cv.

is results, for each model, in a final set of predictions that can be compared pair-

wise using a paired-r test, which provides a t statistic for the difference between

paired correlations (Revelle 2011).12

4.3.2 Results

Aer fiing all models following the above 5x2cv sampling method, we are able

to obtain a prediction of the similarity between each pair of melodies according to

each model. e performance of each model can be quantified by considering both

the standard error between model predictions and human similarity ratings—the

term that was minimised during training—as well as the amount of variance in the

ratings data that is explained by a model (R2). To quantify the significance of the

difference between pairs of models, the t statistic for the difference between the

dependent correlations r is calculated (Revelle 2011).

12Dieerich (1998, pp.10–13) also defines a modified t statistic suitable for hypothesis testing
based on the error terms derived from multiple models evaluated using 5x2cv over the same data.
is is beyond the scope of planned analysis, but should be considered in future work.
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Preliminary analysis

Before analysing model performance in detail it is first necessary to consider the

data in light of the assumptions of themodelling technique employed. e assump-

tions of linear regression are linearity, homoscedasticity, normality and indepen-

dence. Standard diagnostic plots were examined for each model, and standard

diagnostic tests performed.

e relatively large number of factors involved, and consequently the high

number of models produced, prohibit the discussion of the diagnostic character-

istics of each model in turn. Furthermore, the characteristics across all models

are broadly similar. erefore, two models are taken as typical exemplars, and

their characteristics can be considered broadly representative of all the EMD-based

models here developed. Where any model was found to exhibit significantly dif-

ferent diagnostic characteristics, it will be noted in the text. An arbitrary choice

of exemplar models would suffice for the purposes of this preliminary analysis.

However, models ( × , L1, P ) and ( ×  × , L1, P )

are chosen as these models play a distinguished role in the subsequent analysis.

Non-linearity between human ratings andmodel predictionswasminimised by

the inclusion of the exponent parameter in each model, which was optimised dur-

ing fiing. Scaer plots of predicted versus actual similarity ratings for all models

were examined, each demonstrating a reasonable linear correlation between the

two variables. Scaer plots for the two exemplar models, including the regression

line, are shown in figures 4.4 and 4.5.

It is worthwhile to note the spread of points located at 1 on the predicted sim-

ilarity axes in figures 4.4 and 4.5, corresponding to model predictions of similar-

ity judgements between identical stimuli. Variance here is typically less than for

other ranges along the scale, but the fact there is variance at all makes apparent

a false assumption of the EMD models. e psychological evidence shows that

subjects were not able to reliably perceive identity between melodies under the

experimental conditions. However, all the EMD models naturally predict maximal

similarity between identical melodies. erefore, there is clearly an import fac-

tor, or factors, in melodic similarity unaccounted for in the current models. We

conjecture that factors influencing the encoding of melodic stimuli in short-term

memory may be related here, for example, simply the length of a melody, or more

high-level features related to complexity or familiarity. Future work focusing on

beer understanding the factors influencing the perception of identity in melodic

perception could well lead to models beer able to predict similarity across the

board.
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Figure 4.4: Scaer plot of (× , L1, P ) versus human ratings.
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Figure 4.5: Scaer plot of (× × , L1, P ) versus human ratings.

Plots of residual versus fied values for all models reveal that residuals are

broadly symmetrically distributed about the horizontal line, providing further sup-

port for linearity between predicted and actual similarity ratings. e le plots

in figures 4.6 and 4.7 are examples of this. It can also be seen that the range of

residuals tends to decrease as a function of fied values, suggesting a violation of

homoscedasticity. However, this was found not to be significant for any model

according to the heteroscedasticity directional test statistic (0.21 < p < 0.98) (Peña

and Slate 2006). In the context of similarity judgements, this trend could perhaps

be at least partly aributed to the intuition that similarity between more similar
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objects is easier to predict than that between more dissimilar objects.

e quantile-quantile plots in figures 4.6 and 4.7 are normal probability plots

showing the standardized empirical distribution of residuals against a normal dis-

tribution of the same mean and variance. Ideally, points should lie on the diagonal

line, signifying a normal distribution. e distribution of residuals in figure 4.6

shows a degree of kurtosis. However, kurtosis was found not to be significant for

any model according to the kurtosis directional test statistic (0.19 < p < 1.0) (Peña

and Slate 2006).
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Figure 4.6: Diagnostic plots for (× , L1, P ).

..

2

.

3

.

4

.

5

.

6

.

-1
.5

.

-1
.0

.

-0
.5

.

0.
0

.

0.
5

.

1.
0

.

1.
5

.
Fied values

.

R
es
id
ua
ls

.

Residuals vs Fied

.

-2

.

-1

.

0

.

1

.

2

.

-2

.

-1

.

0

.

1

.

2

.
eoretical antiles

.

St
an
da
rd
iz
ed

re
si
du

al
s

.

Normal Q-Q

Figure 4.7: Diagnostic plots for (× × , L1, P ).
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Violation of independence is particularly problematic for time-series data,

where there can oen be strong colinearity between variables. is was unlikely

to be a problem with this data as firstly, it is not a time series, and secondly, the

sequence of comparisons between original melodies and their variations was ran-

domly determined. Nonetheless, Durbin-Watson tests were performed on each

model to test for independence. e DW-statistic ranges from 0 to 4, and a value

of 2 represent no autocorrelation. Very lile residual autocorrelation was found

across all models (1.82 < DW < 2.13).

Applying the Global Validation of Linear Models Assumptions test (Peña and

Slate 2006) provided additional support that the assumptions were acceptable for

all models according to the global statistic (p > 0.05). However, significant skew-

ness (p < 0.05), violating the assumption of normality, was identified for the fol-

lowing four models:

• (× c × , L1, C)

• (× , L1, C)

• (× × , L1, C)

• (× × , L1, C)

Results for these models should be treated with extra caution. ese models are

kept in the study for completeness, yet, notwithstanding caution, they do not ap-

pear to exhibit any distinguishing qualities and thus are not subject to subsequent

detailed analysis.

L1 vs. L2 norm

e choice of ground distance norm is shown not to significantly affect model

accuracy in the majority of cases. As shown in figure 4.8, out of the 24 model

pairs, only five L1 models performed significantly beer than the corresponding

L2 variant at α = 0.05 level, and only two at α = 0.01 level. However, even when

the difference was not significant, every L1 norm model slightly outperformed

its L2 counterpart. Although the evidence is not strong enough to support our

hypothesis that L1 norm is the most appropriate for these models, as a practical

measure, subsequent analysis will concentrate on the relative performance of L1

norm models only.

Our prediction thatL1 normed spaceswould perform beer thanL2 spaceswas

based on Gärdenfors’ rule of thumb that the L1 measure is more appropriate for

separable dimensions, and L2 more appropriate for integral dimensions. However,

another possibility, carrying Gärdenfors’ logic still further, would be to construct

hierarchical domains, each with different norms as appropriate. For example, to
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define separate pitch and time subspaces, incorporating all respective absolute and

relative quality dimensions, each equipped with an L2 norm on the grounds that

qualitative differences within each domain are integral, and then treat the result-

ing distances as points in an L1 normed meta-level space. However, if one also

considers the problem of combining absolute and relative surface-level features

as discussed in section 4.2, for which one possible solution could involve treating

absolute and relative features as weighted points sets in different spaces, then a

simple hierarchical composition of pitch and time subspaces becomes problem-

atic. However, further experimentation with new models in this direction could

provide new insight into how various surface-level musical qualities interact in

perception.
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Figure 4.8: Pearson correlation between all models and human similarity ratings
comparing L1 and L2 models. Significance in the difference between L1 and L2

model pairs at α = 0.05 and α = 0.01 is denoted by + and ++ respectively.
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Partial vs. complete mating

In six out of the twelve comparisons betweenL1 models shown in figure 4.9, partial

match EMD performed significantly beer than complete match EMD at α = 0.05

level. ree out of these six, all using non-centred pitch representations, per-

formed significantly beer at α = 0.01 level. In all other cases where a difference

was not significant, partial matching slightly out-performed complete matching.

is general trend in favour of partial matching lends support to our hypothesis

that partial matching EMD is a more appropriate measure for this set of broadly

homogeneous and roughly equal length melodic stimuli.

Using duration as weight was a slight anomaly here in that performance was

virtually identical in both partial and complete matching contexts:

• (× c, L
1, Pd), r(82) = 0.815, p < 0.01

• (× c, L
1, Cd), r(82) = 0.813, p < 0.01

• (× , L1, Pd), r(82) = 0.871, p < 0.01

• (× , L1, Cd), r(82) = 0.868, p < 0.01.

It would bewrong to draw strong conclusions from these results, particularly given

the wider results regarding duration below suggesting that duration is not a partic-

ularly useful discriminatory feature within these melodies. However, these results

at least suggest that further research into musically meaningful EMD weights is

warranted, particularly in the context of complete matching. In all the complete

matching EMD models examined here except for the duration-weighted variants,

the weights associated with events must sum to one, leading to a fluctuation in

event weight between melodies depending on their length, which is somewhat ar-

bitrary from a cognitive perspective. While using duration-based weights in com-

plete matching does not result in improved performance, it at least does not follow

the trend of decreased performance. erefore, given different kinds of melodic

stimuli where partial matching is known not to perform well, complete matching

with musically meaningful weights may offer an alternative.
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Figure 4.9: Pearson correlation between all L1 models and human similarity rat-
ings comparing partial and complete matching EMD. Significance in the difference
between partial and complete matching model pairs at α = 0.05 and α = 0.01 is de-
noted by + and ++ respectively.

Centred vs. original pit height

Aligning melodies in the chromatic pitch dimension by weighted mean pitch

height was found to significantly degrade performance across the board. As can

be seen in figure 4.10, all L1 models using original pitch height scored significantly

beer than their centred pitch height counterparts at α = 0.01 level.

For models containing a relative representation of pitch height (), the dif-

ference in performance between centred and non-centred model variants was typ-

ically less than the difference between models containing only an absolute repre-
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sentation of pitch ( or c). is intuitively makes sense because 

is independent of transposition, and can therefore provide a degree of resilience to

the distortion caused by centring absolute pitch height. Furthermore, examining

the optimised salience weights (see appendix C) for centred pitch-height models

containing a  dimension reveals that  has a salience weight of between

1.67 and 2.24 relative to the salience weight of c, which is always fixed at

1.0. Whereas when no centring is used, the salience weight associated with 

is between 0.57 and 0.93, again relative to the fixed salience weight of 1.0 associ-

ated with . is suggests that when absolute pitch height information is

compromised by centring—c is used as opposed to —relative pitch

information becomes more relevant for predicting similarity.

e direction of this result is unsurprising given that all stimulus melodies are

in the same key and register. Furthermore, the magnitude of the result suggests

that the centring principle is inappropriate in contexts where key and register are

controlled. However, a question remains as to the appropriateness of centring

melodies by weighted mean pitch height in situations where key and tessitura

are uncontrolled. Typke (2007) acknowledges that the centring principle offers no

guarantee of an optimal alignment minimising EMD, and is only a simple and effi-

cient method for processing melodies of differing tessiture. Our results in section

4.4 support this: some method of addressing the variation in pitch range across

real-world corpora is absolutely necessary, and centring by weighted mean pitch

height works well, particularly in conjunction with a relative pitch representation.

However, the degree to which centring degrades the ability to predict similarity

between melodies when key and tessitura are controlled strongly suggests that

more musically sophisticated alignment methods are needed, possibly in conjunc-

tion with additional pitch dimensions representing aspects of tonality.
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Figure 4.10: Pearson correlation between all L1 models and human similarity rat-
ings comparing centred and non-centred models. Significance in the difference
between centred and non-centred model pairs at α = 0.01 is denoted by ++.

Duration as EMD weight vs. quality dimension

e inclusion of duration information across all model variants did not result in

any significant improvement compared to baseline  ×  models. e

only significant difference (α = 0.05) between a baseline model and a duration

model was in the case of (×, L1, P ) versus (×, L1, Pd),

where the use of duration as EMD weight significantly decreased performance

(t(82) = 2.03, p = 0.045). e baseline model in this case is the best performing

model in this subset, which brings into question the assumption made by Typke

(2007) that duration is generally appropriate as the EMD weight when predicting
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similarity between short melodic stimuli.

In both completematching conditions, using duration as EMDweight did result

in a slight increase in performance compared to the respective baseline models, but

did not reach significance:

• (× c, L
1, Cd) t(82) = -1.57, p = 0.12

• (× , L1, Cd) t(82) = -0.45, p = 0.65.

However, as shown in figure 4.11 these two models do not exhibit any improved

predictive ability over their partial-matching counterparts. While inconclusive,

this result at least suggests that complete-matching EMDmodels may benefit from

weights based on musical features, but that using duration in this case does not

significantly improve prediction.

Including duration as a dimension in the ground distance instead of as EMD

weight resulted in almost identical performance to the baseline models. Further-

more, in all cases the optimised salience weights for  (M = 0.098, SD = 0.05)

were less than the salience weights for  (M = 0.16, SD = 0.04), with 

and c held constant at 1. For this corpus of melodies at least, the evidence

suggests that duration information is not generally useful in predicting melodic

similarity using EMD-based models.
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Figure 4.11: Pearson correlation between L1 duration models and human simi-
larity ratings, comparing the baseline model with duration-as-EMD-weight, and
duration-as-dimension models. Significance in the difference between a duration
model and the baseline model at α = 0.05 is denoted by +.

ality dimension comparison

e final perspective in our analysis investigates the impact of different combi-

nations of quality dimensions on model performance. We do not include the

duration-based weighting schemes, as these were shown above to not result in any

significant improvement. However, both complete and partial matching condi-

tions are included, despite the evidence suggesting that partial matching generally

leads to more accurate predictions. Similarly, both centred and non-centred pitch

dimensions are included as separate conditions, despite the evidence indicating

that centring melodies by weighted mean pitch height decreases model accuracy

for this corpus. ese conditions are included here so that we may conclude which

quality dimensions lead to beer models within each condition. It is important to

address this question so we are equipped to tackle the subsequent experiment us-

ing the MIREX 2005 data in section 4.4. We shall answer the question of which

model is the optimal EMD-based model in terms of accuracy of the data provided

by Müllensiefen and Frieler (2004). However, establishing a small number of opti-

mal models corresponding to each condition will allow us to evaluate each in turn

81



with respect to the MIREX 2005 data.

e two best performing models in each complete/partial, centred/not-centred

condition are shown in figure 4.12. e same set of quality dimensions appear

consistently in the best two models for each condition. e model that most accu-

rately predicts the human ratings, in all conditions, includes all quality dimensions

investigated in this study. Table 4.1 shows the performance measures for the two

overall best EMD models (partial matching and non-centred conditions), together

with the best model developed byMüllensiefen and Frieler (2004), which combines

a rhythmically weighted edit-distance measure (rawedw), with a measure based on

the number of common n-grams (ngrcoord). Interestingly, the difference in over-

all fit between the geometrical EMD models and the symbolic rawedw+ngrcoord
model is very slight, despite the approaches being fundamentally different. Fur-

ther analysis of the behaviour of each model in terms of the musical characteristics

of the stimuli may offer some insight into how the different approaches are able

to offer comparable accounts of melodic similarity.

Table 4.1: Statistics of the best two EMD models, together with the best model
developed by Müllensiefen and Frieler (2004).

Model Std. err R2 Adj. R2 F (DF) p
(× × × × , L1, P ) 0.647 0.836 0.834 416.8 (1, 82) < 0.01
(× × , L1, P ) 0.657 0.830 0.828 401.0 (1, 82) < 0.01
rawedw+ngrcoord 0.66 0.830 0.826

e difference between the best EMD models containing all quality dimen-

sions, and models containing only  in addition to the baseline space is not

significant under any condition. Applying Occam’s razor, we may conclude that

duration and inter-onset interval are not useful features in this dataset for these

EMD models, and that a ground distance comprising only onset, pitch, and pitch

interval information gives comparable performance with fewer dimensions. Fur-

thermore, examining the mean optimised salience weights across models contain-

ing all quality dimensions in table 4.2, the  salience weight is close to zero,

and therefore has very lile impact on the computation of ground distance. e

average salience weight for  is also low relative to pitch dimensions, but in

fact slightly higher than . Given that the inclusion of  does not signifi-

cantly improve prediction, a reasonable interpretation would be that it does not

contribute any useful information beyond what is already available in . By

analogy with the relationship between , c and  discussed in sec-

tion 4.3.2, if translation in time was a prominent characteristic of the stimuli, for
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example, similar melodies beginning at different metrical positions, then wewould

expect that the time invariance afforded by  would become more important in

modelling similarity.
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Figure 4.12: Pearson correlation between the best two performing L1 models and
the human similarity ratings across each partial/complete match and centred/not
centred condition. ere is no significance in the difference between any model
pair.

Table 4.2: Average salience weights across EMD models containing all quality di-
mensions.

Dimension Mean Standard Deviation
 0.196 0.052
/ c 1.000 0.000
 0.025 0.012
 1.453 0.448
 0.286 0.156

To quantify the significance in the difference between our established best

models comprised of onset, pitch and pitch interval quality dimensions, we com-

pare each partial/complete matching and centred/not-centred variant with the

other ground distance spaces defined in this study. As can be seen in figure 4.13,
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onset, pitch and interval models perform significantly beer in all conditions ex-

cept for the partial matching non-centred condition. As discussed above, the lack

of significance in this condition may be aributable to the finding that when these

melodies are compared at their original pitch, the pitch dimension alone affords

accurate prediction of similarity. However, when taking into account that all

melodies in this dataset are in the same key and tessitura, this result is unlikely

to generalise to other data when key and tessitura are variable qualities.
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Figure 4.13: Pearson correlation between human similarity ratings and all onset,
pitch and pitch interval models compared to all other ground distance space mod-
els. Significance in the difference between the best models and alternative space
models at α = 0.05 and α = 0.01 is denoted by + and ++ respectively.

e complete description of the best models in each partial/complete match

and centred/not-centred conditions are as follows:

• (0.30 · × 1.0 · c × 2.24 · , L1, P )0.58

• (0.12 · × 1.0 · × 0.57 · , L1, P )0.56

• (0.26 · × 1.0 · c × 1.81 · , L1, C)0.58

• (0.13 · × 1.0 · × 0.93 · , L1, C)0.56

ese models will be evaluated further in experiment 2.
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4.4 Experiment 2: Melodic-based music information

retrieval

e purpose of experiment 2 is to evaluate the best melodic similarity models de-

veloped in experiment 1 (section 4.3) in a different context in order to test their abil-

ity to generalise to unseen data. e models in experiment 1 were optimised with

respect to human similarity ratings between melodies from a carefully constructed

set of stimuli intended to probe the concept of expert judgements of melodic sim-

ilarity. erefore, given the assumption that the stimuli used in experiment 1 are

sufficiently representative of a notional psychological ‘space of melodic similar-

ity’, and our models are not over-fied to the stimuli, we predict that our models

will be able to accurately predict melodic similarity given novel stimuli.

4.4.1 Original MIREX 2005 evaluation

e Music Information Retrieval Evaluation eXchange13 (MIREX) is an annual

evaluation of MIR algorithms, run in conjunction with the International Society

of Music Information Retrieval (ISMIR) conference.14 Each year a range of tasks is

proposed and agreed upon by the community, and then algorithms are submied

to the International Music Information Retrieval Systems Evaluation Laboratory

(IMIRSEL) based at the University of Illinois at Urbana-Champaign, where all ex-

periments are carried out.

For the 2005 MIREX evaluation, Rainer Typke proposed a symbolic melodic

similarity task based on the retrieval of short melodic passages, specifically in-

cipits.15 Final results can be found on the MIREX wiki.16 Data for this task was

a subset of the RISM17 A/II collection, which is comprehensive incipit-based in-

dex of notated music from 1600. e test corpus contains 558 incipits.18 e task

consists of generating ranked lists of the most similar incipits from the corpus in

response to eleven query incipits. Ground truth rankings were established prior

to the experiment by Typke et al. (2005) by combining judgements of similarity

13hp://www.music-ir.org/mirex/
14hp://www.ismir.net/
15hp://www.music-ir.org/mirex/wiki/2005:Symbolic_Melodic_Similarity
16hp://www.music-ir.org/mirex/wiki/2005:Symbolic_Melodic_Similarity_Results
17hp://www.rism.info/
18Some confusion exists around the exact size of the corpus used. Larger figures are indicated

on the evaluation wiki page, whereas the results page indicates 558 incipits were used. rough
personal correspondence with Rainer Typke (Jan–Feb 2011), Klaus Keil, director of RISM (Feb 2011)
and Stephen Downie, director of IMIRSEL (Mar–Apr 2011), we believe that the corpus used in the
experiment reported below is identical to that used in the original MIREX evaluation.
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from musical experts. e rankings of melodies are not given as a single ordered

list, but are based on grouping of similar melodies, reflecting the broad agreement

between judges. Ordering within groups is irrelevant to the evaluation metric, it is

rather the between-group ordering that is taken into account, which is formalised

in a measure called Average Dynamic Recall (ADR) (Typke 2007, pp. 93–95). We

use Typke’s original implementation of ADR in our experiment (personal commu-

nication, January 11, 2011), which was also used in the MIREX evaluation.

A similar sized training corpus, with accompanying ground truth for eleven

different queries, was made available for training purposes prior to the MIREX

evaluation. Wemake no use of the accompanying ground truth for this training set

in our experiment, because the salience weights of our models are pre-determined

from the optimisation processes conducted within experiment 1, reported in sec-

tion 4.3. However, we do make use of the training corpus itself for the purpose

of extracting descriptive statistics about melodies from the RISM collection, which

are then applied during the process of projecting melodies from the MIREX testing

set into standardised quality dimensions.

