
Custom Specializers in Object-Oriented Lisp

Jim Newton
(Cadence Design Systems

Mozartstrasse 2
D-85622 Feldkirchen, Germany

jimka@cadence.com)

Christophe Rhodes
(Department of Computing

Goldsmiths, University of London
New Cross, London, SE14 6NW, United Kingdom

c.rhodes@gold.ac.uk)

Abstract: We describe in this paper the implementation and use of custom specializ-
ers in two current dialects of Lisp: Skill and Common Lisp. We motivate the need for
such specializers by appealing to clarity of expression, referring to experience in existing
industrial applications. We discuss the implementation details of such user-defined spe-
cializers in both dialects of Lisp, detailing open problems with those implementations,
and we sketch ideas for solving them.

Key Words: Specializer – Generic Function – Metaobject Protocol – Lisp

Category: D.1, D.3.3

1 Introduction

Lisp has a venerable history of object-oriented programming; at one point in
time, early in the history of object-orientation, Flavors [Moo86] and New Fla-
vors, Common Objects, Object Lisp and Common Loops [BKK+86] all coex-
isted. The Common Lisp Object System (CLOS) was incorporated into the lan-
guage in June 1988 [Ste90, Chapter 26], and when the ANSI Common Lisp
standard [PC94] was formalized in 1995, Common Lisp became the first ANSI-
standardized programming language with support for object-oriented program-
ming.

In the object systems in the Lisps under discussion in this paper, method
specializers have the function of determining whether a particular method is
applicable to a set of function arguments or not; method qualifiers determine the
function of the method within the effective method (from method combination)
if the method is applicable at all.

The repertoire of specializers in a given language dialect is typically lim-
ited in some way: in the Skill R© [Bar90, Pet93] dialect of Lisp (which we will
introduce in Section 2.1), only classes are allowed as specializers by default,
matching instances of that class; in Common Lisp, classes and eql specializers
(matching a single object by identity) are allowed by default, though the CLOS

Journal of Universal Computer Science, vol. 14, no. 20 (2008), 3370-3388
submitted: 23/6/08, accepted: 24/8/08, appeared: 28/11/08 © J.UCS



Metaobject Protocol (MOP) allows for extensibility in principle, as it specifies
a mop:specializer metaobject class.

1.1 Custom Specializers

It is sometimes the case that applications require dispatch on objects whose
behaviour is not separated by class structure; the dispatch may be influenced
by the global application state, or by the values of slots in the objects, or other
such factors. In object systems where the specializer metaobject class is not
extensible, there is then an impedance mismatch between the expression of the
functionality and its implementation, and it is this impedance mismatch that we
address by allowing the user to define subclasses of the specializer class.

By giving the user this option, we aim to provide a means to improve local-
ity and clarity of the implementation of a particular solution to a problem, by
allowing direct expression rather than manual reimplementation of dispatch ma-
chinery to distinguish between things that happen to be instances of the same
Lisp class (or where the class of the object is not relevant for dispatch). The
provision of this option does not lead to any loss of efficiency for the user of
standard generic functions and specializers, and many of the implementation
techniques for an efficient implementation of Lisp object systems [KR93] can be
applied to our custom specializers.

This paper discusses the use and implementation of metaobject protocols
to allow the user to take advantage of the ability to define subclasses of the
specializer class; after introducing some background and discussing related work
in the next section, we present a worked example in Section 3 to attempt to
motivate the definition and use of such specializer metaobject classes. We discuss
implementation issues regarding both Skill and Common Lisp in Section 4, and
conclude in Section 5.

2 Background

2.1 The Skill Programming Language

The users of Cadence Design Systems’ custom Integrated Circuit (IC) tools
use the Skill programming language extensively. Programmers write applica-
tions that customize the look and feel of the graphical system, automate the
design process by reducing the amount of repetitive work the design engineer
must do, and perform time-consuming, tedious verification checks. Other types
of programs include automatic layout generation tools that quickly produce pa-
rameterizable layouts that are correct by design. The language has an optional
C-style syntax with many engineer-friendly shortcuts, making it easy for non-
programmers to write simple scripts to help in their daily work.

3371Newton J., Rhodes C.: Custom Specializers in Object-Oriented Lisp



The same language is also a Lisp system having the basic features one would
expect: a Read-Eval-Print Loop (REPL), a debugger, garbage collection, lexical
and dynamic scoping, macros, and anonymous functions. As with most Lisp
systems, the language can be extended through adding functions to the run-
time environment.

The Skill language has a built-in object system called the Skill++ Object
System or simply Skill++. Skill++ is based on CLOS, but provides only a
subset of the capabilities; missing are features such as: multiple dispatch, multi-
ple inheritance, method combination, method qualifiers, equivalence specializers,
and a Metaobject Protocol. Instead, it provides single dispatch, single inher-
itance, analogues to Common Lisp’s call-next-method and next-method-p,
class and method redefinition, explicit environment objects, and a per-method
choice between lexical and dynamic scoping. Also important to note is that while
the language is interpreted by a proprietary virtual machine, the method dis-
patch mechanism in particular is implemented in a high performance compiled
language; consequently, generic function calls are as fast as normal function calls.

