
Enhancing Transfer Learning Reliability via
Block-wise Fine-tuning

Basel Barakat ∗ Qiang Huang ∗
∗ School of Computer Science, University of Sunderland, Sunderland, UK.

Abstract—Fine-tuning can be used to tackle domain spe-
cific tasks by transferring knowledge learned from pre-trained
models. However, previous studies on fine-tuning focused on
adapting only the weights of a task-specific classifier or re-
optimising all layers of the pre-trained model using the new task
data. The first type of method cannot mitigate the mismatch
between a pre-trained model and the new task data, and the
second type of method easily causes over-fitting when processing
tasks with limited data. To explore the effectiveness of fine-
tuning, we propose a novel block-wise optimisation mechanism,
which adapts the weights of a group of layers of a pre-trained
model. This work presents a theoretical framework and empirical
evaluation of block-wise fine-tuning to find a reliable transfer
learning strategy. The proposed approach is evaluated on two
datasets, Oxford Flowers and Caltech 101, using 15 commonly
used state-of-the-art pre-trained base models.

Results indicate that the proposed strategy consistently outper-
forms the baselines in terms of classification accuracy, although
the specific block leading to optimal performance may vary across
models. The investigation reveals that selecting a block from
the fourth quarter of a base model generally yields improved
performance compared to the baselines. Overall, the block-wise
approach consistently outperforms the baselines and exhibits
higher accuracy and reliability. This study provides valuable
insights into the selection of salient blocks and highlights the
effectiveness of block-wise fine-tuning in achieving improved
classification accuracy in various models and datasets.

Index Terms—Fine-tuning, Transfer Learning, Block-wise, Ex-
plainable Performance, Pre-trained Model, Deep Learning

I. INTRODUCTION

The rapid development of deep learning technologies has

made it easy to construct and train complex neural networks

[1]. The deep structure of neural networks has thus gained

tremendous success. However one of their critical challenges

is that it needs large amounts of data. Training a model for

a specific task on a limited data can lead to poor general-

ization due to over-fitting. Although lots of data can be now

collected online, data annotation is always an expensive and

time-consuming task. Therefore, more often in practice, one

would fine-tune existing networks by continuing training it

on the new task data. This can benefit many applications not

having sufficient data by transferring learned knowledge from

multiple sources to a domain-specific task [2], [3].

Fine-tuning can process a pre-trained network in three

different ways. The first is to freeze all the weights of the

pre-trained network, but optimise only classifier layers using

new task data. The second is to optimise the weights of all

layers. The last one is done by adapting the weights of a subset

layers of the pre-trained model as they would be more useful

to learn dataset-specific features than other layers.

In our preliminary experiments, we noticed that using a pre-

trained models for image classification tasks with large number

of classes classification typically yield to low accuracy. We

thus hypothesised that fine-tuning a group of layers may lead

to some interesting results. Although fine-tuning a subset of

layers seems to be more instinctively reasonable than the

first two, it is not yet fully investigated how to determine

which layers in the pre-trained network can have a greater

contribution than other layers, when being tuned on new task

data. We therefore propose a novel framework using block-

wise fine-tuning in this paper and aim to explore an efficient

way to find out the salient set of layers relevant to the features

of new task data and improve fine-tuning reliability.

The block-wise mechanism is conducted by dividing a deep

network into blocks, each of which consists of a group of

layers. In this study, we conducted experiments using 15

widely adopted models that were pre-trained on the Imagenet

dataset. These models were subsequently fine-tuned on two

datasets, namely Oxford Flowers [4] and Caltech 101 [5].

To determine the most salient block, we tested the block-

wise fine-tuning strategy on each of the model’s individual

blocks. By fine-tuning a subset of layers within each block,

we aimed to identify the block that yields the highest accuracy

performance. In the subsequent sections, we will present a

detailed description of our proposed approaches, which outline

the specific techniques and methodologies employed in our

research.

The rest of this paper is organised as follows: Section

2 introduces the previous studies in relation to fine-tuning;

the theoretical framework is presented in detail in Section 3;

Section 4 describes the experimental set-up. The results and

analysis of our experiments are presented in Section 5, and

finally conclusions are drawn in the last section.

II. RELATED WORK

Within the framework of transfer learning and relying on

the architecture of a pre-trained model (PTM), fine-tuning

can adapt the model parameters on the target data and has

become one of the most promising deep learning techniques in

different research fields, such as computer vision (CV), natural

language processing (NLP), and speech processing.

2023 International Conference on Machine Learning and Applications (ICMLA)
20

23
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 M
ac

hi
ne

 L
ea

rn
in

g
an

d
Ap

pl
ic

at
io

ns
 (I

CM
LA

) |
 9

79
-8

-3
50

3-
45

34
-6

/2
3/

$3
1.

00
 ©

20
23

 C
RW

N
 |

 D
O

I:
10

.1
10

9/
IC

M
LA

58
97

7.
20

23
.0

00
64

1946-0759/23/$31.00 ©2023 Crown 414
DOI 10.1109/ICMLA58977.2023.00064

A. Fine-tuning in Computer vision

In computer vision community, the annual ImageNet Large

Scale Visual Recognition Challenge (ILSVRC) [6] provided

multiple images sources and has resulted in a number of inno-

vations in the architecture, such as VGG [7], MobileNetV2 [9],

and ResNet50 [10]. By fine-tuning, these high-performing pre-

trained models are now widely used in image generation [11],

[14], image classification [15], [16], [17], [18], image caption

[12], [13], anomaly detection [19], [20], [21], image retrieval

[22], [23], etc. In these previous studies, the development of

fine-tuning techniques in CV can be found.