We do not optimise the salience weights of our models again here using the

MIREX training set ground truth, as in the original MIREX evaluation, because we

are primarily interested in the ability of our models to generalise from training

over psychologically validated data that has been carefully curated to encompass

a representative diversity of melodic similarity judgements. Typke’s ground truth

is based on the judgements of musical experts, so can be considered equally psy-

chologically valid for this task. However, the relatively small number of randomly

selected query melodies offers less assurance against bias. Furthermore, Müllen-

siefen and Frieler (2004) have demonstrated that the notion of stable expert agree-

ment on judgements about melodic similarity can exist, at least within the domain

of popular melodies. If it is possible to apply models developed in this context

to novel corpora, then this kind of methodology offers a potential alternative to

repeating computationally expensive training processes on every new corpus.

We are interested primarily in the performance of our EMD models in com-

parison to the EMD-based algorithm submied to the MIREX evaluation by Typke

(2007), which incorporates EMD within a sophisticated retrieval system. Here we

highlight the differences between the two approaches. Typke’s algorithm uses on-

set time and chromatic pitch dimensions in computing the ground distance matrix,

and duration is used as the EMDweight. e relative scaling of ground distance di-

mensions is determined by first segmenting each query into possibly overlapping

segments of between six and nine consecutive notes, and then applying an evo-
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lutionary algorithm to find an optimal alignment between each segment and the

target melody under consideration. e query segments may be translated in both

pitch and time, as well as scaled in time. e evolutionary algorithm searches for

an optimal alignment which minimises the overall distance between the two point

sets. Aer the optimal alignment is determined for each query segment, EMD is

then computed for each segment with respect to the target melody. e multiple

EMD measures are then combined into a single measure of similarity. e use

of segmented queries in combination with the duration-based weighting scheme

means that partial matching is used between each segment and the target melody.

is algorithm is very computationally expensive, requiring more than 14 hours

of run time in the MIREX evaluation, while the next slowest (and best perform-

ing) algorithm only required 80 seconds.16 However, it has been designed to be

robust against transposition in pitch, scaling and translation in time, and against

melodies of variable length.

In contrast, our models are much simpler, consisting essentially of a single

computation of EMD between each pair of melodies. No segmentation is per-

formed, and the only alignment strategies imposed prior to computing EMD are

the transposition of melodies by mean weighted pitch height for models using

the c dimension, and ensuring all empty bars are removed from the begin-

ning of each incipit as described in section 4.2.1. e salience weights for ground

distance dimensions are pre-determined from the psychological data modelled in

experiment 1, reported in section 4.3. While our approach is very simple in terms

of algorithmic complexity relative to Typke’s system, it is arguably more sophisti-

cated in terms of representation. Our modelling strategy places greater emphasis

on establishing a perceptually-motivated conceptual space within which ground

distance is computed. All our models examined here include a relative pitch di-

mension, which was shown in experiment 1 to improve prediction. Furthermore,

the projection of basic melodic aributes into quality dimensions is standardised

according to statistics derived from the MIREX training corpus, thus affording a

degree of model adaptability when presented with unseen data.

4.4.2 Results

e results for our best four models determined in section 4.3.2 are presented in

table 4.3 alongside the results from the original MIREX 2005 evaluation. Our best

performing model, using partial matching and the centred-pitch representation,

achieved an ADR of 59.14% and ranked fourth out of the total eleven systems

(seven original MIREX-evaluated systems, plus our four best EMD models). is
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model performed slightly beer compared with the complete matching centred

pitch variant (57.19%, ranked fih), both of which performed slightly beer than

Typke’s algorithm (57.09%, here ranked sixth).

Table 4.3: MIREX 2005 results.

Rank, Participant Average Dynamic Recall
1 Grachten, Arcos & Mántaras 65.98%
2 Orio, N. 64.96%
3 Suyoto & Uitdenbogerd 64.18%
4 (× c × , L1, P ) 59.14%
5 (× c × , L1, C) 57.19%
6 Typke, Wiering & Veltkamp 57.09%
7 (× × , L1, C) 56.43%
8 Lemström, Mikkilä, Mäkinen & Ukkonen (P3) 55.82%
9 (× × , L1, P ) 54.89%
10 Lemström, Mikkilä, Mäkinen & Ukkonen (DP) 54.27%
11 Frieler & Müllensiefen 51.81%

e result that both centred pitch condition models perform beer than non-

centred pitch models is unsurprising given that key and tessitura are in no way

standardised in this dataset, as they are for the psychological data provided by

Müllensiefen and Frieler (2004). Furthermore, given that we have shown in sec-

tion 4.3.2 that centring melodies by mean weighted pitch height degrades perfor-

mance when key and tessitura are controlled, using a musically informed pitch

alignment method may improve results further.

Partial matching slightly out-performs complete matching over this data, in

line with the general trend in favour of partial matching found for the psychologi-

cal data. erefore, our hypothesis from section 4.2.3 that completematching EMD

would perform beer over this dataset due to the increased variation in melody

length proved not to be supported. However, complete matching EMD did show

to be more resilient than partial matching EMD in the non-centred pitch height

condition.

e differences between our EMD-based models and Typke’s model are very

slight, and should not be over interpreted. However, we are encouraged that the

relative simplicity of our approach, based on a cognitively-motivated represen-

tation, exhibits comparable predictive accuracy to a much more computationally

expensive method.19

19Run-time for our models in this experiment is approximately 10 seconds on a 2.2GHz processor
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Our models could not match the performance of the best three performing

models in the original MIREX 2005 evaluation. e best three original MIREX al-

gorithms are symbolic, string-matching algorithms: a music-theoretic based edit-

distance (Grachten et al. 2005); an index built from n-grams of musical features

employing standard text processing retrieval techniques (Orio 2005); and another

n-gram-based index using a modulo-12 pitch representation (Suyoto and Uitden-

bogerd 2005). String matching algorithms are very well suited to tasks requiring

the comparison of monophonic melodies; they are well-studied in the literature

and can typically be implemented very efficiently. Furthermore, as shown by

Müllensiefen and Frieler (2004) string-matching models also perform very well in

modelling psychological data. However, a general difficulty with string matching

is extending the techniques to polyphonic music, something that is very naturally

accomplished in a geometric representation. Geometrical conceptual spacemodels

also offer a philosophical framework and methodology for addressing the problem

of representational semantics, and if one takes the view proposed by Gärdenfors

that representation may be considered as a continuum from low-level perceptual

signals up to abstract symbols, then seeking to develop newmodels able to operate

over multiple levels of representation would seem to be a promising direction.

e fact our models could not offer superior performance to the best three

systems does not invalidate our finding that employing a perceptually-motivated

approach based on the conceptual space theory leads to not only a more simple

EMD-based algorithm for predicting melodic similarity, but one which is also ca-

pable of generalisation to novel stimuli. Each of the best models tested in the

original MIREX 2005 evaluation were trained on a training set randomly selected

from the same population as the evaluation dataset, and were beer able to opti-

mise their performance to the specific task. Our aimwas not exclusively to develop

the best retrieval algorithm for this particular task, but more importantly to con-

sider the more general question of how psychological understanding may inform

and be incorporated into the development of an MIR system. Our models preform

well, despite incorporating only a minimal subset of potential musical features, or

employing alignment or segmentation methods—techniques that are know to be

advantageous in modelling melodic similarity.

machine, compared to over 14 hours for Typke’s system on a 1.6Ghz processor machine. Perfor-
mance is not directly comparable to the original evaluation benchmarks due to the use of different
hardware. Nevertheless, the difference is considerable.
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4.5 Conclusion

e use of the EMD metric for computing distance between sets of points within

the conceptual space framework represents a novel application of Gärdenfors’

original formulation. However, whether the method represents a departure or

development of the conceptual space theory is an open question. On the one hand

it is a development enabling complex time-valued concepts to be modelled within

quality dimensions. On the other hand, it is a departure because melodic concepts

are not identifiable with points, or even regions, of a space. Strictly, only musi-

cal events are represented as concepts within these spaces. In order for melodies,

as defined here, to be identified as points, a much higher-dimensional space is

required, containing a dimension corresponding to each aribute of each event.

However, we are then faced with the problem of how to represent melodies con-

taining different numbers of events, because within a vector space formalism a

fixed number of dimensions is required in order to calculate distance.

e issue of representing sequentially structured concepts within the concep-

tual space framework deserves further consideration. is question arises again

in the following chapter concerning the geometrical representation of metre. A

pure vector space formalism is possible in that case, because we are able to specify

metrical concepts within finite temporal bounds, although high-dimensionality is

still required. Future work might usefully reconsider the boundaries we have set

here between the conceptual, and other potential underlying sub-conceptual rep-

resentations. It may be the case that conceptual space representations are more

appropriate for abstracted melodic features, which map to lower level, not neces-

sarily geometrical, representations of explicit sequential structure.
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Chapter 5

Conceptual space representations of
perceived rhythmic structure

is chapter presents a formalisation of metrical-rhythmic concepts within the

framework of Gärdenfors’ theory of conceptual space (Gärdenfors 2000). Specifi-

cally, two conceptual space models are developed, which encapsulate salient as-

pects of the experience of metrically organised rhythmic structure. ese models

are evaluated according to their ability to discriminate between rhythmically dis-

tinctive genres of music.

Central concepts of musical timing prevalent in music notation are first dis-

cussed in order to clarify terms and concepts familiar to musicians. en key em-

pirical research related to temporal aspects of auditory perception is reviewed,

concentrating on the theory of metre developed by London (2004; 2012). e sci-

entific study of time perception in music aims to beer understand the capacities

and constraints of our perceptual mechanism and associated implications formusi-

cal experience. London’s theory draws upon research from psychology, cognitive

science and neuroscience, and provides the empirical foundation upon which we

construct a computational theory of rhythmic similarity.

5.1 Notation and music theory

Many writers, from a range of disciplines, have aempted to define and explain

musical rhythm. Traditionally, arguments have tended to characterise rhythm ob-

jectively, basing theories on rhythmic structure as represented in musical notation

(Lerdahl and Jackendoff 1983). Such theories are open to criticism on the grounds of

misrepresenting the perceptual nature of musical experience. However, the prag-

matic origins of notational conventions, as a means of remembering and commu-
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nicating musical ideas, has ensured that a high degree of musical understanding

can be inferred by the encultured reader of notation. Furthermore, later empirical

work broadly lends support to the psychological validity of many music-theoretic

concepts (Gabrielsson 1993).is section reviews some of the theoretical ideas that

have developed around notational concepts of musical time, before moving on to

more recent empirically grounded theories.

What has become known today as Common Musical Notation (CMN), or staff

notation, is ameans of representing various aspects of music in symbolic form. e

conventions of CMN can be traced back to musical practices of the 9th and 10th

centuries (Pryer 2010). Early forms of notation were simply means to aid memory,

and did not place emphasis on precisely describing either pitch or timing infor-

mation. Over time, notational conventions developed, along with music theoretic

concepts, which allowed for more precision in the description and communication

of musical intentions. Scholarly activity, pragmatic musical concerns, as well as

extra-musical factors such as the medium of inscription, were all drivers of this

change towards increasing specificity. e history of Western classical music is

inextricably linked with the development of notation, so much so that it can be

seen as playing a large role in shaping compositional concerns and performance

practice (Cook 1998; Wishart 1996).

Common musical notation is essentially a graph of pitch against time, where

within each line of music, time runs from le to right along the x-axis, and pitch is

represented from low to high on the y-axis. is view of musical structure is even

more explicit in piano-roll notation, common in many computer-based music edit-

ing tools. Armed with a few additional concepts, notation can be seen as a reason-

able analog to many of the aspects of music that are typically considered salient, at

least by an encultured listener of traditionally notatedWestern music. e time di-

mension of notation is obviously of primary relevance to rhythm, and importantly

encodes useful information beyond simply the temporal order of events.

e notation of musical ideas must always balance level of detail against clar-

ity of expression. Furthermore, even for scores containing extremely high levels of

detail, corresponding performances, except thosemechanical in origin, will always

involve varying degrees of temporal deviation from the notated values (Desain and

Honing 1993). In surveying the history of rhythm, London (2009) discusses exam-

ples of both early and contemporary forms of notation that leave many aspects of

musical timing to the discretion of the performer—for example, medieval systems

of notation that rely on syllable lengths to co-ordinate the pace of musical lines, or

Berio’s Sequenza III (1965), which relies on a stopwatch for temporal organisation.
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Both these forms of synchronisation are in a sense external to the music, imposing

their own intrinsic characteristics on musical structure irrespective of any notion

of musical flow that may be suggested by a particular succession of musical events

in time. A fairly intuitive means of notating timing information is simply to rely

on spatial distance within the score, where the distance between note symbols is

intended to indicate the period of time between successive note onsets. Spacing

and orthographic conventions generally play an important role in notation. How-

ever, the vast majority of common practice music, as well as notations of popular

music, presuppose a richer conceptualisation of the structure of musical time.

Intuitively, events that occur simultaneously in a performance of a notated

piece of music are aligned vertically in the score. is may be evident within a

single staff of music, for example, a chord consisting of a set of notes that should

be played simultaneously by a pianist, or across many staves in an orchestral score.

Perhaps the most evident imposition of structure onto the temporal domain

within common musical notation is the presence of bar-lines, which segment time

into tangible units of bars or measures. e duration of a bar is not usually de-

fined in absolute terms, but instead dependent on the number of beats it contains,
the duration of which in turn is determined by the tempo, typically specified in

beats per minute (bpm). Within the notation, bpm can be considered an objective

statement of the intended rate at which musical events should unfold over time.

However, this is not necessarily in direct correspondence with perceived musical

speed—a high bpm can feel slow and vice-versa. Nonetheless, in the context of

a score, beats (and their grouping into bars) form idealised units of time which

establish a framework within which the flow of musical time can be rationalised.

A primary responsibility of an orchestral conductor is to articulate the moments

of time with which notated beats are to coincide. e familiar ‘1-2-3-4’ count-in

before a band begins to play provides a similar function of indicating the intended

beat structure, but which again is strongly dependent on a shared understanding

of the conventions associated with a particular musical style.

Continuing with temporal aspects of musical notation, the number of beats in

a bar is represented by a time signature, resembling a fraction, for example 44 or 8
6,

and is typically present at the beginning of a score and at any other position where

the number of beats per bar should change. Familiarity with the conventions of

time signature notation is necessary to understand their respective musical inter-

pretations, which in turn necessitates a preliminary definition of musical metre.
Time signatures convey basic information pertaining to the metrical organisation

of music. Metre will be discussed in more detail in section 5.2, but for the present
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purpose, it can be understood as concerning the succession of strong and weak

pulses perceptible during musical listening (at least to metrically organised mu-

sic), and which to some extent is evident in the grouping of notes in a score. Metre

operates on a hierarchy of levels, one of which is the level of the beat or tactus, as
discussed above. e other levels of metrical organisation relate to subdivisions of

the tactus, and to larger groupings of beats. Different time signatures have differ-

ent implications for the metrical organisation of events in time.

e meaning of so called simple time signatures can be straightforwardly de-

rived from the signature itself. For example, 43 and 44 are both simple time signatures

where the denominator signifies that a crotchet or quarter note in the score rep-

resents the basic beat unit. e numerator signifies the number of crotchet beats

per bar, either three or four. By convention, simple time signatures imply a duple

subdivision of the beat. erefore, the basic metrical organisation implied by a 43

time signature is that of three beats, each divisible by two: 2 + 2 + 2.

By contrast, compound time signatures imply triple subdivisions of the beat,

and it is simply a maer of convention that these time signatures are notated dif-

ferently. 8
6 and 8

9 are both examples of compound time signatures. However, they

are not understood literally to mean ‘six quaver (or eighth) notes’ per bar, or ‘nine

quaver (or eighth) notes’ per bar respectively. Instead, 8
6 implies two beats, each

divisible by three (3+3), 8
9 implies three groups of three (3+3+3). So despite the

mathematical equivalence of the fractions 3
4
and 6

8
, the time signatures 43 and 8

6 refer

to very different temporal structures. Time signatures give the performer an indi-

cation of the intended metrical organisation of a work. However, in themselves,

time signatures can not characterise all possible levels of metrical organisation,

for example, levels beyond the first subdivision of the beat, or larger groupings of

bars, all of which may be readily perceptible to the listener.

e regularity of the abstract temporal framework imposed by bars and time

signatures is also evident in the representation of note events themselves. InWest-

ern notation, different shapes have been used to represent notes of different length,

based on a system of fixed duration ratios. e taxonomy of note shapes has

evolved into a simple binary tree structure, where the duration of each note in

the hierarchy is half that of the parent. e representation of ternary proportions

is achieved by placing a dot aer the note head, indicating that the duration should

equal one and a half times the usual length. roughout the history of notation,

different symbols have been used to denote the beat. Medieval notation typically

took the breve as indicating the basic tactus-level pulse. Common practice music

has seled on the crotchet as the primary indicator of the tactus. e crotchet can
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roughly be taken to be the mid-point in the range of standard symbols, optimising

the range of expression between proportionally very short and very long notes. A

pragmatic consequence of this is that subdivisions of the beat (i.e. quavers, semi-

quavers, and so on) can be joined together by beams, making the beat structure

of the music clearly evident in the notation. Beaming together notes which are

shorter in duration than the beat, implies that the sum of their individual dura-

tions should be equal to the duration of the beat. is intuition is generally upheld

by the use of rests. If the sum of the durations of the shorter notes is less than

the duration of the beat, then appropriate rest symbols are typically inserted to

account for the difference, and to also make it explicit on which subdivision of a

beat a particular note should occur.

A musical score is best thought of as a set of instructions for a performer to use

in order to realise an instance of the work. A score typically provides a very high

level description of the pitches and rhythms that make up a piece, together with

varying amounts of information concerning dynamics, phrasing and timbre. Many

of the subtitles of music are not precisely specified in the notation, or even speci-

fied at all, and must be created by the performer based upon their musical knowl-

edge and experience. However, the pragmatic uses of notation have contributed

to the evolution of a system that balances the conflicting demands of precision

and clarity, and is able to provide an efficient means of communicating musical

ideas. As such, notated music can provide a reasonable approximation of many of

the aspects of music that are salient in musical experience, particularly when the

analysis of notated music is informed by evidence from music psychology.

5.2 Metre as entrainment

It is necessary to draw a distinction between the different timescales that operate

within music (Clarke 1987). Relationships across time may be comprehended on

all levels of musical organisation, from time intervals between events lasting tens

of milliseconds, to relationships between paerns of notes spanning entire works.

A line between rhythm and form is usually stated as the extent of the perceptual

present, which is approximately up to 10 seconds in duration (Fraisse 1978; Clarke

1999). e comprehension of form is considered to require deliberate cognitive

effort involving long-term memory. Below we consider only concepts that are

bounded by the temporal extent of the perceptual present, reserving larger-scale

musical concepts for future research.

e work of London (2004; 2012) serves as our primary reference regarding

95



musical metre, and provides the basis for the computational models developed

within this chapter. London provides a detailed and perceptually-motivated the-

ory of musical metre, drawing together a range of research from music theory,

musicology, psychology, and neuroscience. Importantly, the theory offers consid-

erable generality as a result of its foundation upon basic human perceptual and

physiological constraints, and provides many examples from both Western and

non-Western musical traditions. e experience of music as a whole is greatly

dependent on cultural context, and as such can radically differ between cultures,

and even between individuals within cultures. However, considering music from

the perspective of basic perceptual processes, such as the experience of periodic-

ity, which is strongly grounded in our everyday experiences in the world, London

argues that commonality across many musical practices can be found. e com-

putational theory introduced below similarly concentrates on low-level musical

concepts, addressing some of what might be considered as primitives of musical

conceptualisation. is section reviews London’s theory together with key sup-

porting arguments and empirical evidence.

5.2.1 Rhythm versus metre

Steedman (1977, p. 555) defines metre as ‘regular temporal structure’. A common

distinction made in the literature is that between musical metre and rhythm, al-

though there is debate over the extent to which they can be treated independently

(Benjamin 1984; Cooper and Meyer 1960; Hasty 1997). Metre can be thought of

as the grouping of perceived beats or pulses into categories, which is typically

expressed as the ‘regular alternation of strong and weak beats’ (Lerdahl and Jack-

endoff 1983, p. 12). In order to clarify the meaning of “grouping”, Parncu (1994)

defines two kinds of grouping structure: periodic and serial. Periodic and serial

groupings represent qualitatively distinct sensations arising from a musical stim-

ulus. Periodic grouping depends on the ‘relative timing and perceptual properties

of nonadjacent events’ (Parncu 1994, p. 412), whereas ‘[s]erial grouping depends

primarily on the serial proximity in time, pitch, and timbre of temporally adja-

cent events’ (Parncu 1994, p. 412). Metre can also be thought of as concerning

durationless points in time, whereas serial grouping inherently concerns the rela-

tionships between events of specific duration (Clarke 1999, p. 478).

London (2004, p. 4) defines rhythm as involving ‘paerns of duration that are

phenomenally present in the music’. Duration here refers not to note lengths,

but to the inter-onset interval (IOI) between successive notes. Rhythm therefore

refers to the arrangement of events in time, and in that sense can be considered as
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something that exists in the world and is directly available to our sensory system.

e perceptual counterpart to rhythm is metre:

[M]etre involves our initial perception as well as subsequent antici-

pation of a series of beats that we abstract from the rhythmic surface

of the music as it unfolds in time. In psychological terms, rhythm in-

volves the structure of the temporal stimulus, while metre involves

our perception and cognition of such stimulus. (London 2004, p. 4)

e experience of metre can, therefore, be considered as a process of categorical

perception, where the surface details of the temporal stimuli, such as the partic-

ular structure of the rhythmic paern, or any expressive performance timing, are

perceived with reference to a hierarchical organisation of regular beats. e sen-

sation of metre is induced from a stimulus in conjunction with both innate and

learned responses to periodic or quasi-periodic stimuli. Extending the notion of

categorical perception, London argues that metre is a form of entrainment, that is

a ‘coupled oscillation or resonance’ (London 2012).

