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Abstract

Cortical signals have been shown to track acoustic and linguistic properties of continuous

speech. This phenomenon has been measured in both children and adults, reflecting

speech understanding by adults as well as cognitive functions such as attention and pre-

diction. Furthermore, atypical low-frequency cortical tracking of speech is found in chil-

dren with phonological difficulties (developmental dyslexia). Accordingly, low-frequency

cortical signals may play a critical role in language acquisition. A recent investigation with

infants Attaheri et al., 2022 [1] probed cortical tracking mechanisms at the ages of 4, 7

and 11 months as participants listened to sung speech. Results from temporal response

function (TRF), phase-amplitude coupling (PAC) and dynamic theta-delta power (PSD)

analyses indicated speech envelope tracking and stimulus-related power (PSD) for delta

and theta neural signals. Furthermore, delta- and theta-driven PAC was found at all ages,

with theta phases displaying stronger PAC with high-frequency amplitudes than delta.

The present study tests whether these previous findings replicate in the second half of the

full cohort of infants (N = 122) who were participating in this longitudinal study (first half: N

= 61, (1); second half: N = 61). In addition to demonstrating good replication, we investi-

gate whether cortical tracking in the first year of life predicts later language acquisition for

the full cohort (122 infants recruited, 113 retained) using both infant-led and parent-esti-

mated measures and multivariate and univariate analyses. Increased delta cortical track-

ing in the univariate analyses, increased ~2Hz PSD power and stronger theta-gamma

PAC in both multivariate and univariate analyses were related to better language out-

comes using both infant-led and parent-estimated measures. By contrast, increased

~4Hz PSD power in the multi-variate analyses, increased delta-beta PAC and a higher

theta/delta power ratio in the multi-variate analyses were related to worse language
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outcomes. The data are interpreted within a “Temporal Sampling” framework for develop-

mental language trajectories.

1 Introduction

Infant speech perception develops rapidly during the first year of life, yet our understanding of

the neural factors underpinning language acquisition is still incomplete. Whilst infant behav-

ioral experiments have highlighted perceptual factors contributing to early phonological and

morphological development, for example perceptual ‘magnet’ effects whereby native language

phonetic category prototypes pull neighbouring speech sounds towards them [2], the neural

mechanisms supporting infant language acquisition are poorly understood. Information about

neural mechanisms could eventually identify early neural markers of developmental disorders

of language, as neural processing is automatic and key neural mechanisms may differ in their

efficiency between infants. To explore this possibility, here we contribute novel longitudinal

neural data from a relatively large sample of 113 infants, utilising EEG recordings taken during

the first year of life while infants listened to sung or rhythmically spoken (chanted) nursery

rhymes. Nursery rhymes were chosen because of their rhythmic properties, as infant beha-

vioural research has suggested that a sensitivity to acoustic rhythm is a universal precursor of

language acquisition [3]. A priori, it was expected that individual differences in infants’ cortical

tracking of sung and chanted speech may predict later language outcomes. Accordingly, a

range of neural measures are used to explore relations with subsequent language acquisition

using a selection of standardised and experimental phonological, gestural and lexical measures

administered between 12 to 24 months of age [4].

The auditory neuroscience of adult speech processing has revealed that accurate encoding

via neuronal oscillations of amplitude modulations (AMs) nested in the envelope of the speech

signal is fundamental to many different aspects of language processing [5–12]. Regarding ear-

lier development, and building on these adult insights, Temporal Sampling (TS) theory

describes how the low-frequency neural oscillations that encode speech rhythm patterns may

be key to learning and extracting phonological information from the speech signal [13,14].

According to TS theory, auditory cortical networks operating at delta, theta, beta and gamma

frequencies ‘sample’ the envelope of the speech signal at matched frequencies, thereby under-

pinning the phonological (linguistic) encoding of speech by infants and children. Cortical sig-

nals have been shown to track various key properties of speech, using methodological

advances such as Temporal Response Functions (TRFs), an analysis technique that explores

how neural signals encode continuous sensory stimuli. Adult TRF studies have revealed how

cortical tracking of the speech envelope reflects both bottom-up and top-down cortical pro-

cesses in adult listeners, linking to selective attention, prediction, signal parsing and speech

intelligibility [7–9,15–18]. Recent infant EEG data have revealed robust cortical tracking of the

speech envelope [19–21], particularly in the delta and theta frequency bands [1]. Indeed, pat-

terns of cortical tracking in delta and theta frequency bands make distinct contributions to

speech encoding by adults [7], and there is evidence for preferential tracking in the delta band

during the first year of life (*0.5Hz–4 Hz, see 1,22). Consequently, TS theory proposes that

language acquisition by infants may depend in part on successful low-frequency cortical track-

ing of speech envelope information. This hypothesis regarding low-frequency cortical tracking

is tested here by using TRFs.

Further, low-frequency cortical oscillations do not work in isolation from each other but

show dynamic interactions during speech processing. There is a nested hierarchy of cortical
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oscillations that matches the frequency of multiple components of the speech signal [22]. Low-

frequency (delta, theta) neural phase dynamics temporally organize the amplitude of high-fre-

quency signals in a process known as phase-amplitude coupling (PAC; [23–25]). Adult

electrophysiological and MEG recordings have shown that PAC between delta-gamma, delta-

beta and theta-gamma is induced in response to continuous speech [22,26,27], as well as to

rhythmic speech stimuli (sung and chanted nursery rhymes, [28]). PAC is thought to group

speech information into linguistic units [6,29], and accordingly could constitute another

source of individual differences in language acquisition. Like natural speech, rhythmic speech

induces PAC in infants and adults [1,28]. Interestingly, PAC emerges as early as 4 months of

age and remains stable, while both delta- and theta-band cortical tracking show developmental

changes over the first year of life [1]. Whilst the exact mechanisms linking PAC and language

processing are still being explored in the adult literature, it is clear from this literature that

PAC plays a key role in the encoding processes that are necessary for phonological learning

and speech comprehension [18,22,26]. Therefore, it is likely that successful PAC in infants

may relate to later language outcomes.

Studies relating infant cortical tracking to later language outcomes are rare [30]. However,

infants at risk for dyslexia differ from not-at-risk infants in measures of acoustic processing

that relate to cortical tracking, with implications for later language development [31]. Mean-

while, research on the role of cortical dynamics in language development has progressed by

studying older children with language difficulties. For example, recent EEG modelling studies

[32] based on TS theory have shown that delta-theta PAC during passive story listening is atyp-

ical in children with developmental language disorder (DLD) while the theta/delta power ratio

during passive story listening is atypical in children with developmental dyslexia. Children

with dyslexia have poor phonological processing skills while children with DLD have poor syn-

tactic skills. Based on [32], we can expect that individual differences in the theta/delta power

ratio for infants may also predict subsequent language development. Furthermore, previous

electrophysiological and magnetoencephalography studies testing TS theory with children

with dyslexia have revealed a significant role for delta band encoding in both phonological and

vocabulary development [33–36]. Filtered speech interventions that enhance delta-band infor-

mation also improve the theta-delta oscillatory power ratio during speech listening for dyslexic

children [34]. These neural data from children suggest that cortical tracking within specific

low-frequency bands (i.e. delta, 0.5–4 Hz and theta, 4–8 Hz) and their interactive dynamics

may be central to language acquisition by infants [13,37,38].

In the current study, we explore the potential role of individual differences in low-fre-

quency cortical tracking, PAC and theta-delta power relations in predicting individual differ-

ences in later language acquisition. Participating infants were drawn from the Cambridge UK

BabyRhythm project, a longitudinal study of 122 infants (122 recruited, 113 retained) from

two- to 42-months-of-age, investigating early neural and motor tracking of auditory, visual

and audiovisual rhythms in relation to language outcomes. Here we examine whether

increases in low-frequency EEG power spectral density (PSD) in the delta and theta range,

low-frequency cortical tracking (delta, theta and alpha; alpha band data are used as a control

band, as TS theory does not accord a role to alpha-band cortical tracking regarding initial lan-

guage acquisition) and PAC in response to rhythmic audiovisual speech predict performance

on multiple language and communication measures administered in later infancy and toddler-

hood. EEG data were collected longitudinally at 4-, 7- and 11-months in response to both

nursery rhymes and during a silent state control period. The neural outcome measures were

then used to predict subsequent performance in phonological, gestural and lexical measures

taken from 12 to 24 months of age. It was expected that stronger cortical tracking would be

predictive of better language outcomes [30]. As PAC did not show development with age in
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[1], no strong predictions were made. However, given the DLD modelling data noted earlier

[39], poorer theta-driven PAC may be linked to worse language outcomes. Further, given the

dyslexia modelling data, a higher theta/delta power ratio may be linked to worse language out-

comes [39]. In Araújo et al. (2024), higher ratios in the dyslexic group were not driven by

group differences in either delta or theta power per se, but by their joint dynamics.

2 Materials and methods

2.1 Infant participants and ethics

All the data reported here are from the longitudinal Cambridge UK BabyRhythm project (122

infants recruited, 113 retained). The cohort was split into two halves based on recruitment

date, to allow for confirmatory analyses of neural factors by comparing EEG data from the first

and second halves of the cohort. The present results primarily address findings from the sec-

ond half of the sample. Although results from the first half of the sample are reported in [1]; it

is important to highlight that minor discrepancies exist between the values presented here and

those in [1]. These variations stem from nuanced adjustments made to the analytical methods,

elaborated upon within each respective section. Due to participant withdrawals, missed

appointments and data exclusion the final number of data points for the second half of the

sample was, ~4-months (N = 56), ~7-months (N = 51), ~11-months (N = 52). Missing data

were due to missed appointments or technical issues with the data files, ~4-months (N = 4),

~7-months (N = 10) and ~11-months (N = 7). Other infants were excluded due to having

fewer than 42 data epochs available after pre-processing, ~4-months (N = 1), ~7-months

(N = 0) and ~11-months (N = 2).

The two halves of the cohort were then combined for the novel language analyses reported

here (language outcome data were still being collected when Attaheri et al., 2022 [1] was being

prepared). The full cohort provided EEG data for analysis as follows, ~4-months (N = 110,

aged 115.5 ± 5.0 days), ~7-months (N = 104, aged 213.5 ± 6.1 days) and ~11-months (N = 107,

aged 333.6, ± 5.0 days) [mean ± standard deviation (SD)].