It should be stressed that, although Skill is a special-purpose language
environment and exists primarily within proprietary applications, it has a wide
user base, as a substantial fraction of the world’s IC design software is provided
by Cadence Design Systems; many of the chips in today’s consumer devices
have been simulated or designed within a Skill-based system. Thus, there is
considerable potential benefit in learning from language design experience, both
to improve Skill itself and to make language innovations developed for Skill

environments available to Common Lisp users.

2.2 Common Lisp

CLOS was developed in conjunction with the design of a Metaobject Protocol
(MOP), described in The Art of the Metaobject Protocol (AMOP) [KdRB91].
Common Lisp as standardized only includes a very small portion of this Metaob-
ject Protocol (for instance, a recommendation to use mop:slot-value-using-

class in slot-value; some introspective functionality such as find-method;
and arguably a little ability for intercession in compute-applicable-methods,
though in fact the standard does not require that compute-applicable-methods
be called as part of generic function dispatch), and so to customize the behaviour
of the object system in Common Lisp it is necessary to go beyond the standard
language.

Many Common Lisp implementations support some of the MOP, to varying
extents; a survey from a few years ago [BdL00] revealed many aspects of MOP
support as being incomplete, even at the coarse level of specified classes and
generic functions being unimplemented. More recently, the Closer1 project has
1 http://common-lisp.net/project/closer/

3372 Newton J., Rhodes C.: Custom Specializers in Object-Oriented Lisp



provided both a set of test cases for implementations of the Metaobject Protocol
– which has encouraged some implementations to enhance their support for it2 –
and a compatibility layer to provide an environment as close as possible to that
described in AMOP in major implementations of Common Lisp.

2.3 Related Work

The issue of dispatch customization in Common Lisp has arisen before; for exam-
ple, predicate dispatching in Common Lisp has been discussed in [Uck01]. In that
work, the predicate was not restricted at all, and the solution presented involved
extending method qualifiers (arbitrary predicates not being associated with any
particular argument, and methods being distinguished from each other only on
the basis of qualifiers and specializers). Portability difficulties with this approach
were noted at the time, and would likely still be present today; for example, some
implementations will only accept non-standard qualifiers if the generic function
has a non-standard method combination. Strictly, define-method-combination
will signal errors if methods are placed in the same method group having the
same specializers (even if the intent is to use qualifiers to influence method ap-
plicability): qualifiers in Common Lisp are meant to affect method combination
rather than method selection.

Predicate dispatch in other languages has also been investigated; a system
has been presented and implemented for Java [Mil04], wherein the predicates
affecting dispatch are restricted to a set that can be reasoned over, and for
which ambiguities are forbidden in the selection of the most specific method.
We prefer to leave such policy decisions to the users of the system, at least
while the capabilities and expressiveness are being explored: if it turns out that
restricting specializers to express a limited set of predicates is acceptable, that
can be enforced at a later stage.

At this time, we make no attempt to implement a specific predicate dis-
patch mechanism in either Skill or Common Lisp, but rather aim to provide
a framework that is both sufficiently general to express predicate dispatch and
straightforward to use, allowing issues of determinism, portability and perfor-
mance to be explored and addressed by users.

3 Using Custom Specializers: a Worked Example

The following excerpts are from a code walker expressed using custom special-
izers. The code walker examines code written in a particular Lisp dialect and
reports unbound and unused variables. For purposes of simplicity of presentation,
2 At the time of writing, the MOP implementation of Steel Bank Common Lisp [N+00]

fails none of tests in the Closer MOP suite.

3373Newton J., Rhodes C.: Custom Specializers in Object-Oriented Lisp



(defgeneric walk (expr env call-stack)
(:generic-function-class sop-cons-generic-function))

Figure 1: Code walker generic function definition.

the illustrated implementation uses a Common Lisp-like syntax, with Skill-like
semantics in one or two respects noted below; the differences between the pre-
sented syntax and Skill code are minor and typographical in nature (such as
the use of @ instead of : to denote keywords).

The goal of this illustration is to give an example of a solution that is more
parsimonious when the language supports describing actions on wider ranges
of data, rather than to convince that a particular type of specializer (such as
the cons specializer used here) itself is a good idea. As with any pedagogical
example, the same application could be written in many different ways without
great loss of clarity.

The form in Figure 1 defines the generic function walk as an instance of the
generic function metaclass named sop-cons-generic-function, which is as-
sumed to already exist. This generic function metaclass is named for ‘specializer-
oriented programming’, admitting cons specializers as well as the regular class
and eql specializers. We discuss the implementation issues of this metaclass in
Section 4.1.

The implementation of walk we present here contains four conceptual parts:

– a recursion engine that includes a termination condition and error handling;

– code to recognize variable references and mark bindings as used;

– code to ignore all irrelevant forms encountered during the recursion;

– code to handle special forms.

