An Investigation into the Merger of Stochastic Diffusion
Search and Particle Swarm Optimisation

Mohammad Majid
al-Rifaie
Department of Computing
Goldsmiths College, University
of London
London, SE14 6NW, UK
m.majid @ gold.ac.uk

ABSTRACT

This study reports early research aimed at applying the pow-
erful resource allocation mechanism deployed in Stochastic
Diffusion Search (SDS) [4] to the Particle Swarm Optimiser
(PSO) metaheuristic [22], effectively merging the two swarm
intelligence algorithms. The results reported herein suggest
that the hybrid algorithm, exploiting information sharing
between particles, has the potential to improve the optimi-
sation capability of conventional PSOs.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence— Multiagent systems; G.1.6 [Numerical Analysis]:
Optimization—Global optimization

General Terms
Algorithms

Keywords
PSO, SDS, Metaheuristic

1. INTRODUCTION

In the literature swarm intelligence algorithms are typ-
ically evaluated using benchmarks that are often small in
terms of their objective function computational costs [9, 35];
this is often not the case in real-world applications. This
paper is an attempt to pave the way for more effectively op-
timising computationally expensive objective functions, by
deploying the SDS diffusion mechanism to more efficiently
allocate PSO resources via information-sharing between par-
ticles.

The use of SDS as an efficient resource allocation algo-
rithm was first explored in [29, 7, 26] and these results pro-
vided motivation to investigate the application of the in-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO-2011 July 12-16, 2011 Dublin, Ireland

Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

Mark John Bishop
Department of Computing
Goldsmiths College, University ~Goldsmiths College, University
of London
London, SE14 6NW, UK
m.bishop @gold.ac.uk

Tim Blackwell
Department of Computing

of London
_ London, SE14 6NW, UK
tim.blackwell @ gold.ac.uk

formation diffusion mechanism originally deployed in SDS *
with PSOs.

Communication — social interaction or information ex-
change — observed in social insects is important in all swarm
intelligence algorithms, including SDS and PSOs. Although
in real social interactions, not just the syntactical informa-
tion is exchanged between the individuals but also semantic
rules and beliefs about how to process this information [23],
in typical swarm intelligence algorithms, only the syntactical
exchange of information is considered.

In this paper, the two swarm intelligence algorithms are
introduced, followed by the hybridisation strategy?. After-
wards, the results are reported and the performance of the
hybrid algorithm is discussed.

2. STOCHASTIC DIFFUSION SEARCH

This section introduces Stochastic Diffusion Search (SDS)
[4], a multi-agent global search and optimisation algorithm,
which is based on simple interaction of agents. A high-
level description of SDS is presented in the form of a social
metaphor demonstrating the procedures through which SDS
allocates resources.

SDS introduced a new probabilistic approach for solving
best-fit pattern recognition and matching problems. SDS,
as a multi-agent population-based global search and opti-
misation algorithm, is a distributed mode of computation
utilising interaction between simple agents [8].

Unlike many nature inspired search algorithms, SDS has
a strong mathematical framework, which describes the be-
haviour of the algorithm by investigating its resource allo-
cation [26], convergence to global optimum [27], robustness
and minimal convergence criteria [25] and linear time com-
plexity [28]. In order to introduce SDS, a social metaphor
the Mining Game [1] is used.

2.1 The Mining Game

This metaphor provides a simple high-level description of
the behaviour of agents in SDS, where mountain range is
divided into hills and each hill is divided into regions:

I The ‘information diffusion’ and ‘randomised partial objective func-
tion evaluation’ processes enable SDS to more efficiently optimise
problems with costly [discrete] objective functions; see Stochastic Dif-
fusion Search Section for an introduction to the SDS metaheuristic.

’In addition to the hybridised approach introduced here, there has
been other works on merging PSO with other algorithms, such as
Genetic Algorithm (GA), which are population based heuristic search
technique [18, 13, 32, 30].

A group of miners learn that there is gold to be found
on the hills of a mountain range but have no infor-
mation regarding its distribution. To maximize their
collective wealth, the maximum number of miners
should dig at the hill which has the richest seams
of gold (this information is not available a-priori). In
order to solve this problem, the miners decide to em-
ploy a simple Stochastic Diffusion Search.

e At the start of the mining process each miner
is randomly allocated a hill to mine (his hill
hypothesis, h).

e Every day each miner is allocated a randomly
selected region, on the hill to mine.

At the end of each day, the probability that a miner
is happy is proportional to the amount of gold he
has found. Every evening, the miners congregate and
each miner who is not happy selects another miner
at random for communication. If the chosen miner
is happy, he shares the location of his hill and thus
both now maintain it as their hypothesis, h; if not,
the unhappy miner selects a new hill hypothesis to
mine at random.

As this process is isomorphic to SDS, miners will naturally
self-organise to congregate over hill(s) of the mountain with
high concentration of gold.

In the context of SDS, agents take the role of miners; ac-
tive agents being ’happy miners’, inactive agents being 'un-
happy miners and the agent’s hypothesis being the miner’s
"hill-hypothesis’.

