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Machine learning‑based optimal 
temperature management model 
for safety and quality control 
of perishable food supply chain
Joy Eze 1, Yanqing Duan 4, Elias Eze 3*, Ramakrishnan Ramanathan 2,4 & Tahmina Ajmal 5

The management of a food supply chain is difficult and complex because of the product’s short 
shelf-life, time-sensitivity, and perishable nature which must be carefully considered to minimize 
food waste. Temperature-controlled perishable food supply chain provides the highly crucial facilities 
necessary to maintain the quality and safety of the product. The storage temperature is the most 
vital factor in maintaining both the quality and shelf-life of a perishable food. Adequate storage 
temperature control ensures that perishable foods are transported to the end-users in good quality 
and safe to consume. This paper presents perishable food storage temperature control through 
mathematical optimal control model where the storage temperature is regarded as the control 
variable and the deterioration of the perishable food’s quality follows the first-order reaction. The 
optimal storage temperature for a single perishable food is determined by applying the Pontryagin’s 
maximum principle to solve the optimal control model problem. For multi-temperature commodities 
supply chain, an unsupervised machine learning (ML) method, called k-means clustering technique is 
used to determine the temperature clusters for a range of perishables. Based on descriptive analysis, 
it is observed that the k-means clustering technique is effective in identifying the best suitable storage 
temperature clusters for quality control of multi-commodity supply chain.

Keywords  Food technology, Cold supply chain, Food waste, Modelling, Perishable foods, Machine learning, 
Food temperature control, k-means clustering

The overall contribution of temperature-sensitive perishable foods in the economies of many industrialized 
nations of the world is constantly growing. The range of these temperature-sensitive perishables includes poultry, 
meat, human milk and dairy products, fish and seafood products, prepared jollof rice, salad, and different chilled 
ready-to-eat-perishable foods, to name a few. These perishable foods stand high chances of spoilage due to their 
production processes and transportation across complex national and international logistic networks. These 
perishables are usually transported using various refrigerated storage and transportation equipment through 
several intermediaries such as the primary producers, food service suppliers, retailers, hospitals, restaurateurs, 
etc, prior to reaching the intended end-users (that is, the consumers). During these transit phases, appropriate 
temperatures must be maintained otherwise the safety and quality of the perishable foods may be compromised 
due to the development of various kinds of food bacteria1–7. The Food Standards Agency (FSA) has estimated 
that a total of 2.4 million cases of foodborne illness are recorded per year in the United Kingdom8. Thus, the 
challenge of ensuring the quality and safety of temperature-sensitive perishables hinges on maintaining an intact 
cold chain right from the production facility through the intermediary actors to the consumers.

Over the past decade, the inventory modeling systems of perishable foods have received increasing research 
attention in the literature because of their strategic importance9–16 towards finding ways to reduce perishable 
foods spoilage and resultant wastage. Study has shown that excessive inventories as well as inappropriate quality 
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control account for the loss of temperature-sensitive perishables in a supply chain. Hence, the quality and safety 
of perishables remain part of the most essential aspect usually considered throughout the supply chain. Tem-
perature-sensitive perishable foods generally have a limited lifetime, otherwise known as shelf-life, a function 
of the product’s storage conditions, characteristics, and time17. For businesses, the goal is usually to maintain 
the quality and safety of their time-sensitive perishables to maximize profit by ensuring that they are sold to the 
end-users within their shelf-life. Coincidentally, the quality and safety of time-sensitive perishable foods hugely 
depend on the environmental conditions of transportation and storage18.

Wanga and Li19 maintained that the quality of time-sensitive perishable food can be regarded as a dynamic 
state which is usually in continuous decreasing with time until the food becomes unsuitable for consumption of 
sale due to its poor quality. Several studies have presented different mathematical models in the existing literature 
primarily focused on modeling quality control of perishable foods20–23. However, an accurate estimation of the 
quality of perishable foods must take into account a range of factors including storage conditions, the dynamics 
of time-sensitive food characteristics, and quality attributes. Additionally, the deterioration of the overall quality 
of perishable foods is largely dependent on the storage temperature and length of storage. The other factors that 
affect perishable food quality deterioration include gas constant and activation energy. But the control of stor-
age temperature of perishable foods mainly plays a crucial role in terms of maintaining their overall quality and 
safety. Hence, this paper has studied mathematical models that can ensure optimal perishable foods’ temperature 
control to guarantee their quality and safety for end users consumption.

Several other researchers have studied basic quality deterioration control models for perishable foods produc-
tion and inventory systems12,24–27. A review study was presented in28 which covered the recent trends in model-
ling of deteriorating inventory. The authors presented a comprehensive review of the advances of deteriorating 
inventory in the literature. Unfortunately, because of the technical difficulties involved, the products storage tem-
perature as a key factor is seldom incorporated in these inventory theory-based modelling techniques. However, 
studies have suggested the critical importance of storage temperature control of time-sensitive, perishable foods 
during refrigeration29. The widely adoption of modern technologies like time temperature indicator (TTI) and 
radio frequency identification (RFID) can enable automatic real-time capturing of perishable foods data such 
as humidity, temperature, etc, and other related information like product identity, and properties19,30. Therefore, 
it is feasible to dynamically forecast the quality of time-sensitive perishable foods during storage based on the 
automatically generated environmental conditions data thereby ensuring that the quality of perishables can 
be maintained especially by controlling the storage temperature, which is a key environmental factor thereby 
minimizing general food waste. However, to the best of our knowledge, no criterion has been proposed in the 
literature to guide how to set and control the optimal temperature of perishable foods under disparate system 
parameters such as temperature and humidity during storage. Additionally, to investigate the management of 
multi-temperature commodities supply chain, the k-means clustering technique is used in this paper to deter-
mine the temperature clusters for a range of perishable foods with different but manageable refrigerated storage 
temperature levels. Despite existing extensive research as illustrated in Table 1 on optimal storage temperatures 
and temperature clustering for perishable foods, there is a lack of studies integrating these approaches to address 
the complexities of a multi-commodity perishable food supply chain. This study aims to bridge this research gap 
by combining a mathematical optimal control model for single-item storage temperature with k-means clustering 
for multi-commodity temperature management to determine suitable temperature zones for diverse perishable 
foods, offering a comprehensive approach to enhancing food quality and reducing waste.

