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Three experiments investigated the role of attention in visual priming across

rotations in the picture plane. Experiment 1 showed that naming latencies

increased with the degree of misorientation for objects commonly seen in an

upright view (base objects) but not for objects seen familiarly from many views

(no-base objects). In Experiment 2, no-base objects revealed a priming pattern

identical to that observed previously for left�right reflections (Stankiewicz,

Hummel, & Cooper, 1998): Attended objects primed themselves in the same and

rotated views, whereas ignored images primed themselves only in the same view,

with additive effects of attention and orientation. In Experiment 3 ignored base

objects only primed themselves in a familiar (upright) view, indicating that

priming only obtains when that image makes contact with object memory. These

data challenge theories of object recognition that rely on any single representation

of shape and contribute to evidence suggesting holistic (view-like) representations

for ignored and analytic (view-insensitive) representations for attended objects.

The human capacity for visual object recognition is characterized by a

complex pattern of strengths and limitations that defy explanation in terms

of simple ‘‘one size fits all’’ accounts of the representation of object shape or

the processes that generate those representations and match them to object

memory. For example, consider our apparent ability to recognize familiar

objects in novel views; this led many researchers (Biederman, 1987; Clowes,

1967; Hummel & Biederman, 1992; Marr & Nishihara, 1978; Palmer, 1977;
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Sutherland, 1968) to postulate that we represent objects as structural

descriptions. Structural representations specify an object’s parts, typically

volumetric parts, such as geons (Biederman, 1987) or generalized cylinders

(Marr & Nishihara, 1978), in terms of their spatial relations to one another.
A structural description of a coffee mug might represent its shape

(approximately) as a ‘‘curved cylinder side-attached to a vertical straight

cylinder’’ (see, e.g., Biederman, 1987). This description does not specify*
and so does not vary with*the angle and distance from which the mug is

viewed (barring ‘‘accidental’’ views, such as viewing the mug at an angle that

hides the curved cylinder and projects the straight cylinder as a simple

rectangle). Because of these properties structural descriptions seem to

provide a natural account of our ability to recognize objects in a variety of
viewpoints. However, structural descriptions have been criticized as a too

powerful account of human shape perception in that they predict greater

invariance with changes in viewpoint than the human visual system actually

exhibits (e.g., Tarr & Bülthoff, 1995).

Alternative accounts to structural descriptions have argued that although

we can recognize objects in many novel viewpoints, we are nonetheless faster

and more accurate to recognize objects in some views than others. In

consequence, a number of researchers concluded that instead of generating
and matching parts-based structural descriptions we recognize objects by

matching object images to specific holistic views in long-term memory (e.g.,

Edelman & Intrator, 2003; Poggio & Edelman, 1990; Tarr & Bülthoff, 1995).

These view-based models account for some of the view-sensitivities of

human object recognition (e.g., Bülthoff & Edelman, 1992; Tarr & Pinker,

1989, 1990), but they have difficulty accounting for its invariances (see

Biederman & Gerhardstein, 1995). In addition, purely holistic accounts of

shape perception, such as view-based models, have difficulty in explaining
the role of spatial relations in shape perception (Hummel, 2000), our ability

to make judgements about one aspect of an object’s shape (e.g., its aspect

ratio) independent of other aspects (e.g., axis curvature; Saiki & Hummel,

1998; Stankiewicz, 2002), and accounting for the role of visual attention in

shape perception (Stankiewicz, Hummel, & Cooper, 1998). These facts

suggest that structural descriptions play a central role in the visual

representation of object shape. Yet, at the same time there are further

empirical facts that are clearly inconsistent with a purely structural
description-based account of human object recognition (Hummel, 2001;

Hummel & Stankiewicz, 1996).

According to recent theories (e.g., Hummel & Biederman, 1992; Hummel

& Stankiewicz, 1996), generating a structural description from an object’s

image requires time and visual attention. In consequence, if object

recognition were based strictly on structural descriptions of object shape,

then it should likewise be time consuming and demanding of visual
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attention. It is neither, at least for objects depicted in familiar views. Potter

(1976) and Intraub (1981) showed that people are capable of recognizing

common objects as rapidly as 10 per second; similarly, Thorpe, Fize, and

Marlot (1996) showed that people can recognize animals in cluttered

displays in exposures lasting less than 100 ms, and Oram and Perrett

(1992) observed that face-selective neurons in macaque IT respond to their

preferred stimuli within 100�110 ms of that stimulus appearing on the

animal’s retina. Such rapid processing leaves too little time for the recurrent

and feedback flow of information necessary to generate a complex

description of an object’s parts in terms of their spatial relations (Hummel

& Stankiewicz, 1996).

Purely structural description-based accounts of object recognition are

also problematic with respect to the attentional demands of object

recognition. Generating a structural description requires visual attention

in order to bind visual features into parts and to bind parts to their relations

(Hummel, 2001; Hummel & Biederman, 1992; Hummel & Stankiewicz,

1996; Logan, 1994; Stankiewicz et al., 1998; Thoma, Hummel, & Davidoff,

2004). However, ignoring an object image on one occasion can prime

recognition of that same object on a subsequent occasion (Stankiewicz &

Hummel, 2002; Stankiewicz et al., 1998; Thoma et al., 2004; Tipper, 1985;

Treisman & DeSchepper, 1996) indicating that object recognition does not

necessarily require visual attention in all cases.

Taken together, there is evidence for both structural and view-based

representations in human visual object recognition*and there is evidence

that neither of them is sufficient to explain all its properties. Recently,

theorists are increasingly discussing the possibility of both types of

representations processing object shape independently (Foster & Gilson,

2002; Hayward, 2003; Hummel & Stankiewicz, 1996; Tarr & Bülthoff, 1995).

So far only one of these approaches is considering the role of attention in

relation to the properties of structural and view-based representations. In

this paper, we will describe the hybrid model of object recognition by

Hummel (2001) because of its detailed predictions for object recognition

after view changes such as plane rotations. However, many of the theoretical

issues and the experiments described here will also concern traditional

models of object recognition as well as the general approach of proposing

multiple formats of representation.

A HYBRID MODEL OF OBJECT RECOGNITION

The fact that both structural descriptions and view-based representations of

shape can account for some, but not all of the properties of object

recognition led Hummel and Stankiewicz (1996; Hummel, 2001) to propose
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that objects are recognized on the basis of a hybrid representation of shape,

consisting of a holistic (i.e., ‘‘view’’-like) representation working in parallel

with an analytic representation (i.e., a structural description). The model

(JIM.3) consists of an eight-layer artificial neural network that can be
trained to recognize line drawings of objects. In the first three layers, units

represent local image features (coding contours, vertices, etc. into surfaces).

Gating units in layer 4 project the output of layer 3 to layer 5, which is

divided into two components: An analytic component (i.e., a structural

description) and the holistic surface map (HSM) representing the shape

attributes of an object’s surfaces (as coded in layer 3). In layers 6�8 the

representation generated by the activation patterns of the units in layer 5 are

encoded into long-term memory.
The analytic representation codes an object’s shape explicitly in terms of

the categorical interrelations among its parts. This representation has the

properties of a structural description and is largely robust to many variations

in viewpoint (such as translation, changes in scale, left�right reflection and

some rotations in depth) but it is sensitive to rotations in the picture plane

(see Hummel & Biederman, 1992). Furthermore, it also allows general-

ization across metric variations in object shape, generalization to novel views

and to novel exemplars of known categories, reflecting the desirable
properties of a structural description. However, it requires processing time

and visual attention to represent parts and spatial relations independently of

the parts they relate (Hummel, 2001; Hummel & Biederman, 1992).

