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Decoherence implies information gain

Dorje C. Brody 1,2 and Lane P. Hughston 3

1School of Mathematics and Physics, University of Surrey, Guildford GU2 7XH, United Kingdom
2Institute of Industrial Science, The University of Tokyo, Tokyo 153-0041, Japan

3Department of Computing, Goldsmiths University of London, New Cross, London SE14 6NW, United Kingdom

(Received 26 February 2024; accepted 4 November 2024; published 24 February 2025)

It is shown that if the wave function of a quantum system undergoes an arbitrary random transformation such
that the diagonal elements of the density matrix in the decoherence basis associated with a preferred observable
remain constant, then (i) the off-diagonal elements of the density matrix become smaller in magnitude, and (ii)
the state of the system gains information about the preferred observable from its environment in the sense that
the uncertainty of the observable is reduced in the transformed state. These results do not depend on the details
of how the system-environment interaction generates the random state transformation, and together imply that
decoherence leads, in general, to information gain, not information loss.
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The phenomenon of decoherence—which we define to
mean the reduction of the magnitudes of the off-diagonal
elements of the density matrix of a quantum system in the ba-
sis of some preferred observable—is undoubtedly one of the
most important conceptual developments in the foundations
of quantum mechanics over the past forty years. Although the
debate continues over whether decoherence in itself resolves
the measurement problem [1,2], it does clearly provide deep
insights into the nature of the transformations of the state
of a quantum system that can occur when a system interacts
with its environment [3–6]. It is widely held that decoherence
represents a loss of information from a system to its environ-
ment [7,8]. Here we challenge this view and show, in fact,
that decoherence is about information flowing into the system
from the environment, not the other way around. Our results
are general, applying independently of the precise nature of
system-environment interactions.

The paper is organized as follows. First, we examine the
traditional view that decoherence means information loss. Al-
though this widely held view is based on what may appear to
be a compelling line of reasoning, we point out that there are
flaws in the traditional argument, which when corrected lead
one to the opposite conclusion. The usual view is that since the
von Neumann entropy of the system increases as the system
decoheres, this means that information is lost from the sys-
tem. The problem is that the von Neumann entropy does not
involve the preferred basis along which the decoherence takes
place. We show instead that if the state of a quantum system
gains Shannon information about its expansion in the basis of
the preferred observable, then the density matrix of the system
necessarily decoheres in the basis of that observable. This
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result is followed by a more general and perhaps surprising
conclusion—namely, that any random transformation of the
wave function that preserves the diagonal elements of the
density matrix in the basis of a preferred observable gives rise
to decoherence and that this implies that the state incurs a gain
in Shannon information about that observable.

Let us begin by summarizing the argument leading to the
“information-loss” interpretation of decoherence. The notion
that all physical systems are ultimately open systems, facing
an environment with which they interact, can be regarded as a
fundamental principle of nature [9,10]. With this in mind, we
consider an ideal quantum system that is initially isolated and
in a pure state |ψ0〉 that can be written in the form

|ψ0〉 =
n∑

k=1

√
pk eiθk |Xk〉 (1)

when expanded in terms of a set of normalized eigenstates
{|Xk〉}k=1,..., n of a certain nondegenerate observable X̂ .

We are concerned in what follows with the overall magni-
tudes of the matrix elements of the initial density matrix

r̂ = |ψ0〉〈ψ0|. (2)

The matrix elements of r̂ in the X̂ basis are given by

ri j = 〈Xi|ψ0〉〈ψ0|Xj〉 = √
pi p j ei(θi−θ j ) (3)

for i, j = 1, . . . , n, whereas for the overall magnitudes one
has

|ri j | = |〈Xi|ψ0〉〈ψ0|Xj〉| = √
pi p j . (4)

Then we place the system in an environment with many
more degrees of freedom than the system and we allow the
system to interact with it. This interaction will lead to entan-
glement of the system with the environment and from there
to decoherence of the reduced density matrix in the frame of
a preferred basis. We account for the effects of entanglement
with the environment by assuming that the interaction with the
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environment perturbs the system in such a way as to generate
an effective state vector transformation of the form

|ψ0〉 → |�〉 =
n∑

k=1

√
πk eiφk |Xk〉, (5)

in the preferred basis, where {πi} and {φi} are modeled as
random variables. This step is justified if one notes that an
observer will typically have no access to detailed information
about the perturbation and hence can at best merely speak
about the statistics of the perturbed state. This leads us to a
“reduced form” model for the effects of decoherence.