Algorithm 1 The Mining Game

Initialisation phase
Allocate each miner (agent) to a random
hill (hypothesis) to pick a region randomly

Until (all miners congregate over the highest
concentration of gold)

Test phase
Each miner evaluates the amount of gold
they have mined (hypotheses evaluation)
Miners are classified into happy (active)
and unhappy (inactive) groups

Diffusion phase
Unhappy miners consider a new hill by
either communicating with another miner
or,if the selected miner is also
unhappy, there will be no information
flow between the miners; instead the
selecting miner must consider another
hill (new hypothesis) at random
End

2.2 SDS Architecture

The SDS algorithm commences a search or optimisation
by initialising its population (e.g. miners, in the mining
game metaphor). In any SDS search, each agent maintains
a hypothesis, h, defining a possible problem solution. In
the mining game analogy, agent hypothesis identifies a hill.
After initialisation two phases are followed (see Algorithm
1 for these phases in the mining game; for high-level SDS
description see Algorithm 2):

e Test Phase (e.g. testing gold availability)

e Diffusion Phase (e.g. congregation and exchanging of
information)

Algorithm 2 SDS Algorithm

Initialising agents()

While (stopping condition is not met)
Testing hypotheses ()
Diffusion hypotheses ()

End

In the test phase, SDS checks whether the agent hypoth-
esis is successful or not by performing a partial hypothesis
evaluation which returns a boolean value. Later in the it-
eration, contingent on the precise recruitment strategy em-
ployed, successful hypotheses diffuse across the population
and in this way information on potentially good solutions
spreads throughout the entire population of agents.

In the Test phase, each agent performs partial function
evaluation, pF' E, which is some function of the agent’s hy-
pothesis; pF'E = f(h). In the mining game the partial func-
tion evaluation entails mining a random selected region on
the hill, which is defined by the agent’s hypothesis (instead
of mining all regions on that hill).

In the Diffusion phase, each agent recruits another agent
for interaction and potential communication of hypothesis.
In the mining game metaphor, diffusion is performed by
communicating a hill hypothesis.

2.3 Standard SDS and Passive Recruitment

In standard SDS (which is used in this paper), passive
recruitment mode is employed. In this mode, if the agent is
inactive, a second agent is randomly selected for diffusion;
if the second agent is active, its hypothesis is communicated
(diffused) to the inactive one. Otherwise there is no flow
of information between agents; instead a completely new
hypothesis is generated for the first inactive agent at random
(see Algorithm 3).

Algorithm 3 Passive Recruitment Mode

for ag = 1 to No_of_agents
if (ag.activity () == false)
r_ag = pick a random agent ()
if (r-oag.activity () == true)
ag.setHypothesis(r-ag.getHypothesis())
else
ag.setHypothesis (randomHypothsis())
end

2.4 Partial Function Evaluation

One of the concerns associated with many optimisation
algorithms (e.g. Genetic Algorithm [15], Particle Swarm
Optimisation [22] and etc.) is the repetitive evaluation of a
computationally expensive fitness functions. In some appli-
cations, such as tracking a rapidly moving object, the repet-
itive function evaluation significantly increases the compu-
tational cost of the algorithm. Therefore, in addition to re-
ducing the number of function evaluations, other measures
can be used in an attempt to reduce the computations car-
ried out during the evaluation of each possible solution, as
part of the overall optimisation (or search) processes.

The commonly used benchmarks for evaluating the perfor-
mance of swarm intelligence algorithms are typically small
in terms of their objective functions computational costs [9,
35], which is often not the case in real-world applications.

Examples of costly evaluation functions are seismic data in-
terpretation [35], selection of sites for the transmission in-
frastructure of wireless communication networks and radio
wave propagation calculations of one site [34] etc.

Costly objective function evaluations have been investi-
gated under different conditions [19] and the following two
broad approaches have been proposed to reduce the cost of
function evaluations:

e The first is to estimate the fitness by taking into ac-
count the fitness of the neighbouring elements, the
former generations or the fitness of the same element
through statistical techniques introduced in [5, 11].

e In the second approach, the costly fitness function is
substituted with a cheaper, approximate fitness func-
tion.

When agents are about to converge, the original fitness func-
tion can be used for evaluation to check the validity of the
convergence [19].

Many fitness functions are decomposable to components
that can be evaluated separately. In partial evaluation of
the fitness function in SDS, the evaluation of one or more
of the components may provide partial information to guide
the subsequent optimisation process.

3. PARTICLE SWARM OPTIMISATION

Particle Swarm Optimisation (PSO) is population based
optimization technique developed in 1995 by Kennedy and
Eberhart [22, 10]. It came about as a result of an attempt
to graphically simulate the choreography of fish schooling or
birds flying (e.g. pigeons, starlings, and shorebirds) in coor-
dinated flocks that show strong synchronisation in turning,
initiation of flights and landing, despite the fact that ex-
perimental researches to find leaders in such flocks failed
[16]. In particle swarms, although members of the swarm
neither have knowledge about the global behaviour of the
swarm nor a global information about the environment, the
local interactions of the swarms result in complex collective
behaviour, such as flocking, herding, schooling, exploration
and foraging behaviour [31, 24, 3, 17].

3.1 Standard/Basic PSO

A swarm in PSO algorithm comprises of a number of
particles and each particle represents a point in a multi-
dimensional problem space. Particles in the swarm explore
the problem space searching for the optimal position, which
is defined by a fitness function. The position of each par-
ticle, z, is thus dependent on the particle’s own experience
and those of its neighbours. Each particle has a memory,
containing the best position found so far during the course
of the optimisation, which is called personal best (pbest or
p). Whereas the best position so far found throughout the
population, or the local neighbourhood, is called global best
(pg) and local best (p;) respectively.