To beer grasp the essence of what it means to consider metre as a process

of entrainment, it is useful to consider how such a process is integrated with, and

beneficial to, perception in general. A vast amount of information from our envi-

ronment is continuously available to our perceptual system, yet our aentional re-

sources are finite (Kahneman 1973). erefore, in order to make sense of the world

we must be able to process sensory information efficiently, and crucially to be able

to detect what is most important and deserving of aention. On the one hand, in

the information theoretic sense our environment is incredibly noisy. We are con-

tinually bombarded with a whole range of information, which we must somehow

process in order to make accurate predications about the behaviour of objects in

the environment, as well as the effect of our own actions within the environment.

Yet the world is also highly structured, and from an ecological perspective, a sen-

sitivity to such structure is expected given the view that our perception and be-

haviour are largely determined by the kinds of perception and behaviour afforded

by the environment (Gibson 1966). Certain paerns of events in the world afford

entrainment if there is a perceptible regularity to their occurrence. Regularity or

periodicity is therefore an invariant quality in perception. In the musical context,

this notion can be seen reflected in the language used to describe the nature of

strictly periodic rhythms, which are sometimes referred to as “static” or “station-

ary” rhythms. More generally, the perception of invariance in the natural world

is highly suggestive of intentional behaviour, whether that might be the distinc-

tive footfalls of a predator or potential mate. As well as the individual instincts
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of self-preservation and procreation, an argument for the evolutionary adaptive

quality of entrainment can also be made in terms of social interaction and cohe-

sion. In order to interact and importantly to co-operate successfully in the world,

humans must be able to synchronise movement. Synchronisation requires accu-

rate temporal prediction in order to engage the necessary motor control prior to

an anticipated timepoint: successful co-ordination cannot be based on reactivity

(Trevarthen 1999-2000; Clayton et al. 2005). Crucially, the perception of temporal

invariance and our capacity for entrainment allow aentional resources to be di-

rected towards likely salient moments of time, and to therefore to beer predict

events in the world and act accordingly.

Returning to the musical context, London’s view of metre is thus a form of sen-

sorimotor entrainment, afforded by the temporal invariances commonly present

in musical structure. For listeners, this is one mechanism by which aentional

resources can be directed towards predicted salient timepoints in order to effi-

ciently process a complex auditory stimulus. For musicians, and indeed any form

of movement associated with musical stimuli, entrainment is further necessary to

co-ordinate physical actions.

London (2012) provides further empirical support for his theory of metre as

entrainment from recent advances in neuroscience, which shed light on the under-

lying biological mechanism of rhythmic perception. Neuroimaging studies have

discovered paerns of neuronal activity sympathetic with metrical entrainment,

providing convincing evidence that metrical perception is both stimulus driven

and endogenous. Differing EEG responses to trains of identical pulses are reported

by Brochard et al. (2003) and Schaefer et al. (2011) as evidence for subjective metri-

cisation. Snyder and Large (2005) and Iversen et al. (2009) both present findings

that lend support to endogenous neural responses correlating with accents that

are only loosely coupled with external stimuli, and in the later study it is also

demonstrated that the priming of an endogenous metre has a predictable effect on

subsequent auditory responses.

e degree to which listeners are able to induce a sense of metre from a rhyth-

mic surface has also been shown to strongly affect ability in reliably processing

rhythmic information (Grube and Griffiths 2009). Where a stronger sense of metre

is induced, participants were able to more accurately detect rhythmic deviations.

In the same experiment, the authors also provided evidence suggesting the impor-

tance of closure at the endings of rhythmic stimuli in order for listeners to report

a stronger sense of perceived rhythmicality. Open endings were shown to leave

listeners feeling uncertain about the structure of rhythmic stimuli, demonstrating
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how the ends of sequences can influence the perception of the whole.

Composers have long exploited our capacity to maintain a metrical context,

which is possible even in the presence of conflicting musical stimuli. Syncopation

is the intentional rhythmic articulation of less salient metrical timepoints, which

in itself is evidence for our strong tendency for entrainment, since if we could

not independently maintain a sense of metre the concept of “off-beat” would be

meaningless. e notion of a continuous oscillation in aentional energy provides

an account, importantly onewith an empirically grounded underlyingmechanism,

of the commonly held view that metre concerns regular paerns of strong and

weak beats.

5.2.2 London’s representation of metre

London provides the following definition of metre:

A meter is a coordinated set of periodic temporal cycles made up of at

least two peaks of sensorimotor aention. (London 2012)

e periodic nature of metre means that it can be represented graphically in the

form of a circle. Following the convention developed by London (2004, pp. 64–69),

time flows clockwise, and the dots on the circumference of the circle mark beats, or

pulses—defined as peaks of aentional energy.20 Distance on the circumference of

the circle represents the relative time interval between pulses. e 12:00 position

represents the downbeat—the beat marking the beginning of the cycle, and which

is typically associated with the greatest concentration of aentional energy. In fig-

ure 5.1a, two levels of metrical organisation are present: the total time-span of the

metre is represented by the interval around the circumference of the circle from the

downbeat; and the cycle composed of the three arcs between each successive pair

of dots represents a cycle of three beats. Figure 5.1b depicts a metrical structure

comprising three periodic cycles: the circumference again representing the total

time-span of the metre; the cycle consisting of the lines connecting beats 1, 3, and

5 forming a cycle of three beats; and the cycle consisting of the arcs between each

successive pair of dots forming a cycle of six beats. Both figures 5.1a and 5.1b are

labelled as representing possible metrical structures implied by a 43 time-signature.

erefore, in terms of common music notation, the three-beat cycle in each case

corresponds to the crotchet-level beat, and the six-beat cycle in the second figure

corresponds to the duple subdivision of the crotchet beat into quavers.

20e use of italic font in this section denotes terms defined in London’s theory
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Figure 5.1: Cyclical representation of metre, aer London (2004, pp. 64–69).

e total number of dots around the circumference of a circle defines the car-
dinality of the metre. is cyclic component, referred to as the N-cycle, where N

equals the cardinality, is the lowest level (fastest moving) cycle in any metrical

hierarchy and includes all peaks of aentional energy. e concept of the N-cycle

can be used as the basis for describing metrical structure. Figure 5.1a is therefore a

3-cycle metre, which in this case is an N-cycle component that also corresponds to

the beat cycle or tactus. Figure 5.1b is a 6-cycle, which in this case corresponds to

a subdivision of the beat-cycle. It is more common for a beat-cycle to be a subcycle
of an N-cycle, because most metres include at least one level of tactus subdivi-

sion (London 2004, p. 35). us subcycles represent higher levels in the metrical

hierarchy, involving longer IOIs.

Individual metrical structures, ormetrical types, can be distinguished based on

the cardinality of their N-cycle, together with the particular grouping of N-cycle

beats into subcycles. erefore, as a metrical type, figure 5.1b can be described as a
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6-cycle, with a 3-cycle component comprising timepoints 1-3-5. Metres may have

further levels of organisation, as shown in figure 5.1c, which contains four levels

of periodic motion, and may also include non-isochronous cycles (NI-cycles), as in
figure 5.1d, where the first subcycle consists of three short beats followed by one

long beat.

Timing information is needed to specify a metre fully within this framework,

giving rise to metrical types that can be individuated both in terms of tempo, as

well as expressive variation due to pulse interval micro-timing variation. Drawing

on the psychological literature, London defines themaximumperiod of the N-cycle

as between 5 and 6 seconds, and the IOI between timepoints on the N-cycle as at

least 100 milliseconds. is range defines the temporal envelope for metre (London

2004, p. 27).emaximal range of tactus IOI is from 200ms to 2000ms (correspond-

ing to 30–300 bpm), with the typical range being 400–1200 ms (50–150 bpm), with

a preference around 600 ms (100 bpm). e perceived character of individual met-

rical types changes across the range of the temporal envelope, resulting in iden-

tifiable tempo-metrical types (London 2004, pp. 73–76). Note that these limits are

not arbitrary constraints, defined in order to simplify the representation of metre:

they are empirically determined perceptual and cognitive limitations. Such quan-

titative understanding of perceptual phenomena is central to the present purpose

of constructing perceptually valid conceptual space representations.

In addition to the above constraints on the N-cycle, London provides further

constraints that apply to the internal subcycle structure of metre. In the follow-

ing, London’s metrical well-formedness constraints (in their revised form) are pre-

sented in full (London 2012).

Perceptual Constraints on Levels and Cycles
WFC 1.1 IOIs between aentional peaks on the N-cycle must be greater than

≈ 100 ms.

WFC 1.2 e beat cycle involves those aentional peaks whose IOIs fall between

≈ 400 ms and ≈ 1200 ms.

WFC 1.3 A meter may have only one beat cycle.

WFC 1.4 e maximum duration for any or all cycles is ≈ 5000 ms.

Minimal Requirements
WFC 2.1 A meter must have a beat cycle.

WFC 2.2 e beat cycle must involve at least two beats.

WFC 2.3 e N-cycle may serve as the beat cycle.
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Intercycle Relationships
WFC 3.1 All cycles must have the same total period/duration.

WFC 3.2 All cycles must be continuous.

WFC 3.3 e N-cycle and all subcycles must begin and end at the same temporal

location; that is, they must all be in phase

WFC 3.4 Each subcycle must connect nonadjacent time points on the next lowest

cycle.

Regularity Requirements
WFC 4.1.1 If the IOIs on the N-cycle are non-isochronous, then the IOIs on the

beat cycle must be nominally isochronous (i.e., categorically equivalent,

though subject to expressive variation).

WFC 4.1.2 If the IOIs on the N-cycle are non-isochronous, their abso-

lute lengths must be such as to avoid ambiguities and contradictions;

(S) must be > 1
2
(L).21

WFC 4.1.3 Sequencing of NI elements on the N-cycle will remain constant from

beat to beat within the cycle, maintaining maximal evenness.

WFC 4.2.1 If the IOIs on the N-cycle are isochronous, then the beat cycle need

not be.

WFC 4.2.2 If the beat cycle is NI, then either (1) it is maximally even or (2) the

cycle above the beat cycle, in most cases the half-measure cycle, must be

maximally even.

e above constraints on metric well-formedness define a large space of pos-

sible metres, which London is confident encompasses the vast majority of metres

present across all musical cultures (London 2004, p. 114). Importantly, the con-

straints allow us to exclude from consideration themuch larger space of all possible

hierarchical cyclic structures that do not correspond with a subjective experience

of metre.

5.2.3 Prototypical and individuated metre

We do not encounter “generic 44” or even “44 at a tempo of quarter-

note = 120” but a paern of timing and dynamics that is particular to

the piece, the performer, and the musical style. erefore, to give an

ecologically valid account of meter, we must move beyond a theory of

tempo-metrical types to a metrical representation that involves partic-

ular timing relationships and their absolute values in a hierarchically

21(S) and (L) refer to categorically short and long beats respectively.

102



related set of metric cycles. (London 2004, p. 159)

e absolute value of timing relationships is here understood as referring to the

individual intervals between the timepoints on the various cyclic levels of metrical

organisation, and dynamics as the relative strength of aentional energy associ-

ated with each metrical category. London concentrates primarily on aspects of

timing in the development of the theory. However, both timing and dynamics

are considered equally important from the perspective of the models developed

below. Within London’s theory, the concept of metre now becomes something

much more fluid and nuanced: the subtle and regular, with respect to the granu-

larity of categorical perception, differences in timing between individual metrical

timepoints which may be characteristic of a musical style or individual performer,

are acknowledged to be part of metrical perception, rather than being considered

as expressive timing deviations from an abstract music-theoretic notion of me-

tre. erefore, tempo-metrical types, together with particular internal timing re-

lationships, should be understood as distinct metres in their own right. London

calls this expanded view of metre the ‘Many Metres Hypothesis’ (London 2004,

pp. 142–160), and argues that this theory offers a more parsimonious and ecolog-

ically sound account of musical expressive timing than traditional Western music

theoretic notions of metre.

Similar arguments for an expanded definition of metre have also been made by

researchers working with music from outside the Western musical mainstream.

Polak (2010) writing on jembemusic fromMali states that cyclic subpulse variation

within metric types is ‘inherent in the metric system’, and an integral component

of the rhythmic feel of themusic – or as Polak rightly points out, what shouldmore

accurately be termed metric feel. Polak suggests that it may be ‘more universally

valid […] to conceive of expressive timing as variation from metrical expectation’

(Polak 2010, ¶ 149), echoing the adoption of a cognitive perspective in musical

understanding as taken in this thesis.

Further argument, from both musicological and empirical perspectives, in sup-

port of an enriched definition of metre is provided by Tellef Kvie. Kvie’s work

is particularly important to consider here because it offers an alternative formula-

tion of a key aspect of metrical well-formedness as proposed by London (2004), and

one which was arrived at independently by the present author during the process

of formalising and implementing London’s constraints.22 In Kvie (2007), several

prominent theories of metre are surveyed, including that of London, all of which

22In the revised edition of the theory (London 2012), non-isochronous N-cycles are permied
into London’s WFCs.
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can be can be viewed as Common Fast Pulse (CFP) models. In the terminology

adopted here, the CFP is equivalent to the N-cycle, which, to reiterate, London

(2004) defines as notionally isochronous, and the primary constraint on the hier-

archical structure of slower grouping cycles. Kvie is primarily concerned with

non-isochronous metre, and acknowledges the utility of assuming isochrony at

the fastest level of metrical organisation as a possible account of entrainment and

of the subjective experience of constant tempo. Furthermore, Kvie acknowledges

from experience the importance of counting a constant fast pulse when learning

to perform non-isochronous music. However, it is pointed out that this must be

overcome, and the non-isochrony internalised, if one is to be able to performwell—

something that seems to be intuitively mastered by non-musicians enculturated

with metrically non-isochronous music. From an empirical perspective, an analy-

sis of Norwegian springar dance music revealed that the range of tactus subdivi-

sion was between 15% and 85% (Kvie 2004, p. 70), which supports the ‘practically

unanimous’ view in the field that springar music does not as a rule have a com-

mon fastest pulse (Kvie 2007, p. 73). Furthermore, the analysis revealed that the

process of non-equal subdivision can occur at multiple metrical levels, in this case

at both the tactus and sub-tactus levels (analysis was constrained to three metrical

levels: the tactus, one grouping and one subdivision level).

Kvie emphasises the necessity of keeping distinct questions of metrical cate-

gories and metrical timing. Regarding the perception of pulse interval categories,

Kvie agrees that London’s model gives a plausible account. However, the point of

disagreement concerns London’s association of metrical timing with the concept

of the isochronous N-cycle. Kvie instead proposes a Common Slow Pulse (CSP)

approach to formalising metrical structure, motivated in part by motor-mimetic

theories of music cognition (Godøy 2003). In a CSP model, an isochronous higher-

level grouping cycle is identified as the primary determinant of metrical macro-

timing. Above this cycle, here termed the anchor-cycle, pulse intervals of further

grouping cycles are simply multiples of anchor-cycle intervals, and perceived pri-

marily additively. Whereas cycles below the anchor-cycle are formed by subdi-

viding anchor-level pulse intervals into not necessarily equal intervals, and are

experienced primary divisively. is model of metrical structure is very similar to

that proposed by Lerdahl and Jackendoff (1983), except that the anchor-cycle is not

necessarily required to also be the tactus cycle. Admiing non-equal metrical sub-

divisions into a formal definition of metre allows for microrhythmic details to be

considered as part of metrical structure, rather than either being le unaccounted

for, or potentially misleadingly being considered as random or stylistic deviation
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from an abstract Western-centric theoretical conceptualisation of metre.

e inclusion of pulse interval timing variation into the concept of metre does

not negate the notion of the categorical perception of time intervals. However, it

does raise potential challenges to the formulation of well-formedness constraints.

Typically, broad categories of equal, long and short intervals will remain distinct as

a consequence of the well-formedness of hierarchical metrical grouping, irrespec-

tive of variation in absolute timings. However, as timing variations become more

extreme, a particular class of metrical ambiguity impossible in London’s theory

becomes admissible. For example, going beyond a 1:2 subdivision ratio potentially

leads to larger intervals being present on further subdividing cycles relative to the

immediate grouping cycle. If the ratio is exactly 1:2, (say 200:400 ms subdivisions

of a 600 ms tactus), then further equal duple subdivisions lead to identical pulse in-

tervals being present on adjacent cycles. As Kvie (2004) argues that metres with

such extreme subdivision ratios are meaningful to those familiar with the culture

of springar music, further psychological testing and formal work is required. is

will not be addressed specifically here, except it suffices to say that the conceptual

spaces below are capable of representing such extreme non-isochronous metres,

and remain agnostic as to the precise boundaries between regions corresponding

to well-formed and non-well-formed structures.

Differences in the constraints of metrical timing aside,23 each of the above ac-

counts argues for an understanding of metre that goes beyond abstract or idealised

periodic temporal paerns. Within the formalism below, no special account is

made for idealised metres. Regarding the representation of metrical structure, the

formalism takes full account of expressively articulated metres: idealised metrical

structures are simply structures with no variation in timing or aentional energy,

and are considered prototypical of real-world paerns of entrainment. London

refers to our ability to discern nuanced distinctions between familiar paerns of

entrainment through exposure as a process of individuation.

A listener’s metric competence resides in her or his knowledge of a

very large number of context-specific metrical timing paerns. e

number and degree of individuation among these paerns increases

with age, training, and degree of metrical enculturation.

(London 2004, p. 153)

In the theory of conceptual space, Gärdenfors argues that the function of qual-

ity dimensions is to represent how concepts, grounded in perception, can vary.

23e revised edition of London’s theory is in fact broadly compatible with the theories proposed
by Polak and Kvie.
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erefore, taking the cue from the term individuation, quality dimensions must

be sought which can represent all the possible ways in which prototypical met-

rical concepts can be perceptually differentiated. Representing individual timing

relationships and paerns of aentional energy will necessarily require concep-

tual spaces of higher dimensionality than those restricted to metrical prototypes

as presented by Forth et al. (2010). e idea of acquiring new dimensions in order

to account for differences in novel stimuli sits very naturally with the proposed ge-

ometrical model of learning and concept formation. In the spaces defined below,

prototype metres are simply the centroid of regions corresponding to particular

metrical types.

In the following, a symbolic formalisation of London’s theory is first developed,

from which a number of conceptual space representation are derived.

5.3 A symbolic definition of London’s theory

Before defining a geometrical representation of metrical structure, it is helpful to

first describe London’s theory of metre formally in terms of a tree representa-

tion. is level of representation corresponds to a symbolic representation in Gär-

denfors’ terminology. e subsequent geometrical models of metre can then be

defined as mappings of tree structures to points in conceptual spaces, and thus

simplifying the definition of the geometrical representations. Furthermore, not

only are tree structures intuitive ways of thinking about metrical structure, they

also simplify the relationship between concrete sequences of musical events and

geometrical representations of metrical concepts. erefore, the combination of

symbolic and conceptual representations are complementary. On the conceptual

level, it is possible to conceptualise metre in terms of space, invoking notions of

similarity in terms of distance, and types of metres in terms of geometrical regions.

However, the geometry itself is not necessarily intuitive, particularly for higher-

dimensional spaces. erefore, the symbolic representation provides a means of

understanding the properties of the geometrical spaces in more familiar terms.

5.3.1 Representational semantics of metrical trees

Tree structures offer a discrete view of musical metre, somewhat at odds with

London’s cyclic representation that aims to convey the continuous nature of met-

rical entrainment (London 2004, p. 65). “Continuous” here has two interpretations.

Firstly, in a loosely mathematical sense, a model may be considered continuous if

it is defined over the set of real numbers, and in effect an infinite number of ever

106



finely distinguished values may be used. Secondly, continuous may imply existing

through time, in other words, a dynamic process. London’s cyclic representations

informally convey both of these qualities. e placement of N-cycle points on the

circumference of the circle is not constrained to a finite set of positions, notwith-

standing the constraints of metrical well-formedness. Further, the cyclic nature

of the diagrams at least implies the notion of metre as a continuous process of

entrainment happening over time.

Tree representations offer a more abstracted view of musical metre compared

with London’s cyclic representation. However, the difference is only a maer of

representation, and does not constrain the theoretical understanding of metre as

a dynamic process of entrainment. It will be shown that metrical trees can be

mapped to points in geometrical spaces, which are themselves continuous rep-

resentations in the mathematical sense. e converse is also true: all points in

a conceptual space can be mapped to a tree. Whether all points and respective

trees correspond to well-formed metres is another maer—but constraints can be

specified either geometrically or symbolically as appropriate (since both are repre-

sentations of the same psychological phenomenon) in order to maintain metrical

well-formedness. erefore, trees are a discrete symbolic representation, but only

so far as they are considered here to be an abstraction of a point in a continuous

space of metre. Points and regions in geometrical spaces correspond to stable (pos-

sibly ambiguous) metrical concepts, and theoretically, infinitely many metres may

be represented – although as a model of metrical conceptualisation, the models

boom out at a set of just-noticeable difference regions.

Representations of metrical structure, in both symbolic and geometrical spaces,

encode temporal information. However, neither refer to real time. In this sense,

they are not time-continuous and dynamic. Changes in metrical experience over

time can be modelled by a discrete sequence of points in a conceptual space, or

equivalently as a sequence of metrical trees. However, the metrical concepts them-

selves are still not time-continuous. As such, the representations pursued here are

best thought of as representing discrete snapshots of a process of entrainment

modelled over a certain time window.

A further constraint herein assumed regarding the non-dynamic nature of met-

rical concepts is that only a single concept will be derived for any given musical

excerpt or entire piece. erefore, metrical structure, pulse interval timing, and the

distribution of aentional energy associated with a piece of music are assumed to

represent the general metrical feel of the music. e process of mapping symbolic

representations of musical stimuli to metrical concepts is described in section 5.6.2.
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Implicit in this constraint is that the model assumes complete knowledge of a piece

of music in order to represent its metre. is constraint allow questions associated

with changing metre to be excluded from the current investigation. Firstly, this is

necessary in order to constrain the evaluation of metrical-rhythmic similarity to

stable, bounded concepts, and avoid higher-order sequences of metrical concepts.