It should be emphasized that rather than modeling decoher-
ence by introducing a linear phase-damping channel acting on
the density matrix of the system, as discussed, for example, in
[11], our reduced form method introduces a generic nonlinear
map on the space of density functions, induced by a random
transformation of the underlying pure state, of the form (5).

The form that this map takes depends on specific charac-
teristics of the environment, though, as we shall see later, the
unifying feature of such transformations is that the probabil-
ities associated with the various elements of the decoherence
basis satisfy a stochastic conservation law, that is to say, they
have the “martingale” property. As concrete examples of such
nonlinear random pure state maps we refer to the well known
energy-based dynamical models for quantum state reduction
(see, e.g., [12,13], and references cited in the latter), which
indeed explicitly exhibit decoherence [14].

Since the expectation value of any observable F̂ in a ran-
dom pure state |�〉 takes the form tr [F̂ |�〉〈�|], it follows
that the state of the system, insofar as an external observer is
concerned, is given by the overall mean density matrix

ρ̂ = E [|�〉〈�|], (6)

where E[−] denotes the ensemble average (i.e., the expecta-
tion) over the random degrees of freedom. Thus, the random
state vector |�〉 represents an “unravelling” of ρ̂ [15,16].

We are interested in determining conditions on the random
probabilities and phases in the transformation (5) sufficient to
ensure that density matrix (6) exhibits decoherence. We do not
insist on complete decoherence in the basis of the preferred
observable, merely that interaction with the environment in-
duces some degree of decoherence, which may or may not
amount to a complete dephasing in the decoherence basis. The
matrix elements of ρ̂, in the X̂ basis, are

ρi j = E[〈Xi|�〉〈�|Xj〉] = E
[√

πi π j ei(φi−φ j )
]
, (7)

for which the corresponding magnitudes | ρi j | cannot in gen-
eral be simplified, in the way we saw with (4), on account
of the possible correlations between the random probabilities
and the random phases. Indeed, the transformed probabilities
{πi}i=1,..., n and phases {φi}i=1,..., n can take a variety of forms,
depending on the precise nature of the system-environment
interaction, and our goal is to give rather general conditions
on these variables sufficient to give rise to decoherence.

As a simple but nontrivial example, it will be useful first
to consider the case of an environment consisting of an appa-
ratus that measures the value of the X̂ , without recording the
outcome. The probability transformation takes the form

pi → πi = 1{X = xi}, (8)

where the random variable X , which takes values in some set
{xi}i=1,..., n, denotes the outcome of the measurement. Here, for
each value of i, we write 1{X = xi} for the indicator function
that equals one if X = xi and zero otherwise. Note that πi is
a random variable for each value of i. The random phases φi

are equal to their initial constant values θi in this example, and
for the random state vector representing the system after its
interaction with the measuring apparatus, we obtain

|�〉 =
n∑

k=1

1{X = xk} eiθk |Xk〉. (9)

The initial density matrix of the system has the matrix ele-
ments (3) in the X̂ basis, whereas after the measurement the
density matrix is diagonal in the X̂ basis and takes the form

ρ̂ =
n∑

k=1

pk|Xk〉〈Xk|. (10)

This example leads us on to the traditional “information
loss” interpretation for decoherence, for we see that the von
Neumann entropy of the state of the system increases from
the initial value

HvN
0 = −tr (r̂ log r̂) = 0, (11)

since r̂ is pure, to a final value of

HvN
f = −tr (ρ̂ log ρ̂ ) = −

∑
k

pk log pk, (12)

which is positive, hence corresponding to an information loss.
Clearly, there are other maps of the form (5) that can be

used to model the system-environment interaction. Whatever
form these take, it remains that the von Neumann entropy
increases, since the state (6) after the transformation is mixed,
whereas the initial state is pure. The argument follows that
the system must have somehow lost information since the von
Neumann entropy of the state of the system has increased. The
environment, on the other hand, so it is argued, has gained this
information, for instance, by detection of the measurement
outcome, even if this is not recorded in a corresponding trans-
formation of the state of the system into a new pure state. The
key difficulty with this train of thought leading to the claim
that decoherence implies information loss is that the notion of
decoherence is basis dependent, whereas the von Neumann
entropy is basis independent. Hence, while decoherence is
observed in the X̂ basis, the information that is “lost” has no
obvious relation to the decoherence basis, which is puzzling.