The remaining parts of the paper are organized as follows: materials and methods, optimal target temperature, 
modelling optimal temperature control, optimal storage temperature, and k-Means clustering technique are 
presented in Section "Materials and methods". Section "Results and discussion" contains the results and discus-
sion, while Section "Conclusions" concludes the study.

Materials and methods
Optimal target temperature
During perishable foods transportation, microbial growth which leads to quality deterioration is usually con-
trolled through refrigerated storage. Using refrigeration to keep the temperature of perishable foods at the point 
where both the microbial and metabolic deterioration of the products are reduced aids in prolonging their 
shelf-life and further maintains the quality of the products. Nevertheless, studies have shown that prolonging the 
shelf-life of time-sensitive perishable foods through refrigerated storage without conducting proper temperature 
control could become a potential risk factor for food-borne illness due to development of microbial hazards31. A 
key factor in protecting perishable products against quality deterioration while in refrigerated storage and trans-
ported for distribution is ensuring optimal temperature control by maintaining the ideal storage temperature. 
In other words, perishable foods’ quality deterioration depends largely on both time and mishandling of storage 
temperature. Storage temperature mishandling is generally additive, and even short periods of mishandling of 
the perishable foods storage temperature during loading, transportation, and offloading, could result in a sig-
nificant amount of quality deterioration by the time the food arrives at their intended destination32. Different 
categories of perishable food groups have different ideal storage temperature levels. For instance, there are cold 
chill, exotic chill, medium chill, and frozen storage temperature levels. The ideal frozen temperature level for ice 
cream is − 25 °C, and − 18 °C for other perishable foods and similar food ingredients. For poultry and fresh meat, 
most meat-based provisions, vegetables and dairy, and some fruits, it is cold chill of 0–1 °C. For fats, jollof rice, 
cheeses, butters, and some pastry-based food products, it is medium chill of 5 °C, whereas for eggs, potatoes, 
bananas, and exotic fruit, it is exotic chill of 10–15 °C33. Other studies have recommended the division of some 
time-sensitive perishable foods in line with their optimum storage temperature requirements like vegetables and 
fruits into different categories such as 0–2 °C group, 7–10 °C group, and 13–18 °C group34. Group 1 (0–2 °C) is 
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the category for most of the green, temperature fruits, and non-fruit vegetables, while groups 2 (7–10 °C) and 
group 3 (13–18 °C) are the categories for the majority of chill-sensitive perishable products.

Notations and assumptions
The proposed optimal control model is based on the following notations and assumptions.

Notations
Q(θ) Quality factor of the perishable food measured at time θ

ψ Quality decay coefficient.
n Power factor referred to as the order of the reaction.
Q0 Initial quality of the perishable food measured at θ = 0
ψ0 Pre-exponential factor for the reaction.
A0 Activation energy for the reaction measured in cal/mole.
R Ideal gas constant = 1.987 cal/K mole.
T(θ) Absolute perishable food storage temperature.
T̃ Lowest adjustable temperature.
T0 Highest adjustable temperature.
ζ Auxiliary energy consumption.
η Cost coefficient of temperature control.
Q(Tt) Quality of perishable foods at the terminal time Tt

H Hamiltonian function.
µ(θ) Costate variable.
ψ∗ Optimal temperature control.
k Number of centroids.
yi   i th sensor-measured refrigerated perishable foods storage temperature data points of the k cluster (Ck)
ϕk Mean storage temperature value of the points in Ck

Assumptions
The proposed optimal control model is developed under the following assumptions:

a)	 Only a set of similar perishable foods are stored in the refrigerator within a given period [0,Tt].

Table 1.   Comparative study table and research gap.

Study Focus Methodology Key findings

1 Multi-commodity supply chain Survey
The survey has shown that mainly static product 
inspection is conducted and TTIs are still not widely 
used for temperature monitoring and that efficient 
data exchange amongst stakeholders is still challenging

2 Multi-commodity supply chain Optimization method
The applied methodology significantly influences total 
profits and improves the environmental criteria in a 
real-world case study

3 Multi-commodity supply chain Economic order quantity (EOQ) model
The results show that the optimal order levels in dif-
ferent echelons of the supply chains are substantially 
different

4 Multi-commodity supply chain Optimization method
The results suggest that the k-domain strategy may be 
applied to effectively maximize the profitability of the 
provided network when applied to perishable products

5 Multi-commodity supply chain Numerical analysis Inventory control policies for substitutable deteriorat-
ing items under quadratic demand

7 Multi-dairy foods supply chain Focus groups and consumer survey Consumer perceptions of consumer time–temperature 
indicators for use on refrigerated dairy foods

9,11,21,26–28,39 Multi-commodity supply chain Review study
Review of tools for traceability and monitoring of 
safety and quality of perishable products in cold sup-
ply chain

20 Single perishable item Analytical model The decentralized supply-chain structure may lead to a 
distortion in product quality under certain conditions

40 Single perishable item Piecewise affine (PWA) modeling representation
Simulation experiments illustrate the potentials of the 
proposed optimal controller and the model predictive 
controller in a case study involving the bighead carp

44 Multi-commodity supply chain Clustering temperature zones, and sensor-based 
methods

The methods to access perishable foods’ quality in real 
time are formulated

This Study Integration of control theory and machine learning Optimal control model and k-means clustering

Combined mathematical optimal control model for 
single-item storage temperature with an unsupervised 
ML method (k-means clustering) for multi-commod-
ity temperature management, offering a comprehen-
sive approach to enhancing food quality and reducing 
waste
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b)	 The inventory system involves only items that are both substitutable and prone to deterioration.