The first aspect of fine-tuning is layer wise adaptation.

Regarding the studies on the roles of hidden layers, Yosinski

et al. [28] conducted empirical study to quantify the degree

of generality and specificity of each layer in deep networks.

The related studies [28], [29] further claimed that the low-

level layers extract general features and the high-level layers

extract task-specific features in a deep network. Since then,

further works have been conducted to exploit the role of

each layer. In [30], Tajbakhsh et al. showed that tuning only

a few high-level layers is more effective than tuning all

layers. Guo et al. [31] proposed an auxiliary policy network

that decides whether to use the pre-trained weights or fine-

tune them in layer-wise manner for each instance. In [18],

Ro et al. proposed an algorithm that improves fine-tuning

performance and reduces network complexity through layer-

wise pruning and auto-tuning of layer-wise learning rates.

To further reinforce auto-tuning of layer-wise learning rate,

Tanvir et al. [32] proposed RL-Tune, a layer-wise fine-tuning

framework for transfer learning which leverages reinforcement

learning (RL) to adjust learning rates as a function of the target

data shift.

The second aspect of fine-tuning is in relation to hyper-

parameter optimisation. This is because the increasing com-

plexity of deep learning architecture’s slow training is partly

caused by “vanishing gradients”. In which, the gradients

used by back-propagation are extremely large for weights

connecting deep layers (layers near the output layer), and

extremely small for shallow layers (near the input layer); this

results in slow learning in the shallow layers[33]. So, Bharat

et al. [33] proposed a method to allow larger learning rates to

compensate for the small size of gradients in shallow layers.

Since then, various approaches have been explored for better

regularization of the transfer learning with effective hyper-

parameter selection. In [34] Kornblith et al. proposed a grid-

search based approach to search for better hyper-parameters,

and Li et al. [3] provided an elaborate guideline of learn-

ing rates and other hyper-parameter selections. Furthermore,

Parker et al. proposed provably efficient online hyperparameter

optimization with population-based bandits, which is found to

be effective in optimizing RL training [35] . To improve fine-

tuning by using optimiser, Loshchilov et al. [40] designed

two robust optimisers, SGDW and AdamW, by combining

SGD [36] and Adam [37] with decoupled weight decay. The

work in [38], [39] also explored the use of two optimisers,

SGD and AdamW, on ImageNet like domains in terms of

fine-tuning accuracy. Recently, [41] found that large gaps in

performance between SGD and AdamW occur when the fine-

tuning gradients in the first “embedding” layer are much larger

than in the rest of the model, and claimed that freezing only the

embedding layer can lead to SGD performing competitively

with AdamW while using less memory.

The third aspect is neural architecture search (NAS), aiming

to adapt the architecture of a pre-trained network to match

to the characteristics of new task data. Liu et al. [24] used

a sequential model-based optimization to guide the search

through the architecture of the network. Pham et al. [25]

proposed an efficient NAS (ENAS) with parameter sharing,

which focuses on reducing the computational cost of NAS by

reusing the trained weights of candidate architectures in sub-

sequent evaluations. Lu et al. [26] proposed neural architecture

transfer (NAT) to efficiently generate task-specific custom NNs

across multiple objectives. Kim et al. [27] proposed to reduces

the search cost using given architectural information and cuts

NAS costs by early stopping to terminate the search process in

advance. In [16], Tanveer et al. developed differentiable neural

architecture search method by introducing a differentiable and

continuous search space instead of a discrete search space and

achieves remarkable efficiency, incurring a low search cost.

B. Fine-tuning in Natural Language Processing

Compared to CV, NLP models was typically more shallow

and thus require different fine-tuning methods [42]. In NLP,

Mikolov et al. [43] proposed a simple transfer technique by

fine-tuning pre-trained word embeddings, a model’s first layer,

but has had a large impact in practice and is now used in

most state-of-the-art models. To mitigate LMs’ overfitting to

small datasets, Jeremy et al. [42] proposed discriminative

language model fine-tuning to retain previous knowledge and

avoid catastrophic forgetting. In the last couple of years, large

language models, such as GPT [44] and BLOOM [45], were

developed by using mask learning on large amounts of text

data. Given the size of these large language models, fine-

tuning all the model parameters can be compute and memory

intensive [46]. Some recent studies [47], [48] have proposed

new parameter efficient fine-tuning methods that update only

a subset of the model’s parameters. As adversarial samples of

new task are usually out-of-distribution, adversarial fine-tuning

fails to memorize all the robust and generic linguistic features

already learned during pre-training. To mitigate the impacts

caused by this, Dong [49] et al. proposed to use mutual infor-

mation to measure how well an objective model memorizes the

useful features captured before. Furthermore, Mireshghallah

et al. [50] empirically studied memorization of fine-tuning

methods using membership inference and extraction attacks

as large models have a high capacity for memorizing training

samples during pre-training.

C. Fine-tuning in Speech Processing

For speech processing, fine-tuning can work not only for

language model adaptation [51], [54], but also for tuning

415

acoustic models [52], [53], [55], [56]. Fine-tuning language

models in speech processing is same as its use in NLP.