With these considerations in mind, we hope to offer a
clearer understanding of the role of information in the de-
coherence process based on the following points. First, we
note that the allegedly “lost” information, as measured by the
increase in von Neumann entropy, is information lost by the
observer, not the system as such. Initially, the observer has
knowledge of the state of the system, as a pure state, but
owing to random interactions between system and environ-
ment, the information held by the observer is replaced by a
statistical description of the state, represented by a density
matrix. The observer loses track of the system as a pure state,
of which they no longer have knowledge, which is replaced
by knowledge of the ensemble average. On the other hand,
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the information about X̂ implicit in the state is encoded in
the Shannon entropy associated with the squared magnitudes
of the expansion coefficients of the state in the X̂ basis. We
shall show that the difference between the initial Shannon
entropy and the expected value of the final Shannon entropy
is positive. Thus, in this sense, it is the system that gains
information, not the environment, on average, in the process
of decoherence.

The key point here is that when we consider together the
random pure state, the associated ensemble average, and the
preferred basis, there are two different entropies that need to
be taken into account. One reflects the knowledge of an ex-
ternal observer, and the other refers to information implicit in
knowledge of the random pure state of the system. The latter
is not accessible in the ordinary way to an external observer,
though we can imagine a kind of “demon” who would have
such access. Both entropies are relevant to the discussion and
correspond to the different levels of information implicit in
the various structures under consideration.

It should be emphasized that entropy (whether it be the
von Neumann entropy associated with a density matrix or
the Shannon entropy associated with a pure state) is not
an observable in the strict sense in quantum mechanics—it
represents, rather, a summary statement about the level of
knowledge that can be possessed concerning a system, and
as such it may vary according to which aspect of the system
is being considered. In this respect, the entropies that we
consider have a status not unlike that of the Heisenberg uncer-
tainty associated with an observable in a particular state. For
although the uncertainty is not an “observable” in the sense of
Dirac, it can be given an operational meaning in terms of the
statistics of measurements on ensembles.

We support our conclusions concerning information gain
and loss with four propositions. Proposition 1 asserts that if
the information implicit in the state of a system concerning
an observable X̂ increases, this leads to decoherence of the
density matrix of the system in the basis of X̂ . In setting up
the conditions under which this result holds, we make use of
a general framework for information gain based on the use of
conditional expectations. In particular, we use the notion of
information as it arises in Kolmogorov’s set-theoretic charac-
terization of conditional expectation.

Proposition 2 is a rather more general result—namely, if a
random transformation of the form (5) preserves the diagonal
elements of the density matrix in the basis of X̂ , this leads to
decoherence in that basis. This is perhaps surprising—since
conventionally one associates decoherence with the decay of
the off-diagonal elements—so-called dephasing; whereas we
show that there is a more fundamental characterization of
decoherence purely in terms of the diagonal elements of the
density matrix. Thus, there is no need to examine the off-
diagonal elements of the density matrix to determine whether
the system has decohered.

Proposition 3, which arises as a corollary to proposition
2, shows that when there is decoherence, the variance of
X̂ on average decreases, reflecting the fact that decoherence
implies information gain by the state of the system. Finally, in
proposition 4 we show, as promised, that the Shannon entropy
of a system associated with the decoherence basis decreases,
on average, on account of its interaction with the environment.

To avoid some trivial cases, we shall assume that the random
variables {πi} are linearly independent, that is to say, that no
set of constants {λi} ∈ Rn\{0} exists such that

n∑
k=1

λkπk = 0. (13)

For instance, if n = 2 then π1 and π2 are linearly dependent
if and only if they are constant, because if Eq. (13) holds
there are two constraints π1 + π2 = 1 and λ1π1 + λ2π2 = 0
for some λ1, λ2, from which it follows that λ1 �= λ2, so π1 =
λ2/(λ2 − λ1) and π2 = λ1/(λ1 − λ2).

Proposition 1. Suppose that the state of the system under-
goes a random transformation of the form (5) in such a way
that information is gained about the observable X̂ in the new
structure of the state. Then the density matrix of the system
decoheres in the X̂ basis.