Infants were recruited from a medium sized city in the United Kingdom and surround-

ing areas (recruitment period 01/10/16 to 19/12/18) via multiple means including flyers in

hospitals, schools and antenatal classes, research presentations at maternity classes and

online advertising. All infants were born full term (37–42 gestational weeks) and had no

diagnosed developmental disorder. The study was reviewed by the Psychology Research

Ethics Committee of the University of Cambridge. Parents gave written informed consent

after a detailed explanation of the study and families were reminded that they could with-

draw from the study at any point during the repeated appointments (8 EEG recordings at 2-

, 4-, 5-, 6-, 7-, 8-, 9- and 11-months; 6 language follow-ups at 12-, 15-, 18-, 24-, 30- and 42-

months). For the current report, the EEG data collected at 4, 7 and 11 months are utilized,

as the nursery rhyme stimuli were only presented to the infant during these recording visits.

The language outcome data are analysed using EEG measures computed from the full Cam-

bridge UK BabyRhythm cohort (N = 113) rather than separating the first and second halves

of the cohort.

2.2 Stimuli

A selection of 18 common English language nursery rhymes were chosen as the stimuli.

Audio-visual stimuli of a singing female (head only) were recorded using a Canon XA20 video

camera at 1080p, 50fps and with audio at 4800 Hz. A native female speaker of British English

used infant directed speech to melodically sing (for example “Mary Mary Quite Contrary”) or

rhythmically chant (for nursery rhymes like “There was an old woman who lived in a shoe”)
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the nursery rhymes whilst listening to a 120 bpm metronome played to one ear. Although the

nursery rhymes had a range of beat rates and indeed some utilized a 1 Hz rate, the metronome

was used to keep the singer on time. The beat was not present on the stimulus videos, but it

ensured that a consistent quasi-rhythmic production was maintained throughout the 18 nurs-

ery rhymes. To ensure natural vocalisations the nursery rhyme videos were recorded while

being sung or rhythmically chanted to an alert infant.

2.3 EEG data collection

Infants were seated in a highchair (with neck pillow support if required) approximately one

meter in front of their primary care giver, within a sound-proof acoustic chamber (on occasion

it was necessary for the infant to sit on the lap of the primary care giver). EEG data were

recorded at a sampling rate of 1000 Hz using a GES 300 amplifier connected to an appropri-

ately sized 64 channel infant net (Geodesic Sensor Net, Electrical Geodesics Inc., Eugene, OR,

USA). The infant was seated ~650mm away from the presentation screen and sounds were

presented at 60dB (checked by sound level meter) from speakers (Q acoustics 2020i driven by

a Cambridge Audio Topaz AM5 stereo amplifier) placed either side of the screen. Whilst the

infant attended to the screen, 18 nursery rhyme videos were randomized and then played

sequentially in a block, each block was then repeated 3 times (54 videos, with a presentation

time of 20’ 33” in total). If the infant lost attention to the screen an attention grabber video was

played at the end of that nursery rhyme. If the infant became too fussy a short break was

allowed before continuing, otherwise the session was ended. All infants included for analysis

listened to at least 2 repetitions of each nursery rhyme (minimum of 36 nursery rhymes, lasting

13’ 42”). This stimulus period was followed by 5 minutes of silent recording (hereafter silent

state). The silent state was recorded after the nursery rhymes, and commenced after a 2-minute

break to check on the welfare of the participant and parent. The nursery rhymes were given

first in order to maximise infant attention. Note that this may risk stimulus after-effects during

the silent state [40], however the time-course of cortical tracking of the EEG signal is not com-

parable to fNIRs [5,41]. Whilst recent studies have found oscillatory after-effects in infant EEG

[42,43] such after-effects would work against our hypothesis by making it more difficult to

demonstrate cortical tracking when comparing the nursery rhyme data to the silent state data,

making the PSD and TRF analyses more stringent. To ensure compliance from the infant, and

therefore a good EEG signal during the silent state, it was sometimes necessary for a researcher

to sit alongside the infant. To ensure consistency across participants, the researcher performed

the same action of silently blowing bubbles and showing the same picture book to the infant

during this period.

2.4 EEG preprocessing

All analyses were conducted with custom-made scripts in Matlab 2017a (The MathWorks,

Inc., Natick, MA) incorporating the EEGLab toolbox [44]. The EEG data recorded in response

to the nursery rhymes and the silent state were treated as one continual data set for the initial

preprocessing steps. Therefore, they underwent the same cleaning and filtering procedure

prior to epoching. The 60 EEG channels (present on the infant-sized EGI Geodesic sensor

nets) were filtered using the pop_eegfiltnew function from the EEGLab toolbox. The data were

either filtered into a broadband signal for PSD and PAC analysis (0.5–45 Hz, methods for later

filtering into PAC bands detailed in section 2.6) or into specific frequency bands for the mTRF

analyses: delta (0.5–4 Hz), theta (4–8 Hz), or alpha (control band, 8–12 Hz). A zero-phase

bandpass Hamming-windowed FIR filter was used, with transition band widths of 2 Hz and

cut-off frequencies at -6 dB (0–46 Hz, 0–5 Hz, 3–9 Hz, and 7–13 Hz, respectively). Next, the
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EEG data were then down sampled to 100 Hz to reduce computational load. Artifact Subspace

Reconstruction (ASR; clean_asr EEGLab function [44,45]) was used separately on each of

the data sets to clean noise artifacts from the data by identifying and removing bad principal

components via a modified PCA procedure (see [1]). ASR effectively removed the transient

or large-amplitude artifacts common in infant EEG data. Further bad channels were identi-

fied via probability and kurtosis and were interpolated (via spherical interpolation). A chan-

nel was rejected and interpolated if it was 3SD away from the mean (average number of

interpolated channels; 4mo = 6.9, 7mo = 6.5, 11mo = 6.6). All channels were re-referenced

to a 60-channel average reference. Next, the EEG responses to the 18 nursery rhymes were

epoched into trials aligned to the start of a nursery rhyme phrase (e.g. “Mary had a little

lamb”). Each nursery rhyme contained approximately 5 phrases (M number of phrases per
nursery rhyme ± SD: 4.61 phrases ±4.22, range = 1:20) producing EEG responses to 83

phrases (M length ± SD: 4.23sec ±0.88) which were repeated a maximum of 3 times in the

experiment (249 epochs in total). This epoching procedure was selected as infant EEG typi-

cally contains short, irregular, movement artifacts and using shorter epochs increases the

likelihood of generating a whole artifact-free epoch whilst maintaining long enough epochs

for optimising the model fit with the mTRF toolbox [46]. The infants occasionally rested

their head or touched the EEG cap in such a way that specific channels showed short bursts

of noise whilst the rest of the channels remained clean. To account for this, and retain a

larger volume of data, a second stage of channel rejection and interpolation was conducted

epoch by epoch on each of the four filtered datasets (broadband: 0.5–45 Hz, delta: 0.5–4 Hz,

theta: 4–8 Hz, and alpha: 8–12 Hz). Whilst this second round of epoch by epoch channel

rejection and interpolation varies slightly from classical EEG pre-processing, it was consid-

ered a legitimate trade off to retain data from clean channels whilst removing short, irregu-

lar, movement artifacts present only in a few channels. Per epoch, probability and kurtosis

were used to identify bad channels and were interpolated (via spherical interpolation) if

they were 3SD away from the mean. Finally, bad epochs were rejected with the pop_autorej
function (EEGLab), removing epochs with fluctuations above 1000uV and values outside a

3SD of the probability threshold. Due to the interpolation and ASR procedure, less than 1%

of the epochs were rejected via pop_autorej. This step was maintained as a sanity check to

ensure all extreme fluctuations had been removed. Due to the increased susceptibility of

PSD and PAC analyses to noise, manual rejection was conducted, on the 0.5–45 Hz data set,

to remove noisy periods of data from both the silent state and nursery rhyme data prior to

running the PSD and PAC analyses. To minimize within trial data discontinuities manual

rejection boundaries were limited to in-between phrases. The separation of the nursery

rhyme and silent state EEG data occurred after this manual rejection so that the PSD analy-

sis could be conducted separately for the two conditions.

2.5 mTRF auditory stimuli preprocessing

The envelope of the auditory signal was extracted by taking the absolute value of the analytic

signal generated by the Hilbert transform (Matlab). As the lower frequencies of the envelope

are linearly relatable to the EEG signal [10,11,47] the envelope of the stimuli was filtered

between 0.5 Hz and 15 Hz (lowpass; 6th order Butterworth filter. Highpass; 9th order Butter-

worth filter) and this was used for all individual band comparisons. The resultant envelopes

were normalised using nt_normcol (Noisetools). Finally, the stimulus envelopes were down

sampled to 100 Hz to match the EEG signal. The preprocessed and filtered envelopes, from

now on will be referred to as envelopes.

PLOS ONE Infant low-frequency EEG cortical power, tracking and phase amplitude coupling predicts language a year later

PLOS ONE | https://doi.org/10.1371/journal.pone.0313274 December 5, 2024 6 / 31

https://doi.org/10.1371/journal.pone.0313274


2.6 Multivariate Temporal Response Function (mTRF)

TRFs describe the linear relationship between an input and an output signal, taking into

account that such a relationship may not be instantaneous and could extend over a certain

window of time [46]. TRFs can be estimated with system identification methodologies, such as

the multivariate temporal response function (mTRF), which is a de-convolution method based

on multiple lagged linear regression. Here, we applied the mTRF [46] in the backward direc-

tion to reconstruct the stimulus envelope from the EEG signals. In turn, this informs us on the

strength of the stimulus-EEG relationship, which we take as an index of cortical tracking of the

stimulus envelope. The backwards ‘stimulus reconstruction’ mTRF model has important

advantages compared to the forward linear encoding model which has previously been used in

infant studies [19,20]. Specifically, backward TRFs combine data from all the EEG channels

simultaneously in a multivariate manner to reconstruct the univariate stimulus envelope,

while forward TRF models only predict one EEG channel at a time.