Guillaume et al. [54] developed a method using a transformer

architecture to tune a generic pre-trained representation model

for phonemic recognition. For acoustic model adaptation,

Violeta et al. [52] proposed an intermediate fine-tuning step

that uses imperfect synthetic speech to close the domain shift

gap between the pre-training and target data. Tsiamas et al.

[53] proposed to use an efficient fine-tuning technique that

trains only specific layers of our system, and explore the use

of adapter modules for the non-trainable layers. Peng et al.

[56] used fine-tuning to learn robust acoustic representation

to alleviate the mismatch between a pre-trained model and

new task data. The similar work can be also found in [57],

where Haidar et al. employed Generative Adversarial Network

(GAN) [58] to fine-tune a pre-trained model to match to the

acoustic characteristics of new task data.

III. THEORETICAL FRAMEWORK

Fine-tuning (FT) in this work is to adapt the weights (W) of a

group of layers (Ls) of a pre-trained deep neural network (DN)

given input data matrices X = {X1, X2, . . . , XM} , where M
is the number of training samples of a new task, and Xm

represents the m-th sample matrix. The aim of the proposed

approach is to find out the block BLs most relevant to the

target data. This can be represented by:

BLs,W = argmax
Ls,W

Accuray(DN(X)) (1)

To attain the aim, we designed block-wise fine-tuning. Fig.

1 shows the architectures of source model and three target

models for fine-tuning. Fig. 1(a) is the pre-trained source

model. Fig. 1(b) shows the target model (Baseline I) where

only classifier layers marked blue are to be adapted and the

weights of other layers will be freezed. Fig. 1(c) is the target

model (Baseline II), where all layers are to be re-optimised.

The two target models will be used as baseline models for a

comparison in this paper. Fig. 1 (d) show the architectures of

block-wise fine-tuning. The dash box means when a layer or

a group layers are being tuned, the weights of other layers,

except classifier layers, keep fixed.

Block-wise Fine-tuning

In a deep neural network, several adjacent layers with a

similar function can be often grouped into a block. Tuning

the weights of these layers in a block rather than all layers is

an efficient way to match the learned knowledge to a specific

task since only a relatively small part of parameters will be

adapted. Fig. 1(d) shows the architecture of block-wise fine-

tuning, starting from the input end of a deep network.

For block-wise fine-tuning, its critical step is to divide the

structure of a deep neural network into blocks. In our work,

the division can be done by non-weighting layers, such as

the Maxpooling layer and Activation layer. In some typical

deep neural networks, such as VGG16 [7] and ResNet50

[10], there include not only Convolutional layers, but also

MaxPooling, Batch Normalization, and Activation layers. The

convolutional layers in these models generally contain major

parameters, and only a relatively small number of parameters

are from other layers. This means Maxpooling layer, Batch

Normalization layer, and even Activation layers could be

viewed as a delimiter to segment a deep neural network into

blocks.

Algorithm 1 Block-wise fine-tuning (FT)

1: Load the weights, W, of a pre-trained model (DN)

2: Preprocess input data, X, and select 70% data for training

and 30% data for evaluation

3: N = # Blocks of DN
4: Initialise layer index, i = 1,

5: Initialise accuracy array, Acc = zeros(N)
6: Training:
7: While i < N
8: tune the weights of the layers in the ith block, Bi,

9: and classifier

10: Acc[i] = FT(DN(Bi, C))
11: i = i+ 1
12: EndWhile

13: Evaluation:
14: Identify the most salient block, Bopt, using Acc
15: Compare Bopt Acc to the Baselines Acc

Algorithm 1 shows the pseudo code of implementing block-

wise fine-tuning, where a while loop is run over blocks.

IV. EXPERIMENTAL SET-UP

A. Data set

The algorithms were tested on two datasets: (1) Oxford

Flowers (OXF) [4], (2) Caltech 101 (CAL) [5]. Both datasets

have more than 100 classes with varying number of images

per class. The images are color images resized to a resolution

of 224 × 224 pixels, then we scaled RGB to 0-1 range. The

datasets were split into training, validation, and testing with

ratios of 70%, 20% and 10% respectively.

B. Classifiers

The training process for this experiment involves using the

pre-trained models on the ImageNet weights, as a starting

point, and then fine-tuning the models on the datasets. We

used TensorFlow Keras library to build and train the models.

We have evaluated the performance of the algorithms on 15

commonly used pre-trained base models shown in table I. The

models had been chosen to be varying in layer numbers, and

size.

For the classifier layers, we started with a Flattening layer,

which flattens the dimensions of the output to prepare it for the

use in Fully Connected (FC) layers [62]. Then a dense layer,

with 512 units, followed by a dropout layer with a rate of 0.5 to

reduce the probability of over-fitting [64]. Then a dense layers

with 102 units respectively. The 512 units layer is activated

by a ‘relu’ function, and the final dense layer has five units,

activated by ‘softmax’ for the multi-class classification [63].