Proof. We begin with a few preliminaries. For p � 1 we
say that a random variable X lies in Lp if E[|X |p] < ∞.
Then itsLp norm is defined by ‖X‖p = (E[|X |p])1/p. Then we
have the Cauchy-Schwarz inequality, which, in a probabilistic
setting, asserts that if X,Y ∈ L2 then XY ∈ L1 and

|E[XY ]| � E[|XY |] � ‖X‖2 ‖Y ‖2, (14)

with equality on the right if and only if X and Y are linearly
dependent [17].

A rather natural way of characterizing the notion of in-
formation gain in many settings is by use of Kolmogorov’s
theory of conditional probabilities [18]. This theory has the
advantage of enabling one to work at a high level of generality.
Specifically, let I denote any choice of an information set
(viz., a sigma-algebra) that is not independent of the ran-
dom variable X . What nonindependence means is that the
specification of I will provide nontrivial (albeit, generally,
incomplete) information about the value of X . The corre-
sponding informationally rich random probabilities are given
in terms of conditional expectations by

πi = P (X = xi |I ) = E[1{X = xi} |I ]. (15)

Then, by the tower property of conditional expectation, we
have

E[πi] = E[E[1{X = xi} |I ]] = E[1{X = xi}] = pi. (16)

Since the {πi} that are constructed in this way are centered at
{pi} and linearly independent, and are such that

√
πi ∈ L2 for

each i, it follows that ‖√πi ‖2 = √
pi, and from (14) we have

E[
√

πiπ j] < ‖√πi ‖2 ‖√π j ‖2 =√
pi p j (17)

for i �= j. Here we have used the assumption that the {pi}
are linearly independent to deduce a strict inequality. Next,
we consider the magnitudes of the matrix elements (7) of the
transformed state, given by

|ρi j | = |E[
√

πi π j ei(φi−φ j )]|. (18)

If Z is any complex-valued random variable with integrable
real and imaginary parts, then

E[|Z|] � |E[Z]|, (19)

with equality only if Z is constant. This follows by use of
Jensen’s inequality for a convex function of two real variables.
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Since the argument of the expectation in (18) is a complex
random variable, we can use (19) to deduce that

|ρi j | � E
[∣∣√πi π j ei(φi−φ j )

∣∣] = E
[√

πiπ j
]

(20)

for i �= j. Finally, if we combine (4), (17), and (20), we get

|ρi j | � E[
√

πiπ j] <
√

pi p j = |ri j | (21)

for i �= j, which shows that the magnitudes of the off-diagonal
matrix elements of the state after interaction with the environ-
ment will be strictly less than the corresponding magnitudes
for the initial state, as claimed. �

If {πi} and {φi} are independent, then the leftmost inequal-
ity of (20) is an equality, but we still obtain (21) for i �= j. Thus,
if {πi} and {φi} are statistically dependent, the inequalities
become even sharper. A special case of proposition 1 was
established in [19] where the information set I is generated
by a random variable correlated to X . Here we generalize that
result to the case where the conditioning is with respect to
any σ algebra. Note that if I = σ [X ], the case of maximal
information, then the off-diagonal elements of the density
matrix vanish. When the {φi} are random but the {πi} are
constant and hence equal to the {pi}, the inequality (17) is
an equality, even though there decoherence arises from the
random phases. Such a case arises as a result of a random
unitary transformation generated by the observable X̂ , as in
the dynamics considered by Peres [20] and Adler [21]. Then
decoherence leads neither to information gain nor to infor-
mation loss, owing to unitarity. It will be noted that a crucial
consequence of assuming that {πi} is a conditional probability
is Eq. (16). In fact, we can isolate that sole property and use
it as a basis for the argument going forward, leading to the
following.

Proposition 2. Suppose that the quantum state undergoes
a transformation of the form (5) with the property that the
probabilities are conserved in the basis of an observable X̂ , so

E[πi] = pi. (22)

Then we obtain (21) for all i �= j.
Proof. Clearly

√
πi ∈ L2. Further, by use of (22) we have

‖√πi ‖2 = √
pi. Hence, by the Cauchy-Schwarz inequality

(14), the assumed independence of the {pi}, and the complex
inequality (19), we get (21), as claimed. �

Though propositions 1 and 2 appear similar, there is a
difference. In proposition 1, we assume that the gain in in-
formation is achieved by conditioning with respect to an
information set, which implies (22). In proposition 2 we have
assumed the mean condition, without stipulating a particular
mechanism for information gain. Therefore, if a quantum state
undergoes a random transformation such that the diagonal
elements of the density matrix are conserved in the basis of
X̂ , then the state will decohere in that basis.