The standard PSO algorithm defines the position of each
particle by adding a velocity to the current position. Here
is the equation for updating the velocity of each particle:

vfd = wvfgl +cir (pid — mfgl) + caro (pgd - xf;l) (1)

Ty = vig + aiy " (2)

where w is the inertia weight whose optimal value is prob-
lem dependent [33]; ¥, 1 is the velocity vector of particle i
in dimension d at time step ¢ — 1; ¢1,2 are the learning fac-
tors (also referred to as acceleration constants) for personal
best and neighbourhood best respectively (they are generally
constant and are usually set to 2); 71,2 are random numbers
adding stochasticity to the algorithm and they are drawn
from a uniform distribution on the unit interval U (0, 1); piq
is the personal best position of particle x; in dimension d;
and pgyq is global best (or neighbourhood best).

Therefore, PSO optimisation is based on particles’ individ-
ual experience and their social interaction with the particle
swarms.

After updating the velocities of the particles, their new
positions are determined. Algorithm 4 summarises the be-
haviour of PSO algorithm when dealing with a minimisation
problem.

Algorithm 4 PSO Pseudo Code

Initialise particles

While (stopping condition is not met)
For all particles
Evaluate fitness value of each particle

If (current fitness < pbest)
pbest = current fitness

If (pbest<global (or local) best)
global (or local) best = pbest

Update particle velocity

Update particle position

End
End

In this paper, Clerc-Kennedy PSO (PSO-CK) or constric-
tion PSO is used:

via =x (vig ' +err1 (pia — 23 ") + cora (pga — xig ') (3)

where x = 0.72984 [6] is reported to be working well in
general.

4. MERGING SDS AND PSO

The initial motivating thesis justifying the merging SDS
and PSO is the partial function evaluation deployed in SDS,
which may mitigate the high computational overheads en-
tailed when deploying a PSO onto a problem with a costly
fitness function. However before commenting on and ex-
ploring this area — which remains an ongoing research —, an
initial set of experiments experiment aimed to investigate if
the information diffusion mechanism deployed in SDS may
on its own improve PSO behaviour. It is these results that
are primarily reported in this paper.

In this new architecture a standard set of benchmarks are
used to evaluate the performance of the hybrid algorithm.
The resource allocation (or recruitment) and partial func-
tion evaluation sides of SDS (see Section 2.4 are used to
assist allocating resources (e.g. particles of the swarm) after
partially evaluating the search space.

In the hybrid algorithm, each PSO particle has a current
position, a memory (personal best position) and a velocity;
each SDS agent, on the other hand, has hypothesis and sta-
tus.

In the experiment reported here, every PSO particle is
an SDS agent too — together termed pAgents. In the pA-

gent SDS hypotheses are defined by the PSO particle posi-
tions and an additional boolean variable (status) determines
whether the pAgent is active or inactive (see Figure 1).

Figure 1: pAgent

pAgent
SDS Agent
Hypothesis
Status PSO Particle

Active / Inactive

The behaviour of the hybrid algorithm in its simplest form
is presented in Algorithm 5.

Algorithm 5 Hybrid Algorithm

Initialise pAgents

While (stopping condition is not met)
For all pAgents
Evaluate fitness wvalue of each particle

If (evaluation counter MOD n == 0)
// START SDS
// TEST PHASE
for ag = 1 to No_of_pAgents
r_ag = pick—random—pAgent ()
if (ag.pbestFitness() <=
r_ag.pbestFitness ())
ag.setActivity (true)
else
ag.setActivity (false)
end if
end for

// DIFFUSION PHASE
for ag = 1 to No_of_pAgents
if (ag.activity () == false)
r_ag = pick—random—pAgent ()
if (roag.activity () == true)
ag.setHypo(r_ag.getHypo ())=
else
ag.setHypo (randomHypo())
end if
end for
end if
// END SDS

If (current fitness < pbest)
pbest = current fitness

If (pbest<global (or local) best)
global (or local) best = pbest

Update particle velocity

Update particle position

End
End

* In setHypo() and getHypo(), Hypo refers to
the pAgent’s hypothesis (position, memory
and velocity).

4.1 Test and Diffusion Phases in the Hybrid
Algorithms

In the test-phase of a stochastic diffusion search, each
agent has to partially evaluate its hypothesis. The guiding
heuristic is that hypotheses that are promising are main-
tained and those that appear unpromising are discarded. In

the context of the hybrid PSO-SDS algorithm, it is clear
that there are many different tests that could be performed
in order to determine the activity of each pAgent. A very
simple test is illustrated in Algorithm 5. Here, the test-
phase is simply conducted by comparing the fitness of each
pAgent’s particle’s personal best against that of a random
pAgent; if the selecting pAgent has a better fitness value,
it will become active, otherwise it is flagged inactive. On
average, this mechanism will ensure 50% of pAgents remain
active form one iteration to another®.

In the Diffusion Phase, each inactive pAgent picks an-
other pAgent randomly, if the selected pAgent is active, the
selected pAgent communicates its hypothesis to the inactive
one; if the selected pAgent is inactive too, the selecting pA-
gent generates a new hypothesis at random from the search
space.

As outlined in the pseudo-code of the hybrid algorithm
(see Algorithm 5), after each n number of PSO function
evaluations, one full SDS cycle? is executed. The hybrid
algorithm is called SDSnPSO, where n refers to the number
of PSO function evaluations before an SDS cycle should run.

In the next section, the experiment setup is reported and
the results will follow.

5. RESULTS

In this section, a number of experiments are carried out
and the performance of PSO is contrasted against the hybrid
algorithm, SDSnPSO.