416

Classifier Layers

Layer L-1

Layer 1

Input Layer (x)

…

Source model

Pr
e-

tra
in

ed

Classifier Layers

Layer L-1

Layer 1

Input Layer (x)

…

Baseline I
fine-tuning

Classifier Layers

Layer L-1

Layer 3

Input Layer (x)

…

Block-wise
fine-tuning

Layer 2

Layer 1

Layer M

Layer L-2

…

Classifier Layers

Layer L-1

Layer 1

Input Layer (x)

…

Baseline II
fine-tuning

Block_1

Block_m

Block_k

(a) (b) (c) (d)

copy

copy

copy

…

…

Fig. 1: Architectures of source model and three target models: (a) source model (b) fine-tuning only classifier layers of

source model, (c) fine-tuning all layers of source model, (d) target model adapted by block-wise fine-tuning.

TABLE I: Tested Base Models

Base Models Abbreviation Ref.

VGG16 architecture VGG16 [7]
MobileNetV1 MN1 [60]
MobileNetV2 MN2 [9]
MobileNetV3 small MN3S [61]
MobileNetV3 large MN3L [61]
ResNet50 V2 RestNet [10]
Self Regulated Networks (2 giga flops) RegNetX002 [65]
Self Regulated Networks (4 giga flops) RegNetX004 [65]
EfficientNetV2B0 architecture EffNetV2B0 [66]
EfficientNetV2B1 architecture EffNetV2B1 [66]
EfficientnetV1B0 architecture EffNetV1B0 [67]
EfficientnetV1B1 architecture EffNetV1B1 [67]
Xception XCP [68]
NASNetMobile NasNet [69]
DenseNet121 DenNet [70]

The model is then compiled with loss function “categorical

cross-entropy”, an optimizer “Adam” and metrics as validation

“accuracy”. The model is then trained on the training data with

batch size of 24, 10 epochs and validation data and callbacks.

V. RESULTS AND ANALYSIS

Our investigation commenced by evaluating the perfor-

mance of three different models: Baseline I (BL1), Baseline

II (BL2), and individual blocks of the base models. BL1 only

fine-tunes the classifier layers, BL2 fine-tunes both the base

model layers and the classifier layers, while the individual

block models fine-tune a specific block and the classifier layers

while keeping the remaining parts of the model frozen.

To assess the performance of these models, we conducted

experiments on two datasets: OXF dataset and CAL dataset.

The accuracy results obtained on the OXF dataset are pre-

sented in Figure 2, while the accuracy results on the CAL

dataset are illustrated in Figure 3.

Upon examining the figures, it is apparent that the optimal

block (Bopt) consistently outperforms both baselines across

VG
G1
6

MN
1

MN
2

MN
3S

MN
3L

Re
stN
et

Re
gN
etX
00
2

Re
gN
etX
00
4

Eff
Ne
tV2
B0

Eff
Ne
tV2
B1

Eff
Ne
tV1
B0

Eff
Ne
tV1
B1 XC

P

Na
sN
et

De
nN
et

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra
cy

Baseline 1 Baseline 2 Bopt

Fig. 2: Bopt and baselines classification accuracy on the

OXF dataset.

VG
G1
6

MN
1

MN
2

MN
3S

MN
3L

Re
stN
et

Re
gN
etX
00
2

Re
gN
etX
00
4

Eff
Ne
tV2
B0

Eff
Ne
tV2
B1

Eff
Ne
tV1
B0

Eff
Ne
tV1
B1 XC

P

Na
sN
et

De
nN
et

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra
cy

Baseline 1 Baseline 2 Bopt

Fig. 3: Bopt and baselines classification accuracy on the

CAL dataset.

a majority of the models for both datasets. This observa-

tion demonstrates the superior performance of our proposed

approach compared to the baselines, underscoring the effec-

tiveness of selectively fine-tuning specific blocks in achieving

improved accuracy results.

417

VG
G1
6

MN
1

MN
2

MN
3S

MN
3L

Re
stN
et

Re
gN
etX
00
2

Re
gN
etX
00
4

Eff
Ne
tV2
B0

Eff
Ne
tV2
B1

Eff
Ne
tV1
B0

Eff
Ne
tV1
B1 XC

P

Na
sN
et

De
nN
et

0.0

0.2

0.4

0.6

0.8

1.0
Ac
cu
ra
cy

Baseline 1 Baseline 2 First Block Last Block

Fig. 4: Classification accuracy of OXF dataset showing the

first and last blocks.

VG
G1
6

MN
1

MN
2

MN
3S

MN
3L

Re
stN
et

Re
gN
etX
00
2

Re
gN
etX
00
4

Eff
Ne
tV2
B0

Eff
Ne
tV2
B1

Eff
Ne
tV1
B0

Eff
Ne
tV1
B1 XC

P

Na
sN
et

De
nN
et

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra
cy

Baseline 1 Baseline 2 First Block Last Block

Fig. 5: Classification accuracy of CAL dataset showing the

first and last blocks.

Subsequently, we further explored the performance of all the

blocks to gain insights into a method for identifying the most

salient block. The results of this investigation are presented in

Appendix A. Upon analyzing the figure, it becomes apparent

that pinpointing the exact block that would yield optimal

performance is uncertain. However, there is a discernible

pattern that emerges from the results.

To gain a deeper understanding of the performance of the

blocks, we compared the performance of the baselines with

the first and last blocks for all the models. The results of this

comparison are presented in Figure 4 for the OXF dataset and

Figure 5 for the CAL dataset. From the figures, it becomes

evident that the last block consistently outperforms both the

baselines and the first block. This indicates the significance of

the final block in achieving improved performance. However,

it is important to note that the last block does not necessarily

correspond to the optimized block (Bopt) shown in Figures 2

and 3. The comparison highlights the complexity of identifying

the most salient block, as the optimized block may not always

be the last block in the model architecture.