Modelling optimal temperature control
To ensure mathematical tractability, the mathematical model under consideration in this study is a simple case 
with the assumption that only a set of similar perishables are stored in the refrigerator within a given period 
[0,Tt] . The quality deterioration of most perishable products can be modelled using a mathematical equation35 
shown below as

where Q(θ) represents the quality factor of the perishable food measured at time θ , while ψ is the quality decay 
coefficient which largely depends on the perishable food’s storage temperature, and n denotes the power factor 
referred to as the order of the reaction, which defines whether the reaction rate is independent of the amount of 
the perishable food’s quality remaining. Therefore, the initial quality of the perishable food measured at θ = 0 
can be expressed as Q0 , such that Q(θ) = Q0 . From a data pre-processing standpoint, most literature datasets 
for change in the quality of perishable foods, (which depends either on microbial growth, chemical reaction, or 
sensory value), follow a zero-order reaction model with n = 0 or a first-order reaction model with n = 0 . With 
Eq. (1), in most situations, the order of reaction n takes either zero-order (0) or first-order reactions (1), which 
will result in either a linear or exponential quality deterioration. This study considers the first-order reaction, 
n = 1 which will lead to exponential quality deterioration.

Several studies have investigated the effects of temperature on the increase in chemical reaction rate, but 
Arrhenius model, in which the effect of temperature is incorporated into an exponential model of the rate con-
stant is the most widely accepted32–34. Based on the Arrhenius model which is an equation for the temperature-
dependent of a chemical reaction rate, the general form of perishable food quality decay coefficient ψ can be 
expressed as

where ψ0 denotes the pre-exponential factor for the reaction, A0 represents the activation energy for the reaction 
measured in cal/mole, R denotes the ideal gas constant = 1.987 cal/K mole, and T(θ) is the absolute perishable 
food storage temperature which can be adjusted continuously at any time θ . Let 

(
T̃ ,T0) be the interval of con-

trollable temperature, with T̃ and T0 as the lowest and highest adjustable temperature, respectively. In practice, 
the highest controllable temperature T0 is normally adjusted to the prevailing natural environmental temperature. 
Perishable food’s quality level can be determined if the loss coefficient, storage time, and initial quality are 
known10,15.

According to Zanoni and Zavanella37, the use of different range of temperatures during storage time for 
preserving perishable foods will imply different operational cost of maintaining the storage. In a general sense, 
the use of a lower temperatures during storage time for preserving perishable foods implies a better food storage 
condition and slows down the overall rate of quality deterioration as expressed in eqn (1) and (2) , but also implies 
a higher implementation cost. In the contrary, with temperature control, the loss in value of perishable foods 
may increase if a higher temperature set is adopted during storage in pursuit of lower implementation cost due 
to rapid quality deterioration which is usually associated with increased storage temperature.

Categorically, the cost of implementing temperature control during the storage of perishable foods can be 
expressed as39,40

where ζ is the auxiliary energy consumption, η represents the cost coefficient of temperature control, and 
(T(θ)− T0)

4 denotes the penalty for deviation from the ambient temperature. In practice, the cost of tempera-
ture control monotonically increases with the increase of the deviation between T and T0.

Generally speaking, all time-sensitive perishable products are usually incline towards quality deterioration 
over time irrespective of whether they are properly stored or not. Therefore, there is generally a level of loss in 
value of the perishables that is normally induced by the quality deterioration. The quality of perishable foods 
Q(Tt) at the terminal time Tt is subject to an induced degradation denoted by h{Q(Tt)} . Hence, during the period 
[0,Tt] , the penalty of perishable food spoilage can be regarded as h{Q(Tt)} . In other words, higher spoilage con-
notes higher penalty. Therefore, it is logical to assume that

Thus, the total cost which comprises of the cost of controlling ambient temperature to the desired temperature 
and the loss incurred by spoilage can be expressed as

(1)Q(θ) = ψQn(θ)

(2)ψ = ψ0exp

(
−A0

RT(θ)

)

(3)C(τ ) =

Tt∫

0

{
ζ + η(T(θ)− T0)

4
}
∂t

(4)
∂h

∂Q
> 0,

∂2h

∂Q2
> 0
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The storage temperature T(θ) of a perishable food can be regarded as the control variable of the dynamic 
system and the perishable quality Q(θ) as the state variable of the dynamic system. Therefore, the optimal storage 
temperature control model that can minimise the total cost Ct can be expressed as

The optimal storage temperature control model presented in eqn (6) is a complex optimal temperature control 
problem of non-linear dynamic system associated with an objective function in the form of a quartic equation 
(equation of the fourth degree). In other words, this makes it rather difficult to directly obtain the optimal storage 
temperature control. Thus, let β(θ) = lnQ(θ) , so that the state equation in (6) can be transformed into

The perishable food quality decay coefficient ψ(θ) can be directly determined from eqn (2) once the T(θ) is 
known, and vice versa. Therefore, ψ(·) can be re-set as the control variable, so that by the reason of eqn (2) , the 
optimal storage temperature control model presented in eqn (6) can be re-written as

where R0 = ψ0exp(−A0/R0T) . Thus, the model presented in eqn (9) is an optimal storage temperature control 
problem for a linear system associated with a non-linear objective function.

Optimal storage temperature
In order to solve the optimal storage temperature control problem presented in eqn (8) , this study adopted the 
Pontryagin’s maximum principle41. For the simplification of the notation, let F(β) = 1/(lnψ0 − lnβ) . Then, the 
Hamiltonian function H , and the costate variable µ(θ) are introduced as follows

The canonical equations presented in eqn (11) and (12) are satisfied by both the costate variables and optimal 
state as shown below

Given that the terminal value of state variable β(Tt) is free, and the terminal time Tt is fixed, then the trans-
versal condition becomes

Note from eqn (12) with µ̇ = 0 , that µ is a constant. Therefore, µ can be obtained from eqn (13) as shown 
below

(5)Ct = h{Q(Tt)} +

Tt∫

0

{
ζ + η(T(θ)− T0)

4
}
∂t

(6)





min
τ(.)