After preprocessing, the EEG responses to each of the nursery rhymes were averaged (data

across a maximum of three repeats of the 83 nursery rhyme phrases were averaged), thereby

creating 83 “averaged trials”. This averaging was conducted to improve the signal to noise

ratio of the data for the mTRF. The strength of the cortical tracking in each EEG frequency

band was evaluated using leave-one-out cross-validation per infant [46], separately for each

frequency band, delta (0.5-4Hz), theta (4-8Hz) or alpha (8-12Hz). First, the average EEG trial

epochs (up to 83) were normalized using the function nt_normcol (Noisetools, http://

audition.ens.fr/adc/NoiseTools/). The normalized trials were then rotated M-1 times, with

each rotation serving once as the test set while the rest formed the training set. The averaged

training models were used to reconstruct the stimulus by convolving with the test data. Pear-

son’s correlation (r) measured the correlation between the reconstructed and original stimulus

envelopes. This process was repeated for all M-1 rotations, and an individual’s average r value

was computed to prevent overfitting. The average r value represented how well the model

reconstructed the stimulus envelope, when trained with either the delta (0.5-4Hz), theta (4-

8Hz) or alpha (8-12Hz) EEG band data. Chance r scores were created for each participant to

measure the average stimulus reconstruction (r) that could be obtained by chance. The chance

TRF procedure was conducted per participant for each frequency band (one shuffled model

per participant). To obtain a chance permutation of the data, whilst maintaining phase integ-

rity, each of the stimulus envelopes were first reversed and a random circular shift was applied.

Next, the mTRF cross-validation was run in the same way as the real data (see above for

details), to give a stimulus reconstruction (r) value. The r value using the shuffled model was

used as the chance r score per participant. Please note that the chance r values in Table 4 and

Fig 1, for the first half of the sample, differ slightly from [1] as a single random model per par-

ticipant rather than an average random model was implemented here. This test aims to deter-

mine if the average value across participants is above "chance". This is a case of subsampling in

which the resulting distribution should match the distribution of the population. A linear

mixed effects model (LMEM) was next constructed using the same parameters as in Attaheri

et al., 2022 [1], to discover if the mean of the "real" model was larger than the mean of the

"shuffled" model, across participants.

2.7 Phase amplitude coupling (PAC)

To assess PAC, a modified version of the WinPACT plugin (EEGLab) [44] was used to acquire

normalised modulation index (nMI) values [48] a measure adapted from Canolty and col-

leagues’ modulation index (MI) [23]. This measure is a widely validated metric of the coupling

strength and preferred phase between two frequencies. For each infant’s EEG data, low-
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Fig 1. mTRF replication. Grand averaged stimulus reconstruction values (Pearson’s r) per frequency band in the a) first half, b) second half and c) full infant

cohort. Each bar represents the grand average r value across the participants at the 3 age points: 4-months (red), 7-months (green) and 11-months (blue). Age

responses are grouped along the X axis by EEG frequency band, delta (0.5–4 Hz) theta (4–8 Hz) and alpha (8–12 Hz). Light grey boxes signify the average

chance r value across subjects, calculated separately for each band. Outlier analysis was conducted to remove extreme values which would compromise the

LMEMs. Panel a is reproduced from Attaheri et al. (2022) [1], with permission.

https://doi.org/10.1371/journal.pone.0313274.g001
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frequency phase (LFP) and high-frequency amplitude (HFA) were extracted with a zero-phase

FIR filter (Hamming window), separately for all 60 electrodes, from the pre-processed 0.5–45

Hz data. LFP data were filtered in 1 Hz steps from 2 to 8 Hz. Each centre frequency had a 2 Hz

filter bandwidth around the centre frequency. HFA centre frequencies were extracted from

17.5 Hz to 42.5 Hz, in 5 Hz steps with a 5 Hz filter bandwidth around the centre frequency,

Next, a normalised modulation index value was calculated for each channel using a 5 second

sliding analysis window (with 2.5 second overlaps) [23,48]. To identify windows displaying

significant PAC, 200 surrogate statistical iterations were created for each window. A statisti-

cally normalised MI estimate was obtained for each analysis window by subtracting the mean

and dividing by the standard deviation obtained from a Gaussian fit of surrogate MI estimates

(nMI = (Canolty’s MI–surrogate MI Mean) / surrogate MI Std). This statistical procedure is

based on the work of Özkurt and Schnitzler, 2011 [48] and implemented via the winPACT

EEGLab plugin. Each iteration of the surrogate data was created by shuffling the high-fre-

quency amplitude time series via circular rotation. A MI estimate was obtained for each of the

200 surrogate data iterations, from which a 95% confidence interval (CI) was calculated. This

step accounted for the mean and standard deviation of the surrogate data set, thus creating an

appropriate threshold for the frequency band analysed. Finally, the 95% CIs were averaged

across all windows to generate a statistical threshold for each channel per participant. All the

nMI windows that passed the 95% CI significance test were averaged per channel for each of

the PAC pairs (i.e. each LFP and HFA step) separately for each participant. The channel exhib-

iting the strongest MI, within predefined phase and amplitude band groupings (delta/beta,

delta/gamma, theta/beta, theta/gamma, with delta = 2-4Hz, theta = 4-8Hz, beta = 15-30Hz and

gamma = 30-45Hz), was taken forward to use as the candidate predictor for the LMEM and

for the group level grand average plots. Due to the Nyquist frequency required for our 5 second

window size, the first frequency band analysed in the PAC was 2Hz. See [1] for a detailed

description of the PAC method and analysis.

2.8 Spectral analysis (periodogram PSD estimate)

A one-sided PSD estimate was conducted separately for each channel of the pre-processed

0.5–45 Hz data using the periodogram function (Matlab). The grand average PSD across chan-

nels was next calculated by averaging across channels, recording type (nursery rhymes [NR],

silent state [SS]) and ages (4-, 7- or 11-months). Visual inspection revealed three frequency

peaks centered around 1.92 Hz, 4.05 Hz and 4.35 Hz (S1 Fig in S1 File). The spectra for each

individual age group per recording type were next calculated and taken forward for further

analysis (Fig 2). To allow for individual participant variation, the maximum value within a

0.25Hz window centered on the peak of interest was taken per participant for further analysis.

A smaller window was used around the peaks of interest than used in Attaheri et al., 2022 [1],

this was necessary to avoid overlap between the 4.05 Hz and 4.35 Hz windows. See [1] for a

detailed description of the PSD method and analysis. We acknowledge that manual rejection

may have introduced some discontinuities, and we took steps to minimize their effect on the

PSD analysis. First, a relatively large amount of data was used in the periodogram to achieve

strong frequency resolution. Second, zero-padding was applied to ensure that all data files,

regardless of the amount of manual rejection, were the same size, resulting in an equal number

of frequency bins across participants. Additionally, a Hamming window was used to taper the

edges of the data, smoothly reducing the signal to zero at the boundaries and minimizing the

impact of discontinuities. This tapering improves frequency resolution and reduces spectral

leakage. Overall, the combination of manual rejection and these mitigation steps was consid-

ered a valid approach to removing noise that could compromise the PSD analysis.
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Fig 2. Spectral decomposition of the EEG signal averaged across the a) first half, b) second half and c) full infant cohort (1–12 Hz plotted, from 0.5 to 45 Hz

calculated), in response to nursery rhyme stimulation. A periodogram was used to obtain a power spectral density (PSD) estimate separately for 4- (red), 7-

(green) and 11- (blue) months data. First the PSD estimate was averaged across channels per participant. Bold lines indicate the grand average mean values and

pale shading plots the standard deviation of the data across the participants. Outlier analysis was also conducted to remove extreme data points that would

compromise the LMEM. Panel A is reproduced from Attaheri et al. 2022 [1], with permission.

https://doi.org/10.1371/journal.pone.0313274.g002
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2.8.1 Theta / delta (PSD) ratio

The PSD peak per participant at 4.35 Hz and 1.92 Hz, taken from the spectral decomposition

of the EEG signal described above, was used to create a theta / delta ratio calculation. Per par-

ticipant, the 4.35 Hz PSD value was divided by the 1.92 Hz PSD value (4.35/1.92) to give a

theta / delta ratio.

2.9 Language measures

A full description of the language measures used here can be found in Rocha et al., [4]. The

parent-estimated measures were taken from a carer-completed questionnaire, the UK-CDI.

The UK-CDI estimates both receptive and productive vocabulary [49], which we refer to here

as language comprehension or language production. In the current report the parent-esti-

mated 24-month CDI measures were selected for analysis, as by the age of 2 years both word

comprehension and word production data showed a wide range of scores, enabling more sen-

sitive measurement of individual differences (see [4], for detailed rationale). Only measures up

to the age of 24 months are included here, as the 30- and 42-month measures are still being

processed. Five measures were selected as the infant-led (in that the infant made an active

response) language measures. These were (i) gesture (adapted from [50]), in which pointing

towards a present and absent target was used as a pre-verbal measure of communicative intent

at 12 months, and (ii) the computerized comprehension task (CCT), a touch screen-based

measure of infant vocabulary administered at 18 months, in which the infant is asked to select

a picture of a named item [51]. Thirdly a non-word repetition (NWR) task based on [52], was

used to measure the child’s productive phonology at 24 months and generate three different

measures: (iii) accurate reproduction of consonants, (iv) number of syllables reproduced, and

(v) stress patterns produced (canonical or non-canonical, see Rocha et al., [4]). The NWR task

measured toddlers’ phonological production of both nonsense words (e.g. “punky”) and real

words (e.g. “puppy”) via a game about naming a series of toys.

2.10 Language outcomes: Statistics

Our statistical approach was decided a priori and was established when exploring the language

outcome measures [4]. We ran a multivariate model for each of the infant-led and parent-esti-

mated groups of measures. Given that missing cases vary across the multiple tasks, and that

the multivariate models employed use list wise deletion, additional follow-up univariate mod-

els for each of the predictors were run separately, to utilise the breadth of data collected and

maximise statistical power. This approach was applied across multiple BabyRhythm studies

using different neural measures as language predictors (see [53], using phase measures, and

[54], which uses neural responses to visual-only speech), accordingly an alpha threshold of

0.05 was applied for the multivariate models. As the follow-up univariate analyses required

multiple comparisons, one per language measure, they were Bonferroni-corrected for the

number of language measures in the group (i.e. 5 for infant-led, and 2 for parent-estimated).

Respective alpha levels were therefore 0.01 and 0.025. Although the main multivariate tests

may show that some predictors had a significant effect and others did not, we did not remove

any of the original covariates in the univariate models, to ensure comparability between the

multivariate and univariate tests.

Due to the inherent differences between the infant-led and parent-estimated measures, sep-

arate multivariate linear models were conducted for each, providing a global measure of lan-

guage abilities taken from either infant-led or parent-estimated language measures.

Multivariate linear models (using Rstudio lm function) were run separately for the PSD,

mTRF, theta-delta ratio and PAC measures. Secondly, Bonferroni-corrected individual
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univariate linear models were run, which typically included more infants, in order to explore

the contribution of the early neural measures to the individual language measures.

