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Abstract—Protecting the industrial internet of things (IIoT)
devices through vulnerability detection is critical as the conse-
quences of attacks can be devastating. Machine learning (ML) has
assisted several works in this regard, improving vulnerability de-
tection accuracy. Based on established vulnerability assessment,
development and performance comparison of various ML detec-
tion algorithms is essential. This work presents a description of
the IIoT protocols and their vulnerabilities. The performance of
the ML-based detection system was developed using the WUSTL-
IIoT-2018 dataset for industrial control systems (SCADA) cy-
bersecurity research. The approach was validated using the
ICS-SCADA and CICDDoS2019 datasets, a recent dataset that
captures new dimensions of distributed denial of service (DDoS)
attacks on networks. The evaluation and validation results show
that the proposed scheme could help with high vulnerability
detection and mitigation accuracy across all evaluated datasets.

Index Terms—Detection, IIoT, Machine Learning, Smart Fac-
tory, Vulnerability assessment.

I. INTRODUCTION

THE growth in modern technologies and design require-
ments of fifth-generation (5G) and beyond has given

rise to heterogeneous sensor connectivity to provide additional
benefits to industries. Industries are deploying more IoT sen-
sors to meet the demand for massive connectivity of devices.
The heterogeneity of IIoT devices (such as actuators and sen-
sors) and their connectivity capabilities have increased IIoT’s
vulnerability to attacks, necessitating a robust and efficient ma-
chine learning-based detection system. Traditionally, industrial
control systems (ICSs) operate as stand-alone systems with
little attack vulnerability. ICSs are mission-critical systems
utilized for real-time collection and analysis of data in IIoT
and, as such, place high availability constraints on industrial
systems. A breakdown due to an attack can be devastating
and lead to a monumental loss of revenue by manufacturing
companies and smart factories.

IIoT environments have been aided by AI and big data ana-
lytics, which have recently attracted much research work. Sev-
eral machine learning (ML) schemes provide for the security
and enhancement of the IIoT. One such scheme is the intrusion

detection systems (IDS) and vulnerability detection systems
based on various ML and available datasets. However, chal-
lenges such as accuracy, computation cost, time complexity,
and the need for a testbed for up-to-date datasets have become
critical as the dynamics of cyber attacks continue to change.
AI is a rapidly growing trend across several industries, such
as smart factories, security, and surveillance. Using pattern
recognition and improved applications of neural processing,
AI is helping these companies become more efficient in attack
mitigation. The purpose of AI projects is to make decisions
based on meaningful information. An IDS identifies or verifies
network traffic for anomalies. The system simultaneously
matches the input against the entire database rather than by
individual elimination. It can also be used to retain it in the
event of any incorrect input and disallow any future use of
this input through machine learning.

Distributed denial of service (DDoS) threats, for instance,
are undoubtedly critical security challenges to the Internet
of Things (IoT) and, indeed, all forms of networks. Attacks
by DDoS aim at overburdening the target IoT devices or
networks by sending continuous and malicious traffics [1].
Reducing or mitigating security attacks on IIoT has attracted
research attention due to the devastating effect and possible
economic loss should they break down. In recent years,
several ML approaches have employed traditional techniques
for feature selection. However, one of the challenges with these
approaches, is the limitation of the amount of data needed
for feature learning and the burden of dataset balancing [2].
The reason is that as the volume of data increases to an
exceedingly high level, the false alarm rate (FAR) is noticeably
high. Second, most relied on the accuracy and F − 1 score as
classification evaluation metrics. These metrics perform poorly
in the face of extensive data or where the data is not balanced.
Thus, Selecting an efficient detection system is needed to
secure networks. More importantly, such a detection system
should focus on recent data or data from test beds. In addition,
such an efficient ML scheme should provide alternative metrics
such as Mathews correlation coefficient (MCC) [3]. Based on
the aforementioned, the following contributions were made by
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this work:
1) The first contribution of this article is a comprehensive

description of the IIoT protocols and exposing the in-
herent vulnerabilities. Such information forms the basis
for appreciating the need for security in IIoT systems.

2) Second, leveraging on the vulnerability assessment of
[4], this work compared several ML-based IIoT vul-
nerability detection systems to take care of intrusion
problems in IIoT. It is to determine the most efficient
of them based on MCC and other metrics.