Ct = h{Q(Tt)} +
Tt�
0

�
ζ + η(T(θ)− T0)

4
�
∂t

s.t.Q̇(θ) = ψ0exp
�

−A0
RT(θ)

�
Q(θ),Q(θ) = Q0,

T ≤ T(θ) ≤ T0.

(7)β̇(θ) = ψ(θ),

(8)β(0) = lnQ0.

(9)





min
‖(.)

Ct(ψ) = h
�
exp{β(Tt)}

�
+

Tt�
0

�
ζ + η

�
A0

R(lnψ0−lnψ(θ))
− A0

R(lnψ0−lnR0)

�4�
∂t

s.t.β̇(θ) = ψ(θ),β(0) = lnQ0,

ψ0exp
�
−A0
RT

�
≤ ψ(θ) ≤ R0.

H(β ,ψ ,µ, θ) =

{
ζ + η

(
A0

R(lnψ0 − lnψ(θ))
−

A0

R(lnψ0 − lnR0)

)4
}

+ µ(θ)

(10)= ζ + η

(
A4
0

R4

)
(F(ψ)− F(R0))

4 + µ(θ)

(11)β̇ =
∂H

∂µ
,

(12)µ̇ = −
∂H

∂β
.

(13)µ(Tt) =
∂h

∂β(Tt)
.

(14)µ =
∂h

∂β(Tt)
.
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According to Kopp41, the Hamiltonian function can be minimized by the optimal control k  * with the con-
straint ψ0exp(−A0/R0T) ≤ ψ ≤ R0 . Thus, the first-order condition wrt ψ that is necessary for the Hamiltonian 
function to be minimized, if it holds, can be expressed as

so that on account of eqn (14) can be given as

which becomes,

Note that an algebraic equation is presented eqn (16) above that is independent of θ . Thus, the optimal tem-
perature control ψ∗ is a constant. Now, let β

_
= ψ0exp(−A0/R0T)Tt + lnQ0, β = R0Tt + lnQ0 , so that based 

on the analysis given above, the main results of this study are as follow:

Theorem 1  The optimal temperature control ψ∗ ∈
(
ψ0exp(−A0/R0T),R0

)
 asymmetrically satisfies.

when

Proof  Let the LHS of eqn (16) be expressed.

The differential equation presented in eqn (11) can be solved to find the state variable at the optimal control 
as shown below in eqn (20)

so that by the substitution of the state equation presented in eqn (20) into eqn (19) , the derivative of f(ψ) wrt ψ 
can be obtained as follows

Now, let γ (ψ) = RT0
A0

(
lnψ0

ψ

)2
−

(
1+ 2RT0

A0

)(
lnψ0

ψ

)
+ 5 , with ψ ∈ ψ0

[
exp(−A0/RT),R0

]
 , so that 

lnψ0/ψ = [A0/RT0,A0/RT] . Then, let ζ = lnψ0/ψ so that a function γ (ζ ) can be introduced as

with ζ ∈ [A0/RT0,A0/RT] . In practice40, R ∼= 8.3, A0
∼= 85613.4 , and is the ambient storage temperature. There-

fore, A0/2RT0 ≫ 1 , and at ζ = A0/RT0 (corresponding to ψ = T0 ), the function presented in eqn (22) , that is 
γ (ζ ) approaches its minimum value (i.e., 3). Similarly, γ (ψ) approaches its minimum value when γmin(R0) = 3 
with γ (ψ) > 0 ∀ ψ ∈

[
ψ0exp(−A0/RT0),R0

]
 . It is also notewothy to state that ∂2h/∂β2(Tt) > 0 , and ḟ > 0 , that 

is, f increases wrt ψ ∀ ψ ∈
[
ψ0exp(−A0/RT),R0

]
 . Additionally, it can be further obtained that

(15)
∂H

∂β
= 0,

∂h

∂β(Tt)
+

4
(
A4
0

)
η

(
1

lnψ0−lnψ − 1
(lnψ0−lnR0)

)3

R4ψ(lnψ0 − lnψ)2
= 0,

(16)
∂h

∂β(Tt)
+

4
(
A4
0

)
η·F2(ψ)(F(ψ)− F(R0))

3

R4ψ(lnψ0 − lnψ)2
= 0.

(17)
∂h

∂β(Tt)

∣∣∣∣
β(Tt )=(ψTt+lnQ0)

+
4
(
A4
0

)
η·F2(ψ)(F(ψ)− F(R0))

3

R4ψ
= 0,

(18)
∂h

∂β(Tt)

∣∣∣∣
β(Tt )=β

_

<
4ψηT2exp

(
A0
RT

)
(T0 − T)3

ψ0A0
= 0.

(19)F(ψ) =
∂h

∂β(Tt)
+

4
(
A4
0

)
η·F2(ψ)(F(ψ)− F(R0))

3

R4ψ
.

(20)β(θ) = ψθ + lnQ0,

ḟ =
∂2h

∂β2(Tt)
Tt +

4
(
A4
0

)
η

(
1

lnψ0−lnψ − 1
(lnψ0−lnR0)

)2(
RT0
A0

(
lnψ0

ψ

)2
−

(
1+ 2RT0

A0

)(
lnψ0

ψ

)
+ 5

)

R4ψ2(lnψ0 − lnψ)4

(21)
=

∂2h

∂β2(Tt)
Tt +

4
(
A4
0

)
η·F4(ψ)(F(ψ)− F(R0))

2

(
RT0
A0

(
lnψ0

ψ

)2
−

(
1+ 2RT0

A0

)(
lnψ0

ψ

)
+ 5

)

R4ψ
.

(22)γ (ζ ) = ζ 2
(
RT0

A0

)
− ζ

(
1+

2RT0

A0

)
+ 5,



7

Vol.:(0123456789)

Scientific Reports |        (2024) 14:27228  | https://doi.org/10.1038/s41598-024-70638-6

www.nature.com/scientificreports/

and

Furthermore, note that f(R0) > 0 , and consequently, as shown in eqn (18) , there exists a unique 
ψ∗ ∈

[
ψ0exp(−A0/RT),R0

]
 which satisfies ∂H/∂ψ = 0 as shown in eqn (16) . Finally, by substituting the state 

variable’s terminal value β(Tt) = lnQ0 + ψTt into eqn (16) , then, eqn (17) can be obtained. The proof of Theo-
rem 1 is complete.