3 Results

3.1 PSD, mTRF, PAC and theta/delta ratio

First, we present the power spectral density (using a periodogram; PSD), cortical tracking

(using multivariate temporal response functions; mTRFs), phase-amplitude coupling (normal-

ised modulation index, nMI; PAC) and theta/delta PSD ratio analyses using EEG recorded

from the second half of our cohort of infants. We compare these data to the analyses from the

first half of the cohort [1], and also merge the neural data to explore these neural factors in the

combined full sample of 113 infants. Due to missed recording sessions, technical issues with

data files and not enough trials after preprocessing, less than 113 data points are included in

each analysis. Furthermore, outlier analysis was also conducted to remove extreme data points

that would compromise each of the LMEMs. The number of data points included are given

separately for each analysis.

3.1.1 Power spectral density (PSD) analyses. The distribution of low-frequency oscilla-

tions in the EEG recorded from the second half of the sample and the full cohort were obtained

using the power spectral density (PSD) estimate (Fig 2). The results from the first half of the

cohort [1] are reproduced for comparison. Given the differences in the location of the PSD

peaks for the first and second halves of the cohort, the distribution of PSD peaks in low-fre-

quency power for the full sample was first established by creating a grand average PSD estimate

across channels, recording type (nursery rhymes, silent state) and ages. Visual inspection

revealed three frequency peaks centered around 1.92 Hz, 4.05 Hz and 4.35 Hz (S1 Fig in S1

File, and in the second half of the sample, S2 Fig in S1 File). The distribution of the PSD peaks

were similar to those observed in the first half of the sample (see [1] and S3 Fig in S1 File). It is

important to note that the PSD peaks matched the most prominent modulation spectrum

peaks that were present in the nursery rhyme stimuli (see S4–S6 Figs in S1 File), which were

respectively within the delta and theta band definitions used for the EEG analyses (delta, 0.5–4

Hz; theta, 4–8 Hz). Whilst infant frequency bandings appear to change throughout infancy

[55–58], there are no prior infant data regarding center frequencies in studies using speech sti-

muli. Therefore, we selected the delta and theta boundaries based on the prior adult speech

processing literature, and this decision is supported by the modulation bands identified by

modelling the temporal modulation architecture of the 18 nursery rhymes used in our study

[59]). Further, when the EEG from the full cohort was analysed, the ~4Hz peak split into two

locations, peaking at 4.05 Hz and 4.35 Hz. Both theta peaks were therefore retained for further

investigation. Whilst the relevant data are provided in the results text, the mean and standard

error of the PSD peak amplitudes for both silent state and nursery rhyme recording condi-

tions, are also provided in S1 Table in S1 File. Plots of the silent state PSD are also provided to

aid comparison (S7 Fig in S1 File).

To investigate whether the PSD was significantly higher in response to the nursery rhymes

compared to the silent state, and whether this relationship was affected by the age of the partic-

ipants, a linear mixed effects model (LMEM) was conducted separately for the 1.92 Hz, 4.05

Hz and 4.35 Hz peaks. A random intercept (AR1) per participant was included to account for

individual differences across the 3 recording sessions (4-, 7- and 11-months). The full sample

submitted to the LMEM was as follows, 4-months (N = 96), 7-months (N = 88) and 11-months

(N = 92). This process was conducted separately for the first half of the sample, the second half

of the sample and the full cohort (Table 1). To allow for individual variation across partici-

pants, a maximum peak value per participant was taken from the participants’ 60 channel
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averaged data, within 0.25 Hz windows centered around the peak of interest (1.92 Hz, 4.05 Hz

and 4.35 Hz). Note that a smaller window was used around the peaks of interest than used in

Attaheri et al., 2022 [1], this was necessary to avoid overlap between the 4.05 Hz and 4.35 Hz

windows. Fixed effects of recording type (nursery rhymes, silent state), age (4-, 7- or

11-months) and a recording type by age interaction were included in the model. The ~4.35 Hz

peak is reported first, as this was the most robust.

The 4.35 Hz peak showed the largest stimulus-related increase in PSD of the three peaks

analysed. The LMEM’s revealed a significant effect of recording type, with the nursery rhyme

(NR) condition producing significantly greater PSD power than the silent state (SS; Table 1). A

significant effect of age was observed, with ~4.35 Hz power increasing parametrically with age

from 4- months to 7- months to 11- months (estimates of fixed effects provided in S2 Table in

S1 File). The observed recording type by age interaction was due to a developmental increase

in NR induced power above the SS. Bonferroni-corrected pairwise comparisons showed that

PSD increased significantly between 4- and 11-months (M increase = 18.41, SE ± 7.43,

p = 0.043) as well as between 4- and 7- months (M increase = 30.56, SE ± 5.77, p = 6.7x10-7).

Hence there was a developmental increase in 4.35 Hz PSD for both the nursery rhymes and

the silent state. This may indicate age-related maturation of theta activity in general. Impor-

tantly, we also observed a stimulus-driven interaction with age for the 4.35 Hz PSD peaks, with

the largest increase observed at 11-months (4-months, NR, M = 38.9 SE ± 4.9; SS, M = 37.9 SE
± 5.5. 7-months, NR, M = 63.0 SE ± 6.9; SS, M = 50.6 SE ± 7.2. 11-months, NR, M = 84.8 SE ±
5.8; SS, M = 53.1 SE ± 6.0). This showed that the interaction was driven by a greater PSD in

response to the nursery rhymes at 11-months. This pattern replicated the theta PSD findings

observed in the first half of the sample (see [1]). In summary, the peak at 4.35 Hz showed

robust replication across the first and second half of the sample, with consistent increases in

NR related power displaying a developmental increase in PSD magnitudes, above SS, indicat-

ing a highly reliable peak.

For the 4.05 HZ peak, the LMEM results replicated less well across the first half of the sam-

ple, the second half of the sample and the full cohort. Significant effects of both recording type

and age were only observed when analysing the full cohort. The significant effect of age was

driven by the 7-month (M = 63.1 SE ± 6.0) PSD power being larger than the 11-month

(M = 52.5 SE ± 3.2), however this result is in part due to the 0.25 Hz window not fully encapsu-

lating the 11-month peak for all participants (Fig 2). A significant effect of recording type was

observed in the second half of the sample, with a trend (p<0.10) observed in the first half of

Table 1. Tests of fixed effects for LMEM conducted on PSD power peak at 4.35Hz. Results reported for separate LMEMs run on the first half, second half and full sam-

ple of data. Significant results (p<0.05) denoted by bold italic text. The Satterthwaite approximation was applied to approximate the degrees of freedom, due to the missing

cases.

~4.35 Hz

1st half of sample 2nd half of sample
F p F p

Recording type F(1, 124.16 = 12.51) 0.001 F(1, 107.77 = 7.67) 0.007
Age F(2, 153.41 = 10.01) 7.7x10-5 F(2, 114.77 = 4.86) 0.009
Recording type * Age F(2, 123.93 = 3.30) 0.04 F(2, 107.90 = 3.54) 0.032

Full sample
F p

Recording type F(1, 236.60 = 19.25) 1.7x10-5

Age F(2, 281.12 = 14.13) 1.0x10-6

Recording type * Age F(2, 236.48 = 6.95) 0.001

https://doi.org/10.1371/journal.pone.0313274.t001
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the sample (Table 2). A significant effect of age was observed in the first half of the sample with

a trend (p<0.10) towards significance observed in the second half of the sample. As the data

were more robust for the 4.35 HZ peak, and as the 0.25 Hz window did not fully capture the

4.05 Hz peak for all participants, the 4.35 Hz PSD peak was taken forward as the ‘theta’ peak

for analyses with the language data.

For the 1.92 Hz peak, the LMEM conducted on the full cohort revealed a significant effect

of recording type (Table 3). However, there were differences in this effect across the first and

second halves of the sample. Upon further inspection, the non-significant level of recording

type in the second half of the sample was due to the large amount of PSD power in the silent

state (SS) data at 4-months (4-month SS, M = 116.3 SE ± 10.6, NR, M = 97.3 SE ± 10.2). Post-

hoc paired sample t-tests on the 7- and 11-month data, for the second half of the sample, both

showed a consistent stimulus-induced increase in PSD power, matching the first half of the

sample (7-month SS, M = 116.3 SE ±13.5, NR, M = 124.2 SE ±13.1, p = 0.007; 11-month SS,

M= 76.7 SE ± 11.9, NR, M = 94.0 SE ± 11.6, p = 1.90x10-27). A significant recording type by

age interaction was observed in both the second half of the sample and the full cohort. In con-

clusion, the 1.92Hz stimulus-related increase in PSD power is broadly replicated across the

first and second halves of the sample once the anomalous SS power, present in the 4-month

data in the second half of the sample, was taken into account.

Table 2. Tests of fixed effects for LMEM on PSD power peak at 4.05Hz. Results reported for separate LMEMs run

on the first half, second half and full sample of data. Significant results (p<0.05) denoted by bold italic text. The Sat-

terthwaite approximation was applied to approximate the degrees of freedom, due to the missing cases.

~4.05 Hz

1st half of sample 2nd half of sample
F p F p

Recording type F(1, 223.47 = 2.72) 0.100 F(1, 101.13 = 5.65) 0.019
Age F(2, 160.05 = 4.74) 0.010 F(2, 111.74 = 2.39) 0.097

Recording type * Age F(2, 223.50 = 1.07) 0.345 F(2, 101.07 = 1.50) 0.228

Full sample
F p

Recording type F(1,424.40 = 7.33) 0.007
Age F(2,298.70 = 3.54) 0.030
Recording type * Age F(2, 424.16 = 1.77) 0.172

https://doi.org/10.1371/journal.pone.0313274.t002

Table 3. Tests of fixed effects for LMEM on PSD power peak at 1.92Hz. Results reported for separate LMEMs run

on the first half, second half and full sample of data. Significant results (p<0.05) denoted by bold italic text. The Sat-

terthwaite approximation was applied to approximate the degrees of freedom, due to the missing cases.

~1.92 Hz

1st half of sample 2nd half of sample
F p F p

Recording type F(1, 96.59 = 9.71) 0.002 F(1, 87.49 = 0.25) 0.616

Age F(2, 127.50 = 1.00) 0.371 F(2, 109.00 = 3.34 0.039
Recording type * Age F(2, 96.74 = 0.61) 0.544 F(2, 87.50 = 7.39) 0.001

Full sample
F p

Recording type F(1,188.40 = 8.47) 0.004
Age F(2,232.10 = 0.36) 0.698

Recording type * Age F(2,96.74 = 0.61) 0.021

https://doi.org/10.1371/journal.pone.0313274.t003
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In summary, the main effects reported by Attaheri et al. 2022 [1] were replicated in the sec-

ond half of the sample, apart from some main effects of age being inconsistent when compar-

ing the first and second halves of the cohort for the ~4.05Hz power peak. Complete

consistency regarding age was only achieved for the 4.35Hz power peak, which was the mea-

sure taken forward.

