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Abstract

This thesis investigates the potential of computer networks to transform existing music-making
relationships within the context of contemporary music composition and performance practice.
It consists of two primary components: the development of the ZScore networked music-making
environment and a portfolio of compositions written specifically for the ZScore system. The
technical capabilities of the system and creative compositional intentions have been evaluated
through a series of workshops and performances with musicians and live audiences. This
study provides detailed information on the project’s technical and creative objectives, their
implementation, and research outcomes.

ZScore is a collection of third-party and newly developed components aiming to provide
solutions for complex notation authoring, the reliable distribution of interactive score represent-
ations to heterogeneous clients over a computer network, precise performance scheduling, and the
rendering of dynamic stave-based scores. Furthermore, it aims to facilitate distributed decision-
making agency for all participants and provide immersive audience participation through mobile
device connectivity. The specifications of the ZScore system have been derived from an analysis
of existing networked notation systems and state-of-the-art solutions from other industries where
high-throughput, low-latency systems have been successfully deployed.

The accompanying composition portfolio outlines the journey towards a new paradigm of
music-making, starting from a traditional static score that is fully defined by a composer and
faithfully performed by musicians, and concluding with an interactive networked composition
model that provides music-making agency to all participants. The compositional approach
deploys an interplay between objective and subjective metamodern methods and explores the
entire spectrum between fully composed and freely improvised music. Each composition in
the portfolio addresses a set of new challenges, both technical and aesthetic. The composition
commentary provides insight into the specific challenges for each score, the strategies employed
to address related issues, and the outcomes of the applied solutions.
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List of Definitions

Client a computer program or device that requests and receives services from another program
or device called a server over a network.

CPN (Common Practice Notation) a standard form of music notation used across Western
musical traditions.

CSS (Cascading Style Sheets) a language specifically designed to style the presentation of a
document written in markup language like HTML.

Ethernet a family of wired computer networking technologies used to connect devices over a
network.

GSAP (GreenSock Animation Platform) a JavaScript animation library developed by GreenSock.

HTML (HyperText Markup Language) a standard markup language used for creating Web
pages.

HTTP (Hypertext Transfer Protocol) an application layer protocol within the Internet protocol
suite for transmitting hypermedia documents like HTML.

iOS an operating system used for mobile devices manufactured by Apple Inc.
IP (Internet Protocol) a core protocol for addressing and routing data packets across networks,

ensuring that they reach their intended destination.

Java a platform-independent, general-purpose programming language.
JavaFx a software platform specifically designed for creating and delivering rich client appli-

cations written in Java.
JavaScript an interpreted programming language – one of the core technologies of the World

Wide Web.
JSON (JavaScript Object Notation) a human-readable file format for exchange of data between

applications.

LAN (Local Area Network) a computer network connecting devices within a limited physical
space, such as a home, office, or concert venue.

Max a visual programming environment for creating music and multimedia content (Puckette
and Zicarelli 1990).
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Max external a custom-coded object that extends the functionality of Max software beyond its
built-in features.

Max patch the fundamental unit of creation in a Max visual programming environment.
MOM (Message Oriented Middleware) a software or hardware infrastructure that facilitates the

asynchronous exchange of data between networked applications.

NTP (Network Time Protocol) a network protocol specifically designed to synchronise the
clocks of networked devices.

OSC (Open Sound Control) a networking protocol enabling control of audio equipment, com-
puters, and other multimedia devices in various applications, including music perfor-
mance.

P2P (Peer-to-peer) a distributed application architecture where devices or programs communi-
cate directly with each other without relying on a central server.

Raster graphics a digital image format composed of a grid of small squares called pixels.

Server a computer program or device that makes resources, data, or services available to other
computers or programs, known as clients, over a network.

SPL (Sound pressure level) a logarithmic measure of the effective pressure of a sound relative
to a reference value, defined in dB (decibel).

SSE (Server-Sent Events) a server push technology that enables a web client to receive automatic
updates from a server via an HTTP connection.

SVG (Scalable Vector Graphics) a human-readable, vector image format for defining two-
dimensional graphics.

TCP (Transmission Control Protocol) a reliable communication protocol that provides data
delivery in the correct order between applications running on networked devices.

Tween a fundamental building block of animation within the GreenSock Animation Platform
(GSAP) library.

UDP (User Datagram Protocol) a connectionless protocol prioritising speed over guaranteed
delivery for data transfer over networks.

UML (Unified Modeling Language) a standardised modelling language for visualising system
design.

VLAN (Virtual Local Area Network) a logical grouping of devices on a physical network that
allows them to communicate as if they were on a separate network segment.

WebSocket a communication protocol that enables a two-way real-time connection between a
web client (such as a web browser) and a web server.

Wi-Fi a wireless networking technology that uses radio waves to connect electronic devices to
a network.
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Chapter 1

Introduction

The implementation of computer networks in music-making practice has the capacity to evolve
existing processes of music composition and performance. However, networked performances
often encounter technical issues that hinder the full realisation of musical intentions. Inspired by
successful deployments of high-throughput, low-latency messaging systems in other industries,
I set out to develop a robust, scalable music-making system that delivers consistent performance
over local area networks, regardless of the performance venue size or the number of musicians
involved.

Further exploration of the initial idea led to a more fundamental inquiry into the potential
of networking technology to transform music-making relationships, as defined by Christopher
Small (1998) and further explained in Chapter 1.8.

Consequently, this research seeks to answer following questions:

1. How can the use of real-time event-driven networked systems impact music-making
relationships and evolve existing processes of music composition and performance?

2. Can innovations in dynamic notation, score structuring, and communications within a
networked environment lead to authentic musical aesthetics?

The research resulted in innovations in several areas, as listed below:

1. Multi-directional communications (1.5, 3.5, and 3.6):
• Real-time collaboration: All participants in a performance, including the audience,

can send and receive data and events over a network in real-time.
• Flexible event targeting: Events can be sent to individual participants, groups,

specific participant types (e.g., musicians, audience, conductor), or all participants
simultaneously.

2. Participation agency (1.8, 3.5, and 3.6):
• Distributed decision-making: All participant types (composer, conductor, musi-

cians, audience) can be assigned decision-making agency according to the score’s
implementation.

• Role democratisation: Individual participants can take on different roles. For exam-
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ple, audience members can assume a sound production agency or collectively decide
what notation should be played next; musicians can change the instrumentation or
choose which part they wish to play; the conductor can initiate or modify digital
sound output, effectively becoming a performer.

3. Dynamic score model (1.8 and 3.2 to 3.6):
• Extended score: A ZScore score is a collection of data and algorithms. Score data

can include music notation, audio, graphic, and configuration files, whilst server and
client algorithms define dynamic score representations and interactive behaviours.

• Multiple score representations: ZScore provides proprietary score representation
for each participant type (e.g., conductor, musicians, audience, and digital engines),
whilst individual score views can be generated within a participant type (e.g., each
musician can view their part, and each audience member can be presented with a
different score view based on their actions).

• Score-specific dynamic outcomes: The server processes all incoming events based
on score-specific logic. This may result in updates to the score state, audio-visual
output, or targeted modifications to individual participants’ score representations.

4. Notation:
• Alternating pane layout: A notation layout familiar to classically trained musicians

with current position tracking and clear update time window definitions that enable
sufficient preparation time (3.2.1.2).

• Dynamic overlays: The notation overlay implementation allows for real-time control
of the comprovisation spectrum between static and dynamic compositional decision-
making (3.4.1.2 and 1.2).

• Integrated composition: Unconstrained music notation (symbolic and graphic) for
mixed ensembles (acoustic and digital instruments) with integrated scripting that
manages dynamic score views and interactive behaviours (3.2 to 3.6).

5. System design and architecture (further explained in Chapter 2):
• Modular server design: The ZScore server can be split into multiple processes,

facilitating horizontal system scalability.
• Ordered, lock-free event processing: The server processes events from heterogeneous

clients in the order of their arrival, whilst maintaining lock-free, single threaded
execution of the composition logic for optimal performance.

• Network segmentation: The local network is divided into internal and external
VLANs, enhancing security in public performances.

• Server-side score state management: This design ensures a consistent view of the
score data across all connected clients at any given time.

• Distributed score processing: The score processing logic is divided between the
server and various clients, optimising performance and reducing network data trans-
mission.
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• Multiple Transport instances: ZScore’s Transport object enables tempo-specific
event scheduling. Multiple Transport instances can facilitate polytemporal music-
making.

6. Creative (3):
• Concept-driven composition: A compositional method that utilises a structured

mapping process between predefined concepts and the composition’s structure and
material (3.1.2).

• Subjective-objective interplay: A metamodern approach that utilises emotional and
subconscious subjective responses to predefined formal concepts and compositional
structures (3.1.2).

• Dynamic score modelling: A creative process that generates diverse compositional
material (e.g., music notation, digital audio, animated visuals, gestures, and scripts),
defines interactive behaviours, and models participants’ actions and their outcomes
within the composition context (3.2 to 3.6).

• Composer-performer role: The development of a role where a composer/conductor
can actively participate in and shape a performance in a decision-making or sound
production capacity (3.6.3.6).

Custom software applications developed specifically for this research project include:

1. ZScore server (2)
2. ZScore Control GUI (3.2.1.6, 3.4.1.3, and 3.6.3.6)
3. Client-side libraries:

• Adobe Illustrator JavaScript plugin (3.2.1.4)
• Max mxj external, jsui, and various patches (3.5.1.3)
• INScore JavaScript libraries (3.2.1.5)
• Web browser JavaScript libraries (3.5.1.1 and 3.5.1.2)

The system also relies on third-party software, such as Adobe Illustrator (score authoring),
INScore standalone client (score visualisation), web browsers (score visualisations), and Max
(digital audio processing).

This introductory chapter outlines the context for my research project. Computer networks
facilitate communication between all connected nodes and enable distributed, event-driven logic
execution. To establish the potential impact of computer networks on music-making practice,
I first investigate two key aspects: modes of communication (1.1) and the nature of decision-
making (1.2) in music composition and performance processes.

In Chapter 1.3, I examine the work of several composers who have influenced my practice,
particularly their innovations in music notation. The notation style employed in my networked
portfolio scores draws upon the compositions discussed in this chapter.

To situate my composition practice within contemporary culture, Chapter 1.4 examines
the use of digital technology in participatory music-making and explores different types of
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digital scores. The development of the portfolio compositions is significantly influenced by two
concepts outlined in this chapter: the utilisation of a digital score as a communication interface
and the aim of achieving meaningful performative involvement for all participants.

Chapter 1.5 delves into the technical aspects of computer networks relevant to music-
making. It explores various communication and synchronisation protocols, their functionality,
and potential challenges in this context. Furthermore, the chapter presents various system
architectures suitable for networked performances, informing the development of both the current
and future iterations of the ZScore system.

In Chapter 1.6, I provide an overview of existing networked music notation systems and
related software, focusing on the most prominent and widely used implementations. Informed
by this analysis, ZScore’s design builds upon existing solutions by addressing identified issues
and incorporating select features from these systems, including entire solutions for specific tasks.
For example, the INScore standalone client initially handled dynamic notation rendering before
the development of ZScore’s proprietary web client.

In networked performance systems, a score can become more than static music notation. In
Chapter 1.7, I outline the concept of networked notational perspective, which forms the theoret-
ical foundation for the development of the interactive scores in the accompanying portfolio.

The concluding chapter of the introduction (1.8), presents the methodology I employed to
address the research questions and provides a detailed breakdown of both the technical and cre-
ative objectives. It starts by engaging with three questions posed by Christopher Small (1998,
p. 193), which interrogate the fundamental nature of music-making relationships. These ques-
tions are subsequently analysed and explored within the context of networked music composition
and performance. Additionally, this chapter outlines the principles for the user interface and
action model design employed in the portfolio pieces. The specific details of each portfolio
composition are presented in Chapter 3.
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1.1 To Music Is To Communicate

This chapter investigates modes of communication in music-making, grounded in the observation
that music can be understood as an activity in which people take part. According to Christopher
Small, using the verb “to music” or its gerund form “musicking” is a more appropriate way
to describe the essence of what happens during a musical performance (Small 1998). The
meaning of music cannot be derived exclusively from the musical material or the “work” itself;
it requires an expanded horizon that includes all the relationships between different actors in the
music-making process:

“The act of musicking establishes in the place where it is happening a set of
relationships, and it is in those relationships that the meaning of the act lies. They
are to be found not only between those organised sounds which are conventionally
thought of as being the stuff of musical meaning but also between the people who
are taking part, in whatever capacity, in the performance; and they model, or stand
as metaphor for, ideal relationships as the participants in the performance imagine
them to be: relationships between person and person, between individual and
society, between humanity and the natural world and even perhaps the supernatural
world.” (Small 1998, p. 13)

In order to create relationships between music-making participants it is necessary to estab-
lish communication channels that convey the information required for the enactment of specific
participant roles. The information content that is consumed and produced by each participant
role differs. For example, a composer produces instructions for musicians encoded as a symbolic
notation, a conductor sends physical gestures to musicians based on a composer’s score, musi-
cians consume the notation and conductor’s gestures and produce sound waves that are heard
not only by the audience but also by all other performance participants, who react to generated
sound in real-time. Therefore, Small’s observations about the essence of music-making can be
expanded by stating that in order “to music”, we have “to communicate”.

In its essence, computer networking technology facilitates communication between all con-
nected participants and is thus an effective tool for enabling extended modes of communication
in music-making practice. This thesis examines existing communication flows in music-making
and proposes solutions for extended modes of communication facilitated by computer networks.

Our modern communication systems are the result of humanity’s ancient relationship with
sound and movement (Figure 1.1). The ultimate aim of music-making is to create an aural
experience for the audience and other performance participants (Kraus and Slater 2016). The
pressure of sound waves detected by the listener’s ear sensors triggers complex processing in
multiple areas of the human brain, leading to physical reactions and subconscious emotions,
as well as conscious feelings and thoughts (Weinberger 2004). Music-making activity is built

1Source: Kraus and Slater 2016
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Figure 1.1: Communication with sound and movement in the physical world1

upon these deeply ingrained communication processes and, in a way, serves as a direct abstract
communication link between human consciousnesses. An experienced musician can evoke a
mental representation of a sound in isolation, without any external communication, simply by
looking at a musical score. However, this is akin to recalling memories stored in the brain
from previous lived experiences and is not identical to the actual experience itself (Small 1998,
p. 113).

score

composer performers audience

sound/gesture

Figure 1.2: Simplified traditional music-making information flow

In Western classical music tradition, the communication is typically conceived of as a one-
directional flow (Figure 1.2). In this case, a composer creates a music score in isolation and
communicates it to musicians in the form of a printed document. Within a performance setting,
musicians generate sound based on the information contained in the score. Performers may also
produce conscious or subconscious visual gestures that are not explicitly outlined in the score but
still play a significant role in the performance context. The sound waves and visual information
produced during the performance are consumed by all participants, including audience members,
leading to complex cognitive and physical reactions. It’s important to note that this simplified
communication scenario lacks a direct feedback loop, apart from the applause at the very end
of the performance, serving as an indicator of audience appreciation. This process may involve
more complex communication flows if the composer and performers happen to live in the same
time period. Prior to the 20th century, any such communications would have been asynchronous
to a performance time.

All participants in a music performance constantly evaluate the received aural and visual
signals and react based on their respective roles and the performance context. Like any form of
communication, music-making requires a certain degree of shared knowledge and experience
between the communicators in order to be understood and evaluated adequately.
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Computer networks, with their ability to provide real-time, multi-directional communication
between all connected participants, are ideally suited as tools for extending existing music-
making communication modes.

1.2 Decision-making Spectrum

In addition to the modes of communication explored in the preceding chapter, computer networks
may also be applied to transform decision-making processes. This chapter investigates types of
decisions and their temporal aspects within the context of music composition and performance.

Composition and improvisation are often regarded as mutually exclusive music-making
categories. In practice, however, it is not possible to define a clear boundary between composed
and improvised music. Improvisation has been a ubiquitous feature of music-making throughout
history. Nevertheless, due to the increasing size of orchestras and the complexity of the works
performed, it was largely excluded from Western classical music tradition in the latter half
of the 19th century. The influence of jazz and the emergence of avant-garde composers in
the second half of the 20th century, such as Christial Wolff, La Monte Young, and Cornelius
Cardew, reintroduced improvisational techniques in both contemporary music composition and
performance.

Bhagwati (2013a, p. 99) argues that no score can totally determine all aspects of a musical
performance and that some elements of music-making will always be contingent. Likewise, a
performer’s free improvisation is built on years of practice and performance, stemming from
a particular tradition and aesthetic context. A free improviser, whether consciously or sub-
consciously, adheres to a set of rules and regulations specific to the genre. Consequently, any
music performance lies somewhere on the spectrum between fully composed (predetermined)
and purely improvised (indeterminate). The portmanteau word “comprovisation” is often used
to describe this mix.

A piece of music, whether composed or improvised, is conceived through a decision-making
process defining what sound or action is to be performed and at what time. In a composed
piece, most music material decisions are made pre-performance in isolation by a composer who
preserves these decisions as notation realised in a static score. Even in the most meticulously
notated scores, however, many performance decisions are left to the performers who interpret
the given notation based on their experience and knowledge of the particular music tradition.

Composers may choose to introduce indeterminacy in both the composition and performance
processes. John Cage defined indeterminacy as “the ability of a piece to be performed in
substantially different ways” (Pritchett 1996). Music compositions, like John Cage’s Music of
Changes (1951), can be constructed through the utilisation of random procedures. This type
of compositional indeterminacy still results in a fixed score, which is fully determined prior to
the performance. The indeterminacy in a performance can be introduced through various open
forms as well as the choice of notation as discussed further in this chapter.
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Rodrigo Constanzo (2019) developed a formal methodology for the analysis of the decision-
making process in improvised works. His segmentation of music-making decisions into material,
formal, interface, and interaction illustrates the improviser’s real-time dynamic decision-making
approach in an interactive group performance environment.

My work focuses on music-making that exists within the comprovisation decision-making
spectrum between predetermined statically notated decisions and dynamically made decisions in
real-time (Figure 1.3). ZScore is an attempt to provide a platform for unconstrained positioning
of the decision-making dial displayed in Figure 1.3, as required by the context of a performed
composition. The analysis of the comprovisation spectrum required observations of who the
decision-makers are, the type of decisions made, and their impact on the aesthetic evaluation of
music.

Figure 1.3: Music performance decision-making spectrum

The decision-making spectrum can be translated into the measurement of degrees of free-
dom assigned to performers in the score implementation. Composers can intentionally imply
interpretation freedom through the choice of a notation type (e.g. graphic notation) or provide
structural flexibility through open forms that allow for the reordering of music events in time
(non-linear composition).

Another consideration related to decision-making in indeterminate scores is a distinction
between the actions of choice and chance. A choice implies the performer’s active participation
in decision-making, whilst chance utilises an external randomisation process, such as a roll of
the dice, to determine the sequence of events or define the composition material itself.

Musical Dice Games (Musikalisches Würfelspiel), popular in the 18th century, were an early
example of indeterminate scores. The order of play of the pre-composed options in these games
was decided by a throw of the dice. A number of composers, famously including Mozart (Hedges
1978), wrote music material for Musical Dice Games. In this context, structural decision-making
is always done ahead of a performance, with the responsibility distributed between the composer
and performers (dice rollers).

A group of American composers (Cage, Feldman, Wolff and Brown), embraced concepts
of choice and chance in the early 1950s (Nyman 1999). Cage extensively used chance as a
compositional device, whilst other members of the group used choice to evolve the nature of
a music score. Inspired by the mobile sculptures of Alexander Calder and painting techniques
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of Jackson Pollock, Earle Brown strived to introduce more spontaneity in performance and
mobility in scoring techniques (Brown 2008). This resulted in the introduction of a “mobile”
composition concept with a dual nature, described by Brown as:

• a ‘mobile’ score subject to the physical manipulation of its components, resulting in an
unknown number of different, integral, and ‘valid’ realisations.

• a conceptually ‘mobile’ approach to basically fixed graphic elements; subject to an infinite
number of performance realisations through the involvement of the performer’s immediate
responses to the intentionally ambiguous graphic stimuli relative to the conditions of
performance involvement. (Brown 1954)

Brown also observed that notation employing discrete values could not adequately represent
the continual change of sound’s physical attributes (e.g. frequency, amplitude, etc.) in time.
This limitation of Western classical symbolic notation and the desire to release the performer’s
creative potential culminated in the seminal graphic notation works December 1952 (1952) and
4 Systems (1954) radically shifting the dial towards the musicians’ real-time decision-making.

Witold Lutosławski’s concept of a “mobile” differs somewhat from the definitions outlined
by Brown. Lutosławski was interested in removing the temporal constraints imposed by a
singular score tempo by distributing the decision-making agency for event timing to individual
players, whilst still retaining some control over the vertical harmonic structures within the
temporal framework. For his String Quartet (1964), Lutosławski intentionally created only four
instrument parts and not the full score. When musicians insisted on having the full score in
order to prepare for live performances, Lutosławski’s wife allegedly cut up individual parts and
placed them in boxes which Lutosławski called “mobiles” (Rae 1999). Lutosławski used the
indeterminate poly-temporal approach in several orchestral works, such as Jeux Vénitiens (1961)
and Symphony No. 2 (1965 - 67). In these works, all parts were fully written out, thereby
preserving the harmonic integrity. The individual musician’s freedom of interpretation was
limited to the timing and phrasing of the notated parts.

The indeterminate music composition implementations are frequently referred to as “open
forms”, an ambiguous term overloaded with multiple meanings. The term was first used by
Swiss art critic Heinrich Wölfflin in his attempt to formalise the difference between Baroque
and Renaissance visual art. Wölfflin describes close form as “a self-contained entity, pointing
everywhere back to itself”, whilst open form “points out beyond itself and purposely looks
limitless, although, of course, secret limits continue to exist, and make it possible for the picture
to be self-contained in the aesthetic sense” (Wölfflin et al. 1915, p. 204).

Some music theorists still use the term “open form” when discussing scores written before
1950 that do not adhere to strict forms defined by classical music theory, such as a fantasy (Borio
and Carone 2018). When referring to post-1950 music, Blumröder uses the term to describe (1)
form that has no inevitable beginning or end, or (2) form with variable formal shape (Blumröder
1984). This line of thinking draws from Stockhausen’s writing on “Momentform” (Stockhausen
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1963) which differentiates between an open (polyvalent) form offering a choice regarding the
order of the score elements in time, such as in Klavierstück XI (1956), and a score which does
not have a predetermined start, end, or duration, such as Zyklus (1959).

Klavierstück XI for piano consists of 19 notated fragments laid out on a single large page.
The performer may choose to begin with any fragment and freely continue to any other until one
of the fragments has been played three times. Additionally, markings for tempo, dynamics, and
articulation at the end of each fragment indicate how the following fragment should be played,
thereby introducing an additional layer of indeterminacy.

Zyklus for percussion comprises seventeen “periods” contained on spiral-bound pages. The
performer is given the freedom to begin on any page, however, pages have to be played succes-
sively, ending with a repetition of the first stroke sounded at the beginning of the performance.
The score allows the performer to read the notation in any direction, tempo, or orientation. In
most of the periods, the performer can choose between different notation paths, introducing an
additional layer of indeterminacy to a performance. Due to the arrangement of the instruments
on the stage and deliberate notation choices in periods, the performer’s physical movements
reflect the circular form of the piece, giving the audience an indication of the composer’s inten-
tions. The identity of the score is preserved through the structure that defines the same triangular
dynamic envelope for nine percussion timbres over seventeen periods. However, the starting
point of each envelope is different for each timbre, creating an ever-evolving sound texture during
a performance.

Due to the ambiguity surrounding the term “open form,” it would be useful, within the
scope of this thesis, to narrow the discussion to “open form scores” that explicitly indicate
the composer’s intention to delegate decision-making agency to the performance participants
regarding musical event timing, ordering, or interpretation. In this context, an “open form score
performance” becomes a collaboration between the composer and the performers, resulting in a
real-time composition realisation driven by distributed decision-making.

In all historical examples mentioned above, the score notation is always static and pre-
determined. However, computer technology advances in the 21st century have introduced
new composition and performance paradigms. In real-time algorithmic compositions, such as
Richard Hoadley’s Calder’s Violin (2011), the music material decision-making is shared between
the composer and the software algorithm. Although performers can practise this type of real-
time notation during rehearsals, the actual notation content may differ in each performance. In
the case of Calder’s Violin, the performer reacts to dynamically generated notation and digital
audio in real-time, attempting the best effort performance that can be described as a combination
of sight-reading and improvisation. The timing in Calder’s Violin is not explicitly defined and
depends on the performer’s interpretation, as well as the rate of the notation change and the
digital audio output generated by the algorithmic engine.

Various animated digital score visualisation implementations have enabled more precise
graphic notation control during a performance. Cat Hope’s opera Speechless (2019a; 2019b),
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performed using Decibel Score Player software (Hope et al. 2015), illustrates a large-scale
graphic score composition performance scenario where the score position in time is synchronised
for all performers. A static vertical line on performers’ screens indicates the current score
position, whilst the graphic notation scrolls below the position line. Performers execute the
notation when the graphic notation elements reach the vertical position line. This approach
explores Brown’s “conceptually mobile” interpretational freedom whilst retaining some form
of compositional control over temporal sound textures and rhythmic structures, even in scores
written for large-scale ensembles.

As described above, computer networks can effectively distribute computer-generated or
open form scores, granting musicians interpretive agency. The ZScore portfolio pieces take this
concept further, offering broader decision-making agency to all performance participants, as
detailed in Chapter 2.

1.3 Time, Action, And Sound Notation

This chapter explores the works of several composers whose composition methods and notation
styles have influenced my composition practice. Networked portfolio scores build upon and
further extend the described notation styles.

As described in Figure 1.1, sound and movement are deeply embedded in the history of
human communication. Physical actions can be used as a communication device both in a
direct visual sense or as an intermediary step causing the required information flow, such as
the production of sound. It is not surprising that the oldest known music notation, clay tablets
dating back to the Old Babylonian period (ca. 2000 - 1700 BCE) (The Schoyen Collection
2023), contained cuneiform tablature notation describing physical actions needed to produce a
required sound.

In contrast, the common practice notation (CPN) used in Western classical music focuses
on the definition of the resultant sound properties, such as its pitch and duration, leaving
any decisions regarding the actions required to produce the notated sound to the discretion
of performers. In addition, CPN notation may also contain instructions for particular playing
techniques, such as vibrato, col legno, or sul pont, which may be interpreted as action notations.
Traditions rely on the performer’s understanding of the style, playing techniques, and aesthetics
to complete the required information gaps.

In the second half of the 20th century, a number of composers aligned with the principles of
modernism found the semantic constraints of common practice notation overly restraining in their
pursuit of musical aesthetics ideals. The examples below illustrate the evolution of the notation
for string instruments, however, the outlined principles can be applied to any instrumentation.

In his composition Pression for one Cellist (1969), Helmut Lachenmann rejects the conven-
tions of common practice notation. His “musique concrète instrumentale” compositional aes-
thetics demands that “sounds are experienced as the immediate results of their production rather
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than mediated by a historically loaded space of listening conventions and metaphorical meaning”
(Utz 2017). The resulting notation approach, illustrated in Figure 1.4, describes physical actions
to be performed by the cellist rather than the resulting sound. This approach implies a more
visceral relationship between the performer and the instrument, creating an aural experience that
also invites the listener of a live performance to engage with the sound production method.

Figure 1.4: Helmut Lachenmann, Pression for one Cellist, score excerpt

The graphic clef resembling the cello’s shape depicted in Figure 1.4 indicates the approximate
location of notated actions. The actions for the left and right hand are notated independently
and can, therefore, produce multiple distinct sounds. The orientation of the music note stems
indicates which hand should be used to execute the notated action (stem up -> right hand (bow),
stem down -> left hand). This score is an example of a proportional notation system, where the
horizontal axis represents the passage of time. In Pression, the distance between notches on the
top stave corresponds to a quarter-note duration.

In Time and Motion Study II (1973-76) for cellist and live electronics (Figure 1.5), Brian
Ferneyhough uses mixed notation consisting of common practice notation and graphic staves
describing actions required to control various electronic components. The cello notation is split
into left and right hand staves, allowing for independent hand movements. Here, the common
practice notation describes both the resulting sound and the physical hand movement. The
resulting sound is a mixture of the pitched and unpitched sounds produced by physical actions.
The two graphic staves above and below the hand staves are for the foot pedals used by the cellist.
Additionally, the cellist performs from the “Voice” stave containing pitched and unpitched sound
definitions, making a total of five different staves dedicated to a single performer. The bottom
three graphic staves are used by the performance assistants controlling the tape delays and the
tape deck. Graphic staves indicate the approximate positions of the electronic controllers within
the given boundary values.

It is important to note that the complexity of the notation in Ferneyhough’s works is the
outcome of the aesthetic intentions driving the applied compositional process. In the Time
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Figure 1.5: Brian Ferneyhough, Time and Motion Study II, score excerpt

and Motion Study II score preface, Ferneyhough stresses the importance of not stripping out
“alternative layers of import” from the effect of the work or treating it casually as a piece of
“music theatre”. The complexity of the notation conveys “fundamental musical processes of
growth and decay which underpin and condition the entire gestural structure”.

In this piece, Ferneyhough explores the nature of time and memory through a recall of the
“production process” by having the cello’s audio output captured on tape and replayed in a
transformed way through delay machines, creating a sense of distortion and fragmentation of
the remembered material. Whilst the cellist is firmly focused on the interpretation of the highly
complex material, assistants are occupied with transforming, selecting, and reorganising the
output of the “production process”. Despite Ferneyhough’s instructions to players not to treat
his work as a piece of “music theatre”, for an audience member, it is hard not be captivated by
the theatrical nature of the Time and Motion Study II ensemble performance.

The scores mentioned above also challenge traditional notions of musical time. Utz concludes
that these new compositional methods require a fresh approach to musical analysis (Utz 2017).
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His “morphosyntactic” approach focuses on the relationships between musical elements to
understand how performers’ choices of tempo, dynamics, and articulation shape the experience
of time. Utz identified three categories of form-building time-space concepts: “spatial time”,
“processual time”, and “presentist time”. The analysis of multiple performances of the same
scores incorporates combinations and interactions between these three categories.

For example, Pression can be characterised by a sense of spatiality (“spatial time”) as gestural
movements on different parts of the cello are used to create key sound objects that anchor the
placement of other events in time. Utz’s analysis identifies distinct sound events and relates them
to one another in a hierarchical space, where the most salient events form the top layer. This
technique understands the sound structure to be a “hierarchy of saliences”. Time and Motion
Study II, on the other hand, may be best described with the processual model (“processual time”),
where each sound event is presented as part of a large transformative chain over the duration
of the entire work. The “presentist time” model can be applied to Iannis Xenakis’s Nomos
Alpha for Cello, which comprises six parts split into two paths (A and B). For Path A, Xenakis
uses eight “macroscopic” sound complexes organised through the theory of groups, resulting in
fragmented and energetic music material. Path B contains contrasting long and quiet material
that serves as intermezzi or ritornellos between the sections of Path A. The performer might
choose either to accentuate the aspect of discontinuity and disruption (“presentist time”) or to
establish continuities between the isolated events, allowing the music to unfold in a continuous
stream of events (“processual time”).

In his String Quartet No.3 (1982-84), Klaus Karl Hübler takes the idea of notated action
separation further by splitting bow technique parameters, active strings, and left hand position
notation into separate staves (Figure 1.6). The explanation of the stave layout in Hübler’s String
Quartet No.3 is shown in Figure 1.7.

Similarly to Ferneyhough, Hübler breaks the embodied integration of left and right hand
string playing techniques by having separate notation streams that produce unusual timbral
and rhythmical modulations. Hübler also employs novel tablature notation to achieve certain
non-tempered pitches. In the example shown in Figure 1.8, the player is asked to apply 3rd
position fingering in the 8th position. The tablature defines the width of a position by specifying
the source position number (III) and finger distance, where dashes and dots signify fingers and
empty semitonal spaces, respectively. The horizontal lines in Figure 1.8 indicate the relative
finger movement during a glissando into the 1st position width. This notation approach reflects
the composer’s intention to achieve exact passing non-tempered sounds by precisely notating
actions that need to be taken by players.

Aaron Cassidy takes the tablature notation method further in his Second String Quartet (2009-
10) (Cassidy 2020) by exclusively notating sound-producing actions in structured graphic staves
(Figure 1.9). A significant shift in the notational aesthetics has been achieved by the utilisation
of graphic design software, with its refinement and precision, as well as the introduction of
colour. The stave structure in Cassidy’s Second String Quartet is based on a string instrument’s
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Figure 1.6: Klaus K. Hübler, String Quartet No.3, Violin 2, page 8, score excerpt

Left Hand Notation

Active Strings

Bow Direction (         )

IV
III
II
I

Bow Position

Bowing Method

Figure 1.7: Klaus K. Hübler, String Quartet No.3, stave layout

Figure 1.8: Klaus K. Hübler, String Quartet No.3, tablature notation

physical layout as shown in Figure 1.10.
Left hand movement is displayed in black. Similarly to Hübler, Cassidy utilises tablature
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Figure 1.9: Aaron Cassidy, Second String Quartet, Violin 1, score excerpt

Figure 1.10: Aaron Cassidy, Second String Quartet, stave layout

notation indicating the position width and fingering. The movement line opacity and type
indicate finger pressure intensity, or a playing technique such as vibrato or tremolo. Right hand
motion is notated primarily in red. The graphical location of the string letter name and the
connecting lines indicate the position of the contact point between the bow and the string. The
width and opacity of the red line indicates bow pressure intensity whilst the purple colour is
used for the col legno playing technique.

Green indicates the bow’s direction (up/down) and speed. The bow is divided roughly into
five equal “zones”, with 1 towards the tip and 5 at the frog. Green boxed numbers indicate the
position of bow zone contact based on this division. Musical dynamics notation is only provided
for pizzicato attacks, as the dynamics of bowed material depends on the interaction of bow speed
and bow pressure.
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Left and right hand movements are rhythmically independent. Right hand rhythms are
notated in red above the staff, whilst left hand rhythms are notated in black below the staff.
There could be as many as four independent rhythm markings at any one time, referring to
various bow and finger movements. The positioning of the rhythmical layers can be inconsistent
and might include some guessing on the interpreter’s part as to which playing technique the
markings refer to.

This notation type, with its fluid hand movements and rapid changes in bow speed and
pressure, results in unstable transient non-tempered pitch content, producing a wide range of
sound dynamics from airy whispers to grinding noise. My research aims to continue development
of the notation techniques and resulting sound aesthetics detailed above.