Based on our findings, we can draw a general conclusion

that selecting the blocks closer to the classifier layers of almost

any base model will result in improved performance compared

to the baselines, leading to higher classification accuracy.

To further illustrate this, we present box plots in Figure 6 for

Q1 Q2 Q3 Q4 BL1 BL2
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra
cy

Fig. 6: Box plot representing the classification accuracy of

all base models on the OXF dataset. The plot showcases

both the baseline accuracies and the results of block-wise

fine-tuning for each quarter of the blocks.

Q1 Q2 Q3 Q4 BL1 BL2
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra
cy

Fig. 7: Box plot representing the classification accuracy of

all base models on the CAL dataset. The plot showcases

both the baseline accuracies and the results of block-wise

fine-tuning for each quarter of the blocks.

the OXF dataset and Figure 7 for the CAL dataset. These box

plots display the performance of all the models per quarter,

including the baselines. The blocks here are equally divided

into four quarters. Q1,2,3,4 covers the first 25% blocks, the

middle two 25% layers, and the last 25% layers close to the

target layer, respectively.

By examining these figures, we observe that the blocks

from the fourth quarter consistently outperform the baselines,

as evidenced by the higher accuracy values. Furthermore we

can observe that the inter quarterly rang for the block-wise

strategy is much smaller than BL1. This further supports

our conclusion that selecting a block from the fourth quarter

(the last 25% of the blocks) yields better performance and

increased classification accuracy compared to the baselines.

Furthermore the performance would be much more reliable

and consistent using the block-wise strategy.

VI. CONCLUSION AND FUTURE WORK

In this study, we proposed and evaluated a block-wise

fine-tuning approach for optimizing the performance of pre-

trained deep neural networks on new tasks. The experimental

evaluation was conducted on two datasets, Oxford Flowers

418

(OXF) and Caltech 101 (CAL), using 15 commonly used pre-

trained base models.

The results demonstrated that the block-wise approach con-

sistently outperformed the baselines, Baseline I (tuning only

the classifier layers) and Baseline II (tuning all layers), in

terms of classification accuracy. The optimal block, although

varying across models, consistently yielded better performance

than the baselines. Furthermore, analysis of the first and last

blocks revealed the superiority of the last block, indicating its

importance in achieving improved performance. However, it

should be noted that the optimized block does not necessarily

correspond to the last block, emphasizing the complexity of

identifying the most salient block within a base model.

Moreover, the investigation revealed a pattern where select-

ing a block from the fourth quarter of a base model generally

resulted in improved performance compared to the baselines.

This finding provides valuable insights for selecting the most

relevant block in the block-wise fine-tuning process.

In conclusion, the block-wise fine-tuning approach demon-

strated higher accuracy and reliability compared to the base-

lines. It offers a practical and effective method for adapting

pre-trained base models to new tasks by selectively tuning

specific blocks rather than the entire network.

Future research directions include exploring the effective-

ness of block-wise fine-tuning on different types of models,

investigating additional performance metrics beyond classifica-

tion accuracy, developing advanced algorithms for automated

selection of the optimal block, and extending the evaluation

to other datasets and tasks. By pursuing these directions, can

further enhance our understanding of block-wise fine-tuning

and develop more efficient and accurate strategies for adapting

pre-trained models to new tasks.

APPENDIX

The classification accuracy for each block for both datasets

are presented in Figure 8

REFERENCES

[1] Rupesh Kumar Srivastava, Klaus Greff, Jurgen Schmidhuber, “Training
Very Deep Networks”, in Proceedings of the 28th International Confer-
ence on Neural Information Processing Systems, pp. 2377–2385, 2015.

[2] Bansal, M. A., Sharma, D. R., and Kathuria, D. M. A, “Systematic review
on data scarcity problem in deep learning: Solution and applications”, in
ACM Computing Surveys(CSUR), 2020.

[3] Li, H., Chaudhari, P., Yang, H., Lam, M., Ravichandran, A., Bhotika,
R., and Soatto, S., “Rethinking the hyperparameters for fine-tuning”, in
International Conference on Learning Representation (ICLR), 2020.

[4] M. -E. Nilsback and A. Zisserman, ”Automated Flower Classification over
a Large Number of Classes,” 2008 Sixth Indian Conference on Computer
Vision, Graphics & Image Processing, Bhubaneswar, India, 2008, pp.
722-729, doi: 10.1109/ICVGIP.2008.47.

[5] Li, F.-F., Andreeto, M., Ranzato, M., and Perona, P. (2022). Caltech 101
(1.0) [Data set]. CaltechDATA. https://doi.org/10.22002/D1.20086

[6] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael
Bernstein, Alexander C. Berg & Li Fei-Fei, “ImageNet Large Scale Visual
Recognition Challenge”, in International Journal of Computer Vision,
volume 115, pp. 211–252, 2015.

[7] Karen Simonyan and Andrew Zisserman, “Very Deep Convolutional Net-
works for Large-Scale Image Recognition”, in International Conference
on Learning Representations, 2015.

[8] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and
Zbigniew Wojna, “Rethinking the inception architecture for computer
vision”, In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2818–2826, 2016.