3.1.2 Cortical tracking (mTRF) analyses. A linear mixed effects model (LMEM) was

constructed using the same parameters as described in Attaheri et al., 2022 [1] to examine

potential developmental changes in cortical tracking in the delta, theta and alpha (control)

bands. The full sample submitted to the mTRF LMEM was as follows, 4-months (N = 108),

7-months (N = 104) and 11-months (N = 106). Main effects of data type (real r values, chance

r values), frequency band (delta, theta or alpha) and age (4-, 7- or 11-months) were investi-

gated along with interactions between data type by frequency band, data type by age and age

by frequency band. A random intercept (AR1) per participant was included to account for

individual differences across the 3 recording sessions (4-, 7- and 11-months).

The main pattern of results replicated between the first and second halves of the sample,

with significant fixed effects of data type and frequency band, as well as significant interactions

between data type by frequency band and age by frequency band (Table 4). There was no sig-

nificant effect of age when analysing the second half of the sample in isolation, although this

effect was present in the first half of the sample (Table 4). When using the full cohort, tests of

fixed effects showed significant effects of data type, frequency band and age. These results indi-

cate that the real r values (cortical tracking) in response to nursery rhymes were significantly

above randomly permuted r values and that the cortical tracking values differed by frequency

band and age. The significant interaction of frequency band by data type indicated that cortical

tracking in the delta and theta bands was driven by their values being significantly above the

randomly permuted r values (as compared to the alpha base case; S3 Table in S1 File). The

marginal means across the three ages, revealed that cortical tracking estimates (r values) were

significantly higher in both delta (random permuted r values, M = 0.015, SE ± 0.001; real r

Table 4. Tests of fixed effects for LMEM of cortical tracking across data type (real r values, random permutation r values), frequency band (delta, theta or alpha)

and age (4-, 7- or 11-months). Results reported for separate LMEMs run on the first half, second half and full sample of data. Significant results (p<0.05) denoted by bold
italic text. The Satterthwaite approximation was applied to approximate the degrees of freedom, due to the missing cases.

Cortical tracking

1st half of sample 2nd half of sample
F p F p

Data type F(1,851.69) = 157.53 2.82 x10-33 F(1,766.02) = 83.62 5.29x10-19

Age F(2, 519.14) = 3.15 0.044 F(2, 198.42) = 1.61 0.202

Frequency band F(2, 852.32) = 217.39 5.17x10-77 F(2, 767.80) = 189.87 1.01x10-67

Data type * age F(2, 851.68) = 2.39 0.093 F(2, 766.00) = 0.65 0.524

Data type * freq. band F(2, 851.67) = 71.47 2.02x10-29 F(2, 765.96) = 32.63 2.51x10-14

Age *freq. band F(4, 852. 31) = 3.06 0.016 F(4, 768.17) = 3.52 0.007
Full sample

F p
Data type F(1, 1625.31) = 228.71 1.92x10-48

Age F(2, 603.11) = 3.77 0.024
Frequency band F(2, 1627.67) = 401.38 1.99x10-142

Data type * age F(2, 1625.30) = 2.53 0.080

Data type * freq. band F(2, 1625.29) = 97.11 1.45x10-40

Age *freq. band F(4, 1627.89) = 5.74 1.38x10-4

https://doi.org/10.1371/journal.pone.0313274.t004
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values, M = 0.03, SE ± 0.001), and theta bands (random permuted r values, M = 0.011, SE ±
0.001; real r values, M = 0.016, SE ± 0.001), compared to the alpha base case (random per-

muted r values, M = 0.007, SE ± 0.001; real r values, M = 0.007, SE ± 0.001). Furthermore,

alpha tracking was again not significantly above chance (S3 Table in S1 File) when using the

full sample, mimicking the results from the first half of the sample [1]. The significant interac-

tion between age and frequency band showed that the relative differences in r values (both real

and random) varied across the three age groups and frequency bands. In summary, the main

cortical tracking effects reported by Attaheri et al. 2022 [1] were replicated in the second half

of the sample.

Taken together, the replication of PSD and cortical tracking results in the lower frequencies

strengthens the conclusion that delta and theta EEG responses track the acoustic envelope of

sung and chanted speech from the age of 4-months and that this infant neural response is

robust and reliable.

3.1.3 Phase amplitude coupling (PAC) analysis. The PAC analyses (Fig 3) were con-

ducted for the second half of the sample and the full cohort, replicating the LMEM conducted

with the first half of the sample [1]. The full sample submitted to the PAC LMEM was as fol-

lows, 4-months (N = 108), 7-months (N = 103) and 11-months (N = 107). This LMEM

included fixed effect factors of data type (real nMI values or chance nMI values), low-fre-

quency phase (delta or theta), high-frequency amplitude (beta or gamma) and age (4-, 7- or

11-months). Interactions of data type by age, by low-frequency phase, data type by high-fre-

quency amplitude, data type by age, low-frequency phase by age, high-frequency amplitude by

age and low-frequency phase by high-frequency amplitude were also included in the model,

with a random intercept (AR1) per participant (see methods section and Attaheri et al., 2022

[1] for detailed methods). Tests of fixed effects are reported in Table 5 and estimates of fixed

effects are provided in S4 Table in S1 File. The LMEM intended to explore whether the nMI

values were significantly above chance and if there were any significant differences when either

delta or theta was the low-frequency carrier phase or when either beta or gamma were the

high-frequency amplitudes, and if this relationship was affected by age.

The main pattern of results replicated between the first and second halves of the sample,

with significant fixed effects of data type and low-frequency phase, as also reflected in the full

cohort. The main effect of LFP arose because the nMI values were larger when theta

(M = 2.568, SE ± 0.013) was the low-frequency phase coupling with high-frequency amplitudes

rather than delta (M = 2.405, SE ± 0.013, Table 5). A non-significant effect of HFA suggested

that the beta and gamma amplitudes coupled equally as strongly with delta and theta phases

(Table 5). A significant interaction between data type and LFP was also observed. Whilst both

delta and theta displayed significant above-chance PAC, the significant interaction of LFP by

data type reflected the fact that the relative difference between chance and real nMI values was

significantly greater in the theta band than in the delta band, delta (chance nMI, M = 1.770,

SE ± 0.016; real nMI, M = 3.041, SE ± 0.016), Theta (chance nMI, M = 1.772, SE ± 0.016; real

nMI, M = 3.364, SE ± 0.016). Whilst the main pattern of results replicated between the first

and second halves of the sample, one inconsistency was that the second half of the sample also

showed a significant interaction between data type and HFA and between data type and age.

However, as no main effects of age nor HFA were observed in the second half of the sample,

these results are difficult to interpret.

3.1.4 Theta/Delta PSD power ratio. A significant difference between the theta/delta PSD

power ratio across the three ages was also found (Fig 4). Ratio values significantly increased

with age (4 months, M = 0.546, SE ± 0.027; 7 months, M = 0.78, SE ± 0.073; 11 months,

M = 1.017, SE ± 0.110), indicated by a one-way ANOVA (F(2,273) = 9.54, p = 9.9x10-5). The

ratio increased because the amount of theta PSD power increased relative to the amount of
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Fig 3. PAC replication. Violin plots of phase amplitude coupling (normalised modulation index, nMI) at 4-months (red), 7-months (green) and 11-months

(blue) for the a) first half, b) second half and c) full infant cohort. The nMIs, from all significant analysis windows, were averaged for each individual infant. The

PAC pairing with the maximum nMI per infant, from within the pre-defined frequency bands of interest (delta/beta, delta/gamma, theta/beta and theta/

gamma; delta 2–4 Hz, theta 4–8 Hz, beta 15–30 Hz and gamma 30–45 Hz), were included in the grand average violin plot. Horizontal black and red lines

represent the group mean and median respectively. Outlier analysis was conducted to remove extreme data points that would compromise the LMEM. Panel A

is reproduced from Attaheri et al. 2022 (1), with permission.

https://doi.org/10.1371/journal.pone.0313274.g003

PLOS ONE Infant low-frequency EEG cortical power, tracking and phase amplitude coupling predicts language a year later

PLOS ONE | https://doi.org/10.1371/journal.pone.0313274 December 5, 2024 17 / 31

https://doi.org/10.1371/journal.pone.0313274.g003
https://doi.org/10.1371/journal.pone.0313274


delta PSD power as our sample aged from 4- to 11- months (see Fig 2). For comparison, the

child modelling using EEG recorded from children with and without dyslexia aged around 9

years showed that a higher theta/delta ratio was associated with poorer phonological awareness

[39]. In the filtered speech intervention study with dyslexic children [34], in which delta-band

modulations in natural speech were amplified via filtering, the theta/delta ratio improved

when the children were listening to the filtered speech (compared to natural speech) because

delta power increased. Accordingly, the theta/delta ratio appears to be a sensitive index of

speech-related neural dynamics in infants and children.

Table 5. Tests of fixed effects generated from LMEM, assess how PAC (nMI) varied across data types (real or ran-

dom nMI values), low-frequency phase (LFP), high-frequency amplitude (HFA) and age (4-, 7- or 11-months).

Results reported for separate LMEMs run on the first half, second half and full sample of data. Significant results

(p<0.05) denoted by bold italic text. The Satterthwaite approximation was applied to approximate the degrees of free-

dom, due to the missing cases.