1.4 Music Composition In The Smartphone Era

This chapter contextualises my research within contemporary culture by examining the integra-
tion of digital technology into daily life and its impact on music-making processes. The term
“Smartphone Era” refers to the period that began with the 2007 launch of the iPhone and extends
to the present day.

Music-making, like any other continuous process, is inherently temporal in nature. Fur-
thermore, it is inextricably linked to the time and culture from which it emerges. Authentic
art-making, in my view, is akin to holding up a mirror to the arrow of time, reflecting an individ-
ual consciousness embedded in a surrounding human culture and formulating an expression that
communicates as yet undiscovered valuable aspects of the sensed reflection. Unlike an optical
mirror, which reflects a three-dimensional physical space, the imaginary art mirror holder per-
ceives a reflection of the present state of mind and culture in the foreground, with all previous
experiences and knowledge acquired through time, chained in the background.

The ever-increasing presence of digital technology in today’s world is undoubtedly having
a significant impact on society. As Katherine Hayles argues (Hayles 1999), the posthuman
condition is not some distant future state but an ongoing process characterised by the constantly
evolving relationship between humans and technology. This transformation brought about by
digital technology has not only changed the way we think and communicate but has also given
rise to new forms of social organisation and identity.

Digital technology has become ubiquitous in music-making practice today. Tanaka argues
that “all music today is some form of music-computer interaction” (Tanaka 2019). The symbiotic
relationship between music performers and technology, however, is not a recent phenomenon.
Nĳs and Lessaffre (2013) analyse the depth of embodied interactions between musicians and
their instruments and conclude that musical instruments, whether acoustic, electronic, or digital,
act as an extension of the musicians’ bodies and minds. The human-nonhuman entanglement
is explored in Ferneyhough’s Time and Motion Study II (Figure 1.5), where an organic body
(cellist) intersects with technologies both mechanical (cello) and electronic (microphones, foot
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pedals, tapes, etc.).
Just as acoustic instruments can be seen as an augmentation of the human body:

“The musical instrument is a prosthetic augmentation of the human body, enab-
ling the body to exceed itself (to sound faster, higher, louder than any voice, and
to enable the individual to do so often in multiple parts simultaneously)” (Johnson
2015, p. 142),

Similarly, computer networking technology can be treated as an extension of human com-
munication capabilities in music-making, enabling us to exchange larger amounts of diverse
information, with higher frequency, lower latency, and the ability to do so often with heteroge-
neous participant types simultaneously. This enhanced communication allows for the exchanging
of data and events that can trigger behaviours enacted by both human and digital actors, thus
further expanding the boundaries of human-nonhuman interaction.

Pinchot et al. (2011) describe how mobile phones have become an integral part of our daily
lives, changing the way we communicate and interact with others. They argue that mobile phones
have significant implications for our understanding of communication, identity, and creativity,
thus providing new opportunities for embodied interaction and expressive capacity.

These developments have been exploited by a new generation of digital musicians, leading
to the formation of several ensembles experimenting with mobile phone utilisation in music-
making, such as the Stamford Mobile Phone Orchestra (Wang et al. 2014). Swedish composer
Anders Lind (2020b) has created several compositions for mixed ensemble performances that
include the Mobile Phone Orchestra (2020a). In these performances, mobile phones are mainly
used as sound sources, acting as an extension of the traditional orchestral instrument concept.
Due to the limited power of the built-in speakers, the sound produced by the mobile phones is
usually amplified. The technical implementation of the software used in Lind’s scores does not
allow for direct communication between mobile phone performers and acoustic performers. In
this case, mobile phone performers observe a score displayed on a large screen and react to it
by triggering sound samples on their mobile devices. Conceptually, the audience’s role in this
scenario is still regarded as separate from the mobile phone performers, who actively participate
in the performance.

When composing for a combination of acoustic instruments and mobile phones, it is im-
portant to consider the limitations of mobile phone speakers, such as their relatively low power
output (1 - 3 W) and narrow frequency range (∼500 Hz - 10 kHz). Despite these limitations, an
average mobile phone can still achieve a loudness of 70 - 77 dB SPL, which is comparable to
the sound produced by a violin played mezzoforte (maximum violin loudness 75 - 95 dB). It is
worth noting that doubling the number of mobile phones in the ensemble will only result in a
modest increase of 3 dB in overall loudness.

Barbara Lüneburg’s research project on Gamified Audiovisual Performance and Performance
Practice (GAPPP) (Lüneburg 2018) explores participatory culture by involving an online audi-
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ence familiar with gaming and social media technology in the making of a multimedia artwork.
Lüneburg (2017) observes that, in order to enable performative involvement over an interactive
system, a designer needs to create meaningfulness with regard to:

• Technical skills. The work allows performers to gain or enhance their technical capabilities
and thus heightens their sense of agency.

• Creative strategies and goals. The work’s rules, strategies, and objectives should be clear
and recognizable, granting performers agency to influence the work musically, visually,
strategically, or content-wise.

• Musical objectives. The system and the work should offer options for making musical
decisions that make traceable sense and are satisfying to performers, possibly presenting
unexpected but challenging contingencies.

• Sharing artistic experiences with the audience. The system and the work allow for perfor-
mative decision-making and actions that let performers transmit the artistic experience on
a social and artistic-communicative level in cognitive, sensor-motoric, or emotional ways.

Lüneburg’s list of requirements for meaningful performative involvement provides valuable
guidelines for developing participatory system interfaces aimed at audiences familiar with mobile
phone technologies, regardless of their exposure to contemporary music performance practices.

Digital technology and the cultural changes brought about by its ubiquitous presence have
inevitably impacted the nature of a music score. Craig Vear (2019) captures the recent shifts
in musicianship, creativity, and innovation resulting from the transformation of music-making
practices through engagement with digital music scoring systems, which he refers to as “the
digital score”. Vear’s theoretical framework for understanding the emergence of the digital score
defines fundamental principles governing its purpose and function:

“The core purpose of a digital score is a technically mediated communication
interface between the creativity of a composer, the creativity of a performer and the
creative mind of the listener.

The core function of this communication interface is to represent the ideas that
happen inside the mind of the composer, using digital technology in such a way that
these ideas are capable of being translated into sound during performance through
the technique and creative interpretation of a performer (human or machine).” (Vear
2019, p. 19),

Based on these fundamental principles, Vear defines six features that characterise the nature
of the digital score (Vear 2019, p. 30):

• A digital score is a technically mediated communications interface that enhances how
ideas in music can be represented.

• A digital score is a technically mediated pathway for a musician (human or machine) to
navigate within sound during the performance.
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• A digital score is a hardware-software combination that can support and enhance the
connectivity of people, sound, space and score.

• A digital score allows compositions to be defined by their interactivity.
• A digital score can augment performance techniques that lead to invention and creativity

within the parameters of active composition (especially improvisation and open/distributed
compositional forms).

• A digital score is a technological space for creative invention.

In a networked environment, the core purpose of the digital score can be expanded to
not only mediate communications but also to enable active participation and decision-making
agency for all performance participants. Creative ideas in the minds of composers, musicians,
and audiences can be translated into sound, visual, or gestural representations mediated by the
digital score.

Identifying the origins of creativity in human-computer artistic practice is becoming a
non-trivial issue. Musical metacreation (MuMe) is a field that studies the partial or complete
automation of musical tasks (Pasquier et al. 2017). In the digital age, the autonomous tools that
can perform these tasks include Artificial Intelligence (AI) and Multi-Agent Systems (MAS)
(Tatar and Pasquier 2018). MAS are distributed systems that run on a network, where each
software agent is an autonomous entity containing perception and action abilities.

One of the frameworks that implements MAS architecture is the Musebot project (Bown
et al. 2015). It offers a platform for interactive live performances involving human performers
and multiple musical agents over a network. Musebots are autonomous agents capable of
performing music-making tasks and collaborating with other connected musebots over a network.
Communication is facilitated by the “musebot conductor”, a standalone software coordinating
a collection of musebot agents on a local network, known as a “musebot ensemble”. Whilst
this research does not include AI and MAS, future work could explore integrating musebots
within the ZScore system, opening a new range of possibilities for human-computer networked
music-making.

This study focuses on the exploration of human creativity within an enhanced human-
computer performance environment. The ZScore system and the accompanying portfolio aim to
expand Vear’s definition of a digital score by providing decision-making agency and meaningful
performative involvement to all performance participants, as advocated by Lüneburg.

1.5 Networked Music-making

This chapter explores the technical aspects of computer networks relevant to music-making
systems. It examines both the advantages and potential drawbacks associated with various
network solutions and protocols. This analysis informed the design and implementation of the
ZScore system.
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Figure 1.11: A networked music-making environment

Networked systems allow users to communicate and coordinate actions by passing messages
over a computer network. Most network systems, including the Internet and Local Area Network
(LAN) (Clark et al. 1978), are based on the Open Systems Interconnection model (Costa 1998)
which ensures connectivity between heterogeneous clients running on different hardware and
software implementations. Modern high-throughput, low-latency messaging systems are able
to process thousands of messages per second with sub millisecond latencies. Network messages
can both transfer large quantities of data from one location to another and carry events that
trigger actions at different target nodes. Event-driven systems usually rely on a set of rules that
define the type and timing of actions that need to be executed upon event receipt. Considering
that event-driven networked systems provide both fast communications between different actors
and decision-making functionality, they are well-suited to be used in a music-making activity.
Networked nodes can produce audio, visualise notation, or execute algorithms with latencies
imperceptible to humans (below 10 milliseconds).

Networked music-making systems allow all participant types – musicians, audience, com-
posers, conductors, and various digital audio and video engines – to connect and exchange data
and events in real-time2 (Figure 1.11).

Unlike traditional one-directional communication flows (Figure 1.2), networked systems al-
low for multi-directional communication between all participants (Figure 1.12). Any participant
in a networked system can be assigned sound production or decision-making ability, thereby
blurring the boundaries between traditional music-making roles. Furthermore, networking tech-
nology allows for unconstrained control of the comprovisation decision-making dial (Figure 1.3)
as required by the context of a performed piece of music.

The main network communication models that define how data is transmitted and received
between connected devices are illustrated in Figure 1.13. Unicast is the simplest and most
common type of computer communication, where a single sender distributes data to a specific

2The term “real-time” here does not imply a guaranteed system response but rather refers to close-to-
instantaneous communications.
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Figure 1.12: Multi-directional communication in networked music performance

recipient. In this one-to-one or point-to-point communication, a source transmits a copy of the
data to each destination. In a scenario where a single sender has to distribute data to many
different destinations, this model creates a significant load on the sender side and the network.

Figure 1.13: Network communication models

The multicast model allows a sender to transmit data to a group of recipients simultaneously.
In this one-to-many communication, a sender sends the message only once, and the network
infrastructure itself duplicates and distributes the data to all group members. This model is more
efficient and reduces network congestion when a single sender produces messages for several
consumers. It is particularly effective when different participant groups, such as orchestra
sections, require different message content.

In the broadcast model, a single sender sends data to all devices within a network. Whilst
this one-to-all model may seem to be an appealing solution when a message needs to be sent
to all connected devices, it requires caution. Serious issues, such as a “broadcast storm,” may
occur when a large number of packets are sent through a network in a short period of time,
overwhelming the network and disrupting all communications.

Network communication protocols define a system of rules that govern how data is trans-
mitted, received, and processed in a computer network. The Transmission Control Protocol
(TCP) (Cerf and Kahn 1974) establishes a reliable, one-to-one connection between a sender and
a receiver. Internet browser connectivity is mostly delivered over the TCP/IP protocol suite,
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which includes HTTP (Berners-Lee 1991) request-response communication and fully-duplex
WebSocket (W3C 2009) connections that enable bi-directional communication between clients
and servers. This protocol ensures reliable messaging by requiring the receiver to acknowledge
(ACK) the receipt of each packet. However, the overhead of socket connections and packet
acknowledgements can impact data transmission rates, resulting in reduced network throughput.

The Maximum Transmission Unit (MTU) in TCP communications, typically set by network
card manufacturers at 1500 bytes for Ethernet protocol, determines the largest packet size that can
be sent over a network. Larger MTU sizes may reduce latency as more data can be packed into a
single message, whilst smaller MTU sizes can minimise the impact of packet loss. The default
value is usually sufficient, however, adjusting the MTU can be explored if the music-making
system experiences latency or packet loss issues. On an application level, latency-critical data
structures intended for network transfer should be designed with this limitation in mind to avoid
unnecessary data fragmentation during transmission. For example, large strings or files should
be avoided in latency-sensitive communications.

Unlike TCP/IP, the User Datagram Protocol (UDP) (D. P. Reed and Postel 1980) is a
lightweight, connectionless protocol that does not provide reliable packet delivery. The UDP is
suitable for applications where fast data transfer is prioritised over guaranteed packet delivery. It
is commonly used as the transport layer protocol in multicast implementations. The maximum
UDP packet size is 64 KB, so any larger data structure may be truncated during transmission
and should be split into multiple messages. For instance, large linked lists containing score
data might be entirely lost during UDP transfer, therefore, they should be divided into smaller
sublists, sent in multiple messages, and reassembled on the receiving node. ZScore keeps track
of all messages exceeding the configurable size limit and raises an alert if the limit is breached.
Offending data structures can then be refactored to adhere to the size limitations.

To address potential UDP message loss, additional mechanisms can be implemented on top
of the UDP protocol. This can involve using Reliable UDP (RUDP) (Bova et al. 1999) libraries
or implementing an application-level mechanism that tracks message order and requests replays
for missed packets. Unlike TCP, which requires acknowledgment for each packet, reliable UDP
mechanisms usually employ negative acknowledgment (NACK) to inform the sender when a
specific packet is not received, triggering a replay.

Digital devices are usually connected to a computer network either via a wired Ethernet
connection or wirelessly through Wi-Fi technology. Wired Ethernet connections offer speed and
reliability, whilst Wi-Fi offers convenience and scalability. All modern mobile devices support
at least one version of Wi-Fi connectivity. On the negative side, Wi-Fi signals can be affected by
physical obstructions, distance, and other devices operating on the same frequency range. These
factors can lead to signal degradation and reduced network performance. Signal interference can
cause packet loss and message latencies measured in hundreds of milliseconds. Additionally,
Wi-Fi can be vulnerable to unauthorised access if not properly secured, especially in publicly
available networks.
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Networked performance systems in public venues should be designed to protect core com-
ponents against malicious attacks during concerts, such as unauthorised access or denial of
service. This may entail the installation of network firewalls that segregate public and private
local networks, along with encryption and robust authentication mechanisms for the protected
internal segments of a network.

There are several types of networked system architectures that determine how network
clients, such as the musicians’ tablets, the audiences’ mobile devices, or audio and video digital
engines, connect to the rest of the system. Figure 1.14 illustrates basic network architectures
that can be utilised in music-making systems.

Figure 1.14: Network application architectures

The most prevalent solution by far is the standard Client-Server architecture, where all
networked devices connect directly to a server responsible for data processing and distribution.
Due to the widespread adoption of web technologies, this method often utilises standard web
connectivity protocols such as HTTP or WebSocket. Another useful option for Client-Server
communication is Server-sent Events (SSE) technology (2006). SSE is a server push technology
enabling a client to receive automatic updates from a server via a HTTP connection. As HTTP
port access is usually allowed, this technology enables data transfer through almost any network
firewall.

Most modern mobile devices come with at least one web browser installed by default,
which can act as a network client in music-making. The recent adoption of HTML5 (2008)
and various JavaScript (Eich 1995) frameworks makes them well-suited for the development
of dynamic notation interfaces. Additionally, there are several proven and robust web server
implementations available for all operating systems, including NginX (2004), Apache (1995),
and Microsoft IIS (1995). Another popular solution amongst web developers is Node.js (2009),
which offers server-side JavaScript development and asynchronous, non-blocking server-side
processing, making it suitable for music-making applications.

Connectivity in the Client-Server architecture can also be established over UDP Unicast or
Multicast on local area networks. However, if network traffic needs to pass through a firewall,
additional configuration may be required to ensure the uninterrupted flow of UDP packets.

Depending on the number of connected clients, the Client-Server architecture may impose
a significant load on the server-side. Additionally, in the simple scenario illustrated in Fig-
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ure 1.14, the server becomes a single point of failure. Mission-critical applications that require
high-throughput, low-latency processing, such as financial instrument pricing and trading ap-
plications, often deploy robust Message Oriented Middleware (MOM) as a messaging layer
between all connected devices. MOM provides a scalable and fault-tolerant solution by de-
coupling the communication between clients and servers. It allows for asynchronous message
passing, which reduces the reliance on real-time connections and minimises the impact of single
points of failure.

Whilst many MOM solutions are tailored for enterprise-level implementations, there are
several open-source, relatively lightweight, multiplatform, fast, and reliable messaging imple-
mentations available. Examples include ZeroMQ (2007) and Aeron (2014). Both messaging
systems are capable of delivering millions of messages per second with sub-millisecond laten-
cies3. One drawback of MOM implementations is the requirement for proprietary software
installation on the client-side. In the case of music-making systems, for instance, all audience
members would need to install a dedicated app on their mobile devices to participate in a
performance.

Peer-to-Peer (P2P) is a decentralised form of communication where devices can connect and
interact with each other without the need for a central server. In music-making applications,
however, the most likely scenario would be for clients to first connect to a server and obtain the
required score data before establishing P2P connections and directly exchanging data and events
with other peers during a performance.

Web Real-Time Communication (WebRTC) (2011) provides a framework for browser-based
applications to establish P2P connections, enabling the transmission of audio, video, or any
other data required for a composition performance. Although most major browsers support
WebRTC, implementations can still be inconsistent. WebRTC has not been utilised in this
project. However, as part of future development, I plan to investigate the possibility of UDP
messaging over WebRTC, as UDP and multicasting are currently not supported by web browsers.

Open Sound Control (OSC) (2002) is a protocol specifically designed for exchanging mes-
sages and data related to sound, music, and multimedia applications. It was originally intended
as an alternative to the MIDI (1983) standard, offering higher resolution and a richer parameter
space for communications between electronic music instruments, such as synthesisers. However,
the protocol proved to be suitable for much wider scoped platform-independent implementations,
enabling different software and hardware devices to communicate over a computer network and
control one another in real-time. The majority of OSC implementations are built on top of UDP,
inheriting both the benefits and drawbacks of UDP messaging. Connected devices can send
and receive messages containing specific commands, parameters, and data related to sound and
multimedia control.

OSC protocol provides a simple scheduling mechanism. Single messages are executed as
soon as possible after they are received, whilst the message bundle execution time can be specified

3Sources: 100GbE Tests with ZeroMQ (iMatix 2021), Aeron latency tests (Pirogov 2017)

42



in the OSC Time Tag property. If the Time Tag value is equal to or before the current time
then the server invokes message methods immediately. Otherwise, the server schedules message
execution at the time specified in the Time Tag. However, OSC does not provide or specify a
mechanism for clock synchronisation between different network nodes. Time synchronisation is
crucial in music-making applications that require accurate sound production or notation timing
across all network nodes. OSC relies on lower-level computer network time synchronisation
mechanisms, such as the widely available Network Time Protocol (NTP) (Mills 1985), which has
become a de facto standard for network time synchronisation. Lévesque and Tipper (Lévesque
and Tipper 2016) provide a detailed description of network clock synchronisation methods and
comparison of standard protocols in their survey of existing solutions.

NTP is a hierarchical solution where network nodes obtain accurate time information from
a server higher up in the hierarchy. It typically operates through Internet connectivity, with top-
level servers utilising atomic clocks or GPS signals for high accuracy. In local area networks
(LANs) without Internet connectivity, such as a small network inside a music performance venue,
at least one computer must run an NTP server that acts as a master for time synchronisation within
the network. The drawback of NTP is that inadequate network topology and data congestion
can lead to delays of 100ms or more, making it unsuitable for highly time-sensitive applications
like music performance.

Precision Time Protocol (PTP) (2002) is an alternative high-precision time synchronisation
protocol designed for local area networks. PTP can achieve sub-microsecond synchronisation
accuracy by utilising hardware timestamps and sophisticated synchronisation algorithms. Sim-
ilar to NTP, one of the computers on the network needs to run a PTP master instance that other
slave nodes on the network can use to obtain accurate time. However, PTP support is hardware-
dependent and may not be available by default. It may require installation and configuration
on all participating network nodes. Alternatively, PTP-enabled hardware routers and switches
can be used on the LAN as master clocks, providing a centralised and hardware-based time
synchronisation solution.

For Internet-wide performance, the most accurate master clock that can be used is the
GPS time signal, which has a theoretical accuracy of 14 nanoseconds. An example of music
system synchronisation over a GPS signal is The Global Metronome project (Oda and Fiebrink
2016). It demonstrated that the combination of GPS for the master clock and NTP for LAN
synchronisation can achieve sub-millisecond network node clock offsets. The main issue with
The Global Metronome is that it requires access to a GPS signal, which means having a clear
view of the sky – this is typically unavailable in music venues. A possible solution is to place The
Global Metronome externally, connect it to a LAN within a performance venue using Ethernet
cables, and use NTP to synchronise nodes on the network. This approach can provide highly
accurate time synchronisation for music-making applications within the venue whilst leveraging
the precision of the GPS signal from an external source.

An alternative high-precision method for clock synchronisation over a network is Reference
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Broadcast Synchronisation (RBS) (Elson et al. 2003). Instead of sending a timestamp in a
synchronisation packet, it allows nodes to use the packet’s arrival time as a reference point
for clock synchronisation. The synchronisation packets are broadcast to all network nodes,
which then exchange the receipt time with local neighbours to calculate their phase offset and
estimate clock skew. The main drawback of this approach is that applications that do not support
broadcast, such as web browsers, can not be synchronised this way. Furthermore, RBS inherits
possible issues related to message broadcasting on congested networks as described above.

In many cases, it may be more practical to synchronise notation and event execution over
a network using tempo-relative time rather than absolute time. This approach, similar to the
MIDI beat clock implementation (Malouin 2020), relies on the master application sending
synchronisation events at regular intervals (e.g., every fraction of a beat). These events allow
participating nodes to establish their own internal tempo-relative positions within the musical
timeline. Additionally, the local system clocks of network nodes can be used for more granular
scheduling and synchronisation within the established tempo framework. To achieve acceptable
synchronisation accuracy, it may be necessary to track the network latency per node and make
event timing adjustments based on the individual node latency. This approach ensures that the
event timings align as closely as possible across the network, compensating for any variations
in network jitter and latency. ZScore utilises a proprietary tempo-relative node synchronisation
technique, as detailed in Chapters 2, 3.2.1.3, and 3.2.1.4.

The exploration of various networking aspects in this chapter directly influenced the develop-
ment of the ZScore system. For instance, the system’s client-server architecture facilitates both
TCP and UDP messaging for flexible communication, the message payloads are optimised for
the standard MTU size to minimise network fragmentation, and the message size never exceed
the maximum UDP packet size to avoid potential packet loss. Some explored concepts, such
as leveraging WebRTC for UDP multicast to web browsers, form the basis for planned future
development.

1.6 Existing Solutions

In this chapter I explore the most prominent existing networked notation systems and related
software used in the music-making domain. The development of the ZScore system was based
on this analysis of the strengths and weaknesses of existing solutions.

A number of software solutions capable of dynamically rendering music scores distributed
over a local or wide area network have been developed in the last two decades. Figures 1.15 and
1.16 list software applications that have had the most impact in the field of networked music
notation during this period. Individual applications are discussed further in this section.

Some composers and laptop orchestras in particular develop proprietary composition and
performance software in programming environments, such as Max (Puckette and Zicarelli
1990), Pure Data (Puckette 1996), OpenMusic (IRCAM 1998), SuperCollider (McCartney
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Name
Platform/

Server
Notation
Client

Comment Reference

MaxScore
Max,
Ableton Live

Java (mxj)
Mixed notation
authoring

Didkovsky and Hajdu 2008

Quintet.net Max MaxScore
Up to five
notation clients

Hajdu 2005

Drawsocket
Node.js,
Node for Max

Web
Browser

JavaScript client,
MaxScore notation

Gottfried and Hajdu 2019

INScore
Standalone/
Any

Standalone
Time-Space
object mapping

Fober et al. 2013

INScore Web
Standalone/
Any

Web
Browser

WebAssembly
client

Fober et al. 2021

Decibel
ScorePlayer

Standalone Standalone
iOS app only,
graphic scores

Hope et al. 2015

Bach Max Max
Open Source
API

Agostini and Ghisi 2012

dfscore Node.js
Web
Browser

Comprovisation Constanzo 2014

Comprovisador Max Bach
Algorithmic
dynamic notation

Louzeiro 2018

Score Viewer Node.js
Web
Browser

Polytemporal
scores

Opstad 2022

Figure 1.15: Networked notation software summary

1996), Processing (Fry and Rea 2001), and the ChucK (Wang 2003) programming language.
Whilst all notation applications share common high-level functional objectives, their internal
data models, score rendering versatility, system dependencies, time synchronisation strategy,
and modes of communication vary greatly. As a common feature, they all have a front end
running on a computer or a mobile device capable of rendering dynamic music notation, and
some kind of logic running either on a server (such as Max, Node.js, etc.), or directly on a client
(Decibel ScorePlayer), that distributes data and events over a network.

Most of the solutions rely on the Open Sound Control (OSC) (2002) protocol for commu-
nications between network nodes. INScore supports OSC natively, whilst Max-based solutions
use various built-in and third-party OSC implementations packaged as Max objects. Quintet.net
additionally uses TCP protocol where reliable messaging is required to ensure the successful
transmission of critical data and control messages.

The Odot framework, being a middleware-oriented messaging solution (MacCallum et al.
2015), is a welcome step towards network services abstraction and encapsulation. This approach
hides internal system complexity and improves coding efficiency by exposing only necessary
functionality. Developers can treat Odot as a “black box” responsible for network communication
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Name
Platform/

Server
Comment Reference

Odot Max, Pd, OpenMusic
Aggregate data type, OSC
encoding, expression language

MacCallum et al. 2015

Landini SuperCollider
Client management, network
time sync, message replay

Narveson and Trueman 2013

Figure 1.16: Middleware solutions for networked music-making

tasks, allowing them to focus on delivering music application logic. Odot wraps the OSC protocol
and provides transcoding to JavaScript Object Notation (JSON) (2001), Scalable Vector Graphics
(SVG) (2001), and S-Expressions (1960), as well as bindings to JavaScript and Lisp. This allows
application developers a great deal of flexibility regarding the type of information they wish to
distribute to network nodes. On the negative side, as with all “black box” solutions, developers
lose fine grained control over the encapsulated logic. For example, SVG data transcoded to OSC
can result in a large quantity of messages that can lead to network saturation, in which case,
other more optimised solutions might be more efficient.

Landini (Narveson and Trueman 2013) can also be classified as a form of messaging mid-
dleware as it creates an additional layer between music applications communicating over OSC.
Landini implements a reliable, ordered message delivery protocol which detects packet loss and
attempts recovery. Furthermore, it monitors network latency and applies OSC timing correc-
tions for more accurate event synchronisation. However, this method introduces an additional
hop and, therefore, additional latency in all communications between network nodes. A more
targeted approach, intersecting only specific message types, might yield better results.

Most of the existing compositional tools are capable of rendering traditional symbolic
notation. Support for graphical notation, custom symbols, staves, or extended performance
techniques, is commonly achieved by layering SVG or raster graphics on top of symbolic
notation. However, individual graphics file layering often does not provide enough accuracy and
flexibility for complex score authoring compared to native SVG implementations. Anchoring
fixed graphics on top of existing notation frequently results in inconsistent positioning and sizing,
especially when switching between different client implementations (e.g., browser makes) and
screen resolutions. This approach can also increase score transfer timings and lead to latency in
notation view rendering.

The maximum number of parts allowed in a score is either restricted explicitly or by the
available application memory. Delivering larger instrumentation, such as a full-sized orchestra,
remains a significant challenge, especially when tight timing synchronisation is required. The
most impressive results in terms of scalability have been achieved with Drawsocket for the
performance in St. Pauli Elbe tunnel (2019), where 144 musicians spread out over 864 metres
performed several live pieces.

Scores are typically composed offline using a proprietary data model specific to each notation
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application. If needed, these scores can be converted to one of the common notation formats,
such as GUIDO (Hoos and Hamel 1997), JMSL (Didkovsky and Burk 2004), or MusicXML
(Good 2001), for sharing with other notation applications. Currently, there is no clear winner
amongst competing symbolic notation formats, and each format has its strengths and limitations.
Real-time notation generation and distribution are well-supported in modern networked music-
making systems. However, communication between heterogeneous applications usually requires
transcoding of the native data models to OSC or other similar formats on all participating nodes
(James et al. 2017).

For time synchronisation between network nodes, notation applications typically either rely
on the system clocks or regular heartbeats sent from the master node. Network Time Protocol
(NTP) is used by default on most LANs for system clock synchronisation, but it can cause
inaccuracies of up to 100 ms between computer clocks due to network latency and other factors.
The application scheduling resolution, which defines the minimum time interval between two
scheduled events, is normally defined in the milliseconds range.

Quintet.net, conceived and developed by Georg Hajdu (2005), is a seminal contribution to
the field of networked music technology, offering comprehensive functionality such as notation
authoring, real-time network distribution, dynamic notation rendering, integrated digital audio
and video engines, as well as strategies for mitigating network jitter and latency. It consists of
several units:

• Server unit: in charge of data distribution, state and connectivity management.
• Multifunctional Client: acting as a notation unit, MIDI and audio data input unit, and a

sound synthesis unit.
• Conductor unit: in charge of up to five score parts, their settings, and text message

management.
• Viewer unit: in charge of visual components.

Quintet.net runs on the Max platform and can be deployed either on a local network or over
the Internet. The system has been utilised in various performance scenarios, including mixed
electro-acoustic ensembles playing composed and partially improvised scores. For notation
visualisation, Quintet.net utilises MaxScore, a Java (mxj) object running on the Max platform.
MaxScore implements the Java Music Specification Language API (JMSL) (2004), and until
recently, a JMSL licence was required for its use. Functionally and aesthetically, MaxScore is
similar to other commercial notation authoring software like Sibelius (1993) or Finale (1988), but
with the added advantage of Max integration. Utilising the Max platform brings multiple benefits
due to its processing power, flexibility, extensive features, and maturity. However, Max is also
commercial, closed-source software that creates dependencies on underlying libraries, inherits
potential high demand for computer resources, and necessitates the inclusion of unnecessary
extraneous features. As reflected in the name, Quintet.net only supports up to five parts and is
therefore not suitable for large ensemble scores.
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INScore (2013), created by Dominique Fober, is another well-designed and innovative
application offering dynamic notation rendering over a network. It natively supports networking
(OSC), SVG graphics, JavaScript, and Guido Music Description Language (GMN) (1997) for
symbolic notation. INScore’s unique feature is its simple and flexible time synchronisation
method in two-dimensional graphic space, allowing any arbitrary object’s position and size to
be synchronised in time (Fober et al. 2010). Time coordinates can be expressed as a relative
value linked to musical metre or an absolute time measured in minutes, seconds, and cents.
INScore also can host several plugins, such as FAUST (2002) for real-time signal processing
and synthesis, gesture follower, and Httpd (Web) server, and can therefore be used for rich
multimedia performances. For these reasons, INScore was chosen to serve as the front end for
notation rendering and audience score visualisation in early versions of ZScore.

Decibel Score Player (Hope et al. 2015), developed by Aaron Wyatt, is an iOS app originally
made for the Decibel New Music Ensemble under the leadership of Cat Hope. The app allows for
a synchronised performance of primarily graphic scores over a computer network. It is relatively
lightweight and simpler to use in comparison to other networked notation solutions, as it does
not require a dedicated server. All ScorePlayer instances discover and synchronise with each
other using Apple’s Bonjour (2002) zero-configuration networking. Whilst this approach offers
a straightforward connectivity solution, it may lead to excessive network traffic and introduce
control and security issues, as any malicious client could potentially take control and impact all
other connected devices during a performance. Decibel ScorePlayer utilises a scrolling score
paradigm where the static vertical line indicates the current position. It has been extensively
utilised by the Decibel Ensemble and larger scale forces, as in Cat Hope’s opera Speechless
(2019a). The related macOS desktop application, Decibel Score Creator, enables authoring of
the scores and related metadata required by the Decibel ScorePlayer.

Comprovisador (Louzeiro 2018) uses Bach (Agostini and Ghisi 2012) notation software,
written for the Max platform, to visualise dynamic notation over a network. The system
employs machine listening and algorithmic compositional procedures to enable comprovised
performances, where the improvising soloist triggers algorithmically created notation displayed
on other musicians’ screens. The conductor can modify the configuration of the compositional
algorithms during a performance to adjust the system’s output. The notation client also displays
an animated position indicator in the form of a bouncing ball, akin to the word pointer used
in karaoke applications. Comprovisador’s use case is limited to the common practice notation
available in Bach software.

Opstad (2022) developed proprietary software for polytemporal scores. In this solution,
score functionality primarily operates within a web client. The Node.js server hosts static
data, distributes basic transport commands, and provides clock synchronisation through the
@ircam/sync JavaScript library (IRCAM 2018). The client logic is fully in charge of the score
display, making this implementation unsuitable for use cases where score representation may
be modified by the actions of other users or the server in real-time. The clock synchronisation
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mechanism inherits JavaScript’s threading model issue, where any blocking of the event thread
on the client or the server side may cause time drifts. ZScore supports polytemporality through
multiple transports that can be associated with different instrument parts.

In recent years, there has been a growing trend towards web-based solutions in the field of
networked music technology. A common feature in web notation implementations is the deploy-
ment of a WebSocket point-to-point connectivity between a browser and a server. Examples of
such solutions include Drawsocket (Gottfried and Hajdu 2019) and dfscore (Constanzo 2014),
both of which are JavaScript based implementations. The latest version of INScore (Fober
et al. 2021) uses WebAssembly (Wasm) (2017), which allows native code to run within a web
browser container. WebAssembly is a relatively new technology that is not yet widely supported
by various browser makers. Its use is recommended only for browsers in which the specific
application has been thoroughly tested. Jonathan Bell’s excellent paper (Bell 2021) provides a
detailed comparison of different browser-based score systems.

Despite being a relatively new project, Drawsocket (2019), developed by Rama Gottfried,
has already been widely adopted by the networked notation community. Drawsocket utilises
the Odot “o.io” framework (Freed et al. 2014) to provide OSC API for various data formats,
such as SVG and Cascading Style Sheets (CSS), within a web browser. It requires node.js or
Node For Max (N4M) for server-side processing. Its original purpose was to render MaxScore
notation in web browsers; however, it can be used for various multimedia browser visualisations.
Drawsocket’s JavaScript notation client is relatively thin, containing only the logic required for
Odot message processing and notation view rendering. The score state is held on the client-
side, apart from the message archive that is stored on the server-side. The message archive is
used to replay all client-specific messages if a client disconnects and reconnects at any point
during a performance. The idea behind the latest project Symbolist (Gottfried 2022) is to
provide dynamic notation authoring within a web browser. The combination of Symbolist and
Drawsocket has the potential to provide support for integrated composition and performance,
where all user front ends can run within web browsers.