The holistic representation, in contrast, does not specify an object’s parts

or their categorical spatial relations independent of each other. Instead, an

object’s parts are represented in terms of their topological positions in a 2-D

coordinate system (see Hummel, 2001). Since the holistic representation

does not require attention for the dynamic binding of parts to their relations,
it can be generated rapidly and automatically. However, as the units

representing surface attributes are spatially separated, the representation

formed on the surface map is sensitive to left�right reflections as well as to
rotations in the picture plane and in depth. However, the HSM representa-

tion is invariant with translation and scale. Although the surfaces’

topological relations are maintained in the mapping from layer 3 to the

HSM, their absolute locations in the visual field and their size in the image

are not (this is because the holistic representation receives its input from
units in layer 4 which are distributed spatially to cover the whole visual

field). Thus, the units of the HSM are confined neither to a particular

location nor to a receptive field size, which allows them to ‘‘shrink-wrap’’ on

a given object, no matter where it is in the visual field.

The holistic representation permits rapid, automatic recognition of

familiar objects in familiar views, but it is sensitive to variations in

viewpoint (specifically, to rotations and reflections). For example, a holistic
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representation of a horse would be matched, in its entirety, against an

object’s image to determine the degree of fit between the image and the

holistic representation (i.e., view) in memory: The coordinates of the

features in the viewed image would be matched to the coordinates of
the features in the stored view and the degree of fit would be computed as a

function of the vector similarity of the coordinates of corresponding

features. The matching process is analogous to laying a template for one

view of the horse over its rotated version and counting the points of overlap.

By this holistic measure of similarity, the upright and rotated horse images

are very different because few (if any) corresponding features reside in

equivalent locations in the two images. By contrast, in an analytic

representation of shape the upright and rotated images of the horse are
still highly similar because they depict many of the same parts, which in turn

should yield analytic priming. However, many of the spatial relations have

changed, for example, after a 908 rotation the legs may now appear as ‘‘side-

attached to’’ (rather than ‘‘below’’) the torso. Because of the mismatch of

spatial relations priming for analytic representations should be reduced

compared to view-changes where the analytic representation is not affected,

e.g., mirror-reflection (Stankiewicz et al., 1998).

The hybrid holistic/analytic model predicts a complex pattern of relation-
ships between visual attention and visual priming as a function of variations

in viewpoint (and other manipulations of an object’s image). These

predictions derive from the fact that the model represents attended images

both analytically and holistically, whereas it represents ignored images only

holistically. As such, it predicts that visual priming for attended images

should reflect the properties of both representations, whereas priming for

ignored images should reflect the properties of the holistic representation

alone. Specifically, it predicts that attended images should visually prime
themselves, as well as translated, scaled, left�right (mirror) reflected versions

of themselves, and even configural distortions of themselves (e.g., in which

the image is split down the vertical midline and the left and right halves

switch places). Ignored images should prime themselves, translated and

scaled versions of themselves but not their mirror reflections or configural

distortions of themselves (see Hummel, 2001, and Thoma et al., 2004, for

more detailed elaborations of these predictions). These predictions were

tested (Stankiewicz & Hummel, 2002; Stankiewicz et al., 1998; Thoma et al.,
2004), and the findings were exactly as predicted by the model.

Functional imaging studies (e.g., Vuilleumier, Henson, Driver, & Dolan,

2002) also support the notion that two types of object representations can be

distinguished according to view invariance in priming tasks. Vuilleumier

et al. (2002) showed that repetition of images of common objects decreased

activity (i.e., showed priming) in the left fusiform area independent of

viewpoint (and size), whereas a viewpoint-dependent decrease in activation
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was found in the right fusiform area. Interestingly, the latter area was

sensitive to changes in orientation but not in size*properties of the holistic

component directly predicted by the hybrid model (Hummel, 2001) and

confirmed in behavioural studies (Stankiewicz & Hummel, 2002).

MOTIVATION FOR THE CURRENT EXPERIMENTS

The present experiments return to the question of the role of attention in

visual priming across changes in viewpoint, specifically, to the case of

rotations about the line of sight. Plane rotated objects were used to further

test the general notion of a hybrid model consisting of both a structural

(analytic) and a view-based (holistic) representation. Previously, Stankiewicz

et al. (1998) tested and confirmed the predictions of the hybrid model using

an object naming task with paired prime/probe trials. Attended images

reliably primed both themselves and their left�right reflections. However,

ignored images only primed themselves in the same view. The priming

advantage for same view prime�probe trials was equivalent in both attended

and unattended conditions (about 50 ms) and was credited to the contribu-

tion of the holistic component.
Left�right reflection, as studied by Stankiewicz et al. (1998), may be an

unusual or unrepresentative change in viewpoint. For example, rather than a

change in the view of the 3-D object itself, the visual system may instead

interpret mirror reflection as a 2-D flip of the 2-D image itself (Davidoff &

Warrington, 2001; Murray, 1997). More important, it is not clear whether

viewpoint changes in the picture plane can actually be accounted for in the

same way as mirror reflections within Hummel’s (2001; Hummel &

Stankiewicz, 1996) version of the hybrid model.

Object recognition is well-known to be sensitive to orientation in the

picture plane (for a review, see Lawson, 1999). People are slower and more

error prone to name some objects (specifically, objects with a canonical

upright orientation) rotated away from the upright (e.g., presented upside

down, or lying on their side) than to name them presented in their canonical

upright orientation (e.g., Jolicoeur, 1985; Tarr & Pinker, 1989, 1990).

Moreover, naming response times (RTs) get longer, and errors more

frequent, as the image is rotated further from the upright (up to about

1208, at which point RTs and errors continue to decrease to 1808, at least for
some objects).

Hummel’s (2001; Hummel & Stankiewicz, 1996) version of the hybrid

model*like its purely structural description-based predecessor (Hummel &

Biederman, 1992; see also Hummel, 1994)*accounts for this picture-plane

rotation effect primarily in terms of the effects of picture-plane rotations on

the mental representation of the relations among an object’s parts. For
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example, if some part of an object (say, the handle of a bucket) is usually on

top of (above) some other part (say, the container part of the bucket) then it

will be that way in the long-term (LTM) representation of that object.

However, if the image of the bucket is rotated 458 clockwise, then the handle
will appear both above and beside the container. The structural description

of the resulting image will mismatch the representation of the bucket in LTM

because it includes the spurious beside relation. In consequence, the

mismatch impairs the model’s ability to recognize the object as a bucket.

If the image is rotated an additional 45�908 off upright, then the description

is further distorted to simply beside (handle, container), which mismatches

the LTM representation on two relations (i.e., it lacks above, and it includes

beside), further impairing recognition. Rotated another 45�1358 off upright,
the description is distorted further to below-and-beside (handle, container),

which mismatches the LTM representation on three relations (it lacks above,

it includes below, and it includes beside ), further impairing recognition.

Finally, if the image is rotated all the way to 1808 off upright, the description
changes to simply below (handle, container), which mismatches the LTM

representation on only two relations (it lacks above and it includes below,

but it no longer includes beside), so performance improves relative to the

1358 case (see Hummel, 1994; Hummel & Biederman, 1992).
In this way, the Hummel and Biederman model and the hybrid model that

evolved from it (Hummel, 2001; Hummel & Stankiewicz, 1996) account for

the effects of picture-plane orientation on object recognition, and even

account for the characteristic ‘‘dip’’ in RT and errors between 1208 and 1808.
In addition, in the case of the hybrid model, picture-plane rotations also

impair recognition by distorting the holistic representation because holistic

representation of a rotated object will tend to have little or no overlap with a

holistic representation of that same object in an upright orientation. Indeed,
picture-plane rotations have more catastrophic effects on the holistic

representation than on the analytic one: Even a comparatively small rotation

(e.g., 458) can cause the match between a holistic representation of an object

image and a holistic representation in LTM to drop to virtually zero.