3) To validate the proposed ML algorithm, we investi-
gated state-of-the-art ML techniques using WUSTL-
IIoT-2018, ICS-SCADA, and CICDDoS2019 datasets
to show the efficiency of the algorithms in terms of
accuracy, feature extraction, computation complexity,
MC Nemar’s test, and time taken to train and test each
classifier.

The organization of the paper is as follows: Following this
Section I (Introduction) is Section II, which is a review of
recent related works in ML-based vulnerability detection for
IIoT. The pipeline of the proposed ML-based system and
typical IIoT setup is described in Section III. Section IV
presents the performance evaluation and the results. The study
concludes in section V with recommendations for future
research.

II. THEORETICAL BACKGROUND AND RELATED WORKS

A. Industrial Internet of Things (IIoT)

Historically, this describes the IoT’s application to manu-
facturing, production, and general industrial applications. The
overall benefit is that it rewards efficiency and reliability in
the company’s operations. They constitute an essential part
of the industrial ecosystem needed to transform factories into
smart factories where there is seamless data capture, transmis-
sion, and smart decision-making by humans and machines.
Moreover, IIoT allows for optimized usage of a company’s
assets, predicts points of failure, and draws attention to cases
needing maintenance. In addition to the above, the novel
virus COVID-19 created more need for remote work, which
changed the threat landscape as more activities moved online
and networked. According to [5], a more comprehensive
definition of IIoT is “a system comprised of networked smart
objects, cyber-physical assets, associated generic information
technologies, and optional cloud or edge computing platforms
that enables real-time, intelligent, and autonomous access,
collection, analysis, communications, and exchange of process,
product, and service information within the industrial envi-
ronment in order to optimize overall production value. This
value could include improving product or service delivery;
increasing productivity; lowering labor costs; lowering energy
consumption; and shortening the build-to-order cycle.”

B. Vulnerabilities in IIoT Protocols and Impact on Industry
Operation

The consensus is that the communication protocols used by
ICS lack sufficient security by traditional IDSs [4]. Some of

the protocols include MODBUS, building automation and con-
trol network (BACnet), message queuing telemetry transport
(MQTT), and distributed network protocol version 3 (DNP3).
A flooding attack can affect the availability of MODBUS,
while a denial of service (DOS) attack can halt BACnet.
Details of the vulnerabilities of these protocols are in [4].
Thus, the operational technology environment and ICS must
be secured to protect critical infrastructures. According to the
Siemen/Ponemon Institute study 2019 report, around 56% of
gas, wind, water, and solar utilities worldwide faced at least
one cyberattack in 2018 alone, causing a shutdown or loss
of operation data [6]. The necessity for remote access, office
utility connectivity, use of public networks, and growing use
of IoT components enabled by the grid and enterprise IT are
all contributing factors. As shown in Fig.1, the impact of cyber
attacks on the operations of industries is better imagined as
there can be a devastating impact on loss of confidential infor-
mation, revenue, manufacturing or production line breakdown
[6].

Figure 1. How Attacks on Operational Technology (an example is IIoT) affect
Operations on Industries [6]

Understanding the changing nature of the IIoT attacks is the
right step to security and vulnerability assessment needed for
the countermeasure. Since IIoT no longer operates in isolation,
the attack surface is more extensive. It raises the challenge of
putting strategies in place to secure the IIoT despite exposure
to the threat of increased connectivity and the internet. In order
to secure the IIoT, there is a need for efficient mechanisms,
which include ML approaches.

C. Machine Learning for IIoT Security

The application of ML for IIoT security has been well
documented in recent years. Table I is a summary of the recent
works in IoT and IIoT protection using various datasets and
ML approaches. ML is used for feature extraction, outlier
detection, value prediction, and pattern recognition in IIoT
traffic/data, all of which are essential elements in securing
IIoT networks and devices. The objective of applying ML to
IIoT security is to identify security flaws (anomaly detection,
intrusion, and malware detection).