We begin by implementing the first three parts using standard CLOS function-
ality; the part to handle special forms is then implemented using a non-standard
subclass of mop:specializer.

3.1 Code Walker Framework

The main engine of the code walker (Figure 2) starts at a top level expression. If
the expression is a list, it calls itself recursively on the elements of the list – with
a few notable exceptions. Some of the necessary exceptions can be handled by
equivalence specializers such as (eql t) and (eql nil). Lisp special forms, such
as (quote ...) and (lambda ...) forms, cannot be described by equivalence
specializers but can be with cons specializers.

3374 Newton J., Rhodes C.: Custom Specializers in Object-Oriented Lisp



(defmethod walk ((expr list) env call-stack)
(let ((call-stack (cons expr call-stack)))

(walk (car expr) env call-stack)
(walk (cdr expr) env call-stack)))

(defmethod walk ((expr (eql nil)) env call-stack)
nil)

(defmethod walk ((expr t) env call-stack)
(format t "invalid expression ~A: ~A: ~A~%"

(class-name (class-of expr)) expr call-stack))

Figure 2: Recursion engine and termination condition

Next is the traversal engine based on the class specializer list and the termi-
nation condition based on an equivalence specializer (eql nil). Thus the engine
keeps traversing the lists until they are exhausted. There is also a method spe-
cializing on class t that will be called if something is encountered which the code
walker cannot otherwise handle. The job of the methods that follow will be to
assure that everything that occurs in the traversal is handled by an appropriate
method and that the "invalid expression" message never gets printed.

(defmethod walk ((var symbol) env call-stack)
(if-let (binding (find-binding env var))

(setf (used binding) t)
(format t "unbound: ~A: ~A~%" var call-stack)))

(defmethod walk ((expr string) env call-stack)
nil)

(defmethod walk ((expr number) env call-stack)
nil)

(defmethod walk ((expr (eql t)) env call-stack)
nil)

Figure 3: Checking the bindings of symbols, and ignoring other atoms.

When a symbol is encountered the first method in Figure 3 is applicable. A
check is made to see whether the variable is bound in the environment3. If so,
the used slot of the binding object it set to true, to note that the binding is
used. If the variable is unbound, then a diagnostic message is emitted, informing
3 The implementation of the find-binding function is omitted. It returns a binding

object by searching for a named variable in a given environment object. Such a
binding object has an accessor named used to hold a boolean, indicating whether
the binding is used or not.

3375Newton J., Rhodes C.: Custom Specializers in Object-Oriented Lisp



the user of where the reference to an unbound variable is made.
The three lower methods in Figure 3 show how certain types of self-evaluating

atoms such as strings, numbers, and the symbol t are simply ignored when
searching for variable references. A full implementation of this would ignore all
atoms that cannot name variables; in this restricted Common Lisp-like language,
we assume that those objects are instances of either string or number.

3.2 Special Forms

We now implement some of the special forms. Note that quote and lambda

themselves are not special forms; they are simply symbols that evaluate as any
other symbol – if one of these symbols is encountered in a context where it is used
as a variable, the code walker must treat it as such. This means we cannot write
a method for walk specializing on (eql quote)4. However, lists for evaluation
whose first elements are quote or lambda are special and must be intercepted
before the walker reaches the quote and lambda symbols themselves.

The cons specializer provides a mechanism for making a method applicable
for such a list. Figure 4 implements methods for handling quote and lambda

forms. The first method is applicable if its first argument is a list whose first
element is the symbol quote. Since an evaluator would simply return the second
element of this special form unevaluated, there can be no variable references
inside it; so the code walker simply returns nil.

The second method handles lambda forms by creating new bindings as indi-
cated by the lambda list and walking the body of the lambda with those bindings
in place. After the code walker returns from walking the lambda body we can
report if any of the new bindings were not referenced by the walked code.5

This implementation of walk is a simplified version of a walker for Skill

that is used in production; we have elided many details of the full version. For
example, rather than printing diagnostics, the walker communicates with the
environment, allowing the offending forms to be highlighted in the editor; ad-
ditionally, the walker supports a much broader range of the Skill language
semantics, including ignorable and global variables, assignment, macro expan-
sion and more special forms. The user-defined cons specializer presented here
allows us to have a single generic function, walk, whose methods specialize on
all of the different types of forms that must be handled differently.
4 Note that unlike in Common Lisp, here the argument of the eql specializer is uneval-

uated; (eql quote) is correct, rather than (eql ’quote). We discuss this further in
Section 4.2.

5 The implementations of the functions derive-bindings-from-ll and make-env are
omitted for this illustration as they do not aid in understanding extensible special-
izers. The derive-bindings-from-ll function returns a list of binding objects from
a lambda list. The make-env function allocates a new environment referencing the
given list of binding objects, and also referencing the given parent environment.