When considering plane rotation effects, an important empirical fact is

that not all objects show the ‘‘characteristic’’ rotation function (Vannucci &

Viggiano, 2000; Verfaillie & Boutsen, 1995). When observers rated the

goodness of views for common objects, one cluster did not yield a preferred
‘‘upright’’ orientation (Verfaillie & Boutsen, 1995). The resulting distinction

between base objects (objects with a preferred upright; examples include

animals, houses, furniture, etc.) and no-base objects (objects with no

preferred upright, such as hammers, forks, etc.) has been found to have

importance for both behavioural (Vannucci & Viggiano, 2000) and

neuropsychological (Davidoff & Warrington, 1999) investigations of object

orientation. For example, Vannucci and Viggiano (2000) demonstrated that
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no-base objects (e.g., hammer) are recognized equally well at all orientations,

and Davidoff and Warrington (1999) showed differential performance after

brain damage in matching inverted objects according to whether they were

base or no-base objects. These two types of objects were used to test view-

dependent priming within the hybrid model.

In order to better understand the logic of our predictions, it is important

to note at which level visual priming operates and how it affects LTM.

Biederman and Cooper (1991) showed that the locus of visual priming, at

least for attended objects, is at the level of the representation of an object’s

parts and their interrelations*or more specifically, as discussed in detail by

Cooper, Biederman, and Hummel (1992), at the level of the mapping

between the representation of parts and relations and the representation of

the complete object model (i.e., the presumably relatively localist visual

representation of an object’s complete shape) in LTM. Integrating these

considerations with the hybrid representation the idea is that priming reflects

learning the mapping from the analytic and holistic representations of object

shape to the representation of the object model in LTM. This is instantiated

in the hybrid model (Hummel, 2001) as strengthening the connections from

layer 5 (the hybrid representation of shape) through layer 8 (the localist

representation of the object model).

PREDICTIONS OF THE HYBRID MODEL

In general, the hybrid model predicts that attended objects prime themselves

and their plane-rotated versions, whereas ignored objects prime themselves

only in the same view, as long as this view is familiar. Both the analytic and

the holistic components of the hybrid model are sensitive to rotation in the

picture plane, although the holistic component is likely to be much more so.

The analytic representation suffers from substantial plane rotations if these

change the spatial relations between an object’s parts. The holistic

representation, in contrast, is view-sensitive because after plane rotations

(just as after mirror-reflections) the 2-D coordinates of features (e.g.,

surfaces) are now different from the original view. Thus, the hybrid model

predicts priming for attended objects (which are represented both analyti-

cally and holistically) should be sensitive to changes in picture-plane

orientation; more specifically, the model predicts that the magnitude of

visual priming for rotated prime�probe pairs should systematically diminish

with the degree of orientation difference between prime and probe. The

predictions for priming for ignored objects are more interesting. Priming

should be very sensitive to changes in orientation such as plane rotation,

because ignored objects are represented only holistically. But although the

holistic representation of both no-base and base objects should be equally
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affected by changes in rotation, the model predicts differences in which

orientations allow priming for ignored objects in the first place.

In Experiment 2, for no-base objects, we predict that an ignored prime

image at some orientation, x , should prime recognition of an identical probe

image (i.e., a probe at orientation x), but should not prime recognition of the

same object at any other orientation, y. In Experiment 3, we use only base

objects, and for these we predict that an ignored upright prime image should

prime recognition of an identical probe image (as has been observed

numerous times in the work of Stankiewicz, Thoma, and colleagues), but an

ignored misoriented image should not prime recognition of anything , even

itself. The reason, according to the hybrid model, is that (a) base objects are

represented in LTM only in the upright orientation, and (b) priming resides

in the mapping from the representation of object shape (which, in the case of

an ignored image, is only the holistic representation) to the stored

representation in LTM. Since base objects in the hybrid model only have

upright representations in LTM, a misoriented ignored prime image, failing

to match anything in LTM, simply has nothing to prime. As a result, it

should not even prime itself.

In testing these predictions an immediate concern using plane-rotated

objects in a priming paradigm is that differences in baseline responding

complicate assessing the magnitude of priming. Fortunately, no-base objects

are recognized with approximately equal facility at all orientations in the

picture plane (Vannucci & Viggiano, 2000; Verfaillie & Boutsen, 1995), so in

addition to allowing us to test some of the subtler predictions of the hybrid

model, these objects also provide a stable baseline for measuring the

magnitude of visual priming. Experiment 1 was designed to verify whether

no-base objects do in fact yield equivalent naming latencies in different

orientations. Experiments 2 and 3 tested the predictions of the hybrid model

with regard to the effects of attention and picture-plane orientation on

short-term visual priming of no-base and base objects.

EXPERIMENT 1: NAMING OF BASE AND NONBASE
OBJECTS ROTATED IN THE PICTURE PLANE

Experiment 1 was designed to extend Vannucci and Viggiano’s (2000)

demonstration that no-base objects (e.g., hammer) are recognized equally

well at all orientations to the case of visual priming. Specifically, Experiment

1 tested whether the pattern of results observed by Vannucci and Viggiano in

an object decision task also hold for the speeded naming tasks to be used in

our Experiments 2 and 3. In addition, Vannucci and Viggiano did not equate

their sets of base and no-base objects for familiarity and visual complexity,

(Snodgrass & Vanderwart, 1980), so either or both of these factors might
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have affected the pattern of performance. We predict that, even controlling

these factors, recognition latencies for base objects (such as animals and

houses) will increase with rotation away from the canonical (upright) view,

whereas no-base objects (such as hammers and keys) will be identified

equally well in all orientations. Finding sets of objects for which recognition

performance is independent of orientation will be essential to our tests of the

hybrid model in Experiment 2.

Method

Participants. Twenty-nine native English speakers with normal or

corrected-to-normal vision participated for credit in introductory psychol-

ogy courses at Goldsmiths College University of London.

Materials. The experimental program was generated in E-Prime 1.0

(PSN). Participants sat approximately 90 cm from the screen. Three subsets

of 24 images (animals, base objects, and no-base objects, see Appendix) were

taken from Snodgrass and Vanderwart (1980). The base and no-base object

sets were matched for familiarity (means: 3.75 vs. 3.60; max�/5) and visual

complexity (means: 2.64 vs. 2.77; max�/5) according to the norms obtained

by Snodgrass and Vanderwart. The means for familiarity and visual

complexity of the animal set were 2.69 and 3.70; it was not possible to

match animals to the other two sets. For each object, the standard view (as

obtained from the original set) was assigned as the 08 view. Clockwise

rotations in the picture plane resulted in 608 and 1208 orientations for each
object (see Figure 1). Participants saw a given object only once during the

experiment in one of the three orientations. The allocation of objects to the

experimental conditions was randomized for each participant. Thus, there

were eight different objects in each of the three object sets for each of the

three orientation conditions (08, 608, and 1208) resulting in a total of 72 trials

per participant.

Procedure. The participants first read instructions which they para-
phrased back to the experimenter. After four practice trials with objects not

chosen from the experimental sets, participants were asked whether they had

any questions. Each subsequent test trial was initiated by the participant. A

trial began with an unfilled circle (subtending 0.0328 of visual angle) in the

centre of the screen that was replaced by the participant’s key press with a

fixation cross for 495 ms. An object (subtending 4.578 of visual angle) was
then shown in the centre of the screen for 195 ms followed by a single pattern

mask for 495 ms. The participant’s task was to name the object as quickly

and as accurately as possible. After the response, a feedback display with the

name of the object and the response time was shown. At the end of each
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trial, the experimenter used the keyboard to record the participant’s
accuracy and any voice key errors.