Most of the existing network notation solutions attempt to replace and enhance the function-
ality of the traditional static paper scores used by trained musicians. However, the capabilities
of the networked systems allow for the integration of any network-enabled device, including
audience members’ mobile phones, digital audio and video engines, conductor or dancer gesture
trackers, etc. Networked systems need to evolve to enable the authoring, hosting, and distri-
bution of scores that incorporate notation and interactive features for all different devices and
participant types.

1.7 Networked Notational Perspective

Whilst exploring the distinctive characteristics and possibilities of networked music notation,
this chapter also acknowledges the increased complexity and technical expertise required to
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realise the transformative potential of interactive, dynamic scores.
As argued by Bhagwati (2013b), music notations from different traditions tend to optimise

written information by focusing on elements considered essential or repeatable within a per-
formance context. Elements that are contingent or ubiquitous within a particular tradition tend
to be omitted. For example, in Western classical music tradition, it was considered important
to notate pitches and their durations, whilst the exact articulations or playing techniques, such
as exact bow pressure and speed, were frequently not specified prior to the 20th century. In
contrast, Chinese art-music tradition considered the notation of pitches and associated playing
techniques important, leaving the interpretation of sound duration largely to oral transmission
and the individual musician’s taste. In a contemporary context, this notational bias, described as
“notational perspective” (Bhagwati 2013b), has a more granular scope that can help identify in-
dividual comprovisation practices. Networked notation technology further extends this concept
by allowing the creation of dynamic notational perspectives that can be modified in real-time.

Conventionally, a music score consists of notation which acts as a set of instructions for
performers on how to realise a piece of music. Networked notation systems introduce a new
paradigm, enabling heterogeneous clients to connect and exchange data and events over a
computer network. In such systems a music score can be modelled as a collection of data
and algorithms driven by scheduled or triggered events. This dynamic approach allows for
interactive and real-time music-making.

In networked music performances, all participants, including musicians, composers, conduc-
tors, audience members, and digital audio and video engines, can communicate with each other
through the network in real-time. This democratisation of information flow blurs boundaries
between traditional music-making roles as any participant in a performance can be assigned
decision making or sound production agency.

In this networked environment, music-making takes on a communal and collaborative nature.
Audience members become active participants by engaging in the performance through their
personal mobile devices. Composers and musicians can interact in real-time to modify the
composition flow. Conductors can adjust generative algorithm parameters to alter the notation
sent to performers. A computer running an algorithmic engine can trigger score visualisations
on audience mobile devices, enhancing the overall immersive experience of the performance.
This interconnectedness and fluidity of roles provides a unique and interactive music-making
experience reminiscent of ancient communal music-making practices.

A heterogeneous client environment requires multiple score representations as each network
client might require a different input type. For example, a score on the musicians’ devices might
be rendered as a symbolic notation whilst the same score on the audience’s devices might be
visualised as an animated graphics.

Conditional Love (2016) by Simon Katan is an audiovisual work influenced by the gaming
participation paradigm. It involves a laptop performer sitting in the designated stage area in front
of a large screen and an audience equipped with personal mobile devices. The audience’s devices
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are connected to the main stage computer via a local area network, allowing Katan to control the
musical and textual narrative of the performance by playing soundtracks, sending instructions
to the audience, and initiating new game levels. At certain points during a performance the
smartphone players produce a significant portion of the music output by interacting with abstract
amoeba-like creatures on their devices. Individual creatures eventually become visible on the
large stage screen. The players can then navigate their personal avatar across the screen and
create their individual trajectory, providing a shared visual experience. Whilst the onsets of the
game stages are controlled by Katan, there is no strict time synchronisation between individual
sound source outputs or movements in this piece.

In her analysis (2018), Lüneburg concludes that Conditional Love has:

• Highly accessible and easy to use interfaces that are counterbalanced by a crude system
on the performance side.

• A high percentage of determinism, which makes the system predictable for the performers.
• High system agency which corresponds with the notion of having only little creative

leeway.
• Middle of the range ‘liveness’ (how the system responds to actions by the performer).
• More ludic than paidic play, game-driven play is on the foreground of the player’s experi-

ence.4

Anders Lind has produced a number of compositions for mixed ensembles that incorporate
mobile phones as an extension of the orchestra, akin to a digital choir (Lind 2020a). Lind’s
mobile phone application displays simple circular or rectangular graphics, split into differently
coloured areas that resemble hardware controller buttons. Clicking on a coloured area triggers a
mapped sound sample rendered by the mobile phone hardware. The score for the mobile phone
choir is displayed on a large screen with graphical shapes identical to those seen by performers
on their mobile phones. Animated instructions on the large score indicate to mobile phone
choir members what colour to play and when. The orchestral parts for acoustic instruments are
printed in a traditional static form. However, conducting information is automated on the large
screen, displaying what should be played and when. The score requires rehearsal time for the
mobile phone choir to become familiar with the application and performance environment (Lind
2020b).

Dynamic scores with linear stave notation typically either use the full page or stave update.
In Richard Hoadley’s Calder’s Violin (2011), the entire view is replaced with new notation at
once, whilst in Cat Hope’s Longing (2011) and Luciano Azzigotti’s Spam (2009), the notation
moves continually from left to right in a continuous scroll. These strategies are suitable for
particular score types. However, for complex notation scores, the full page refresh strategy does
not provide much preparation time for musicians, especially when performance continuity is
required at fast tempos. The continuous scroll strategy requires musicians to focus on a fixed

4The term “paidic” refers to free, spontaneous, and undirected playfulness, whilst “ludic” play involves prede-
fined rules, goals and structure.
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point on the screen where the notation crosses a vertical synchronisation line, thus reducing their
capacity to look ahead and prepare for upcoming changes. It also requires continuous notation
availability so it is not ideal for generative or free-timing scores.

A networked music score may incorporate data intended for a digital video engine, which
usually needs to be translated into a video device-dependent data protocol. Quintet.net Viewer
employs Jitter (2003) matrix processing objects and various video processing algorithms that
can be dynamically controlled over a network. This allows musicians to control visualisations
during a performance.

It is evident that networked music-making expands traditional notational perspectives and
introduces new creative possibilities. However, it also increases the complexity of the compo-
sition process, necessitating a versatile skill set capable of addressing technical and graphical
design challenges.

1.8 Gaps And Research Aims

To address the research questions outlined in Chapter 1, it was first necessary to define the
solution’s technical and creative scope and develop a methodological approach for its realisation
(1.8.1). This framework, presented below, draws on Small’s ideas (1998) that question the
fundamentals of music-making relationships. Furthermore, it defines the possible modes of
participation and outlines the principles applied for both the user interface and action model
design. The system design is also informed by the gaps identified in existing solutions (1.8.2).
Whenever possible, existing solutions were either reused or enhanced. New software develop-
ment was undertaken where no suitable existing option was available. Finally, a set of creative
and technical objectives that serve as a roadmap for ZScore’s development are outlined in the
chapter’s conclusion (1.8.3).

1.8.1 Solution Framework

For Christopher Small (1998), musicking is about relationships between sounds and people who
are taking part, not so much about relationships which actually exist but more about those that
we “desire to exist and long to experience”. A music performance reflects and shapes these
ideal relationships, or values, and allows those who take part to try them and test whether they
fit, thus serving as an instrument of exploration. Small poses three questions (1998, p. 193) that
define the relationships and, therefore, the meaning of a musical performance as:

1. What are the relationships between those taking part and the physical setting?
2. What are the relationships among those taking part?
3. What are the relationships between the sounds that are being made?

There are various approaches to addressing these questions in the context of networked music-
making. The following answers represent an attempt to find solutions to the research questions

52



stated at the outset of my work (Chapter 1).

1.8.1.1 Relationships between those taking part and the physical setting

One of the aims of this research is to have all music performance participants connected over
a computer network. Each participant connects to the network via a physical interface (mobile
device, laptop etc.) thereby altering the nature of the relationship between the performance
participants and the physical setting, as shown in Figure 1.17. The participant type in Figure 1.17
is indicated by a single letter: A stands for audience member, M for musician and C for
composer/conductor.

Network

Venue

M

A

C

A

A

A

M

M

Figure 1.17: Relationships between participants and physical setting

The communication in this setting is multimodal. Apart from direct visual and aural
communication, participants also send and receive digital information through their network
interfaces. As illustrated in Figure 1.17, the aim is to provide participation and decision-making
agency to all connections, regardless of the participant type. The seating arrangements should
ideally avoid any distinction between participants, such as a physical separation between the
stage and the auditorium. In small scale performances, all performers could sit or stand in
a circle as illustrated in Figure 1.17, providing a direct line of sight between all participants.
Additionally, all participants would get a broader understanding of the performance context if
they could observe how other participant types utilise their score representations.

1.8.1.2 Relationships among those taking part

In Western classical music tradition, the composition process is asynchronous to the perfor-
mance, and the composer-performer relationship is usually indirect and mediated through a
score. Musicians might be aware of the composer’s body of work, historical context, and other
interpretations of the score, which deepens their understanding of the relationship. However,
there is no direct feedback loop between a composer, who might have lived centuries ago, and
performers during a performance.
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The audience and musicians, on the other hand, establish a direct and synchronous relation-
ship during a performance. All participants react to the aural and gestural performance outputs,
creating a shared experience in space and time. However, in a classical music concert hall, par-
ticipant roles are typically strictly separated. Performers are solely responsible for interpreting
the score, whilst the audience is expected to quietly observe and internalise the performance
until the conclusion of the score interpretation. In the classical music performance scenario, the
majority of audience members have pre-defined expectations of what the performance should
sound and look like, due to their familiarity with the repertoire and concert venue rituals. The
aesthetic value of the performance is often determined by the comparative evaluation based
on previous experiences. Figure 1.18 illustrates the described typical Western classical music-
making relationships between participants. Participant types are represented by the letters C
(composer), M (musicians) and A (audience). The performance communication in Figure 1.18
is mediated by sounds and gestures produced by performers.

C M A

performancecomposition

Figure 1.18: Western classical music participant relationships

Music-making in a networked environment opens up a new set of relationships. As with the
classical scenario, a composer can create the score asynchronously. However, in a networked
performance environment, all participants, including a composer, can interact with the score
and other participants in real-time during a performance. Figure 1.19 illustrates relationships
between networked music-making participants and the score. Letter D represents any digital
engine connected to the networked performance environment. Each networked participant type
interacts with the score through a proprietary score representation. In Figure 1.19, a score
representation is illustrated by the letter R. A participant type-specific score representation is
indicated by a subscript equivalent to the participant type letter (e.g. RM for musicians’ score
representation).

C A

M

D

RM

RA

RD

interacts

creates interacts

interacts
interacts

Figure 1.19: Networked score relationships

In addition to the participant-score relationships described above, all participants can create
direct communication channels between each other during a performance. A simplified, generic
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set of networked music-making relationships is illustrated in Figure 1.20. Specific participant
types are abstracted into a common entity marked with the generic letter P, representing any
participant type, including a composer. The range of participant types [1, N] is bounded by any
positive integer value N.
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Figure 1.20: Networked music-making participant relationships

As illustrated in Figure 1.20, processes of composition and performance overlap in a net-
worked music-making environment. A composer can create a score fully or partially in isolation
pre-performance. However, score content, its representations, or a composition flow can also be
created or modified in real-time during a performance by a composer or any other performance
participant type. In addition to the communications enabled by the networking technology,
performance participants also establish direct aural and visual communication channels during a
performance, similar to the classical performance scenario. The difference here, however, is that
audience members now become active participants possessing the same participation agency as
any other performance participant type. These new features fundamentally change the nature of
the relationships amongst those taking part.

1.8.1.3 Relationships between the sounds that are being made

Small’s third question refers to the relationships between basic elements of music. In the
extended networked music environment, it is necessary to consider several other elements that
constitute a performance in addition to sounds, such as visuals displayed to participants, and
dynamic notational or interactive elements. The relationships between these basic performance
elements can be fully defined during the composition process or be created during a performance
in real-time, depending on the intended comprovisation dial position (Figure 1.3).

concept composition composition
meterial structure

dynamic
behaviour model

score

Figure 1.21: Composition process for networked scores
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The broad outline of the networked composition process used during this research is shown
in Figure 1.21. The process of composition typically starts with the identification of a specific
concept, which may be external to the musical context. Composition material and structure are
then derived from this concept through a variety of approaches, including objective numerical
analysis, parameter mapping, and subjective responses informed by learned behaviours and lived
experiences. The order of material and structure creation is flexible, depending on whether a
hierarchical, top-down compositional approach is adopted.

In the general case, networked composition material can consist of musical, visual, interactive
elements, and algorithms, as presented in Figure 1.22. The letter “M” in Figure 1.22 represents
the composition material. Music material includes pitch sets, rhythmical patterns, timbral
choices, vertical textures, playing techniques, etc. Visual material consists of any gestures,
graphics, or videos displayed to participants during a performance, including various score
representations. Interactive material contains all features related to participants’ interactions
that result in modification of performance elements in real-time, such as action triggers, their
outcomes, dynamic notation overlays, etc. Algorithms incorporate both client and server-side
score-related logic, along with various score scripts.

M

music material
visual material

algorithms
interactive material

Figure 1.22: Networked scores composition material

The seed composition material (M) is typically defined through the conceptual space mapping
process. The seed material is then modified by applying transformation (T) to obtain a new
material version (M’). Composition material can also be derived by merging features of two or
more different source materials. This process can be repeated a number of times to create the
required number of material versions as illustrated in Figure 1.23.

M1 M1’
T1

MN

T
1

M2

M1-2

T3
T2

Figure 1.23: Composition material generation process

The composition structure in time is broken down into a hierarchy of time-dependent com-
ponents, starting with sections that contain a number of pages, which can consist of one or more
bars, as shown in Figure 1.24. A page in this context represents the notation view that is active
and visible to musicians at a particular moment in time. Bars contain elements that need to be
scheduled in time such as notation, scripts, graphics, audio, etc.

The vertical composition structure consists of material elements scheduled to happen at the
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Figure 1.24: Composition time structure components

same time. The vertical structure could contain sounds, gestures, graphics, scripts, and other
composition material. Figure 1.25 illustrates the vertical hierarchy starting from the instru-
mentation consisting of acoustic and digital instruments, as well as various audience mobile
devices. Each instrument can be assigned a number of dynamic performance parameters that
can be modified in real-time, thereby altering the instrument’s sound output. For acoustic instru-
ments, this could include various dynamic notation overlays aiming to modify the instrument’s
dynamics, pitch, timbre, or playing technique. Digital instruments and mobile devices have
similar dynamic parameters, which may include gain, filter frequency or quality factor, effect
modification, preset number change, and more.
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Figure 1.25: Composition vertical structure

The relationships between the composition material groups can be fully defined during the
composition process or be created during a performance by the participants or algorithms based
on the composition’s dynamic behaviour model. The dynamic behaviour model defines who
can do what and at what time, effectively managing composition material assignments in the
two-dimensional grid illustrated in Figure 1.26. In this grid, the horizontal and vertical axes
represent the time structure and the vertical sound structure hierarchy respectively, as explained
in Figure 1.24 and Figure 1.25.

Rules defining the order of the composition material play may follow traditional music forms
such as binary, ternary, rondo, etc., depending on the compositional intentions for each score. In
general, a literal repetition or a modified recapitulation of the material is used as a compositional
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Figure 1.26: Music material dynamic assignment

device in order to provide familiarity when multiple visual and interactive features are utilised
in the score.

All the elements explained above that capture music-making and material relationships are
a constituent part of a networked composition score. The score, therefore, becomes much more
than just a collection of music notes.

1.8.1.4 Modes of participation

aural

body voice

action (stomp, hit)

instrument
acoustic

digital
automated

manual

visual

screen
group

individual

gesture

light

what (material)

when (order)

who (instrumentation)

compositional

automated

manual

Figure 1.27: Modes of participation in a networked performance

The composition material should utilise the range of possibilities that a networked system
can offer. This set of possibilities can be expressed through various modes of participation,
as illustrated in Figure 1.27. The illustrated tree is just a starting point that can be expanded
with novel participation approaches in the future. It contains three root modes of participation:
compositional, aural, and visual. The compositional mode includes any participation that
impacts the performance flow, whilst the aural and visual modes relate to the means of sound
and visual production respectively.

Any participant type (musicians, audience, etc.) can be assigned one or more modes of
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participation in a composition. For example, audience members can be assigned the agency to
decide what material should be played next (compositional mode) and use their mobile device
as digital instruments (aural mode). Their digital instruments (mobile devices) can be played
automatically by an algorithm or manually by an audience member. Musicians (one or more)
can be given the ability to choose instrumentation (compositional mode) or trigger an animation
on the audience’s mobile devices (visual mode). The intended modes of participation directly
impact the nature and content of the compositional material.

1.8.1.5 User Interface Design

In a networked music-making environment, participants view score representation and interact
with the system through digital user interfaces (UI). These interfaces typically run on tablets,
mobile phones, or laptop computers. The quality and intuitiveness of the provided UI strongly
impacts the user experience of the entire performance. McKay (2018) argues that an intuitive
UI should be self-explanatory, proposing eight steps that lead towards a well designed intuitive
UI, as illustrated in Figure 1.28.

Figure 1.28: Intuitive UI design principles

A networked music-making UI may potentially offer enough information and functionality
to address all the steps listed in Figure 1.28. However, similarly to any relatively new and
unfamiliar environment, the predictability of actions with delayed, subtle, or intricate outcomes
might not be achievable without comprehensive instructions and labelling. Depending on the
score’s aesthetic, the predictability of action outcomes might not be a desirable trait after all.
If the UI cannot achieve full intuitiveness for all users, McKay suggests that it should at least
maintain consistency and usability in terms of outcomes — such as being comprehensible (users
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understand it after trying it once), learnable (requiring experimentation), and guessable (trial
and error).

Users interacting with a system for the first time need to construct a mental map of the
system’s possibilities and the anticipated outcomes of their actions. The user interface functions
as a window, providing a view into the entire networked system. From the perspective of
interactive system design, however, this is just an endpoint. Any functionality happening behind
this view requires further modelling and implementation, both on the server-side and any affected
client nodes. The system behaviour resulting from user actions in networked music performance
systems should be carefully constructed to facilitate necessary participant interactions whilst
also assisting users in forming an internal model of their role in the performance.

1.8.1.6 Action Modelling

An interaction with a musical instrument typically yields an immediate outcome in the form
of sound. Similarly, user actions in computer gaming produce instant visual, aural, or haptic
feedback generated by the system. These learned behaviours instil similar user expectations when
interacting with networked music performance systems. Therefore, the system should provide
sufficient preparatory information and appropriate feedback for actions that do not result in an
instant or obvious outcome, aiding participants in developing a suitable mental model of action
outcome expectations.

Figure 1.29 illustrates a desired Unified Modelling Language (UML) (1997) sequence dia-
gram for user actions resulting in an instantaneous outcome in a networked music performance
system. The system components in blue boxes represent server-side components (Score Proces-
sor and Scheduler, further described in Chapter 2), whilst the yellow rectangles represent various
clients, such as musicians’ notation software, audiences’ score views on mobile devices, or var-
ious audio and video engines. The action destination can theoretically be a server component,
however, in ZScore, the destination range is usually limited to clients that produce perceptible
outcomes. Closed triangular arrows symbolise synchronous calls, whereas open-arm arrows
indicate asynchronous execution.

In Figure 1.29, the call chain begins with the Scheduler component notifying the Score
Processor about all actions that can be executed at a specific moment in time, based on the score
configuration. The server’s Score Processor then dispatches a request to all interested clients to
display available score actions to users. A performance participant can then choose to trigger
one of the actions presented in their score view. The participant’s interaction with their score
representation leads to the submission of the start event for the selected action to the server.

In this scenario, the server promptly executes the action by transmitting the execution request
to all destinations configured to produce the required outcomes. Depending on the score, these
outcomes might involve generating aural or visual signals, music notation, instructions to the
audience, or other events. Following the action’s execution, the destination clients report
back to the server with a confirmation of the action’s outcome. This confirmation can be
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Figure 1.29: Sequence diagram for instant action outcome

either a positive or negative acknowledgment, depending on whether the desired outcome was
successfully generated or not. Subsequently, the server conveys the action outcome confirmation
to all necessary participants, including the originator of the action.

Principles of intuitive user interface (UI) design require that all user actions should receive
prompt acknowledgment in a comprehensible format. Appropriate feedback establishes con-
nections between the actions and the user’s mental model of their interactions with the system.
This instils confidence and enhances user satisfaction with the system’s interactivity, and, by
extension, with the overall performance.

Any action that leads to outcomes potentially beyond the participant’s mental model necessi-
tates a more comprehensive preparation and sequencing model. Figure 1.30 illustrates the UML
sequence diagram for participant actions resulting in delayed outcomes.

The call chain starts again with the Scheduler notification of available actions at a particular
point in time. This time, in addition to available actions, the score client displays an outline of
outcome expectations. This outline can be represented in a textual format, by simply explaining
what the outcomes may be, or in a graphical format where the visualised icon can be inextricably
linked to the outcome (e.g., the music note icon resulting in the sound production). Alternatively,
the outcome expectations can be conveyed aurally (e.g., before the performance).

The action’s start event is initiated by the participants, similarly to the previous example.
However, in this case, the server does not carry out the action immediately. Instead, it schedules
the end event to occur at a predetermined time in the future. An acknowledgment of the start
event should be presented in a suitable format on all relevant clients.

After confirming the start event, the system should provide sufficient information to all
interested participants regarding the current state of any delayed or extended actions. Depending
on the score aesthetics, this could involve a straightforward textual indication or a more intricate
animated graphical representation of the time remaining until action completion. In Figure 1.30,
the visualisation of action state progress on participants’ score views is illustrated within the
loop box. The aim of this visualisation is to establish a link between the participants’ physical
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Figure 1.30: Sequence diagram for delayed action outcome

interactions with the system and their anticipation of the associated outcome.
Upon reaching the scheduled end event time, the Scheduler notifies the Score Processor,

which finally executes the configured action outcome. Similarly to the previous example, the
confirmation of the outcome is displayed on the score views of all relevant participants. The
outlined action models have been designed for the ZScore networked notation system, but can
be implemented in any system requiring similar interaction behaviours.

Both the UI design and action model should always be driven by compositional intentions,
as illustrated in Figure 1.31. The UI design and action model need to work closely together
to provide functionality derived from compositional intentions. The interface and mechanism
for data and action transfer between the client-side and server-side should be reusable, however,
the UI look and feel, its functionality, and interaction modes may vary significantly between
different compositions, particularly when related to audience participation.

Compositional intentions

UI design Action model

Figure 1.31: Compositional intentions, UI design, and action model relationships
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1.8.2 Gaps

Research into existing networked music composition and performance solutions revealed several
gaps in the required behaviour. Most of the existing solutions provide a one-way communica-
tion flow (Figure 1.2). Whilst there are some interactive features in existing solutions that
allow players to send feedback to performance controllers, there is a lack of a comprehensive
interactive music composition and performance model for multi-directional communication
flows (Figure 1.12) that includes event distribution rules such as: who can take action, at what
time, what the action outcomes are, and who the outcome recipients are. An interactive model
needs to accommodate different event distribution modes, such as one-to-many, many-to-one,
or many-to-many. This requires precise and flexible event scheduling and a rule definition
mechanism. The implementation of an intuitive UI (Figure 1.28) and participant action models
(Figures 1.29 and 1.30) would also necessitate further development in existing notation solutions.

The premise that any participant can assume decision-making agency blurs boundaries
between traditional music-making roles. An interactive music composition model needs to
cater for multiple role definitions and their mapping to music material, available actions, action
timings, and outcomes. The impact of non-linear composition flows and a multitude of action
outcomes on compositional aesthetics needs to be carefully considered. Interactive features
(buttons, controls, etc.) need to be clearly visible and easily accessible on musicians’ and
audiences’ front ends. Users need time to notice and react to interactive features and, ideally,
understand the intended impact of their actions.

A dynamic notation view requires a carefully thought-out refresh strategy that does not
interfere with the currently played notation, providing enough time and space for musicians to
prepare for the upcoming material. The refresh strategy needs to take into account network and
rendering latency, ensuring that notation updates do not disrupt the score continuity.

A good dynamic score front end design should fully utilise the available screen real estate
and provide a clear view of the notation, available actions, and any additional information that
musicians should be aware of during a performance. If delivery to heterogeneous platforms is
required, the notation should remain legible when scaled to any of the common screen aspect
ratios (4:3, 16:9 and 16:10), screen sizes (10 to 17in) and resolutions (1024x768 to 3840x2160).

An unconstrained mixture of complex symbolic and graphic notation with precise synchro-
nisation is challenging to achieve with current networked music tools. Scores are either entirely
graphic or mostly symbolic with optional overlaid graphics. The composition process is usually
completed offline prior to a performance, without a provision for real-time modifications during
a performance. Real-time interactive control of performance parameters or compositional
structure is difficult to achieve.

Musicians’ notation devices are most frequently connected to a network over Wi-Fi. Whilst
this is a simple and convenient solution, it is only suitable for scores where latency spikes of more
than 10 milliseconds do not have an impact on the composition aesthetics. Wi-Fi intermittent
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latency spikes due to interference and internal message queuing can occasionally reach hundreds
of milliseconds. Similarly, any system relying on NTP clock synchronisation over the public
Internet, or a local network with significant congestion, can produce similar delays.

The score state in existing solutions is typically held on the client-side. For example,
Drawsocket (Gottfried and Hajdu 2019) and Decibel ScorePlayer (Hope et al. 2015) notation
clients load necessary score data prior to the performance into local memory. Clients then
receive performance management events, such as start or stop, over a network. Any score state
change has to be managed on the client-side separately for each notation view. This design
makes it very difficult to manage the score state in a scenario where any network node can send
events that impact the state of any other node. In this case, a server-side score state management
implementation is more beneficial. With this approach, all real-time changes happen in one
place and all clients are updated when necessary. Other advantages include reduced network
congestion due to the smaller amount of data held on the client-side, and easier reconnection
and synchronisation of client views during a performance.

Interactive music scores managed on the server-side need to provide simultaneous access to
shared data for multiple users. In order to protect shared data integrity, a common engineering
approach is to allow only one user thread at a time to access shared resources and block all
others until the active user thread’s processing is completed. Unfortunately, this approach
introduces additional latency and can have a significant impact on the performance flow. Several
non-blocking algorithms exist in industries where high-frequency low-latency solutions have
been utilised for many decades, such as the LMAX Disruptor pattern (Thompson et al. 2011).
The implementation of non-blocking data access is a requirement for any scalable networked
performance system.

Intermittent message loss in networked system communications can occur for various rea-
sons, especially when a non-guaranteed UDP protocol is used for message dissemination. An
interactive networked music-making system should have a built-in strategy for dealing with
message loss to ensure an uninterrupted performance flow. Several approaches can be taken,
including reliable UDP Multicast (PGM, TRDP, LBT-RM, etc.), TCP/IP point-to-point connec-
tivity such as WebSocket, application message redundancy (replay of missing data and events),
and other similar solutions.

1.8.3 Objectives

The project aims to achieve the following creative objectives, in line with the outlined research
questions:

• Create an innovative compositional approach that leverages acquired knowledge and lived
experiences by utilising state-of-the-art networking technology as a creative extension of
human communication capabilities in music-making.

• Pursue a concept-driven composition method, utilising creative isomorphic mapping be-
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tween conceptual and compositional structures and materials.
• Reflect on the relationship between personal states of consciousness and contemporary

society, including contradictions between subjective and objective values.
• Create a musical relationship triangle with musicians and the audience, and develop a

compositional approach to explore it.
• Expand the performance participation paradigm, democratising music-making by allowing

all participant types (audience, musicians, conductor, etc.) to assume decision-making or
sound production agency.

• Enable musicians to fully and freely express their own learned experiences and knowledge
within a compositional context, allowing them to bring different skill sets to a performance.

• Explore the full range of the decision-making spectrum, from fully composed to freely
improvised, whilst retaining compositional identity.

• Merge acoustic and digital sound sources into a coherent sound field whilst preserving the
sonic qualities of individual sources.

• Develop engaging interactive score representations for all performance participants that
convey compositional and artistic aims.

• Implement different aspects of audience participation in a performance, such as real-time
decision-making, sound production, physical gestures, etc.

• Continue the development of mixed sound-action notation by providing dynamic control
of individual performance parameters for each instrument.

• Explore the full range of unstable non-tempered sound textures created by the separation
of performance parameters and their dynamic control.

• Develop and explore a dual “composer - performer” role in a networked performance
environment.

The ZScore networked music-making system, specifically developed for this research as a
platform for delivering the artistic intentions listed above, ultimately aims to offer:

• An interactive networked music composition and performance environment providing
connectivity, participation, and decision-making agency for all participants.

• System support for scores that allow participants to assume different roles and impact a
performance in real-time.

• Complex symbolic, graphic, or mixed notation authoring for any instrumentation (e.g.,
full orchestra) and type (acoustic, digital, algorithmic, etc.).

• Dynamic, intuitive, and interactive networked notation views on heterogeneous clients
for multiple participant types, allowing automated notation updates, animation, position
tracking, event triggering, clear notation visibility, user preparation time, and real-time
comprovised music-making.

• The ability to control a dial on the decision-making spectrum (Figure 1.3) in real-time.
• Reliable and scalable low-latency messaging where critical events are delivered and exe-
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cuted with humanly imperceptible latency (sub 10 ms compound network and application
latency).

• Accurate performance synchronisation across all networked nodes, which includes the
effects of network latency and jitter.

• Efficient score data encoding and segmentation strategies that minimise transcoding and
avoid packet loss during network transport.

66



Chapter 2

ZScore

ZScore is a networked music composition and performance system developed to achieve the
objectives outlined in Chapter 1.8. The system architecture, along with its key components
and features, is further described below. The system comprises both third-party and newly-
developed components that collectively create an interactive environment, enabling the perfor-
mance of complex dynamic scores and providing connectivity and decision-making agency for
all participants in the performance.

The proprietary components developed specifically for this project include the ZScore server,
Control GUI, and various client-side libraries: the Adobe Illustrator JavaScript plugin, Max mxj
external and patches, as well as various JavaScript libraries for INScore and web browsers. The
ZScore server architecture is further explained in this chapter, whilst the other components are
introduced gradually in the composition commentaries.

Figure 2.1 depicts a typical ZScore performance system layout for venues with up to 100
audience members. Depending on the score, additional components such as video engines or
motion tracking devices can be added to the system. For larger numbers of users, additional
hardware components may be required, as further elaborated in Appendix A.

The local area network (LAN) on which the performance system runs is divided into two
virtual local area networks (VLANs): internal and external. VLANs effectively isolate network
traffic, providing the illusion of separate networks whilst utilising their shared underlying physical
infrastructure. This separation enables enhanced network management, security, and efficiency.
The network traffic from the external VLAN is filtered by the firewall, removing unnecessary or
potentially dangerous messages.

All latency-sensitive nodes, including the ZScore server, audio engines, and musician tablets,
are connected to the network through Ethernet cables (the green connections in Figure 2.1). This
approach ensures the fastest and most reliable data delivery for notation rendering, audio man-
agement, and decision-making by musicians and conductors during a performance. Audience
mobile devices connect via Wi-Fi, and therefore, the audience score representation has to take
into account potential delays in network message transmission caused by interference. How-
ever, Wi-Fi provides the most versatile solution for audience member connectivity due to its
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Figure 2.1: ZScore performance system components

widespread availability on mobile devices.
All HTML5 clients, including the musician’s notation and audience’s score views, were

newly developed specifically for the ZScore’s composition model. The notation view utilises an
innovative alternating pane layout, further described in Chapter 3.2.1.2, and provides interactive
features explained in Chapters 3.5.1.1 and 3.6.2.1. A set of reusable JavaScript libraries,
described in Chapter 3.5.1.2, provide functionality required for audience score representations.
Score-specific logic was further developed in JavaScript for each score that required additional
functionality.

In several portfolio pieces, the ZScore audio engine hosted in Max sends out a stereo
audio signal that is amplified and delivered through speakers positioned between the musicians,
effectively acting as another sound source on the stage. A subwoofer is typically deployed for
more accurate lower frequency reproduction. As a deliberate artistic choice, acoustic instruments
are not amplified in order to maintain the direct link between a sound and its source. A proprietary
Max mxj object, described in Chapter 3.5.1.3, enables network communications, making ZScore
Max patches suitable for both event-driven and manual sound generation.

Figure 2.2 illustrates the high-level functional components of the ZScore software. All
server-side components are implemented in Java programming language (Gosling and McGilton
1996) and utilise techniques associated with high-throughput, low-latency financial trading
systems. The core components – Score Processor, Scheduler, and Transport – handle all internal
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Figure 2.2: ZScore high-level software component architecture

processing related to score data and the timing of events. The server architecture, all the core
components, and the interactive composition model have been developed specifically for this
project. The core single threaded processing is separated from multi-threaded in/out handlers
by two Disruptor pattern ring buffers. This provides the guaranteed ordering of incoming and
outgoing events based on their timestamp, as well as fast block-free processing between the core
components with minimal memory footprint.

In a simplified form, the Disruptor pattern architecture consists of three components illus-
trated in Figure 2.3: input Disruptor, output Disruptor, and composition logic, which includes all
the server-side core components mentioned above. It is important to note that the composition
logic runs on a single thread, as illustrated by the squiggly arrow in Figure 2.3. ZScore main-
tains score state on the server-side within the Score Processor, which constantly receives and
distributes updates that may modify the score state. Single thread processing ensures optimal
performance by avoiding score resource contention and data access blocking.

Input

Messages In Messages Out

Disruptor
Output

Disruptor
Composition

Logic

Figure 2.3: Disruptor processing structure

Instead of standard input and output blocking queues used to pass data between threads,
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Disruptor uses a single data structure – a ring buffer. It is implemented as a fixed size array that
behaves as if it had a circular shape, in which the last element in the array is connected to the
first element.