PAC

1st half of sample 2nd half of sample
F p F p

Data type (rand vs real nMI) F(1, 1178.08) = 4921.51 <0.001 F(1, 1113.52)

= 4409.87

<0.001

Low freq. phase (LFP) F(1, 1178.08) = 55.79 <0.001 F(1, 1113.52)

= 64.77

<0.001

Age F(2,686.71) = .06 0.941 F(2, 202.36)

= 1.81

0.167

High freq. amp (HFA) F(1, 1178.08) = .05 0.824 F(1, 1113.52)

= 1.68

0.196

Data type * LFP F(1, 1178.08) = 54.34 <0.001 F(1, 1113.52)

= 62.86

<0.001

Data type *HFA F(1, 1178.08) = .00 0.949 F(1, 1113.52)

= 4.00

0.046

Data type * Age F(2, 1178.08) = 1.68 0.187 F(2, 1113.52)

= 3.26

0.039

LFP * Age F(2, 1178.08) = .47 0.626 F(2, 1113.52)

= 2.10

0.123

HFA * Age F(2, 1178.08) = 2.01 0.134 F(2, 1113.52)

= .28

0.757

LFP * HFA F(1, 1178.08) = .11 0.738 F(1, 1113.52)

= 2.48

0.115

Age * LFP *HFA F(2, 1178.08) = .64 0.526 F(2, 1113.52)

= .69

0.504

Full sample
F p

Data type (rand vs real nMI) F(1,2269.31) = 9217.24 <0.001
Low freq. phase (LFP) F(1,2269.31) = 118.88 <0.001
Age F(2,790.87) = 1.40 0.247

High freq. amp (HFA) F(1,2269.31) = 1.10 0.294

Data type * LFP F(1, 2269.31) = 115.42 <0.001
Data type *HFA F(1, 2269.31) = 1.78 0.182

Data type * Age F(2, 2269.31) = 2.31 0.100

LFP * Age F(2, 2269.31) = 2.21 0.110

HFA * Age F(2, 2269.31) = 1.79 0.167

LFP * HFA F(1, 2269.31) = 0.71 0.399

Age * LFP *HFA F(1, 2269.31) = 0.44 0.642

https://doi.org/10.1371/journal.pone.0313274.t005
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3.2 Neural measures as predictors of language acquisition

Multivariate and univariate linear models were used to test whether the neural findings

reported in 3.1 (for the full sample) were related to the different language measures using the

analysis strategy described at 2.1 above. As explained in Rocha et al., [4], these language mea-

sures were selected as most reliable in previous analyses of the Cambridge UK BabyRhythm

cohort, as they had the largest number of infants contributing data and scores were neither at

Fig 4. Theta/Delta PSD ratio. The PSD peak per individual at 4.35 Hz and 1.92 Hz, taken from the spectral

decomposition of the EEG signal, was used to create a theta / delta ratio calculation (4.35/1.92). Data provided at

4-months (red), 7-months (green) and 11-months (blue) with standard error bars in black.

https://doi.org/10.1371/journal.pone.0313274.g004
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floor nor ceiling [4]. As noted, the parent-estimated measures were receptive and productive

vocabulary scores from the UK-CDI at 24 months [49] and the infant-led measures were (i)

The ability to point at 12-months, (ii) Word recognition at 18-months on a computerised

infant-operated comprehension test (CCT), and (iii-v) Phonological processing at 24-months,

as measured by non-word repetition of consonants, syllables and stress patterns (NWR). Due

to the inherent difference in parent-estimated and infant-led measures of language, separate

multivariate and univariate linear models were run for each set of scores. The results of these

analyses for both parent-estimated and infant-led outcomes are reported in Tables 6–11. The

univariate analyses often included more cases, as the multivariate analyses only included

infants who contributed data points to all the language measures as well as to the neural mea-

sure being analysed.

3.2.1. PSD and language outcomes. The 11-months EEG data were selected for compari-

son to both the parent-estimated and infant-led language measures, due to the observed devel-

opmental maturation of the ~4 Hz peak (see Fig 2). As described above, the 4.35 Hz peak was

the more robust and consistent of the two theta peaks (see Tables 1 and 2). It was therefore

used for predicting the language outcomes. The analyses for the 4-month and 7-month EEG

are also provided as S5 to S11 Tables in S1 File (with 4.05 Hz peak results reported in S7-S9

Tables in S1 File). The analyses for the ~1.92 Hz peak are also reported here. 77 infants pro-

vided complete data for all the parent-estimated measures and PSD power results, whilst 70

infants provided data for all the infant-led language measures and PSD power.

Regarding global language outcomes, the multivariate models indicated that increased

~1.92 Hz PSD power in response to nursery rhymes did not lead to significant prediction of

either infant-led (F(5,65) = 1.257, p = 0.285) nor parent-estimated (F(2,75) = 0.560, p = 0.574)

outcomes (Table 6). However, the univariate linear models revealed a trend for pointing at

12-months to be correlated with increases in ~1.92 Hz power (Table 6A; p = 0.014, Bonferroni

corrected trend α values, p =<0.02 for infant-led univariate models).

Table 6. Multivariate and univariate linear models, investigating whether ~1.92 Hz PSD power at 11 months predicted either infant-led or parent-estimated lan-

guage outcomes. The table details the multivariate linear models followed by the univariate linear models describing whether ~1.92 Hz PSD power at 11 months pre-

dicted, a) infant-led language measures or b) the parent-estimated language measures. Bonferroni correction for multiple comparisons in the univariate models led to

modified significant alpha levels of, p =<0.01 for infant-led and p =<0.025 for parent-estimated (denoted by bold italic text). Modified alpha level for trends are p =

<0.02 for infant-led and p =<0.05 for parent-estimated (denoted by bold text).

~1.92 Hz PSD power at 11 months

a, Infant-led language measures

Multivariate linear model Df num Df denom F p
Infant-led language measures 5 65 1.257 0.29

Univariate linear models Df β estimate SE p
NWR Consonants, 24 months 1,79 5.23x10-5 8.50x10-5 0.95

NWR Syllables, 24 months 1,79 5.54x10-4 8.56x10-4 0.53

NWR Stress, 24 months 1,79 5.51x10-4 7.83x10-4 0.48

CCT, 18 months 1,79 7.16x10-4 6.32x10-4 0.26

Pointing, 12 months 1,90 0.003 0.001 0.014

b, Parent-estimated language measures

Multivariate linear model Df num Df denom F p
Parent-estimated language measures 2 75 0.560 0.57

Univariate linear models Df β estimate SE p
CDI comprehension, 24 months 1,76 0.373 0.445 0.40

CDI production, 24 months 1,76 0.179 0.465 0.70

https://doi.org/10.1371/journal.pone.0313274.t006
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The multivariate analyses for ~4.35 Hz PSD power in response to nursery rhymes showed

no effect on language outcomes for the infant-led measures (F(5,65) = 1.758, p = 0.134,

Table 7A). This was also the case in the univariate analyses. However, for the parent-estimated

Table 7. Multivariate and univariate linear models, investigating whether ~4.35 Hz PSD power at 11 months predicted either infant-led or parent-estimated lan-

guage outcomes. The table details the multivariate linear models followed by the univariate linear models describing whether ~4.35 Hz PSD power at 11 months predicted

a) infant-led language measures or b) the parent-estimated language measures. Bonferroni correction for multiple comparisons in the univariate models led to modified

significant alpha levels of, p =<0.01 for infant-led and p =<0.025 for parent-estimated (denoted by bold italic text). Modified alpha level for trends are p =<0.02 for

infant-led and p =<0.05 for parent-estimated (denoted by bold text).

~4.35 Hz PSD power at 11 months

a, Infant-led language measures

Multivariate linear model Df num Df denom F p
Infant-led language measures 5 65 1.76 0.13

Univariate linear models Df β estimate SE p
NWR Consonants, 24 months 1,79 -4.93x10-4 3.69x10-4 0.19

NWR Syllables, 24 months 1,79 -8.36x10-4 3.65x10-4 0.025

NWR Stress, 24 months 1,79 -5.31x10-4 3.40x10-4 0.12

CCT, 18 months 1,79 -1.62x10-4 2.76x10-4 0.56

Pointing, 12 months 1,90 -2.95x10-4 -5.98x10-4 0.62

b, Parent-estimated language measures

Multivariate linear model Df num Df denom F p
Parent-estimated language measures 2 75 3.18 0.047
Univariate linear models Df β estimate SE p
CDI comprehension, 24 months 1,76 -0.086 0.209 0.68

CDI production, 24 months 1,76 -0.346 0.215 0.11

https://doi.org/10.1371/journal.pone.0313274.t007

Table 8. Multivariate and univariate linear models, investigating whether delta/theta ratio of PSD power (~1.92

Hz/4.35 Hz) at 11 months predicted either infant-led or parent-estimated language outcomes. The table details the

multivariate linear models followed by the univariate linear models describing whether delta/theta ratio of PSD power

(~1.92 Hz/4.35 Hz) at 11 months predicted a) infant-led language measures or b) the parent-estimated language mea-

sures. Bonferroni correction for multiple comparisons in the univariate models led to modified significant alpha levels

of, p =<0.01 for infant-led and p =<0.025 for parent-estimated (denoted by bold italic text). Modified alpha level for

trends are p =<0.02 for infant-led and p =<0.05 for parent-estimated (denoted by bold text).

Theta / delta ratio of PSD power at 11 months

a, Infant-led language measures

Multivariate linear model Df num Df denom F p
Infant-led language measures 5 65 2.68 0.029
Univariate linear models Df β estimate SE p
NWR Consonants, 24 months 1,79 -0.019 0.032 0.56

NWR Syllables, 24 months 1,79 -0.058 0.032 0.07

NWR Stress, 24 months 1,79 -0.044 0.029 0.14

CCT, 18 months 1,79 -0.023 0.023 0.32

Pointing, 12 months 1,90 -0.065 0.049 0.19

b, Parent-estimated language measures

Multivariate linear model Df num Df denom F p
Parent-estimated language measures 2 75 3.65 0.031
Univariate linear models Df β estimate SE P
CDI comprehension, 24 months 1,76 -6.760 16.44 0.68

CDI production, 24 months 1,76 -28.55 16.82 0.094

https://doi.org/10.1371/journal.pone.0313274.t008
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measures, increased theta power led to a significant decrease (F(2,75) = 3.18, p = 0.047) in the

global parent-estimated language outcomes (Table 7B). It is important to note that whilst the

univariate linear model analyses indicated that comprehension and production did not indi-

vidually make significant contributions to this prediction (Table 7B), the direction of the beta

estimates suggest that higher power was associated with fewer known words later in

Table 9. Multivariate and univariate linear models, investigating whether delta cortical tracking at 11 months predicted either infant-led or parent-estimated lan-

guage outcomes. The table details the multivariate linear models followed by the univariate linear models describing whether delta cortical tracking at 11 months pre-

dicted a) infant-led language measures or b) the parent-estimated language measures. Bonferroni correction for multiple comparisons in the univariate models led to

modified significant alpha levels of, p =<0.01 for infant-led and p =<0.025 for parent-estimated (denoted by bold italic text). Modified alpha level for trends are p =

<0.02 for infant-led and p =<0.05 for parent-estimated (denoted by bold text).