Results

The overall error rate was 6.32% (of which 1.1% were voice key errors
elicited by the subject). Response times for correct trials and error rates were

submitted to a 3 (object type: Animals vs. base vs. no-base)�/3 (rotation: 08
vs. 608 vs. 1208) ANOVA. For latencies, there were significant effects of

object type, F (2, 56)�/33.41, MSE�/6020.73, pB/.001, rotation, F (2, 56)�/

21.84, MSE�/5201.83, pB/.001, as well as for the interaction, F (4, 112)�/

4.15, MSE�/6650.41, pB/.01 (see Figure 2 and Table 1). Overall, no-base

objects showed no effects of rotation, whereas naming RTs for base objects

and animals increased with greater rotation. A similar pattern was found for
errors: Significant effects were again found for object type, F (2, 46)�/15.75,

MSE�/0.46, pB/.001; rotation, F (2, 46)�/12.06, MSE�/0.39, pB/.001, and

for the interaction, F (4, 92)�/9.07, MSE�/0.36, pB/.001.

For latencies, post hoc comparisons using Tukey’s HSD test revealed that,

for animals, only the increase in response times from 08 compared to 1208
rotation was significant (pB/.01; all other ps�/.33). Similar analyses

revealed that, for artificial base objects, the RT differences between 08 and

Figure 1. Examples of object images used in Experiment 1.
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608 (pB/.05) and between 08 and 1208 (pB/.001) were significant, but not the

difference between 608 and 1208 (p�/.19). For no-base objects, however,

there were no conditions in which the RT differences even approached

significance (all ps�/.9). Error rates were small and post hoc comparisons

only revealed effects for animals. There were significantly more errors for

naming animals shown rotated 1208 compared to 08 as well as compared to

608 conditions (pB/.001). There were no significant differences in error rates

over changes in orientation for artificial base objects (all ps�/.1) and no-

base objects (all ps�/.9).

An additional ANOVA was run for RTs with items as a random factor

(across subjects) and it revealed a similar pattern, with significant main

effects of object type, F (2, 69)�/5.4, MSE�/38,285.92, pB/.01, and rotation,

F (2, 138)�/16.4, MSE�/7014.79, pB/.001, as well as a significant interac-

tion between them, F (4, 138)�/2.7, MSE�/7014.79, pB/.05.

Figure 2. Response time means and standard errors for Experiment 1 as a function of the degree of

rotation in the picture plane and the type of objects (n�/29).

TABLE 1
Mean response times (RT in milliseconds), standard errors and errors (frequency and

percentage errors) for conditions in experiment 1

Animals Base Objects No-Base Objects

08 608 1208 08 608 1208 08 608 1208

RT 827 863 913 760 829 885 772 766 778

SE 25 28 24 21 19 25 16 18 17

errors 9 14 40 6 11 19 6 6 1

& errors 4 6 17 3 5 8 3 3 0
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Discussion

Experiment 1 clearly demonstrated that orientation in the picture plane had

differential effects on base and no-base objects. It was only artificial base

objects and animals that incurred increasing recognition costs when they

were rotated from their standard view. Even though the subset of animal

pictures could not be matched for familiarity and visual complexity with

other base objects, and were, in general, harder to identify, they showed the

same pattern of increasing response times and similar trend of increasing

error rates as artificial base objects. In contrast, no-base objects were equally

recognizable in all picture-plane orientations. Thus, Experiment 1 extends

the findings of Vannucci and Viggiano (2000), who used an object decision

task, to the case of naming RTs and errors.

The aim of Experiment 1 was not to distinguish between structural

description and view-based accounts of object recognition. The results would

clearly be predicted from the latter account according to which objects are

stored in correspondence with the familiarity of different viewpoints. For a

similar reason, the results would also be predicted from the structural

description account. Both base and no-base objects contain relations that

could be coded for the object’s relative positions in terms of ‘‘on-top-of’’ or

‘‘below-of’’ and that operation would automatically be carried out in a

structural representation, such as the analytic route of Hummel’s hybrid

model. However, as we usually see no-base objects*but not base objects*
in multiple orientations routinely, we also encode them that way in LTM. It

would be access to those multiple representations in LTM that would be

required for recognition and allow equivalent naming latencies for no-base

objects.

The goal of Experiment 1 was to verify that no-base objects would

provide images to test the predictions from the hybrid theory of Hummel

and Stankiewicz (1996; Hummel, 2001). Priming studies, such as those of

Stankiewicz et al. (1998) and Thoma et al. (2004) require comparisons

against a baseline. No-base objects will provide a means of accurately

matching baseline latencies for different rotations of an object because we

have now shown that these are identical for this class of object.

EXPERIMENT 2: THE EFFECTS OF VIEWPOINT AND
ATTENTION ON PRIMING

The aim of Experiment 2 was to extend the priming results of Stankiewicz

et al. (1998) to picture-plane rotations. The hybrid model postulates

two qualitatively different representations (or processing routes) feeding

into LTM. One of these (holistic) clearly does not generalize (i.e., shows
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view-dependent recognition performance or priming) over plane rotation but

there are recognition costs also associated with the analytical route (Hummel

& Biederman, 1992). Thus, most object recognition accounts, including the

hybrid model, would make the same predictions for attended objects:
Substantial variation in picture-plane rotation from prime to probe should

weaken priming for attended objects. However, predictions for prime�probe
variation for ignored objects differ between models. In the ignored

condition, structural description accounts (Biederman, 1987) would predict

no priming for ignored objects whatever their orientation because atten-

tional processes are necessary to code parts and their relations into

structural descriptions (Hummel & Biederman, 1992). Multiple views

accounts also do not allow strong predictions for the ignored conditions
as, likewise, they do not explicitly incorporate attention but it is unlikely that

these accounts would predict access to stored object representations for

unattended stimuli (e.g., see Olshausen, Anderson, & van Essen, 1993).

We make the following predictions based on the hybrid model. For

ignored no-base objects we expect only same view priming. For attended

objects, we expect priming from both identical and rotated views. The

priming would be greater for identical views as shown in many studies (e.g.,

Warren & Morton, 1982). However, unlike in Stankiewicz et al. (1998), the
Hummel model should now predict an interaction between attention and

rotation. There should still be a predicted 50 ms priming cost for rotated

views in the ignored and attended condition but there should also be an

additional cost in the attended condition with the analytic priming

component reduced after plane rotations (due to the mismatch of spatial

relations). We examine these predictions using a priming paradigm similar to

Stankiewicz et al. in Experiment 2.

Method

Participants. Thirty native English speakers with normal or corrected-

to-normal vision participated for credit in introductory psychology courses

at Goldsmiths College University of London.

Materials. We used 56 no-base images from the Snodgrass and

Vanderwart (1980) set (see Appendix). They included the ones used in

Experiment 1 (except for two items: Gun and ring). Of these, 32 were filler
items that were never used as probes (e.g., used as the ‘‘ignored’’ item in the

prime display of trials in which attended prime objects were repeated in the

probe). The 24 critical (probe) items were counterbalanced across partici-

pants by placing each object in one of six clusters of four objects. Each

cluster (and thus, each object) was placed into one of six conditions

(attended-same, attended-rotated, ignored-same, ignored-rotated, unprimed-

same-view, and unprimed-rotated-view). Thus, an object appeared in only
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one trial for a given subject. The target objects appeared in all six conditions

equally often across participants. Prime and probe objects were shown in the

standard view (as in the original Snodgrass and Vanderwart set) or rotated

908 clockwise in the picture plane. The two views appeared in all conditions

equally often.

Procedure. The basic procedure followed the paradigm of Stankiewicz

et al. (1998). Specifically, trials were presented in prime�probe pairs, with

the probe trial immediately following the corresponding prime trial. Prime

trials presented two images to the left and right of fixation, one of which (the

attended prime) was precued, and which it was the subject’s task to name;

the other (ignored) prime was nominally irrelevant to the subject’s task. The

probe task presented a single image at fixation. The subject’s task was to

name the probe image. The critical conditions manipulate the relationship

between the prime and probe images, as detailed below.

The ordering of the trials and the pairing of attended and ignored objects

on prime trials were randomized for each participant. The participants first

read the instructions, which they paraphrased back to the experimenter. The

participants then read a list of names of objects that would appear in the

experiment. There were six practice trials with a set of objects different from

the experimental set. After the practice trials, the computer displayed ‘‘End

of Practice’’, and the participants were asked whether they had any

questions. Each experimental trial began with an unfilled circle (subtending

0.0328 of visual angle) in the centre of the screen that was removed by the

participant’s key press and was replaced with a fixation cross for 495 ms.