Secondly, addressing metrical dynamics is very difficult without first specifying

a process of metrical induction, so that it becomes possible to estimate the most

likely metrical interpretation of a piece of music through time. ese issues are

beyond the scope of the current work, but the overall framework does not preclude

their development. A further level of representation, corresponding to Gärdenfors’

sub-symbolic level, may be able to represent the in-time experience of metrical en-

trainment, and will be the subject of future work.

5.3.2 Notation and definitions of trees

Definition 5.1. A undirected labelled graph G = (V,E, L) consists of a finite non-

empty set of vertices or nodes V , a finite set of edges E, and a set of vertex labels

L. An edge is a set {u, v}, where u, v ∈ V and u ̸= v.

Definition 5.2. Vertices u, v ∈ V are adjacent if {u, v} ∈ E.

Definition 5.3. A simple path is a sequence of adjacent vertices, where no vertex

is included more than once.

Definition 5.4. An undirected graph is connected if there exists a simple path be-

tween each pair of vertices u, v ∈ V .

Definition 5.5. A connected undirected graph containing no cycles is a tree, for
which |E| = |V | − 1.

Definition 5.6. Let G = (V,E, L) be a labelled tree. Each node has a label, possibly

empty. e function label : V → L returns the corresponding label l ∈ L for a

vertex v ∈ V .

Definition 5.7. A rooted tree is a tree in which there is a distinguished node r ∈ V ,

called the root of the tree, denoted root(G) = r. ere is a simple path from r to

every node in a tree.

Definition 5.8. e length of the path from the root r to a node v ∈ V is the depth
of v in G, denoted depth : V → N. us the root node always has a depth of 0.

Definition 5.9. A level of a tree consists of all nodes of the same depth:

level(d, V ) = {v ∈ V | depth(v) = d}.
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Definition 5.10. e cardinality of a level of a tree is the number of nodes at any

given level: cardinality(d, V ) = | level(d, V )|.

Definition 5.11. Any node u ∈ V on the unique simple path from the root r to

v ∈ V is an ancestor of v. If u is an ancestor of v, then v is a descendent of u. All

nodes are both ancestors and descendents of themselves.

Definition 5.12. Node v ∈ V is said to be a child of node u ∈ V if u and v are

adjacent and depth(v) = depth(u) + 1. In which case u is the parent of v. e

function parent : V → V returns the parent given any node v ∈ V . e root r is

the only node without a parent, denoted parent(r) = ⊤.

Definition 5.13. e set of child nodes for a given node u ∈ V is given by

children(u) = {v ∈ V | parent(v) = u}

Definition 5.14. e degree or arity of a node u ∈ V is equal to the number of its

child nodes.

Definition 5.15. Nodes with no child nodes, and therefore degree 0, are called leaf
nodes.

Definition 5.16. All non-leaf nodes are called internal nodes.

Definition 5.17. e Boolean valued function is-leaf : V → {0, 1} returns 0 (false)

for all non-leaf nodes, and 1 (true) for leaf nodes. us, the set of leaf nodes can

be denoted leaf-nodes(V ) = {v ∈ V | is-leaf(v) = 1}.

Definition 5.18. e height of a tree is equal to the length of the longest simple

path from the root r to a leaf node.

Definition 5.19. A perfect tree is a tree in which every path from the root r to a

leaf is of equal length.

Definition 5.20. An ordered tree is a tree in which a total ordering is defined for

the children of each node.

Definition 5.21. Given an ordered tree, child nodes can be identified in terms of

their position relative to their parent, with respect to the defined node ordering.

Node position is indexed from zero. e function child : N× V → V ∪ ⊤ takes

an index i together with a node u ∈ V , and returns the ith child node of u with

respect to the node order, or undefined,⊤, if i is equal to or greater than the degree

of u.

Definition 5.22. Given a node, the function position : V → I ∪ ⊤ returns the po-

sition of the node relative to its parent, with respect to the defined node ordering,

or undefined, ⊤, for the root node.
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5.3.3 Definition of tempo-metrical trees

Given the formal definitions concerning tree structure stated in section 5.3.2, it is

now possible to define instances of individuated metrical types symbolically in the

form of a tree.

Definition 5.23. A metrical tree, T , is a labelled, perfect, ordered tree:

T = (V,E, L,O, I, A, t).

e sets V ,E andL correspond to the above defined sets of nodes, edges and labels

respectively. Each node represents a pulse in a metrical hierarchy—a peak of at-

tentional energy—and each edge represents the hierarchical relationship between

pulses. In metre-theoretic terms, each set of nodes of equal depth, that is each

level of the tree, represents the pulses present within a particular metrical cycle.

e measure period corresponds to level zero, that is the single element set equal

to {r}. e N-cycle corresponds to the level of maximum depth, equivalent to the

set of leaf nodes.

O is a set of absolute timepoints. Each node is associated with a timepoint,

representing the time instant of a peak of aentional energy, allowing temporal

information to be encoded explicitly within a tree. e timepoint of a peak of

aentional energy will be referred to as the pulse onset. I is a set of pulse IOI

values, and again each node is associated with an IOI. e IOI value associated

with a node represents the time interval between the onset of the pulse the node

itself represents, and the onset of the next pulse in the same metrical level. e set

A is a set of aentional energy values. Each leaf node is associated with a value

from this set, allowing the degree of aentional energy associated with each N-

cycle pulse to be encoded within a tree. e element t is an integer denoting the

level of the tree corresponding to the tactus cycle. Sets O, I and A are formally

defined below, alongwith functions and constraints required for the representation

of well-formed metrical structure. e node labelling procedure is then defined,

which is necessary for subsequent projection of T into geometrical space. e

variable t is then discussed in section 5.3.4.

Onset

Elements o ∈ O represent absolute timings of pulse onsets within a metrical struc-

ture. Time is measured relative to the downbeat in units of milliseconds.

Definition 5.24. e set O is a set of absolute pulse onset timepoints,

O = {x ∈ R | 0 ≤ x ≤ 5900}. Each node v ∈ V is associated with exactly one

110



element from O, and multiple nodes can be associated with the same timepoint.

e function onset : V → O returns the associated onset o ∈ O for a node v ∈ V .

As discussed in section 5.3.1, we hold the view that metre is a dynamic process of

entrainment existing through time, and that our representation is a snapshot of

this process modelled over some time window. It is convenient from the point of

view of formalisation to consider the internal structure of a metrical concept with

reference to the real-number line, and we define the onset of the root node r to be

equal to timepoint zero.

onset(root(T )) = 0 (5.1)

e association of nodes with timepoints should not be confusedwith the real-time

duration over which a stable concept of metre may be experienced.

e upper limit for values in O is determined by the temporal envelope of

metre, that is the minimum and maximum time intervals that afford metrical en-

trainment. London (2004) states the range of metrical pulse IOI as between 100 ms

to approximately 5 or 6 s (WFC 1.1 and WFC 1.4, p. 101). e upper limit of 6 s is

used here to ensure the representation covers the greatest possible range of plausi-

ble metres, while acknowledging the possibility that not all permissible structures

may necessarily be representations of valid metrical entrainment for all or even

any listeners. e upper limit for onset values is therefore 5900 ms, since no onset

may be greater than this in order for the minimum and maximum pulse IOI limits

to be respected.

e association of each node in T with a timepoint provides a convenient and

intuitive means by which to define node ordering.

u < v iff onset(u) < onset(v), ∀u, v ∈ V (5.2)

Defining node order in terms of pulse onset provides a total ordering over all child

nodes because pulses within the same metrical cycle must be separated in time by

at least 100 ms. e availability of a total ordering over child nodes will be used

subsequently to define node labels, giving a total ordering over all nodes in T ,

which is necessary for projection into geometric space.

London’s graphical representation of metre, discussed in section 5.2.2, requires

that all peaks of aentional energy be present on the N-cycle, with subcycles form-

ing higher-level grouping over this sequence of pulses. To ensure that tree repre-

sentations of metre conform to this structure, the following constraint requires
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that the onset of every internal node be equal to the onset of its first child node.

onset(v) = onset(child(0, v)), ∀v ∈ V \ leaf-nodes(V ) (5.3)

Nodes representing pulses at multiple levels of T that are also associated with the

same timepoint are said to be temporally coincidental. erefore, the root node r

together with all temporally coincidental nodes collectively represent the metrical

downbeat, and are associated with timepoint zero.

Pulse IOI

Elements i ∈ I represent time intervals between pulse onsets, specifically the time

interval between one pulse onset and the next pulse onset represented at the same

metrical level. Time is measured in units of milliseconds.

Definition 5.25. e set I is a set of pulse IOI values,
I = {x ∈ R | 100 ≤ x ≤ 6000}. Each node v ∈ V is associated with exactly one

element from I , and multiple nodes can be associated with the same time interval.

e function p-ioi : V → I returns the corresponding pulse IOI i ∈ I for a node

v ∈ V .

As discussed in the previous definition of O, values in I correspond to the range

of the temporal envelope of metre. e association of each node with a pulse

IOI is intended to represent the anticipatory nature of metrical entrainment: the

expectation associated with a peak of aentional energy toward the occurrence of

the next. e pulse IOI associated with the final node of any level of T represents

the time interval towards the next downbeat, emphasising the cyclic nature of

metrical experience.

We define the sum of the pulse IOIs of all child nodes to be equal to the pulse

IOI of their parent.

p-ioi(v) =
∑

w∈children(v)

p-ioi(w), ∀v ∈ V \ leaf-nodes(V ) (5.4)

It is therefore trivially true that the sum of all pulse intervals on each level of T
are equal. e above constraint, together with constraints (5.1) and (5.3) satisfy

the following three of London’s requirements of metrical well-formedness: WFC

3.1 that all cycles must have the same total duration; WFC 3.2 that all cycles must

be continuous; and WFC 3.3 that all cycles must be in phase (p. 102).
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Attentional energy

Elements a ∈ A represent the degree of aentional energy associated with each

N-cycle timepoint.

Definition 5.26. e set A is a set of aentional energy values,

A = {x ∈ R | 0 ≤ x ≤ 1}. Each leaf node v ∈ leaf-nodes(V ) is associated with

exactly one element from A, and multiple nodes can be associated with the same

aentional energy value. e aentional energy value associated with a leaf node

can be obtained directly from a leaf node, or from any temporally coincidental

internal node, by the function a-energy : V → A (5.5).

Aentional energy values are only associated with N-cycle timepoints, and there-

fore higher-level groupings may not take on distinguished aentional energy val-

ues. e function a-energy(.) is defined such that the aentional energy value

associated with a leaf node can be obtained given any temporally coincidental in-

ternal node. Within this definition, the function child(0, .) returns the le-most

child node of an internal node, and is called recursively until the corresponding

leaf node is found.

a-energy : V → A

v 7→

a if is-leaf(v) = 1

a-energy(child(0, v)) otherwise

(5.5)

Aentional energy values represent a hypothetical weighting of metrical

pulses. In actuality, the degree of aentional energy associated with any pulse

may be a combination of many factors, both endogenous and stimulus driven.

Neurological studies have shown evidence that both endogenous and stimulus ac-

cents have a significant influence on paerns of neurological activation (Snyder

and Large 2005; Iversen et al. 2009). Given such evidence, together with findings

from cognitive scientific modelling of musical expectation (Pearce and Wiggins

2006), it is reasonable to expect that all aspects of perceived musical structure—

whether concerning rhythm, melody, harmony, or timbre—may be involved in

shaping paerns of aentional energy. A complete model of aentional energy

is beyond the present scope, and instead we take a pragmatic approach. In the

context of prototypical metres, all aentional energy values will default to 1. A

reasonable alternative to this might be a GTTM-style metrical accent based on the

number of timepoints across all cycles that are temporally aligned with each N-

cycle timepoint (Lerdahl and Jackendoff 1983). However, further evidence should

be sought before incorporating such an assumption into the model. Individuated
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aentional energy values for metrical concepts derived from musical passages is

simply a function of the number of events that are perceptually coincidental with

each N-cycle timepoint. e mapping from symbolic representations of music to

metrical concepts is discussed further in section 5.6.2.

Constraints on metrical tree structure

Metrical concepts are bounded in time, and therefore in the number of cycles they

can contain.

Definition 5.27. Node depth D = {x ∈ N | 0 ≤ x ≤ 5} in T is denoted

depth : V → D.

e maximum depth of any node in T is thus defined as 5, because no well-formed

metrical structure within the bounds of the temporal envelope of metre, can con-

sist of more than six hierarchical cycles, as shown in (5.6). Such perceptual con-

straints are in no sense physical laws, and extending the range arbitrarily by a few

milliseconds would admit structures of seven cycles. However, temporal factors

may not be the only source of constraint on the ability to perceive greater numbers

of metrical levels. Intuitively, the greater the number of levels, the more complex

a metrical concept becomes, requiring greater cognitive resources. Furthermore,

the greater the number of levels, the greater the number of distinct metrical cate-

gories are available with which to form a metrical interpretation of surface rhyth-

mic paerns. From an information theoretic perspective, presumably the greater

number of categories diminishes in utility beyond a certain point. Nonetheless,

such questions are here le for future work, and for the purpose of formalisa-

tion, an absolute range of the metrical envelope is assumed. However, it should

be noted that the conceptual space representations necessarily extend beyond the

fixed range defined for metrical trees, so metrical structures beyond this range can
be represented at the conceptual level, although they fall into regions that are be-

yond the typical bounds of metrical entrainment, and are therefore not considered

well-formed metrical structures.

argmax
n∈N, 100 · 2

n ≤ 6000

= 5
(5.6)

e height of T has the usual definition of the length of the longest path from

the root to a leaf, and we constrain the minimum height to one.

height : T → D \ {0}
V (T ) 7→ maxv∈V {depth(v)}

(5.7)
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e minimum height of T is one because London’s definition of metre requires

at least two levels of coordinated periodic motion, as a consequence of WFC 2.2

(p. 101) requiring that the tactus cycle contain at least two beats. In a metre com-

prising only two cycles, the N-cycle therefore must be the tactus, permissible by

WFC 2.3, with the additional slower cycle grouping tactus beats into typically twos

or threes.

Each node can have either zero, two or three child nodes, following Lerdahl

and Jackendo’s metrical well-formedness rule (MWFR 3): ‘At each metrical level,

strong beats are spaced either two or three beats apart’ (Lerdahl and Jackendoff

1983, p. 69).

arity : V → {0, 2, 3}

v 7→

0 if is-leaf(v) = 1

| children(v)| otherwise

(5.8)

As defined above, nodes of arity zero are leaf nodes. All other internal nodes in T
are required to be of arity two or three, corresponding to duple or triple metrical

subdivisions respectively. For every internal node, this constraint on arity accords

with London’s WFC 3.4, that each subcycle must connect nonadjacent timepoints.

e arity of T is equal to the maximum arity of its constituent nodes. us, T is

always of arity two or three, depending on whether triple subdivisions are present

in the metre or not.

is constraint on metrical grouping structure is more restrictive than that

stated in London’s theory, which allows aentional groups of larger multiples.

Lerdahl and Jackendoff (1983) proposed their well-formedness rule in the context

of Western classical music, and therefore it should not be assumed to be applicable

across all musical cultures. Notwithstanding this caveat, in order to preserve uni-

formity within the present formalism, we here assume that all groupings of pulses

greater than three can be modelled as hierarchical groupings of twos and threes.

is concession to formality may well be refuted by empirical evidence, but that

question will not be pursued further here.

Abstraction of sequential structure

Two further functions of T , required for the subsequent geometrical mappings,

must be defined. Each function summarises a structural feature of T . Except for

prototypical metres, all instances of T represent varying degrees of expressive

variation, both in timing and aentional energy. To completely represent this
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expressive variation requires a representation of the internal sequential structure

of each cycle, to be defined in section 5.5. However, for the simpler geometrical

representation of purely periodic structure, to be defined in section 5.4, an abstrac-

tion of the sequential structure of each cycle is required. erefore, equations (5.9)

and (5.10) define the mean pulse IOI and aentional energy values respectively for

each cycle, in terms of node depth. e use of the mean here assumes that vari-

ation is normally distributed, and in psychological terms, that it is appropriate to

consider the mean as being prototypical of a perceptual category. At least in the

case of timing, there is evidence to suggest that rhythmic categorisation does not

align completely with, or symmetrically about, the mean of expressively varied

IOI category timings (Desain and Honing 2003; Repp et al. in press).

mean-p-ioi(d, V ) =

∑
w∈level(d,V )

p-ioi(w)

cardinality(d, V )
(5.9)

mean-a-energy(d, V ) =

∑
w∈level(d,V )

a-energy(w)

cardinality(d, V )
(5.10)

Node labels

A total ordering over all nodes in T is required in order to define amapping from T
into geometrical space. is is a distinct notion to the temporal ordering of pulses

as defined above in terms of pulse onset, which only provides a total ordering

within individual levels of T . A total ordering over all nodes in T may be arbitrary,

so long as it is complete. Given that we have an existing definition of child node

order based on temporal sequence, a total ordering over all nodes in T can simply

be defined in terms of node labels generated by considering the unique path to

each node from the root.

Each node v ∈ V is labelled by a unique n-tuple label(v) ∈ L, where

n = depth(v), according to the following recursive function. e symbol ∥ is used
here to denote tuple concatenation.

label(v) =

⟨⟩ if v = root(T )

label(parent(v))∥ ⟨position(v)⟩ otherwise
(5.11)

e root is thus labelled ⟨⟩, and child nodes of the root are labelled respectively:

⟨0⟩, ⟨1⟩, and ⟨2⟩. Labels for each subsequent child node are generated in the same

manner by appending the child’s position relative to its parent to the parent’s label:
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⟨0, 0⟩ , ⟨0, 1⟩ , ⟨0, 2⟩ . . . ⟨0, 0, 0⟩ , ⟨0, 0, 1⟩ , ⟨0, 0, 2⟩ etc. Tree representations corre-

sponding to instances of the metres in figure 5.1 are shown in figure 5.2. e total

ordering over T is then defined as the lexicographic ordering of node labels.
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.
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.
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.
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an: 1

.

{1, 0, 1}

.

onset: 1500
pioi: 300
an: 1

.
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.

onset: 1800
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.

{1, 1, 0}

.

onset: 1800
pioi: 300
an: 1

.

{1, 1, 1}

.
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c: 4
4 with quaver beat subdivision.

..
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.

onset: 0
pioi: 1200

.
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.
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.
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.
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.
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.

onset: 300
pioi: 300
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.
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.
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.
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.
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.

{0, 1, 1}

.
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.

{1}

.

onset: 1200
pioi: 1500
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.
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.
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.

onset: 1200
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.
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.
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.
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.

onset: 1800
pioi: 900

.

{1, 1, 0}

.

onset: 1800
pioi: 300
an: 1

.

{1, 1, 1}

.

onset: 2100
pioi: 300
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.

{1, 1, 2}

.

onset: 2400
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an: 1

d: Non-isochronous 2-2-2-3 N-cycle grouping paern.

Figure 5.2: Tree representation of metre, corresponding to the prototypical metrical pat-
terns shown in figure 5.1. e upper part of each node contains the node label, the lower
part contains the pulse onset and IOI. Each leaf node additionally contains an aentional
energy value.
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5.3.4 Representation of the tactus within metrical trees

Unlike the measure period or N-cycle, which are associated with root and leaf

nodes respectively, the tactus cycle cannot be defined in terms of tree structure. A

number of cycles may be candidate tactus cycles in perception, and the tactus cycle

is not necessarily the most salient cycle in terms of pulse-period salience (Parncu

1994, p. 438), as evident in entrainment at fast and slow tempi across the range of

tactus IOI from 200 ms to 2000 ms (London 2004, p. 27). erefore, it is necessary

to define the tactus level, t, explicitly.

Definition 5.28. Set D′ = D \ {0, 5} is the set of permissible tactus levels. e

element t ∈ D′ denotes the tactus level in T .

Furthermore, we constrain the IOI between tactus pulses to be between 200 ms

and 2000 ms (5.12).

∀v ∈ level(t, V ) 200 ≤ p-ioi(v) ≤ 2000 (5.12)

Following London, by defining t thus, we state that one cycle is always distin-

guished in metrical perception (WFC 2.1, p. 101), and that only a single cycle can

hold this focus in aention at any given moment (WFC 1.3). e tactus cycle can-

not be at depth zero, because at least one grouping cycle must exist above the

tactus (WFC 2.2). It also cannot be at depth five because that would entail a mea-

sure period cycle of greater than 6000 ms, given the 200 ms tactus lower bound.

Levels above the tactus level are referred to as grouping cycles, and levels below as

subdividing cycles. erefore, given a metrical tree of maximal height five, the tac-

tus cycle may be denoted as any level from one to four. If t = 1, the metre is said to

contain one grouping cycle, and four subdividing cycles. At the other extreme, if

t = 4, then the metre contains four grouping cycles and a single subdividing cycle.

Tables 5.1 and 5.2 show two maximal height metrical structures at both the lower

and upper limits of the metrical temporal envelope (mean pulse IOI values of each

cycle are shown, as defined by mean-p-ioi (5.9)).
Both metrical structures in tables 5.1 and 5.2 have duple relationships between

the pulse IOIs on each metrical cycle, which afford the greatest number of cycles

to be defined within the metrical envelope. e maximally subdivided metre is the

fastest possible well-formed metrical structure with four levels of subdivision. A

musical interpretation of this metre is that of a duple tactus metre of very slow

tempo (37.5 bpm), with four levels of duple subdivision. Notated in conventional

Western notation, with crotchet as tactus beat, the N-cycle, level(5, V ), pulses
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Table 5.1: Mean pulse IOIs for cycles in a metre with a maximal number of subdi-
viding cycles.

Depth Cycle Mean pulse IOI
0 grouping 1 3200
1 tactus 1600
2 subdividing 1 800
3 subdividing 2 400
4 subdividing 3 200
5 subdivision 4 100

Table 5.2: Mean pulse IOIs for cycles in a metre with a maximal number of group-
ing cycles.