However, one case of grave concern is the continuous need
for human intervention, which reduces the efficiency of the
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Table I
SUMMARY OF RECENT ML FOR VULNERABILITY DETECTION IN IIOT

Ref Year Algorithms Dataset
[4], [7] 2019, 2018 DT and RF WUSTL-IIoT

[8] 2020 ς-Classifier KDD CUP’99

[9] 2020 Several T-IIoT
[10] 2020 HADIoT ISCX-2012
[11] 2020 DNN+DT SWAT+GP
[12] 2020 RS+RT ICS [13]
[14] 2021 DT CIRA-CIC-DoHBrw-2020 [15]

ML systems. One factor responsible for human interaction
is the challenge of handling imbalanced attack classes since
a new attack class arises from time to time. To handle the
imbalance introduced by the new attack category, authors
in [16] proposed a novel algorithm that leverages optimized
weight for each class to increase the accuracy of attack
kinds that are rarely (or barely) discernible. By so doing,
classification performance improves, and detection accuracy
increases.

Additionally, the authors of [11] developed an ensemble
deep learning solution for ICS cyber threat detection. They
combined deep neural networks with decision tree classifiers to
detect attacks. The proposed scheme performed comparatively
well when tested using the safe water treatment (SWAT) and
gas pipeline (GP) datasets while taking care of the imbalance
dataset and reducing feature engineering technicalities. In like
manner, authors in [12] proposed a random subspace(RS)-
based random tree (RT) ensemble model to enhance the
detection of attacks on SCADA while striking a tradeoff
between model complexity, classification accuracy, and reli-
ability. However, they created an additional problem with the
ensemble model because the execution time of the proposed
model was more than that of a single RT classifier. Moreover,
the RSRT model could not optimize random feature selection
when there was a small number of features.

D. Recent Testbed Attempts on Vulnerability Detection in IIoT

Therefore, to lend credence to the rising and dynamic
nature of attacks on IIoT, recent efforts aim at developing
datasets from testbeds to assist the research work in the
area of detection and optimized countermeasures to IIoT
attacks. This attempt is in response to the dearth of real-
world datasets for the IoT and IIoT application domains. The
authors of [9] developed what they termed a new genera-
tion dataset for IoT and IIoT data-driven intrusion detection
systems (T-IIoT Dataset). The advantage of this dataset over
the KDDCUP99, NSL-KDD, or UNSW-NB15 is that these
datasets lack sensors’ reading data and network traffic data. It
consists of nine (9) attack types, such as distributed denial of
service (DDoS), ransomware, backdoor, data injection, denial
of service (DoS), scanning, and Man-in-the-Middle (MITM).
The data sources are from seven (7) IIoT and IoT sensors as
described in [9]. The dataset includes network traffic from IoT

networks, operating system logs, and telemetry data from IIoT
services.

In [4], [7], authors developed a test-bed for SCADA IDS.
The selected IIoT system testbed monitors a water storage
tank’s water level and turbidity quantity. With the sensors’
aid, the testbed ensures the water level is within predefined
levels. After that, the authors subjected the testbed to various
attack scenarios to gather data. The resulting dataset is code-
named WUSTL-IIoT-2018 SCADA-IDS and is used in our
simulation.

E. Summary of Related Works

In summary, Table I is a detailed analysis of recent research
efforts in IIoT vulnerability detection using ML. The need to
efficiently handle computation costs using feature selection
techniques such as principal component analysis (PCA) or
Pearson correlation coefficient (PCC) is one common lesson
from these works. Also, most authors relied on only accu-
racy and F1 score, which has been mathematically proven
not to be reliable in cases of imbalanced dataset [2]. In
this work, therefore, we adopted the appropriate alternative
MCC to validate the ML algorithms’ classification. We also
adopted PCC and PCA for top feature selection. In addition,
we have adopted the WUSTL-IIoT-2018, ICS-SCADA, and
CICDDoS2019 datasets for our evaluation since they captured
the attacks for IIoT and are considered recent.

III. ML SYSTEM MODEL AND DATASET DESCRIPTION

A. ML Vulnerability System Model

Figure 2. A matrix of risk assessment of most critical IIoT Vulnerabilities
[4]

In this work, we have leveraged the vulnerability analysis
of IIoT as captured by [4] where the authors have classified
various attacks into three categories based on a combination
of the likelihood of attack occurrence and the severity of the
impact of such attacks. From Fig. 2, the red code is considered
the most critical since it can be of devastating effect when it
occurs. Some examples are DoS, Code injection, and MITM.
The yellow codes are moderate since they fall in between the
two extremes. Backdoor, directory traversal, and unauthenti-
cated access attacks are examples of such. Finally, the attacks
with the least likelihood and most negligible impact are the
green-coded areas, representing their non-critical nature.