Participants then saw a white screen briefly for 30 ms followed by an

attentional cueing square (4.578�/4.578) either to the left or right of the

fixation cross at a distance of 4.08. After 75 ms, images of two different

objects were displayed simultaneously on the computer screen for 120 ms;

one object was inside the square (the attended image) and the second

(ignored) object on the other side of the fixation cross (see Figure 3). Both

images were centred 4.08 from the fixation cross. The entire prime display

lasted less than 200 ms, a duration that is too short to allow a saccade to

either object. After the images disappeared, a 30 ms blank screen was shown

followed by a random-line pattern mask displayed for 495 ms covering the

entire screen (15.68 of visual angle). Participants named the cued (attended)

object as quickly and as accurately as possible. Latencies were recorded by

the computer through a voice key attached to a microphone.

After the mask, a blank screen was displayed for 1995 ms followed by a

fixation cross (0.0328) displayed for 495 ms. Following a 30 ms blank screen,

the probe image was shown in the centre of the screen for 150 ms. In total,

3015 ms elapsed between the end of the prime display and the beginning of

the probe display (495 ms for the prime mask, 1995 ms for the blank screen,

PRIMING OF PLANE-ROTATED OBJECTS 193

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
C
o
l
l
e
g
e
 
L
o
n
d
o
n
]
 
A
t
:
 
1
2
:
2
0
 
1
6
 
D
e
c
e
m
b
e
r
 
2
0
0
8



495 ms for the probe fixation dot, and 30 ms blank). Following the probe

display, a single pattern mask (4.578) was shown in the centre of the screen

for 495 ms. The probe object was the attended object (attended conditions),

the ignored object (ignored conditions), or a third object not seen previously

in the experiment (unprimed baseline condition). In the attended and

ignored conditions, half the probes were the same view of the target and half

the rotated view. Again the participant’s task was to name the probe as

quickly and as accurately as possible. Naming was followed by a display of

Figure 3. Sequence of displays in Experiment 2.
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the names of the attended prime and the probe along with the probe

response time. At the end of each trial, the experimenter recorded the

participant’s accuracy on the prime and probe displays, and all voice key

errors. The participant then could initiate the next trial with a key press.

Results

Trials on which either the prime or probe responses were incorrect were

excluded from the analysis (13.1%) as were voice key errors and response

times above 3000 ms (5.0%). The mean response time for the standard view

was 846.3 ms (SE 39.5) and 805.5 ms (SE 24.95) for the rotated view, a

nonsignificant difference, t(1, 29)�/1.12, p�/.05. The mean error rates for

the standard view was 13.3% (SE 3.3) and 14.1% (SE 3.0) for the rotated

view. For all conditions, priming was calculated as the difference between
each participant’s mean latency in the unprimed (baseline) condition and

the participant’s mean latency in each of the other probe conditions (see

Figure 4 and Table 2). A 2 (attention: Attended vs. ignored)�/2 (rotation:

Same view vs. rotated view) within-subjects ANOVA was performed on

priming latencies. The analysis revealed a reliable main effect of attention,

F (1, 29)�/10.87, MSE�/34522, pB/.01, and a main effect of rotation,

F (1, 29)�/14.79, MSE�/7692, pB/.001. The interaction between attention

Figure 4. Priming means in response times and standard errors for base objects in Experiment 2 as a

function of whether the object was attended or ignored in the prime display prior to the probe and

whether the probe objects were presented in the same orientation as the prime image or rotated in the

picture plane (n�/30).
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and rotation was not reliable, F(1, 29)B/1. A Friedman ANOVA on all errors

revealed no significant differences in the four priming conditions, x2(3)�/

1.99, p�/.57. An additional ANOVA was run with target items as random

variable to examine item effects. Again, there was a reliable main effect of

attention, F (1, 23)�/18.64, MSE�/16,964, pB/.01, and a main effect of

rotation, F (1, 23)�/5.12, MSE�/15,372, pB/.05, but no reliable interaction,

F (1, 23)B/1.

Matched pairs t-tests revealed priming reliably greater than zero in the

attended-same, t (29)�/4.27, pB/.001; attended-rotated condition, t(29)�/

2.85, pB/.01; and ignored-same conditions, t (29)�/2.12, pB/.05; but not in

the ignored-rotated condition, t(29)B/1, p�/.05 (see Figure 4). Thus,

attended images in the prime display primed the probe image in both the

whole and the rotated view but ignored images primed the probe object only

when it was presented in the same view.

Discussion

The pattern of priming effects observed in Experiment 2 clearly replicated

the findings of Stankiewicz et al. (1998) and Thoma et al. (2004). This

outcome was not entirely predicted. As predicted, attended images primed

both themselves and their plane-rotated image, whereas ignored images only

primed themselves and not a plane-rotated version. Thus, the general notion

of a hybrid model consisting of a holistic and analytic representation is

supported by the fact that attended objects primed themselves in both the

same view and the rotated view, whereas ignored objects only primed

themselves in the same view (Hummel, 2001). However, unlike predicted

from the model, the priming advantage for same views over rotated views

was the same in both attended and ignored conditions. That is, as in the case

for left�right reflections (Stankiewicz et al., 1998) and configural distortions

(Thoma et al., 2004), the effects of attention and rotation were strictly

additive. Moreover, as would be expected from ‘‘ideal’’ data, these previous

TABLE 2
Mean response times (RT, in milliseconds), standard errors, and percentage errors for

probe objects Experiment 2

Attended Ignored Unprimed

Variable Same Rotated Same Rotated Same Rotated

RT 655 708 758 828 814 823

SE 28 29 21 25 36 34

% errors 5 3 4 3 5 3
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studies and Experiment 2 obtained the same priming advantage of �/50 ms

for ignored and attended conditions when holistic properties remained

unchanged between prime and probe display. Thus, in terms of the hybrid

model, this additive relationship suggests that the analytic representation is

fully invariant with picture-plane rotations because the observed priming

difference (�/50 ms) between rotation conditions (attended or not) is

attributed to the holistic representation. By contrast, the hybrid model, in

its current state, predicts nonadditivity; greater priming costs for rotation in

the attended condition than for ignored conditions because in addition to

affecting the holistic component plane rotations should also change spatial

relations in the analytic representation.

In considering priming for ‘‘attended’’ (cued) objects, we note that in the

present experiments, recognition and naming were confounded in the

attended conditions. Thus, not all the priming in the attended condition is

visual but this cannot be an explanation for the effects in our data. The

priming observed will contain a semantic or name prime component, as well

as a component for visual priming but it is likely that the visual priming

component is the larger (Bruce, Carson, Burton, & Ellis, 2000). Previous

studies (Stankiewicz et al., 1998; Thoma et al., 2004) estimated visual

priming by substituting the image in the identical conditions with a different

object that had the same basic-level name (e.g., a grand piano instead of an

upright piano). These ‘‘same-name-different-exemplars’’ produced no prim-

ing in the ignored condition, and significantly less priming than reflected

(Stankiewicz et al., 1998) or split (Thoma et al., 2004) images in the

attended-changed conditions. In both studies, subtraction produced a

conservative estimate of about 80 ms of purely visual priming in the analytic

representation. It is, therefore, reasonable to assume that the priming found

in the attended conditions in Experiment 2 (using an almost identical

paradigm and similar stimuli) also contained a significant and large visual

component (see also Biederman & Cooper, 1991, 1992).