3376 Newton J., Rhodes C.: Custom Specializers in Object-Oriented Lisp



(defmethod walk ((form (cons (eql quote))) env call-stack)
nil)

(defmethod walk ((form (cons (eql lambda))) env call-stack)
(destructuring-bind (lambda lambda-list &rest body) form

(let ((bindings (derive-bindings-from-ll lambda-list)))
(dolist (form body)

(walk form (make-env bindings env) (cons form call-stack)))
(dolist (bind bindings)

(unless (used bind)
(format t "unused: ~A: ~A~%" var call-stack))))))

Figure 4: Handling the (quote ...) and (lambda ...) special forms.

As an example of perhaps a potentially generally useful specializer type,
consider a specializer corresponding to a pattern, similar to those found in
Prolog [ISO95] unification or pattern-matching in the ML family of languages
[MTHM97]. Using the mechanisms presented in this paper, it is possible to have
the dispatch over patterns optimized as is expected in those languages, while
still retaining the customary run-time extensibility of Lisp, by lazily compiling
the dispatch (using algorithms such as those in [LFM01]) and invalidating the
compiled code if methods are added or removed to the pattern-matching generic
function.

It should be noted that there is an inefficiency in implementing this pattern-
matching dispatch using generic function dispatch; where in ML the binding of
pattern variables and dispatch is interleaved, the protocols for method dispatch
and invocation enforce a separation, which means that the method function it-
self must destructure its arguments separately from the dispatch, checking for
applicability of the method. This inefficiency is fundamental to the generic func-
tion invocation protocol, and not a result of our implementations of generalized
specializers discussed below.

An application that, we believe, would benefit from a protocol for defining
specializers for which there is no corresponding hierarchy is an Emacs-like text
editor, where ‘minor modes’ can affect the functionality of keystrokes and editor
function calls. For instance, in the Climacs text editor [RSM05], minor modes are
currently implemented by the creation of anonymous classes with a combination
of superclasses corresponding to the currently-active modes, whereas it should
be simpler to express this as a dispatch on aspects of the current editor state.

3377Newton J., Rhodes C.: Custom Specializers in Object-Oriented Lisp



4 Implementation Details

4.1 Skill, Skill++ and VCLOS

To address the limitations of Skill++ (see Section 2.1) a new object system for
Skill was needed, to provide more of the features of CLOS. The new object
system was required to be able to interface to programs written in the existing
Skill++ system, and allow object-oriented techniques to be used on existing
systems whose object models are not changeable, while also being extensible for
the types of problems faced in application programming for IC development.

Neither VCAD (an organizational department within Cadence Design Sys-
tems) nor VCAD’s customers have write access to the Skill implementation,
and so the language itself cannot be changed: the object-oriented extension must
be provided as a loadable Skill application. From its Lisp heritage, Skill can be
altered in this way so that the extension seems native to the Skill programmer
and invisible to the end-user.

4.1.1 VCLOS and its Metaobject Protocol

The resulting system, VCAD CL-like Object System (VCLOS), was developed
over several years; the major difference from CLOS and its Metaobject Protocol
[KdRB91] is that more importance is given to the mop:specializermetaobject
class, rather than having most of the dispatch functionality of generic functions
be computed from the class of arguments.

The VCLOS Metaobject Protocol implemented is then similar to the CLOS
MOP, with the following points to note:

– the ClosClassSpecializer and ClosEqvSpecializer classes are both sub-
classes of ClosSpecializer, while users are encouraged to define their own
subclasses of ClosSpecializer by the provision of a protocol for using them
in computation of the effective method (described further below);

– in VCLOS, ClosComputeApplicableMethodsUsingSpecializers takes the
place of mop:compute-applicable-methods-using-classes in the stan-
dard AMOP generic function invokation protocol;

– a good CLOS implementation will memoize the results of mop:compute-

applicable-methods-using-classes if possible, with a key based on the
classes of the arguments (see [KR93] for some details). VCLOS supports
memoization based on specializer names, computed using ClosComputeSpe-

cializerNames.

In order to use a user-defined specializer class, the user must define a sub-
class of ClosSpecGenericFunction, the generic function subclass following the

3378 Newton J., Rhodes C.: Custom Specializers in Object-Oriented Lisp



protocols for extensible specializers. The protocol defined on ClosSpecGener-

icFunction allows for the user to specify how to put specializers in precedence
order through defining methods on Metaobject Protocol functions: ClosAvaila-
bleSpecializers and ClosCmpLikeSpecializers. The method on ClosAvail-

ableSpecializers applicable to a particular generic function class must return
a list of specializer class names, from most specific to least specific; methods on
ClosCmpLikeSpecializers must decide which of two specializers of the same
class (assumed both applicable to the same generic function argument) is more
specific.

Among the other Metaobject Protocol functions needing methods defined
for user-defined specializers to work are ClosArgMatchesSpecializerP, a func-
tion of a specializer and an arbitrary object, which returns true if a specializer
corresponds to a type of which the given object is a member, and ClosGet-

ClassPrecedenceList (which should perhaps have been called ClosGetSpe-

cializerPrecedenceList), that for a given specializer computes a linearization
of its less-specific specializers.