Delta cortical tracking at 11 months

a, Infant-led language measures

Multivariate linear model Df num Df denom F p
Infant-led language measures 5 77 0.83 0.35

Univariate linear models Df β estimate SE p
NWR Consonants, 24 months 1,96 1.65 1.85 0.37

NWR Syllables, 24 months 1,96 1.43 1.85 0.44

NWR Stress, 24 months 1,96 2.89 1.67 0.09

CCT, 18 months 1,93 1.04 1.46 0.48

Pointing, 12 months 1,105 2.91 2.95 0.33

b, Parent-estimated language measures

Multivariate linear model Df num Df demom F p
Parent-estimated language measures 2 87 3.00 0.055

Univariate linear models Df β estimate SE p
CDI comprehension, 24 months 1,90 2043.00 877.43 0.02
CDI production, 24 months 1,90 2235.55 948.65 0.02

https://doi.org/10.1371/journal.pone.0313274.t009

Table 10. Multivariate and univariate linear models, investigating whether theta cortical tracking at 11 months predicted either infant-led or parent-estimated lan-

guage outcomes. The table details the multivariate linear models followed by the univariate linear models describing whether theta cortical tracking at 11 months pre-

dicted a) infant-led language measures or b) the parent-estimated language measures. Bonferroni correction for multiple comparisons in the univariate models led to

modified significant alpha levels of, p =<0.01 for infant-led and p =<0.025 for parent-estimated (denoted by bold italic text). Modified alpha level for trends are p =

<0.02 for infant-led and p =<0.05 for parent-estimated (denoted by bold text).

Theta cortical tracking at 11 months

a, Infant-led language measures

Multivariate linear model Df num Df demom F p
Infant-led language measures 5 77 0.89 0.50

Univariate linear models Df β estimate SE p
NWR Consonants, 24 months 1,96 -4.32 2.91 0.14

NWR Syllables, 24 months 1,96 -3.51 2.92 0.23

NWR Stress, 24 months 1,96 -2.24 2.67 0.40

CCT, 18 months 1,93 -2.72 2.28 0.24

Pointing, 12 months 1,105 5.72 4.61 0.22

b, Parent-estimated language measures

Multivariate linear model Df num Df demom F p
Parent-estimated language measures 2 87 0.25 0.78

Univariate linear models Df β estimate SE p
CDI comprehension, 24 months 1,90 -828.31 1452.9 0.57

CDI production, 24 months 1,90 -1114.12 1570.3 0.48

https://doi.org/10.1371/journal.pone.0313274.t010
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development. Accordingly there is a global effect of theta power on parent-estimated

(UK-CDI) language outcomes, but this is not driven by either single parent-estimated

measure.

A further pair of multivariate linear model analyses showed that a larger theta/delta PSD

power ratio (4.35 Hz / 1.92 Hz) led to a decrease in performance for both infant-led (F(5,65) =

2.684, p = 0.029, Table 8A) and parent-estimated (F(2,75) = 3.65, p = 0.031, Table 8B) global

outcomes. The more theta power that was present relative to delta power, the worse the infants’

performance on either type of outcome. Again, the univariate linear models suggested that

these global effects were not driven by any single individual measure. However, it was mea-

sures of language production that showed p values < .10 (NWR of syllables, p = .07, CDI pro-

duction, p = .09).

3.2.2 mTRF and language outcomes. The 11-months EEG data were selected for analyses

with both the parent-estimated and infant-led language measures, as these were recorded the

closest in time to the language measures (please see S12-S15 Tables in S1 File for matching

data for the earlier age groupings; these did not reach significance). 89 infants provided com-

plete data for all the parent-estimated measures and a cortical tracking value, whilst 82 infants

provided data for all the infant-led language measures and a cortical tracking value.

The multivariate linear models regarding the parent-estimated language measures

(Table 9A) displayed a trend (not significant at an alpha value of 0.05) towards better language

outcomes, with increased accuracy of delta-band cortical tracking in response to nursery

rhymes predicting better outcomes (F(2,87) = 3.00, p = 0.055). No multivariate effect was pres-

ent for the infant-led measures, (F(5,77) = 0.83, p = 0.350). However, the univariate linear

Table 11. Multivariate and univariate linear models, investigating whether delta-beta, delta-gamma, theta-beta or theta-gamma PAC at 4 months predicted either

infant-led or parent-estimated language outcomes. The table details the multivariate linear models followed by the univariate linear models describing whether PAC at

4 months predicted a) infant-led language measures or b) the parent-estimated language measures. Bonferroni correction for multiple comparisons in the univariate mod-

els led to modified significant alpha levels of, p =<0.01 for infant-led and p =<0.025 for parent-estimated (denoted by bold italic text). Modified alpha level for trends are

p =<0.02 for infant-led and p =<0.05 for parent-estimated (denoted by bold text).

PAC at 4 months

a, Infant-led language

Delta-beta Delta-gamma Theta-beta Theta-gamma
Multivariate linear model F p F p F p F p
Infant-led language measures 0.81 0.54 0.45 0.81 0.90 0.49 4.13 0.002

Delta-beta Delta-gamma Theta-beta Theta-gamma
Univariate linear models β est. P β est. P β est. p β est. p
NWR Consonants, 24 months -0.11 0.17 0.05 0.51 -0.04 0.52 0.08 0.09

NWR Syllables, 24 months -0.09 0.27 0.03 0.70 -0.04 0.49 0.14 0.002
NWR Stress, 24 months -0.07 0.37 0.02 0.79 -0.08 0.05 0.0. 0.65

CCT, 18 months -0.13 0.03 0.03 0.54 0.04 0.39 0.06 0.05

Pointing, 12 months -0.1 0.41 -0.03 0.78 -0.08 0.39 0.02 0.77

b, Parent-estimated language

Delta-beta Delta-gamma Theta-beta Theta-gamma
Multivariate linear model F p F p F p F p
Parent-est. language measures 3.38 .039 2.68 0.07 1.46 0.24 4.86 0.01

Delta-beta Delta-gamma Theta-beta Theta-gamma
Univariate linear models β est. p β est. p β est. p β est. p
CDI comprehension, 24 mo -53.4 0.20 85.0 0.02 -26.5 0.38 24.2 0.28

CDI production, 24 mo -103.3 0.02 77.1 0.06 3.35 0.92 60.1 0.01

https://doi.org/10.1371/journal.pone.0313274.t011
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model analyses showed that both CDI comprehension and CDI production at 24 months were

significantly predicted by delta band cortical tracking (p’s = 0.02, Table 9B). By contrast, the

accuracy of theta band cortical tracking did not predict either infant-led (F(5,77) = 0.886, p =
0.495) or parent-estimated (F(2,87) = 0.250, p = 0.780) language outcomes (Table 10). This

was unexpected given the adult literature. As alpha cortical oscillations did not show above

chance cortical tracking, comparison to language measures were not considered (however the

data are provided in S16-S18 Tables in S1 File for completeness).

3.2.3 PAC and language outcomes. Phase amplitude coupling (PAC) at 4-months was

selected for the language outcome analyses as PAC did not show any developmental changes

indicating that the early presence of stronger PAC may be informative (please see S19 and S20

Tables in S1 File for matching data for the later age groupings). 87 infants provided complete

data for all the parent-estimated measures and a PAC value, whilst 81 infants provided data for

all the infant-led language measures and a PAC value. Multivariate linear models were run sep-

arately to investigate whether delta-beta, delta-gamma, theta-beta or theta-gamma PAC

respectively predicted the language outcome measures.

Considering delta as the LFP first, increased delta-beta PAC predicted a global decrease in

the parent-estimated (F(2,85) = 3.38, p = 0.039) language measures (Table 11B). The univariate

linear models indicated that CDI production at 24 months drove this overall effect

(Table 11B). Increased delta-beta PAC did not predict the infant-led language outcome mea-

sures in the multivariate analysis (F(5,76) = 0.447, p = 0.815) nor in the univariate analyses

(Table 11A). By contrast, stronger delta-gamma PAC showed a trend to increase parent-esti-

mated language measures (F(2,85) = 2.68, p = 0.075), with the significant univariate linear

model indicating that CDI comprehension at 24 months drove this trend (p = 0.02). Delta-

gamma PAC did not predict the infant-led language outcome measures (F(5,76) = 0.447, p =
0.815, Table 11A), and the delta-gamma univariate models showed similar results.

When theta was the LFP, the multivariate linear models indicated that increased theta-

gamma PAC predicted a significant global increase in the infant-led language measures (F

(5,76) = 4.126, p = 0.002, Table 11A) and the parent-estimated (F(2,85) = 4.86, p = 0.010) lan-

guage measures (Table 11B). Bonferroni-corrected univariate linear models highlighted that

better non-word repetition of syllables at 24-months (p = .002) was the strongest contributing

factor. Theta-beta PAC showed no effect on later language outcomes in the multivariate analy-

ses, both for the infant-led measures (F(5,76) = 0.897, p = 0.488) and the parent-estimated

measures (F(2,85) = 146, p = 0.240, Table 11B). The univariate analyses showed similar results.

In summary, theta-gamma PAC was associated with a significant increase in both the infant-

led and parent-estimated language outcomes, in both the multivariate and univariate analyses.

Trend effects suggested that delta-gamma PAC also contributed to increases in parent-esti-

mated language outcomes. Conversely, delta-beta PAC predicted a significant global decrease in

parent-estimated language measures, and theta-beta PAC exerted no effects. The data suggest

that the coupling of LFPs to gamma-band HFAs could be a key factor in language acquisition.

4 Discussion

According to recent extensions of Temporal Sampling theory [13,37] cortical tracking of infant

directed speech (IDS) by delta- and theta-band neural signals and delta-theta neural dynamics

may be key factors in explaining individual differences in the developmental trajectories for

language acquisition. In the Cambridge UK BabyRhythm infant sample assessed here

(N = 113), individual differences in delta-band cortical tracking (in the univariate analyses),

theta-gamma PAC (in both univariate and multivariate analyses), theta power (in the multivar-

iate analyses) and theta/delta power ratio (multivariate analyses) during the first year of life
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were all significant predictors of language outcomes in infants’ second year of life. These infant

data are consistent with neural oscillatory factors that have been found to explain individual

differences in language development in children, for example the fidelity and synchronicity of

delta-band encoding of speech envelope information for phonological development [35,60].

They are also consistent with a recent EEG modelling study based on child recordings during

passive speech listening, which showed that a higher theta/delta power ratio was related to

phonological difficulties in dyslexia [39], and a child MEG study which showed that amplifying

speech information in the delta band reduced this power ratio when dyslexic children were lis-

tening to filtered speech [34]. Further, the infant neural oscillatory factors identified here were

broadly consistent in terms of replicating our previous findings with the first half of the infant

cohort [1]. The presence and maturation of low-frequency (<12 Hz) cortical oscillations

(PSD), cortical speech tracking (mTRF) and phase amplitude coupling (PAC) in response to

sung IDS was largely similar across both halves of the longitudinal Cambridge UK BabyR-

hythm cohort.