The present experiment was the first to test the model with stimuli

that should show nonadditivity because of additional processing costs

for attended rotated objects. Yet, the additive effects remain. It seems

that models of object recognition like RBC (Biederman, 1987) and JIM

(e.g., JIM.3; Hummel, 2001) underestimate the view invariance of the

visual representation of shape. Nevertheless, while the additive effects of

viewpoint and attention were not predicted by the hybrid model they

would not have been predicted by any other current model either. We return

later in the General Discussion to how the hybrid model might deal with

the results from the attended condition. For now we consider how the

results of the ignored conditions of Experiment 2 affect models of object

recognition.
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In contrast to the hybrid theory, geon theory (Biederman, 1987) would

not predict view-dependent priming in the ignored conditions, as binding of

parts should require attention (Hummel & Biederman, 1992). Similarly,

multiple view accounts do not predict differences in priming between

ignored conditions because in these models there is no explicit role for

attention in shape representation. However, one multiple view account that

does incorporate attention is the model of Olshausen et al. (1993) in which

attention serves a gating function in early visual processing.
According to Olshausen et al. (1993), the outputs of retinotopic visual

neurons (as found in V1 and V2) are mapped under attention to neurons

whose receptive fields are invariant with translation and scale (and possibly

other variations in viewpoint) in higher visual areas such as inferotemporal

cortex (IT). Ignored information is either not mapped from V1 to IT or, if it

is mapped, then it is sensitive to metric variations such as translation, scaling

and rotation (see Olshausen et al., 1993). This model either predicts no

priming at all for ignored objects (because such objects are not recognized)

or, if priming in the ignored condition is assumed to reside in early visual

representations (e.g., V1 or V2), then priming for ignored identical images

only. Thus, a possible alternative explanation for the results of ignored

stimuli in Experiment 2 is that the difference in priming effects between

objects in the same view and a rotated view are due to the matching of simple

features or global shape properties on a lower level of visual processing

rather than the involvement of higher visual representations. The priming

pattern in Experiment 2 could emerge simply because same views prime

themselves always more than different views. Experiment 3 seeks to rule out

such low level activation as the cause of view-dependent priming in the

ignored conditions by testing whether images in unfamiliar (rotated) views

prime themselves when ignored.

Experiment 3 served as an additional test of the hypothesis that activation

in early visual representations is responsible for the observed view-dependent

priming in the ignored conditions. It does so by investigating whether images

in unfamiliar (rotated) views prime themselves when ignored: To the extent

that priming in the ignored condition reflects activation in early visual

representations, ignored base objects in unusual orientations should visually

prime themselves since they activate the same early visual representations.

But to the extent that the observed priming in the ignored condition reflects

priming in the mapping from the representation of shape to object models in

LTM, as we assume it does, then ignored images depicting base objects in

off-upright orientations should not even prime themselves.
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EXPERIMENT 3: PRIMING FOR IDENTICAL UPRIGHT OR
ROTATED IMAGES AND ATTENTION

The goal of this experiment was to establish whether the pattern of priming

observed in the ignored condition of Experiment 2 was due to activation of

identical view-dependent object representations or to simple facilitation due

to extraction of identical low level features. The pattern of priming in

Experiment 2 was predicted by the hybrid account that the visual system

generates holistic representations of ignored images and analytic representa-

tions of attended images (Hummel, 2001; Hummel & Stankiewicz, 1996).

However, an alternative interpretation of these results is that the observed

priming resides in early visual representations (i.e., rather than in the

representations responsible for object recognition, as assumed by the hybrid

model), and that identical images simply prime one another more than

nonidentical images, and attended images prime one another more than

unattended images. If this alternative explanation is correct, then the

advantage for identical images over nonidentical images and the advantage

for attended images over unattended images could produce the additive

priming effects observed in Experiment 2. This interpretation is challenged

by the results of Stankiewicz and Hummel (2002), who showed that priming

for ignored images is invariant with translation and scale*and thus cannot

be explained by an ‘‘early’’ locus of priming. However, the results from

Experiment 1 allow us to test the different accounts directly with plane

rotated objects.

On the low level matching account, it should follow that any view of an

object primes its identical self but not a changed view (of the same object).

Priming would be solely dependent on the view. A different prediction would

follow from the hybrid model of object recognition. On that model, it is only

familiar views of objects that cause priming in the ignored condition as long

as there is no view change that alters the holistic properties of an object

(Stankiewicz & Hummel, 2002). Priming in the ignored condition reflects the

activation of holistic representations in LTM, but these exist only for

familiar views (Hummel, 2001). Therefore, identical unfamiliar views would

not show priming from ignored images. Plane-rotated views of base objects

constitute such unfamiliar views.

Experiment 3 used only objects with a definite base because they

presumably have only one familiar view (i.e., the upright) stored in LTM;

no-base objects do not have unfamiliar views. In Experiment 3, for prime�
probe pairs both the relevant prime objects (attended or ignored) and the

corresponding probe images were shown in the same orientation*both

appeared in either an upright (familiar) or rotated (unfamiliar) view. The

particular interest is in the ignored trials. If ignored images make contact

with stored representations in object memory, then objects that have a
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definite base and are seen almost exclusively in an upright position should

exhibit no priming when both prime and probe are shown in a rotated view.

At the same time, they should exhibit priming when both prime and probe

are presented in the identical upright (familiar) view. If, however, the priming
observed for ignored objects is due to simple low level priming, then even

unfamiliar (rotated) views of base objects should prime themselves.

Method

Participants. Thirty native English speakers with normal or corrected-

to-normal vision participated for credit in introductory psychology courses

at Goldsmiths College University of London.

Materials. The materials consisted of objects taken from Snodgrass and

Vanderwart (1980). There were 36 objects with a definite base that were used

as probes, and 48 filler objects that were never used as probes (see Appendix).

Procedure. The basic procedure was similar to that of Experiment 2 with

the following two differences. First, only base objects were used as probes;

second, corresponding prime and probe images (ignored-repeated or

attended-repeated) were always shown in the same orientation in a single

trial*either rotated in the picture plane (908) or upright. Attended or

ignored prime objects that were not probed could appear in either an upright

or rotated view.

Results

Trials on which either the prime or probe responses were incorrect (8.7%)

were excluded from the analysis of latencies, as were voice key errors (3.3%)
elicited by the subject. The mean response time for the standard view was

787.3 ms (SE 31.2) and 805.6 ms (SE 19.8) for the rotated view. This

difference was not statistically reliable, t(1, 29)B/1. However, the mean error

rate for the upright view was 4.4% (SE 1.5) and 13.8% (SE 2.5) for the

rotated view, a significant difference, t(29)�/3.32, pB/.01. The data were

treated as in Experiment 2, however, different baselines were used to

calculate priming RTs: Unprimed-rotated conditions formed the baseline

for attended-rotated and ignored-rotated conditions, whereas unprimed-
upright conditions were used to calculate priming for attended-upright

and ignored-upright conditions. The priming RT were analysed in a 2

(attention: Attended vs. ignored)�/2 (rotation: Same view vs. rotated view)

within-subjects ANOVA for latencies (see Figure 5 and Table 3). The

analysis revealed a reliable main effect of attention, F (1, 29)�/123.40,

MSE�/7152.16, pB/.001, but no main effect of rotation, F(1, 29)�/1.70,

MSE�/21,607.37, p�/.05. The interaction between attention and rotation
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was reliable, F (1, 29)�/7.64, MSE�/4637.15, pB/.05. The difference be-

tween the attended-same and attended-rotated conditions was not reliable,

t(29)B/1, whereas the difference between the ignored-same and ignored-

rotated conditions was reliable, t(29)�/2.27, pB/.05. Thus, there was no

difference in priming between attended conditions, but a significant

difference in priming latencies between ignored-familiar and ignored-

unfamiliar conditions. An additional ANOVA was run with target items as

random variable to examine item effects. Again, there was a reliable main

effect of attention, F (1, 29)�/100.75, MSE�/8641, pB/.001, no main effect

of rotation, F (1, 29)�/1.37,MSE�/34,227, p�/.05, and a reliable interaction

effect, F (1, 29)�/11.59, MSE�/3958, pB/.01.