Proposition 3. Let the quantum state undergo a transforma-
tion (5) such that (22) holds. Then

E[〈�|X̂ 2|�〉 − 〈�|X̂ |�〉2] < 〈ψ0|X̂ 2|ψ0〉 − 〈ψ0|X̂ |ψ0〉2,

(23)

showing that the averaged uncertainty of X̂ is reduced when
the system is in the state |�〉.

Proof. For W ∈ L2 we have E[W 2] � (E[W ])2 by Jensen’s
inequality, with equality if and only if W is constant. Hence,
if we set W = ∑

k πkxk , which is square integrable, we obtain

E

⎡
⎣(

n∑
k=1

πkxk

)2
⎤
⎦ >

(
E

[
n∑

k=1

πkxk

] )2

=
(

n∑
k=1

pkxk

)2

,

(24)

by use of the mean condition (22) and our assumption that the
{πi} are linearly independent. Changing the sign and adding
equal terms to each side, we obtain

E

[
n∑

k=1

πkx2
k

]
− E

⎡
⎣(

n∑
k=1

πkxk

)2
⎤
⎦ <

n∑
k=1

pkx2
k −

(
n∑

k=1

pkxk

)2

,

(25)

again by use of (22). But this gives (23), as claimed. �
In [19,22] it was conjectured that if a system decoheres in

the basis of an observable X̂ , then the variance of X̂ will on
average decrease. This conjecture was shown in [19] to be true
for two-level systems. Here we have generalized the result to
systems of any size, with a simpler proof.

Another way of characterizing the uncertainty of X̂ in the
state is in terms of the Shannon entropy. The initial value of
the Shannon entropy of the system is

HShan
0 = −

∑
k

pk log pk, (26)

whereas for the final value in expectation we have

HShan
f = −E

[∑
k

πk log πk

]
. (27)

Proposition 4. Suppose that a quantum state undergoes a
transformation of the form (5) such that (22) holds. Then

E
[
HShan

f

]
< HShan

0 . (28)

Proof. It is not difficult to check that the function I :
R+\{0} → R, defined by I (x) = x log x for x > 0, is convex.
Hence, for any strictly positive integrable random variable W,

it holds that

E[W logW ] � E[W ] logE[W ] (29)

by Jensen’s inequality, with equality only if W is constant. It
follows by use of (22) that

E[πk log πk] > E[πk] logE[πk] = pk log pk, (30)

for each k = 1, . . . , n, and hence

−
∑

k

pk log pk > −E

[∑
k

πk log πk

]
, (31)

as claimed. �
Therefore, under any random transformation of the state

that preserves the diagonal elements of the density matrix in
the basis of a preferred observable X̂ , the ensemble average
of the Shannon entropy of the system decreases from its ini-
tial value following an interaction with the environment. Our
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results show that we can model the decoherence of a quantum
system due to interactions with the environment by a random
perturbation of the state of the system that in expectation
conserves the probability law for the outcome of the measure-
ment of a preferred observable. In fact, one sees now that we
can take this property of conservation of probability to be a
definition of what we mean by an interaction with the environ-
ment that generates decoherence of the dephasing type. Then
decoherence in the basis of the preferred observable implies
that the system has on average acquired information about
that observable, as quantified by a decrease in the Shannon
entropy.

In modeling the state transition by a random perturbation,
we step outside of the usual formalism of quantum mechanics
with the inclusion of random elements. This can be justified on
the grounds that we are in essence putting forward a reduced-
form model for decoherence, rather than, say, proposing a
fundamentally new dynamics for the state vector. One can take
a similar view on the dynamics of continuous-time reduction
models, since these also exhibit decoherence of the density
matrix while preserving the mean condition [12–14].

In summary, we have shown that decoherence implies
information gain by the quantum system, rather than loss,
contrary to conventional wisdom, and that the decay of the
off-diagonal elements of the density matrix follows from a
conservation law that preserves the diagonal elements of the
density matrix. Let us emphasize that our conclusions are, to a
large extent, independent, at least qualitatively, of the precise
choice of the random perturbation. That is, while an external
observer will have no access to the details of the way in
which the system has been perturbed, our results show that in
whatever state the system has landed, an observer can be sure
that the Shannon entropy has on average reduced. We hope
that our findings will lead to new ways of understanding the
emergence of classicality from an informational perspective.
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