The treatment mapping specializer surface syntax such as (cons quote) to
specializer metaobjects is performed by generic functions ClosMatchesSpecial-
izerSyntaxP and ClosSetSpecializerData. Note that in this respect the Skill

protocol and the extension to the Common Lisp Metaobject Protocol described
in appendix A differ in the approach taken, as in Common Lisp the specializer
syntax is sensitive to the lexical environment.

The Skill implementation of VCLOS provides memoization, keyed on the
specializers of the arguments, to the effective method, allowing the elision of calls
to ClosComputeApplicableMethodsUsingSpecializers, in a similar way to
the CLOS MOP protocol around mop:compute-applicable-methods-using-

classes. There is still overhead involved in computing appropriate specializers
corresponding to the arguments, relative to the baseline of computing an argu-
ment’s class, but this memoization can significantly reduce the overhead of using
a non-standard specializer.

4.2 Common Lisp and the Metaobject Protocol

Much of the work in implementing custom specializers in Skill was of course
taken up by providing a suitably rich object system such that customizations can
meaningfully be made: essentially, taking a single-dispatch, single-inheritance
object system as found in Skill++ and implementing on top of it a multiple-
dispatch, multiple-inheritance system with a Metaobject Protocol. By contrast,
in Common Lisp (with the de facto standard MOP) we already have most of the
framework for the implementation of custom specializers; for basic operation, we
only require a few non-standard operators.

3379Newton J., Rhodes C.: Custom Specializers in Object-Oriented Lisp



The Lisp-like language we have used for our examples, and the actual im-
plementation of the specializer metaobject class in Skill, share one important
difference in detail from Common Lisp. In Common Lisp’s defmethod macro,
the eql specializer specifies not a specialization on a following literal, but instead
a specialization on the value of a form in the lexical environment of the method
definition.

This detail implies that there must be an operator, similar to mop:make-

method-lambda, which is capable of converting surface syntax such as (eql

foo) into code which constructs an mop:eql-specializer metaobject at the
time when the defmethod is executed. Of course, we could restrict the use of
the lexical environment to the standardized eql specializer, but since it is pos-
sible to support culturally-compatible use of the lexical environment through a
relatively straightforward backward-compatible extension to the CLOS Metaob-
ject Protocol (see appendix A), we choose to do so, defining our new operator
as make-method-specializers-form. For convenience, we also suggest parse-
specializer-using-class and unparse-specializer-using-class to con-
sume and produce user-friendly representations of specializers, for use in find-

method and printed representations of methods.

4.2.1 VCLOS implementation in SBCL

We have in addition implemented a version of the Skill and VCLOS Metaobject
Protocol described in Section 4.1.1 above, and used it to run the walk example
from Section 3. The implementation of the VCLOS protocol in SBCL’s MOP is
by no means complete and certainly not industrial-strength; however, even the
simple implementation, presented in appendix B, raises some issues.

Firstly, initial explorations revealed that current Common Lisp implemen-
tations have only partial support for subclassing mop:specializer; most im-
plementations will allow defining the subclass, but very few recognize such a
subclass as a valid specializer. In the implementation for SBCL, we had to alter
a number of places in the CLOS implementation where the assumption had been
made that a specializer was either a class or an eql-specializer. However,
there were no bootstrapping issues introduced by this relaxation, because none
of the implementation of CLOS itself requires the use of any new subclasses of
the extensible specializer metaclass.

Secondly, since the system needs to call, as part of the discriminating func-
tion, a new function compute-applicable-methods-using-specializers in-
stead of the usual compute-applicable-methods-using-classes (and we need
to be calling specializer-of rather than class-of on the generic function ar-
guments), we must override mop:compute-discriminating-function for our
generic function class. This in turn means that we need to interpret or com-
pile the result of mop:compute-effective-method ourselves, which is not a

3380 Newton J., Rhodes C.: Custom Specializers in Object-Oriented Lisp



straightforward procedure, as suitable definitions for call-method and make-

method need to be provided; mop:compute-effective-method returns a form,
not something that is directly executable.

Additionally, we need to provide an implementation of compute-applicable-
methods, as well as the new protocol function compute-applicable-methods-

using-specializers, because the new methods must call our protocol function
specializer-applicable-p (for determining whether an argument matches a
specializer). An implementation is not difficult in principle, but tedious and
error-prone; because of limited resources we have instead provided a method
that considers only the first required argument to a generic function, leaving the
implementation of the multiple-dispatch aspect for further work.

While the presence of user-defined specializers makes it harder to reason
about the cacheability of effective methods or lists of applicable methods, there
are still points in the protocol discussed above that would allow a value to be
computed once and reused for efficiency; our current implementation in Common
Lisp does not take advantage of these.

5 Conclusions and Future Work

We have presented the implementation and use of custom specializers both in
a Lisp dialect where that functionality is used, and also in Common Lisp, a
language with a standardized core and de facto standard Metaobject Protocol.

The implementation in Skill is complete and used in production: the imple-
mentation is fully functional, has an extensive suite of unit tests, and is part of
live design projects. Much time has been spent on optimization and refactoring
for performance and readability of the code, but of course much more work in
this area could be done.