5.1 Experiment Setup

The algorithms are tested over a number of benchmarking
functions from Jones et al [20] and De Jong [21] test suite,
preserving different dimensionality and modality (see Table
I and II in [6], where benchmark function equations, feasible
bounds, the number of dimensions in which the benchmarks
are used in the experiments, the optimum of each function
which is known a priori and also the boundaries where par-
ticles are first initialised are presented).

The first two functions (Sphere/Parabola and Schwefel
1.2) have a single minimum and are unimodal functions;
Generalised Rosenbrock for dimension D, where D > 3, is
multimodal; Generalised Schwefel 2.6, Generalized Rastri-
gin, Ackley, Generalized Griewank, Penalised Function P8
and Penalised Function P16 are complex high-dimensional
multi-modal problems with many local minima and a sin-
gle global optimum; Six-hump Camel-back, Goldstein-Price,
Shekel 5, 7 and 10 are lower-dimensional multi-modal prob-
lems with fewer local minima. Goldstein-Price, Shekel 5, 7
and 10 have one global optimum and Six-hump Camel-back
has two global optima symmetric about the origin.

In order not to initialise the particles on or near a region in
the search space known to have the global optimum, region

3NB. In standard SDS such high average activity would not be use-
ful as it entails most agents will continue to exploit their current
hypothesis rather than explore the search space, however in the hy-
brid algorithm the randomised subsequent behaviour of each pAgent
offsets this effect.

4A full SDS cycle includes:

e one Test Phase which decides about the status of each pAgent,
one after another

e one Diffusion Phase which shares information according to the
algorithm presented

scaling technique is used [14], which makes sure particles are
initialised at a corner of the search space where there are no
optimal solution.

The experiments are conducted with the population of 50
particles in global neighbourhood. The halting criterion for
this experiment is either to reach the optima (with distances
less than 10™®) or to exceed the 300, 000 function evaluations
(FEs).

There are 30 independent runs for each benchmark func-
tion and the results are averaged over these independent
trials. Three different performance measures[12] are used in
this paper to compare different strategies used in the exper-
iment. Accuracy, reliability and efficiency of each one of the
algorithms are presented in separate tables.

Accuracy is defined by the quality of the global best po-
sition in terms of its closeness to the optimum position. If
knowledge about the optimum position is known a priori
(which is the case here), the following would define the ac-
curacy:

Accuracy (S,t) = |f (pf;) —f (xopt)| (4)

where p!, is the global best position at time ¢ and zop: is
the position of the known optimum solution.

Reliability is the percentage of trials where swarms con-
verge with a specified accuracy and it is defined by:

’

Reliability = — x 100 (5)
n

where n is the number of trials in the experiment and n
is the number of successful trials.

Efficiency is the number of iterations or objective function
evaluations to converge with a specified accuracy:

1 n
Efficiency = - Z FEs (6)
i=0

where n is the number of trials and FEs is the number of
function evaluations before convergence.

In this paper, SDSnPSO, is presented with few variations
of parameter, n, (the number of PSO evaluation before an
SDS cycle is performed), n = 1000, 3000, and 30, 000. These
values were selected merely to provide a brief initial explo-
ration of the behaviour of the new hybrid algorithm over
three relatively widely separated parameter values; no claim
is made for their optimality.

5.2 Results

Table 1 shows the performance of the various hybrid al-
gorithms alongside PSO-CK. For each benchmark and each
algorithm, the table shows the accuracy, efficiency and reli-
ability.

Although the focus of this paper is not finding the best
n for SDSnPSO (for this set of benchmarks), n = 3000
shows better results compared to other variants. The result
table suggests that over-running the SDS cycle (e.g. when
n = 1000) might move the swarm away from convergence.
On the other hand, reducing the information sharing (e.g.
when n = 30, 000) appears to reduce the positive effect that
SDS has on the overall behaviour of the swarm.

As Table 1 shows (for statistical details, see Tables 2 and
3), there is a trade-off between the reliability and the effi-

ciency measures of SDSnPSO and PSO. Adding SDS, de-
creases the efficiency, but increases the reliability. This can
be viewed in fi_2 and fe_g. In terms of the total number
of convergences, SDSnPSO (n = 3000), outperforms PSO
(see the next section for detailed comparison and statistical
analysis of the results).

6. DISCUSSION

The resource allocation process underlying SDS offers two
closely coupled mechanisms to the algorithm’s search com-
ponent to speed its convergence to global optima. The first
component is ‘efficient, non-greedy information sharing’ in-
stantiated via positive feedback of potentially good hypothe-
ses between agents; the second component is random ‘partial
hypothesis evaluation’, whereby a complex, computationally
expensive objective function is broken down into ‘k indepen-
dent partial-functions’, each one of which, when evaluated,
offers partial information on the absolute quality of current
algorithm search parameters. It is this mechanism of iter-
ated selection of a random partial function that ensures SDS
does not prematurely converge on local minimum.

The resource allocation component of SDS in the hybrid
algorithm is executed in the ‘Diffusion Phase’, when infor-
mation is shared (diffused) among pAgents (see Algorithm
3). Analysis of the performance of the hybrid algorithm (see
results above) demonstrates that adding the SDS resource
allocation mechanism to the standard PSO architecture in-
creases the probability of convergence (i.e. it increases al-
gorithm ‘reliability’, as defined herein). In order to ensure
that this improved robustness is due to the stochastic in-
formation sharing mechanism in SDS - and not merely an
effect caused by randomising a selection of particle hypothe-
ses after a number of PSO function evaluations (effectively
instantiating a PSO with random-restarts) - a control ex-
periment is run with a modified SDS Diffusion Phase (see
Algorithm 6); in the control algorithm, after the test-phase
the hypothesis of each inactive pAgent is merely randomised.