Depth Cycle Mean pulse IOI
0 grouping 4 6000
1 grouping 3 3000
2 grouping 2 1500
3 grouping 1 750
4 tactus 375
5 subdividing 1 187.5

would correspond to hemidemisemiquavers, and the measure period, level(0, V ),

a minim.

e maximally grouped metre is the slowest well-formed metrical structure

with four levels of grouping. is structure corresponds to a metre with 16 tactus

beats at 160 bpm. Each tactus beat is recursively grouped into pairs, with one level

of duple subdivision. Again in common notation with crotchet equals tactus, the

measure period would correspond to twice the length of a breve, or the medieval

duple longa, while the N-cycle, would correspond to a quaver.

Arguably such use of notation would not be an efficient use of established con-

ventions, and other means could be employed to convey extremely slow or fast

passages more effectively. But moreover, it is questionable whether such metrical

structure actually persist in cognition, despite being permissible within the for-

malisation. Although it is difficult to imagine music that would induce precisely

these extrememetrical structures spontaneously, is it not inconceivable that music

containing such periodic components could be experienced within these metrical

frameworks, even if only with intentional effort. Furthermore, on the one hand,

these metres are extremely simple, being composed solely of equal duple relation-
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ships between the pulses of adjacent cycles. On the other hand, the height of the

structures makes them relatively complex. It is difficult to conceive of a 32-cycle

N-cycle consisting of 100 ms pulse IOIs, or a 6 second long measure period with

the same clarity as a moderately paced 3- or 4-cycle tactus. is is not surprising

given what is known about human perception and reproduction of time intervals.

However, such cycles are assumed here to be part of the concept of metre, impor-

tant in the context of the specific combination of periodic components in which

they exist, even if their exact functional role in the structure is not foremost in

perception. e key point is that there is no easy distinction to be made between

the clearly conscious aspects of metrical perception, and perhaps pre-conscious

correlates, that nonetheless contribute to our experience of metre.

e metrical level to which we aend as the tactus may of course change, de-

pending on: tempo fluctuations, in which case aention is likely to tend towards

the centre of the range of pulse salience; rhythmic accentuation (McKinney and

Moelants 2006); or simply through a conscious shiing of aention to faster or

slower periodicities. Such ‘flipping’ of aention between metrical cycles is mod-

elled by distinct trees. Even when the node structure of a metrical hierarchy does

not change, modelled in T by the elements (V,E, L,O, I, A), another cycle can

still become foregrounded in aention and become the tactus. is is represented

in the model as a change in t. In terms of the conceptual level representation,

a change in t results in the metre being represented by a different point in the

space, and the vector between the old and new points represents the phenomenon

of shiing tactus levels. By assuming that the absolute depth of the tactus cycle

is given, we avoid issues of tempo and metrical induction. However, future work

should investigate the integration of the conceptual models developed herein with

existing models of beat tracking and metrical induction.

5.4 Conceptual space of periodic metrical structure

is formalisation defines a high-level conceptualisation ofmetre, concerning only

properties of metrical periodicity. Despite the primary periodic nature of metre,

sequentiality also has an important role, particularly when considering metres

comprising paerns of non-equally spaced beats, or the question of how aen-

tional energy is distributed within a periodic paern. e conceptual space de-

scribed in this section concerns only the periodic structure of metre, and abstracts

away the sequential structure internal to periodic paerns. A conceptual space

which also represents sequence within metrical cycles is addressed in section 5.5.
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5.4.1 Domains of metrical periodicity

We now construct a conceptual space representing metrical periodicity, in terms

of the above tree formalisation of London’s theory of metre. An earlier definition

of this space was published by Forth et al. (2010). Since publication, a number of

questions raised by this initial formalisation have been addressed. e principle

objection to the previous formalisation is its permiing of undefined values in cer-

tain dimensions, thus compromising some of the benefits of a purely geometrical

model (see further comment in appendix D). In the revised formalisation, unde-

fined values are no longer necessary, making the model simpler, and more useful.

e improved model is defined below.

In the following, quality dimensions are defined to represent the variable per-

ceptual qualities of concepts. In order to model the perceptual qualities of metrical

structure, it is necessary to define multiple dimensions of the same type, which are

grouped together into a domain of that type. erefore, a domain is simply a mul-

tidimensional space whose regions correspond to Gärdenfors’ notion of natural

properties. We shall define three domains here, composed of typed dimensions,

each of which is a subspace of the total space. erefore, regions across the total

space correspond to Gärdenfors’ notion of a natural concept, which in our case is

a representation of perceived metrical structure.

To avoid repetition below, we first define the aspects of the representation that

are applicable to all dimensions and domains. All spaces are normed vector spaces

supporting the usual operations of vector addition and scalar multiplication. As in

chapter 4,L1 andL2 norms are considered, and treated as factors in the subsequent

evaluation. However, as we are now dealing with identifiable domains within the

conceptual space, we have the flexibility to treat domains hierarchically and to

define different norms within different domains. erefore, we also consider the

case ofL2 within domains, andL1 between domains, denotedL1+L2. e structure

of this hierarchical space follows Gärdenfors’ recommendation of using Euclidean

distance for integral qualities (as we have within domains) and city-block distance

for separable qualities (as we have between domains). To compute this distance,

the distance between points within each L2 normed domain is first calculated, and

then these distances are treated as points in a meta-levelL1 space, to the effect that

the overall distance is an additive combination of the within-domain distances.

To address the issue of different dimensional scales, all distances within do-

mains are min-max normalised (Jain et al. 2005), meaning that distances are lin-

early scaled to the range [0,1] with respect to the longest vector permissible within
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the domain.24

Gärdenfors’ allows for salience weights to be aached to each dimension, as

well as to each domainwithin a conceptual space. Herewe are only concernedwith

salience weights of domains. Within each domain, all dimensions are considered

to have an implicit salience weight of one. Analogous to the model fiing process

in chapter 4, the salience weights for each domain will be the free parameters of

the models to be optimised as part of the evaluation.

__

First, we define a __ quality dimension to represent the mean IOI be-

tween aentional timepoints of a metric cycle, measured in milliseconds, and de-

fined over the range 12.5–48000 ms.25

__ = {x ∈ R | 12.5 ≤ x ≤ 48000} (5.13)

As defined in section 5.3.3, ametrical tree can be composed of atmost six cycles,

with up to four possible cycles above or below the tactus at any instant depending

on the level of T representing the tactus. In order to be able to represent the

mean pulse IOI of all possible hierarchical groupings of cycles, we construct a

9-dimensional domain __9. Each dimension corresponds to a potential

metrical cycle arranged with respect to T from the top down and relative to the

tactus t(T ).
e dimensional structure of all domains is defined with reference to the tac-

tus, since this cycle is defined for all metres. Individual dimensions of a domain

are denoted with a suffix integer, starting from zero, contained in square brack-

ets. e distinguished dimension __9[4] represents the mean IOI of the

tactus cycle. Dimensions 0–3 represent grouping cycles above the tactus, and di-

mensions 5–8 represent tactus subdivisions, of increasing depth with respect to T .

Algorithm MAP_T_MEAN_PIOI (5.1) defines the mapping from T to a point in the

domain of __9.

24“Permissible” here means that defined constraints on metrical structure are taken into account,
so distances are normalised according to the longest vector within the region of a domain corre-
sponding to well-formed metrical properties.

25e lower and upper bounds here are greater than for well-formed metrical pulse IOIs because
the geometry explicitly represents four grouping levels, and four subdivision levels, regardless of
which conform to well-formed metrical cycles. erefore, 12.5 ms corresponds to a fourth level
of subdivision below the tactus in the case of a minimal N-cycle at subdivision level one ( 10023 ).
48000 ms corresponds to a fourth level of grouping above the tactus in the case of a maximal
measure period at grouping level one (6000 · 23).
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Algorithm 5.1 MAP_T_MEAN_PIOI
Require: T
1: __9 ← 0 // initialise array with 0
2: h← height(T )
3: i← 4− t(T ) // absolute measure-period depth
4: for d← 0 to h do // map levels of T
5: __9[d+ i]← mean-p-ioi(d, V (T ))
6: end for
7:

8: for j ← 2 to 0 do // fill unspecified grouping cycles
9: if __9[j] = 0 then

10: __9[j]← __9[j + 1] ∗ 2
11: end if
12: end for
13:

14: for j ← 5 to 8 do // fill unspecified subdivision cycles
15: if __9[j] = 0 then
16: __9[j]← __9[j − 1]/2
17: end if
18: end for
19: return __9

Where a cycle is not present in the metre, an implicit duple grouping or sub-

division cycle is assumed, depending on whether it is above or below the tactus

respectively. Lines 8–12 ensure that unspecified groupings cycles above the first

grouping cycle, which is always specified because at least one grouping cycle must

exist above the tactus (WFC 2.2, p. 101), are filled with implicit duple groupings.

Lines 14–18 ensure that unspecified subdivision cycles below the tactus are filled

with implicit duple subdivisions. Duple grouping and subdivision cycles are as-

sumed over triple cycles because a number of studies have shown that duple rela-

tionships are dominant in perception in the absence of cues to the contrary (Desain

and Honing 2003), and both adults and children are more able to accurately repro-

duce rhythms with a duple metre, as opposed to triple (Drake 1993). Furthermore,

duple groupings and subdivisions are more likely to fall within the perceptual time

frame of metre, and therefore are more likely to be applicable across a wider range

of stimuli.

It is possible to formalise well-formedness constraints of metrical structure at

both symbolic and geometrical levels of representation. To serves as an example

of how a mapping between multiple levels of representation can offer complemen-

tary perspectives on the same underling concept, the logical expression in (5.14)

imposes a constraint on __9 such that the ratio between values of neigh-
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bouring dimensions must be between 2:1 and 3:1 inclusively. In geometrical terms,

this defines regions of well-formedness within the domain, which is a valuable

property of the space that could be exploited within applications exploring, or oth-

erwise utilising, a spatial representation of metrical structure. In symbolic terms,

this constraint simply makes explicit the implications of the symbolic definition

of node arity (5.8), which ensures that all internal nodes in T are of arity two or

three, and constraint (5.4), which requires that the pulse IOI value associated with

each parent node be equal to the sum of pulse IOI values associated with its chil-

dren. e geometric constraint does not place any additional restriction on met-

rical structure beyond what is already required by the symbolic formalism stated

in section 5.3.3. None of these constraints prevent non-integer ratios, within the

range 2:1–3:1, between neighbouring dimensional values in __9. A non-

integer relationships between __9 dimensional values simply represents

a non-isochronous beat grouping structure. e domain of __9 is not ex-

pressive enough to represent the sequential structure of non-isochronous grouping

structures. For example, a cycle consisting of a short-short-long sequence of beats

is represented by the same dimensional value as a short-long-short cycle, assum-

ing the same pulse IOI values, because the mean pulse IOI value across each cycle

are equal. However, both cycles are considered distinct from a short-long-long

cycle involving the same pulse IOI values because the mean pulse IOI value across

the cycle will be different due to the relative number of short versus long beats.

∀i ∈ [1..8] 2 ·__9[i] ≤ __9[i−1] ≤ 3 ·__9[i] (5.14)

As concrete examples of mapping metrical structure to the geometrical domain

of __9, consider 43, as represented in figure 5.2a, and the non-isochronous

metre with a 2-2-2-3 N-cycle grouping paern in figure 5.2d. e 43 metre has

two cycles: a 3-cycle N-cycle, representing an isochronous 600 ms tactus cycle,

and a single grouping cycle, the measure period. As a point in the domain of

__9, this metre is represented as follows.

43 (3-cycle) ⟨14400, 7200, 3600, 1800, 600, 300, 150, 75, 37.5⟩

As with the subsequent example, bold values indicate cycles explicitly present

in the metre, and non-bold values indicate implicit cycles filled in by algo-

rithm MAP_T_MEAN_PIOI (5.1). e dimensional values of the domain can be seen

to satisfy constraint (5.14).

e non-isochronous metre based on a 2-2-2-3 N-cycle grouping paern con-
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tains four cycles, with a tactus cycle consisting of a short-short-short-long pulse

IOI sequence: ⟨600, 600, 600, 900⟩. As a point in __9, this metre is repre-

sented as follows.

2-2-2-3 N-cycle metre ⟨10800, 5400, 2700, 1350, 675, 300, 150, 75, 37.5⟩

e ratio between the value of __9[4] (= 675) and __9[5] (= 300)

is 2.25, as a consequence of the tactus cycle grouping N-cycle beats into both twos

and threes.

An important consequence of filling in unspecified cycles with implicit duple

cycles is that within this domain, there is no way to differentiate between particu-

lar metrical types. For example, the 43 metre in figure 5.2b, which is a 43 metre with

an explicit quaver subdivision cycle, is represented by exactly the same point in

this domain as the 43 metre without an additional duple subdivision cycle. Likewise

for grouping cycles: both conventional 42 and 44 with the same mean tactus pulse

IOI are represented by the same point in the space. erefore, __9 repre-

sents a broad range of synchronised periodicities related to any particular metrical

concept. is turns out to be a valuable property of the space, as intuitively, such

metres are highly similar. However, the subtle differences in these distinct pat-

terns of entrainment must be accounted for. erefore, the actual prominence of

these periodicities in perception is represented by the following domain.

__

e quality dimension __ represents the mean aentional energy of

the timepoints within a given metric cycle, in the unit range [0, 1]:

__ = {x ∈ R | 0 ≤ x ≤ 1} (5.15)

Analogous to __9, we define a 9-dimensional domain __9

in order to represent the mean aentional energy given to each metrical cycle in

all possible hierarchical organisations relative to the tactus, represented by the dis-

tinguished dimension__9[4]. Algorithm MAP_T_MEAN_AENERGY (5.2)

defines the projection from T to a point in this domain.

Taking again the examples of the prototypical 43 metres from figure 5.2, the

difference between the 3-cycle and the 6-cycle variants are represented as follows.

43 (3-cycle) ⟨0, 0, 0, 1, 1, 0, 0, 0, 0⟩
43 (6-cycle) ⟨0, 0, 0, 1, 1, 1, 0, 0, 0⟩
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Algorithm 5.2 MAP_T_MEAN_AENERGY
Require: T
1: __9 ← 0 // initialise array with 0.
2: h← height(T )
3: i← 4− t(T ) // absolute measure-period depth
4: for d← 0 to h do // map levels of T
5: __9[d+ i]← mean-a-energy(d, V (T ))
6: end for
7: return __9

In the case of prototypical metres, where all aentional energy values default to

one, values in __ dimensions are either one if a cycle is present in

a metre, or zero otherwise. erefore, for prototypical metres, this domain can be

thought of as simply a binary vector indicating the presence or absence of metri-

cal levels in a metre. However, the more general definition of mean cycle energy

is useful when considering metrical instances with varying aentional energy.

Furthermore, it is essential that the range of __ dimensions be con-

tinuous between zero and one to permit various geometric operations, such as

generating a series of interpolations between two metres, or calculating a centroid

of a set of metres. e centroid between the above 3-cycle and 6-cycle metres is

simply:

43 (6-cycle) ⟨0, 0, 0, 1, 1, 0.5, 0, 0, 0⟩

Metrical well-formedness requires that this metre is still structurally a 6-cycle, but

that the 6-cycle itself is less prominent in aention. Exactly how it is less promi-

nent, in terms of the sequence of accentuated timepoints, cannot be represented in

this space because only an average over the whole cycle is represented. However,

a higher-dimensional space capable of representing individuated metres based on

sequential cycle structure is defined in section 5.5.

An interesting, and potentially testable consequence of using continuous val-

ues to represent aentional energy is that traditional metrical concepts, such as the

concepts represented by time signatures, correspond to regions within this space,

and are not single discrete points. Intuitively, this is aractive as in perception

there is oen not a clear distinction between structurally similar metres, for ex-

ample, 42 and 44 metres at the same tempo. e difference in this case lies primarily

in the strength of the second grouping cycle above the tactus, represented in di-

mension __9[2]. A reasonable hypothesis might assume that when

the mean aentional energy in this dimension is less-than 0.5, the metre is likely

to be considered 42, but 44 when greater-than 0.5, perhaps subject to hysteresis if one

127



or other metre is primed in perception, or a suitable rhythmic stimulus indicative

of one prototypical metre were to gradually transform into one indicative of the

other.

_

e final domain necessary to specify a conceptual space of metrical periodicity

represents the hierarchical relationship between cycles, independent of tempo. Let

_ be a quality dimension defined over the range [2, 3]:

_ = {x ∈ R | 2 ≤ x ≤ 3} (5.16)

In terms of levels in T , the _ value of a cycle of depth d is equal to the car-

dinality of level d+1 divided by the cardinality of level d. We therefore construct

a domain of _8, with one fewer dimensions than the previous two domains

because cardinality ratio is undefined for the N-cycle. e dimensions in _8

again correspond to the top-down ordering of levels in T , and _8[4] rep-

resents the cardinality ratio of the tactus. Algorithm MAP_T_MEAN_CRATIO (5.3)

defines the mapping from T to a point in _8. Analogously to __9,

unspecified levels of T are assumed to be implicit duple groupings or subdivision,

which is achieved by initialising all dimensional values to 2 prior to mapping levels

of T .26

Algorithm 5.3 MAP_T_MEAN_CRATIO
Require: T
1: _8 ← 2 // initialise array with 2
2: h← height(T )− 1
3: i← 4− t(T ) // absolute measure-period depth
4: for d← 0 to h do // map levels of T
5: _8[d+ i]← cardinality(d+1,V (T ))

cardinality(d,V (T ))

6: end for
7: return _8

e 43 metre from figure 5.2a, and the non-isochronous 2-2-2-3 N-cycle metre

from figure 5.2d are respectively mapped to the following points in _8.

43 (3-cycle) ⟨2, 2, 2, 3, 2, 2, 2, 2⟩
2-2-2-3 N-cycle metre ⟨2, 2, 2, 2, 2.25, 2, 2, 2⟩

26Equivalently, a domain representing the hierarchical relationship between cycles could be de-
fined as a mapping from __9. We use _8 here for simplicity. However, the de-
velopment of a conceptual space formalism within which geometrical constructs can be defined
hierarchically, akin to the multiple viewpoint formalism for symbol sequences (Conklin and Wit-
ten 1995), would greatly simplify the construction of complex multi-domain conceptual spaces.
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Dimensional values in bold again denote values derived from explicit cycles

present in a metre, of which there is one fewer than the total number of cycles

due to the definition of cardinality-ratio as a relational quality between adjacent

cycles.



Each domain defined above is combined into a single conceptual space to produce

a multi-faceted geometric representation of metrical periodicity. A minimal con-

ceptual space, , capturing London’s notion of periodic flow of aentional

energy, can be constructed thus.

 = __9 × __9 × _8 (5.17)

e domains of , together with their salience weights, represent variably

salient orthogonal qualities of metrical entrainment. e domain of __9

represents the absolute frequency of the oscillatory components of ametre. Within

this domain, metres comprising the same oscillatory components are considered

identical. e domain of __9 represents the absolute level of aen-

tional energy associated with each oscillatory component. Within this domain,

metres with the same distribution of aentional energy across cycles, or that sim-

ply have the same number of grouping and subdivision cycles in the case of pro-

totypical metres, are considered identical. e domain of _8 represents the

structural relationship between cycles, analogous to __9 except in rela-

tive terms. Within this domain, metres with the same hierarchical structure are

identical, irrespective of tempo. e domain of _9 is directly computable

from __9. However, the facets of metrical similarity modelled in terms of

distances within each domain are distinct, and both must be explicitly represented

in the space in order to model both absolute and relative qualities of metrical tim-

ing.

5.4.2 Discussion

e geometrical requirement of the space that unspecified cycles in T are assumed

to be implicit duple cycles avoids the need for undefined values within the formal-

isation. However, it may be argued that as only six hierarchically coordinated

duple cycles can fit within the temporal envelope of metre, and a lesser number

when triple relationships between cycles are present, that the values representing

some, if not all, implicit cycles in __9 are meaningless to the concept of
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metre. Indeed, the range of __ dimensions is substantially larger than

the temporal extent of metrical entrainment. is requirement of the space is nec-

essary from the perspective of the vector space formalism, but it is unsatisfactory

from a cognitive perspective. One possible compromise could involve dimensional

salience weights, which here are all assumed to be one. Dimensional saliences

could be defined as a function of the dimensional values, in line with evidence of

tempo preference (Moelants 2002). As such, when values exceed perceptual limits,

corresponding salience weights would tend towards zero, effectively projecting

out uninformative dimensions. However, this possible development will be le

for future work.

5.5 Conceptual space of sequential metrical structure

e general conceptual space approach to representation remains the same as in

the previous model of metrical periodicity, but here the concepts are represented

at a lower level of abstraction. Regions of this space do not only represent the

periodic qualities of metre, but also the sequential structure within metric cycles.

5.5.1 Domains of metrical sequence

Two domains, in the Gärdenfors sense of sets of integral dimensions, are posited as

spaces within which two types of properties pertaining to the sequential structure

of individuated tempo-metrical types are represented. e general vector space

assumptions outlined in section 5.4.1 are also assumed here.

_

We begin again by defining the quality dimensions of each domain. e dimen-

sion _ represents the IOI between aentional timepoints on a metrical cycle,

measured in milliseconds, and defined over the range 0–48000.

_ = {x ∈ R | 0 ≤ x ≤ 48000} (5.18)

To represent the sequential structure of a cycle explicitly requires the availability

of a dimension for every possible hierarchically determined categorical timepoint.