Theorem 2  The optimal temperature control ψ∗ =
(
ψ0exp(−A0/RT)

)
 when.

Proof  Recall that f(ψ) increases wrt ψ ∀ ψ ∈
[
ψ0exp(−A0/RT),R0

]
 . Similarly, the Hamiltonian function 

increases wrt ψ by virtue of eqn (23) when f
(
ψ0exp(−A0/RT)

)
≥ 0 , which means that eqn (25) holds. There-

fore, the lower bound of ψ which minimizes the Hamiltonian function is the optimal control ψ∗ , that is, 
ψ∗ = ψ0exp(−A0/RT) . The proof of Theorem 2 is complete.

Thus, from eqn (2) , with ψ∗ known, the optimal perishable foods storage temperature can be determined as

Therefore, eqn (26) , Theorem 1, and Theorem 2 have shown that the optimal perishable foods storage tem-
perature is a constant value (i.e., the change in perishable foods storage temperature is always zero). This means 
that the isotherm processes and conditions of perishable foods storage are optimal, and can be conveniently 
implemented for efficient supply chain storage temperature management and quality control of time-sensitive 
perishable foods. In this Section, the mathematical model to obtain the optimal perishable food storage tempera-
ture is established. However, perishable foods that require refrigerated storage usually have a specific temperature 
point or range of designated optimal storage temperature. This means that the target optimal storage temperature 
determined for a particular perishable product may not likely be applicable for other products if they are kept or 
transported using the same refrigerated storage facility. Hence, for multi-temperature commodities supply chain, 
a hybrid approach is applied by using k-means clustering technique (see Section "k-Means clustering technique 
for temperature control") to determine the temperature clusters for a range of perishables.

k‑Means clustering technique for temperature control
As dicussed in Section "Optimal target temperature", there are diverse time-sensitive perishable foods that require 
chilled storage temperature conditions, and the management of these storage temperature conditions is usually 
more complex and sophisticated as opposed to straight-foreward frozen perishable foods. Therefore, it is almost 
impractical to operate a single refrigeratered storage facility that can have an optimal storage temperature which 
will satisfy all the temperature requirements of various range of perishable foods. In other words, satisfying 
the temperature requirement of perishable foods with different temperature zones requires two or more cold 
storage areas. One of the unsuppervised ML techniques that is aptly suitable for this purpose is the widely used 
clustering technique43–45.

In this Section, k-means clustering technique for perishable foods storage temperature control is investigated. 
The fundamental principle is that the range of the optimal refrigerated storage temperatures of the various perish-
able foods are considered as coordinate points (i, j) in a plane. The major objective of clustering algorithm is to 
group similar data-points (i.e., storage temperature of each perishable foods) together with the aim of discovering 
the underlying patterns. k-means clustering algorithms need a fixed number of clusters (k) in order to achieve the 
goal of efficiently grouping similar data-points together prior to finding the required underlying patterns. The 
target number k refers to the number of centroids, which is widely used method in facility location problems44, 
and can be applied to determine the optimal target storage temperature of perishable foods.

The centroid W(Ck) is expressed as follows

where yi denotes the ith sensor-measured refrigerated perishable foods storage temperature data points of the k 
cluster (Ck) , and ϕk is the mean storage temperature value of the points in Ck . The total within-cluster variation 
CTotal in k-means clustering technique is generally expressed as the sum of squared distances of the Euclidean 
distances between the data points and their corresponding W(Ck) as shown below
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The k-means algorithm presented in Algorithm 1 below demonstrates the procedures and the working prin-
ciples of k-means clustering technique as follows:

	 i.	 Set the number of k clusters (Ck);
	 ii.	 Randomly select k sensor-measured storage temperature data points as the initial W(Ck);
	 iii.	 Assign the remaining sensor-measured storage temperature data points to their closest W(Ck) according 

to the Euclidean distance function;
	 iv.	 Recompute the mean (i.e., new W(Ck));
	 v.	 Repeate steps (iii) and (iv) until there are no changes in W(Ck).

Data points:  number of existing clusters
Outcome: set of the 

Initialization;

While the Ⱳ( ) do not change Do
Allocate the data point to their closest Ⱳ( ) according to the 
Euclidean distance function
Compute the mean (i.e., new) Ⱳ(  of each  

End While

Algorithm 1.   k-means algorithm.

Results and discussion
The Algorithm 1 is used to determine the optimal number of k clusters Ck . To achieve that, this study applied the 
elbow plot method46. Firstly, clustering is conducted using different numbers of k clusters before computing the 
total sum of squares for all the k values and plotted the results against k . Then, the k value at the elbow joint (i.e., 
the location of bend) in the plot depicted in Fig. 1 below is regarded as the optimal number of clusters. It can be 
noted that in Fig. 1 (i.e., the result of an elbow plot), an increase in k leads to decrease in the total sum of squares 
distance. Similarly, in Fig. 1, there is a noticeable sharp bend in the graph at k = 2 . The result in Fig. 1 further 
demonstrates that having set of additional clusters will result in a reduction of the sum of squares.

Through the application of the k-means clustering technique, the time-sensitive perishable foods were clas-
sified and categorized into a given set of clusters with different but manageable refrigerated storage temperature 
zones. The optimal target refrigerated storage temperature is determined based on the centroid approach. The 
sample storage temperature dataset used includes perishable foods with varying storage temperatures which 
ranged from − 4 °C to 20 °C. The outcome is a set of optimal target storage temperatures with their corresponding 
target humidity ranges for dissimilar scenarios such as cluster 1, cluster 2, cluster 3, and cluster 4 as illustrated 
in Fig. 2 and tabulated in Table 2 above.

(28)CTotal =

k∑

k=1

W(Ck),=

k∑

k=1

∑

yi∈Ck

(
yi − ϕk

)2
.