[9] Andrew G. Howard and Menglong Zhu and Bo Chen and Dmitry
Kalenichenko and Weijun Wang and Tobias Weyand and Marco An-
dreetto and Hartwig Adam, “MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications”, ArXiv, abs/1704.04861, 2017.

[10] He, K., Zhang, X., Ren, S. and Sun, J., 2016. Identity mappings in
deep residual networks. In Computer Vision–ECCV 2016: 14th Euro-
pean Conference, Amsterdam, The Netherlands, October 11–14, 2016,
Proceedings, Part IV 14 (pp. 630-645). Springer International Publishing.

[11] Yaxing Wang, Chenshen Wu, Luis Herranz, Joost van de Weijer, Abel
Gonzalez-Garcia, Bogdan Raducanu, “Transferring GANs: generating
images from limited data”, in European Conference on Computer Vision,
pp. 220–236, 2018

[12] Jiamei Sun, Sebastian Lapuschkin, Wojciech Samek, Alexander Binder,
“Explain and Improve: LRP-Inference Fine-Tuning for Image Captioning
Models”, in Information Fusion, vol.77, pp. 233–246, 2022.

[13] Jaemin Cho, Seunghyun Yoon, Ajinkya Kale, Franck Dernoncourt,
Trung Bui, Mohit Bansal, “Findings of the Association for Computational
Linguistics”, in NAACL, pp. 517–527, 2022.

[14] Zongwei Zhou, Jae Shin, Lei Zhang, Suryakanth Gurudu, Michael
Gotway, and Jianming Liang, “Fine-tuning Convolutional Neural Net-
works for Biomedical Image Analysis: Actively and Incrementally?”, in
Computer Vision and Pattern Recognition, pp. 7340–7351, 2017

[15] Simon Kornblith, Jonathon Shlens, and Quoc V. Le., “Do better imagenet
models transfer better?”, in Computer Vision and Pattern Recognition
(CVPR), pp. 2661–2671, 2019.

[16] M. Tanveer, M. Karim Khan and C. Kyung, “Fine-Tuning DARTS for
Image Classification”, in International Conference on Pattern Recognition
(ICPR), pp. 4789–4796, Milan, Italy, 2021.

[17] Heechul Jung Sihaeng Lee Junho Yim Sunjeong Park Junmo Kim,
“Joint Fine-Tuning in Deep Neural Networks for Facial Expression
Recognition”, in International Conference on Computer Vision, pp. 2983-
2991, 2015.

[18] Younmgin Ro1, Jin Young Choi, “AutoLR: Layer-wise Pruning and
Auto-tuning of Learning Rates in Fine-tuning of Deep Networks”, in
AAAI Conference on Artificial Intelligence, pp. 2486–2494, 2021

[19] Hamdi, S., Snoussi, H., Abid, M., “Fine-Tuning a Pre-trained CAE
for Deep One Class Anomaly Detection in Video Footage”, in Pattern
Recognition and Artificial Intelligence, Communications in Computer and
Information Science, vol 1322. Springer, 2020.

[20] Rippel, O., Chavan, A., Lei, C., and Merhof, D., “Transfer Learning
Gaussian Anomaly Detection by Fine-Tuning Representations”, in ArXiv,
abs/2108.04116., 2021.

[21] Jhih-Ciang Wu, Ding-Jie Chen, Chiou-Shann Fuh, and Tyng-Luh Liu,
“Learning Unsupervised Metaformer for Anomaly Detection”, in Inter-
national Conference on Computer Vision, pp. 4369–4378, 2021.

[22] Jian Xu, Cunzhao Shi, Chengzuo Qi, Chunheng Wang, Baihua Xiao,
“Unsupervised Part-Based Weighting Aggregation of Deep Convolutional
Features for Image Retrieval”, in Proceedings of the AAAI Conference on
Artificial Intelligence, pp. 7436–7443, vol.32, no.1, 2018.

[23] F. Radenović, G. Tolias and O. Chum, “Fine-Tuning CNN Image
Retrieval with No Human Annotation”, in IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 41, no. 7, pp. 1655–1668, 2019.

[24] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-
Fei, A. Yuille, J. Huang, and K. Murphy, “Progressive neural architecture
search”, in Lecture Notes in Computer Science, pp. 1–16, 2018.

[25] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, J. Dean, “Efficient neural
architecture search via parameter sharing”, in Proc. of the International
Conference on Machine Learning, pp. 4092–4101, 2018

[26] Z. Lu, G. Sreekumar, E. D. Goodman, W. Banzhaf, K. Deb, V. N.
Boddeti, “Neural architecture transfer”, in IEEE transactions on pattern
analysis and machine intelligence, vol.43, no.9, pp. 2971–2989, 2021.

[27] Youngkee Kim, Won Joon Yun, Youn Kyu Lee, Soyi Jung,
Joongheon Kim, “Two-stage architectural fine-tuning with neural ar-
chitecture search using early-stopping in image classification”, in
https://doi.org/10.48550/arXiv.2202.08604, 2022.

[28] Yosinski, J., Clune, J., Bengio, Y., and Lipson, H., “How transferable
are features in deep neural networks?”, in Advances in neural information
processing systems, pp. 3320–3328, 2014.