Each ring buffer can have one or more producers and consumers. Producers write data into
a ring buffer and consumers read that data. Figure 2.4 illustrates a ring buffer with one producer
(Receiver) and multiple consumers (Journaler, Converter, and Composition logic consumer).
All producers and consumers run in parallel on a dedicated thread. Each producer and consumer
has a sequence counter to indicate which slot in the buffer it is currently working on. They can
only write their own sequence counter but can read all other sequence counters. This way the
producer can read the consumers’ counters to ensure the slot it wants to write in is available
without any locks on the counters. Similarly a consumer can ensure it only processes messages
once another consumer is done with it by watching the counters.

31

24

15

18

Receiver

Journaler

Converter

Composition logic
consumer

Figure 2.4: Disruptor data access sequencing

In the case illustrated in Figure 2.4, the Receiver is currently writing into slot 31. It then
keeps advancing forward, making sure that it doesn’t wrap past the composition logic consumer.
The Journaler is currently reading slot 24. It stores related message data into an archive for
future replay and debugging purposes. The Journaler can read data in a batch up to slot 30 at
this point. The Converter takes raw message data received from the network and converts it into
a composition logic friendly format in a process called unmarshalling. It can also read up to
slot 30 at this point but cannot go past the Journaler. Similarly, the composition logic consumer
cannot go past the Converter, Journaler, and Receiver. The composition logic consumer reads
data written by the Receiver and sends it to the Score Processor, where most of the score logic
is implemented.

Another advantage of the ring buffer is that memory can be pre-allocated by initialising
each slot object on startup, thus ensuring a stable memory profile that avoids excessive garbage
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collections. The Disruptor provides interfaces for application-specific implementations that map
incoming/outgoing data into an internal data object structure.

Internal components, such as the Scheduler, can also produce input events for the Score
Processor. As the Scheduler runs in its own thread, in order to avoid thread contention, these
events are also submitted via the input Disruptor and executed on the composition logic thread.

The Score Processor consumes input data and produces output events that are sent to clients
over the output Disruptor. The output Disruptor functions in a similar way as depicted in
Figure 2.4, however, instead of the composition logic consumer, it has output consumers such
as Web and OSC servers. The events from the output Disruptor are distributed to all connected
network clients such as musicians’ tablets, the audience’s mobile devices, and Max patch via
the Web or OSC servers.

The ZScore Web Server is built on top of the lightweight and versatile JBoss Undertow (2014)
implementation. Both the server and miscellaneous JavaScript clients support WebSocket,
Server-Sent Events (SSE), and the HTTP polling connectivity mechanism. The connection
mechanism preference and fallback order is configurable in the client settings.

WebSocket connectivity is a point-to-point connection providing the most reliable message
delivery. However, some firewall configurations may not allow fully-duplex WebSocket com-
munications. Additionally, because WebSocket connections are permanent, the demand for
server-side resources increases proportionally with the number of connections. For medium to
large size audiences and ensembles SSE is a preferred connectivity solution as it is relatively
lightweight and implemented on top of a ubiquitous HTTP protocol and is therefore, by default,
widely supported by most firewalls.

The OSC processor utilises the UDP protocol for event distribution, which offers a more
scalable communication solution than the TCP/IP protocol as it does not require point-to-point
connectivity. However, message delivery is not guaranteed, so it requires strategies to cope with
message loss. ZScore provides message replay and frequent time synchronisation across all
connected nodes to alleviate related issues.

Core component processing is transport agnostic due to the clear separation of the external
connectivity layer. For the purpose of scalability and security, the web servers used by the
audience and musicians are logically separated and accessed on different ports. The configuration
of these web servers, including the root directories for audience and score content, is stored in
the zscoreApp.properties file, which is included in the server deployment.

Currently, all server-side components run within the same process. Due to the modular inter-
face design, the external communication layer can be separated into separate processes, including
both web servers. This architecture would ensure improved scalability and the uninterrupted
operation of the core components in the case of any external denial of service attacks.

The Score Processor is the central component of the performance system, making decisions
related to score rules, and determining what data and events should be distributed to whom and
at what time. Its implementation follows the delegation pattern, where each score specifies a
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delegate in charge of its execution logic. Scores can be configured to either reuse the base delegate
implementation or employ a custom delegate depending on the complexity of the required
processing. The configuration for score-specific processors is stored in the zscoreApp.properties
file, alongside other server-side configurations. The Score Processor creates time-dependent
tasks based on the score rules and sends them to the Scheduler, where they are dispatched for
execution at the required times.

Scheduler and Transport are responsible for all timed operations in the ZScore system. The
minimal scheduling resolution is 1 millisecond, which means that task execution can only be
delayed by up to 1 millisecond from its intended timing. This scheduling resolution is finer than
that of most other similar applications (e.g. INScore’s scheduling interval is 10 milliseconds),
ensuring that all time-sensitive operations occur with delays imperceptible to humans. However,
depending on the size of the task queue and logic complexity, the task processing itself can cause
delays. ZScore is configured to report any task processing delays of more than 5 milliseconds
for diagnostics purposes.

Transports in ZScore translate relative time in milliseconds into tempo-relative time, such
as beats, bars, pages, etc. ZScore supports multiple transports for poly-temporal scores. Events
can be scheduled either in elapsed time expressed in milliseconds or in tempo-relative time
expressed in Base Beats. ZScore’s concept of Base Beat is expressed as a fraction of the whole
beat, usually 1/8. This means that any score event can be scheduled with 1/8th (quaver) precision
within a score.

This functionality is further extended to provide the tempo-relative time synchronisation
across all notation clients. The server sends a synchronisation message to all registered notation
clients at configurable time intervals expressed in Base Beats. This approach is similar to MIDI
beat clock implementation (Malouin 2020). The synchronisation message contains the current
score time expressed as the number of Base Beats since the play started. This timestamp can be
used to set the client’s position or as a time correction mechanism for local clocks, as described
in Chapter 3.2.1.3. If multiple Transports are used, each Transport object sends synchronisation
messages at different time intervals, depending on the Transport’s current tempo.

The Control GUI is currently implemented as a JavaFx (2008) front end, running in the same
process as the server. However, the design allows for its separation into a stand-alone application
connecting via a communication layer like all other clients. The Control GUI is responsible
for managing various aspects of the score performance, such as loading a score, managing
performance participants, starting/stopping play, setting position, changing score parameters,
and sending data to other participants.

Complex scores can have a dedicated tab for performance management, including comprov-
isation controls that manage the content of dynamic notation regions in real-time. All score
management tabs share the same basic transport controls, such as play and stop. This allows
for comprehensive control over the performance aspects of the scores, enabling the smooth and
efficient coordination of the music-making process.
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The ZScore source code and related materials are available in GitHub repositories as outlined
in the table below.

GitHub link Description
https://github.com/szagorac/szcore ZScore Java server and GUI source code
https://github.com/szagorac/scores Various materials related to portfolio scores
https://github.com/szagorac/zsweb Web ZScore and Audience Web view source code
https://github.com/szagorac/zsmax Max client and patches used in portfolio scores

More detailed explanations of particular aspects of ZScore are available in the Portfolio
Chapter. Objectives necessitating additional software development are discussed in the individ-
ual score commentaries.
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Chapter 3

Portfolio

From A Static Score
To Interactive Music-making

Link Comment

Scores in pdf format For information only.
Most of the scores are visualised on digital devices.

ZScore packages for each score Download a package in zip format, unzip in any directory,
and follow the included User Guide.

GitHub repositories GitHub root for zscore, zsweb, zsmax,
and various score materials.

The portfolio compositions demonstrate a journey that begins with a conventional static
score and ends with a dynamic composition model that implements the objectives outlined in
Chapter 1.8. Each composition addresses specific challenges that gradually build towards a
networked music-making system offering meaningful performative involvement and decision-
making agency for all participants.

The journey begins with Red Mass (3.1), a conventional static score printed on paper and
distributed to musicians before the performance. It serves as an illustration of my approach
to concept-driven music composition and aesthetics, which utilises a dialectic between objec-
tive and subjective compositional methods. This approach employs an interplay between the
constraints imposed by formal structures and subjective responses stemming from learned be-
haviours and lived experiences. As such, it broadly aligns with the principles of metamodernism,
as further explained in Chapter 3.1.

The first composition written for the ZScore system was Ukodus (3.2). This development
required defining and implementing the entire networked composition and performance process,
including score authoring, real-time notation scheduling and distribution, and dynamic notation
rendering on computer screens. For notation authoring, I chose Adobe Illustrator software as
the most suitable option for generating complex scores in both SVG and raster formats. To
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further enhance efficiency, I developed a new Adobe Illustrator JavaScript plugin that facilitates
notation authoring workflows and proprietary score data export (3.2.1.4). For real-time event
scheduling, distribution, and performance control over a network, I designed and developed the
ZScore server and Control GUI using Java programming language (2 and 3.2.1.6). The server
provides connectivity for all participants and runs the composition logic. It ensures the ordered
processing of messages coming from multiple sources and utilises non-blocking algorithms to
achieve high-throughput, low-latency message distribution. After analysing existing networked
notation solutions, I selected INScore standalone client for dynamic notation rendering tasks
due to its native support for OSC, JavaScript, and a useful time-space mapping implementation
(3.2.1.5). The notation is displayed in an innovative alternating pane layout (3.2.1.2), allowing
left-to-right, top-down notation reading that is familiar to classically trained musicians, easing the
transition from static paper scores. Ukodus, successfully performed by Moscow Contemporary
Music Ensemble in 2017, served as proof of concept for the ZScore system.

Building upon the system features developed for Ukodus, Vexilla (3.3) introduced an ad-
ditional part containing the score visualisation material created specifically for the audience
(3.3.1.1). The audience part, embedded within the Adobe Illustrator score, contains scripts
that govern audience-specific score visualisation in sync with other music events defined in the
score. The visualisation, consisting of various animated SVG elements, is rendered by INScore
standalone client in real-time and projected onto a canvas placed on the stage. Additionally,
Vexilla introduces a system of colour coding in the music notation for specific playing tech-
niques (3.3.2.1). For example, blue lines are used to indicate the timing and pitch of clarinet
multiphonics.

Comprov (3.4) explores a novel concept of dynamic notation overlays specifically designed
for comprovised music-making. To achieve this, I redesigned the instrument stave layout
to visually separate performance parameters like bow speed, pressure, and position within
a two-dimensional space (3.4.1.1). These areas could then be dynamically overridden by
notation overlays controlled by a conductor in real-time (3.4.1.2). This innovative technique
allowed for a limited composition material to be looped and drastically altered throughout an
extended performance, resulting in a wide range of musical outcomes. To provide required
real-time functionality, I enhanced the ZScore Control GUI with dynamic overlay controls
(3.4.1.3). Additionally, I improved the ZScore server design to incorporate a generic Strategy
interface, enabling system behaviour modifications based on specific score requirements. Two
such Strategies were implemented for Comprov: Randomisation (3.4.1.4) and Continuous Play
(3.4.1.5).

Union Rose (3.5) introduced significant advancements in the participation model, notation,
digital audio integration, and technical implementation. For the first time, audience members
could connect to the ZScore performance system using their mobile devices, enabling partici-
pation in a performance through an audience-specific interactive score representation accessible
via any web browser (3.5.1.2). This allowed the audience to participate in decision-making and
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sound production either through their devices or actions when prompted by the score. I also
implemented a web-based version of the musicians’ notation that can run on any digital device
for Union Rose (3.5.1.1), replacing INScore standalone client. The notation segmentation, ini-
tially used in Comprov, was further enhanced to provide a cleaner visual layout with interactive
features that also allowed musicians to participate in the decision-making process. Furthermore,
I developed custom Max objects, including an external object for network communications writ-
ten in Java, a jsui visual interface for score information, and a set of patches for audio processing
(3.5.1.3). ZScore Max patches were designed to be controlled in real-time either by network
messages or directly through MIDI controllers. Both the score and server-side processing were
enhanced to enable the integration of all of these components into a coherent, synchronised com-
position model. This included a comprehensive score state management system that allowed
play to start from an arbitrary position in the score (3.5.1.5). These advancements inevitably in-
creased the complexity of the composition process, demanding significant technical and creative
effort.

Socket Dialogues (3.6) takes a step further towards democratising music-making roles. It
consists of a series of musical dialogues designed to allow any number of musicians, regardless of
their instrument, to participate. Musicians can choose dialogues, their order, and a role they wish
to perform within each one (3.6.2.1). They also retain the flexibility to change their role during
the dialogues. Each dialogue role is associated with specific music material. To accommodate
this notational flexibility, an innovative “pitch line” instrument-agnostic notation system was
invented for Socket Dialogues (3.6.2.2). Furthermore, audience members are empowered to
provide instant visual and auditory feedback to all participants via their mobile device, leading
to continual adjustments to the performance output (3.6.2.5). A unique audience-led musical
dialogue (Interlude 3.6.3.6) can be performed between any two composed dialogues. Here, the
audience acts as a mobile device ensemble, whilst the musicians and conductor react to the
audience generated sound through a combination of free improvisation and the interpretation
of the dynamic notation generated in real-time. The composer/conductor can also become a
performer during Interludes by engaging with ZScore Max patches. Despite the inherent role
flexibility and variations in notational specificity – with some dialogues requiring precise pitch
and timing and others allowing for significant interpretive freedom – Socket Dialogues aims
to preserve the compositional identity in all performances, regardless of the instrumentation,
number of musicians, or audience size.

The following chapters provide more details about each portfolio work. All chapters share
a consistent structure, beginning with the composition’s instrumentation and a table containing
links to relevant downloadable content and recordings. Next, the specific objective for each
piece is outlined, including a description of the most important new features introduced in
the composition. Each chapter concludes with a score commentary, detailing the composition
material and processes applied in each work.
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3.1 Red Mass

For:
Flute (C Flute, Bass Flute and Piccolo)
Clarinet (BZ and Bass Clarinet)
Percussion (Marimba and Tibetan Bowl)
Piano
Violin

Duration: ca. 7 minutes

Links: Full Score
Workshop recording (up to bar 191)

3.1.1 Objective: Compositional Method

The starting point of my journey towards networked music-making, Red Mass was written for a
workshop with Ensemble Interface in 2015. It is a conventional, static, linear score written in
Sibelius software, printed on paper, and manually distributed to musicians and the conductor.
Although it does not contain any networked elements, Red Mass illustrates my approach to
music composition and aesthetics, which has been applied and developed further throughout
this research. This overarching approach, applied across all portfolio pieces, is further explained
in the following chapter.

3.1.2 Approach To Music Composition And Aesthetics

Contemporary attempts to define the nature of today’s post-postmodern world often merge fea-
tures attributed to modernism and postmodernism. Akker and Vermeulen’s metamodernism
(2010) metaphorically illustrates this as a pendulum constantly oscillating between the seri-
ousness of modernism and the ironic playfulness of postmodernism. Unlike the post-modern
ironic detachment of the late 20th century, recent metamodern thought draws from modernist
aspirations for fresh forms of expression and innovative solutions, both creative and technical,
particularly when dealing with the global challenges confronting humanity. Guido van der
Werve’s short film “Nummer acht, Everything is going to be alright” (2007) succinctly portrays
the current human condition of being compelled to keep moving forwards in the face of global
issues.

Critiques of modern society often highlight that the pervasive presence of technology and
the constant connectedness facilitated by the Internet, mobile phones, interactive television, and
similar media can lead to superficial and shallow participation in culture (Kirby 2015). As
outlined below, one of the primary motivations underpinning this research is to advance the
integration of technology and enhance the participation experience in the processes of music
composition, performance, and listening.

My approach to composition engages a dialogue between objective compositional tech-
niques, such as the numerical analysis of a given concept, or the mathematical modelling of
musical parameters, and subjective elements stemming from personal experiences and knowl-

77

https://research.gold.ac.uk/id/eprint/36126/1/RedMassFullScore.pdf
https://research.gold.ac.uk/id/eprint/36136


edge. As such, this approach exhibits a broad alignment with the principles of metamodernism,
which embrace both irony and sincerity, or the blending of tradition and innovation. It at-
tempts to avoid the inauthenticity of polystylism, where composers may appropriate elements
from different musical traditions without fully understanding the underlying cultural context. I
draw upon authentic lived experiences and learned behaviours, whilst constantly seeking new
forms of expression. This exploration encompasses various elements, such as extended playing
techniques, dynamic mixed notation, comprovisation, audience participation, the merging of
analogue and digital sound sources, real-time audio processing, and others further discussed in
this thesis.

One of the aesthetic goals is to treat acoustic and digital sound sources as equals concerning
their physical and textural position within the overall sound in a live performance environment.
Often, stereo sound amplification in electro-acoustic performances creates an artificially blended
sound field that removes a direct connection between the sound producer and the listener. Whilst
this might be suitable for some musical styles, my preference is to establish direct relationships
between musicians and the audience through aural, visual, and digital communication based on
their physical location.

The composition process begins with defining a specific concept, typically external to the
musical material, which acts as a seed for the compositional development. Unlike the conceptual
art approach, where the concept is in the foreground, the goal here is to create a platform for the
development of larger scale musical works by establishing a framework for mapping between
the concept and compositional structure and material. This process is further explained in the
score commentary for each portfolio composition. For example, in Ukodus, a sudoku puzzle
is used to construct the entire composition structure, whilst in Union Rose, the composition
structure is derived from symmetric features of a church window rose. Concept-related ideas
can be conveyed visually through participants’ score representations, in addition to the musical
and gestural information.

The musical mapping of ideas drawn from this defined concept leads to the creation of a top-
down compositional structure. Rhythmic, harmonic, textural, and gestural components are then
derived from these formal structural constraints and subjective responses to the composition
concept. These subjective responses may include personal experiences, learned behaviours,
conscious feelings, or subconscious emotions. For example, in Vexilla, the pitch and rhythm are
derived from songs that I associate with particular flags, such as “Na Planincah“, a Slovenian folk
tune and one of the first melodies I learnt to play on the piano, and “Kad ja podjoh na Bembasu“,
a song from my hometown that invokes a strong internal emotional response. However, the
temporal structure in both cases is mathematically derived from the geometric features of the
Slovenian and Bosnian republic flags. The aim of this approach is to convey the state of human
consciousness at a particular time and place whilst confronting an external objective reality.

In an interactive networked music-making environment, all participants, including the audi-
ence, have the ability to impact the performance flow, generate sound, and make music material
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selections. Each performance of the same score might be different depending on the participants
and the decisions and actions taken by them. In this democratised environment, the evaluation
of compositional aesthetics encompasses not only the quality of the listening experience but
also the quality and outcomes of active participation. The technical performance of the system,
user front-end design, clarity of interactive features, and understanding of user action outcomes
all impact the quality of the participants’ experience. Any aesthetic evaluation of networked
music-making must consider the type and quality of relationships between different participants,
as well as how well the performance outcomes match participants’ intentions.

From a compositional perspective, each composition should possess a clearly recognisable
identity, regardless of who the performers are, the size of the audience, the audience members’
musical experience, the decisions and actions made during the performance, the venue’s size,
dimensions, available technical resources, and other variables. Whilst every performance may
differ both in aural and visual aspects, the score should be crafted in a manner that preserves the
composition’s identity in each rendition.

Ultimately, the question is whether the networked composition and performance add value
to and enhance the depth of participants’ experience compared to both the traditional one-
directional performance flow and the superficial clickbait participation that is prevalent in
contemporary culture.

3.1.3 Score Commentary

The inspiration for this composition came from the fact that Interface is a “Pierrot plus” ensemble
(standard quintet + percussion). This fact prompted me to revisit Schoenberg’s seminal work
Pierrot Lunaire (1912). Schoenberg’s composition is a setting of 21 poems from Otto Erich
Hartleben’s German translation of Albert Giraud’s cycle written in French. Therefore, the piece
inherited a process of material mapping (language translation) from its inception. The cycle
structure split into three groups of seven poems is shown in Figure 3.1.

Figure 3.1: Pierrot Lunaire poems (3 x 7)
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As can be observed in Figure 3.1, the poem in the centre of the cycle (poem 4 in section
Two) is Rote Messe (English translation: Red Mass). In the original context of the poem, the
word “Mass” refers to a religious service (“At gruesome grim communion... Comes to the altar
- Pierrot!”). The English word “mass” is a homonym and can be used to describe a large number
of people crowded together. The first response that came to my mind upon hearing the phrase
“Red Mass” was a childhood memory of large communist rallies with workers’ red flags and
youths’ red scarves.

I followed the principle of taking the formal structural elements from the original poem as
the basis of the piece, whilst transforming the material through the compositional process to
reflect my personal reaction to the original material. Each Pierrot Lunaire poem consists of
thirteen lines (two four-line verses followed by a five-line verse). The first line of each poem
occurs three times (being repeated as lines eight and thirteen). This poem structure (rondel),
visualised in Figure 3.2, is used as the basis for my piece Red Mass.

Figure 3.2: Pierrot Lunaire rondel poem structure

From the poem analysis and the fact that Schoenberg used numerology before the invention of
twelve-note serialism, the recurring numbers 3, 7, and 13 were noted as structurally significant.
As the first step in the pre-compositional structure definition, the duration of the piece was set
to 7 minutes (420 seconds). The overall duration was then divided into 13 sections, each lasting
approximately 32.3 seconds. As the poem’s rondel structure is effectively a ternary form, three
distinctive composition parts were defined “Motion”, “Stillness”, and “Return”, as displayed in
Figure 3.3.

Figure 3.3: The structure of Red Mass

The tempo curve was defined so that in part one (“Motion”) the tempo increases in each
consecutive section (80, 90, 110, 140 bpm), in part two (“Stillness”) the tempo is constant at
the lowest value (70 bpm), and in part three (“Return”) each section is at the same tempo as
the corresponding section from part one. Following the rondel cycle definition, I decided that
only two basic compositional material types (“A” and “B”) would be used. Materials denoted as
lower case ‘a’ and ‘b’ were to be derived from the corresponding main material. In subsequent
sections where the type letters were repeated, the material was transformed and given a version
number (eg A1, A2 and A3). Each section was then broken down into individual bars as shown
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in Figure 3.4. The basic time signature for material A was set to 7/8 and for material B to 13/8
(subdivided into 8/8 + 5/8).

Figure 3.4: Red Mass section info

The material “A” pitch set (Figure 3.5) was derived from the notes played in the opening
beat of Schoenberg’s Rote Messe by all instruments. The normal form pitch set was constructed
according to the pitch set theory (Forte 1973).

Figure 3.5: Rote Messe, first beat pitches as the chord and normalised pitch set

In contrast to the descending opening piano figure in Rote Messe, the ascending sequence
played by Piccolo and Clarinet was constructed from the defined pitch set and used as the
opening in Red Mass (Figure 3.6).

In the opening sequence, all vertical pitches sounding at the same time are either 1 or 2
semitones away from each other in the normalised pitch set form. The idea to use close intervals
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Figure 3.6: Red Mass, opening ascending sequence

(minor and major second and their inverted forms) was inspired by the chromatic movement of
parallel fifths in the Cello part of Rote Messe as shown in Figure 3.7.

Figure 3.7: Cello part opening parallel fifths in Rote Messe

The material “A” piano chord (Figure 3.8) was also derived from the Cello opening dyads
(Figure 3.7). Instead of using descending parallel fifths, I decided to subvert Schoenberg’s
classical counterpoint subversion and move the base pitch up by a semitone, as shown in
Figure 3.8. The resulting chord was split into two augmented fourths intervals and two semitone
intervals, which were used extensively throughout the score (Figure 3.8).

Figure 3.8: Red Mass, material “A” piano chord and derived intervals

The rest of material “A” was derived either from the defined pitch set (Figure 3.5) or the
piano chord (Figure 3.8). Most of the vertical pitch relationships use either minor second or
augmented fourth intervals in the normal form pitch set.

For material “B”, the intention was to create a contrasting musical character to material
“A” by using unstable pitched and unpitched sounds such as multiphonics, air notes, staccato,
pizzicato, and tremolo. A different pitch set was defined for “B” material (Figure 3.9), also
extracted from Rote Messe.
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Figure 3.9: Red Mass, Material “B” pitch set

Other important influences in the Red Mass compositional process include the Sprechgesang
(Wood 1946) singing technique from Pierrot Lunaire and Ganga (Petrović 2018), a traditional
singing technique from rural Bosnia and Herzegovina. This recording of the female group (Cr-
načka Ganga 2014) illustrates the Ganga singing style. Both techniques use inflections of either
continually rising or falling pitch. In Ganga singing, vocal groups of up to five singers follow
the lead vocalist by pitching their entry a semitone above or below the lead vocalist. Singers
then gradually move between minor second and unison intervals with microtonal inflections
and individual timings. The glissando technique is used extensively in Red Mass to reflect the
Sprechgesang and Ganga microtonal inflections.
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3.2 Ukodus

For:
C flute
BZ Clarinet
Violoncello
Piano

Duration: ca. 3 minutes

Links: Full Score
ZScore Package
Score follow video
System overview and workshop video (7:25)

3.2.1 Objective: Linear Networked Composition And Performance

This piece was written in March 2017 for a workshop with the Moscow Contemporary Music
Ensemble (MCME). Ukodus was the first composition written for the ZScore system, requiring
the design and implementation of the entire networked composition and performance process,
including score authoring, real-time notation scheduling and distribution, and dynamic nota-
tion view rendering on computer screens. For real-time event scheduling, distribution, and
performance control over a network, I developed a proprietary ZScore server (2) and Control
GUI (3.2.1.6) in Java. This chapter focuses on the notation authoring and dynamic rendering
approach presented in Chapters 3.2.1.1 to 3.2.1.5. The core approach to dynamic notation imple-
mented for Ukodus has been retained throughout this research and further refined in subsequent
compositions. The MCME workshop served as valuable proof of concept for the ZScore system
in a live performance environment.

3.2.1.1 Dynamic Notation

A composition data format produced by the score authoring tool needs to contain enough in-
formation to enable notation rendering tools to reliably reproduce the intended score layout and
perform any time related operations. Semantic data models, such as GUIDO or MusicXML,
define both spatial and temporal contexts for notation rendering. The problem with semantic rep-
resentations is that both the score authoring tool and all participating notation rendering clients
need to fully support the composer’s intended notational style. Due to the vast variety of contem-
porary composition styles, extended playing techniques, and many contemporary composers’
intentional disregard of standardisation, it would be hard to create a generic yet comprehensive
semantic representation solution. As a result, composers and performers are increasingly turning
towards systems which allow for constraint-free, graphic notation representations.

Modern computing utilises two major computer graphics forms: raster (bitmap) and vector
graphics. The raster format defines actual pixel values to be displayed on the computer screen.
It is fast to render, but the file size can grow significantly for higher resolution images, impacting
network transfer timings. Additionally, raster format does not scale optimally, often resulting
in visible quality loss when downscaled. As it is not human-readable, any change requires
specialised editing tools.
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On the other hand, vector graphics formats define shapes, paths, and their attributes such
as colour, thickness, fill, etc. Although vector graphics formats may require additional in-
terpretation time for rendering compared to raster formats, they offer superior quality scaling.
Scalable Vector Graphics (SVG) (2001), one of the more popular vector graphics formats, enjoys
widespread support from all major Internet browsers and numerous other graphical applications.
SVG format is human-readable and can be extended with additional elements, attributes, scripts,
and reusable custom symbols. This additional content may be used to create a musical context,
opening up possibilities for music notation rendering, animation, and automation. Composers
can create custom SVG symbol libraries that can then be distributed to networked clients and
referenced in scores. This approach significantly reduces the amount of data that needs to be
transferred in real-time.

As demonstrated by Gottfried (2015), the SVG format can be successfully transcoded to OSC.
This capability has been integrated into the Odot library and, more recently, the Drawsocket
notation system (Gottfried and Hajdu 2019). However, authoring more complex SVG structures,
including mixed notation music scores, still requires specialised tools such as Adobe Illustrator
(1987). Typically, scores are exported as SVG files offline ahead of a performance. With
Adobe’s recent announcement of support for Node.js, there might be potential for the network
integration of Illustrator and real-time notation export in the future.

After extensive research of available networked dynamic notation tools and strategies, IN-
Score standalone implementation was initially selected (in 2016) due to its networking capabili-
ties, native OSC support, time-space mapping, built-in interactivity, and scripting engine. It also
supports multiple graphics file formats, although its SVG support depends on the underlying
Qt library (1995), so some features such as symbol referencing via the xref attribute were not
available when Ukodus was created. To work around this, all score pages were exported and
distributed in PNG raster format. The page graphics file sizes were optimised and exported for
laptop computer screens used in a performance, avoiding scaling issues on the client-side. All
required files were preloaded onto INScore clients to reduce network load and latency during a
performance.

3.2.1.2 Alternating Pane Layout

The dynamic notation implementation in ZScore uses an innovative alternating pane dynamic
notation update strategy. This strategy aims to resolve dynamic notation update issues by
providing familiar left-to-right and top-to-bottom reading direction and ample preparation time to
musicians. Furthermore, it defines allowed time windows for the upcoming notation generation
and transfer, as well as the notation refresh timings that do not impact performance flow. The
stave notation itself does not move whilst being read, however, several objects indicating tempo,
current position, and conducting gestures are animated on top of the notation.

Figure 3.10 shows the main sections of the alternating pane layout for a full score and an
instrumental part. In both cases, the notation view is divided into three main areas (panes). The
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top pane contains information about the score (title, part name, server status etc.), actionable
buttons (for interaction with the server or other peers) and signalling information (tempo and
start indicators). The main area, which takes approximately 80% of the available screen space,
is split into two notation panes, A and B. Each of the notation panes displays an equivalent of a
full score page or a single part stave. The notation is read from left to right and top to bottom,
the same as static paper scores.

info pane info pane

notation
pane A

notation
pane B

notation pane A

notation pane B

Full score layout Part layout

Figure 3.10: Alternating pane layout for a multiple stave full score and a single stave part

At any point of time during a performance, there is always one active and one preparatory
pane. At the very start, pane A is active and pane B is preparatory. When the notation content in
pane A is completed, pane B becomes active and pane A preparatory. Once the musician’s focus
is firmly moved to pane B, pane A is updated with the upcoming notation, which is scheduled
to be performed after pane B’s notation content is completed. The dynamic update process then
continues in a similar fashion, following an ABAB... sequence.

There are several time restrictions that should be taken into account when working with
alternating notation panes. In order to allow for performance continuity and sufficient preparation
time for musicians, the notation to be played after the active pane notation is completed needs
to be generated, transferred, and rendered in the preparation pane by the time the active pane
notation is around halfway through its duration (T/2). In Figure 3.11, this time is marked as
T2. Furthermore, the preparation pane notation should only be refreshed once the active pane
notation is played for an appropriate time duration (T1, e.g. longer than one beat) to allow for the
musicians’ focus to switch. This means that the effective time window for notation preparation
(generation, network transport, rendering, etc.) is from the active focus switch time (T1) to the
active pane half duration time (T2). If, for example, the composition tempo is 120 bpm and
the active notation pane contains 5 bars with a 4/4 time signature, then the notation preparation
time window is 4.5 seconds (T1 = 0.5s, T2 = 5s). In most cases this would be sufficient time
for the network transfer of graphical stave files or the generation of algorithmic notation. This
also creates clear timeline rules for the real-time notation generation and display when using the
alternating pane layout.
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Figure 3.11: Alternating pane time windows

3.2.1.3 Time-space Mapping And Synchronisation

ZScore utilises the tempo-relative time synchronisation described above, which takes advantage
of INScore’s time-space mapping functionality. In this mode, the master server application
sends regular synchronisation messages carrying the global tempo-relative position to all clients.
Each INScore client runs its internal clock and can synchronise independently if given a tempo
and time-space mapping configuration. The master synchronisation events effectively override
internal client clocks with the global tempo-relative position and, therefore, ensure common
time-space positions across the clients. The synchronisation message frequency can be selected
per composition and its choice depends on tempos and rhythmical structures used in the score.

Figure 3.12: Ukodus, flute part excerpt illustrating Beat Lines

The concepts of a Beat Line (BL, Figure 3.12) and Beat Division Unit (BDU) were introduced
for easier time-space mapping and event scheduling workflows. The BDU value can be set to
any fraction of a whole note (e.g. 1/8, equivalent to a quaver duration) and represents the lowest
time resolution available for event scheduling and synchronisation. The current minimum BDU
value is 1/96. Beat Lines coincide with the bar beat onsets and contain information about
their spatial and time position. The BL spatial position is set in terms of x and y coordinates
on the score page, whilst their time position is expressed in a number of BDU units from
the composition start. Beat Lines are a form of proportional notation; however, there are no
restrictions regarding consecutive spatial Beat Line positioning, so they can be set individually
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to suit the score notation density. The time interval between Beat Lines is measured in BDU
units. For example, if the BDU value is set to 1/8, then in a 4/4 bar, each time interval between
Beat Lines is 2 BDU units, and in a 5/8 bar with the beat division of 3+2/8, the first beat consists
of 3 and the second beat of 2 BDU units. Beat Line spatial and time positions are exported with
the score data and are used in INScore client for space-time synchronisation.

3.2.1.4 Notation Authoring

Functional requirements set out in Section 1.8 ask for a tool that can provide complex symbolic,
graphic, or mixed notation authoring for any acoustic or electronic instrument, as well as the
ability to export data in a suitable digital format for distribution over a computer network. After
a significant research effort, I settled on a vector graphics editor, Adobe Illustrator (1987). It
allows for the unconstrained positioning of any notation type, the export of SVG and multiple
raster formats, the import and creation of user-defined symbol libraries, and it is scriptable,
which opens a range of opportunities for functional extensions and potential real-time network
integration. Illustrator does not provide any musical context by default, and therefore, a num-
ber of improvements have been implemented for more efficient music composition flows and
integration with the ZScore software.

Inspired by Gottfried (2015), a hierarchical layer structure was created to provide musical
context in Illustrator and enable the automation of score creation and export. The hierarchical
layer elements can contain one or more child layers (Figure 3.13).

Score Page Part Stave Bar

Figure 3.13: ZScore hierarchical score layer entity relationships

A Part layer has a one-to-one relationship to a Stave layer, which contains all the graphics data
required to display an instrument staff. The Bar layer contains all the graphics data required to
render the notation and logical data required for synchronisation, such as tempo, time signature,
and beat line positions (Figure 3.14).

Bar

Notation

Tempo TimeSig
BeatLines

BarInfo
Events

Figure 3.14: Bar layer content

The Notation layer contains all the symbolic or graphic data required to display bar notation
and can contain arbitrary notation types. The Illustrator layer structure is displayed in the screen
capture in Figure 3.15.
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Figure 3.15: Adobe Illustrator layer structure

To accelerate symbolic notation generation, a set of custom symbols based on open-source
LilyPond (1997) notation font were imported into Illustrator (Figure 3.16). Due to the flexibility
of a vector graphic editor, it was straightforward to extend the library with custom symbols,
such as different note head types and sizes and instrument fingering charts. For variable-length
continuous lines, such as crescendo and decrescendo markings, a set of brushes were created
and imported into Illustrator.