Fig. 1.   Elbow plot to check optimal number of k clusters.
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In Section "Optimal target temperature", the different categories of perishable food groups with different 
ideal storage temperature levels were discussed such as cold chill, exotic chill, medium chill, and frozen storage 
temperature levels. Therefore, specific optimal storage temperature of a set of similar perishable foods must be 
as close to the target optimal temperature level as possible to ensure that the products quality deterioration is 
minimized. From that perspective, it can be inferred that out of the four (4) clusters (i.e., cluster 1, cluster 2, 
cluster 3, and cluster 4), the cluster 2 solution (k = 2) remains the best amongst the four solutions contained in 
Table 2, as it has storage temperature levels with the smallest range of (− 0.87 °C, 3.31 °C). Furthermore, with a 
limited refrigerated storage space, the closest two (2) cluster solutions (i.e., (k = 2) and (k = 3) ) with minimal 
storage temperature levels ranging from (-0.87, 3.31) to (4.02, 5.93) can be safely combined into one target 
optimal storage temperature level. This temperature zone will become the most suitable as it will accommodate 
a wider range of products and still reduce their deterioration and maintain the products quality.

Managerial insights
This study has shown that effective management of temperature-sensitive perishable food supply chains is criti-
cal to minimizing food waste, ensuring product quality, and safeguarding consumer health. The integration of 
mathematical optimal control models and ML techniques, such as the proposed ML-based optimal temperature 
management model in this study, provides valuable tools for decision-makers to achieve these goals. Adopting 
and implementing the proposed hybrid mathematical optimal control model, decision-makers and perishable 
foods supply chain managers can determine the precise storage temperature that minimizes quality deterioration 
for specific types of perishable foods. This targeted approach can significantly reduce food waste and ensure that 
products reach consumers in optimal condition, thereby enhancing customer satisfaction and reducing costs 
associated with spoilage. This study further highlights that maintaining lower temperatures can slow down the 
quality deterioration process, but it also involves higher operational costs. Managers need to balance the cost 
of maintaining optimal storage temperatures with the benefits of reduced spoilage. The provided cost functions 
expressed in eqn (3) , and eqn (5) can help decision-makers and perishable foods supply chain managers to 
quantify this trade-off and make informed decisions.

Additionally, as illustrated in Figure 1 under Section "Results and discussion", the use of the elbow method 
for determining the optimal number of temperature clusters provides a data-driven approach to designing stor-
age facilities. This method ensures that resources are allocated efficiently, with minimal overlap and maximum 
coverage of different temperature requirements, thereby optimizing storage operations. Furthermore, the appli-
cation of k-means clustering allows for the segmentation of storage facilities into different temperature zones, 
each optimized for a range of perishable products. This approach is particularly useful for multi-temperature 
commodity supply chains. Perishable foods supply chain managers can use the clustering based proposed model 
to identify the optimal number of storage zones and their respective temperatures, ensuring that each type of 
perishable food is stored under ideal conditions without the need for excessive infrastructure. Similarly, continu-
ous collection and analysis of data from storage conditions and quality assessments, perishable foods supply chain 
managers can refine their temperature control strategies, with the insights gained from used for incremental 
improvements in storage practices, further reducing waste and enhancing product quality. Finally, with the 
insights gained from this study, decision-makers and managers in the perishable food supply chain industry can 

Fig. 2.   Results of the application of k-means clustering algorithm.

Table 2.   Optimal storage temperatures for dissimilar scenarios.

Parameter Cluster 1 Cluster 2 Cluster 3 Cluster 4

Storage Temperature range (0.43, 13.65) (− 0.87, 3.31) (4.02, 5.93) (16.7, 10.4)

Humidity (81.4, 85.3) (99.1, 99.4) (69.0, 69.2) (58.7 69.5)
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develop robust strategies to maintain product quality, reduce waste, and optimize operational costs, ultimately 
leading to improved profitability and consumer satisfaction.

Conclusions
Proper management of the storage temperature in food supply chain is a crucial factor necessary for reducing the 
quality deterioration of chill-sensitive and chilled perishable foods. This paper studied two unique approaches of 
storage temperature control for efficient food supply chain management and reduction of the quality deterioration 
of perishable foods. Firstly, a mathematical optimal control model for storage temperature control of perishable 
food is proposed. With the proposed optimal control model, the storage temperature is regarded as the control 
variable where the quality deterioration of the perishable food follows the first-order reaction. The paper adopted 
the Pontryagin’s maximum principle to solve the optimal control model problem which is used to determine 
the optimal storage temperature for a set of similar perishable foods in cold chain. For the storage of any set of 
perishable foods whose quality deterioration rate follows the first-order reaction, this study has strictly proofed 
the optimality of the isotherm condition of cold chain storage. Secondly, to accommodate multi-temperature 
commodities supply chain, this study applied the k-means clustering technique (an unsupervised ML method) 
to determine the temperature clusters for a range of perishable foods in cold chain. Based on the descriptive 
analysis of the outcomes, it could be inferred that adopting a constant optimal storage temperature for a set of 
similar perishable foods in cold chain can be highly profitable for decision-makers in supply chain management.

The evolving landscape of perishable food supply chain management presents numerous opportunities for 
future research and practical advancements. Some realistic future scopes that can build on the current study 
include; i) Integration with internet of things (IoT): The adoption of the proposed hybrid ML-based optimal 
control model with IoT-enabled smart sensors can provide real-time data on temperature, humidity, and other 
critical factors. Future research could focus on developing IoT frameworks that integrate with the optimal con-
trol models to offer automated, real-time adjustments to storage conditions, enhancing the overall efficiency 
and responsiveness of the supply chain, ii) Artificial intelligence (AI) and predictive analytics47: Advanced AI 
and ML algorithms can be employed to predict quality deterioration patterns and optimize storage conditions 
dynamically. Future studies can explore the development of AI-driven predictive models that account for a wider 
range of variables, including external environmental conditions, to further refine temperature control strategies, 
and iii) Blockchain for transparency and traceability: Implementing blockchain technology can ensure trans-
parency and traceability throughout the supply chain. Research can focus on how blockchain can be integrated 
with temperature monitoring systems to create immutable records of storage conditions, thus enhancing trust 
and accountability. By exploring these future scopes, researchers and practitioners can continue to innovate and 
improve the management of temperature-sensitive perishable food supply chains, ensuring higher efficiency, 
reduced waste, and enhanced food quality and safety.