The functionality for the user to define their own specializer classes has been
available in SBCL since May 2007; in practice the design space seems to be too
general for easy exploration: having to reimplement the entirety of compute-

applicable-methods and mop:compute-applicable-methods-using-classes

is excessive. Our ‘toy’ implementation of the VCLOS protocols should be refined
and extended, so that users can experiment with their specializer classes without
having to reimplement complicated protocol functions.

In particular, it is important to take advantage of the various points in the
protocol where memoization can be used (in the calculation of the effective
method, for instance), so that the run-time overhead from use of user-defined
specializers is as low as possible. Doing this would allow us to compare the
efficiency of the protocol implementation in Skill and Common Lisp, and to
identify further points for optimization if necessary.

One thing missing from the Metaobject Protocol for Common Lisp (including
our extension) is a general case for something that SBCL in particular takes

3381Newton J., Rhodes C.: Custom Specializers in Object-Oriented Lisp



advantage of: in SBCL, a method definition with a standard specializer will
inform the method body (by inserting a declaration) that the corresponding
element in the method function arguments is of a relevant type. There is at
present no way of communicating this information for an arbitrary user-defined
specializer.

Acknowledgments

We thank the reviewers for their detailed comments on drafts of this paper.
Skill R© is a registered trademark of Cadence Design Systems, Inc.

References

[Bar90] Barnes, T. J.: SKILL: A CAD system extension language; In DAC ’90,
pages 266–271. ACM, 1990.

[BdL00] Bradshaw, T. and de Lacaze, R.: A Survey of Current CLOS MOP Im-
plementations; In Japan Lisp Users Group Meeting, 2000.

[BKK+86] Bobrow, D. G., Kahn, K., Kiczales, G., Masinter, L., Stefik, M., and Zdy-
bel, F.: Common Loops: Merging Lisp and Object-Oriented Program-
ming; In OOPSLA’86 Proceedings, pages 17–29, 1986.

[ISO95] The ISO Prolog Standard; ISO/IEC 13211-1:1995, Internatonal Stan-
dards Organization, 1995.

[KdRB91] Kiczales, G., des Rivières, J., and Bobrow, D. G.: The Art of the Metaob-
ject Protocol MIT Press, 1991.

[KR93] Kiczales, G. and Rodriguez Jr., L. H.: Efficient method dispatch in PCL;
In Paepcke, A., editor, Object-Oriented Programming: the CLOS Perspec-
tive, pages 335–348. MIT Press, Cambridge, Mass., 1993.

[LFM01] Le Fessant, F. and Maranget, L.: Optimizing Pattern Matching; In
ICFP’01 Proceedings, pages 26–37, 2001.

[Mil04] Milstein, T.: Practical Predicate Dispatch; In OOPSLA ’04, pages 345–
364. ACM, 2004.

[Moo86] Moon, D.: Object Oriented Programming with Flavors; In OOPSLA’86
Proceedings, pages 1–8, 1986.

[MTHM97] Milner, R., Tofte, M., Harper, R., and MacQueen, D.: The Definition of
Standard ML MIT Press, Revised edition, 1997.

[N+00] Newman, W. H. et al.: SBCL User Manual; http://www.sbcl.org/
manual/, 2000.

[PC94] Pitman, K. and Chapman, K., editors Information Technology – Program-
ming Language – Common Lisp Number 226–1994 in INCITS. ANSI,
1994.

[Pet93] Petrus, E. S.: SKILL: a Lisp based extension language; Lisp Pointers,
VI(3):71–79, 1993.

[RSM05] Rhodes, C., Strandh, R., and Mastenbrook, B.: Syntax Analysis in the
Climacs Text Editor; In International Lisp Conference Proceedings, 2005.

[Ste90] Steele, G. L., Jr: Common Lisp: The Language Digital Press, second
edition, 1990.

[Uck01] Ucko, A. M.: Predicate dispatching in the Common Lisp Object System;
Technical Report AITR-2001-006, MIT AI Lab, Cambridge, MA, 2001
MEng thesis.

3382 Newton J., Rhodes C.: Custom Specializers in Object-Oriented Lisp



A Common Lisp extension to the MOP

The CLOS Metaobject Protocol requires little extension to support everything
discussed in this paper. On a fundamental level, in fact, no new operators are
required, though even full implementations of the CLOS MOP may need careful
attention to remove any assumptions that only predefined metaclasses can act
as specializers. For convenient use of the standardized operators defmethod and
find-method we propose an analogue to mop:make-method-lambda and opera-
tors to parse and unparse parameter specializer names; in the description that
follows, we assume that the reader is familiar with the CLOS MOP [KdRB91].

In order to emulate the specific specializer handling present in VCLOS, an
overriding implementation of compute-applicable-methodsand mop:compute-

applicable-methods-using-classeswould be necessary. However, for any par-
ticular strategy for dealing with the method applicability and ordering computa-
tion, such an implementation need only be written once; once written, the CLOS
user would be free to implement specializers using the defined protocol.