An example of mixed symbolic and graphic notation created in Adobe Illustrator with the
help of ZScore tools plugin and music symbol libraries is displayed in Figure 3.18.

The set of JavaScript plugins were developed to speed up composition workflows and
automate score export. Currently, the ZScore Tools plugin includes: Layer, Page, Bar, and
Export management functionality (Figure 3.17). The Layer manager allows for Illustrator layer
structure definition, editing, XML import/export, and copying between one or more scores.
Similarly, Page and Bar managers help create required pages and bars at specified locations,
including any metre or tempo changes and Beat Line positioning.

The Export manager allows for the export of the full score and parts in SVG or PNG graphics
formats. In order to provide accurate and automated space-time mapping, the export process
also creates necessary data for INScore in the required format:

( [𝑋𝑠𝑡𝑎𝑟𝑡 , 𝑋𝑒𝑛𝑑 [[𝑌𝑠𝑡𝑎𝑟𝑡 , 𝑌𝑒𝑛𝑑 [) ( [𝐵𝐵𝑠𝑡𝑎𝑟𝑡 , 𝐵𝐵𝑒𝑛𝑑 [)

In this format, X and Y are space coordinates, and BB is the number of Base Beats expressed in
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Figure 3.16: Notation symbol library for Adobe Illustrator

Figure 3.17: ZScore Tools plugin for Adobe Illustrator

BDU since the beginning of the section. The exported values define two-dimensional rectangles
between two Beat Lines and the corresponding start/end tempo-relative time. Additionally, the
export process automatically collates score metadata required by the score scheduling engine.
This information about time signatures, tempo changes, other score events, BL positions, and
related BB values is currently stored in a CSV (comma-separated values) formatted file.

Inspired by Helmut Lachenmann, all staves in Ukodus use experimental instrument-specific
graphic clefs that allow for mixed sound and action notation. Figure 3.19 shows the flute stave
for the example page displayed in Figure 3.18. The experimental clef indicates an approximate
position within the instrument range where graphically notated sounds should be pitched. Three
helper lines – low, mid, and high – indicate the bottom, top, and middle of the instrument range,
respectively. The symbolic notation indicating specific pitches to play takes precedence over
the graphic clef position. For example, in Figure 3.19, bar 33, the score asks the flautist to play
a tongue ram using unspecified fingering at the very bottom of the flute range. However, in bar
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Figure 3.18: Ukodus, an example of the score page containing mixed notation

35, the flautist has to play a bottom octave G, transitioning from an airy to a fully pitched timbre.
The clarinet stave (Figure 3.20) is similar to the flute stave, indicating the approximate

instrument range position. The outline of the clarinet shape in the clef does not hold any musical
meaning, so it was not reused in any of the subsequent scores. The principles of symbolic
notation precedence and unspecified pitch notation are identical to the flute part.

Figure 3.19: Ukodus, flute stave example

The cello clef in Ukodus (Figure 3.21) is very similar to Lachenmann’s clef in Pression
(Figure 1.4). The horizontal lines extending from the clef indicate the approximate playing
position, with two dashed lines showing the end of the fingerboard and the top of the tailpiece,
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Figure 3.20: Ukodus, clarinet stave example

whilst the solid line indicates the bridge position. The notation at the beginning of the excerpt
in Figure 3.21 calls for the precise left hand position, whilst the approximate bow position is
indicated by the line above the symbolic notation. The bow, in this case, moves gradually
between sul tasto and sul ponticello positions, ending up in a circular bowing movement.

Figure 3.21: Ukodus, cello stave example

In bar 33, the cellist is instructed to perform Bartok pizzicato on string IV whilst executing
a downwards glissando with the left hand using harmonic finger pressure. In bar 34, the score
specifies that the right hand should first play pizzicato behind the bridge on string IV and then
transition to executing col legno battuto jeté on the same string, still positioned behind the
bridge. In the final bar of the page, the cellist plays a harmonic glissando with the left hand
whilst the bow moves gradually from molto sul ponticello to sul tasto.

The experimental piano staff in Ukodus (Figure 3.22) is vertically split into two areas by
a line coming from the top of the keyboard. The lower area is designated for the notation of
pitched material and any actions performed on the keyboard, whilst the upper area is reserved
for actions taking place directly on the strings, inside the piano.

On page 8, as shown in Figure 3.22, the pianist is initially asked to play bottom A and then,
with the sustain pedal engaged, continually strum the strings with fingers (rasgueado) within the
pitch area indicated by the black curvy shape on the stave. The height of the black area indicates
an approximate range of strings that should be affected by strumming.

In the last beat of bar 33, the pianist is instructed to hit strings with the palm of their right
hand and then mute the bottom A string, ideally at the position where a harmonic can be heard.
At the same time, the left hand plays the A key on the keyboard, followed by silently playing
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Figure 3.22: Ukodus, piano stave example

a minor third dyad by gently pressing the keys, avoiding the hammer hits. Whilst holding the
dyad keys depressed with the left hand, the fingers on the right hand hit the strings directly in a
triplet rhythm, causing the open strings to vibrate.

3.2.1.5 Notation Rendering

Figure 3.23: Ukodus, cello part dynamic notation in INScore with alternating pane layout

Two INScore client versions (part.inscore and full.inscore) were created, one for the full
score vertical alternating pane and one for the horizontal part alternating pane layout. These
startup files contain layout configuration and the set of JavaScript functions that handle all
interactive tasks. Once the INScore startup file is opened, all communication with the server
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can be done directly from the INScore client.
An example of the dynamic score with alternating pane layout is presented in Figure 3.23.

The active notation pane is highlighted with red borders, whilst the preparatory pane is slightly
dimmed. Several features that aim to replace some of the conducting gestures have been added,
such as the signalling traffic lights at the top left corner, which draws the attention of musicians
and provides an indication of the starting tempo. The traffic lights are used only at the beginning
of the play as a replacement for the conductor’s upbeat gesture.

Additionally, the current position line is visible as the light green line on the upbeat leading
to bar 28 (Figure 3.23). It has an attached tempo indicator, which is visible as the red circle on
top of the stave. The actual play start position is marked with a light purple line on the first beat
of bar 28 in Figure 3.23. The starting position can be set to any Beat Line from the network
management client (Figure 3.25).

When the score performance is started in the Performance Control GUI (Figure 3.25), the
traffic light signal flashes at the starting tempo frequency, and the position line begins moving
from left to right, indicating the current position in time on the screen. The attached tempo
indicator ball starts simulating conductor signals with vertical movements calculated from the
simplified pendulum motion formula, where the ictus plane is at the top of the stave.

Figure 3.24: Ukodus, full score in alternating pane layout

The current position line always starts from the upbeat before the selected starting position,
mimicking the familiar conductor gesture at the start of play. When the position line reaches
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the penultimate beat of the active pane stave, the preparatory pane’s current position line starts
moving from its upbeat position at the same time, providing notation view continuity.

The full score view, shown in Figure 3.24, implements a vertical alternating pane layout
(Figure 3.10). It is synchronised in the same way as other parts, including the traffic lights,
starting and current position lines, and the tempo ball indicator.

3.2.1.6 Performance Control

The central hub in charge of scheduling and distributing the score data over a network in real-
time is the ZScore server and management client written in Java programming language. The
ZScore Performance Control GUI client (Figure 3.25) can import and parse score definition data
exported from the ZScore Tools Illustrator plugin and submit to the server, creating an internal
representation of the score metadata. The internal score object-oriented model mimics the layer
hierarchy shown in Figure 3.13.

Figure 3.25: Ukodus, ZScore Performance Control GUI

The server listens to notation client connections and sends information about available parts
to all the connected clients. When musicians select individual parts on their notation client, the
server associates the selected score part with the client’s host address. From that point on, all
messages related to a particular part will be routed to the associated client address.

The server internal scheduling resolution is 1 millisecond, with a maximum measured
deviation of 0.8 milliseconds. It translates local absolute time to a tempo-relative value expressed
in BDU units and evaluates any scheduled score events accordingly. The server supports multiple
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transports with different metres and tempos, allowing for compositions and performances of
polyrhythmic and polymetric scores. Events can be pre-loaded in score data or dynamically
added during a performance, adhering to the timing rules discussed above. ZScore’s real-time
functionality is bound by these timing rules, so any notation generated during the performance
needs to be available in the time window defined by the T1 and T2 boundaries (Figure 3.11).

The Performance Control GUI (Figure 3.25) can load and start the score from any position
defined in terms of the Page, Bar, and Beat number on all participating networked clients. It
also allows for tempo multiplication in the range from 0.1 to 2.0, useful for rehearsal purposes,
as well as for finely tuned dynamic tempo changes during a performance when required.

3.2.2 Score Commentary

The inspiration for Ukodus came from a particular Sudoku puzzle containing visually and
numerically interesting symmetrical structures with multiple lines of symmetry. The name of
the piece is the word ‘Sudoku’ reversed.

Sudoku is a logic-based, combinatorial number-placement puzzle. The objective is to fill
a 9 x 9 grid with digits so that each column, each row, and each of the nine 3 x 3 sub-grids
contain all of the digits from 1 to 9. The puzzle used for the composition structure of Ukodus is
visualised in Figure 3.26.

From Figure 3.26, it is evident that the initial setup for this particular Sudoku puzzle displays
the symmetrical positioning of numerical values in both horizontal and vertical directions.
Further explorations of the relationships between the visual and numerical elements of the
puzzle formed the basis for the compositional structure of Ukodus.

In order to quantify the positions of the puzzle’s initial numerical values, each row and
column in the puzzle was given a sequence id in the range [0, 4], as visible in the top row and
first column of Figure 3.26. Sequence id 0 was assigned to the central row and column. The
upper contour of the puzzle in the West� East (W� E) direction was then extracted as a graph
(Figure 3.27). The vertical values in the graph indicate the distance from the central row.

Actual numerical values of the puzzle’s upper area in the W� E direction were also plotted
as a graph in Figure 3.28. As the upper area columns can contain up to two numerical values,
separate curves were defined for the inner and outer numerical values.

Due to the horizontal symmetry, the lower area of the puzzle in the W � E direction has
the same outer contour as the upper area. However, the actual numerical values are different,
as displayed in Figure 3.29. Following the same approach, graphs for the vertical contour in
the North � South (N � S) direction and their corresponding numerical value graphs were
extracted and plotted.

The basic structure of the piece was derived from the obtained graphs and resulting data
sets (Figure 3.30). The composition was split into nine sections, reflecting sudoku’s intrinsic
divisions. The tempo and the length of each section were calculated from the upper contour
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Figure 3.26: Ukodus, Sudoku puzzle used for the composition material

Figure 3.27: Ukodus, Sudoku puzzle W� E upper contour

values (Figure 3.27). The starting tempo value was set to 100 bpm, whilst the vertical unit value
was set to 20 bpm. As can be deduced from the graph (Figure 3.27), the vertical contour value in
the W� E direction decreases by one unit from position 1 to position 2. Therefore, the tempo
for section 2 can be calculated using the following formula:

starting tempo − direction ∗ [number of steps ∗ tempo unit value] = new tempo
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Figure 3.28: Ukodus, Sudoku puzzle W� E upper values

Figure 3.29: Ukodus, Sudoku puzzle W� E lower values

as:
100 − 1 ∗ [1 ∗ 20] = 80

The tempo and number of beat units for each section were then calculated using the formula
above. The pitch range for each section was selected to reflect the same contour curve, starting
with the mid-range for each instrument.

Figure 3.30: Ukodus, basic structure

By following similar rules, each section was further divided into nine parts. The length of
each part was calculated from the section’s length and the upper contour (W � E) value for
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each step. Therefore, the part’s length is relative to the contour value for the equivalent position;
the higher the contour value, the longer the part, and vice versa. The structure of section 1 is
displayed in Figure 3.31. Here, each part is defined by its length in terms of the number of beat
units (1/8), the division of beat units into bars, and the number of musical events based on the
W� E upper values graph (Figure 3.28).

Figure 3.31: Ukodus, section 1 structure

The other sections were defined in a similar way. The structures of sections 2 and 3 are
displayed in Figure 3.32. All sections use different curves for event and material generation. For
instance, section 2 uses the W� E lower value graph, whilst section 3 uses the W� E upper
values in retrograde. The number of events in this context represents a guideline for the density
of the musical material in each part.

Figure 3.32: Ukodus, sections 2 and 3 structure

The instrumentation – consisting of Flute, Clarinet, Cello, and Piano – was selected to
reflect the symmetrical nature of the material and to explore possibilities for flexible grouping
and mirroring. For example, in section 1, the instruments were split into two groups: Group
1 (Flute and Clarinet), and Group 2 (Cello and Piano). Group 1’s event density was extracted
from the outer curve, whilst Group 2’s event density was obtained from the inner curve.

The beginning of the piece (section 1, part 1) for Group 1 (Figure 3.33) illustrates how the
extracted data is mapped to musical material. The number of events for section 1, part 1, can
be looked up from Figure 3.31 – for both Group 1 and Group 2 it is four. The material for
section 1 (Figure 3.30) is set to “air/nose”. Therefore, four musical events were created for both
instruments in Group 1 (Flute and Clarinet). Internally, instrument lines within the group were
constructed as a mirrored response/call whilst the shape of both gestures resembles the W� E
upper contour (Figure 3.27).
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Figure 3.33: Ukodus, Group 1 events in section 1 part 1

Figure 3.34: Ukodus, Group 2 events in section 1 part 1

Likewise, four “air/noise” events have been created for each instrument (Cello and Piano) in
Group 2 for section 1, part 1. These events serve as a call/response mechanism. The Group 2
gesture shape reflection forms a symmetrical response to Group 1, as shown in Figure 3.34.
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The rest of the material was created following a similar procedure. Due to the extensive work
required for the technical aspects of ZScore software development and Adobe Illustrator score
authoring, only the first 64 bars of the piece were completed in time for the MCME workshop.
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3.3 Vexilla

For:
Bass Clarinet
Violin
Violoncello
Video Projector

Duration: ca. 7 minutes

Links: Full Score
ZScore Package
Score follow video with audience score visualisation
Performance recording

3.3.1 Objective: Audience Score Visualisation

This piece was written for ZScore in early 2018 and was performed on 1 May 2018 at Deptford
Town Hall by Heather Roche (Bass Clarinet), Valerie Welbanks (Cello), and Patrick Dawkins
(Violin) thanks to Goldsmiths Graduate School and Music Department funding.

Vexilla were flag-like objects used as a military standard by units in the ancient Roman army
(Figure 3.35). Later on, the meaning of the word extended to represent any object, such as a
relic or icon, carried as a standard into battle. This piece explores the emotional and rational
responses to various flags I have encountered throughout my lifetime, from fervent teenage
patriotism to deep distrust of any ceremony that requires enthusiastic flag waving.

Figure 3.35: Roman Vexillum5

The intention behind the audience score visualisation was to represent the composition’s
ideas in an easily comprehensible format through various flag shape animations, inspired by the
Vexilla music material described below. To achieve this, a canvas resembling a Roman vexillum
was placed on the stage (Figure 3.36), clearly visible to all audience members. All score
animations were projected onto the canvas from a dedicated laptop running INScore standalone

5Photo by Wolfgang Sauber, Roman Museum, Petronell (Lower Austria), Vexillum of the Ala I Thracum Victrix
(replica), source: https://en.wikipedia.org/wiki/Vexillum#/media/File:Museum_Petronell_-_Vexillum_Ala_I.jpg
(last visited 5 Sep 2023)
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client. INScore (v1.21) was chosen at the time of score creation for its network connectivity
features, scripting, and SVG graphics rendering ability.

Figure 3.36: Vexilla staging with synchronised animations projected onto a canvas

Embedded within the Adobe Illustrator score, the audience part includes scripts that control
audience-specific visualisations synchronised with other musical events defined in the score.
This innovative integration of the audience part within the score, later adapted for general
audio-visual score elements, is further detailed in Chapters 3.3.1.1 and 3.3.1.2. Additionally,
Vexilla introduces a colour-coding system for specific playing techniques, as further explained
in Chapter 3.3.2.1.

3.3.1.1 Embedded Scripting

Figure 3.37: Vexilla, AV part

Early in the composition process of Vexilla, I opted to integrate commands for real-time
audience visualisations directly within the score. Visual aspects were integral to the creative
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process, demanding tight synchronisation with the musical material. To facilitate this, a dedi-
cated AV (Audio/Visual) part was created in the Adobe Illustrator score (Figure 3.37) to serve
as a container for any information related to audience score representation. The AV part is
structurally identical to all other parts in the score, sharing the same bar and beat structure,
tempo changes, etc.

The task of audience score visualisation was divided into three components: score event
definition, server-side event scheduling, and INScore client SVG element configuration and
rendering. In Adobe Illustrator’s layer structure, embedded scripts were placed inside the
“events” layer, which was nested within the corresponding bar (Figure 3.38). In Vexilla, the
event scheduling interval for embedded scripts is fixed to one bar, ensuring that the events’
execution always occurs on the first beat of the bar.

Figure 3.38: Adobe Illustrator layer structure for embedded scripts

Two types of events were created for the purpose of audience visualisation: “javascript” and
“transition”.

INScore’s ability to execute arbitrary JavaScript embedded in OSC messages was extensively
utilised in the implementation of the score visualisations. A generic “javascript” type event was
defined to act as a simple carrier of the scripts defined in the AV part. All graphical elements and
their addresses referenced in “javascript” events were defined in the avPart.inscore configuration
file. The INScore instance responsible for the score visualisation needs to load the avPart.inscore
file and register itself as the AV destination with the ZScore GUI to receive scripting events.

A script embedded in the score has a general form:

<eventType> : <script-content>

For example, in the Adobe Illustrator source file Vexilla.ai, an embedded script with “javascript”
event type from the AV part, bar 1, contains:

javascript:showColour(‘/ITL/scene/contentPaneBottom’, ‘red’, 0)

The script content – “showColour(‘/ITL/scene/contentPaneBottom’, ‘red’, 0)” – is packaged in
the OSC event and sent to INScore where it is executed on receipt. The function “showColour”
referenced in the script is defined in the avPart.inscore file:
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function showColour(component, colourName, alpha){...}

The “transition” type events manage SVG element alpha values. It quickly became apparent that
there was a need for the generic opacity management of SVG elements, as a sudden appearance
or removal of SVG elements resulted in visually unappealing effects that did not match the
nature of the music material. A “transition” event can target any SVG element by referencing
the element’s INScore address. The scheduling of the events is performed by the server based
on the event configuration specified in the AV part.

An example of the “transition” event type from the AV part, bar 1, contains:

transition:3600,40,0,255,/ITL/scene/contentPaneBottom

This script gradually increases the opacity of the component named “contentPaneBottom”
from completely transparent (alpha value 0) to fully opaque (alpha value 255) over a duration
of 3600 milliseconds (3.6 seconds). All transition scripts control the alpha value of the named
component.

On the server-side, this configuration is translated into an instance of the Java “Transition”
interface using the following mapping:

transition: <duration>,<frequency>,<startValue>,<endValue>,<component>

Transition object instances are scheduled on the server based on the embedded script’s duration
and frequency settings. The alpha value is calculated and sent during playtime inside the Java
“TransitionScriptEvent” object. This event object is then translated into an OSC message that
executes “setAlpha” JavaScript function in INScore:

function setAlpha(component, alphaValue){...}

3.3.1.2 Audience Score View

The content of audience visualisation elements is based on the same tabular structure (Fig-
ure 3.42) that is used to derive the music material and is, therefore, an integral part of the
composition process. All graphical elements used in audience visualisation are defined in the
avPart.inscore file. Each graphical element has a unique address. For example, the SVG element
representing the UK flag has the address “/ITL/scene/ukFlag” and is defined in the avPart.inscore
file as:

/ITL/scene/ukFlag set file ‘rsrc/UkFlag.svg’;

/ITL/scene/ukFlag x 0.0;

/ITL/scene/ukFlag y 0.0;

/ITL/scene/ukFlag scale 1.66;

/ITL/scene/ukFlag z 3.0;
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In this instance, the content of the SVG element is associated with the file “UkFlag.svg”
placed in the “rsrc” directory. The content of this element can be changed by calling the generic
“setFile” JavaScript function defined in the avPart.inscore file:

function setFile(component, filePath) {

post(component, SET, FILE, filePath);

showComponent(component, 1);

}

This function can be used to change the content of any INScore element that is using a file
reference. Another approach would be to use INScore’s native OSC support and directly target
the “/ITL/scene/ukFlag” address in an OSC message containing the required parameters. This
approach would avoid JavaScript interpretation in the INScore client and, therefore, be slightly
faster to render. However, INScore elements can have a number of parameters, as illustrated
above, so changing them individually would require either a separate message for each parameter
or an OSC message bundle containing all the required changes. In both cases, it would be more
efficient in terms of network load to send a single function call that changes all the required
parameters at once. A decision was made early on in the process to abstract the OSC level
calls into higher-level functions to reduce both the number and size of required messages passed
between the server and client.

All resources, including graphics files, are preloaded onto the laptop responsible for audience
visualisation ahead of a performance, thereby avoiding any latency-sensitive network traffic
during the score play. Furthermore, events that manage a graphical element’s appearance only
contain references, such as the element’s address, function name, colour id, etc., rather than
full graphics or complete definitions of values that need to be modified. All animated features
of the audience score view are handled by a set of JavaScript functions embedded within the
avPart.inscore file.

3.3.2 Score Commentary

Structurally, the composition is divided into three main sections: Yugoslavia (1945 - 1992),
Europe (1992 - 2018), and Epilogue. Each main section is then further broken down into
smaller parts. Section 1 (Yugoslavia) is split into seven parts, with six representing the former
Yugoslav federative republics’ flags, and one for the main SFR Yugoslavia state flag. Section
2 (Europe) is divided into three parts (the EU, New Bosnia, and UK flags) whilst section 3
(Epilogue) contains only one part and references all flags used in the piece (Figure 3.39).

Each main section’s duration is less than half of the previous section, symbolising the
perceived acceleration of the passage of time with age. However, each part within the main
sections has the same duration (35.2 seconds), reflecting the equal importance (or unimportance)
of flags in my life. Originally, the plan was to write a 10-minute piece split into 17 parts of
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Figure 3.39: Vexilla, Structure

equal duration, with each part lasting 35.2 seconds. However, due to time pressures, the overall
number of parts was reduced to 11, whilst the individual part duration remained unchanged at
35.2 seconds.

The tempo of section 1 is set to 90 bpm, being the same as the Yugoslav national anthem
used as the source for the compositional material in part 7. The tempos of sections 2 and 3 are
set to 120 bpm, inspired by the official EU “Anthem to Europe”, which is based on Beethoven’s
9th Symphony fourth movement (“Ode to Joy”). Part 10, dedicated to the UK, is inspired by Led
Zeppelin’s “Immigrant Song”.

As a starting point, I documented my immediate factual and emotional responses to each
section and part description (as displayed in Figure 3.39). It became evident right away that
my responses to the first section were more centred around memories and nostalgia, whilst the
second section revolved around the realities of living, survival, and the daily grind of life. To
further inspire the composition, I also tapped into my associative memory, noting the first song
or melody that came to mind when thinking about a particular flag. Extracts from these songs
and melodies were then utilised to construct the compositional material for each part.

The common overarching thread across all composition parts is a personal reflection on the
processes of othering, belonging, and separation. The process of othering is frequently used
in political discourse where “others” are defined as different from “us”, representing a physical
or economic threat to be feared. Almost invariably, othering rhetoric involves mythology and
symbolism, including flags, serving to establish a distinction between “us” and “others”.

Another important process utilised in the generation of compositional material is the
decomposition of flags into graphical facets and their mapping to sound categories and ges-
tures. For example, the SFR Yugoslavia tricolour flag was composed of red, blue and white
stripes with the socialist red star in the middle (Appendix C). These flag features are then mapped
to sound categories as illustrated in Figure 3.40.

Additionally, the position of individual stripes on the flag is mapped to the instrument range in
a vertical order; for instance, the bottom stripe is associated with the lower instrument register,
and so on. Angled lines on flags are mapped to the pitch movement, so if a line is sloping
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Figure 3.40: Vexilla, flag feature mapping to sound

downwards when looking left to right, the sound starts at a higher register and gradually slides
down to a lower register.

Figure 3.41: Vexilla, Na Planincah, traditional folk song from Slovenia

Figure 3.42 illustrates the principles of the generation of compositional material in this
piece. Part 1 represents the flag of Slovenia (Figure 3.39). Following the associative memory
approach described above, the first song I could recall when thinking about Slovenia was the
simple traditional folk melody “Na Planincah” (Figure 3.41), which happens to be one of the
first melodies I learned to play as a child on the piano.

Figure 3.42: Vexilla, part 1 Structure

The time signature for part 1 of Vexilla was therefore set to 3/4, matching the time signature
of the selected folk song. From the given length of the part (35.2 seconds) and the preset tempo
(90 bpm), I calculated that there should be 53 beats in the part. The bar structure of the part was
then constructed based on the calculated number of beats as follows:

16 bars ∗ 3
4
+ 1 bar ∗ 5

4
= 17 bars

This bar structure was then presented in tabular form, as shown in Figure 3.42. The
visual features of the Slovenian flag (see Appendix C) were mapped into the structural tables
(Figure 3.42), serving as metadata for generating musical content.

The common feature appearing on all flags used in section 1 is a red star. It was mapped
to a recognisable musical gesture and repeated in all structural parts, albeit in slightly different
forms. In part 1, the star gesture (Figure 3.44) is placed in the middle of the temporal structure
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(Figure 3.42). On either side of the star gesture, the flag’s coloured stripes are laid out in vertical
order and mapped to a sound category as described in Figure 3.40. This creates a ternary form
that is also used in other parts with a similar flag layout.

Figure 3.43: Vexilla, Cello part using Na Planincah melody elements

The “Na Planincah” melody served as inspiration for compositional material for all the
instruments. Excerpts from the Cello part, as shown in Figure 3.43, are the most recognisable
elements from the folk melody.

Other section parts were constructed following a similar process as described above. The
tabular structure representation of parts in section 1 is shown in Figure 3.45 whilst the parts’
structures for sections 2 and 3 are displayed in Figure 3.46.
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Figure 3.44: Vexilla, part 1 star gesture
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Figure 3.45: Vexilla, section 1 parts structure
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Figure 3.46: Vexilla, sections 2 and 3 parts structure
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3.3.2.1 The Use Of Colour In Music Notation

The additional experimentation involved using colour in a graphic score, as shown in Figure 3.47.
The aim was to associate a specific playing technique with a colour, thereby potentially increasing
the player’s score reading and comprehension speed compared to standard symbolic notation.
For instance, Bass Clarinet multiphonics were associated with the colour blue. Whilst the idea
received positive feedback, it was concluded that the use of colour should be employed sparingly
and might be better suited for musical dynamics visualisation. A concern raised was that colour-
blind musicians could be disadvantaged if this technique was extensively used and there was no
other way to ascertain the meaning. In subsequent portfolio pieces, I ensured that the meaning
of any coloured notation elements could be deduced from supplementary cues, such as their
position on the stave or the direction of movement.

Figure 3.47: Vexilla, use of colour in the notation

113



3.4 Comprov

With:
String Quartet Duration: 5 - 30 minutes

Links: Full Score
ZScore Package
Comprov Exposition recording
Comprovisation recording
Notation overlays walkthrough video

Comprov notation and the required system implementation were developed for the workshop
with the Ligeti Quartet in November 2019. The score material used during the workshop was
derived from the first 8 pages written for Union Rose (3.5). Comprov play starts with the
Exposition, where the first eight pages are played exactly as written. It then continues with
dynamically generated pages based on the Exposition material in a continuous loop for as long
as is deemed appropriate.

The primary objective of the workshop was to explore real-time, conductor-led networked
comprovisation based on the unconstrained positioning of the dial between static pre-composed
and dynamic notation, as illustrated in Figure 1.3. This was achieved with the novel concept
of dynamic notation overlays specifically designed for comprovisation (3.4.1.2). The instru-
ment stave layout was redesigned to visually separate performance parameters like bow speed,
pressure, and position within a two-dimensional space (3.4.1.1). These areas could then be
dynamically overridden by notation overlays controlled by a conductor. The ZScore Control
GUI was enhanced with dynamic overlay controls (3.4.1.3) that enabled real-time movement
of the dial, as illustrated in Figure 1.3. Additionally, the ZScore server design was improved
to accommodate a generic Strategy interface, allowing for system behaviour modifications as
required by a specific score. Two Strategies were implemented for Comprov: Randomisation
(3.4.1.4) and Continuous Play (3.4.1.5). This approach allowed for a section of the composition
material to be looped and drastically altered throughout an extended performance, resulting in
a wide range of musical output.

3.4.1 Objective: Networked Comprovisation

3.4.1.1 Notation Segmentation

ZScore allows for syntax-independent and constraint-free positioning of notation elements,
making it suitable for various dynamic notation styles. The design preference prioritises usability,
aiming to offer a consistent layout familiar to classically trained musicians. Early versions of the
notation layout employed a mixed symbolic/graphic notation space, which provided optimal and
flexible screen real estate utilisation (Figure 3.24). However, after gathering feedback through
research questionnaires and verbal conversations with workshop and performance participants, it
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became evident that most musicians preferred the distinct and consistent positioning of different
performance parameters rather than the mixed space approach. Moreover, certain notation
element positioning felt more “natural” to performers, such as having the dynamic markings
always displayed below the pitch information. Taking into account these considerations and the
results from multiple user trials, the layout design illustrated in Figure 3.48 was established for
Comprov sessions.

Figure 3.48: Comprov, string instrument notation layout

Performers intuitively apply complex playing techniques when reading a notated score,
drawing from years of learning, practice, and performance experience. For instance, classically
trained string instrument players automatically translate music dynamic markings into various
bowing techniques, skillfully controlling the bow’s speed and pressure. String players strive
to produce a sound quality that aligns with the aesthetic requirements of the specific tradition
or style. This anticipation of the desired “ideal” sound leads to a learned application of the
appropriate bowing techniques. In the latest pieces written for ZScore, the artistic aim is to
create a particular sound quality by intentionally decoupling the embodied relationships between
the notation, playing techniques, and sound through innovative dynamic notation techniques that
allow for the flexible control of different playing techniques in real-time.

The user trials and various concerns described above led to the development of a nota-
tion layout where the key performance parameters are separated into distinct two-dimensional
Cartesian coordinate spaces. Figure 3.49 illustrates a vertical stave layout designed for string
instruments, taken from the score shown in Figure 3.48. The stave is vertically divided into
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three main sections dedicated to the right hand, left hand, and music dynamic notation. The
right hand notation section is split into three subsections: position, speed, and pressure notation.
These subsections primarily refer to bowing techniques but can contain other actions such as
pizzicato or percussive sound gestures.

msp

mst
ord

bb

fast
slow

ord




tpc

highest

lowest

ordlow
high

ob

Right Hand
notation

Left Hand
notation

position
tpc

speed
pressure

pitch

dynamics

Figure 3.49: Comprov, vertical stave layout

The left hand notation contains pitch or playing technique information in either symbolic or
graphic notation. The dynamics section is consistently displayed below the pitch information,
based on feedback from musicians. In each section (Figure 3.49), the vertical axis represents a
named performance parameter value, with a parameter-specific vertical range. For example, the
bow position range for all string instruments starts with “molto sul tasto” (mst), then continues
with markers for ordinary playing position (relative to the given dynamics), “molto sul pont”
(msp), “on bridge” (ob), “behind bridge” (bb), and finally ends with the “tailpiece” (tp) marker.
The horizontal axis represents time and remains identical for all performance parameters. The
position cursor, rendered as the green line across the stave (Figure 3.50), shows the current
position on each stave at any point of time.

Additionally, the dynamic beat cursor, represented as a red bouncing ball, indicates the
onset of each beat, akin to a conducting gesture. The cello part excerpt (Figure 3.50) taken
from the Comprov score (Figure 3.48) illustrates a pre-composed static notation layout. Various
performance parameters, such as position, speed, and dynamics, are visualised as continuous
lines, indicating a gradual change in their current values. Pressure notation employs coloured
geometrical shapes indicating the amount of bow pressure that needs to be applied relative
to the current dynamics. The left hand notation, in this case, combines textual, symbolic, and
graphic elements to convey finger pressure, position, and timing information. The finger tremolo
timing information serves as an approximation, illustrating the idea of irregular finger placement.
Performers are given the freedom to use their aesthetic judgement to decide the exact tremolo
timing during play. This decision might vary each time the section is performed, as the overall
context and surrounding sound output can change with each pass, as described below.
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Figure 3.50: Comprov, Cello notation excerpt

3.4.1.2 Dynamic Notation Overlays

Real-time dynamic decision making and notation rendering require a user interface design that
allows dynamic elements to update at any point of time without any detrimental impact on
the displayed static notation elements and musicians’ look-ahead preparation time. Dynamic
notation updates need to be clear, easily understandable, and suitable for real-time cognitive
processing. Therefore, complex notation updates should preferably be scheduled for display in
predetermined time window slots, as described in Section 3.2.1.2. As a general guideline, the
performance continuity should not suffer at any point during dynamic notation updates, unless
it is an intentional side effect.

One of the reasons that led to the separation of performance parameter notation was the need
to provide dynamic parameter value overrides, aimed at comprovised music-making. To achieve
dynamic overrides, each parameter was assigned a graphic overlay (Zagorac 2020). Overlays sit
on top of the static notation covering the entire Cartesian space assigned to the corresponding
performance parameter. The current dynamic parameter value is rendered either as a horizontal
line on top of the overlay and/or as an overlay background colour value. Figure 3.51 illustrates
the position, speed, pressure, and music dynamic overlays for the same notation excerpt shown
in Figure 3.50.

In this case, only the pitch information remained the same as the precomposed static notation.
As can be observed in Figure 3.51, each parameter’s current value is represented by the coloured
line (red for dynamics, purple for position, blue for speed, grey for pressure) and the background
colour covering the entire two-dimensional space assigned to the parameter. In this instance, the
player is asked to play forte sul pont with a fast bow and strong overpressure. Bow speed and
position markings are always relative to the indicated music dynamics. Parameter values are
controlled from the ZScore control GUI described below and have a preset range [min = 0, max
= 100]. The parameter’s line position is obtained by mapping the current parameter value to
the vertical space assigned to the parameter (minY, maxY). Similarly, the background colour is
interpolated from the range representing the minimum value (e.g. for dynamics it is blue [R=0,
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Figure 3.51: Comprov, dynamic notation overlays for position, speed, pressure, and dynamics

G=0, B=255]), the mid-value (white [R=255, G=255, B=255]), and the maximum value (red
[R=255, G=0, B=0]). Overlays and parameter values can be set independently at any point in
time and are immediately displayed on the musicians’ screens.