The performance of the control algorithm can be con-
trasted against PSO using three measures (accuracy, effi-
ciency and reliability) defined in Section 5.1. TukeyHSD
test is used for accuracy and efficiency measures, (see Ta-
bles 2 and 3).

In terms of accuracy, Tables 1 and 2, illustrate that no al-
gorithm outperforms over all benchmarks. Similarly, Table
3 shows that in the case of successful convergence, whenever
there is a significant difference between any pair of the al-
gorithms, the efficiency of H3C is significantly worse than
PSO-CK and the hybrid algorithm (H1, H3 & H30); and
as the last row of Table 1 proves, the control algorithm is
less reliable than PSO and the hybrid algorithm (H1, H3 &
H30). As the efficiency and reliability of the control exper-
iment (see the last column in Table 1) is worse than that
of the hybrid algorithm, we can conclude that the SDS in-
formation sharing mechanism must play an essential role in
improving the performance of the hybrid algorithm.

The second SDS component feature, which is currently
only implicitly exploited by the hybrid algorithm, is ‘ran-
domised partial hypothesis evaluation’. In the Mining Game
(see Section 2.1), “At the start of the mining process each
miner maintains a [randomly allocated] hypothesis - their
current belief of 'best hill’ to mine”; and each miner mines
one small randomly selected area of this hill rather than
the entirety of it (i.e. revealing a partial estimate of the

Table 1: Accuracy and Efficiency Details
Accuracy (+standard error) is shown with two decimal places after 30 trials of 300,000 function evaluations. Mean FEs
(£standard error) of successful trials are also shown in the second row of each benchmark alongside with the reliability of
the algorithm. Total number of convergence of each algorithm over the benchmarks can be found in the last row.

H1: SDSnPSO H3: SDSnPSO H30: SDSnPSO H3C: SDSnPSO
PSO-CK n = 1,000 n = 3,000 n = 30,000 n = 3,000
generate Hypothesis generate Hypothesis generate Hypothesis | control algorithm
fl 0.0 +0.0 0.0 +0.0 0.0 +0.0 0.0 +0.0 0.0 +0.0
23273 £321 (100%) 40265 £1006 (100%) 32842 £736 (100%) 22386 +265 (100%) 202963 +4929 (100%)
f2 0.0 0.0 1.87E-08 +8.90E-09 0.0 +0.0 0.0 +0.0 2.30E-01 £2.07E-02
183450 +1655 (100%) 244969 +4571 (93.33%) 212703 +3172 (100%) 184962 +2013 (100%) -
f3 5.53E400 +8.15E-01 1.23E4+00 £3.69E-01 1.63E+00 +3.88E-01 1.43E+00 +£3.48E-01 6.45E+4+01 £9.99E+400
f4 3.83E+403 +9.35E+01 3.30E+403 +1.20E+02 2.59E+03 +8.25E401 2.96E+403 £1.27E+02 1.06E+03 £3.81E+401
f5 6.04E+01 +3.47E+00 3.84E+01 +2.82E+400 9.55E+00 +9.49E-01 1.56E+01 £1.02E+00 3.76E+00 +£3.25E-01
f6 6.78E-01 +1.42E-01 7.24E-01 +1.57E-01 1.04E-08 £6.61E-10 8.86E-02 +6.21E-02 3.61E-06 +3.96E-07
46728 +3408 (53.33%) 163539 +9356 (53.33%) 67155 +1989 (96.67%) 77059 £5350 (93.33%) -
f7 1.70E-02 £2.90E-03 5.92E-02 +1.34E-02 1.93E-02 £3.59E-03 2.21E-02 +3.61E-03 1.35E-02 £2.45E-03
23865 +713 (26.67%) 41641 +2924 (16.67%) 33131 +1118 (33.33%) 22818 +507 (26.67%) 236479 +£11177 (26.67%)
fg 5.19E-02 +3.06E-02 1.38E-02 +6.54E-03 0.0 +0.0 1.73E-02 +1.41E-02 0.0 £0.0
33934 +1803 (83.33%) 58005 +2436 (86.67%) 43019 +1338 (100%) 37734 £1626 (93.33%) 118090 +2866 (100%)
fg 1.32E-02 +6.24E-03 1.03E-02 +5.72E-03 3.30E-03 £3.30E-03 0.0 +0.0 0.0 +0.0
29543 +1495 (86.67%) 56071 £2795 (90%) 38946 +1319 (96.67%) 32684 2808 (100%) 152050 +2951 (100%)
flO 0.0 0.0 0.0 +0.0 0.0 +0.0 0.0 +0.0 0.0 0.0
3607 +£61 (100%) 3470 +81 (100%) 3498 +65 (100%) 3661 +74 (100%) 3551 +£79 (100%)
f11 0.0 0.0 0.0 +0.0 0.0 +0.0 0.0 +0.0 0.0 0.0
3880 +63 (100%) 3534 +£57 (100%) 3832 +78 (100%) 3984 +79 (100%) 3921 +94 (100%)
f12 3.44E+4+00 +5.44E-01 3.26E+00 +6.25E-01 4.10E+00 +6.06E-01 3.52E+00 +5.96E-01 8.47E-01 £3.52E-01
- 104323 (3.33%) - - -
f13 3.05E4+00 +6.18E-01 2.86E4+00 +6.22E-01 2.09E4+00 +5.61E-01 2.87E+00 +6.21E-01 3.52E-01 £2.44E-01
f14 1.47TE400 £5.52E-01 2.76E4+00 +6.42E-01 1.53E400 £5.70E-01 2.65E4+00 +6.57E-01 9.70E-01 £4.09E-01
> (195) (193) (218) (214) (158)
46.43% 45.95% 51.90% 50.95% 37.62%