In terms of T , this means a distinct dimension for all possible paths leading from

the root r to a node, for all possible values of t. Ignoring the implications of t

initially and just considering T as an ordinary tree, representing the pulse IOI of

r would only require a single _ dimension. Representing the level below the
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root requires a minimum of three dimensions: one for each of the three possible

children. In general, each level of depth d requires 3d dimensions to represent the

full range of hierarchically determined categorical timepoints.27

T has a maximum height of five, but recall that the tactus cycle t may be de-

fined as any level from one to four, depending on pulse rate, creating a maximum

of either four subdividing cycles (plus one grouping cycle), or four grouping cy-

cles (plus one potential subdividing cycle). us, the geometry must be able to

represent all nine distinct levels, as in the previous domains of __9 and

__9 in section 5.4.1. erefore, to represent the sequential structure

of all possible hierarchical arrangements of metrical cycles relative to the tactus

requires a domain of
∑8

n=0 3
n = 9841 dimensions. is is a very high number of

dimensions, particularly for a notional conceptual space. However, as discussed in

section 5.4.2, only a subset of dimensions ever represent perceptually salient qual-

ities at any one time. In this space, the minimal subset of dimensions needed to

represent a well formed metrical structure, the most basic 2-cycle metre, consists

of only four _ dimensions. Only three of which correspond to explicit pulse

IOI values in the symbolic definition of metre: the measure period; the first tactus

beat; and the second tactus beat. e fourth _ dimension, taking a value of

zero, represents the non-presence of a potential third tactus beat, and ensures that

the complete hierarchical structure of a simple two-cycle duple metre is explicitly

represented. However, the high-dimensionality of the entire domain is necessary

within the vector space formalism we have adopted, which requires that all the-

oretically possible dimensions be defined and take on some value consistent with

the perceptual qualities of the concept represented.

Dimensions in _9841 are arranged in label-order relative to t(T ), starting
with grouping cycle 4, down to subdividing cycle 4. Algorithm MAP_T_PIOI (5.4)

is the top-level procedure that maps instances of T to a point in the domain

of _9841. Lines 2–8 take each node v ∈ V (T ), and assign the pulse IOI

value i ∈ I(T ) associated with node v to a dimension in _9841. Calcu-

lating the dimension offset for each node depends on two functions. Func-

tion abs-depth-offset(.) (5.19) computes the dimension offset in _9841 corre-

27We have also developed two further models of metrical structure where duple and triple sub-
divisions are represented by distinguished dimensions. ese spaces require respectively 4n and
5n dimensions to represent each metrical level. Full consideration of these spaces here is beyond
the current scope, but future work could evaluate the different notions of embedded similarity, and
in particular, investigate the different characteristics of trajectories through each space.
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sponding to the depth of node v in T , relative to the tactus t(T ).

abs-depth-offset : N → N

n 7→


0 if n = 0
n∑

i=1

3i−1 otherwise

(5.19)

Function within-cycle-offset(.) (5.20) takes the label l ∈ L(T ) associated with each

node v, and from that computes an offset based on the unique path from the root

r to v represented by the corresponding label l,

within-cycle-offset : L → N

l 7→


0 if l = ⟨⟩
n∑

i=1

li · 3n−i otherwise

(5.20)

where n is equal to the number of elements in label l, and li is the ith element of

l indexed from 1. e values computed by each of these functions are summed to

produce the unique offset in _9841 corresponding to the categorical timepoint

represented by each node.

Lines 2–8 of algorithm MAP_T_PIOI only set the value of dimensions cor-

responding to the nodes defined within any instance of T . However, as with

__9 in section 5.4.1, all dimensions must take a value consistent with a

well-formed hierarchical structure spanning the entire space in order to preserve

the correctness of the geometry. Again, implicit duple groupings and subdivi-

sions are assumed. erefore, line 9 of algorithm MAP_T_PIOI calls auxiliary algo-

rithm FILL_PIOI_DOMAIN (5.5), which fills the space with implicit duple relation-

ships between dimensional values based on the structure of the explicit metrical

hierarchy.
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Algorithm 5.4 MAP_T_PIOI
Require: T
1: _9841 ← 0 // initialise array with 0
2: for v ∈ V (T ) do // map all nodes in T
3: a← 4− t(T ) + depth(v) // absolute depth of v relative to t(T )
4: i← abs-depth-offset(a)
5: l← label(v)
6: j ← within-cycle-offset(l)
7: _9841[i+ j]← p-ioi(v)
8: end for
9: _9841 ← FILL_PIOI_DOMAIN(T , _9841) // call algorithm 5.5

10: return _9841

Algorithm FILL_PIOI_DOMAIN includes two distinct stages for filling-in im-

plicit duple relationship across the space. In tree-theoretic terms, lines 1–10 begin

with dimensions corresponding to explicit N-cycle pulse IOI values, and iterate

over all subsequent dimensions corresponding to further subdividing pulse IOIs,

assigning implicit duple subdivisions. is results in a notional metrical tree that

has the theoretical maximum of four subdividing cycles below the tactus. Lines

12–24 proceed by iteratively creating an additional duple grouping cycle, and then

copying the entire underlying tree structure so that the well-formedness is main-

tained below the newly created grouping cycle. e process continues until the

structure reaches the theoretical maximum of four grouping cycle above the tac-

tus. Line 19 calls auxiliary algorithm REPEAT_SUB_SEQ (5.6), which performs the

copying of values across dimensions. It is presented separately here purely for

notational clarity.
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Algorithm 5.5 FILL_PIOI_DOMAIN
Require: T
Require: _9841

1: a← 4− t(T ) + height(T ) // N-cycle depth relative to t(T )
2: i← abs-depth-offset(a) // parent node offset
3: j ← abs-depth-offset(a+ 1) // child node offset
4: while j < 9841 do // fill implicit duple subdivisions
5: for k ← 1 to 2 do
6: _9841[j]← _9841[i]/2
7: j ← j + k
8: end for
9: i← i+ 1

10: end while
11:

12: b← 4− t(T ) // absolute measure-period depth
13: while b > 0 do
14: i← abs-depth-offset(b− 1) // parent node offset
15: j ← abs-depth-offset(b) // child node offset
16: _9841[i]← 2 ∗ _9841[j] // fill next implicit duple grouping
17: c← 0
18: while j < 9841 do // fill subdivisions relative to new grouping
19: REPEAT_SUB_SEQ(_9841, j, 3c) // call algorithm 5.6
20: c← c+ 1
21: j ← j + 3c+b−1

22: end while
23: b← b− 1
24: end while
25: return _9841

Algorithm 5.6 REPEAT_SUB_SEQ

Require: _9841

Require: a // start index of sub-sequence to copy
Require: b // length of sub-sequence to copy
1: i← a
2: while i < a+ b do
3: _9841[i+ b]← _9841[i]
4: i← i+ 1
5: end while

_

Next we define a dimension _, to represent the aentional energy asso-

ciated with a categorical metrical timepoint. Each _ dimension can take

a positive real value in the range [0, 1], where 0 represents no aentional energy,
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and 1 the maximum emphasis for a given piece of music.

_ = {x ∈ R | 0 ≤ x ≤ 1} (5.21)

Aentional energy values are only defined for n-cycle timepoints. erefore 38

individual dimensions are required to represent all theoretically possible categori-

cal timepoints. e dimensions in _6561 are arranged again in label-order

with respect to T . Offset values indexing _6561 are calculated according

to function abs-within-n-cycle-offset(., .) (5.22),

abs-within-n-cycle-offset : L×D′ → N

(l, d) 7→


0 if l = ⟨⟩
n∑

i=1

li · 34+d−i otherwise

(5.22)

where n is equal to the number of elements in label l, li is the ith element of l

indexed from 1, and d is the depth of the tactus cycle.

e mapping from T to _6561 is defined in algo-

rithm MAP_T_AENERGY (5.7). All values in _6561 are defined as zero,

unless assigned a value by the algorithm.

Algorithm 5.7 MAP_T_AENERGY
Require: T
1: _6561 ← 0 // initialise array with 0
2: for v ∈ leaf-nodes(V (T )) do
3: l← label(v)
4: d← t(T ) // tactus depth in T
5: j ← abs-within-n-cycle-offset(l, d)
6: _6561[j]← a-energy(v)
7: end for
8: return _6561



e conceptual space of  is then simply the Cartesian product of the do-

mains _9841 and _6561.

 = _9841 × _6561 (5.23)

Points within _9841 represent tempo-metrical types individuated by variation

in the micro-timing of component pulse IOIs. us, regions of the space can
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be identified as corresponding to various tempo-metrical types, the centroids of

which correspond to mechanically precise prototypical instances. Departing from

the centroid of each region are located instances of the same broad concept, but

which vary in the absolute timings of their internal periodic components. Taking

the example of 44, regions around the centroid of mechanical 44 might be identified

as corresponding to a four beat metre of alternating short and long tactus beats,

as shown in figure 5.3a, or a swing metre with an isochronous 4-cycle tactus, but

unequal tactus subdivisions, as depicted in figure 5.3b.
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a: 8-cycle with alternating long-short tactus beats.
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b: 8-cycle with a non-isochronous swing N-cycle.

Figure 5.3: Two examples of 8-cycle 100 bpm metres with individuated microtim-
ing.

Regions in _6561 represent metrical types individuated by the level of

aentional energy associated with each metrical timepoint. For example, a region

corresponding to general 44-ness can be identified containing all 44 metrical type

instances distinguishable by the relative strength of the emphasis associated with

each N-cycle point. Further sub-regions of this region might be identified as 44

metrical concepts with strong downbeat emphasis, or strong second and fourth

tactus beat emphasis, as depicted in figure 5.4a and figure 5.4b respectively by the

size of the dots marking N-cycle timepoints.
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b: 8-cycle with emphasised second and fourth tactus beats.

Figure 5.4: Two examples of 8-cycle metres with different paerns of aentional
energy.

5.6 Evaluation

To evaluate the validity of the notion of similarity embedded within the conceptual

spaces defined previously, a genre classification task is performed. e aim here

is not to evaluate the models as genre classifiers per se, but rather to evaluate the

extent to which each space captures the nuances of metrical-rhythmic structure.

Six genres, each with a recognisably distinct rhythmic feel are selected for the ex-

periment: bolero, cha-cha, pasodoble, rumba, swing and waltz. If the structure of

the spaces adequately captures salient aspects of metrical-rhythmic conceptualisa-

tion, and distances correspond with a notion of musical similarity, then distinctive

regions should correspond with each genre.

5.6.1 Method

ree general models are evaluated in a series of genre classification tasks, em-

ploying k-nearest-neighbour classification over symbolic representations of music

from a dataset of genre-labelled MIDI files (see section 5.6.2). A baseline model,
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, provides classification based purely on the tempo specified in each MIDI

file. A tempo representation was chosen following previous results indicating

that tempo is an important feature in discriminating between dance music styles

(Gouyon et al. 2004). We then evaluate the classification accuracy achieved using

 and  spaces respectively, with each of the norm conditions: L1,

L2 and L1 + L2.

Each experimental run follows a standard classification task methodology. e

method employed in each test is identical except for an additional optimisation step

for  and  models in order to optimise the salience weightings of

each domain. e optimisation stage is not necessary in the baseline model 

as each piece of music is represented simply by a single tempo feature, or to use

conceptual spaces terminology, a point in a 1-dimensional space of tempo.

e k-nearest-neighbour (kNN) algorithm is used as the classifier in each ex-

periment. kNN is a simple classification scheme that assigns an unseen object to a

class based on the class of the k closest objects to it in a space. Since kNN is based

on a notion of distance in a space, it is a very straightforward way of evaluating

the conceptual space models herein developed.

One issue with kNN concerns the value of k, the optimal value of which cannot

be determined a priori. Each model is evaluated using the values k = 1, k = 3 and

k = 4. Each unseen point is assigned a genre label based on the labels of its k

nearest neighbours by majority vote. Ties are decided in favour of the genre label

associated with the point(s) of smallest mean distance from the testing point.

To minimise bias, a stratified 10x10-fold cross-validation (10x10cv) scheme is

followed for each model evaluation. Standard 10-fold cross-validation splits the

dataset randomly into 10 disjoint subsets. Each subset in turn is used as a testing

set, while the remaining nine form a training set, which in the case of kNN is the

set used to classify each testing point. Classification accuracy is recorded for the

test set of each fold against the genre labels provided in the dataset. Stratified

cross-validation is applied here, which ensures that a representative proportion of

pieces from each genre is present in each subset. e same random folds are used

in each model evaluation.

e partition used within a single 10-fold cross validation run can have a sig-

nificant effect on the performance of a classifier, particularly for relatively small

datasets. is can also lead to the misuse of hypothesis tests intended to justify

the relative performance of a number of models over the same dataset (Salzberg

1997; Dieerich 1998; Nadeau and Bengio 2003; Bouckaert 2004). A number of rec-

ommendations for pairings of sampling schemes with appropriate hypothesis tests
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are made in the previously cited literature. On the basis of replicability, Bouck-

aert (2004) recommends the use of the paired t-test on samples generated from a

10x10 sorted-runs sampling scheme. 10x10 sorted-runs sampling involves repeat-

ing standard 10-fold cross validation ten times, with each run using a different

random split of the dataset. Each run yields ten accuracy measures, one for each

fold, which are sorted. e mean accuracy for each fold, across all sorted runs is

then computed, resulting in a sample of n = 10. is sample is taken to be repre-

sentative of the accuracy of the classifier.

Bouckaert (2004) considers six sampling schemes, including conventional 10-

fold cross-validation, and only average sorted runs is shown to have an accept-

able Type 1 error of less than 5% as well as reasonable power. It is also shown

that samples resulting from sorted-runs sampling do not heavily violate indepen-

dence assumptions of commonly used hypothesis tests, of which the paired t-test
is shown to be superior to the sign test, and marginally beer than the rank sum

(Wilcoxon’s) test. One downside of employing 10x10 sorted runs sampling is the

additional processing time, and for cases where this is prohibitive, methods such

as 5x2-fold cross validation (Dieerich 1998) or the resampled t-test (Nadeau and

Bengio 2003) may be appropriate. Following Bouckaert (2004), we apply a 10x10

sorted-runs sampling scheme, and compare differences in performance using a

paired t-test.
e evaluation of  and  involve an additional optimisation

step, carried out independently over each 10x10cv training set, in order to de-

termine the optimal salience weights of the conceptual domains. Simulated an-

nealing, a stochastic search algorithm, is employed as the optimisation method.

(Kirkpatrick et al. 1983, see also section 4.3.1). To avoid overfiing, inner 10-fold

cross-validation is performed. e training fold in each 10x10cv run is itself par-

titioned into 10 disjoint subsets, forming 10 inner training-testing folds. For each

inner fold, 200 iterations of simulated annealing are performed, maximising clas-

sification accuracy. e mean of the optimised salience weights discovered within

each inner CV run are then applied during the classification of the outer testing

set.

5.6.2 Data

e dataset consists of MIDI encoded songs taken from the Geerdes pop music

database.28 Each full length song has been professionally transcribed and may

be considered an accurate symbolic representation of the commercially released

28hp://www.midimusic.de/
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audio. MIDI files are used to avoid potential noise that may be introduced by pro-

cessing audio recordings of music directly. Furthermore, to avoid issues of metrical

induction, notated tempi and time-signatures, together with event onsets, are used

to construct metrical instances. For the purpose of this study we concentrate on

percussion tracks only, encoded as MIDI channel 10. e entire database contains

over 14000 songs, predominantly covering mainstream pop music. e six dance

genres selected represent the largest subset (n = 195) of dance genres meeting the

following criteria:

1. constant tempo;

2. constant time-signature; and

3. contain a MIDI channel 10 percussion track.

Strict event quantisation is not required of the corpus, as a quantisation process is

carried out during the generation of aentional energy profiles (described below).

Nonetheless, 51 out of the total 195 MIDI files are strictly quantised, and thus

contain no expressive performance timing. Tempo ranges across the corpus from

70 bpm to 225 bpm (M = 135.19, SD = 33.34). e number of pieces belonging

to each genre are listed in table 5.3. e full listing of pieces used is available in

appendix E.

Table 5.3: Overview of the genre classification dataset.

Genre n
Bolero 35
Cha-cha 37
Pasodoble 40
Rumba 40
Swing 33
Waltz 10
Total 195

Metrical concepts represented in both  and  spaces represent

stable paerns of periodic aentional energy. erefore, each piece must be

mapped to a single point in each space, representing its characteristic metrical-

rhythmic structure. is is achieved by first constructing a symbolic metrical tree,

T , for each piece of music, and then projecting each tree to a point in geometrical

space according to the definitions in sections 5.4.1 and 5.5.1.

e hierarchical structure of a metrical tree T is simply determined by the no-

tated time-signature. As the test data consists of professionally encodedMIDI files,

we are able to rely on conventional interpretations of the encoded time-signatures
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to indicate basic metrical structure. All time-signatures in the dataset indicate

isochronous tactus cycles (42, 43, 44, 46, and 8
6), the cardinality of which is determined

by the associated number of beats per bar.

e only potentially ambiguous time-signature present in this dataset is 46, the

grouping structure of which could be interpreted as 3+3 or 2+2+2 tactus beats. On

manual inspection, the piece has a strong waltz feel, and the grouping structure

wasmanually annotated as 3+3 (i.e. a 6-cycle tactus cyclewith a grouping structure

akin to two bars of 43).

e first level of tactus subdivision is assumed to be either duple or triple, de-

pending on whether the time-signature indicates simple or compound time. A

second level of subdivision is assumed to be duple, providing it does not fall below

the 100ms pulse IOI threshold. Tempo is extracted from eachMIDI file, fromwhich

beat duration in milliseconds is derived, and is assumed to indicate the tactus pulse

rate. All metrical timing values are derived from the timing of the tactus cycle, in

conformance with metrical well-formedness. Metrical structures instantiated in

this manner are therefore prototypical in terms of their timing.

e aentional energy values associated with each N-cycle timepoint are in-

tended as a representation of a purely cognitive phenomenon. Whilst the rela-

tive emphasis given to individual timepoints within metres is intuitively a salient

concept for differentiating amongst experiences of metrical music, as discussed

in section 5.3.3 there are potentially many higher-level musical and lower-level

auditory factors one might hypothesise as being involved in establishing such a

concept. e pragmatic alternative employed here is to derive aentional energy

values directly from the musical surface representation, defining a measure based

on the number of musical event onsets that coincide with each metrical N-cycle

timepoint. ‘Coincident’ is used here so as to not imply any particular interpre-

tation of the causal relationship between metrical entrainment and sequences of

musical events. Although for the purpose of this evaluation aentional energy is

directly linked to event stimuli, the cognitive representations themselves in princi-

ple imply no distinction between metrical entrainment experienced in conjunction

with physical musical events and entirely imagined musical experiences with no

physical correlate.

e implication of the non-dynamic nature of the formalism pursued here is

that aentional energy represents an averaged notion of rhythmic articulation—

similar (but not exactly the same, as will become evident below) to a histogram

of musical events with bins centred on N-cycle pulse onsets modulo the measure

period. For musical extracts shorter than the extent of the perceptual present,
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this definition is reasonable because the representations are not aimed at encod-

ing explicit sequential rhythmic structure, but rather associated periodic paerns

of aentional energy. For longer extracts this assumption becomes questionable,

particularly if rhythmic structure varies considerably, when arguably metrical at-

tentional energy is also likely to shi. Such dynamic processes could be modelled

as time-dependant paths within conceptual space, but this is le for future work.

e N-cycle provides the categorical timepoints, represented by set O, with

which musical events coincide, modulo the measure period. Events falling within

a symmetrical, empirically-determined time window of each N-cycle timepoint

are considered temporally coincidental. We take ±20 ms of a pulse onset to be

a reasonable lower bound for this time window, based on evidence provided by

Hirsh (1959) indicating that this is the minimum IOI necessary for listeners to

reliably discern the correct ordering of two successive onsets. We assume an up-

per bound of ±50 ms, as this would allow the unambiguous association of event

onsets with pulse onsets at the fastest pulse IOI rate of 100 ms. A time window

of ±30 ms is used in this experiment, which amounts to 95% of all events being

assigned to a metrical category. Future work should address the question of gen-

erating representations of temporally individuated metrical concepts sensitive to

the micro-timing of musical events. Such work would also allow for more realistic

assumptions to be made concerning the boundaries between metrical categories,

in line with findings such as those reported by Desain and Honing (2003) and Repp

et al. (in press).

For each piece, the number of events coincidingwith each timepoint is counted,

and the totals normalised to unit range by dividing by the greatest value. Normali-

sation allows distributions of aentional energy to be comparable across different

pieces of music irrespective of the number of events they contain. e normalised

values are taken as indicative of aentional energy. Events that do not coincide

with an N-cycle timepoint are assumed to be non-metrical, or possibly strong in-

stances of performance variation. erefore, within this framework rhythmic fig-

ures such as triplets in simple-time metres do not contribute to the calculation of

aentional energy. is is reasonable given that our representation aims to cap-

ture metrical concepts, rather than rhythmic articulation that may play against an

established metrical framework.29

29A simple extension to the representations tested here would be to allow duple and triple re-
lationships to be represented simultaneously, within distinguished dimensions. is would allow
‘against the metre’ accent to be represented as part of a more holistic metrical-rhythmic concept.
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5.6.3 Results

For each reported result, the null hypothesis assumed,H0, is that the performance

between model pairs A and B is the same. Following Bouckaert (2004), we use a

paired t-test to compute a t-statistic Z , and calculate the p-value as the probability

p(Z) that Z , or less, is observed assumingH0 is true. H0 is rejected if p(Z) < α/2

or p(Z) > 1− α/2. e former indicates that model B outperforms A, the laer

that A outperforms B.

Before considering the classification performance of the individual represen-

tations, we first consider the overall results with respect to the nearest neighbour

parameter k, to assess the impact on classification. For all models, classification

accuracy improved as k increased. e difference in improvement was significant

(α = 0.01) according to paired t-tests between all corresponding pairs of models in

k = 1 and k = 3 runs. e difference between k = 3 and k = 4 was less pronounced

and only significant for the three  models. On further inspection, the rel-

ative performance of all models across the three parameter values of k remained

consistent, and did not alter the significance of the differences between competing

models. erefore, we can be confident that the parameterisation of the classifi-

cation algorithm is not biasing the comparative evaluation. All following results

will be reported for k = 3. Optimised domain salience weights, complete 10x10

sorted-runs accuracy data and overall confusion matrices from each  and

 k = 3 classification run can be found in appendix F.

Table 5.4 presents the mean classification accuracy for each model over the

10x10 cross validation scheme. e  model, providing classification based

purely on given tempo, has reasonable accuracy given the simplicity of the repre-

sentation, and in comparison to the naïve baseline of 21.51%, based on simply as-

signing each piece to the genre with the largest number of examples in the dataset.