Figure 3.52: Comprov, dynamic pitch notation overlay

Figure 3.52 illustrates a different overlay configuration for the same score excerpt as shown
in Figures 3.50 and 3.51. In this configuration, only the pitch parameter has been overridden
with the overlay, indicating an approximate pitch to be played within the instruments range [min
= lowest, max = highest possible pitch]. All other performance parameters in this example
are precomposed. Any overlay can be switched on or off during a performance and their
corresponding parameter values can be set independently at any point of time. Any parameter
changes are immediately displayed on the musicians’ screens.

3.4.1.3 Comprovisation Controls

ZScore’s Control GUI has been extended to provide dynamic performance parameter controls
(Figure 3.53). Performance parameter overlays described in the previous chapter can be switched
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Figure 3.53: Comprov, Control GUI

on or off at any point during a performance from the Control GUI. Each overlay (e.g. Dynamics,
Speed, Pressure, Position, and Content) is assigned a set of controls that govern its appearance.
These controls include checkboxes that enable the overlay and related line indicators, as well as
a slider that sets the overlay performance parameter value.

The performance parameter ranges are displayed in musical terms. For example, the music
dynamics range is displayed as “ppp - p - mf - f - fff”. The value selected by the performance
parameter slider is scaled to the related overlay line position and background colour on musician’s
views, as explained above.

The Control GUI also contains a number of presets that set various combinations of overlay
layouts. The default preset is “All OFF”, which disables all overlays. Other presets switch
particular overlays on or off. For example, the “All ON Content OFF” preset enables all overlays
apart from the pitch overlay. It is also possible to use overlay background colours only without
the line indicators by selecting the “All ON Lines OFF” preset.

The administration GUI communicates with other performance participants through ZScore’s
server, which provides notation scheduling and a distribution service. The server also receives
events sent by other performance participants, processes them through an algorithm that analyses
incoming events, and validates decision logic. The outcome of the decision logic is then passed to
the score processing and scheduling engine, which identifies the required notation and distributes
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it back to the performance participants. Unlike other scheduled events, overlay control messages
are passed through to the musicians’ clients immediately.

3.4.1.4 Randomisation Strategy

The composed music material in Comprov is limited and continually reused, as explained in the
introduction (3.4). The Score Randomisation strategy was developed to provide a mechanism
for this reuse of material that is suitable for a comprovised performance with a string quartet.
The Score Randomisation algorithm determines the notation and instrumentation to be used in
the next time window calculated by the scheduling engine. Figure 3.54 displays the available
Randomisation strategy configurations in Comprov, designed for a string quartet.

Figure 3.54: Randomisation strategy configuration control

The configuration determines the number of distinct score pages and instruments that should
be used. The term “page” is equivalent to the notation displayed in a single pane. For example,
the configuration value “2” means that two randomly selected instruments should play the same
randomly selected page; the configuration value “2,1” means that two instruments should play
the same page, and one instrument should play another randomly selected page; “1,1,1,1” means
that all four string quartet instruments should play a randomly selected page, and so on.

Comprov pages have been constructed to function as an independent unit, reusable in various
vertical structure combinations. The aesthetic impact of sounding page combinations is evaluated
in real-time during a performance. Any undesired sound elements can be modified with dynamic
performance parameter controls to rebalance the page combination’s musical outcome.

3.4.1.5 Continuous Play

Comprov starts with the fully notated Exposition, and then transitions into a comprovisation
based on the Score Randomisation strategy settings and manual Overlay controls. To facilitate
uninterrupted page scheduling on the server-side, I introduced the concept of a “Continuous
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Page”. When the “Continuous Page” setting is enabled on the Control GUI (Figure 3.53), the
server automatically creates and schedules a new page when the last scheduled page is reached
during a play. The content of the “Continuous Page” is determined by the Score Randomisation
strategy settings (3.4.1.4) for each instrument at the time of page creation. This continuous play
can run indefinitely until the Stop button on the Control GUI is pressed.
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3.5 Union Rose

For:
String Quartet
Audience
and Max

Duration: 10 minutes

Links: Full Score
ZScore Package
Score follow video
Workshop video recording
Setup instructions video

3.5.1 Objective: Interactive Composition And Performance

Union Rose represents a major step forward in terms of interactive networked performance
features, the scale of the composition challenge, and the technical implementation of the ZScore
system. The piece takes inspiration from the magnificent east window rose (Figure 3.55) at the
Union Chapel in London, where it was originally intended to premiere in 2020. Each composer
involved in the event selected a feature from the venue as inspiration for their compositions.
Unfortunately, due to restrictions during the COVID pandemic, the planned event never took
place as scheduled. Union Rose eventually had its first performance by the Ligeti Quartet in
February 2022.

Figure 3.55: Union Chapel Rose6

The ZScore system was enhanced to allow for audience participation in performances.
Audience members could access an interactive score representation on their mobile device

6Source: https://unionchapel.org.uk/projects/heritage/roses-of-union-chapel (last visited 3 Mar 2020)
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web browser, allowing for participation in decision-making and sound production (3.5.1.2).
For example, the audience could choose what music material was played next in section A’
by selecting the corresponding tile associated with the desired page of music (Figure 3.77).
Furthermore, they could trigger digital audio and speech patterns in sections B’ (Figure 3.84)
and C’ (Figure 3.89).

The musicians’ notation was moved to a web container that can run on any digital device,
replacing INScore standalone client (3.5.1.1). The notation segmentation was further enhanced
to provide a cleaner visual layout with interactive features that also allowed the musicians to
participate in the decision-making process. For example, the musicians could choose what
instrumentation was used in the next page of music in sections A’, B’, and C’, as illustrated in
Figure 3.57 and explained in the score commentary for these sections.

A networked digital audio node was developed for the Max platform, comprising an external
object for network communications, a jsui visual interface for score information, and a set of
custom patches for audio processing (3.5.1.3). These ZScore Max patches could be controlled
in real-time either through network events triggered by the score or directly through MIDI
controllers or a computer keyboard/mouse. The score and server were enhanced to enable the
integration of new components into a coherent, synchronised composition model. Consequently,
the scope of the composition process expanded significantly, encompassing audience score
visualisation, an interactive score design, and digital audio sound production. These innovations
represented crucial steps in the development and refinement of the ZScore system.

3.5.1.1 Web ZScore

A desire to ensure wider compatibility with as many modern mobile devices as possible led to the
porting of the INScore notation view into a standard web browser implementation. To achieve
this, several custom JavaScript libraries were created to provide the required functionality,
including connectivity, dynamic score visualisation, interactivity, and synchronisation features.
The Web ZScore JavaScript libraries and their brief descriptions are shown in Figure 3.56.

The only third-party JavaScript library used in Web ZScore is the GreenSock GSAP library
(2014), which was utilised for the position indicator animation.

Dedicated HTML and JavaScript files were created for each score containing details and
functionality specific to the particular composition, whilst common functionality was extracted
into the libraries listed in Figure 3.56. When the musician’s browser connects to the server, the
initial view displays a list of available scores. This list can be modified for each performance as
required. Musicians can return to this list by clicking on the “home” icon in their part views.

In general, all score parts have an identical alternating pane layout, as described in Section
3.2.1.5. An example of the Web ZScore Cello part notation is shown in Figure 3.57.

The notation look and feel is identical to the INScore version (Figure 3.48), albeit with
several enhancements. The current tempo is now displayed in the top left corner, just below the
traffic lights. As the tempo can be manually modified, it is useful to always see the current value,
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Figure 3.56: Web ZScore JavaScript libraries

Figure 3.57: Union Rose, cello part in Web ZScore

which may deviate from the value shown in the score. An audible beep tempo indicator can be
activated by clicking the metronome icon located to the left of the tempo value. The tempo beep
frequency can be adjusted for each part for easier identification. This device is mainly used for
synchronisation with Max digital audio. The home button, located in the top right corner, opens
the main score menu page.

The most notable change is the addition of the action bar at the bottom of the Web ZScore
notation view. In Union Rose, the action bar displays buttons that allow musicians to interactively
opt in or out of participating in the next page. In Figure 3.57, for example, the next page is
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scheduled to be played by Cello and Violin 1. The Cello button is highlighted in light green to
enable the player to easily determine whether their part is involved in the next page (the example
view is for the cello part). A player can click on the Cello button to opt out of participating in
the instrumentation scheduled for the next page. If the cello part was not scheduled to play the
next page, the cellist could choose to opt in by clicking on any available instrument to take their
place in the next page’s instrumentation. The time window when buttons are visible is managed
by the server based on the score configuration. Buttons can be used as long as the time window
is open. This can create a game-like race between players during the time window, as the last
person to click the button wins.

The INScore time-space synchronisation map was reused in Web ZScore for position tracking
purposes. During the page initialization process, a GSAP timeline is created for each stave. This
timeline consists of several GSAP tweens responsible for animating position tracking. A GSAP
tween is a lightweight JavaScript object that controls animations by gradually transitioning the
values of an element’s properties over a specified duration. Tweens are constructed from the
data available in the time-space beat map sent by the server, which includes spatial x and y
coordinates for the start and end positions of each beat in the stave, as well as the duration of
each beat. These GSAP tweens govern the movement of both the vertical position tracker and
the beat ball for each beat. Individual beat tweens are then added to the corresponding stave’s
GSAP timeline. Furthermore, a label marking the onset of each beat is inserted into the timeline.
This beat onset label allows for setting the starting position to any desired beat within the stave.

All graphical files required for the part are preloaded by the web client on score load (or
section load in larger scores), thus reducing any potential latency and jitter issues during a
performance.

3.5.1.2 Audience Score Representation

A web audience score view was created to allow any Wi-Fi enabled mobile device running any
Internet browser brand to connect and participate in a performance. Most of the JavaScript
libraries developed for the Web ZScore notation (Figure 3.56) were reused in the audience view.
Additionally, a set of libraries dedicated to audio generation were developed using Web Audio
API (2011) and Web Speech API (2012) (Figure 3.58). Similarly to the Web ZScore notation
front end, all animation tasks within the audience view are implemented with the help of the
GreenSock GSAP third-party library.

In Union Rose, the design of the audience score representation is based on the Union Chapel
rose (Figure 3.55). A photo of the rose was converted to SVG format with a reduced colour
palette and stylised in Adobe Illustrator (Figure 3.59). The essence of the rose’s geometry and
the content of its shapes were preserved, whilst the religious symbolism was transformed into
more abstract forms.

One example of the shape conversion is the replacement of the religious halo and the sacred
human heads in the outer circle with abstract shapes representing two cerebral hemispheres
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Figure 3.58: ZScore JavaScript audio libraries

Figure 3.59: Union Rose, stylised SVG rose for the audience view

(Figure 3.60).
Concentric circles cutting through the rose shapes were emphasised to underline the ideas

behind the score, as explained below. Prompted by the obvious geometrical structure, the SVG
rose was split into three main groups: “centreShape”, “innerCircle”, and “outerCircle”, each
consisting of a number of SVG paths (Figure 3.61).

The entire SVG rose was then covered with a concentric circle grid structure of SVG paths
resembling a vitrage of tiles that also acts as a window, gradually revealing the rose (Figure 3.62).
The reference to a tiled window also reflects the original function of the Union Chapel rose.
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Figure 3.60: Union Rose, one of the stylised SVG shapes

Figure 3.61: Union Rose, shape groups

As each concentric circle of the rose contains eight shapes, a decision was made to create
an 8 x 8 grid consisting of 64 tiles. The idea from the start was to map tiles to score pages,
and therefore, a score containing 64 pages was created in Adobe Illustrator. “Tile” objects were
created both on the client and server-side, containing properties such as text value, click count,
page mapping, style, etc. A mechanism maintaining “Tile” state synchronisation between the
client and the server-side was implemented, enabling visualisation management directly from
the score.

In order to reduce the amount of information required to maintain the state of the visual-
isations in the score, a configuration file audienceScoreConfig.yml (written in YAML (2004)
format) was added to the build. The audience score configuration file contains a number of
presets that can be invoked from the score by using a preset id. Presets can contain configuration
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Figure 3.62: Union Rose, SVG rose cover grid consisting of 64 tiles

values or scripts as illustrated below:

presets:

- id: 2

config:

- granulator: {

masterGainVal: 0.1,

maxGrains: 16

}

- id: 3

scripts: [

"webScore.setZoomLevel(‘outerCircle’);",

"webScore.setVisible([‘centreShape’], true);",

"webScore.setVisibleRows([1, 2, 3]);",

"webScore.setActiveRows([1]);",

]

Additionally, the audience score configuration contains the “Tile” to score Page mapping as
follows:

pageRangeMapping:

- tileRow: 1

tileCols: { start: 1, end: 8 }

pageRanges: [ { start: 1, end: 8 } ]

assignmentType: SEQ

Tiles are identified by their position in the grid, referenced by their row and column indexes.
In the example above, eight tiles in the first row are mapped sequentially to the first eight pages of
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music. The assignmentType can be SEQ (sequential) or RND (random). When SEQ assignment
is used, the tiles are mapped in ascending order (column 1� page 1, column 2� page 2, etc.),
whilst with RND assignment, the tiles are mapped randomly within the range (e.g. column 1�
page 4, column 2� page 1, etc.).

The configuration file is loaded on the server-side. When the score invokes a configuration
preset id, the content of the preset is processed and sent to clients. The ZScore Java server uses
the Nashorn engine (2012) to interpret JavaScript commands and execute appropriate methods.

3.5.1.3 Digital Audio

ZScore can communicate with any digital device supporting the OSC protocol over a local
network. For digital audio tasks, the powerful Max (1990) programming environment by
Cycling ‘74 was initially selected, primarily because of its support for networking and various
modes of programming. To establish communication between Max and ZScore, a mxj (Max
Java) object named “zscore” was created to act as a client to the ZScore server. Furthermore,
a Max jsui (JavaScript User Interface) object containing zsui.js was developed to display score
information in the Max graphical user interface (Figure 3.63).

Figure 3.63: ZScore Max mxj and jsui objects

The mxj “zscore” object uses a proprietary network communication layer, utilising solutions
similar to those applied on the server-side. It receives and sends UDP messages that are passed
to internal Max objects via input and output Disruptors (2011). For client compatibility, it also
implements a connection handshake method similar to INScore.

The “zscore” mxj object has three outlets. The first outlet sends messages to the jsui object,
containing score information and low-priority commands. The second outlet sends high-priority
commands directly to other components. Currently, only the “play” and “stop” commands are
defined as high-priority for more accurate synchronisation with acoustic instruments. The third
outlet sends a bang signal on each beat to the Max “Click” bpatcher, which produces an audio
beep used for tempo synchronisation with the musicians’ front ends.

A set of objects implemented as bpatchers were then added to the main Max patch, providing
digital audio playback and processing. These include a multichannel groove processor (ZS MC
Groove) built around the native mc.groove∼ object, custom-made granular synthesis (ZS Gran-
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Figure 3.64: ZScore Max patch

ulator), and several buffer payback objects (BufGroove 1-4). All audio objects can send signals
to several effects, including a tapin∼/tapout∼ delay, a reverb based on the gen∼ implementation
of Gigaverb by Olaf Mathes, and a simple biquad∼ filter. Most of the object parameters can be
controlled directly from the score via a network.

For convenience, a set of Max presets governing the patch state was defined for each
composition. These presets can be recalled remotely by the server-side scripts or from the score.
A screenshot of the main ZScore Max patch is displayed in Figure 3.64.

3.5.1.4 Score Scripting Extensions

As a means of providing automation for audience visualisation and digital audio processing,
several new resource types were added to the embedded score scripting: “web” for audience
visualisation scripts, “max” for digital audio scripts, and “sce” for the server scripting engine
scripts. Figure 3.65, taken from the Union Rose score AV part, bar 25, illustrates the utilisation
of the new scripting resource types.

The first line in the top left corner contains:

web:beat=-1:reset=only:webScore.reset(5);

The colon (:) is used as a delimiter separating different sections of the script. The identifier
“web” indicates that this script is related to the audience score representation. The name-value
pair “beat = -1” means that the script should be executed on the upbeat leading to bar 25. In
embedded scripts, beat numbering refers to the beat count within the bar, whilst the minimum
resolution for embedded script scheduling in Union Rose is one beat.
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Figure 3.65: Union Rose, new scripting resource types

The next name-value pair “reset=only” indicates that this script should be executed only if
the score play start is set to bar 25 from the performance Control GUI. A random position start
requires the score state reset on both the client and server so that the play can continue with
the relevant content. On the other hand, the value “reset=both” means that the script should
be executed both on the score state reset and when the regular continuous play reaches the
specified beat. The last part of the script “webScore.reset(5)” is a string literal evaluated by the
scripting engine. In this case, the server executes the content of preset 5, which is defined in
audienceScoreConfig.yml as:

- id: 5

scripts: [

"webScore.reset(1);",

"webScore.setZoomLevel(‘innerCircle’);",

"webScore.setVisible([‘centreShape’], true);",

"webScore.setVisible([‘innerCircle’], true);",

"webScore.setVisible([‘outerCircle’], false);",

"webScore.deactivateRows([1,2,3,4]);",

"webScore.setVisibleRows([5, 6, 7, 8]);",

"webScore.setActiveRows([5]);",

"webScore.setStageAlpha(0.0, 0.5);",

]

Preset scripts can execute other presets (e.g. the line “webScore.reset(1);” executes preset
1), thereby forming chained preset execution. This technique significantly reduces the amount
of scripting in the score and improves script reusability, especially when certain actions are
frequently required. The reference “webScore”, in this case, refers to the current audience score
instance.

The script below can be found in the top right corner of the AV part, bar 25 (Figure 3.65):

max:beat=-1:reset=only:setFile,b1,UnionRose_b17.wav

Here, the “max” prefix indicates that the script is related to the Max digital audio client.
Union Rose scripting supports only a single Max client, however, this could be expanded by
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assigning different ids to each client. The Max script content is comma delimited. The first
string (e.g. “setFile”) is the command name sent as an argument in the OSC message. The
second string (“b1”) is the target identifier (BufGroove player 1). The target string is also used
to construct OSC addresses. In this case, the OSC address is “/zs/b1” where “/zs” is the root of
the ZScore patch OSC address space. The last string (“UnionRose_b17.wav”) is the name of
the file to be loaded into the buffer. It is sent as an OSC message argument. When the OSC
message is received in the Max patch, the setFile command is sent to the jsui object as it is not
a high priority command. The logic implemented in zsui.js looks up a Max object named “b1”
and sets the file name value from the OSC message arguments. For this command to work, the
file (e.g. “UnionRose_b17.wav”) must be present on the machine running the Max patch.

The score script can call Max presets using a similar mechanism. The script in the bottom
right corner of the AV part, bar 25, is as follows (Figure 3.65):

max:beat=10:preset,8

This embedded script sets preset 8 defined in the Max patch on beat 10 of bar 25.
After working on the Union Rose score for a while, it became apparent that there was a need

for a general scripting engine capable of managing server-side behaviour directly from the score.
Therefore, a dedicated score scripting engine was created to accept and process any score script
of the “sce” resource type. An example in Figure 3.65 contains one of these scripts:

sce:beat=12:sce.setRndStrategy([1])

This script manages Randomisation strategy settings as shown in Figure 3.54. Instead of
using the Control GUI value, the Randomisation strategy is set directly from the score to “1”,
meaning that the next page will be randomly selected and played by one instrument only. The
instrument is ultimately selected by the musicians, as shown in Figure 3.57.

3.5.1.5 Score State Management

As the work on audience visualisation and digital audio processing progressed it became obvious
that there was a need for a score state reset mechanism whenever the score play was stopped
and restarted at an arbitrary position. Scripting and interactive features introduced continuous
changes on both server and client-side during the score play, making it impossible to determine
the exact state of all nodes at any particular point in time. To address this issue, a concept of the
“score reset point” was invented to satisfy the ZScore requirement of enabling stop and start at
an arbitrary position. The intention behind a reset point is to set the server and all connected
clients to an appropriate state relevant to the time of the reset point execution.

The timing of the reset points is associated with a beat onset, similar to embedded scripting.
Reset points are required for any beat where there is a material change in audio-visual state,
such as the beginning of a new section. If the play start beat does not contain any reset points,
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then the nearest reset point going back in time will be loaded and executed when the new start
position is set. It is important to note that reset points are specific to the scripting resource type
(e.g. “web”, “max”, “sce”, etc.). For example, if a starting beat contains a “web” reset but not a
“max” one, then the beat’s “web” reset and the nearest previous “max” reset will be loaded and
executed to ensure that both scripting type states are appropriately set.

All embedded scripts and configuration files containing name-value pairs “reset=only” or
“reset=both” are treated as reset points. When the reset value is “only”, the corresponding
scripts are executed only when the manual score start is set to the reset point beat. If the reset
value is “both”, then the corresponding scripts are executed both when the score is restarted
manually and when the regular continuous score play reaches the reset point beat.

3.5.2 Score Commentary

Union Rose was inspired by the large rose in the Union Chapel in London (Figure 3.55). Whilst
the Union Chapel is widely recognized as a music venue, it still retains its original purpose
as a church on certain days, guided by the founding principle of “Friend for All”. The rose
window was initially designed with a religious context in mind, intending to showcase its features
highlighted by the natural light coming from outside. During music events hosted at the venue,
the rose window transforms into a magnificent stage backdrop, often illuminated by stage lighting
from within the hall. The dual context of lighting, both natural and artificial, along with the
rose’s symmetrical structure, became the foundation for further compositional development.

In the centre of the rose (Figure 3.55) lies a heart-shaped emblem, surrounded by three
concentric circles. Each circle contains eight shapes symmetrically positioned along its circum-
ference. These shapes gradually increase in size going outwards from the centre of the circles,
forming an onion-like layered structure. This design triggered an enquiry into the relationship
between my personal perception of the rose and the context it is meant to represent. Having set
aside purely religious connotations, I delved deeper into research on the layers of core human
beliefs and the formation of a subconscious identity.

Figure 3.66: Union Rose, high level structure

Based on the SVG rose’s division into three sections, as shown in Figure 3.61, a compound
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trio composition form was defined as presented in Figure 3.66. The three primary sections were
given the names: I. AM., I Believe, and I Want, symbolising layers of human identity expanding
from the innermost to the outermost, akin to the rose’s concentric circles. Additionally, Coda
was incorporated as a recapitulation device, allowing for the repetition of the initial material in
a modified form. All of the main sections follow a binary form, where the musical material is
first played as written (e.g. A) and then repeated in a transformed shape (e.g. A’). The “Type”
column in Figure 3.66 indicates the nature of the transformation, which will be further discussed
in the following text.

The Union Rose tempo curve (Figure 3.67) reflects the circular nature of the rose by ending
on the same tempo (80 bpm) as the first section. The “Comment” column (Figure 3.66) provides
additional information about the inspiration behind each section’s musical material and the
intentions for the repeated sections. The audience score view contains eight concentric rings
of tiles numbered from 1 to 8, with 1 being the closest ring around the centre and 8 being the
furthest (Figure 3.62). The “Rings” column (Figure 3.66) indicates which rings of tiles are
active in a particular section. As there are eight shapes in the rose’s concentric circles, each
section comprises eight pages of musical material. The “Content range” column (Figure 3.66)
indicates the source material page numbers, whilst the “Start Page” and “End Page” columns
show the elapsed page numbers for each section.

Figure 3.67: Union Rose, tempo curve

3.5.2.1 I. AM.

The section representing the innermost circle of the rose is titled I. AM., as an homage to James
Joyce’s Ulysses. In the episode titled “Nausicaa”, Bloom, one of the main protagonists, begins
to write a message in the sand: “I. AM. A.”. But he runs out of space, leaving the sentence
completion open to interpretation. Likewise, in Union Rose, an audience can complete the
composition by selecting a word of their own choosing on their mobile devices.
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The initial idea behind Union Rose was to write a piece for the Ligeti Quartet, drawing
inspiration from the architectural features of the Union Chapel. However, I took it a step further
by using the quartet’s name as inspiration for the musical material. The pre-composition process
included an analysis of György Ligeti’s String Quartet No. 2., specifically bars 19-22 of the first
movement Allegro nervoso, which feature Ligeti’s characteristic harmonic clusters that evoke
a certain primordial quality. Figure 3.68 illustrates these harmonic structures with simplified
rhythmical placements.
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Figure 3.68: Ligeti, 2nd String Quartet, bars 19-22 harmonic structure

In the next step, pitch sets for each section of Union Rose were defined from the harmonic
structures in Figure 3.68. Initially, two clusters, one closed and one more open, were extracted
directly from the material in Figure 3.68. Subsequently, a third cluster was created by merging
features of the first two clusters, as illustrated in Figure 3.69.
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Figure 3.69: Harmonic structures extracted from Ligeti’s 2nd String Quartet

Each vertical harmony from Figure 3.69 can be represented as a scale consisting of two
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tetrachords, as shown in Figure 3.70. Tetrachords marked TC2, TC2, and TC3 are shared
between the scales in different combinations. The areas marked S1, S2, and S3 correspond to
the main three sections of Union Rose.
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Figure 3.70: Union Rose, section tetrachords

Following the scale definitions, the pitch content for the first eight bars was defined, as shown
in Figures 3.71 and 3.72, by utilising tetrachords TC1 and TC2. The pitch centre gravitates
towards the open string G and related harmonics played in bar 8. The intention was to construct
a score that allows for the performance of any bar combinations between different parts. For
example, the first violin and cello part in bar 2 should be “playable” with the second violin
and viola part in bar 7, with regards to the harmonic texture, rhythm, and pitch. The intention
behind this approach was to facilitate the implementation of the dynamic material assignment
described above (Figure 1.26), giving both the audience and players the agency to select the
instrumentation and music material during the section repeat.
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Figure 3.71: Union Rose, pitch material, first four bars

Figure 3.73 illustrates an example of how the pitch material from bar 2 for the second violin
and viola, shown in Figure 3.71, was implemented in the score. In Union Rose, a bar is analogous
to a page (i.e. there is one bar per page). Each page consists of 16 beats of proportional notation.
The stave layout is consistent for all instruments as defined in Comprov (Figure 3.49). The I.
AM. score (sections A and A’) is characterised by the extensive use of bow speed, pressure, and
position notation in order to achieve unconventional and unstable sound textures.

The digital audio rendered by MAX patch was first constructed using Logic Pro (1993)
software and then mixed in Pro Tools (1989). For the I. AM. sections, the audio recording
from the Comprov session served as a guide track. In the first section, the digital audio mainly
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Figure 3.72: Union Rose, pitch material, bars 5 - 8

Figure 3.73: Union Rose, Page 2 score excerpt

comprises percussive sounds and frequencies supporting acoustic instruments, emphasised either
below 100 Hz or above 3000 Hz to compliment the string quartet. One of the technical goals
of the project was to achieve precise timing between acoustic and digital sounds. To test
this feature, several accented double stops were underlined with percussive digital sounds.
The digital audio was cut into WAV files for each bar and assigned appropriate names, such
as “UnionRose_b2.wav” for bar 2. This naming convention facilitated easier scripting and
scheduling of the digital audio timing.

The first thing the audience sees on their mobile devices after they log in and before the
performance starts is the welcome screen (Figure 3.74), showing a black circle stage covering
the entire tile grid (Figure 3.62).

Figure 3.74 also illustrates the audience instruction area at the top of the mobile device
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Figure 3.74: Union Rose, audience “welcome” screen

screen. This area is frequently utilised in the score to provide information about the piece or
issue instructions to the audience regarding any actions that need to be taken. The text can be
set directly from the ZScore Control GUI or be populated from a script in the AV part using the
following format:

web:beat=1:webScore.setInstructions(‘<line 1>’,‘<line 2>’,‘<line 3>’);

It is possible to provide up to three lines of text for the instruction area. The font size of the
instruction line is automatically adjusted depending on the text length, however, it is advisable
to use shorter texts for better readability.

At the start of the performance, the audience view is zoomed in to the innermost tile circle
containing words defined in the embedded script for the AV part, bar 1:

web:beat=1:webScore.setTileTexts(

[‘t1-1’,‘t1-2’,‘t1-3’,‘t1-4’,‘t1-5’,‘t1-6’,‘t1-7’,‘t1-8’],

[‘defective’,‘entitled’,‘helpless’,‘competent’,‘perfect’,

‘failure’,‘confident’,‘worthless’]

)

The method setTileTexts above maps tiles (e.g. ‘t1-2’) to text (e.g. ‘entitled’). The tile
identifier (e.g. ‘t1-2’) follows the format t<row>-<column>, where <row> represents the tile
row index and <column> represents the tile column index in the two-dimensional tile grid.
Figure 3.75 illustrates the audience score representation for section A, bar 1. The green line in
Figure 3.75 is the position cursor, which is equivalent to the Web ZScore position tracker. It
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indicates the current position within the score and links audience view tiles to music material
(i.e. score pages). The colour of the tile frame indicates the composition flow. The currently
played tile has a green-coloured frame, whilst the tile to be played next has an orange frame. As
the tile is played, it gradually becomes transparent, revealing the shapes behind it.

Figure 3.75: Union Rose, audience view, innermost tile circle

Behind the tile frame, only the innermost “centreShape” of the SVG rose defined in Fig-
ure 3.61 is visible in the I. AM. section. At the beginning of the section play, all constituent SVG
paths of the “centreShape” are moved to a random position within the inner circle. A GSAP
tween, lasting the full section duration, governs animated movements of all constituent SVG
paths back to their original positions, gradually revealing the final look of the “centreShape” at
the end of the section.

Figure 3.76: Union Rose, audience view, “centreShape” assembly

Figure 3.76 illustrates the assembly of the “centreShape” behind the tile grid during the first
part (A) play of the I. AM. section. The audience has the ability to click on any part of the tile
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grid at any time. The tile selected by the user has a red frame. If the clicked tile row is not
currently active, the click will simply rotate the entire row of tiles. However, if the tile is active
(is in the currently played row), the audience click count is collected and processed. A click
count impacts the background colour of active tiles. The higher the aggregate click count, the
darker the tile’s background colour becomes. For example, in Figure 3.76, the tile containing
the word “perfect” has the highest click count, whilst the tile with the word “worthless” has the
lowest click count. The first part (A) of the I. AM. section is played sequentially as written in
the score.

When the first part (A) of the I. AM. section is completed, the audience view zooms out
to reveal the next tile circle (row 2) associated with the section part A’. In the I. AM. A’
section, the audience vote decides the order of play, whilst the musicians ultimately decide
the instrumentation. In Figure 3.77, the currently played tile has row position 5 and is played
immediately after the tile in row position 1. The tile in row 5, containing the word “strong”, is
played because it has the highest click count amongst all the tiles in the active row.

Figure 3.77: Union Rose, section I. AM. A’ audience view

As mandated by the action model illustrated in Figure 1.30, the context of delayed actions
and their corresponding outcomes is outlined through textual instructions and graphical repre-
sentations of tile sequences over time. The expected timing of action outcomes can be inferred
from the green line cursor, which indicates the current position in time.

The page range mapping in the audienceScoreConfig.yml file indicates that for tile row 2,
pages are assigned sequentially from page number 1 to 8:

pageRangeMapping:

...

- tileRow: 2

tileCols: { start: 1, end: 8 }

pageRanges: [ { start: 1, end: 8 } ]

assignmentType: SEQ
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This means that, in the example shown in Figure 3.77, musicians currently see page 5,
although the actual sequential page number is 10 (the first page in the I. AM. A’ section is 9).
In simple terms, for the selected instruments, the content of the page reached by the sequential
play is replaced by the content of the page voted by the audience.

The number of instruments participating in I. AM. A’ section at any point in time is determined
by the Randomisation strategy. In bar 7, the AV part contains the following embedded script:

sce:beat=12:sce.setRndStrategy([1])

This script sets Randomisation strategy to “1”, meaning that only one instrument will
participate in the interpretation of the sequential page 9. The Randomisation strategy needs to
be set two pages before it takes effect, as the preparatory page in the alternating page layout
(Figure 3.10) is displayed one page ahead of the time. The Randomisation strategy initially
selects a random instrument from the available pool. This selection is displayed to musicians,
as illustrated in Figure 3.57. Musicians can then choose to opt-in or out from playing the next
page by clicking the button displaying their part name. The last musician to opt-in before the
time window closes wins and is shown the content of the next page selected by the audience. If
all musicians opt-out and choose not to participate, then the randomly selected instrument plays
the next page, as per the settings defined in the Randomisation strategy.

In bar 8, the AV part contains script:

sce:beat=12:sce.setRndStrategy([2])

This script sets the Randomisation strategy to “2”, meaning that two instruments will play
the sequential page 10. The page content is selected by the audience vote as described above.
A chart representing the number of instruments playing each page in the I. AM. A’ section is
displayed in Figure 3.78. The actual instrumentation is ultimately selected by the musicians
themselves, apart from page 16, which is played by the entire quartet.

Each page in the I. AM. section has a corresponding audio file played by the ZScore Max
patch. These audio files, stored on the computer running Max, are loaded into buffer players 1
and 2 and triggered from the score at the start of each page. During the performance, audio files
are loaded on the page preceding the play to ensure a smooth audio performance.

For example, the script below loads the file associated with page 3, “UnionRose_b3.wav”,
into buffer player 1:

max:beat=12:setFile,b1,UnionRose_b3.wav

The script is scheduled for execution on page 2, beat 12, to allow for the loading time and
ensure an uninterrupted performance. The content of buffer player 1 is then scheduled for play
on page 3, beat 1, with the following command:

max:beat=1:play,b1
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Figure 3.78: Union Rose, I. AM. A’ section instrumentation

The script above simply executes the “play” command for buffer 1. As “play” is a high
priority command in ZScore Max, it is sent directly to the buffer 1 object, bypassing the jsui
processing.

Similarly to the alternating pane notation strategy, audio buffers are alternated throughout
the play. At least two buffers are required to provide uninterrupted file loading and play in this
scenario. To avoid unwanted effects, a played file’s audio amplitude needs to reach zero before
the corresponding buffer is reused. Therefore, all audio files used in Union Rose have a duration
equivalent to the time it takes to play two bars. The audio content is placed only in the first half
of the file. The second half of the file can contain some audio aftereffects (e.g. reverb), however,
it is usually reduced to silence after several beats of the second bar to allow for buffer reloading
without interrupting the audio signal.