Data availability
The data that support the findings of this study are available from the first author upon reasonable request.

Received: 20 April 2024; Accepted: 20 August 2024

References
	 1.	 Waldhans, C. et al. Temperature control and data exchange in food supply chains: Current situation and the applicability of a 

digitalized system of time–temperature-indicators to optimize temperature monitoring in different cold chains. J. Pack. Technol. 
Res. 8(1), 79–93 (2024).

	 2.	 Arabsheybani, A., Arshadi Khamseh, A., & Pishvaee, M.S. Sustainable cold supply chain design for livestock and perishable prod-
ucts using data-driven robust optimization. Int. J. Manag. Sci. Eng. Management, 1–16 (2024).

	 3.	 Claassen, G. D. H. et al. Integrating time-temperature dependent deterioration in the economic order quantity model for perish-
able products in multi-echelon supply chains. Omega 125, 103041 (2024).

	 4.	 Luo, R. & Deng, Q. Integrating K-domain and robust optimization methods of inventory control for sustainable enterprises in 
perishable food supply chain. Process Integr. Optim. Sustain. 8(1), 21–38 (2024).

	 5.	 Shah, N., Chaudhari, U. & Jani, M. Inventory control policies for substitutable deteriorating items under quadratic demand. Oper. 
Supply Chain Manag. Int. J. 12(1), 42–48 (2019).

	 6.	 Sherlock, M. & Labuza, T. P. Consumer perceptions of consumer time-temperature indicators for use on refrigerated dairy foods. 
J. Dairy Sci. 75(11), 3167–3176 (1992).

	 7.	 Asadi, G. & Hosseini, E. Cold supply chain management in processing of food and agricultural products. Anim. Sci. 57(1), 223–227 
(2014).

	 8.	 Food Standards Agency Foodborne disease estimates for the United Kingdom in 2018, 2020. Available: https://​www.​food.​gov.​uk/​
sites/​defau​lt/​files/​media/​docum​ent/​foodb​orne-​disea​se-​estim​ates-​for-​the-​united-​kingd​om-​in-​2018.​pdf [Accessed 17 Sept 2022].

	 9.	 Bakker, M., Riezebos, J. & Teunter, R. H. Review of inventory systems with deterioration since 2001. Eur. J. Oper. Res. 221(2), 
275–284 (2012).

	10.	 Berk, E. & Gürler, Ü. Analysis of the (Q, r) inventory model for perishables with positive lead times and lost sales. Oper. Res. 56(5), 
1238–1246 (2008).

	11.	 Karaesmen, I. Z., Scheller-Wolf, A. & Deniz, B. Managing perishable and aging inventories: review and future research directions. 
In Planning Production and Inventories in the Extended Enterprise 393–436 (Springer, 2011).

	12.	 Nahmias, S. Perishable Inventory Systems Vol. 160 (Springer, 2011).
	13.	 Olsson, F. & Tydesjö, P. Inventory problems with perishable items: Fixed lifetimes and backlogging. Eur. J. Oper. Res. 202(1), 

131–137 (2010).
	14.	 Li, Y., Cheang, B. & Lim, A. Grocery perishables management. Prod. Oper. Manag. 21(3), 504–517 (2012).
	15.	 Gürler, Ü. & Özkaya, B. Y. Analysis of the (s, S) policy for perishables with a random shelf life. IIe Trans. 40(8), 759–781 (2008).
	16.	 Shah, N.H., & Jani, M.Y. Optimal Ordering for Deteriorating Items of Fixed-Life with Quadratic Demand and Two-Level Trade 

Credit: Optimal Ordering... Two-Level Trade Credits. In Optimal Inventory Control and Management Techniques 1–16. IGI Global 
(2016).

https://www.food.gov.uk/sites/default/files/media/document/foodborne-disease-estimates-for-the-united-kingdom-in-2018.pdf
https://www.food.gov.uk/sites/default/files/media/document/foodborne-disease-estimates-for-the-united-kingdom-in-2018.pdf


11

Vol.:(0123456789)

Scientific Reports |        (2024) 14:27228  | https://doi.org/10.1038/s41598-024-70638-6

www.nature.com/scientificreports/

	17.	 Shah, N. H., Chaudhari, U. & Jani, M. Y. Optimal down–stream credit period and replenishment time for deteriorating inventory 
in a supply chain. J. Basic Appl. Res. Int. 14(2), 101–115 (2015).

	18.	 Sahin, E., Babaï, M. Z., Dallery, Y. & Vaillant, R. Ensuring supply chain safety through time temperature integrators. Int. J. Logist. 
Manag. 18(1), 102–124 (2007).

	19.	 Rong, A., Akkerman, R. & Grunow, M. An optimization approach for managing fresh food quality throughout the supply chain. 
Int. J. Prod. Econ. 131(1), 421–429 (2011).

	20.	 Wang, X. & Li, D. A dynamic product quality evaluation-based pricing model for perishable food supply chains. Omega 40(6), 
906–917 (2012).

	21.	 Chen, C., Zhang, J. & Delaurentis, T. Quality control in food supply chain management: An analytical model and case study of the 
adulterated milk incident in China. Int. J. Prod. Econ. 152, 188–199 (2014).

	22.	 Lukasse, L. J. S. & Polderdijk, J. J. Predictive modelling of post-harvest quality evolution in perishables, applied to mushrooms. J. 
Food Eng. 59(2–3), 191–198 (2003).

	23.	 Mercier, S., Villeneuve, S., Mondor, M. & Uysal, I. Time–temperature management along the food cold chain: A review of recent 
developments. Compr. Rev. Food Sci. Food Saf. 16(4), 647–667 (2017).