Algorithm 6 Hybrid Algorithm Control

// DIFFUSION PHASE
for ag = 1 to No_of_agents

if (ag.activity () == false)
ag.setHypo (randomHypo())
end if
end for

the gold content of the entire hill); following this approach,
each miner forms a partial view of the gold content of their
hill hypothesis (which is merely part of the overall mountain
range: the entire search space).

In typical optimisation algorithms, the search process iter-
ates the evaluation of one point in the n-dimensional search
space (iterating an objective function evaluation). In a PSO,
in addition to this information, each particle has implicit
knowledge of a discrete sub-space (or dSubS) comprising
the historical evidence implicit in the prior [m] objective-
function evaluations it has performed. Thus, since the mem-
ory of each particle maintains the best point found so far,
each particle, covering its dSubS, has partial knowledge of
the full search space.

In the hybrid algorithm each pAgent maintains a fitness
value which is the best objective function value it has cur-
rently found, based on its exploration of the search space so
far. Thus constituted, each pAgent’s personal best defines a
‘partial view’ of the entire search space (via the dSubS it has
covered); hence, when the personal best values of two pA-
gents are compared in the test-phase of the hybrid algorithm,

two partial views of the entire search space are contrasted.
This is analogous to the ‘test’ process of the Mining Game
as in both processes, agents become active or inactive con-
tingent upon the agent’s evaluation of a randomised partial
view of the entire search space.

In both the Mining Game and the new hybrid SDSnPSO
algorithm, the notion of partial-function evaluation differs
importantly from that traditionally deployed in a simple
discrete partial function SDS, where, for a given set of pa-
rameter values (the agent hypothesis) a complex objective
function is broken into m components, only one randomly
selected of which will be evaluated and the subsequent agent-
activity is based on this. Clearly, as this process merely
evaluates 1/m of the total number of computations required
for the full hypothesis evaluation, it concomitantly offers
a potentially significant performance increase. Whereas in
the new hybrid SDSnPSO algorithm the objective function
is evaluated in-toto, using a given set of parameter values
(the agent’s hypothesis) and the subsequent agent-activity is
based on this. In the former case, the agent exploits knowl-
edge of the partial objective function and in the process gains
a potential partial-function performance dividend; in the lat-
ter the agent merely exploits partial knowledge of the search
space - its discrete sub-space dSubS - without the concomi-
tant explicit partial-function performance increase. Ongoing
work, on computationally more complex benchmark prob-
lems, seeks to exploit this ‘partial-function dividend’ with
the hybrid SDSnPSO algorithm; if successful this offers fur-
ther, potentially significant, performance improvements for
the new hybrid algorithm.

Table 2: TukeyHSD Test Results for Accuracy
Based on TukeyHSD Test, if the difference between each pair of algorithms is significant, the pairs are marked and the
accuracy difference between each pair is also reported.

H1-CK H3-CK H30-CK H3C-CK H3-H1 H30-H1 H3C-H1 H30-H3 H3C-H3 H3C-H30
2.65E-10 2.09E-10 -3.66E-11 4.14E-10 -5.63E-11 -3.02E-10 1.49E-10 -2.45E-10 2.05E-10 4.50E-10
fo i ! i « i i . i . .
8.93E-09 6.70E-11 2.95E-11 2.30E-01 -8.86E-09 -8.90E-09 2.30E-01 -3.75E-11 2.30E-01 2.30E-01
fs i i i « i : « i « «
-4.31E400 -3.90E400 -4.10E400 5.89E401 4.04E-01 2.04E-01 6.32E401 -2.00E-01 6.28E+01 6.30E401
T - . - . .
-5.32E402 -1.24E+403 -8.79E+02 -2.78E403 -7.11E402 -3.47TE+02 -2.24E403 3.64E+02 -1.53E4-03 -1.90E403
f5 . « . . « . . i ! .
-2.20E+401 -5.09E401 -4.48E401 -5.67E401 -2.89E401 -2.28E401 -3.46E401 6.04E+00 -5.79E400 -1.18E4-01
fs)))
4.53E-02 -6.78E-01 -5.90E-01 -6.78E-01 -7.24E-01 -6.35E-01 -7.24E-01 8.86E-02 3.60E-06 -8.86E-02
fr . -)) . . .)) .
4.22E-02 2.29E-03 5.12E-03 -3.43E-03 -3.99E-02 -3.71E-02 -4.56E-02 2.84E-03 -5.72E-03 -8.56E-03
gl : : : : : - : : :
-3.81E-02 -5.19E-02 -3.47E-02 -5.19E-02 -1.38E-02 3.46E-03 -1.38E-02 1.73E-02 -1.87E-10 -1.73E-02
fo | - : : : : : : : : :
-2.93E-03 -9.89E-03 -1.32E-02 -1.32E-02 -6.96E-03 -1.03E-02 -1.03E-02 -3.30E-03 -3.30E-03 2.92E-10
fio - - - - - - - - - -
4.58E-10 1.42E-09 1.66E-10 1.52E-09 9.63E-10 -2.93E-10 1.06E-09 -1.26E-09 9.68E-11 1.35E-09
S - - - - - - - - - -
1.67E-10 -4.13E-10 3.25E-10 6.85E-11 -5.79E-10 1.58E-10 -9.83E-11 7.38E-10 4.81E-10 -2.57E-10
fi2 - - - x - - x R x <
-1.81E-01 6.62E-01 8.01E-02 -2.59E400 8.43E-01 2.61E-01 -2.41E400 -5.82E-01 -3.26E4-00 -2.67E400
f13 - - - x - - x - - x
-1.89E-01 -9.53E-01 -1.78E-01 -2.69E400 -7.64E-01 1.17E-02 -2.50E400 7.75E-01 -1.74E400 -2.52E400
f1a - - - - - - - - - -
1.29E400 5.73E-02 1.18E+00 -5.01E-01 -1.23E4-00 -1.03E-01 -1.79E400 1.13E4-00 -5.58E-01 -1.68E4-00