Fig. 3 below shows our ML-based model for efficient
vulnerability detection in the IIoT.
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Figure 3. This is the Machine learning model adopted in this study. It
demonstrates the process flow of arriving at an efficient model for vulnerability
detection in the IIoT.

B. Description of the Power System SCADA Network (ICS-
SCADA Dataset)

A convenient method for remote monitoring and control of
renewable energy sources is offered by the power SCADA
system. It increases effectiveness and is utilized frequently in
many industrial applications. Data is gathered and processed in
accordance with the needs of various substations. The central
system is informed by the close monitoring of substation
components by the programmable logic controllers in the
substations. It is in charge of enhancing efficiency by ensuring
a reasonable power factor range [17]. Fig. 4 depicts the
diagram of the power system network configuration used to
generate the dataset. It consists of various parts, the first
of which are power generators G1 and G2. R1 to R4 are
Intelligent Electronic Devices (IEDs) that control the breakers
(on or off). The breakers are BR1 to BR4. In addition,
there are two lines, line one connects breaker one (BR1)
to breaker two (BR2), and line two connects breaker three
(BR3) to breaker four (BR4). Each IED is programmed to
control one breaker. R1 controls BR1, and R2 controls BR2,
respectively [18]. Since they lack internal validation, IEDs
use a distance protection technique that trips the breaker on
detecting anomalies regardless of whether they are valid or
contrived. The constituents and configuration of the power
grid SCADA network define its peculiarity in terms of data
generated, vulnerability, and attack types. Hence, it requires
an efficient IDS. The data is from twenty-nine (29) types of
measurements from different phasor measurements (PMU). A
PMU is a device that measures electrical waves on a power
grid while synchronizing with an expected time source. This
network comprises four PMUs that each measure 29 features,

Figure 4. Configuration of the Power System SCADA Network used to
generate the SCADA dataset [18]

for a total of 116 PMU measurement columns in the dataset.
Each column’s index is in the form ”R#-Signal Reference,”
indicating the type of measurement from a PMU designated
by ”R#.” The dataset contains 128 features. For more details,
see the dataset description.

C. WUSTL-IIoT-2018 Dataset for ICS(SCADA) Cybersecurity
Research

The WUSTL-IIoT-2018 dataset for ICS (SCADA) cyber
security research by [7] focuses on reconnaissance attacks on
SCADA. A reconnaissance involves hackers using scan tools
to locate network devices and possible spots for vulnerabilities.
Port scan, address scan, device identification attacks, and
exploits were all conducted against the testbed as reconnais-
sance assaults. Details can is in [7]. Although the raw data
had 25 networking features, the authors carried out feature
selection; thus, the following top features emerged for the
creation of the dataset: total transaction packet count (Totpkts),
total transaction bytes (TotBytes), Source/destination packet
count (SrcPkts), Destination/Source packet count (DstPkts),
Source/Destination transaction bytes (SrcBytes) and port num-
ber of the source (Sport). These features served as a guide
in our evaluation of machine learning candidates and model
evaluation. They used audit record generation and utilization
system tools to monitor all network traffic, with 93.93%
regular traffic and 6.07% attacked traffic, respectively.

D. CICDoS2019 Description

The CICDDoS2019 [19] final dataset includes 12 DDoS
attacks, namely NTP, DNS, LDAP, MSSQL, NetBIOS, SNMP,
SSDP, UDP, UDP-Lag, WebDDoS, SYN, and TFTP in the
training day, and seven (7) attacks including PortScan, Net-
BIOS, LDAP, MSSQL, UDP, UDP-Lag and SYN in the testing
day. A cutting-edge dataset, CICDDoS2019, was utilized to
train and test the suggested model for performance assessment.
To the best of the author’s knowledge, this dataset for DDoS
is the most latest and sophisticated one and consists of
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benign and other typical DDoS attacks. The different DDoS
attack types are categorized into reflection-based threats and
exploitation-based threats in the dataset. SYN, UDP, and UDP-
Lag DDoS are exploitation-based threats, whereas reflection-
based attacks target NetBIOS, MSSQL, and TFTP. Over 80
features make up CICDDoS2019 [19].