A.1 Dictionary

Generic Function parse-specializer-using-class

Syntax:

parse-specializer-using-class generic-function specializer-name

This generic function returns an instance of mop:specializer, representing the spe-
cializer named by specializer-name in the context of generic-function.

Primary Method parse-specializer-using-class (gf standard-generic-
function) (name t)

This method applies the standard parsing rules for consistency with the specified be-
haviour of find-method.

Generic Function unparse-specializer-using-class

Syntax:

unparse-specializer-using-class generic-function specializer

This generic function returns the name of specializer for generic functions with
class the same as generic-function

Primary Method unparse-specializer-using-class (gf standard-generic-
function) (specializer specializer)

This method applies the standard unparsing rules for consistency with the specified
behaviour of find-method.

3383Newton J., Rhodes C.: Custom Specializers in Object-Oriented Lisp



Generic Function make-method-specializers-form

Syntax:

make-method-specializers-form generic-function method specializer-names env

This function is called with (maybe uninitialized, as with the analogous arguments
to mop:make-method-lambda) generic-function and method, and a list of specializer
names (being the parameter specializer names from a defmethod form, or the symbol
t if unsupplied), and returns a form that evaluates to a list of specializer objects in the
lexical environment of the defmethod form.

Primary Method make-method-specializers-form (gf standard-generic-
function) (method standard-method) names env

This method implements the standard behaviour for parameter specializer names.

B Example in Common Lisp

We present here the walker example discussed in Section 3, but this time with all
the necessary support code to run in an unmodified SBCL (which incorporates
the proposals described in Appendix A). As discussed in Section 4.2.1, the sup-
port code is far from complete, as it supports only a small subset of the VCLOS
protocols; we hope, however, that the issues raised in Section 4.2.1 are clear from
this unpolished implementation.

B.1 Base VCLOS Protocol

Firstly, we define a generic function class to represent generic functions obeying
the restricted VCLOS protocol:

(defclass vclos-generic-function (standard-generic-function) ()
(:metaclass sb-mop:funcallable-standard-class))

We then define generic functions for the VCLOS protocols, with default meth-
ods for the base class:

(defgeneric specializer-of (object generic-function)
(:method (o (gf vclos-generic-function)) (class-of o)))

(defgeneric available-specializers (generic-function)
(:method ((gf vclos-generic-function))

(list (find-class ’sb-mop:eql-specializer) (find-class ’class))))
(defgeneric specializer-precedence-list (specializer)
(:method ((c class)) (sb-mop:class-precedence-list c))
(:method ((e sb-mop:eql-specializer))

(let ((class (class-of (sb-mop:eql-specializer-object e))))
(cons e (specializer-precedence-list class)))))

3384 Newton J., Rhodes C.: Custom Specializers in Object-Oriented Lisp



(defgeneric cmp-like-specializers
(specializer1 specializer2 generic-function)

(:method ((spec1 sb-mop:specializer) (spec2 sb-mop:specializer) gf)
(member spec2 (specializer-precedence-list spec1))))

(defgeneric specializer-applicable-p (specializer object)
(:method ((c class) object)

(typep object c))
(:method ((e sb-mop:eql-specializer) object)

(eql (sb-mop:eql-specializer-object e) object)))

In order to make our VCLOS protocol available to be used when calling in-
stances of our generic function class, we must define methods for the stan-
dard metaobject protocol functions relating to generic function invocation. Be-
low, we present the minimum necessary to achieve the necessary functional-
ity; a more polished implementation would support multiple specialized ar-
guments, cacheing of applicable methods where possible through the use of
mop:compute-applicable-methods-using-specializers, cacheing of effective
methods within mop:compute-discriminating-function, and other function-
ality besides.

(defmethod compute-applicable-methods ((gf vclos-generic-function) args)
(let ((arg (car args))

(methods))
(dolist (m (sb-mop:generic-function-methods gf))
(let ((mspec (car (sb-mop:method-specializers m))))

(when (specializer-applicable-p mspec arg)
(push m methods))))

(let ((available (available-specializers gf)))
(flet ((sorter (a b)

(if (eq (class-of a) (class-of b))
(cmp-like-specializers a b gf)
(member b (member a available :test #’typep)

:test #’typep)))
(key (m)
(car (sb-mop:method-specializers m))))

(setq methods (sort methods #’sorter :key #’key))))
methods))

(defmethod sb-mop:compute-discriminating-function
((gf vclos-generic-function))

(lambda (arg &rest args)
(let ((specializer (specializer-of arg gf)))
(multiple-value-bind (methods cachep)

(values nil nil) ; C-A-M-U-S
(unless cachep
(setq methods (compute-applicable-methods gf (list arg))))

(let* ((mc (sb-mop:generic-function-method-combination gf))
(emf (sb-mop:compute-effective-method gf mc methods)))

(interpret-effective-method emf (cons arg args)))))))

3385Newton J., Rhodes C.: Custom Specializers in Object-Oriented Lisp



(defun interpret-effective-method (effective-method args)
(eval ‘(locally

(declare (sb-ext:disable-package-locks
call-method make-method))