Table 3: TukeyHSD Test Results for Efficiency
Based on TukeyHSD Test, if the difference between each pair of algorithms is significant, the pairs are marked and the
efficiency difference between each pair is also reported. Benchmarks with no convergence are removed.

H1-CK H3-CK H30-CK H3C-CK H3-H1 H30-H1 H3C-H1 H30-H3 H3C-H3 H3C-H30
I . " - x - . x " . .
1.70E+04 9.57E+03 -8.87E+02 1.80E+05 -7.42E+403 -1.79E+04 1.63E+05 -1.05E+404 1.70E+05 1.81E+05
f2 x x - x x x
6.15E+404 2.93E+404 1.51E+03 -3.23E+404 -6.00E+04 -2.77E+04
fs
1.17E+05 2.04E+404 3.03E+404 -9.64E+04 -8.65E+04 9.90E+03
fr - : i « - - « - « «
1.78E+04 9.27E+03 -1.05E+403 2.13E+405 -8.51E+403 -1.88E+04 1.95E+05 -1.03E+404 2.03E+05 2.14E+405
fs . .)) . .
2.41E+404 9.08E+03 3.80E+403 8.42E+04 -1.50E+04 -2.03E+404 6.01E+04 -5.29E+403 7.51E+404 8.04E+04
fo . - - - . .
2.65E+404 9.40E+403 3.14E+403 1.23E+05 -1.71E+404 -2.34E404 9.60E+04 -6.26E+403 1.13E+05 1.19E+05
fio - - - - - - - - - -
-1.37E+402 -1.09E+02 5.42E+401 -5.63E+01 2.81E+401 1.91E+02 8.09E+01 1.63E+02 5.28E+401 -1.11E+402
fll x - - - x x x - - -
-3.46E+02 -4.74E+401 1.04E+02 4.12E+401 2.99E+402 4.50E+402 3.87E+02 1.51E+02 8.86E+01 -6.24E+401

6.1 Conclusion

This paper presents a brief overview about the potential

of integration of PSO with SDS. Here, SDS is primarily used
as an efficient resource allocation mechanism responsible for
facilitating communication between PSO particles. Addi-
tionally, an initial discussion of the similarity between the
hypothesis test employed in the hybrid algorithm and the
test-phase in SDS algorithm is presented, emphasising on
the role of discrete sub-space evaluation (dSubS evaluation).

Results reported in this paper have demonstrated that ini-
tial explorations with the hybrid SDSnPSO algorithm out-
perform the performance of standard PSO architectures,
even when applied to problems with low-cost fitness func-
tion evaluations (the benchmarks presented).

In ongoing research, in addition to investigating the per-
formance of the hybrid algorithm in other sets of problems
(e.g. CEC2005 or some real-world problems), further theo-
retical work seeks to develop the core ideas presented in this
paper on problems with significantly more computationally
expensive objective functions, where the performance im-

provement (relative to standard PSO) is anticipated to be
much greater.

The artistic application of this integration is under further
investigation and the early results are reported in [2].

7. REFERENCES

[1] M. M. al-Rifaie and M. Bishop. The mining game: a
brief introduction to the stochastic diffusion search
metaheuristic. AISB Quarterly, 2010.

[2] M. M. al-Rifaie, M. Bishop, and A. Aber. Creative or
not? birds and ants draw with muscles. In AISB 2011:
Computing and Philosophy, pages 23—-30, University of
York, York, U.K., 2011. ISBN: 978-1-908187-03-1.

[3] O. B. Bayazit, J.-M. Lien, and N. M. Amato.
Roadmap-based flocking for complex environments. In
PG ’02: Proceedings of the 10th Pacific Conference on
Computer Graphics and Applications, page 104,
Washington, DC, USA, 2002. IEEE Computer Society.

[4] J. Bishop. Stochastic searching networks. pages

[5]

[6]

8]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

329-331, London, UK, 1989. Proc. 1st IEE Conf. on
Artificial Neural Networks.

J. Branke, C. Schmidt, and H. Schmeck. Efficient
fitness estimation in noisy environments. In Spector,
L., ed.: Genetic and Evolutionary Computation
Conference, Morgan Kaufmann, 2001.

D. Bratton and J. Kennedy. Defining a standard for
particle swarm optimization. In Proc of the Swarm
Intelligence Symposium, pages 120-127, Honolulu,
Hawaii, USA, 2007. IEEE.