Figure 5. Priming means in response times and standard errors for base objects in Experiment 3 as a

function of whether the object was attended or ignored in the prime display prior to the probe and

whether the prime and the probe objects were presented in the upright orientation or rotated in the

picture plane (n�/30).

TABLE 3
Mean response times (RT, in milliseconds), standard errors, and percentage errors

forprobe objects Experiment 3

Attended Ignored Unprimed

Variable Same Rotated Same Rotated Same Rotated

RT 584 603 722 809 787 805

SE 13 17 19 21 31 20

% errors 2 3 3 3 2 7
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Errors were unevenly distributed and occurred mainly in the attended

rotation condition. A Friedman analysis of ranks gave x2(3)�/20.45, pB/.001.

Wilcoxon tests revealed more errors in the attended rotated condition than all

other conditions (all psB/.01) but none of the other comparisons showed
significant differences (all ps�/.4).

Matched pairs t-tests were conducted on each priming condition to

determine savings in response time when naming the probe (i.e., relative to

unprimed probes). Priming was reliably greater than zero in the attended-

upright, t(29)�/6.92, pB/.001; attended-rotated, t(29)�/9.04, pB/.001; and

ignored-upright conditions, t(29)�/2.26, pB/.05; but not in the ignored-

rotated condition, t (29)B/1. Attended images in the prime display primed

themselves regardless of whether they were upright or rotated, but ignored
images primed themselves only when they were upright (see Figure 5).

In Experiment 3, different baselines were required (unprimed-upright vs.

unprimed-rotated) to calculate priming because better performance was

expected for upright images than for rotated images. In the previous

experiment, only a single baseline was required because of equal performance

across views of no-base objects. To more clearly compare the priming pattern

with Experiment 2, an additional ANOVA was run over priming data

obtained by pooling baselines (i.e., priming was established from the mean of
unprimed-upright and unprimed-rotated condition). There were reliable

main effects of attention, F (1, 29)�/123.39, MSE�/7152.16, pB/.001, and

rotation, F (1, 29)�/28.45, MSE�/2992.58, pB/.001, and the interaction

between attention and rotation was reliable, F (1, 29)�/7.64, MSE�/

4637.15, pB/.01. There was no difference in mean priming RT between

attended images in the same and the rotated condition, t(29)B/1, but the

difference between ignored images was reliable, t(29)�/4.45, pB/.001.

Further matched-pairs t-tests showed that priming was reliably greater
than zero in the attended-same, t (29)�/9.91, pB/.001, attended-rotated,

t (29)�/8.03, pB/.001, and ignored-same conditions, t(29)�/3.59, pB/.05, but

not in the ignored-rotated condition, t(29)B/1. Thus, the important effects

found in Experiment 3 were not due to the way the baseline was established.

Pooling the baseline to calculate priming yielded the same priming pattern as

the previous analysis with separate baselines. The only difference was that

absolute priming differences between upright and rotated conditions were

accentuated, hence the now significant main effect of rotation.

Discussion

The critical result of Experiment 3 is the replication of the pattern of

performance foundwith ignored images in Experiment 2.Oncemore, we find a

significant amount of priming in one ignored condition (familiar views) and
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no priming in the other (unfamiliar views). The lackof priming in Experiment

2 was for familiar images that were rotated between prime and probe displays.

Importantly, the lackof priming in Experiment 3was for unfamiliar views that

were identical in prime and probe trials. Thus, the priming differences for

ignored objects in Experiment 2*in which the orientation between prime and

probe object was either the same or rotated*cannot be attributed to a simple

low level priming advantage for the unchanged condition nor can they be

trivially attributed to the amount of similarity between prime and target views.

The priming pattern for ignored objects observed here is perhaps the most

direct evidence that ignored images prime subsequent recognition by making

contact with object models in LTM. Additional evidence that only familiar

(stored) holistic representations get primed in the ignored route was obtained

by Thoma et al. (2004). They showed that ignored images primed themselves

when they were intact, whereas ignored images that were split (with two halves

moved to the contralateral side) did not prime the very same split image in the

probe trial. Furthermore, in fMRI studies,Henson, Shallice, andDolan (2000)

found that repetition priming resulted in different patterns of attenuation in

the right fusiform area depending on whether the repeated stimuli were

familiar or unfamiliar. Together with the data from Vuilleumier et al. (2002)

these imaging results would imply that the right fusiform area exhibits

properties directly predicted from the holistic component of the model.

For the attended conditions in Experiment 3, we note differences to the

priming effects observed by Stankiewicz et al. (1998) for same view versus

mirror reflection. They reported an additive effect of attention and

viewpoint in the attended condition. Here there was equivalent priming

(i.e., no additivity) for attended objects in an upright view and rotated view.

There are three possible explanations for these data from the attended

condition, all of which derive from the fact the rotated objects are harder to

recognize than upright objects. First, the parts of the rotated prime would

activate the analytic components of the object representation. If the rotated

images take longer to be recognized, this could allow extra analytic priming.

A related second explanation is that performance for rotated images is

farther from ceiling so there is more room for learning during a rotated

prime trial and hence more room for improvement on a rotated probe trial.

A third possibility is that by attending to and recognizing the rotated image,

a holistic representation is thereby encoded. Hence, on subsequent

presentation of the target, both upright and rotated images benefit equally

from analytic and holistic representations. The third interpretation fits with

experimental data reported elsewhere showing that previously attended

rotated objects are recognized more quickly during subsequent presentation

whereas formerly ignored objects do not show such an advantage of prior

exposure (Murray, 1995).
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Whatever the best explanation of the equal priming in the attended

conditions, it in no way detracts from the more important findings for the

ignored conditions. In the ignored conditions, we found no priming for

unfamiliar views of objects. The lack of priming is more notable because it

might be thought likely that increased baselines for rotated (unfamiliar)

images ought to increase the amount of priming for rotated objects over

upright images. Yet, it was only for the ignored upright images with the

lower baseline for recognition, that we observed priming.

GENERAL DISCUSSION

The present experiments showed that object recognition depends on

attention and view familiarity*properties which are proposed in the hybrid

model by Hummel and colleagues (Hummel, 2001; Hummel & Stankiewicz,

1996; Stankiewicz et al., 1998; Thoma et al., 2004). At the same time, some

aspects of the current instantiation of the theory were falsified. In

Experiment 2, ignored no-base objects only primed themselves when the

prime and probe images were presented in the same orientation. This result

suggests, as predicted by the hybrid model, that no-base objects are

represented in LTM by multiple object models, each responsible for

recognizing the object at a particular orientation in the picture plane, but

all making contact with the same object concept. By contrast, in Experiment

3, ignored base objects in unfamiliar views did not prime themselves at all,

even in the identical view. This result suggests that the object model for a

base object is specific to a particular (upright) picture-plane orientation, and

that priming in the ignored condition reflects a holistic representation of the

object’s shape making contact with that object model. More generally, the

lack of transfer of priming between different orientations in the ignored

conditions of Experiments 2 and the absence of priming between identical

noncanonical views in Experiment 3 are consistent with the hypothesis that

ignored images are recognized on the basis of view-specific holistic

representations of shape.

By contrast, the attended condition of Experiment 2 revealed robust

transfer of priming across changes in picture-plane orientation*indeed, it

revealed greater transfer than predicted by any current models of object

recognition, including the hybrid model that motivated the experiment.