419

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5

Te
st

 A
cc

ru
ra

cy

Block Number

VGG16

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 2 3 4 5 6 7 8 9 10 11 12 13

Te
st

 A
cc

ru
ra

cy

Block Number

MN1
OXF CAL

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Te
st

 A
cc

ru
ra

cy

Block Number

MN2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10

Te
st

 A
cc

ru
ra

cy

Block Number

MN3S

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Te
st

 A
cc

ru
ra

cy

Block Number

MN3L

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6

Te
st

 A
cc

ru
ra

cy

Block Number

ResNet

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Te
st

 A
cc

ru
ra

cy

Block Number

XCP

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10 11 12

Te
st

 A
cc

ru
ra

cy

Block Number

NasNet

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Te

st
 A

cc
ru

ra
cy

Block Number

DesNet

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7

Te
st

 A
cc

ru
ra

cy

Block Number

EffNetV1B0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7

Te
st

 A
cc

ru
ra

cy

Block Number

EffNetV1B1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6

Te
st

 A
cc

ur
ac

y

Block Number

EffNetV2B0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6

Te
st

 A
cc

ur
ac

y

Block Number

EffNetV2B1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 1 2 3 4 5 6

Te
st

 A
cc

ur
ac

y

Block Number

RgnetX02

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 2 3 4 5 6 7 8 9 10 11 12

Te
st

 A
cc

ur
ac

y

Block Number

RgNetX04

Fig. 8: Classification accuracy per block number for both datasets.

420

[29] Zeiler, M. D., Fergus, R., “Visualizing and understanding convolutional
networks”, in The European Conference on Computer Vision (ECCV), pp.
818–833, 2014.

[30] Tajbakhsh, N., Shin, J. Y., Gurudu, S. R., Hurst, R. T., Kendall, C. B.,
Gotway, M. B., and Liang, J., “Convolutional neural networks for medical
image analysis: Full training or fine tuning?”, in IEEE transactions on
medical imaging vol.35(5), pp. 1299–1312, 2016.

[31] Guo, Y., Shi, H., Kumar, A., Grauman, K., Rosing, T., and Feris, R.,
“SpotTune: transfer learning through adaptive fine-tuning”, in Proceed-
ings of the IEEE conference on computer vision and pattern recognition
(CVPR), pp. 4805–4814, 2019.

[32] Tanvir Mahmud and Natalia Frumkin and Diana Marculescu, “RL-
Tune: A Deep Reinforcement Learning Assisted Layer-wise Fine-Tuning
Approach for Transfer Learning”, in First Workshop on Pre-training:
Perspectives, Pitfalls, and Paths Forward at ICML, 2022.

[33] Bharat Singh and Soham De and Yangmuzi Zhang and Thomas A.
Goldstein and Gavin Taylor, “Layer-Specific Adaptive Learning Rates
for Deep Networks”, in IEEE 14th International Conference on Machine
Learning and Applications (ICMLA), pp. 364–368, 2015

[34] Kornblith, S., Shlens, J., and Le, Q. V., “Do better imagenet models
transfer better?”, in Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pp. 2661–2671, 2019.

[35] Parker-Holder, J., Nguyen, V., and Roberts, S. J., “Provably efficient
online hyperparameter optimization with population-based bandits”, in
Advances in Neural Information Processing Systems, vol.33, pp. 17200–
17211, 2020.

[36] Bottou, Léon, Bousquet, Olivier, “The Tradeoffs of Large Scale Learn-
ing”, In Optimization for Machine Learning, Cambridge, MIT Press. pp.
351–368, 2012.

[37] Kingma, D. P., Ba, L. J., “Adam: A method for Stochastic Optimization”,
in International Conference on Learning Representations (ICLR), 2015.

[38] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko- reit, and Neil
Houlsby, “An image is worth 16x16 words: Transformers for image recog-
nition at scale”, in International Conference on Learning Representations
(ICLR), 2021.

[39] Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and
Percy Liang, “Fine-tuning can distort pretrained features and under-
perform out-of-distribution”, in International Conference on Learning
Representations (ICLR), 2022

[40] Ilya Loshchilov and Frank Hutter, “Decoupled weight decay regulariza-
tion”, in International Conference on Learning Representations, 2019.

[41] Kumar, Ananya and Shen, Ruoqi and Bubeck, Sébastien and Gu-
nasekar, Suriya, “How to Fine-Tune Vision Models with SGD”, in
https://arxiv.org/abs/2211.09359, 2022

[42] Jeremy Howard and Sebastian Ruder, “Universal Language Model Fine-
tuning for Text Classifier”, in Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics, pp. 328–339, 2018.

[43] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean, “Distributed
Representations of Words and Phrases and their Compositionality”, in
Advances in Neural Information Processing Systems, pp. 3111–3119,
2013.

[44] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal,
P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al., “Language
models are few-shot learners”, in Advances in Neural Information Pro-
cessing Systems, 2020.

[45] Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilic
et al., “BLOOM: A 176B-Parameter Open-Access Multilingual Language
Model”, in https://doi.org/10.48550/arXiv.2211.05100, 2022.

[46] Fedus, W., Zoph, B., and Shazeer, N., “Switch transformers: Scaling to
trillion parameter models with simple and efficient sparsity”, in Journal
of Machine Learning Research, vol.23, pp. 1–39, 2022.

[47] Li, X. L. and Liang, P., “ Prefix-tuning: Optimizing continuous prompts
for generation”, in 59th Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint Conference on Natural
Language Processing, pp. 4582–4597, 2021.