180,000 samples of benign and many other DDoS attack
classes were included in the CICDDoS2019 dataset. Each class
has a total of 14,000 to 18,000 attacks. Here, caution was
taken to avoid creating an unrepresentative dataset by either
over-representing or under-representing one class. Each class
has around 18,000 samples, with the only benign class having
about 4,000 fewer samples. The dataset was divided using
Scikit Learn’s train test split, with 25% set aside for model
testing and 75% used for training [1].

E. ICS-SCADA Dataset Description

The ICS-SCADA dataset from the Oak Ridge National
Laboratories (ORNL) was a result of establishing a power
grid testbed [18]. The dataset is from the power grid SCADA
system testbed and contains computations associated with
disturbance, cyber-attack exploits, and normal and control
obtained during electrical transmission. This study evaluated
the dataset’s binary and three (3) classes. It consists of 128
features with responses as a natural, attack, and no event for
the 3 class and attack and no event for the binary class.
”Attack”, as the name implies, depicts the attack state; ”no
event” is the Benign state or no attack, while the natural
represents a zero-day or ground truth. These features came
from 4 Phasor Measurement Units (PMUs), which compute
energy signals of the substation with a regular schedule source
for competent time simultaneity. Each PMU calculates 29
features; thus, 116 PMU measurements are in all. These
features are referred to as R# (signal Reference), indicating
the ratio of PMU and type of analysis. For instance, R1-
PA1:VH denotes the Phase A voltage phase angle calculated
by PMU R1 [18]. Additional 16 columns by snort alerts,
control panel logs, and relay logs alongside a combination of
relay and PMU. The last column represents the marker to label
different events. Furthermore, each batch of the 15 batches
comprises 3711 attack vectors, 294 no event occurrences, and
1221 natural events through the analysis patterns.

F. Feature Selection and hyper-parameter Settings

1) Feature Description: In order to extract features, it is
vital to have good background knowledge of network traffic
features. The first step involves preprocessing the network traf-
fic data to extract bidirectional transmission control protocol
(TCP) flows identified by their source and destination internet
protocol (IP) addresses and ports. Long TCP connections are
divided into many bidirectional flows using a timeout. The
statistics on the size of the first N packets transmitted and
received, as well as the related inter-arrival periods, are the
features describing the bidirectional TCP flows (IAT). The
count is the proportion of non-zero-sized packets among the
first N packets. It represents the actual number of packets

transmitted or received, in other words. Due to the timeout to
divide lengthy TCP connections, it could be less than N. For
instance, the count is equal to that amount if the total number
of packets sent during the timeout length is less than N. It is
equal to N if not. For the IAT to exist, N needs to be equal
to or larger than 2. The statistics that cannot be calculated,
such as the mean and standard deviation of the IAT between
packets, are all set to 0 if a communication only contains
one packet transmitted or received. Application independence
characterizes the attributes used to describe network traffic.
The TCP protocol can be used with any application. It should
be noted that features can still be extracted even if network
connection is encrypted. As all the devices utilized for the
research use HTTP/HTTPS for communication, this study only
focuses on TCP protocols. It makes sense because TCP is the
most common network protocol used by IoT malware [20].

2) Feature Selection: Feature selection is an enabler for
enhancing the performance of ML models, especially for
classification. The reason for this is that it eliminates the
dimensionality curse, characterized by having more features
than samples and, in most circumstances, resulting in overfit-
ting of the model, which prevents it from generalizing to new
data. Moreover, ensuring a simple and explainable model of
controllable features is desirable, which is only made possible
by avoiding too many undesired and redundant features. In
order to achieve this goal, this work implements the Pearson
correlation coefficient (PCC). PCC is depicted mathematically
as follows:

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
, (1)

where n is the sample/dataset size, xi, yi are the individual
sample points indexed as i. At the end of the PCC iteration,
i.e., when i == n, the top features are selected and used for
the model. The top 10 features selected from CICDDoS2019
dataset are listed in the Table II while Table III shows top 5
features from WUSTL-IIoT-2018 dataset.