In section A’, the file played by the Max patch depends on the page selected by the audience.
The embedded script on page 9 of the AV part instructs ZScore to send the selected page to
BufGroove 2 with the following command:

sce:beat=13:sce.sendMaxMspRndPageUpdates(2) // 2 is the buffer index

In addition to BufGroove players, section A’ utilises the ZScore MC Groove Max component.
The content of the ZS MC Groove buffer is set in bar 8, just before the start of the A’ section, by
the following script:

max:beat=11:setFile,groove,UnionRose_b4.wav

The identifier “groove” in the script above refers to the ZS MC Groove component. The
loaded file “UnionRose_b4.wav” is the same file used in the BufGroove player for bar 4. The
usage pattern of ZS MC Groove increases in length gradually during the section, whilst its output
is modified in regular intervals by changing the harmonic series of produced audio using the
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“subharmonic” and “harmonic” commands. The available harmonic series presets in ZS MC
Groove control are as follows:

‘‘off’’,

"subharmonic 0.1 1", "subharmonic 0.5 1",

"subharmonic 1.1 1", "subharmonic 0.1 0.5",

"harmonic 0.1 1", "harmonic 0.5 1",

"harmonic 1.1 1", "harmonic 1. 2"

An example of the embedded script that modifies the ZS MS Groove harmonic series can be
found on page 10 of the AV part:

max:beat=7:send,mcGroove.mcgHarmonics,int,2

The script above is processed in jsui.js as it is not a high priority command. In this case, the
JavaScript function _send(args) is invoked, where “args” are: mcGroove.mcgHarmonics, int, 2.

The first argument – “mcGroove.mcgHarmonics” – is the identifier of the Max live.menu
object containing the harmonic series presets defined above. It is a compound identifier where
the first part (“mcGroove”) is the scripting name given to the ZS MC Groove component in Max,
and the second part – “mcgHarmonics” – is the scripting name of the Max live.menu placed
within the ZS MC Groove component, as shown in Figure 3.79. The second argument – “int” –
is a Max command setting the index of the selected preset and the third argument – “2” – is the
preset index to be set. In the preset list above, this index refers to the value “subharmonic 0.1
1”, which is sent to the mc.groove object.

Figure 3.79: Max MC Groove harmonic series preset menu
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3.5.2.2 I Believe

This section, representing the second layer of the rose, questions the construction mechanism
of human belief systems and explores the nature of human-machine relationships in the age of
artificial intelligence. The music material draws inspiration from the avant-garde jazz suite “A
Love Supreme” by John Coltrane (1964). In the suite’s first part, named “Acknowledgement”,
a four-note theme is repeated multiple times by different instruments and a voice. After many
repetitions in the same key, the four-note chant is transposed by a whole tone, as illustrated in
Figure 3.79. Coltrane’s handwritten notes on the original score (1964) indicate the religious
subtext of the piece, sketching out the form of part one as a musical prayer.
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Figure 3.80: Coltrane’s “A Love Supreme” four-note chant

In Union Rose, the four-note pattern of ascending minor third and perfect fourth intervals from
“A Love Supreme” is used to construct the pitch material of the I Believe section. Figure 3.81
outlines the pitches used in the first two bars of the section.
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Figure 3.81: Union Rose, I Believe section pitch material

In contrast to the textures used in the I. AM. section, I Believe is characterised by clearly
intonated sustained notes. The first two bars serve as a contrasting introduction to the section,
where the material in the first bar (Figure 3.82) is played as loudly as possible, whilst the second
bar requires a quiet flautando (Figure 3.83). Accents are provided by bow speed modifications,
similar to the techniques used in the I. AM. section, thus maintaining continuity in the produced
sound character.

Figure 3.82: Union Rose, Violin 2, section B first bar
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Figure 3.83: Union Rose, Violin 2, section B second bar

The rest of the B section notation is derived from a development of the initial four-note
pattern, with the music material’s density gradually increasing. This culminates with a quaver-
length theme that is shifted in time and pitch between different instruments on the last two pages
of the section.

In section B, the audience score representation is zoomed out to the next tile ring (row 4)
whilst the SVG rose “innerCircle” group is made visible in addition to the “centreShape” group.
Similarly to section A (I. AM.), all SVG parts belonging to the “innerCircle” group are initially
moved to random locations within the outer stage. The SVG paths are then gradually moved to
their original positions during the I Believe section play. The section B tiles and corresponding
pages are played in sequential order, as written [P17, P24].

In addition to the acoustic texture contrast, the digital audio in section B is produced in a very
different way compared to the previous section. Each bar starts with a drum kick reminiscent
of a digital heartbeat. The reminder of the digital audio texture is filled with synthetic voices
uttering the phrase “I believe in”, accompanied by a word assigned to the currently played page.
The page text mapping is set on page 17 of the AV part.

The synthetic voices used in section B were generated using copyright-free text-to-speech
websites such as text2speech.org (2018) and fromtexttospeech.com (2020). To create the syn-
thetic voices, a text file containing all the words associated with the active tiles and a mixture of
sentence structures starting with “I believe” were submitted to the text-to-speech engines. Dif-
ferent configurations of available voices and speech speeds were experimented with to achieve
the desired vocal effect for each word.

The resulting mp3 files containing synthesised speech were imported into Pro Tools and
processed to conform to the structure of section B. To emphasise the recent emergence of
artificial intelligence and to provoke questions about the process of belief system construction,
voices generated by older, robotic-sounding synthesis engines were preferred over those that
sound more natural. Furthermore, a combination of different accents and genders was used
in the voice synthesis to underscore the universal nature of the themes explored in the piece.
The voices were strategically positioned at varying depths and locations within the stereo field,
acting as an extension of the audience space boundaries.
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In section B’, the audience score representation is zoomed out to reveal the next ring of tiles
(row 5), shown in Figure 3.84. The tile text mapping for row 5 is set in the AV part, page 25, as
follows:

web:beat=1:webScore.setTileTexts(

[‘t5-1’,‘t5-2’,‘t5-3’,‘t5-4’,‘t5-5’,‘t5-6’,‘t5-7’,‘t5-8’],

[‘conspiracy’, ‘equality’, ‘monarchy’, ‘global warming’,

‘free market’, ‘sovereignty’, ‘europeanism’, ‘democracy’]);

Figure 3.84: Union Rose, I Believe, section B’ audience view

The intention is to modify available words based on current global trends at the time
of a performance. These words, like any other score script, can be edited in either the
Adobe Illustrator score or a dedicated BeatInfo csv file. For Union Rose, this file is named
Union_Rose_BeatInfo.csv and it resides within the score’s “rsrc” folder. Changes made in
Adobe Illustrator require exporting the score through the ZScore tools plugin before a perfor-
mance, whilst the BeatInfo file can be manually modified at any time up to the moment the score
is loaded into the ZScore system.

Similar to section A’, the order of play in section B’ is governed by the Randomisation
strategy as set in the strategyConfig.yml file for Union Rose:

- range: { start: 25, end: 32 }

isRndActive: true

selectionRange: [ { start: 17, end: 24 } ]

instruments: [ all ]
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The flag “isRndActive” indicates that the Randomisation strategy is active for the section B’
page range [25, 32]. The music material for section B’ comes from the section B page range
[17, 24]. By default, active tiles in the audience score representation are sorted by the number of
clicks. When the scheduling engine requests the next page to play, the web score engine returns
the page corresponding to the tile with the highest number of votes. However, this behaviour can
be overridden by setting the flag “isSortByClickCount” to false for active rows in the method:

setActiveRows(int[] rows, boolean isSortByClickCount){}

The embedded script on page 25 in the AV part sets this flag, forcing the row 5 tiles to play
in a sequential order:

web:beat=1:webScore.setActiveRows([5], false)

The instrumentation selection in section B’ follows the same process as explained above
for section A’. The number of instruments used per page follows the same curve as shown in
Figure 3.78. As in section A’, musicians have the final say in the instrumentation choice.

For the first time in the composition, in section B’, audience members can join the performers
by producing sounds either on their mobile devices or by saying words of their choice. Similar
to the sound textures created by the Max patch in section B, the audience can generate speech
patterns by clicking on active tiles in the audience score visualisation. When a click event
occurs on any active tile in section B’, it produces a speech utterance consisting of a sentence
starting with “I believe in” followed by the word associated with the selected tile. The mobile
device speech is rendered through the Web Speech API, which is available in almost all modern
browsers installed on mobile devices. The choice of available voices depends on the device’s
operating system and, in some cases, the manufacturer. The audience score implementation
selects a random voice from the list of available voices every time a tile is clicked, thereby
avoiding any bias.

From bar 28 onwards, in addition to the speech produced by the mobile devices, audiences
are encouraged to say words mirroring their tile choice. Initially, they are instructed to say the
words quietly, and as the section progresses, they are encouraged to gradually increase their
volume towards the end of the section. Clear instructions regarding the actions and timings are
displayed on the top of the mobile device screen to guide the audience on when and how to
participate.

The merging of mobile device utterances and natural speech was intended to create an
electro-acoustic choir, where individual voices blend together into the overall speech texture,
combined with the amplified digital audio. This effect is reminiscent of a heterogeneous group
prayer, where diverse voices come together in a unified expression.

The introduction of granulators in section B’ further enriches the sound texture, both on
mobile devices and in the Max audio output. The file “UnionRose_m1”, was specifically
produced for the granulator textures in this section and contains generic utterances rendered by
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the same synthetic voices used in section B. To ensure optimal performance and faster downloads
on mobile devices, the granulators use smaller mp3 versions of the same file, whilst the Max
patch utilises the high-quality WAV file format for more precise control and sound manipulation.
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Figure 3.85: Union Rose, I Believe, section B’ speech texture components

Figure 3.85 displays a table illustrating the speech texture components in section B’. The
texture is formed by four main components: the Max Granulator played through a PA system,
the Audience Granulator and Web Speech running on the audience’s mobile devices, and finally,
the Audience Speech spoken by members of the audience. The rows in the table represent
section B’ bars, whilst the columns represent beats within each bar. To understand the texture’s
development over time, the table should be read from left-to-right and top-to-bottom. The
thickness of the line in each cell represents the relative volume of the corresponding audio
component. In a live performance, the ratio of volume levels for each component depends on
the size of the audience and their level of participation in the speech texture.

Web ZScore offers a variety of utility objects that enable the gradual modification of
any JavaScript object parameter over time. These utility objects include RampLinear and
RampSin, which provide linear and sinusoidal parameter interpolation, respectively. Addi-
tionally, GsapRampLinear utilises GSAP tween and function callbacks for parameter value
calculation. ParameterOscillator is another useful utility that can internally deploy different
Oscillator types to perform parameter evaluation on demand. The available Oscillators include:

‘SAWTOOTH’, ‘SINE’,‘SQUARE’,‘TRIANGLE’, ‘UP’, ‘DOWN’, ‘RANDOM’

For example, the Audience Granulator volume changes in Figure 3.85 are executed from the
embedded script in bar 30 (section B’ page 6):

web:beat=1:webScore.granulatorRampLinear(‘masterGainVal’, 0.5, 8000);
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The script above deploys the RampLinear JavaScript object in audience web clients to
gradually change the granulator parameter “masterGainVal” from its current value to “0.5” over
a duration of 8 seconds (8000 milliseconds) using linear interpolation.

3.5.2.3 I Want

The I Want section, representing the outer circle of the rose (Figure 3.61), examines the rela-
tionship between an individual and the relentless consumerism prevalent in the late 20th and
early 21st century. The music material seed comes from the popular song “Money, Money,
Money” by the Swedish group ABBA (written by Benny Andersson and Björn Ulvaeus), which
was released on 1 November 1976. The song explores a state of mind engrossed in self-pity,
professing that even “a little money” would make a difference in an unjust world, eventually
reaffirming the belief that money is the key to perpetual happiness (“Always sunny in the rich
man’s world”). The “Money, Money, Money” chorus melody is shown in Figure 3.86.
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˙b Ȯ ∑

œ Oœ

˙

œ œ œ œ ˙
˙

œ œ œ œ œ œ œ Œ œ œ œ œ œ Œ œ œ œ
J
œ œ

j
œ Œ Ó

18

Figure 3.86: “Money, Money, Money” chorus melody

The three-note ascending pattern from the first bar of the “Money, Money, Money” chorus
has been extensively utilised in section C, albeit by transforming both time and pitch intervals. In
contrast to the long sustained pitches in section B, the entire C section consists of short percussive
or plucked pizzicato notes. An example of the section C notation is shown in Figure 3.87.

Figure 3.87: Union Rose, Viola part, section C notation

A notation separation allowed for different timings of the left and right hand actions, resulting
in unstable pitch movements. The instability of the pitch was underlined by the frequent repetition
of the repeated F\ glissandi “soundbite” shown in bar 38, beat 1 (Figure 3.87). The rhythmical
pattern timings and pitch movements gradually converge to play the melody in unison on the
last page of the section C, bar 40, beat 4 shown in Figure 3.88.

In the I Want (C) section, the rose’s “outerCircle” group (Figure 3.61) is finally activated,
making all rose shapes visible behind the cover tiles. The behaviour of SVG elements and the
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Figure 3.88: Union Rose, Cello part, section C, last page

order of play is consistent with the rules established in sections A and B. However, Section
C’ of I Want differs in several ways from previous sections. The rate of activity, both visual
and audible, reaches its peak. The audience score representation is zoomed out to reveal the
remaining two active rows of tiles (7 and 8), as shown in Figure 3.89.

Figure 3.89: Union Rose, I Want, section C’, audience view

The page range used in the section C’ Randomisation strategy is expanded to include all
unique score pages in the score from sections A, B, and C. The file audienceScoreConfig.yml
contains the same page range configuration for tile rows 7 and 8 as follows:

- tileRow: 7

tileCols: { start: 1, end: 8 }
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pageRanges: [

{ start: 1, end: 8 }, { start: 17, end: 24 }, { start: 33, end: 40 }]

assignmentType: RND

The Randomisation strategy configuration for the page and instrumentation selection is
configured to utilise multiple unique pages played by one or more instruments. Figure 3.90
illustrates instrument and page Randomisation strategy selection for each bar of section C’. The
audience score representation reflects multiple page play by activating green play cursors on all
tiles associated with the currently played pages. Similarly to single tile play, all currently played
tiles dissolve gradually during the page play.

Figure 3.90: Union Rose, I Want, section C’ instrument-page randomisation table

The coloured squares in Figure 3.90 represent the number of instruments that play a particular
page. For example, the table row for section bar 6 (equivalent to the elapsed bar 46) contains
two green and one orange square. This indicates that two instruments (green squares) play the
same random page (1) and one instrument (orange square) plays a different random page (2).
This configuration is set by the embedded script on page 44:

sce.setRndStrategy([2,1])

The randomised selection follows the same logic as shown in Figure 3.54. Musicians
ultimately decide who plays each bar by utilising the selection features depicted in Figure 3.57.
In the last bar of section C’ (section bar 8), all four members of the quartet play different random
pages selected from all available Union Rose sections.

The ZScore Max BufGroove components are configured to play audio files associated with
the first randomly selected page. The page-file selection is communicated to Max by the
embedded script:

sce.sendMaxMspRndPageUpdates(<buffer no>)

In addition to BufGroove audio, the ZScore Max components ZS MC Groove and Granulator
are also active in section C’. The audio file associated with the very beginning of Union
Rose (“UnionRose_b1.wav”) is loaded into ZS MC Groove, whilst the Granulator plays the
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same file associated with section B’ (“UnionRose_m1.wav”), hinting at the upcoming material
recapitulation.

The audience score representation produces speech patterns on any active tile click, similarly
to the behaviour in section B’. However, this time the speech utterance starts with the words “I
want”. The tile speech is set on page 41 of the AV part with the embedded script:

web:beat=1:webScore.setSpeechText(‘I want @TILE_TEXT@.’)

The token “@TILE_TEXT@” in the command above is replaced with the content of the tile
text.

1 2 3 4 5 6 7 8

1
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6

7

8

9 10 11 12 13 14 15 16bar

beat

Max Granulator
Max MC Groove

Web Speech API

Figure 3.91: Union Rose, I Want, section C’ digital audio texture

The overall digital sound texture in section C’ is illustrated in Figure 3.91. It should be
read in the same way as the table presented in Figure 3.85. The relative thickness of the line
represents the individual component volume. The overall sound texture depends on the number
of audience members and their actions during the section play.

3.5.2.4 Coda

Coda starts with the recapitulation of the last four pages [P4, P8] of section A. After the
initial literal recapitulation, the second half of the Coda [P53, P56] incorporates a randomised
recapitulation, where the material is randomly selected from the entirety of section A. The
recapitulation Randomisation strategy is configured in strategyConfig.yml as follows:

- range: { start: 53, end: 56 }

isRndActive: true
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selectionRange: [ { start: 1, end: 8 } ]

instruments: [ all ]

The instrumentation for the last four pages is also determined by the randomisation algorithm,
with the specified number of instruments per page as follows:

[Page Number - Number of Instruments]: [53 - 2, 54 - 1, 55 - 2, 56 - 1]

Therefore, the piece always concludes with a single randomly selected instrument playing a
randomly selected page from section A.

Te
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40
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70
80
90

53 54 55 56

Figure 3.92: Union Rose, Coda tempo curve

The last four pages of the Coda bring the performance to a close by gradually diminishing
the density and tempo of the piece. The tempo curve applied in the last four bars of the Coda is
displayed in Figure 3.92. The gradual ritardando is initiated by the scripts in the AV part. For
example, on page 54, the Scripting Engine script executes a timed action on the server:

sce:beat=1:sce.timedAction(‘tempo’, 60, 12);

The “timedAction” function takes three arguments: the parameter name (‘tempo’), the
end value (60 bpm), and the duration expressed in a number of beats (12). When the script
is executed, the server-side Scripting Engine sends the tempo change event on every beat,
adjusting the current tempo by the appropriate value determined through linear interpolation.
As visualised in Figure 3.92, the tempo in bar 54 changes from 80 bpm to 60 bpm in 12 beats,
taking ¾ of the bar duration.

The ZScore MAX Granulator, loaded with the Coda specific audio file ( UnionRose_c3gr.wav
), is triggered to play on the first beat of the last four bars. This audio file contains the same
synthetic voices used in the section I Believe; however, this time, the voices only repeat the
phrase “I am a”. The Granulator controls are set for a gradually slower sweep, resulting in the
occasional comprehensible rendering of the words. Unlike previous Granulator participations
that use continuous play, the Coda scripts use one-off Granulator triggers with the help of the
Max line∼ object and the gain envelope defined in the trigger scripts. For example, the last
Granulator trigger is called in bar 55 of the AV part:
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max:beat=13:setLine,granulator,0.@C@ 1. 1000 1. 15000 0. 16300

The token @C@ is replaced by a comma on the server before being sent to Max. A comma
cannot be used in the score directly as the score file uses a comma delimited format. The
command above plays the Granulator with the gain envelope: 0 to 1 in 1 second (1000ms),
sustains at gain 1 for 15 seconds (15000ms), and gradually reduces gain to 0 in 16300ms to
coincide with the end of the piece.

Figure 3.93: Union Rose, Coda audience view, selected tiles animation

The audience score representation in Coda serves as a visual recapitulation of the user’s
behaviour during the piece. To start with, audience members finally see the entire rose on their
mobile devices. The recapitulation starts with an animation bringing back all tile shapes that
were previously selected by the user in each section, as illustrated in Figure 3.93. The last
selected tile shapes, coloured in red, gradually move back into their original positions from
beyond the visible boundaries. This visual recapitulation aligns with the musical content and
allows the audience to reflect on their interactions with the piece.

In bar 53, all rose shapes: “outerCircle”, “innerCircle”, and “centreShape” “explode” one
by one into their constituent SVG paths. Only “centreShape” fragments, corresponding to the I.
AM. section, end up randomly scattered across the stage visible on the mobile device.

The circular stage, which has been transparent since the beginning of the piece, is gradually
returning back to black, resembling the starting point illustrated in Figure 3.74. However,
this time the stage has the tile selections unique to each audience member layered on top,
representing their journey through the piece (Figure 3.94). All choices are interlinked with thin
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red lines, creating a visual representation of the individual paths taken by each audience member
throughout the performance.

Figure 3.94: Union Rose, Coda, audience view end screen

In the penultimate bar 55, the following question is displayed on the audience’s mobile
devices:

‘‘The choices you’ve made?’’

The question raises doubts about the sources of human agency and encourages contemplation
about free will, as well as the potential impact that social interactions and technology may have
on its formation.
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3.6 Socket Dialogues

For:
Multiple Instruments
Max
and Audience

Duration: 10 - 30 minutes

Links: Full Score
ZScore Package
Workshop 1 video recording
Workshop 2 video recording

This composition explores the democratisation of music-making roles through the use of net-
work technology (3.6.2). The piece consists of a number of musical dialogues where musicians,
audience members, and the conductor can choose to perform different roles. Each dialogue role
is associated with specific music material. Musicians select their dialogues and the order of play
at the beginning of a performance (Figures 3.98 and 3.99), whilst they can change the role they
wish to perform during each dialogue (Figure 3.101).

The score is written for any number of musicians and any instrumentation. To enable this
notational flexibility, a new type of dynamic generic notation was developed (3.6.2.2). Audience
members can provide instant visual and auditory feedback to all other participants throughout
the dialogues via their mobile devices (Figure 3.109), leading to continual adjustments to the
performance output (3.6.2.5). Beyond shaping the performance, the audience can also take
on the role of a performer by playing audio through their mobile device instrument (3.6.2.6)
in designated audience-led dialogues (Interlude, 3.6.3.6). The composer/conductor can also
become a performer during Interludes by engaging with ZScore Max patches (Figure 3.64).
Whilst the Max patches developed for Union Rose were reused, the audio file content was
created specifically for each dialogue. All these features combine to create an environment for
meaningful performative involvement by all participants.

3.6.1 Socratic Dialogues

Socket Dialogues’ name is a pun on Plato’s Socratic Dialogues (Plato, Jowett edition 1892),
a collection of around 35 preserved literary works written in the 4th century BCE that utilise
the Socratic method to uncover and scrutinise underlying beliefs and assumptions about various
philosophical subjects. The word Socket refers to an endpoint in a communication between
computer programs over a network (Winett 1971).

The Socratic method involves a series of questions and answers designed to stimulate critical
thinking and draw out ideas about the discussion topics. Plato’s dialogues start with the assertion
of a thesis by an interlocutor – a person arguing the point on a given subject. Socrates, always
the main protagonist of Plato’s dialogues, then examines the thesis, questioning its validity
and challenging the interlocutor’s beliefs. This initiates an argument between the dialogue
participants. After an extensive discussion, the dialogue outcomes provide new insights into
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the debated subject, the validation or falsification of the thesis, or end up in aporia, a state of
puzzlement and confusion.

Figure 3.95: Plato’s dialogues scale

Kennedy (2010) argues that the number twelve “has some architectural importance” in Plato’s
dialogues, based on the analysis of speech lengths, position of speeches within dialogues, the
location of significant turns and absolute lengths of the dialogues. He concludes that Plato
uses this discovered twelve-part stichometric structure as a form of a musical scale. The scale
described in terms of integer ratios consists of intervals where “the third (1:4), fourth (1:3), sixth
(1:2), eighth (2:3), and ninth (3:4) notes on the twelve-note scale will best harmonise with the
twelfth” (Kennedy 2010, p. 17). It can be deduced that the other notes from the twelve note scale
are dissonant or “disharmonious” when played together with the twelfth note. This principle of
the scale stability can be visualised as shown in Figure 3.95.

In Socket Dialogues, the method and twelve-part structure of Plato’s works serves as the
seed concept for the further compositional development. The starting point was the definition
of twelve elements of music that first came to mind (Figure 3.96). These elements were then
mapped to the circle of fifths counter-clockwise, thereby becoming the circle of fourths. The
circle of fifths is a way of organising the twelve chromatic pitches that also serves as the bedrock
of Western classical music functional harmony.

Figure 3.96: Aspects of music mapped to the circle of fourths

From this list, five aspects of music were chosen as the most interesting for a potential
musical dialogue: pitch, rhythm, melody, improv, and timbre. A musical dialogue was created
for each of these aspects based on the twelve-part division of Plato’s works. Additionally,
interlude dialogues can be performed between the aspect dialogues by all participants as guided
free improvisation.
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3.6.2 Objective: Music-making Role Democratisation

A musical score containing symbolic notation for more than one instrument is usually divided
into instrument-specific parts by the composer. Each score part contains symbolic notation
with the appropriate clef, transposition, and range for the respective instrument. Musicians are
generally expected to accept their parts as immutable.

Socket Dialogues is an attempt to change this traditional paradigm and provide musicians
with the freedom to choose their parts, materials, and the order of performance. Importantly,
musicians are also given the agency to decide not to play certain parts if they so wish. The
audience can provide direct feedback at any point during the performance through visual and
audible cues. Furthermore, audience members can initiate and shape the performance by
producing audio from their mobile devices at certain sections. ZScore tools allow a composer
or a conductor to become an active performer alongside the audience and musicians.

3.6.2.1 Dialogue Roles

Socket Dialogues’ score is not written for specific instrument parts but rather for specific
participation roles that can theoretically be played by any instrumentation and by any number of
musicians. An interlocutor, in this case a musician, can choose to: Present, Concur, Dissent, or
Abstain in each dialogue. The Presenter introduces the dialogue’s musical thesis, whilst other
participants agree (Concur) or disagree (Dissent) with the musical argument. Musicians can
also decide to give up (Abstain) during a dialogue if they are not a Presenter. The score is
distributed to musicians based on the selected participation role. The only restriction regarding
the instrumentation is that there has to be at least one Presenter for each dialogue.

The first screen musicians see when the Socket Dialogues score is loaded is the instrument
transposition selection (Figure 3.97). As all roles can be played by any instrument, the score
needs to be presented in the correct transposition. The transposition method and generic score
presentation is explained in more detail below.

Once musicians select the appropriate transposition for their instrument, they are given a
choice of the dialogues they can choose to present (Figure 3.98).

Each connected musician can then choose to present any of the dialogues on a first come,
first served basis. Once the dialogue is assigned to a presenter, it disappears from the list of
available dialogues, as shown in Figure 3.99.

In Figure 3.99, the musician has selected to present timbre, melody, and pitch dialogues.
The selection continues until all active dialogs have an assigned presenter.

At the same time, the performance Control GUI gets populated with Presenter selections,
forming the dialogues’ order of play. The list of dialogues on the right in Figure 3.100 shows
the order of dialogue selections by the Presenters, with the current dialogue being highlighted
(pitch) and the next being set to melody. The conductor has the ability to change the order of
play at any point by selecting the next dialogue to play in the Control GUI list. Each web score
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Figure 3.97: Socket Dialogues, web score, instrument transposition selection

Figure 3.98: Socket Dialogues, Presenter selection

client is given an id visible in the Owner column on the left side in Figure 3.100. This id can be
used to identify Presenters at any point if required.

Once the dialogue play begins, all connected musicians, apart from the Presenter, can see
a choice of actions representing possible responses. The bottom pane buttons in Figure 3.101
illustrate the available actions: Concur, Dissent, or Abstain. Clicking on any of the available
buttons visualises the score for the selected role. The currently selected role is highlighted in
green. For the case illustrated in Figure 3.101, it is Concur, which also serves as the default
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Figure 3.99: Socket Dialogues, Presenter selection in progress

Figure 3.100: Socket Dialogues, Control GUI order of play

response. Apart from the Presenter, musicians can change their role at the beginning of every
page, giving them the ability to play different material during the dialogue. The overall sound
texture’s balance may vary depending on the number of musicians involved.

In order to verify all possible vertical structure combinations, all dialogues were first pro-
visionally written out in Sibelius notation software. Possible simultaneous part combinations
include: solo Present, duo Present/Concur or Present/Dissent, and trio Present/Concur/Dissent.
Each part can be performed by any number of musicians.

3.6.2.2 Generic Instrument Notation

In order to provide notation playable by any instrument, it was necessary to invent a transposition
strategy suitable for the mixed notation style. The stave layout used in Socket Dialogues is a
simplified version of the layout used in Union Rose (Figure 3.102).

The information in the top left corner of the stave provides details about the displayed
notation, including the name of the currently played dialogue and the musician’s role in the
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Figure 3.101: Socket Dialogues, web score role choice
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Figure 3.102: Socket Dialogues, stave layout

dialogue. The rest of the stave is divided vertically into three main areas: timbre, pitch, and
dynamics information. The dynamics area works in the same way as in Union Rose. The
timbre area of the stave is used to describe the required quality of sound in generic terms by
using words and colours, as illustrated in Figure 3.103. The sound quality terms are borrowed
from the strings and wind instruments’ vocabulary, however, they could be translated into any
instrument’s sound palette as an indication of the sound variation within available boundaries.

The innovative pitch notation is based on named pitch lines. Any note placed on the line
or touching the named line has a specific pitch value, as described in Figure 3.104. Any note
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Figure 3.103: Socket Dialogues, timbre notation

placed above or below, not touching the line, has an indeterminate pitch value and should be
freely interpreted by the performer based on the relative distance from the pitch line.

play named pitch 

play semitone below/above the named pitch

play semitone below/above the note touching the line

note on the line: 

free pitch selection 
note not on the line: 

note on the line with a pitch modifier:

play whole tone above/below the named pitch
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note touching the line with a pitch modifier: 
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(E)

distance from the line indicates approximate 
size of the interval from the named pitch

play named pitch 
note on the line with a natural modifier: D (D flat)

Figure 3.104: Socket Dialogues, pitch line notation rules

The accidentals used in Socket Dialogues are modified versions of the traditional symbols,
indicating a different function when applied to the trailing note. The pitch line name, however,
may contain a traditional accidental symbol indicating the transposed instrument pitch (e.g. DZ).
Socket Dialogues supports only the semitone accidentals. The score is written with the concert
pitch line names. The transposition strategy is then used to display the correct pitch line names
to each musician based on the selected transposition. Figure 3.105 illustrates the application of
the named pitch notation in the Melody dialogue.

The same page transposed for BZ instruments is shown in Figure 3.106.
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Figure 3.105: Socket Dialogues, named pitch line notation example in concert pitch

Figure 3.106: Socket Dialogues, named pitch notation transposed to BZ

3.6.2.3 Transposition Strategy

The transposition strategy contains the logic required to extract named pitch information from
the score and calculate appropriate display values for each connected client. From the web score
perspective, transposition is effectively another overlay that modifies the source notation. As
with all other strategies, the transposition configuration is stored in the strategyConfig.yml file
on the server.

transpositionStrategy:

isActive: true

topStaveYRef: 114

topStaveXRef: 80

...

pages:

- { pageNo: 1, part: Present, textElements: [

{ dx: 0, dy: 114.83, txt: G }, { dx: 0, dy: 104.32, txt: C }

]}

...

The configuration contains stave layout spatial reference data required to determine coordi-
nates for named pitch positions and the list of all named pitches in the score, sorted by page and
part. The named pitch information contains its relative x and y coordinates and the concert pitch
text value. For convenience, the Adobe Illustrator JavaScript score export plugin was enhanced
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to produce a list of all named pitches in the score. Figure 3.107 shows the Illustrator export
plugin dialog with the new “Export NoteInfo” option. When enabled, this option creates a file
with an appropriately formatted list of named pitches per page, ready for the insertion into the
configuration file.

Figure 3.107: Enhanced Adobe Illustrator score export plugin

The score export plugin relies on the specific naming convention of Illustrator text elements
containing a named pitch value. The allowed pitch name list is defined as: [“A”, “B”, “C”,
“D”, “E”, “F”, “G”]. The only allowed pitch name modifiers in Socket Dialogues are semitone
indicators “F” for flat and “S” for sharp. For example, “EF” stands for E flat and “DS” for D
sharp. An example of pitch text element naming in the Adobe Illustrator layer window is shown
in Figure 3.108.

Figure 3.108: Named pitch implementation in Adobe Illustrator

3.6.2.4 Score Builder Strategy

The Score Builder contains and manages score building blocks such as sections or movements.
Each section is defined by the page range indicating its start and end point. The section infor-
mation also contains dynamic mapping between connected web clients and assigned instrument
parts and the section owner id. In Socket Dialogues the section owner is equivalent to the Presen-
ter whilst instrument part ids represent available dialogue roles. As with all other strategies, the
configuration is stored in the strategyConfig.yml file. Socket Dialogues’ configuration example
contains the following parameters:
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builderStrategy:

isActive: true

sections: [ pitch, rhythm, melody, timbre, impro ]

assignmentType: USER_ANY_FCFS

isStopOnSectionEnd: true

pageRanges:

- range: { start: 1, end: 12 }

name: pitch

instruments: [ all ]

...

The “sections” parameter lists active sections used in the particular performance. The
“assignmentType” parameter determines the mechanics of the section owner assignment. The
value “USER_ANY_FCFS” indicates that the First Come First Served algorithm should be
used for the section Presenter assignment, which, in Socket Dialogues, is the equivalent to the
section owner. Other possible section owner assignment types are defined in the enumeration
SectionAssignmentType as:

public enum SectionAssignmentType {

MANUAL, AUTO, USER_ANY_FCFS,

}

The configuration then specifies the page range for each section. In the example above, the
“pitch” section’s start page is 1, and the end page is 12. The parameter “isStopOnSectionEnd”
specifies whether the play should be stopped automatically when the section ends or continue to
the next section.

The Score Builder strategy allows for the independent management of score units that can be
played in any order. As large Adobe Illustrator files tend to become cumbersome and too slow
for efficient score authoring, the Socket Dialogues score was split into separate files, one for
each section. The software utility Score Merger, written in Java, was created to merge separate
files into a single score formatted for ZScore software. The combination of the Score Merger
and the Score Builder can be utilised to manage scores of any size and complexity.

3.6.2.5 Audience Feedback Loop

Socket Dialogues’ audience score representation provides a voting mechanism during the dia-
logues’ play. The intention behind this mechanism was to include the audience in the concept
of a dialogue (agree/disagree) and, furthermore, to provide real-time feedback from audience
members to all other performance participants about the current state of play. Inspired by the
social media approval icons, the audience view deploys a simple layout with the thumbs up and
down icons on each side of the vote-metre showing the aggregate vote count (Figure 3.109).
The vote count is a simple server-side algorithm, adding or subtracting 1 from the total vote
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for each thumb up or down click, respectively. The audience view vote-metre reflects the vote
count and the momentum direction: going up into the green, indicating a more positive vote, or
down towards the red, indicating a more negative vote. The aggregate vote value is scaled to the
numerical range [1, 10] in both directions for visualisation and audio representation purposes.

Figure 3.109: Socket Dialogues, voting audience view

A representation of the Socket Dialogues audience vote-metre, showing the current vote
count, is available to all participants. The musicians’ web score view shows the vote-metre in
the top right corner (Figure 3.110).

Figure 3.110: Socket Dialogues, Web Score audience vote view

The Control GUI audience vote-metre representation, used by the composer/conductor, is
placed in the middle of the Socket Dialogues tab (Figure 3.111).