[48] He, J., Zhou, C., Ma, X., Berg-Kirkpatrick, T., and Neubig, G., “Towards
a unified view of parameter-efficient transfer learning”, in International
Conference on Learning Representations (ICLR), 2022.

[49] Xinhsuai Dong, Luu Anh Tuan, Min Lin, Shuicheng Yan, Hanwang
Zhang, “How Should Pre-Trained Language Models Be Fine-Tuned
Towards Adversarial Robustness?”, in 35th Conference on Neural In-
formation Processing System, 2021.

[50] Fatemehsadat Mireshghallah, Archit Uniyal, Tianhao Wang, David
Evans, Taylor Berg-Kirkpatrick, “Memorization in NLP Fine-tuning
Methods”, in https://doi.org/10.48550/arXiv.2205.12506, 2022.

[51] Wen-Chin Huang and Chia-Hua Wu and Shang-Bao Luo and Kuan-Yu
Chen and Hsin-Min Wang and Tomoki Toda, “Speech Recognition by
Simply Fine-Tuning Bert”, in ICASSP 2021 - 2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
7343–7347, 2021.

[52] Violeta, L., Ma, D., Huang, Wen-Chin and Toda, T., “Intermediate Fine-
Tuning Using Imperfect Synthetic Speech for Improving Electrolaryngeal
Speech Recognition”, in 10.48550/arXiv.2211.01079, 2022

[53] Ioannis Tsiamas, Gerard I. Gállego, Carlos Escolano, José A. R. Fonol-
losa, Marta R. Costa-jussà, “Pretrained Speech Encoders and Efficient
Fine-tuning Methods for Speech Translation: UPC at IWSLT 2022”, in
Proceedings of the 19th International Conference on Spoken Language
Translation (IWSLT 2022), pp. 265–276, 2022.

[54] Séverine Guillaume, Guillaume Wisniewski, Cécile Macaire, “Fine-
tuning pre-trained models for Automatic Speech Recognition: experi-
ments on a fieldwork corpus of Japhug”, in Proceedings of the Fifth
Workshop on the Use of Computational Methods in the Study of Endan-
gered Languages, pp. 170–178, 2022.

[55] Jan Vanek, Josef Michálek and Josef Psutka, “Tuning of Acoustic
Modeling and Adaptation Technique for a Real Speech Recognition
Task”, in International Conference on Statistical Language and Speech
Processing, pp. 235–245, 2019.

[56] Linkai Peng, Kaiqi Fu, Binghuai Lin, Dengfeng Ke, Jinsong Zhang, “A
study on fine-tuning wav2vec2.0 Model for the task of Mispronunciation
Detection and Diagnosis”, in InterSpeech, pp. 4448–4451, 2021.

[57] Haidar, M. A. and Rezagholizadeh, M., “Fine-Tuning of Pre-Trained
End-to-End Speech Recognition with Generative Adversarial Networks”,
in IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 6204–6208, 2021.

[58] Goodfellow, Ian etc., “Generative Adversarial Nets”, in Proceedings of
the International Conference on Neural Information Processing Systems,
pp. 2672–2680, 2014.

[59] Saini, M., Susan, S. Bag-of-Visual-Words codebook generation us-
ing deep features for effective classification of imbalanced multi-
class image datasets. Multimed Tools Appl 80, 20821–20847 (2021).
https://doi.org/10.1007/s11042-021-10612-w

[60] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W.,
Weyand, T., Andreetto, M., ; Adam, H. (2017). MobileNets: Effi-
cient Convolutional Neural Networks for Mobile Vision Applications.
https://doi.org/10.48550/arxiv.1704.04861

[61] A. Howard et al., ”Searching for MobileNetV3,” 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), Seoul, Korea
(South), 2019, pp. 1314-1324, doi: 10.1109/ICCV.2019.00140.

[62] Chollet, F., 2021. Deep learning with Python. Simon and Schuster.
[63] Goodfellow, I., Bengio, Y. and Courville, A., 2016. ‘Deep learning’.

MIT press.
[64] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhut-

dinov, R., 2014. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research, 15(1), pp.1929-
1958.

[65] J. Xu, Y. Pan, X. Pan, S. Hoi, Z. Yi and Z. Xu, ”RegNet: Self-Regulated
Network for Image Classification,” in IEEE Transactions on Neural
Networks and Learning Systems, doi: 10.1109/TNNLS.2022.3158966.

[66] Tan, M. and Le, Q., 2021, July. Efficientnetv2: Smaller models and faster
training. In International conference on machine learning (pp. 10096-
10106). PMLR.

[67] Tan, M. and Le, Q., 2019, May. Efficientnet: Rethinking model scaling
for convolutional neural networks. In International conference on machine
learning (pp. 6105-6114). PMLR.

[68] F. Chollet, ”Xception: Deep Learning with Depthwise Separable Con-
volutions,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Honolulu, HI, USA, 2017 pp. 1800-1807.

[69] Zoph, B., Vasudevan, V., Shlens, J. and Le, Q.V., 2018. Learning
transferable architectures for scalable image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition (pp.
8697-8710).

[70] G. Huang, Z. Liu, L. Van Der Maaten and K. Weinberger, ”Densely
Connected Convolutional Networks,” in 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017
pp. 2261-2269.

421