K. de Meyer. Explorations in stochastic diffusion
search: Soft- and hardware implementations of
biologically inspired spiking neuron stochastic
diffusion networks. Technical Report
KDM/JMB/2000/1, University of Reading, 2000.

K. de Meyer, J. M. Bishop, and S. J. Nasuto.
Stochastic diffusion: Using recruitment for search.
Evolvability and interaction: evolutionary substrates of
communication, signalling, and perception in the
dynamics of social complexity (ed. P. McOwan, K.
Dautenhahn € CL Nehaniv) Technical Report,
393:60-65, 2003.

J. Digalakis and K. Margaritis. An experimental study
of benchmarking functions for evolutionary
algorithms. International Journal, 79:403-416, 2002.
R. Eberhart and J. Kennedy. A new optimizer using
particle swarm theory. In Proceedings of the sixth
international symposium on micro machine and
human science, volume 43. New York, NY, USA:
IEEE, 1995.

M. A. el Beltagy and A. J. Keane. Evolutionary
optimization for computationally expensive problems
using gaussian processes. In Proc. Int. Conf. on
Artificial Intelligence’01, pages 708-714. CSREA
Press, 2001.

A. P. Engelbrecht. Fundamentals of Computational
Swarm Intelligence. Wiley, 2006.

A. A. A. Esmin, G. Lambert-Torres, and G. B.
Alvarenga. Hybrid evolutionary algorithm based on
PSO and GA mutation. In Hybrid Intelligent Systems,
2006. HIS’06. Sizth International Conference on,
page 57, 2006.

D. Gehlhaar and D. Fogel. Tuning evolutionary
programming for conformationally flexible molecular
docking. In Fvolutionary Programming V: Proc. of the
Fifth Annual Conference on FEvolutionary
Programming, pages 419-429, 1996.

D. E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA,
1989.

F. Heppner and U. Grenander. A stochastic nonlinear
model for coordinated bird flocks. American
Association for the Advancement of Science,
Washington, DC(USA)., 1990.

C. H. Janson. Experimental evidence for spatial
memory in foraging wild capuchin monkeys,cebus
apella. Animal Behaviour, 55:1229-1243, 1998.

S. Jeong, S. Hasegawa, K. Shimoyama, and

S. Obayashi. Development and investigation of
efficient GA /PSO-hybrid algorithm applicable to

(21]

(22]

(24]

(25]

real-world design optimization. Computational
Intelligence Magazine, IEEE, 4(3):36-44, 2009.

Y. Jin. A comprehensive survey of fitness
approximation in evolutionary computation. In: Soft
Computing, 9:3-12, 2005.

D. R. Jones, C. D. Perttunen, and B. E. Stuckman.
Lipschitzian optimization without the lipschitz
constant. J. Optim. Theory Appl., 79(1):157-181,
1993.

K. A. D. Jong. An analysis of the behavior of a class
of genetic adaptive systems. PhD thesis, University of
Michigan, Ann Arbor, MI, USA, 1975.

J. Kennedy and R. C. Eberhart. Particle swarm
optimization. In Proceedings of the IEEE International
Conference on Neural Networks, volume IV, pages
1942-1948, Piscataway, NJ, 1995. IEEE Service
Center.

J. F. Kennedy, R. C. Eberhart, and Y. Shi. Swarm
intelligence. Morgan Kaufmann Publishers, San
Francisco ; London, 2001.

M. Mataric. Interaction and Intelligent Behavior. PhD
thesis, Department of Electrical, Electronics and
Computer Engineering, MIT, USA, 1994.

D. R. Myatt, J. M. Bishop, and S. J. Nasuto.
Minimum stable convergence criteria for stochastic
diffusion search. Electronics Letters, 40(2):112-113,
2004.

S. J. Nasuto. Resource Allocation Analysis of the
Stochastic Diffusion Search. PhD thesis, University of
Reading, Reading, UK, 1999.

S. J. Nasuto and J. M. Bishop. Convergence analysis
of stochastic diffusion search. Parallel Algorithms and
Applications, 14(2), 1999.

S. J. Nasuto, J. M. Bishop, and S. Lauria. Time
complexity of stochastic diffusion search. Neural
Computation, NCI8, 1998.

S. J. Nasuto and M. J. Bishop. Steady state resource
allocation analysis of the stochastic diffusion search.
¢s. AI1/0202007, 2002.

K. Premalatha and A. M. Natarajan. Hybrid PSO and
GA for global maximization. Int. J. Open Problems
Compt. Math, 2(4), 20009.

C. W. Reynolds. Flocks, herds, and schools: A
distributed behavioral model. Computer Graphics,
21(4):25-34, 1987.

X. H. Shi, Y. H. Lu, C. G. Zhou, H. P. Lee, W. Z. Lin,
and Y. C. Liang. Hybrid evolutionary algorithms
based on PSO and GA. In The 2003 Congress on
FEvolutionary Computation, 2003. CEC’03., volume 4,
pages 2393-2399, 2004.

Y. Shi and R. C. Eberhart. Parameter selection in
particle swarm optimization. Lecture notes in
computer science, pages 591-600, 1998.

R. Whitaker and S. Hurley. An agent based approach
to site selection for wireless networks. In st IEFE
Conf. on Artificial Neural Networks, Madrid Spain,
2002. ACM Press Proc ACM Symposium on Applied
Computing.

D. Whitley, S. Rana, J. Dzubera, and K. E. Mathias.
Evaluating evolutionary algorithms. Artificial
Intelligence, 85(1-2):245-276, 1996.