Table II
TOP TEN FEATURES CHOSEN FROM THE CICDDOS2019 DATASET, LISTED

IN ORDER OF IMPORTANCE

No. Name of Feature
1 Forward packet length max
2 Flow packets/seconds
3 Average packet size
4 Subflow forward bytes
5 Average forward segment size
6 Standard deviation of flow inter-arrival time
7 Min packet length
8 Total forward packets
9 Packet length variance
10 Protocol

3) Hyperparameters: Hyperparameters are used to regulate
and track a model’s learning process across all phases of
training, helping to increase the efficiency and effectiveness
of the learning process. The Keras-tuner Library was used to
tune the hyperparameters in this study.
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Table III
TOP 5 FEATURES FROM THE WUSLT-IIOT-2018 DATASET

No. Name of Feature
1 Source Port (Sport)
2 Mean flow (Mean)
3 Total percentage loss (pLoss)
4 Source loss(SrcLoss)
5 Destination Port (Dport)

4) Feature Scaling and Dimension Reduction: Data prepa-
ration includes processes like feature scaling and dimension
reduction. This stage involves preparing the dataset to make it
easier for the machine learning algorithm to read the data more
efficiently and accurately, as well as adhering to the machine
learning algorithm that will be employed. Different features
in the dataset have different ranges, and most of the time, the
range is simply too wide; for instance, a specific characteristic
can have a value between 10 and 100 or even between 10 and
10,000. In this situation, normalization or feature scaling using
the Min-Max Scaling function of sci-kit learn is required when
the range of a feature is small, such as between 0 and 1.

IV. RESULTS, ANALYSIS, AND PERFORMANCE
EVALUATION

A. Evaluation Metrics

For a fair comparison, some considered traditional perfor-
mance metrics are true positive (TP), true negative(TN), false
negative (FN), false positive (FP), false alarm rate (FAR),
precision, F1-measure, recall, the area under receiver operating
characteristics (AUC), executive time, Mc-Nemar’s test, sen-
sitivity, and Mathew’s correlation coefficient (MCC). While it
is not the goal of this paper to explain these metrics in detail,
suffice it to say that a suitable detection system should have
high accuracy, precision, recall, and F1 score with a low false
alarm rate. The accuracy is (2):

Accuracy =
TP + TN

(TP + TN + FN + FP )
, (2)

On the other hand, FAR is given as (3):

FAR =
FP

(TN + FP )
, (3)

Precision, recall, F1- measures, and sensitivity are given as
(4), (5), (6), and (7):

Precision =
TP

(TP + FP )
, (4)

Recall =
TP

(TP + FN)
, (5)

F1−measure =
2 ∗ (Precision ∗Recall)

(Precision+Recall)
, (6)

sensitivity = 100 ∗Recall(%) (7)

The MCC is used to evaluate the quality of the classification. It
finds usefulness when it is needed to have a metric not affected

by the unbalanced datasets [3]. The drawback of relying only
on the F1 score is that it can lead to overoptimistic inflated
results, especially on an imbalanced dataset. To solve this,
authors in [3] gave a comprehensive analysis and justification
for MCC as a veritable alternative. The MCC values range
-1 and +1, representing cases of perfect misclassification and
perfect classification, respectively. Mathematically, MCC is
in (8)

MCC =
TP.TN − FP.FN√

(TP + FP ).(TP + FN).(TN + FP ).(TN + FN)
,

(8)
The Confusion Matrix (CM): The diagonal in the confusion

matrix represents accurate predictions, and the non-diagonal
represents false predictions. See the table below for the confu-
sion matrix based on the ICS-SCADA dataset, which contains
three (3) classes of traffic events, including, attack, natural,
and no events.

Table IV
DESCRIPTION AND FEATURES OF A CONFUSION MATRIX

Predicted class
No events Attack Natural

2*Actual Class No events 992 107 46
Attack 114 1098 4
Natural 1 1 1243

B. Performance comparison of ML algorithm candidates

In this study, the ML-based IDS is for attack detection and
classification to determine if a given traffic sample is malicious
or benign. The three chosen datasets are inputs to the IDS, and
the output is either benign or attack traffic. The dataset was
also divided into training and testing sets in a 70/30 split.

The study used and tested six distinct techniques: random
forest (RF), decision tree (DT), extreme gradient boosting
(XGB), gradient boosting (GB), Adaboost (AD), and the
recurrent neural network (RNN). The IDS learning models
emerged using the Keras library [21] and the scikit-learn
library [22]. The models are trained and tested on the three
datasets, and their performance is in Figs. 5, 6 and 7. The
time comparison is in Fig. 8.