Although the invariance with picture-plane rotation observed in the

attended condition of Experiment 2 is greater than predicted by the hybrid

model in its current form, the pattern of attended priming effects is still best

explained by a hybrid representation. First, many previous studies have

shown the involvement of part-based (structural) representations when

attending to objects (e.g., Biederman & Bar, 1999; Biederman & Cooper,
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1991; Foster & Gilson, 2002; Thoma et al., 2004). Second, the stark

dissociation between the patterns of priming observed in the attended and

ignored conditions is highly consistent with the hybrid model. Like the

dissociation observed by Stankiewicz et al. (1998) using attention and mirror
reflection, and the dissociation observed by Thoma et al. (2004) using

attention and configural distortions, the dissociation observed here*that

priming for attended images is more view invariant than priming for ignored

images*demands explanation in terms of a hybrid representation of shape,

in which one part of the representation (the ‘‘analytic’’ component) is robust

to various image distortions but requires visual attention to generate, and

another part (the ‘‘holistic’’ component) that can be generated automatically

but is intolerant of image distortions (except for translation and scale
changes (Stankiewicz & Hummel, 2002).

In no previous test of the hybrid model did attention interact with the

other factor being manipulated; there are additive effects on visual priming

for reflection or configural distortion (Stankiewicz et al., 1998; Thoma et al.,

2004) or no effects for changes in translation and scale (Stankiewicz &

Hummel, 2002). The present Experiment 2 was the first to test the model

with stimuli that it predicts should produce an interaction with attention:

The model predicts that attended images should prime more than ignored
images, that identical picture-plane orientations should prime more than

nonidentical orientations, and that the effects of identical vs. nonidentical

orientation should be greater for attended images than ignored ones. Yet, the

additive effects remain, suggesting that, counter to the predictions of the

hybrid model, priming for the analytic representation may be invariant with

picture-plane rotation.

An explanation for the invariance of priming with rotation may come

from Stankiewicz (2002). Using a noise masking paradigm with simple one-
part shapes, Stankiewicz (2002, Exp. 3) showed that the representation of

object shape is independent of (i.e., invariant with) viewpoint. Stankiewicz

noted that, although his result demonstrating independence of shape and

viewpoint appears at first blush to be at odds with the (apparent) view

sensitivity of recognition (e.g., as measured by naming RT and errors), it

really is not: Even if viewpoint is represented independently of shape (i.e.,

that the representation of shape is itself view invariant), for many objects,

viewpoint information is nonetheless diagnostic, in the sense that many
objects appear in some views (e.g., upright) more than others; hence, a

rational visual system would use this view information (at least when it is

diagnostic). As a result, when it is diagnostic, if it is also unusual, viewpoint

information is expected to impede object recognition, even though the

representation of shape is, itself, view invariant. Consistent with this

conjecture, objects that do not appear in prototypical views (such as knives,

forks, hammers, etc., our ‘‘no-based’’ objects) do not show the typical
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‘‘rotation function’’ in object identification (Experiment 1) shown by objects

that do have a canonical upright view (such as cars, houses and animals).

It seems that the object recognition system may use viewpoint when it is

diagnostic (e.g., for cars) but ignore it when its not (e.g., for forks). However,
this would seem to suggest a paradox: How does the visual system ‘‘know’’,

before recognizing an object, whether the object is one for which viewpoint

should be used or ignored? The circularity can be avoided simply by

assuming, as proposed by Stankiewicz (2002), that the visual system

represents view-specific information (e.g., viewer-centred spatial relations)

independently of view-invariant information (e.g., various aspects of geons

and perhaps various object-centred relations) and that it simply learns

stronger connections from view-sensitive aspects of the representation to
object models of objects that frequently appear in a canonical view (such as

cars) than for object models of objects that do not appear in a canonical view

(such as forks). A system that represents information independently is free to

attend to (i.e., use; have strong connections from) or ignore (i.e., do not use;

have weak connections from) various aspects of that information as

demanded by the statistics of experience. That is, perhaps the visual system

learns weaker view-sensitive connections for no-base objects precisely

because the neurons representing that information are not consistently
activated by no-base objects: Sometimes the tines of a fork are ‘‘above’’ the

handle, sometimes ‘‘beside’’ and sometimes ‘‘below’’, so the visual system

does not learn to prefer one over another. Thus, when you see a fork in some

particular orientation (e.g., with the tines above the handle), that relation is

activated as part of the representation of the (as yet to be recognized)

object’s shape, but because of its weak connections to the object model it

neither helps nor hurts object identification.

Viewpoint should matter to the extent that it is regular for any given
object. Each object may have its own range(s) of views over which

recognition is unaffected (i.e., because all views within the range(s) are

about equally likely) but have other range(s) over which it is sensitive to

viewpoint). For presumably the same reason, colour has little effect on

object recognition for most objects (Biederman & Ju, 1988; Ostergaard &

Davidoff, 1985). Colour gets activated, but since it is not part of the object

model (or is only a weak part), it has little or no effect on recognition. By

contrast, for base objects, a single set of view-specific relations will tend to
be systematically activated by the object and so will have strong connections

to the object model. Hence, for these objects, unfamiliar view information

impairs recognition. The modification to Hummel’s (2001; Hummel &

Stankiewicz, 1996) hybrid model necessary to account for the findings of

Experiment 2 may be, to a first approximation, simple: Add to its vocabulary

of relations a population of more view-invariant relations (such as

connectedness and other object-centred relations). The more challenging
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part will be adding the routines, in the lower layers of the model, that

compute these relations and to explain why these effects show up in first-

order measures of object identification (e.g., naming RTs and errors;

exposure duration necessary for recognition, etc.) but not in second-order
measures (i.e., visual priming).

In conclusion, the present study is the first that tested the hybrid model’s

predictions on priming for plane-rotated objects. Ignored objects prime

themselves, but only when presented in a canonical view and in a strictly

view-dependent manner, as predicted by the model. Attended objects,

however, prime themselves in rotated views, but in a relatively view-

independent manner. The current results are in agreement with the general

notion of a hybrid representation of object shape, consisting of an analytic
(structural) and holistic (view-like) component. They also indicate, however,

that view dependency in the analytical route is less pronounced (at least for

some types of objects such as no-base objects) than previously assumed.
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APPENDIX
Stimuli

Experiment 1

No-base objects : banana, brush, carrot, comb, football, fork, glove, guitar, gun, hammer, key,

knife, leaf, lock, pen, ring, saw, scissors, screwdriver, spoon, tennis racket, trumpet, watch,

whistle

Base objects : baby carriage, bed, bike, boot, cake, candle, chair, couch, cup, desk, harp,

helicopter, house, iron, ironing board, kettle, lamp, pitcher, sailboat, table, telephone, ashtray,

truck, watering can

Animals : ant, bird, elephant, camel, cat, chicken, cow, dog, donkey, duck, frog, gorilla,

grasshopper, horse, monkey, mouse, owl, peacock, pig, rabbit, snail, squirrel, tiger, turtle

Experiment 2

Targets : saw, carrot, leaf, lock, guitar, broom, umbrella, trumpet, book, plug, glove, fork,

scissors, french horn, pineapple, hammer, key, violin, butterfly, brush, light bulb, watch, lobster,

corn

Fillers : banana, rolling pin, screwdriver, nail file, envelope, cigarette, anchor, mitten, comb,

chisel, knife, pliers, toothbrush, watermelon, spoon, ball, whistle, belt, baseball bat, potato,

barrel, ruler, tennis racket, spool, wrench, star, football, sun, pen, tomato, pepper, nut

Experiment 3

Targets : alligator, bird, couch, giraffe, desk, house, kettle, plane, piano, snail, squirrel, truck,

boot, bike, chicken, chair, helicopter, frog, candle, pants, jacket, duck, wineglass, telephone, bed,

baby carriage, cat, car, elephant, dog, mouse, motorcycle, sailboat, rabbit, table, suitcase

Fillers : apple, accordion, axe, anchor, banana, ant, barrel, ashtray, basket, bear, baseball bat,

beetle, broom, belt, brush, cake, bottle, cherry, cup, doll, fish, fence, flag, flower, glasses, frying

pan, guitar, grapes, gun, hanger, hammer, iron, key, kite, knife, pineapple, pipe, pliers, scissors,

sheep, screwdriver, sled, shoe, swing, snake, toaster, trumpet, vase
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