	24.	 Tijskens, L. M. M., Rodis, P. S., Hertog, M. L. A. T. M., Kalantzi, U. & Van Dijk, C. Kinetics of polygalacturonase activity and firm-
ness of peaches during storage. J. Food Eng. 35(1), 111–126 (1998).

	25.	 Kouki, C., Sahin, E., Jemaï, Z. & Dallery, Y. Assessing the impact of perishability and the use of time temperature technologies on 
inventory management. Int. J. Prod. Econ. 143(1), 72–85 (2013).

	26.	 Raafat, F. Survey of literature on continuously deteriorating inventory models. J. Oper. Res. Soc. 42(1), 27–37 (1991).
	27.	 Lian, Z. & Liu, L. Continuous review perishable inventory systems: models and heuristics. IIE Trans. 33(9), 809–822 (2001).
	28.	 Nahmias, S. Perishable inventory theory: A review. Oper. Res. 30(4), 680–708 (1982).
	29.	 Goyal, S. K. & Giri, B. C. Recent trends in modelling of deteriorating inventory. Eur. J. Oper. Res. 134(1), 1–16 (2001).
	30.	 Benítez, S., Chiumenti, M., Sepulcre, F., Achaerandio, I. & Pujolá, M. Modeling the effect of storage temperature on the respiration 

rate and texture of fresh cut pineapple. J. Food Eng. 113(4), 527–533 (2012).
	31.	 Venkatesan, G. Process control of product quality. ISA Trans. 42(4), 631–641 (2003).
	32.	 Jol, S., Kassianenko, A., Wszol, K. & Oggel, J. Issues in time and temperature abuse of refrigerated foods. Food safety magazine, 

(2005).
	33.	 Ashby, B.H. Protecting perishable foods during transport by truck (No. 669). US Department of Agriculture, Office of Transporta-

tion, (1987)
	34.	 Smith, D. & Sparks, L. Temperature controlled supply chains. Food Supply Chain Manag. 1(1), 179–198 (2004).
	35.	 Thompson, J.F., & Kader, A.A. Wholesale distribution center storage. The Commercial Storage of Fruits, Vegetables, and Florist 

and Nursery Stocks, 54–58, (2001)
	36.	 Labuza, T. P. Application of chemical kinetics to deterioration of foods. J. Chem. Educ. 61(4), 348–358 (1984).
	37.	 Kathel, P. & Jana, A. K. Dynamic simulation and nonlinear control of a rigorous batch reactive distillation. ISA Trans. 49(1), 

130–137 (2010).
	38.	 Zanoni, S. & Zavanella, L. Chilled or frozen? Decision strategies for sustainable food supply chains. Int. J. Prod. Econ. 140(2), 

731–736 (2012).
	39.	 Zhao, J., & Wahab, M.I.M. Chilled or frozen? Decision strategies for sustainable food supply chains: A note. Proc. 2015 12th IEEE 

International Conference on Service Systems and Service Management (ICSSSM), Guangzhou, China, pp. 1–3, 22–24 June (2015).
	40.	 Dorato, P. Optimal temperature control of solar energy systems. Solar Energy 30(2), 147–153 (1983).
	41.	 Xin, J., Negenborn, R. R. & Lin, X. Piecewise affine approximations for quality modeling and control of perishable foods. Optim. 

Control Appl. Methods 39(2), 860–872 (2018).
	42.	 Kopp, R. E. Pontryagin maximum principle. In Mathematics in Science and Engineering Vol. 5 255–279 (Elsevier, 1962).
	43.	 Hong, H., Luo, Y., Zhu, S. & Shen, H. Application of the general stability index method to predict quality deterioration in bighead 

carp (Aristichthys nobilis) heads during storage at different temperatures. J. Food Eng. 113(4), 554–558 (2012).
	44.	 Eze, E., Zhang, S., Liu, E., Eze, J. & Muhammad, S. Reliable and enhanced cooperative cross-layer medium access control scheme 

for vehicular communication. IET Netw. 7(4), 200–209 (2018).
	45.	 Aung, M. M. & Chang, Y. S. Temperature management for the quality assurance of a perishable food supply chain. Food Control 

40, 198–207 (2014).
	46.	 Shi, C. et al. A quantitative discriminant method of elbow point for the optimal number of clusters in clustering algorithm. EURA-

SIP J. Wirel. Commun. Netw. 1, 1–16 (2021).
	47.	 Eze, E., Kirby, S., Attridge, J. & Ajmal, T. Aquaculture 4.0: Hybrid neural network multivariate water quality parameters forecasting 

model. Sci. Rep. 13(1), 16129 (2023).

Author contributions
Author contributions: Conceptualization, J.E.; methodology, J.E. and E.E.; software, J.E.; validation, J.E., Y.D., 
E.E., R.R. and T.A.; formal analysis, J.E. and E.E.; investigation, J.E., E.E. and T.A.; resources, J.E.; data curation, 
J.E.; writing—original draft preparation, J.E.; writing—review and editing, J.E., E.E., R.R. and T.A.; visualiza-
tion, J.E.; supervision, R.R., Y.D. and T.A.; project administration, R.R., Y.D. and T.A.; funding acquisition, R.R.

Funding
This research was carried-out under Interreg North-West Europe, grant number NWE831.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to E.E.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

www.nature.com/reprints


12

Vol:.(1234567890)

Scientific Reports |        (2024) 14:27228  | https://doi.org/10.1038/s41598-024-70638-6

www.nature.com/scientificreports/

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and 
your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain 
permission directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​
licen​ses/​by-​nc-​nd/4.​0/.

© The Author(s) 2024

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Machine learning-based optimal temperature management model for safety and quality control of perishable food supply chain
	Materials and methods
	Optimal target temperature
	Notations and assumptions
	Notations
	Assumptions

	Modelling optimal temperature control
	Optimal storage temperature
	k-Means clustering technique for temperature control

	Results and discussion
	Managerial insights

	Conclusions
	References