The experimental results demonstrate the efficiency of the
ML algorithms for vulnerability detection in the IIoT. The
combined advantage of the accuracy and computation time-
cost demonstrates the performance of the ML classifiers over
the RNN. It confirms its suitability for the IIoT scenario.

C. Mc-Nemer Test analysis

In addition to the metrics mentioned above, Mc-Nemar’s test
is an essential criterion for comparing the performance of two
ML algorithms. Mc-Nemar’s test is a non-parametric pairwise
test showing that an algorithm has achieved a statistically
significant increase over the other. When the z-value of Mc-
Nemar’s test >1.96 (p-value is less than 0.05), the conclusion
is that there is a significant difference between the two
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Figure 5. Model performance of the six compared models on the WUSTL-
IIoT-2018 dataset.

Figure 6. Model performance of the six compared models on the ICS-SCADA
Dataset.

Figure 7. Model performance of the six compared models on the CICIDS2019
dataset.

Figure 8. Time model performance of the six compared models all evaluated
datasets.

algorithms. Z-score is used to show the confidence levels [23].
Z-score is presented mathematically as in (9)

Z =
(β − δ)− 1√

(β + δ)
, (9)

where β is the number of times, the first algorithm succeeded
in the classification, and the second failed. Also, δ represents
the number of times when the second algorithm succeeded in
the classification and the first one fails.

The Mc-Nemer test of the least performed model RNN
is a p-value (1-tail and 2-tail test) of 0.000, which is less
than 0.05. Thus, we rejected the null hypothesis and accepted
the alternative stating that the “intrusion type, target system,
and dataset type does have a significant impact on the
performance of ML models.” Table V contains the Mc-
Nemer’s χ2 values for WUSTL-IIoT-2018, ICS-SCADA, and
CICDDoS2019 datasets, respectively.

Table V
MCC RESULTS ON THE THREE DATASETS

Dataset Mc-Nemer’s
Test Statistic χ2 ρ-value Odd Ratio MCC

WUSTL-IIoT-2018 387764.6948 0.000 13.2861 0.86
ICS-SCADA 707.8278 0.000 61.9161 0.9682
CICDDoS2019 207531.6327 0.000 1149.5912 0.9965

D. MCC Test of RNN Algorithm

The previous results show that the RNN algorithm had
a minor performance across metrics. The RNN model had
poor classification ability for the WUSTL-IIoT-2018 dataset,
as corroborated by the previous accuracy, precision, and recall
results. However, to verify the quality of classification of the
least performed model, this section gives the MCC test results
of RNN for the three datasets categories. For binary classifica-
tion, Table V shows that the RNN had a minimum MCC value
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of 0.86 for WUSTL-IIoT-2018, 0.9682 for ICS-SCADA, and
0.9965 for the CICDDoS2019 dataset, respectively.

V. CONCLUSION

The discovery of vulnerabilities in the IIoT network is
crucial. Big data analytics and ML approaches have greatly
aided in the development of IDSs to assure secure protection.
However, the current cyber-risks of industrial critical systems
and conventional systems differ due to primary variances and
differential priorities. There is a significant gap in ensuring
proper security for these systems, which is why focusing on
critical industrial systems is vital. As a result, there should
be great care in ensuring IIoT security. The experimental
analysis in this paper illustrates the effectiveness of ML-based
strategies for system security.

We proposed an ML algorithm for efficient IIoT intrusion
detection and classification in this work. We provided a
comparative study of efficient ML algorithms focusing on
typical candidates such as RF, DT, AD, XGB, GB, and RNN.
We evaluated the algorithms using WUSTL-IIoT-2018 and
ICS-SCADA datasets for industrial control systems (SCADA)
cybersecurity research and validated their performance using
the CICDDos2019 dataset. Feature selection and dimension-
ality reduction were with the Pearson correlation coefficient
(PCC), which aided the ML algorithms’ accuracy since it
helped eliminate redundant and data considered not helpful.

The proposed algorithm consistently outperformed other
compared algorithms in a combined advantage of model ac-
curacy and computation time-cost, which is a critical factor in
IIoT. It is pertinent to say that the proposed algorithm is apt for
vulnerability detection and attack classification, particularly in
a real-time IIoT environment.
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