All conceptual space models perform significantly beer than  (α = 0.001),

as wewould hope given the relative complexity of the geometrical representations.

Figure 5.5 presents the accuracy over the 10x10cv classification runs of 

and  side-by-side conditioned on the vector space norm. From the plot, the

effect of distancemetric does not appear strong, similar to the findingwithmelodic

similarity in chapter 4. However, within each norm condition, there is a distinct

improvement in the accuracy achieved by  compared with that of .
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Table 5.4: Mean classification accuracy over 10x10 cross validation.

Model Mean Accuracy % Std
(, k = 3) 48.39 9.96
(, L1, k = 3) 74.95 8.89
(, L1 + L2, k = 3) 76.46 8.63
(, L2, k = 3) 76.32 8.83
(, L1, k = 3) 78.54 8.11
(, L1 + L2, k = 3) 80.80 8.01
(, L2, k = 3) 79.40 8.96
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Figure 5.5: Pairwise comparison of  and  accuracy conditioned on
distance metric.
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All pairwise comparisons between  and , within norm condi-

tions, are significant, as shown in table 5.5. Significance codes are used to indicate

the level at which the difference between model performance is considered signif-

icant: *** α = 0.001; ** α = 0.01; and * α = 0.1. As noted above, for a difference to

be considered significant at level α, the p-value must be less than α/2, or greater

than 1− α/2.

Table 5.5:  vs.  within norm conditions.

Models compared Norm Paired t statistic Model B outperforms A
 vs.  L1 t(9) = -10.57, p < 0.001 ***
 vs.  L1 + L2 t(9) = -11.55, p < 0.001 ***
 vs.  L2 t(9) = -8.02, p < 0.001 ***

Looking in more detail at the effect of the vector space norms, table 5.6

shows the pairwise comparison of  accuracy in each norm condition. For

, the difference between L1 and L2 was the most significant, in favour of

L2. e difference between L1 and L1+L2 was also significant at α = 0.01.30 e

difference between both  models using the L2 norm, either exclusively or

only within domains, was not significant. erefore, although theL1+L2 

model was the best performing  model overall, we cannot conclude from

these results that it is a more appropriate configuration than L2. However, the re-

sults do suggest that using a Euclidean norm is more advantageous than city-block

for this geometric representation.

Table 5.6: Comparison of norms within .

Norms compared Paired t statistic Model B outperforms A
L1 vs. L1 + L2 t(9) = -4.45, p < 0.001 **
L1 vs. L2 t(9) = -8.66, p < 0.001 ***
L2 vs. L1 + L2 t(9) = -0.52, p = 0.308

In the case of , each pairwise comparison of accuracy in the different

norm conditions is significant at the lowest significance level α = 0.1, as shown

30e p-value for the difference in  L1 vs. L1 + L2 accuracy to a greater number
of decimal places is 0.0008. erefore, this difference is not significant at α = 0.001 because
0.0008 > 0.001/2.
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in table 5.7. In contrast to , the difference in performance between L1

and L2, in favour of L2, is the least significant difference here, indicating that

L2 does not afford improvement over L1 to the same degree for  as for

. Furthermore, the accuracy afforded by the L1 +L2 norm is significantly

improved over that afforded by both L1 (α = 0.001) and L2 (α = 0.01), indicating

that a hierarchical vector space where Euclidean distance is used within domains,

and city-block between domains, is optimal in this case.

Table 5.7: Comparison of norms within .

Norms compared Paired t statistic Model B outperforms A
L1 vs. L1 + L2 t(9) = -5.82, p < 0.001 ***
L1 vs. L2 t(9) = -2.10, p = 0.032 *
L2 vs. L1 + L2 t(9) = -3.57, p = 0.003 **

5.7 Conclusion

e ability of the classification models to discriminate between stylistic dance

rhythms purely on the basis of metrical-rhythmic structure lends some support

to the validity of our proposed conceptual space representations of metre. Fur-

thermore, the labelling of compositions and styles of music as points and regions

in geometrical space is itself potentially valuable information, as the labels them-

selves are very generic, and yet afford a degree of interpretation in terms of spatial

metaphors. However, the dataset used within the evaluation was small by com-

parison to typical MIR standards, and what more, this evaluation method can only

be considered a proxy for a controlled psychological evaluation, which must be

conducted before any firm claims concerning the validity of the models can be

made.

Additional data was collected during the classification task, available in ap-

pendix F, which may shed light on which of the components of the represen-

tations are most useful in achieving the clustering. Furthermore, the confusion

matrices are deserving of musicological consideration, which may be able to of-

fer novel perspectives on the distribution of musical concepts within the concep-

tual spaces. e visualisation of semantic distance embedded within  and

 between a small number of prototypical metrical structures can be found

in appendix G. ese visualisations hint at a possibly fruitful avenue of research
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in seeking to develop mappings between the very explicit and high-dimensional

representations of metrical structure developed here, and spaces that are much

more readily comprehensible, and thus more compatible with Gärdenfors’ theory

of conceptual space.

Not withstanding future psychological investigation, the proposed represen-

tations raise some interesting questions. Posing a representation in terms of ge-

ometry affords particular ways of thinking about and manipulating the objects of

the representation. We have only considered the more familiar concepts of metre

in terms of the spaces defined. Yet the definition of the spaces explicitly aims to

encompass all theoretically possible metrical structures that can be derived from

the first principles of perceptual and physiological limitations. Familiar metrical

structures represent relatively sparse regions of the spaces, which begs the ques-

tion of what, if anything, do other regions of the space correspond to perceptually.

It is trivial to compute the centroid between two metrical concepts, but it is not

obvious whether such a metrical structure is perceptually equidistant. is is par-

ticularly apparent in pulse IOI dimensions, when departure from isochrony may

manifest in ways that may not even be considered metrical at all.31

31e method of filtered point-symmetry developed by Plotkin (2010) would make for an inter-
esting comparison with ideas of trajectory and transformation in conceptual spaces.
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Chapter 6

Conclusions

ree geometrical approaches tomusical representation have been presented, each

addressing an important issue in the application of computational techniques to

furthering understanding of music and musical processes. Within each topic area

considered, an effort was made to incorporate cognitive principles in defining the

questions that were to be addressed, and where possible, in the development of

theoretical frameworks and consequent practical implementations and methods

of evaluation. e premise for this work is simple: music is foremost a psycho-

logical phenomenon, and seeking to study music with computational means can

not only benefit from an informed psychological underpinning, but also contribute

significantly to furthering our understanding of music.

e contributions of this work are as follows:

Metre space
• A symbolic formalisation of a prominent psychological theory of metre,

making it amenable to computation.

• Two mappings from the symbolic-level representation of metrical structure

to geometrical representations, providing spaces embedding different qual-

ities hypothesised to be salient in the perception and cognition associated

with metrical entrainment.

Melodic similarity
• A method of predicting human judgements of melodic similarity employ-

ing the Earth Mover’s Distance metric over a novel perceptually-motivated

ground distance space.
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Pattern discovery
• A proposed search heuristic for identifying salient musical paerns amongst

the exhaustive set of paerns discovered by the SIATEC algorithm.

e application of cognitively-motivated representations in modelling music

and musical behaviour demonstrates a method for approaching music research.

Only a small number of musical questions have been addressed here, but they

may serve as examples for future work. Furthermore, by employing Gärdenfors’

framework of conceptual space to the modelling of complex concepts, this work is

also a contribution to the theory of conceptual representation.

e application of the conceptual spaces framework to problems of music rep-

resentation has proved to be informative, and the affordances of geometrical meth-

ods aractive for the modelling of similarity. e problem of melodic similarity

reported in this dissertation utilises a very simple geometric representation, and

yet the ability to scale dimensions, transforming the embedded notion of similar-

ity, offers a simple and intuitive means of modelling a highly subjective concept.

However, limits to the potential usefulness of geometrical models, at least those of

the form developed here, are evident. Simple linear dimensions of absolute time

and pitch work well for local comparisons, but do not account well for longer-term

relationships across time or larger pitch ranges. Involving dimensions modelling

the relative, first-order relationships between perceptual qualities proved benefi-

cial, and it would seem likely that more cognitively informed geometrical struc-

tures, such as multidimensional domains of tonality or metrical time, may assist

further in the modelling and understanding of melodic similarity.

e modelling of time in particular, and more generally sequence, within ge-

ometric representations is deserving of further consideration. Statistical models

can be very effective in modelling sequential information, and have a particular

virtue of being able to learn incrementally, constructing abstractions over linear

sequences in time. is virtue is lacking in the present models of melodic sim-

ilarity, and the spaces of metrical structure, both of which assume fixed spaces

within which musical concepts can be identified. Further research considering the

respective strengths and weaknesses, and possible integration, of geometrical and

statistical approaches is certainly warranted.

Specific implications arising from the developed conceptual space models of

metre concern the psychological investigation of rhythmic similarity. e spaces

themselves represent testable theories of perceptual similarity, and interesting

work awaits to be done investigating the fit, or not as the case may be, between
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the geometrical properties of the spaces and human perception.

In the area of computational creativity, the subject that initially motivated this

thesis, the potential for future work investigating the application of perceptually-

grounded representations within systems of artificial creative agents is great. A

major problem that must be addressed within systems simulating creative be-

haviour is how to equip agents with sufficiently rich representations of objects

from the domain in which they operate. In a musical context, the developed spaces

of metrical-rhythmic structures not only provide a rich representation of impor-

tant musical concepts, but also one in which traversal of the space can be defined

in musically meaningful terms. For example, we have shown that regions of the

metre spaces can be correlated with the rhythmic characteristics of different mu-

sical genres. erefore, this knowledge could inform the generation of new music

appropriate to a particular style, or even to explore the boundaries between genre

regions in the creation of hybrid styles.

Both perceptual and engineering challenges are presented by the potential for

developing sub-symbolic levels of representation that could underpin the geomet-

rical spaces of metre. An acknowledged limitation of the developed spaces is their

dislocation from real-time perceptual input. It may prove possible to connect sig-

nal processing techniques designed for beat tracking and metrical induction with

the conceptual spaces of metre, thus grounding the models in physical musical

stimuli. In turn, the conceptual spaces could offer additional scope for improv-

ing the performance of existing signal processing methods by leveraging the con-

ceptual knowledge embedded within the geometry. Similar challenges lie in the

opposite direction, in seeking lower-dimensional projections of the spaces that,

while may have to sacrifice the current high level of explicitness, may potentially

be considerably more intuitive.

A related issue, at a different temporal level, concerns the representation of

larger-scale musical structures. e SIA family of algorithms offers methods for

discovering larger-scale paerns across symbolically represented musical works.

Relationships between paerns are expressed as vectors in a space. erefore,

future work in this area might usefully consider whether these vectors may be

grounded in a conceptual space as a means of characterising the relationships be-

tween paerns within musically salient terms of reference. Similarly, within the

spaces of metrical structure we have not considered the representation of trajec-

tories through space, which given the potential for the hierarchical construction

of conceptual spaces advocated by Gärdenfors, may well consist of further higher-

level geometrical constructs.
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Appendix A

Notational conventions

S = {. . .} the set S

S × S ′ the Cartesian product of S and S ′

|S| the cardinality of S

∅ the empty set

R real numbers

R+ positive real numbers

Rk k-dimensional real vector space

Z integer numbers

Z+ positive integer numbers

N non-negative integer numbers

[x, y] inclusive real-number interval between x and y

[x..y] inclusive integer-number interval between x and y

v = ⟨. . .⟩ the vector v
M = [mij] the matrix M
mj

i = ⟨e1, e2, . . . , ej⟩ the ordered sequence of length j ∈ Z+, indexed by i ≤ j

∥ tuple concatenation: ⟨0, 1⟩ ∥ ⟨2, 3⟩ → ⟨0, 1, 2, 3⟩
⊤ the symbol denoting undefined
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Appendix B

Müllensiefen and Frieler (2004)
melodic similarity dataset

Table B.1: Müllensiefen and Frieler (2004) dataset used in the evaluation of EMD-
based models of melodic similarity. Source: Müllensiefen (2004).

Artist Title Composer Year Source
Demis Roussos Goodby My Love,

Goodybye
Mario Panas 1973 Hits der 70er, KDM-Verlag, 2000

Backstreet Boys As Long As You Love
me

Martin Sandberg 1997 Hits der 80er und 90er, KDM-
Verlag, 1999

Wolfgang Petry Augen zu und durch Petry, Valance and
Ackermann

1997 Hits der 80er und 90er, KDM-
Verlag, 1999

Passion Fruit Wonderland 2000 Transcription by Müllensiefen
Kosmonova Danse avec moi 2000 Transcription by Müllensiefen
Wes Montgomery Bumpin’ on sunset Wes Montgomery 1966 Transcription by Pogoda
Aquagen Summer is calling 2002 Transcription by Müllensiefen
e Beatles From me to you Paul McCartney 1963 e New Beatles Complete, Wise

Publications, 1992
Die Nilsen Brothers Aber Dich gibt’s nur

einmal ür mich
Pit 1965 100 Hits in C-Dur, Musikverlag

Monika Hildner
Die Kolibris Die Hände zum Him-

mel
W. van Nimwegen 1998 100 Hits in C-Dur, Musikverlag

Monika Hildner
Bing Crosby Swanee River Traditional Hits und Songs, Edition Metropol

Köln, 1982
Sailor Russian Traditional From Sloboda and Parker (1985), af-

ter O’Toole (1974)
Peter Maffay Du Peter Orloff 1969 Peter Maffay: Heute vor 30 Jahren,

Bosworth Edition, 2001
Backstreet Boys I want it that way Andreas Carlson 1999 Hits der 80er und 90er, KDM-

Verlag, 1999
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Appendix C

Optimised EMD model parameters
Table C.1: Optimised EMD model parameters.

model  c     exponent
( × c, L1, P ) 0.21 1.00 0.28
( × , L1, P ) 0.11 1.00 0.30
( × c, L1, C) 0.21 1.00 0.39
( × , L1, C) 0.13 1.00 0.39
( × c, L2, P ) 0.24 1.00 0.28
( × , L2, P ) 0.12 1.00 0.30
( × c, L2, C) 0.24 1.00 0.40
( × , L2, C) 0.15 1.00 0.39
( × c, L1, Pd) 0.24 1.00 0.33
( × , L1, Pd) 0.17 1.00 0.33
( × c, L1, Cd) 0.22 1.00 0.35
( × , L1, Cd) 0.16 1.00 0.35
( × c, L2, Pd) 0.26 1.00 0.33
( × , L2, Pd) 0.18 1.00 0.32
( × c, L2, Cd) 0.24 1.00 0.37
( × , L2, Cd) 0.17 1.00 0.35
( × c × , L1, P ) 0.17 1.00 0.12 0.37
( ×  × , L1, P ) 0.10 1.00 0.03 0.32
( × c × , L1, C) 0.18 1.00 0.14 0.46
( ×  × , L1, C) 0.13 1.00 0.06 0.41
( × c × , L2, P ) 0.24 1.00 0.15 0.39
( ×  × , L2, P ) 0.12 1.00 0.03 0.33
( × c × , L2, C) 0.21 1.00 0.17 0.49
( ×  × , L2, C) 0.15 1.00 0.08 0.41
( × c × , L1, P ) 0.30 1.00 2.24 0.45
( ×  × , L1, P ) 0.12 1.00 0.57 0.41
( × c × , L1, C) 0.26 1.00 1.81 0.63
( ×  × , L1, C) 0.13 1.00 0.93 0.58
( × c × , L2, P ) 0.41 1.00 2.68 0.44
( ×  × , L2, P ) 0.23 1.00 1.18 0.42
( × c × , L2, C) 0.30 1.00 2.09 0.62
( ×  × , L2, C) 0.14 1.00 1.02 0.59
( × c × , L1, P ) 0.26 1.00 0.12 0.34
( ×  × , L1, P ) 0.11 1.00 0.03 0.33
( × c × , L1, C) 0.24 1.00 0.17 0.42
( ×  × , L1, C) 0.12 1.00 0.05 0.40
( × c × , L2, P ) 0.31 1.00 0.10 0.33
( ×  × , L2, P ) 0.18 1.00 0.02 0.31
( × c × , L2, C) 0.28 1.00 0.26 0.47
( ×  × , L2, C) 0.15 1.00 0.07 0.41
( × c ×  ×  × , L1, P ) 0.24 1.00 0.03 1.85 0.26 0.51
( ×  ×  ×  × , L1, P ) 0.13 1.00 0.01 0.82 0.15 0.47
( × c ×  ×  × , L1, C) 0.24 1.00 0.02 1.67 0.18 0.59
( ×  ×  ×  × , L1, C) 0.12 1.00 0.02 0.91 0.14 0.56
( × c ×  ×  × , L2, P ) 0.25 1.00 0.05 1.98 0.56 0.59
( ×  ×  ×  × , L2, P ) 0.19 1.00 0.03 1.32 0.31 0.50
( × c ×  ×  × , L2, C) 0.25 1.00 0.03 1.98 0.52 0.69
( ×  ×  ×  × , L2, C) 0.15 1.00 0.01 1.09 0.17 0.62
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Appendix D

Undefined values in conceptual space

One shortcoming from a geometrical perspective of the conceptual space formal-
isation of metre by Forth et al. (2010) is the presence of undefined values. e
motivation behind allowing undefined values was that if a periodic component is
notionally not present in the metrical concept, no numeric value within the de-
fined dimensions is appropriate to represent its absence. erefore, stepping out-
side a purely geometrical framework, an undefined value was permied, and an
appropriate algebra defined allowing arithmetic operations between defined and
undefined values. is algebra states that the difference between defined and un-
defined values is always some constant ϵ. is allows a distances to be calculated
between points in the space which at least takes into account a simple notion of
difference between defined and undefined values. However, this is arguably at
odds with Gärdenfors’ geometric notion of quality dimensions, because there is
no meaningful interpretation of betweenness between defined and undefined di-
mensional values. In a sense the meaning of an undefined value is orthogonal to
the meaning represented by the dimension.

To give a more concrete illustration, the notion of the centroid between two
points where some values are undefined is problematic. Taking a single _
dimension as an example, if the centroid between 100 ms and an undefined value,
⊤, were defined as undefined, the distance between each value from this “centroid”
is not equal, it is ϵ and zero respectively, and not a point equidistant from both.
Defining the centroid in terms of the distance ϵ, perhaps ϵ

2
is equally unsatisfactory,

and indeedmeaningless because the value no longer represents a time interval, and
again the distance between each point and the “centroid” are not equal. erefore,
in order to pursue a purely geometrical representation of metre, an alternative
formalisation that does not require undefined values was sought.
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Appendix E

Geerdes genre classification dataset

Table E.1: Songs used in the evaluation of the conceptual spaces of metrical-
rhythmical structure.

Artist Title Genre
Los Panchos Contigo En La Distancia bolero
Guerra, Juan Luis Burbujas De Amor bolero
Ana Belén Lia bolero
Moncho Callate bolero
Manzanero, Armando e Pasa bolero
Ana Belén La Mentira bolero
Carrillo, Alvaro Sabor A Mi bolero
Duarte, Ernesto Como Fué bolero
Ronstadt, Linda iereme Mucho bolero
Flippers Der letzte Bolero bolero
Rodriguez, Silvio Dos Gardenias bolero
Ana Belén & Banderas, Antonio No Ser Por e Te iero bolero
Victor Manuel Me Asalto La Primavera bolero
El Consorcio Camino Verde bolero
Luis Miguel Inolvidable bolero
Luis Miguel Mucho Corazón bolero
Machin, Antonio Corazón Loco bolero
Machin, Antonio Mira e Eres Linda bolero
Luis Miguel Usted bolero
Tamara Si Nos Dejan bolero
Escobar, Manolo Boda Blanca bolero
Aguilar, Pepe Perdoname bolero
ezada, Milly & Fernandito Pideme bolero
Estefan, Gloria Como Me Duele Perderte bolero
Durcal, Rocio Infiel bolero
El Coyote & Su Banda Tierra Sa Te Soñé bolero
Aguilar, Pepe e sepan todos bolero
Payador, Luis Dos Besos bolero
Durcal, Rocio Sombras Nada Mas bolero
Grupo Palomo No Me Conoces Aún bolero
Zaa, Charlie Flor Sin Retoño bolero
Tamara Como Me Gusta bolero
Ainhoa & Beth Piensa En Mi bolero
Luis Miguel La Gloria Eres Tu bolero
Estefan, Gloria Hoy bolero
Modern Romance Cherry Pink chacha
Perez Prado Cerezo Rosa chacha
Ana Belén Derroche chacha
Ronstadt, Linda Perfidia chacha
Ronstadt, Linda Piel Canela chacha
Egues, E. El Bodeguero chacha
Perez Prado Macarenas (Mambo/Cha-Cha) chacha
Cobos, Luis Perfidia chacha
Orquestra Mondragón El Huevo De Colón chacha
Orquestra Plateria Ligia Helena chacha

Continued on next page
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Table E.1: Songs used in the evaluation of the conceptual spaces of metrical-
rhythmical structure.