(macrolet ((call-method (method next-methods &rest cm-args)
‘(apply (sb-mop:method-function ,method)

’,’,args (list ,@next-methods) ’,cm-args))
(make-method (form)
‘(make-instance ’standard-method

:function (lambda (a nm &rest cm-a)
,form))))

(declare (sb-ext:enable-package-locks
call-method make-method))

,effective-method))))

B.2 Implementing Cons Specializers

We are now in a position to implement support for a generic function class that
can handle cons specializers for the first argument, in addition to class and
eql specializers. Firstly, the metaclass definitions for the generic function and
the specializer:

(defclass cons-generic-function (vclos-generic-function) ()
(:metaclass sb-mop:funcallable-standard-class))

(defclass cons-specializer (sb-mop:specializer)
((inner :initarg :inner :reader inner)
(direct-methods :initform nil)))

We must provide overriding methods for some of the VCLOS protocol func-
tions, in order to support the new specializer within the VCLOS protocol:

(defmethod available-specializers ((gf cons-generic-function))
(mapcar #’find-class ’(sb-mop:eql-specializer cons-specializer class)))

(defmethod specializer-of (o (gf cons-generic-function))
(if (consp o)

(intern-cons-specializer (class-of (car o)))
(call-next-method)))

(defmethod specializer-applicable-p ((spec cons-specializer) o)
(and (consp o) (specializer-applicable-p (inner spec) (car o))))

We must also implement methods for some standard MOP functions. In
addition to these two, a polished implementation would support specializer-
direct-methods and specializer-direct-generic-functions.

(defmethod sb-mop:add-direct-method
((specializer cons-specializer) method)

(pushnew method (slot-value specializer ’direct-methods)))
(defmethod sb-mop:remove-direct-method

((specializer cons-specializer) method)
(setf (slot-value specializer ’direct-methods)

(remove method (slot-value specializer ’direct-methods))))

3386 Newton J., Rhodes C.: Custom Specializers in Object-Oriented Lisp



Finally, we define a method on our operator make-method-specializers-

form (described in appendix A), to enable defmethod forms to expand into code
creating instances of our new specializer class.

(let ((table (make-hash-table)))
(defun intern-cons-specializer (inner)

(or (gethash inner table)
(setf (gethash inner table)

(make-instance ’cons-specializer :inner inner)))))
(defun make-specializer-form (name)
(if (atom name)

‘(find-class ’,name)
(ecase (car name)

((eql) ‘(sb-mop:intern-eql-specializer ,(cadr name)))
((cons) ‘(intern-cons-specializer

,(make-specializer-form (cadr name)))))))
(defmethod sb-pcl:make-method-specializers-form

((gf cons-generic-function) method names env)
‘(list ,@(loop for name in names

collect (make-specializer-form name))))

B.3 The Walker

We are now able to use our new generic function and specializer classes to im-
plement the code walker of Section 3. Firstly, we define a few utilities:

(defclass binding ()
((used :initform nil :accessor used)))

(defun derive-bindings-from-ll (lambda-list)
(mapcar (lambda (n) (cons n (make-instance ’binding))) lambda-list))

(defun make-env (bindings env)
(append bindings env))

(defun find-binding (env var)
(cdr (assoc var env)))

and then the walk generic function and methods

(defgeneric walk (expr env call-stack)
(:generic-function-class cons-generic-function))

(defmethod walk ((expr list) env call-stack)
(let ((cs (cons expr call-stack)))

(walk (car expr) env cs)
(walk (cdr expr) env cs)))

(defmethod walk ((expr (eql nil)) env call-stack)
nil)

(defmethod walk ((expr t) env call-stack)
(format t "~&invalid expression ~A: ~A: ~A~%"

(class-name (class-of expr)) expr call-stack))
(defmethod walk ((expr (cons (eql ’quote))) env call-stack)
nil)

3387Newton J., Rhodes C.: Custom Specializers in Object-Oriented Lisp



(defmethod walk ((var symbol) env call-stack)
(let ((binding (find-binding env var)))

(if binding
(setf (used binding) t)
(format t "~&unbound: ~A: ~A~%" var call-stack))))

(defmethod walk ((form (cons (eql ’lambda))) env call-stack)
(destructuring-bind (lambda lambda-list &rest body) form

(let ((bindings (derive-bindings-from-ll lambda-list)))
(dolist (form body)

(walk form (make-env bindings env) (cons form call-stack)))
(dolist (bind bindings)

(unless (used (cdr bind))
(format t "~&unused: ~A: ~A~%" (car bind) call-stack))))))

Some test forms for this walker are below; respectively, they should return
silently, print a diagnostic about an unused variable x, and print a diagnostic
about an unbound variable x.

(walk ’((lambda (x) x) nil) nil nil)

(walk ’((lambda (x) ’x) nil) nil nil)

(walk ’((lambda () x)) nil nil)

3388 Newton J., Rhodes C.: Custom Specializers in Object-Oriented Lisp