The replication of stronger delta band tracking (Fig 1) than theta band tracking in the youn-

gest (4-month-old) infants suggests that delta band cortical tracking may be a key early build-

ing block for language acquisition [21]. Efficient delta-band cortical tracking would enable

infant brains to lock on to the information-rich strong (or stressed) syllables in the speech sig-

nal, acoustic landmarks that occur on average every 500ms (2Hz) across languages [61]. This

mechanism would enable the infant brain to begin to represent the acoustic structure of

human speech [59,62]. Dynamic interactions with theta-band cortical tracking may then sup-

port further linguistic learning (see below). The importance of delta-band cortical tracking at

11 months for language outcomes in our univariate analyses (Table 9) is consistent with child

MEG studies, which show that typically-developing children exhibit efficient delta-band track-

ing of speech-in-noise, but not efficient theta-band tracking [63]. The finding that delta band

cortical tracking at 11 months predicted early language comprehension and production in the

univariate analyses (Table 9) is also congruent with research in the adult brain, where delta-

band tracking is associated with key language-related skills such as perceptual grouping

[64,65], discourse-level parsing related to phrasing [66,67] and comprehending speech-in-

noise [68].

In many adult studies, the theta band is considered the key linguistic oscillator [6]. In our

infant cohort, better theta-gamma PAC at 4-months was associated with better outcomes in

both the infant-led and parent-estimated multivariate analyses (assessing global language out-

comes) and the univariate analyses (Table 11). Adult work shows how PAC could operate as a

neural mechanism for grouping fine-grained phonetic information into syllabic units

[22,26,29]. The univariate analyses for theta-gamma PAC revealed that nonword repetition, a

phonological output measure (specifically syllable production at 24-months) and CDI produc-

tion (parental estimation of vocabulary output) were strong drivers of these effects (Table 11).

By contrast, delta-based PAC predicted increases in the language outcome measures when

gamma was the HFA (parent-estimated univariate analyses), but decreases in the language out-

come measures when beta was the HFA (parent-estimated multivariate and univariate analy-

ses). Further, not all the effects found for theta-band cortical tracking were positive in nature.

Theta-band PSD increased significantly during the first year of life, and greater theta-band

PSD at 11 months was associated with poorer language outcomes as measured by parental esti-

mates of comprehension and production at 24-months in the multivariate analyses (Table 7).

A larger theta/delta PSD power ratio at 11 months was also associated with poorer language

outcomes (Table 8), as measured by multivariate analyses of both parent-estimated and infant-

led measures. This latter finding underscores the importance of considering neural dynamics

when assessing developmental trajectories. In the previous EEG modelling work with 9-year-
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old children with and without dyslexia that investigated theta/delta ratios, a dyslexia-specific

pattern of delta and theta power dynamics during natural speech processing was seen to

become progressively more atypical the worse the child’s phonological awareness, and this was

not related to age [32]. Further, the theta/delta ratio could be improved during story listening

for children with dyslexia by increasing delta power via a filtered speech manipulation [34].

The infant literature is sparse regarding PAC dynamics. For adults, theta-gamma PAC has

been suggested as a neural mechanism for processing phonetic information in the speech sig-

nal [6,69,70]. When the same rhythmic speech stimuli used in the current study were pre-

sented to adult participants, theta/gamma coupling was stronger than delta/gamma coupling

[28]. For our infant participants presented with the same nursery rhyme stimuli, theta-gamma

PAC at 4 months was the consistent predictor of language outcomes in both the multivariate

and the univariate analyses (Table 11). Indeed, it is the phase of theta band rather than delta

band oscillations that adjusts to speech rate variations for adults, coupling with gamma ampli-

tudes [26]. Whilst both delta and theta phases couple with higher-frequency amplitudes in the

infant brain, it seems that theta-based PAC is more strongly predictive of early language out-

comes. The univariate analyses (Table 11) suggested that measures involving speech produc-

tion, namely nonword repetition and productive vocabulary, were important regarding these

relations. The adult PAC literature suggests that delta-beta PAC is particularly associated with

measures of speech production via audio-motor dynamics [27,71]. In our data, stronger delta-

beta PAC before 1 year of age was associated with poorer language outcomes at 24 months

(Table 11). In the univariate analyses, the negative association was for CDI production (p =

.02). This may be a transitory developmental effect. As the infants in our cohort continue to

develop and produce more speech, it may be that delta-beta PAC will begin to play a positive

role in predicting language outcomes.

The current study has several limitations. Recording EEG with infants is an inherently

noisy process, and this affected our data, as different infants had to be excluded from different

analyses, reducing sample size for the longitudinal language outcome assessments, particularly

regarding the multivariate analyses. A key source of noisy data are infant fussing and move-

ment, and noise was particularly apparent in the 7-month-old recordings for our sample. This

could be age-related, as by 7 months of age infants have a much larger range of movement. A

second limitation is that even though our study followed a relatively large cohort of infants

(122 recruited and 113 retained), a study with a larger participant pool may have had increased

chances of uncovering developmentally important time-lagged associations. Finally, the grand

averaged peaks observed at 4.05 Hz and 4.35Hz may correspond to a developmental matura-

tion of the PSD peak between 7-and 11-month-olds. The current study adopted a data-driven

approach across conditions and ages, however, future studies could include a separate condi-

tion to identify endogenous peaks for each age group. This information could then be used to

define the analysis peaks in the experimental condition. Notwithstanding the limitations of the

study, here we present a large longitudinal sample demonstrating that individual differences in

neural dynamics in response to speech stimuli predict some aspects of early infant language

acquisition.

5 Conclusion

Estimates of the efficiency of low-frequency cortical tracking, PSD, phase-amplitude coupling

and theta-delta power dynamics in an infant’s first year of life predict their early language out-

comes. Importantly, the neural mechanisms measured here are automatic processes that are

inherent to the human brain, and as such may represent physiological priors for language

learning in a Bayesian sense [72]. Accordingly, individual differences in the efficiency of these
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mechanisms in the pre-verbal stage of language learning assessed here are unlikely to reflect

top-down linguistic processes such as language comprehension [18]. Delta-band cortical track-

ing at 11 months in the univariate analyses and theta−gamma PAC at 4 months of age in both

the univariate and multivariate analyses significantly predicted language comprehension and

production at 24 months, with the latter predicting both word production and nonword repe-

tition in the univariate analyses. Conversely, increased theta PSD power and a larger theta/

delta ratio were associated with decreased performance on the language outcome measures in

our multivariate analyses. While other studies have also indicated a predictive relationship

between cortical tracking efficiency in infancy and language development [30], the current

study is the first to show that individual differences in PAC and theta/delta power dynamics

also predict infant language outcomes.
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65. Kösem A, van Wassenhove V. Distinct contributions of low- and high-frequency neural oscillations to

speech comprehension. Lang Cogn Neurosci. 2017 May 28; 32(5):536–44.

66. Boucher VJ, Gilbert AC, Jemel B. The role of low-frequency neural oscillations in speech processing:

Revisiting delta entrainment. J Cogn Neurosci. 2019; 31(8):1205–15. https://doi.org/10.1162/jocn_a_

01410 PMID: 30990387

67. Doelling KB, Arnal LH, Ghitza O, Poeppel D. Acoustic landmarks drive delta-theta oscillations to enable

speech comprehension by facilitating perceptual parsing. NeuroImage. 2014 Jan 15; 85 Pt 2:761–8.

https://doi.org/10.1016/j.neuroimage.2013.06.035 PMID: 23791839

68. Vanthornhout J, Decruy L, Wouters J, Simon JZ, Francart T. Speech Intelligibility Predicted from Neural

Entrainment of the Speech Envelope. J Assoc Res Otolaryngol. 2018 Apr 1; 19(2):181–91. https://doi.

org/10.1007/s10162-018-0654-z PMID: 29464412

69. Fries P. The Model- and the Data-Gamma. Neuron. 2009 Dec 10; 64(5):601–2. https://doi.org/10.1016/

j.neuron.2009.11.024 PMID: 20005817

70. Schroeder CE, Lakatos P. Low-frequency neuronal oscillations as instruments of sensory selection.

Trends Neurosci. 2009 Jan 1; 32(1):9–18. https://doi.org/10.1016/j.tins.2008.09.012 PMID: 19012975

71. Poeppel D, Assaneo MF. Speech rhythms and their neural foundations. Nat Rev Neurosci. 2020 Jun 1;

21(6):322–34. https://doi.org/10.1038/s41583-020-0304-4 PMID: 32376899

72. Doelling KB, Arnal LH, Assaneo MF. Adaptive oscillators provide a hard-coded Bayesian mechanism

for rhythmic inference. bioRxiv. 2022 Jan 1;2022.06.18.496664.

PLOS ONE Infant low-frequency EEG cortical power, tracking and phase amplitude coupling predicts language a year later

PLOS ONE | https://doi.org/10.1371/journal.pone.0313274 December 5, 2024 31 / 31

https://doi.org/10.1371/journal.pone.0144411
http://www.ncbi.nlm.nih.gov/pubmed/26641472
https://doi.org/10.1523/JNEUROSCI.1732-18.2019
http://www.ncbi.nlm.nih.gov/pubmed/30745419
https://doi.org/10.1038/nn.4186
http://www.ncbi.nlm.nih.gov/pubmed/26642090
https://doi.org/10.1162/jocn%5Fa%5F01410
https://doi.org/10.1162/jocn%5Fa%5F01410
http://www.ncbi.nlm.nih.gov/pubmed/30990387
https://doi.org/10.1016/j.neuroimage.2013.06.035
http://www.ncbi.nlm.nih.gov/pubmed/23791839
https://doi.org/10.1007/s10162-018-0654-z
https://doi.org/10.1007/s10162-018-0654-z
http://www.ncbi.nlm.nih.gov/pubmed/29464412
https://doi.org/10.1016/j.neuron.2009.11.024
https://doi.org/10.1016/j.neuron.2009.11.024
http://www.ncbi.nlm.nih.gov/pubmed/20005817
https://doi.org/10.1016/j.tins.2008.09.012
http://www.ncbi.nlm.nih.gov/pubmed/19012975
https://doi.org/10.1038/s41583-020-0304-4
http://www.ncbi.nlm.nih.gov/pubmed/32376899
https://doi.org/10.1371/journal.pone.0313274