Artist Title Genre
Azucar Moreno De Lo e Te Has Perdido chacha
Ronstadt, Linda Piensa En Mí (Cha-Cha-Version) chacha
Mercader, Frank Echame A Mi La Culpa chacha
El Consorcio Cachito Mio chacha
Dann, Georgie La Gallina Cha Cha Cha chacha
El Consorcio La Espinita chacha
Aránega, Albert Me Lo Dijo Adela chacha
Fernades, José Casa Separa chacha
Rodríguez, José Luis (El Puma) Esta Mujer Me Mata chacha
Dann, Georgie Macumba chacha
Victor Manuel Si Ella No Me isiera chacha
Rosana Pa’ Calor chacha
Pimpinela Caliente, Caliente chacha
Durcal, Rocio Poquito Olvido chacha
Orquestra Plateria L’home Dibuixat chacha
Ben Sa Tumba & Son Orchestre La Banana (El Unico Fruto Del Amor) chacha
Presuntos Implicados Vereda Tropical chacha
Santana El Farol chacha
Santana Primavera chacha
Emmanuel Corazón De Melao chacha
Iglesias, Julio Gozar La Vida chacha
La Mosca Tse Tse Cha cha cha chacha
Moncho & Dyango Son Cuatro Dias chacha
Orquesta Encantada Noches De Ipacaraí chacha
alia Tu Y Yo chacha
Banda Del Capitan Canalla La Loba Feroz chacha
Bublé, Michael Sway chacha
Traditional España Cañi (Span.Pasodoble) pasodoble
Escobar, Manolo e Viva España pasodoble
Mariano, Luis Valencia pasodoble
Escobar, Manolo Solo Te Pido pasodoble
Orquestra Maravella Islas Canarias pasodoble
Voskuylen, Henry van Costa Del Sol pasodoble
Jurado, Rocío Viva El Pasodoble pasodoble
Pascual, Gustavo Paquito El Chocolatero pasodoble
Pasodoble Popular Ragón Falez Pasodoble pasodoble
Reina, Juanita Francisco Alegre pasodoble
Castellanos, C. La Morena De Mi Copla pasodoble
Carosone, Renato Torero Y Olé pasodoble
Portela, Raul Lisboa Antiga pasodoble
Escobar, Manolo Te Llaman Perla Preciosa pasodoble
Piquer, Conchita Bandera Roja Y Gualda pasodoble
Valderrama, Juanito El Emigrante pasodoble
Santiago, Maria José ien Dijo e El Amor No Está De Moda pasodoble
El Consorcio El Cha Ca Cha Del Tren pasodoble
Orquestra Maravella El Gallito pasodoble
Escobar, Manolo Mujeres Y Vino pasodoble
Huelva, Perlita de Desafío Torero pasodoble
Orquestra Maravella El Gato Montés pasodoble
Mª Jesús-A.Aránega En Er Mundo pasodoble
Escobar, Manolo Madrecita Maria Del Carmen pasodoble
Maria Jesús Campanera pasodoble
Saldo, Roberto Sombreros Et Mantilles pasodoble
Escobar, Manolo Niña Bonita pasodoble
Escobar, Manolo Mi Barco Velero pasodoble
Madrid, Julio Tu pelo pasodoble
Farina, Rafael Salamanca pasodoble
Pimpinela Pasodoble Te iero pasodoble
Traditional La Passada pasodoble
Cano, Carlos Chiclanera pasodoble
Tony Bruins Orchestre Fiesta En La Caleta pasodoble
Buxeda, Ely Agarrate Saxo pasodoble
Buxeda, Ely Vaya Saxo pasodoble
Buxeda, Ely El Saxo Humano pasodoble
Buxeda, Ely Mi Arma pasodoble

Continued on next page
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Table E.1: Songs used in the evaluation of the conceptual spaces of metrical-
rhythmical structure.

Artist Title Genre
Last, James Viva España pasodoble
Conde, Alejandro 80 Primaveras pasodoble
Gipsy Kings Baila Me rumba
Gipsy Kings Sin Ella rumba
Orellana, Raúl Gipsy Rhythm rumba
Los Payos Maria Isabel rumba
Rosario Escucha Primo rumba
Serrat, Joan Manuel Tocar Madera rumba
Los Valldemosa Vuelo 502 rumba
Escobar, Manolo Mi Carro rumba
Veneno, Kiko Te Echo De Menos rumba
Raphael Escándalo rumba
Los Manolos Para Ser Rumbero rumba
Peret Borriquito rumba
Académica Palanca Me Llaman Mala Persona rumba
Gipsy Kings Escucha Me rumba
De Ville, Willy Demasiado Corazón rumba
Los Del Rio Aurora rumba
Los Manolos Una Aventura rumba
Ay Ay Ay No Trovo Casa Meva rumba
Los Machucambos Porompompero rumba
Los Del Rio Clodomiro El Ñajo rumba
Iglesias, Julio Agua Dulce, Agua Salá rumba
Flores, Antonio Alba rumba
Los Del Rio Hey Macarena rumba
Iglesias, Julio Baila Morena rumba
Azucar Moreno Moliendo Café rumba
Peret Gitana Hechicera rumba
Camela Sueños Inalcanzables rumba
Azucar Moreno Solo Se Vive Una Vez rumba
Rumba 3 No Sé No Sé rumba
Rumba 3 Tengo Lo e iero rumba
Camela ¿é He Conseguido? rumba
Camela Vivir Por Vivir rumba
Camela Vuelve Junto A Mi rumba
Requiebros Caballo De Mis Deseos rumba
Ketama No Estamos Locos rumba
Rumba 3 Perdido Amor rumba
Tonino Trakatra rumba
Niña Pastori Tu Me Camelas rumba
Niña Pastori Ese Gitano rumba
Camela Corazón Indomable rumba
Miller, Glenn In e Mood swing
Armstrong, Louis Hello Dolly swing
Miller, Glenn Chaanooga Choo Choo swing
Miller, Glenn Tuxedo Junction swing
Miller, Glenn Take e -A- Train swing
Ellington, Duke Satin Doll swing
Miller, Glenn Geing Sentimental Over You swing
Jonasz, M. Mister Swing swing
Arlen, Harold It’s Only Paper Moon swing
Bernie, Ben Sweet Georgia Brown swing
Porter, Cole Night And Day swing
Sinatra, Frank ey Can’t Take at Away … swing
Evans & Reaves Lady Of Spain :Swing V. swing
McHugh, Jim On e Sunny Side Of e Street swing
Crosby, Bing You Must Have Been A Beautiful Baby swing
Armstrong, L. & Fitzgerald, E. Cheek To Cheek swing
Monroe, Marilyn I’m Gonna File My Claim swing
Boone, Pat Crazy Train swing
James, Harry Memories Of You swing
Caroll, Diannah Old Friends swing
Davis Jr, Sammy If My Friends Could See … swing
Paaske, Erik Godt Man Er Faerig Med Det swing
Sinatra, Frank Mack e Knife swing

Continued on next page
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Table E.1: Songs used in the evaluation of the conceptual spaces of metrical-
rhythmical structure.

Artist Title Genre
Helmer Olesens Orkester On A Slow Boat To China swing
Miller, Glenn String Of Pearls swing
James, Ea At Last swing
Fitzgerald, Ella Blue Skies swing
Guardiola, José Mackie El Navaja swing
Haley, Bill Mambo Rock swing
Kuhn, Paul Die Farbe der Liebe swing
Grup Cosmos Buona Sera swing
Los Cinco Latinos Un Telegrama swing
Barber, Chris Take Me Back To New Orleans swing
Underhållningsorkestern Luffarfröjd waltz
Shadows Autumn waltz
Berry, Dave Mama waltz
Black, Cilla Anyone Who Had A Heart waltz
Albrecht, Gaby Einmal mit dir waltz
Macias, Enrico Mon Coeur D’Aache waltz
Freber, Jean Pigalle (Mussee) waltz
Righteous Brothers Ebb Tide waltz
Peterman, Monic Nostalgie waltz
Valente, Caterina Dich werd ich nie vergessen waltz
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Appendix F

Conceptual space genre classification
data

F.1  optimised salience weights (k = 3)

Table F.1: Optimised  domain salience weights for k = 3: mean over all
runs of 10x10cv.

Model __ __ _
(, L1, k = 3) 1.000 0.794 0.704
(, L1 + L2, k = 3) 1.000 0.683 0.618
(, L2, k = 3) 1.000 0.627 0.660

F.2  optimised salience weights (k = 3)

Table F.2: Optimised  domain salience weights for k = 3: mean over all
runs of 10x10cv.

Model _ _
(, L1, k = 3) 1.000 0.653
(, L1 + L2, k = 3) 1.000 0.499
(, L2, k = 3) 1.000 0.510
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F.3  classifier results (k = 3)

Table F.3: Accuracy for (, k = 3) over sorted 10x10 cross validation.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10
Run 1 0.26 0.39 0.45 0.48 0.50 0.50 0.52 0.53 0.57 0.67
Run 2 0.35 0.39 0.43 0.44 0.47 0.47 0.50 0.57 0.60 0.67
Run 3 0.33 0.38 0.42 0.43 0.50 0.55 0.56 0.58 0.61 0.62
Run 4 0.37 0.38 0.40 0.47 0.48 0.50 0.50 0.50 0.52 0.78
Run 5 0.26 0.33 0.38 0.45 0.50 0.52 0.56 0.60 0.61 0.68
Run 6 0.28 0.42 0.43 0.44 0.44 0.47 0.50 0.55 0.57 0.62
Run 7 0.29 0.39 0.43 0.47 0.48 0.50 0.55 0.56 0.58 0.65
Run 8 0.28 0.38 0.43 0.44 0.45 0.47 0.48 0.60 0.67 0.68
Run 9 0.33 0.33 0.38 0.44 0.45 0.47 0.48 0.53 0.55 0.62
Run 10 0.19 0.42 0.43 0.47 0.48 0.50 0.55 0.55 0.56 0.61
Mean 0.29 0.38 0.42 0.46 0.47 0.50 0.52 0.56 0.58 0.66

Table F.4: Confusion matrix for (, k = 3) over 10x10 cross validation. Rows
refer to labelled genre and columns to predicted genre.

Bolero Cha-cha Pasodoble Rumba Swing Waltz
Bolero 145 36 14 71 72 12
Cha-cha 10 258 67 0 26 9
Pasodoble 9 88 285 18 0 0
Rumba 83 35 56 142 74 10
Swing 76 34 30 68 111 11
Waltz 18 15 0 37 28 2

F.4  classifier results (k = 3)

Table F.5: Accuracy for (, L1, k = 3) over sorted 10x10 cross validation.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10
Run 1 0.57 0.71 0.72 0.75 0.76 0.78 0.79 0.80 0.83 0.84
Run 2 0.60 0.63 0.67 0.67 0.72 0.80 0.83 0.84 0.86 0.89
Run 3 0.65 0.67 0.67 0.67 0.71 0.78 0.80 0.83 0.84 0.84
Run 4 0.55 0.61 0.67 0.68 0.74 0.80 0.83 0.86 0.86 0.89
Run 5 0.63 0.67 0.68 0.71 0.71 0.72 0.78 0.83 0.90 0.90
Run 6 0.56 0.56 0.67 0.67 0.68 0.75 0.83 0.84 0.85 0.95
Run 7 0.67 0.68 0.70 0.71 0.74 0.75 0.76 0.78 0.89 0.89
Run 8 0.57 0.60 0.71 0.74 0.75 0.78 0.78 0.81 0.83 0.84
Run 9 0.61 0.63 0.65 0.68 0.76 0.78 0.83 0.85 0.86 0.86
Run 10 0.60 0.63 0.72 0.72 0.74 0.76 0.80 0.81 0.81 0.94
Mean 0.60 0.64 0.69 0.70 0.73 0.77 0.80 0.83 0.85 0.88

Table F.6: Confusion matrix for (, L1, k = 3) over 10x10 cross validation.
Rows refer to labelled genre and columns to predicted genre.

Bolero Cha-cha Pasodoble Rumba Swing Waltz
Bolero 224 46 19 30 31 0
Cha-cha 23 327 0 10 10 0
Pasodoble 3 40 309 29 9 10
Rumba 42 42 61 248 7 0
Swing 14 29 1 28 258 0
Waltz 0 0 0 0 6 94
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Table F.7: Accuracy for (,L1+L2, k = 3) over sorted 10x10 cross validation.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10
Run 1 0.67 0.68 0.71 0.72 0.76 0.76 0.80 0.83 0.84 0.85
Run 2 0.50 0.68 0.71 0.76 0.78 0.78 0.81 0.84 0.89 0.90
Run 3 0.67 0.71 0.72 0.75 0.76 0.78 0.78 0.80 0.84 0.84
Run 4 0.61 0.65 0.67 0.74 0.78 0.83 0.86 0.89 0.90 0.95
Run 5 0.58 0.67 0.71 0.71 0.72 0.74 0.76 0.83 0.90 0.90
Run 6 0.61 0.62 0.67 0.71 0.75 0.79 0.79 0.83 0.85 0.90
Run 7 0.63 0.63 0.67 0.76 0.78 0.80 0.80 0.86 0.89 0.89
Run 8 0.57 0.70 0.74 0.78 0.78 0.80 0.81 0.84 0.86 0.89
Run 9 0.61 0.63 0.65 0.68 0.71 0.78 0.81 0.83 0.86 0.90
Run 10 0.65 0.67 0.68 0.71 0.76 0.78 0.80 0.84 0.86 0.89
Mean 0.61 0.66 0.69 0.73 0.76 0.78 0.80 0.84 0.87 0.89

Table F.8: Confusion matrix for (, L1 +L2, k = 3) over 10x10 cross valida-
tion. Rows refer to labelled genre and columns to predicted genre.

Bolero Cha-cha Pasodoble Rumba Swing Waltz
Bolero 228 43 22 26 31 0
Cha-cha 29 329 8 3 1 0
Pasodoble 3 54 294 30 9 10
Rumba 21 38 64 273 4 0
Swing 16 22 3 20 269 0
Waltz 0 0 0 0 2 98

Table F.9: Accuracy for (, L2, k = 3) over sorted 10x10 cross validation.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10
Run 1 0.67 0.71 0.71 0.72 0.76 0.79 0.80 0.83 0.85 0.89
Run 2 0.55 0.63 0.71 0.76 0.76 0.78 0.83 0.84 0.89 0.90
Run 3 0.67 0.70 0.71 0.76 0.78 0.79 0.80 0.81 0.83 0.95
Run 4 0.63 0.65 0.67 0.67 0.67 0.83 0.86 0.86 0.90 0.95
Run 5 0.62 0.63 0.67 0.67 0.72 0.76 0.83 0.89 0.90 0.90
Run 6 0.61 0.67 0.67 0.76 0.79 0.79 0.80 0.80 0.83 0.90
Run 7 0.57 0.63 0.68 0.75 0.76 0.78 0.85 0.86 0.89 0.89
Run 8 0.57 0.65 0.72 0.74 0.78 0.81 0.81 0.83 0.84 0.85
Run 9 0.63 0.65 0.67 0.68 0.71 0.78 0.83 0.85 0.86 0.86
Run 10 0.63 0.67 0.67 0.70 0.71 0.74 0.76 0.80 0.86 0.89
Mean 0.62 0.66 0.69 0.72 0.74 0.78 0.82 0.84 0.87 0.90

Table F.10: Confusion matrix for (, L2, k = 3) over 10x10 cross validation.
Rows refer to labelled genre and columns to predicted genre.

Bolero Cha-cha Pasodoble Rumba Swing Waltz
Bolero 219 58 12 29 32 0
Cha-cha 27 321 9 9 4 0
Pasodoble 4 57 289 30 10 10
Rumba 5 35 67 282 11 0
Swing 11 20 8 13 278 0
Waltz 0 0 0 0 1 99
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F.5  classifier results (k = 3)

Table F.11: Accuracy for (, L1, k = 3) over sorted 10x10 cross validation.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10
Run 1 0.71 0.72 0.76 0.76 0.78 0.80 0.80 0.84 0.84 0.94
Run 2 0.65 0.68 0.71 0.72 0.79 0.81 0.83 0.85 0.86 0.94
Run 3 0.70 0.72 0.75 0.76 0.81 0.81 0.83 0.84 0.84 0.89
Run 4 0.67 0.67 0.70 0.71 0.74 0.85 0.86 0.89 0.89 0.89
Run 5 0.62 0.68 0.71 0.75 0.78 0.79 0.83 0.85 0.86 0.89
Run 6 0.67 0.67 0.72 0.75 0.76 0.78 0.79 0.84 0.86 0.90
Run 7 0.58 0.62 0.68 0.78 0.80 0.81 0.86 0.89 0.90 0.94
Run 8 0.65 0.67 0.72 0.76 0.79 0.83 0.84 0.85 0.89 0.90
Run 9 0.63 0.67 0.75 0.76 0.79 0.83 0.86 0.89 0.90 0.90
Run 10 0.63 0.70 0.71 0.72 0.74 0.75 0.78 0.81 0.86 0.94
Mean 0.65 0.68 0.72 0.75 0.78 0.81 0.83 0.86 0.87 0.92

Table F.12: Confusion matrix for (, L1, k = 3) over 10x10 cross validation.
Rows refer to labelled genre and columns to predicted genre.

Bolero Cha-cha Pasodoble Rumba Swing Waltz
Bolero 226 43 9 25 47 0
Cha-cha 21 296 25 20 8 0
Pasodoble 7 47 316 10 10 10
Rumba 19 26 38 314 3 0
Swing 10 10 12 20 278 0
Waltz 0 0 0 0 0 100

Table F.13: Accuracy for (, L1 + L2, k = 3) over sorted 10x10 cross valida-
tion.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10
Run 1 0.71 0.72 0.76 0.78 0.80 0.84 0.85 0.86 0.89 0.95
Run 2 0.68 0.70 0.71 0.81 0.83 0.84 0.86 0.89 0.90 0.94
Run 3 0.75 0.75 0.76 0.81 0.81 0.83 0.83 0.89 0.89 0.89
Run 4 0.61 0.65 0.71 0.76 0.84 0.85 0.86 0.89 0.94 0.95
Run 5 0.63 0.71 0.75 0.76 0.83 0.83 0.84 0.86 0.89 0.90
Run 6 0.61 0.76 0.78 0.78 0.79 0.80 0.81 0.81 0.84 1.00
Run 7 0.63 0.67 0.75 0.76 0.78 0.79 0.85 0.89 0.90 0.94
Run 8 0.57 0.75 0.79 0.83 0.84 0.85 0.86 0.86 0.89 0.89
Run 9 0.67 0.71 0.75 0.79 0.83 0.84 0.89 0.90 0.90 0.90
Run 10 0.65 0.68 0.72 0.79 0.81 0.81 0.83 0.85 0.86 0.89
Mean 0.65 0.71 0.75 0.79 0.82 0.83 0.85 0.87 0.89 0.93

Table F.14: Confusion matrix for (, L1 + L2, k = 3) over 10x10 cross vali-
dation. Rows refer to labelled genre and columns to predicted genre.

Bolero Cha-cha Pasodoble Rumba Swing Waltz
Bolero 240 50 9 25 26 0
Cha-cha 22 319 13 11 5 0
Pasodoble 1 37 339 3 10 10
Rumba 10 29 50 311 0 0
Swing 3 22 1 20 284 0
Waltz 0 0 0 0 19 81
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Table F.15: Accuracy for (, L2, k = 3) over sorted 10x10 cross validation.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10
Run 1 0.67 0.72 0.76 0.79 0.80 0.81 0.85 0.86 0.89 0.89
Run 2 0.60 0.62 0.74 0.76 0.79 0.81 0.83 0.89 0.90 0.94
Run 3 0.70 0.71 0.80 0.83 0.83 0.83 0.84 0.86 0.86 0.89
Run 4 0.60 0.61 0.71 0.71 0.78 0.81 0.84 0.94 0.95 0.95
Run 5 0.67 0.68 0.76 0.80 0.83 0.83 0.83 0.84 0.86 0.90
Run 6 0.61 0.67 0.75 0.76 0.76 0.78 0.84 0.84 0.90 0.95
Run 7 0.63 0.67 0.68 0.75 0.78 0.85 0.86 0.89 0.90 0.94
Run 8 0.52 0.70 0.72 0.76 0.81 0.83 0.84 0.89 0.89 0.95
Run 9 0.67 0.68 0.70 0.81 0.83 0.84 0.86 0.86 0.89 0.90
Run 10 0.65 0.67 0.68 0.70 0.72 0.74 0.81 0.83 0.89 0.90
Mean 0.63 0.67 0.73 0.77 0.79 0.81 0.84 0.87 0.89 0.92

Table F.16: Confusion matrix for (, L2, k = 3) over 10x10 cross validation.
Rows refer to labelled genre and columns to predicted genre.

Bolero Cha-cha Pasodoble Rumba Swing Waltz
Bolero 239 42 15 28 26 0
Cha-cha 33 301 10 17 9 0
Pasodoble 6 35 335 3 11 10
Rumba 14 23 48 315 0 0
Swing 12 21 0 20 277 0
Waltz 0 0 0 0 20 80
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Appendix G

Low-dimensional projections of
distances in conceptual space

efigures below are an aempt to visualise the semantic distances between points
in the conceptual spaces of  and . Two small datasets were cre-
ated, consisting of a variety of metres designed to illustrate different aspects of
higher-level conceptual similarity. Pairwise distance matrices were calculated for
each dataset, and then projected into 2- and 3-dimensional spaces using multidi-
mensional scaling (MDS).32 Goodness of fit (GOF) is a measure of how well the
distances between objects in the lower dimensional projection reflect the original
data, where the closer the value to one the beer. Stress is a similar measure,
except that the closer to zero the beer the fit.

Two examples of distances in each space are provided here, which indicate that
a plausible notion of conceptual similarity is maintained when comparing various
metres at both the same and across a range of tempi. e tactus was held con-
stant for the first dataset visualised in figure G.1 and figure G.3, with the aim of
visualising the distances between a range of equal tempo metres common toWest-
ern music. e second dataset, visualised in figure G.2 and figure G.4 show how
the distance between three simple metres changes over a range of different tempi.
Regions corresponding to the three metres are clearly evident in the projection.

322-dimensional non-metric MDS was carried out using the isoMDS fuction from the R MASS
package (Venables and Ripley 2002), and 3-dimensional metric MDS using the cmdscale function
from the R statistical package (R Development Core Team 2010)
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Figure G.1: MDS projection of the distances between prototypical common metres in
 space. All metres are at tactus = 600 ms (100 bpm), and include two levels of
tactus subdivision.
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Figure G.2: MDS projection of the distances between prototypical 24,
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4 metres across

the tempo range 80–180 bpm in  space. Each metre has two levels of tactus sub-
division.
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Figure G.3: MDS projection of the distances between prototypical common metres in
 space. All metres are at tactus = 600 ms (100 bpm), and include two levels of
tactus subdivision.
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