In addition to the visual vote count representation, the audience score also produces audio
output linked to the vote sign and momentum direction. The implementation of the ZScoreMeter
JavaScript object ties audience mobile device audio gain to the absolute vote count value and
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Figure 3.111: Socket Dialogues, Control GUI audience vote view

changes the type of the audience mobile device audio output depending on the vote sign. If the
vote is positive, audience mobile devices play audio scheduled by the Socket Dialogues score.
However, if the vote is negative, the mobile phone devices start producing filtered white noise
that gets louder the higher the negative vote is. The white noise generator (zsNoise.js) uses a
set of frequencies sent from the server to tune its internal Biquad bandpass filter and Q (quality
factor) value as required by the currently played dialogue. The Q value is inversely proportional
to the vote count, making the white noise more prominent for the higher negative vote and more
pitched for the lower the negative vote.

The conductor and musicians can choose to ignore the audience vote or react with an ad
hoc or a pre-agreed choice of options, ranging from the gentle modification of the performance
character to a drastic change of the played material content. The audience can then react to
the musicians’ and conductor’s responses, thereby closing the dynamic feedback loop between
all participants. This concept creates novel relationships between different participant types
that can lead to unforeseen outcomes. The heightened awareness of the fellow performance
participants and their participation agency inevitably impacts, for better or worse, the character
of the performance. This may require adjustments of embodied sensibilities and the development
of new awareness skills on behalf of musicians used to one-way communication flow.

3.6.2.6 Mobile Instrument

In Socket Dialogues, the audience can be given the agency to produce a pitched sound notated
in a simplified symbolic format directly from their touch devices. The notation representation
replaces thumbs up and down view with a selection of conventional symbols representing sound
duration, as illustrated in Figure 3.112. The stem directions of the notes mimic thumb positions
displayed in the voting view (Figure 3.109). The available musical note durations include minim,
crotchet, quaver, and semiquaver. The actual sound duration is calculated from the current tempo
and time multipliers received from the Control GUI or the server-side configuration.

The pitch of each note is determined through a random selection from a frequency array
specific to the currently played dialogue. Frequencies associated with the stem up note are
always in the higher spectrum compared to the stem down note. The audio is generated in
zsSynth.js by two sine oscillators set to the same frequency but employing different detune and
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Figure 3.112: Socket Dialogues, voting audience view

frequency modulators. The gradual detuning between the two oscillator frequencies produces
beating and chorus effects. A combination of different mobile devices used by the audience
creates a spatial distribution of unstable synthetic sounds centred around the selected frequency
pool.

The notation graphic is defined in the HTML file used by the audience as a set of SVG
symbols referenced from JavaScript. For instance, the symbol for a crotchet with the stem up is
defined as a path derived from the open-source LilyPond notation library:

<symbol id="crotchetUp" data-name="crotchetUp">

<path id="crotchetUpPath" pointer-events="none"

d="m 13,2 0,31.04 c -0.84,-0.84 -2.08,-1.28 -3.68,-1.28 -4,0

-9.12,3.32 -9.12,7 0,2.2 1.92,3.44 4.48,3.44 4.2,0 9.2,-3.4

9.2,-6.96 L 13.88,2 13,2 Z" />

</symbol>

When one of the note symbols is touched, the audience score representation generates a
sound, as described above, and initiates a GSAP tween animation that spans the entire duration
of the note. The tween performs a randomised movement of the selected note within the given
spatial boundaries, gradually reducing its size and transparency. When a note is triggered, the
audio rendering functionality is disabled for both notes until the GSAP tween is completed. This
strategy ensures that each mobile device is effectively a monophonic instrument and mitigates
excessive note triggering by the audience.

3.6.3 Score Commentary

Socket Dialogues’ score consists of a number of musical dialogues that act as individual move-
ments within the larger structure. As illustrated in Figure 3.96, twelve aspects of music were
mapped to the circle of fourths, out of which five dialogues – pitch, rhythm, melody, timbre, and
improv – were implemented for the purpose of this research. The inspiration for each dialogue’s
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structure was taken from Kennedy’s (2010) analysis of Plato’s literary works and the definition
of the harmonious ratios, as displayed in Figure 3.95. Following previous tests, the overall tempo
curve was limited to the most playable range of 60 - 100 bpm, with the main anchor points set
at 60, 80, and 100 bpm. The order of play is dynamically selected by the performers at the
beginning of a performance. The composer/conductor can modify the order of dialogues or their
tempo, if required, from the Control GUI. In addition to notated dialogues, a free improvisation
interlude driven by the audience can be performed before or after any dialogue. Interludes
include all performance participants in a direct and open musical exchange.

3.6.3.1 Pitch

Pitch is a subjective perception of an objectively measurable sound wave frequency. This
dialogue explores the relationships between acoustic interpretations of a notated pitch, digi-
tally generated random noise, and its transformation into a detectable frequency through audio
filtering.

Kennedy’s discovery of the significance of the number twelve in the structure of Plato’s dia-
logues (2010) evoked various subjective responses related to the musical pitch and compositional
structuring. To start with, all dialogues were split into twelve sections, each consisting of twelve
beats. The immediate subjective response to this structural division was a memory recall of a
simple twelve-bar blues form (Figure 3.113). The functional harmony chart of the twelve-bar
blues, simplified into pitch intervals, provided the basis for the compositional development. The
tonal centre was set to G based on the mapping in Figure 3.96, whilst the initial tempo was set
to 80 bpm, which lies in the middle of the Socket Dialogues’ tempo range. The notions of a
section, page, and bar are equivalent, having the same durations throughout Socket Dialogues.

Figure 3.113: Socket Dialogues, Pitch dialogue structure

The opening statement of the dialogue (Figure 3.114) exposes the tonal centre in the lower
end of the instrument range, played quietly with the timbre notation asking for the “air” start,
a barely audible sound that requires different interpretation on different instruments. Accents
on beats 8, 9, and 12 correspond to the “harmonious” intervals in Kennedy’s analysis of Plato’s
dialogues (Figure 3.95). In this instance, the meaning of an interval is applied to time. As each
bar consists of twelve beats, the “harmonious” intervals simply refer to the particular beat onsets
within the bar.

The prominent feature permeating all dialogues is the use of an acciaccatura before accented
notes. The inspiration for this kind of acciaccatura combined with a long drone comes from the
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traditional Ganga singing indigenous to rural Bosnia and Herzegovina (Crnačka Ganga 2014).

Figure 3.114: Socket Dialogues, Pitch, opening statement

In the Pitch dialogue, the acciaccatura is played a perfect fourth above the held note. Based
on Kennedy’s interval “harmoniousness” (Figure 3.95), it is possible to construct a chromatic
scale starting from the tonal centre, as illustrated in Figure 3.115. This table is used as a guide
for the interval relationships in the dialogue.

Figure 3.115: Socket Dialogues, Pitch, interval “harmoniousness”

Whilst the Presenter plays the dialogue exposition, all other musicians are instructed to listen
and select the role they wish to perform (Figure 3.116). The available options are: Agree,
Disagree, or Abstain. The role selection effectively maps the musician’s view to the notation
specific for the role. The selected role can be changed during the dialogue at specific time
windows.

Figure 3.116: Socket Dialogues, opening page for all musicians who are not the Presenter

The Concur part echoes the material played by the Presenter on the previous page, whilst
the Dissent part uses a modified version transposed by the minor second, which is considered
a dissonant interval in Western classical music. The Dissent reply also contains the augmented
fourth (DZ), known as the “the devil’s interval”, which was banned in Renaissance church music
and is also classified as “disharmonious” in Kennedy’s analysis (Figure 3.117).
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Figure 3.117: Socket Dialogues, Pitch, Dissent part reaction to the Presenter’s statement

Figure 3.118: Socket Dialogues, Pitch, bar 10 notation

The dynamic and textural peak of the Pitch dialogue is reached in bars 9 and 10 as expected
by the twelve-bar blues form (Figure 3.113). The complexity of the notation gradually increases
to reach four named pitch lines in bar 10 (Figure 3.118). All instruments play flurries consisting
of perfect fourth and fifth intervals embellished with acciaccaturas introduced in the opening
statement. Whilst the Present part focuses on the perfect fifth (D) of the tonal centre (G), the
Concur part plays the perfect fourth (C) in alignment with the blues form. In contrast, the
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Dissent part fixes on the minor second (AZ) and augmented fourth (DZ) with a passing major
seventh (GZ) and augmented fifth (EZ).

The Present and Concur parts end the dialogue with the recapitulation of the opening
statements in a slightly modified form that indicate agreement, whilst the Dissent part ends with
the unsettled rhythmical figure on beat 11 (Figure 3.119).

Figure 3.119: Socket Dialogues, Pitch, Dissent, bar 12 notation

Throughout the dialogue, the audience participates by expressing their opinion through the
voting mechanism illustrated in Figure 3.109. If the vote is positive, audience mobile phones
play audio samples extracted from the score authored in the Sibelius notation software, as
illustrated in Figures 3.120, 3.121, and 3.122. Audio samples used by audience mobile devices
were created by exporting each part in an mp3 audio file format directly from Sibelius.
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Figure 3.120: Socket Dialogues, Pitch, Audience audio score, tonal centre

All the audience audio score bars above are only ten beats long and end with a rest. The
shorter bar lengths allow for more flexible scheduling of the audience audio and compensate
for possible Wi-Fi latency. The rests at the end of the bar ensure that the exported audio ends
at the zero signal level, thus avoiding any unnecessary clicks on audience mobile devices. All
exported audio files were normalised to -1 dB peak for maximum effect, as their output volume
is ultimately decided by the audience vote, as described above (Figure 3.109).

The audio export process from Sibelius produced nine files, one for each of the three parts
(vln, vla, and vc), and each pitch value (tonic, perfect fourth, and fifth). The file names
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Figure 3.121: Socket Dialogues, Pitch, Audience audio score, perfect fourth
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Figure 3.122: Socket Dialogues, Pitch, Audience audio score, perfect fifth

were added to the configuration file audienceScoreConfig.yml under the preset id 1002 (e.g.
“/audio/DialogsPitch1-1.mp3”) as:

- id: 1002

config:

- player: {

audioFiles: [

"/audio/DialogsPitch1-1.mp3",

"/audio/DialogsPitch1-2.mp3",

"/audio/DialogsPitch1-3.mp3",

"/audio/DialogsPitch2-1.mp3",

"/audio/DialogsPitch2-2.mp3",

"/audio/DialogsPitch2-3.mp3",

"/audio/DialogsPitch3-1.mp3",

"/audio/DialogsPitch3-2.mp3",

"/audio/DialogsPitch3-3.mp3"

],
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audioFilesIndexMap: [

[],

[0, 1, 2],

[3, 4, 5],

[6, 7, 8]

],

}

...

The preset configuration above also contains the “audioFilesIndexMap” parameter, contain-
ing index pointers to the “audioFiles” array. The first populated member of the “audioFilesIndex-
Map” containing indexes [0, 1, 2] refers to the tonic sample files, the second nested element
([3, 4, 5]) refers to the perfect fourth files, whilst the last element ([6, 7, 8]) refers to the perfect
fifth samples. The appropriate file group is referenced in the score when required. For example,
the following script executed in the Pitch dialogue bar 2 references the “audioFilesIndexMap”
element with the index value of 1:

web:beat=2:webScore.setAction(‘play’,‘AUDIO’,[‘player’],{‘index’:1});

This index translates to the array [0, 1, 2]. In the final step of the selection algorithm,
one of the index values from the array [0, 1, 2] is randomly selected, and the corresponding
file is played by the mobile device. This means that each audience member’s mobile device
will play one of the following three files on beat 2 of bar 2: “/audio/DialogsPitch1-1.mp3”,
“/audio/DialogsPitch1-2.mp3”, or “/audio/DialogsPitch1-3.mp3”. These files are audio exports
of the Violin, Viola, and Cello parts shown in Figure 3.120. The result of such a selection
algorithm is a fluctuating three-part sound texture produced by the audience mobile devices
when the audience vote is positive.

If the vote is negative, audience mobile devices generate filtered white noise that progressively
becomes louder and less recognisable in pitch content as the negative vote increases. The
configuration for the white noise filtering is also a part of the audience score configuration
preset id 1002 discussed above. It can be found under the “synth” configuration as:

- synth: { bpm: 80,

durMultiplier: 8.0,

freqMultiplier: 1.0,

osc1Freq: [ 783.99, 946.36, 1108.73 ],

osc2Freq: [ 392.00, 473.19, 554.37 ],

osc3Freq: [ 392.00, 554.37, 783.99, 1108.73, 1567.98, 2217.46,

3135.96, 4434.92, 6271.93, 8869.84 ]

}

The white noise bandpass filter frequencies used in the Pitch dialogue are specified under
the “osc3Freq” configuration. The “osc1Freq” and “osc2Freq” frequency arrays relate to the
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notes with stems up and down, respectively (Figure 3.112). The configured filter frequencies
(“osc3Freq”) correspond to pitches G and C\ in different octaves, ranging from G4 (scientific
designation, where C4 is the middle C) to C\9. The choice of the augmented fourth interval
aligns with the compositional material used in the Dissent part.

The algorithm responsible for determining the actual bandpass frequency and Q value on each
audience member’s mobile device first takes a chunk (subarray) of the configured frequencies
based on the current audience vote value. The absolute vote value is scaled to the range [1,10]
for easier visualisation and mathematical operability. The subarray can have up to four different
frequencies, and its starting point shifts with the size of the negative audience vote. For example,
if the audience negative vote is low (e.g. -1), then the frequency subarray starts from the first
element (e.g. [392.00, 554.37, 783.99]). The subarray’s starting point moves up as the negative
vote count increases. As the scaled vote value approaches the maximum allowed value (10), the
frequency subset consists of the last four elements (e.g., [3135.96, 4434.92, 6271.93, 8869.84]).

The actual frequency used to tune the bandpass filter is randomly selected from the calculated
frequency subarray. The intention behind the frequency array chunking and randomisation
algorithm is to create a dynamic polyphonic sound texture across the audience mobile devices.

The Q value sent to the bandpass filter also depends on the size of the vote. It is selected
from the configured value array, which consists of ten elements: [300, 100, 70, 50, 30, 20, 15,
10, 5, 3]. A higher Q value results in a narrower bandwidth profile, producing a more accurate
pitched sound, whilst a lower Q value generates a wider bandwidth noise with only a hint of a
pitched frequency. As the audience vote count is scaled to the range [1, 10], it can be directly
mapped to the corresponding index in the configured array. For example, if the scaled vote
value is 1, the algorithm selects the Q value of 300 from the array, and if the scaled vote value
is 10, the algorithm selects the Q value of 3. This mapping ensures that the audience’s voting
behaviour directly influences the characteristics of the filtered white noise generated on their
mobile devices.

The audience score configuration preset id 1002, which was discussed above, is loaded
implicitly in the first bar of the AV part using the following script:

web:beat=-1:reset=only:webScore.reset(2);

The script is classified as “reset only” because each dialogue is performed as a separate
movement, triggering the reset scripts on load. The preset id 2, referenced in the script above,
is defined in the audienceScoreConfig.yml file as:

- id: 2

scripts: [

"webScore.reset(1);",

"webScore.reset(1002);",

"webScore.setSection(‘pitch’);",

"webScore.activateViews(‘metre’);",
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"webScore.deactivateViews(‘notes’,‘audio’,‘thumbs’,‘vote’);",

]

Amongst other calls, these scripts load the preset id 1002, initialise the audience vote metre,
and deactivate all other views (‘notes’, ‘audio’, ‘thumbs’, ‘vote’). The concept of the “view”,
related to the implemented Model-View-Controller software design pattern (Krasner and Pope
1988), enables modular construction and the control of the audience score representation. Each
“view” can be instantiated either from the score script or from the Control GUI Dialogues tab
(Figure 3.123). Any enabled modular “view” is instantly activated on the audience’s mobile
devices. For example, the combination of the “metre” and “thumbs” views generates the graphics
shown in Figure 3.109.

Figure 3.123: Socket Dialogues, Control GUI, audience view controls

Similar to other scores in the portfolio, Socket Dialogues triggers audio files loaded in
ZScore’s Max patch buffer players. Dialogues use a number of audio files, each associated with
a particular score page. For example, the script that loads file “DialogsPitch_b3.wav” associated
with the Pitch dialogue bar 3, is placed in AV part, page 2:

max:beat=8:setFile,b1,DialogsPitch_b3.wav

The digital audio files loaded into Max buffer players were first authored in Logic software
and then mixed in Pro Tools. In the Pitch dialogue, the digital audio supports pitch frequencies
played by the Presenter. Frequencies below 200 Hz and over 3000 Hz, complementary to
most acoustic instruments, are emphasised, whilst the notes embellished with acciaccaturas are
underpinned with additional accents.

3.6.3.2 Rhythm

This dialogue explores various layers of rhythm, encompassing a regular pulse represented by
the bass drum kick, the grouping of notes into metric subdivisions and irrational tuplets, and
the broader-scale periodicity or events composed of alternating blocks of sound and silence.
Kennedy’s definition of “harmonious” intervals (Figure 3.95) served as the foundation for
creating a series of time periods expressed in a number of beats (Figure 3.124). A symmetrical
rhythmic structure was constructed from this series by implementing each period initially as a
sound and then as silence.

Figure 3.125 demonstrates the implementation of the first three time periods from the series.
The Presenter’s exposition begins with a single note, followed by a crotchet rest, and proceeds
with groups of two and three beats of alternating sound and silence. In the subsequent bars, the
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Figure 3.124: Socket Dialogues, Rhythm block durations in number of beats

durations of the event periods and the complexity of notation gradually increase in accordance
with the series depicted in Figure 3.124, culminating in bars 6 and 7 with the block of sound
lasting twelve beats. From then on, the event period durations reverse back to the starting point
in a retrograde series of events, ending with a single note on the last beat.

Figure 3.125: Socket Dialogues, Rhythm, Present, bar 1 notation

Sound blocks consist of groups of notes organised into phrases whose sizes adhere to the
same numerical series as the rhythmic structure (Figure 3.124). The phrasing in longer blocks
employs guided indeterminate notation, where the durations of individual notes are precisely
notated, whilst their pitches are approximated based on the note’s relative vertical distance from
adjacent notes and the tonal centre (C), as illustrated in Figure 3.126.

Figure 3.126: Socket Dialogues, Rhythm, Present, bar 5 notation

The Concur part responds by mirroring the Presenter’s block structure and note groupings,
offset by one bar length, until they meet on page 6 to play the longest twelve-beat block together.
Following the dialogue climax on pages 6 and 7, the Concur part assumes the lead by quoting
the remaining sound blocks ahead of the Presenter until they converge in the last bar, ending
on the single note together. The Dissent part entries align with the timing of the Concur sound
blocks, however, the grouping of notes is limited to irrational odd tuplets (e.g. 5:4, 7:4, 3:2).
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This approach creates contrasting rhythmic phrasing patterns whilst ensuring the integrity of
block timings when different role combinations are selected during a performance.

The bass drum kick rendered by the Max patch delivers the fundamental pulse, acting as
the sound block beat counter. In combination with high-hat and snare samples, it also evokes
the sound texture reminiscent of the ubiquitous contemporary electronic dance music. The
association between rhythm, movement, and the bass drum has been a prominent feature of
electronic dance music culture since the late 1980’s (Dyck et al. 2013, p. 17). The Rhythm
dialogue builds on this cultural link by extending the traditional 2 and 4 beat patterns of dance
music into blocks of varying lengths and layering the rational and irrational tuplet phrasing on
top of the basic pulse.

In the case of a positive audience vote, the audio produced by audience mobile devices
consists of high frequency percussive sounds, such as high-hat and various cymbals. The
timing of the sounds complements the Presenter’s rhythmic patterns. Due to the intermittent
Wi-Fi latency and varying quality of mobile device speakers, the impact of the audience audio
is comparable to multi-channel delay and chorus effects. This adds sonic complexity whilst
essentially echoing the Presenter’s theme. The negative audience vote triggers a noise pattern
similar to the Pitch dialogue, except that the filter frequencies are set to the dialogue’s tonal
centre pitch (C) and the augmented fourth (F\) in various octaves:

3.6.3.3 Melody

Contemplation of the importance of the number twelve in Plato’s dialogues and its potential
connection to musical melody led to obvious associations with serialism and twelve-tone com-
position techniques. As a result, a decision was made to create a melody consisting of all twelve
notes of the chromatic scale as the Presenter’s opening subject (Figure 3.127).
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Figure 3.127: Socket Dialogues, Melody, Presenter’s theme

The theme begins on EZ, the predetermined tonal centre of the dialogue. The structure
of the dialogue was derived from the theme using different compositional techniques such as
inversion, segmentation, transposition, rhythmic augmentation and diminution, intentionally
deviating from the strict constraints of serialism (Figure 3.128).

Instead of a straightforward chromatic inversion, an unusual interval inversion of the main
theme was created in Sibelius by employing diatonic inversion around EZ in an unspecified key
signature (Figure 3.129).

In contrast to the other dialogues, the Presenter’s opening statement lasts for two bars and
comprises the theme and its inversion. The main theme (Figure 3.127) translated into the named
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Figure 3.128: Socket Dialogues, Melody dialogue structure
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Figure 3.129: Socket Dialogues, Melody, Presenter’s theme inversion

pitch line notation is depicted in Figure 3.105, whilst its inversion is presented in Figure 3.130.

Figure 3.130: Socket Dialogues, Melody, Presenter’s theme inversion in Web Score notation

Audience and Max audio behave similarly to other dialogues, with audio frequencies and
textures selected to align with the dialogue’s musical material.

3.6.3.4 Timbre

This dialogue invites musicians to explore the sonic possibilities of their instrument by following
instructions based on generic musical terminology. The dialogue structure and the key for various
technique abbreviations are presented in Figure 3.131.

Figure 3.131: Socket Dialogues, Timbre dialogue structure

Musicians are free to interpret the instructions in a manner they deem most suitable for their
instrument. The term “air” can be interpreted as any non-pitched sound containing a degree of
white noise, whilst “multiphonics” may indicate any polyphonic sound.
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The Present part starts with quietly played noise and gradually builds towards the climax
in bars 9 and 10, concluding with a burst of white noise. The opening of the Presenter’s
exposition is depicted in Figure 3.132. Rhythmic and pitched motifs borrow material from
other dialogues, establishing a sense of continuity. The combination of the acciaccatura (Pitch)
and the triplet diminution (Rhythm) commencing on beat 8 in Figure 3.132 recurs in different
variations throughout the dialogue, acting as a unifying device that links all parts.

Figure 3.132: Socket Dialogues, Timbre, Presenter’s opening theme

In line with previous dialogues, the Concur part echoes the Presenter until they meet together
in bar 10 (Figure 3.133), albeit in different registers. Black triangles in the timbre notation
(Figure 3.133) indicate sound distortion, whilst the blue triangle serves as a quick visual prompt
to play multiphonic (polyphonic) sound.

Figure 3.133: Socket Dialogues, Timbre, Presenter’s bar 10 score

The notation for the Dissent part employs the same musical material as other parts but in an
inverted structural order. As in other dialogues, audience and Max audio are designed to align
with the musical material of the dialogue.

3.6.3.5 Improv

This dialogue removes even more notational constraints, granting musicians greater decision-
making agency and expressive freedom. The performance instructions, employing simple
musical terms and graphic notation, aim to establish a recognisable compositional structure
(Figure 3.134).
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Figure 3.134: Socket Dialogues, Improv dialogue structure

The Presenter has complete freedom to construct and perform a dialogue exposition of their
choice (Figure 3.135), whilst the other musicians actively listen and respond.

Figure 3.135: Socket Dialogues, Improv, Presenter’s theme free improvisation

The Concur part asks players to imitate the Presenter’s theme in various registers, durations,
and densities, whereas the Dissent part requires a musical reaction that opposes the theme
in some musical sense, through alterations in timbre, pitch, melody, or any other aspect of the
Presenter’s exposition. The compositional development follows the same pattern employed in the
Timbre dialogue, culminating in bars 9 and 10 with a loud sound distortion in high registers. The
movement of the tonal centre adheres to the same interval structure as the Pitch dialogue. The
tempo curve shown in Figure 3.136 induces variations in the musician’s responses, progressively
building momentum ahead of the dynamic climax of the dialogue. Both the textural and temporal
tensions are then gradually released towards the conclusion of the dialogue.

Figure 3.136: Socket Dialogues, Improv, tempo curve
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3.6.3.6 Interlude

An Interlude is effectively a free improvisation dialogue where the audience assumes the role
of the Presenter. It can be performed before or after any dialogue and can be repeated any
number of times. The schedule and timing of Interludes can be agreed upon in advance with the
performers or introduced by the conductor as needed.

The Control GUI features a number of presets that facilitate the initialisation of appropriate
score representations for the audience and musicians, as well as the audio configuration for
mobile devices and Max patch (Figure 3.137).

Figure 3.137: Socket Dialogues, Control GUI presets

The “Current” preset loads the audience instrument configuration and Max audio files for the
currently played dialogue, whilst any other preset under the “Impro All” label loads dialogue-
specific values. The configuration contains frequencies triggered by the two note symbols
displayed in the audience score representation (Figure 3.138). For instance, the Pitch dialogue
configuration specified in the audienceScoreConfig.yml file contains the following values:

- synth: { bpm: 80,

durMultiplier: 8.0,

freqMultiplier: 1.0,

osc1Freq: [ 783.99, 946.36, 1108.73 ],

osc2Freq: [ 392.00, 473.19, 554.37 ],

...

The “osc1Freq” parameter contains frequencies played by the stem-up note, whilst the
“osc2Freq” parameter represents frequencies played by the stem-down note. The frequencies
assigned to the “osc1Freq” parameter are consistently one octave higher than those in the
“osc2Freq” array. The first frequency in “osc2Freq” array (392 Hz) corresponds to the pitch
G5, the tonal centre of the Pitch dialogue, whilst the last frequency (554.37 Hz) corresponds to
the pitch C\6, which is an augmented fourth away from the tonal centre. The middle frequency
(473.19 Hz) is derived by calculating the arithmetic mean value between the first and last value in
the array. This simple calculation method produces a non-standard pitch that does not conform to
the equal temperament logarithmic scale steps. In this case, the calculated frequency is slightly
higher than BZ eighth sharp (472.94 Hz).

The actual frequency sent to the zsSynth.js audio library is randomly selected from the
configured array. The output signal is generated by two sine oscillators set to the same frequency
but employing different detune and frequency modulations. This pitch selection and production
process creates an ever-evolving microtonal polyphonic texture produced by mobile devices.
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Figure 3.138: Socket Dialogues, Interlude, audience view

Figure 3.139: Socket Dialogues, Control GUI, audience instrument configuration

The duration of the triggered sound is determined by the current tempo, the selected note’s
time value (e.g. crotchet), and the configured duration multiplier (“durMultiplier”). The duration
multiplier parameter serves as a convenient mechanism for controlling note durations in live
performance scenarios. Similarly, the frequency multiplier is used to modify the values stored in
the configured frequency arrays (“osc1Freq” and “osc2Freq”). The Control GUI offers several
presets that automatically adjust note duration, frequency multipliers, and the volume level of
the mobile phone output. The presets are named after the dynamic markings they represent
(Figure 3.139), ranging from the quietest to the loudest: “pp”, “p”, “mp”, “mf”, “f”, and “ff”.
The specific values associated with each preset are illustrated in Figure 3.140.

Figure 3.140: Socket Dialogues, audience instrument preset values

In the quieter presets (“pp” to “mp”), the note duration remains constant, but it rapidly
decreases in the louder presets (“mf” to “ff”), resulting in extremely short and sharp sounds for
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the loudest dynamics. The frequency multiplier for the default “mp” preset (1.0) produces an
unmodified pitch, whilst it decreases in the quieter presets (“pp” and “p”), resulting in lower
pitches, and increases in louder presets (“mf” to “ff”), resulting in higher-pitched sound. The
presets are selected by the composer/conductor in real-time during a performance.

When the free improvisation notation preset is selected (Figure 3.137), the musicians’ score
views are updated with textual information prompting musicians to start free improvisation
based on the audience-generated sound, as illustrated in Figure 3.141.

Figure 3.141: Socket Dialogues, Interlude web score

Figure 3.142: Socket Dialogues, Interlude web score overlays

The free improvisation notation preset (Figure 3.137) also loads dialogue-specific audio files
into ZScore Max Granulator and MC Groove objects. At that point, the conductor/composer can
join in as a performer using Max patch directly or through the connected hardware controllers.
Additionally, the conductor/composer can change audience instrument presets, triggering a
change of the audience audio texture which, in turn, acts as a modulator of the free improvisation
that now involves all performance participants.

If deemed necessary, the conductor/composer can also deploy notation overlays on musicians’
notation views, as depicted in Figure 3.142. In this example, musicians are instructed to increase
the intensity of their performance by playing distorted loud sounds. These additional instructions
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may reduce the spontaneity of a free improvisation, however, they also provide a mechanism for
communicating performance cues, such as building up to a dynamic climax or preparing for the
next dialogue.

The conductor has the ability to send a text message to the performance participants from the
Control GUI at any time. The message recipient selection is flexible, allowing for the targeting of
any combination of musicians’ roles and the audience. An example of the message configuration
is displayed in Figure 3.143, where a text message is split into two lines for all musicians.

Figure 3.143: Socket Dialogues, text message controls

Once the conductor has composed the desired message and chosen the recipients, clicking
the “Send” button triggers the transmission of the message to the designated individuals or
groups – all instrumental parts in this instance (Figures 3.143 and 3.144).

Figure 3.144: Socket Dialogues, text message in Web Score
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Chapter 4

Results And Reflections

Following extensive system testing in a controlled environment and acceptance testing with
musicians in closed workshops, the ZScore system was successfully deployed in various live per-
formances involving audience participation. In all scenarios, the system exhibited the expected
functional behaviour and maintained a stable performance profile, with round-trip latencies for
wired clients consistently below 10 milliseconds.

The system’s performance testing results, provided in Appendix A, reveal that the current
server implementation can support up to 1500 concurrent users without experiencing packet
loss. A single Gigabit router and a set of Gigabit switches are sufficient to support up to
200 wired musicians, covering the majority of relevant use cases. An adequately equipped
wireless access point with 2.4 GHz 2:2 MU-MIMO and 5 GHz 3:3 MU-MIMO can serve up
to 100 audience members. Larger audiences of up to 500 people can be accommodated by
simply adding a sufficient number of wireless access points to the network. For audiences
exceeding 500 people, a more powerful 10 Gb router is required, whilst scenarios involving over
1000 connections would necessitate more complex industrial-scale infrastructure consisting of
multiple web servers, load balancers, and a cluster of application server instances, as outlined in
Appendix A. Audience sizes in ZScore workshops and live performances were limited to below
100 people, and therefore the basic system infrastructure outlined in Chapter 2 was found to be
suitable and sufficient for accommodating the concurrent connections required for these events.

Each score included in the attached portfolio has been performed by professional musicians
at least once. In several open workshops and performances, participants provided feedback
through questionnaires that incorporated mixed quantitative and qualitative elements, specifically
designed for musicians and the audience. The questionnaires, along with their corresponding
results, are provided in Appendix B. Despite the relatively small sample size, the surveys and ad
hoc conversations with performance participants have yielded valuable insights to guide further
developments.

The questionnaire results consistently indicated high levels of satisfaction amongst the par-
ticipants regarding the overall performance experience, receiving an average rating of 4.83 out
of 5 from the musicians and 4.5 from the audience. There was minimal variation in this mea-
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surement across different performances, with a mean deviation of 0.125. Similarly, participants
expressed consistent satisfaction with the system’s performance and stability, receiving a high
rating of 4.67.

Following criticisms of the notation layout in previous versions (Vexilla), musicians ex-
pressed predominantly positive feedback about the ZScore notation layout and its dynamic
behaviour in later versions (post Vexilla). Open-ended comments from musicians include
“significant improvement” (comparing Union Rose to Vexilla notation) and “difficult but very
performable” (Union Rose). The quantitative question regarding notation difficulty, where 1
indicated “Too easy” and 5 indicated “Impossible to perform”, received an average score of
3.33, indicating a balanced difficulty level with a slight tendency towards a notational challenge.

Acoustic musicians responded positively to performing with digital audio (Max) in the
portfolio pieces, with an average score of 4.17 out of 5. Subsequent performances (Socket
Dialogues) received a slightly higher rating of 4.5 compared to Union Rose (4.0). Musicians’
opinions regarding audience participation yielded a slightly lower average rating of 3.8. However,
the later score (Socket Dialogues) received a higher rating of 4.0 compared to the earlier Union
Rose score, which received a rating of 3.67. The interactive score features received a slightly
above-average rating of 3.5, with Socket Dialogues once again receiving a higher rating of 4.0
compared to Union Rose (3.25). Qualitative open-ended responses from musicians regarding
the interactive features included statements such as “wanted more” and “would be good to have
more information about audience actions” (in the context of Union Rose). Satisfaction with the
dynamic notation overlays scored an average of 4.17 across all surveyed performances.

The audience consistently reported a high level of engagement during performances (4.5) and
expressed enthusiasm towards participating in future networked music events (4.5). However, the
mobile device score implementation received a slightly lower average rating of 3.9. The Union
Rose implementation scored higher (4.5) compared to the Socket Dialogues implementation
(3.6). The survey question regarding whether the consequences of the audience’s actions
matched their expectations received an average score of 3.4, with significant variance ranging
from 3.0 to 4.25 across different performances.

In the open-ended responses, audience members expressed predominantly positive opinions
regarding their participation in networked performances. Examples of these responses include:

- “Enjoyed interaction and collective participation”
- “A great experience, I am happy to be involved in”
- “This was like therapy for me”
- “Would like to be in the know of future researches / development”
- “Music & expression is what interests me the most and I was very impressed and satisfied

with what I was hearing”
However, there were also some negative responses related to the musical output and the

connection between the audience’s actions and their expectations. Examples of these responses
include:
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- “Better relation between input & output would be great”
- “The music decided by my different choice is quite similar, difficult to feel strong change”
- “Is it possible for the audience to have autonomy on how much they have control or the

influence?”
- “Personally I feel that satisfaction comes a lot from the revealed impact of interaction”
- “I believe the sounds should tonally match the musicians”
When asked about the most satisfying aspects of the performance, audience responses

clearly indicated that interactivity was the most highly regarded element of the experience,
closely followed by the music itself (Figure B.3). On the other hand, the mobile score and digital
audio received less mentions in the survey answers.

The findings indicate that the inclusion of interactive features in networked music systems
can have a profound impact on the extent and nature of participant engagement in music
performances. The testing results of the ZScore system suggest that interactive networked
systems can be successfully implemented across various scenarios, spanning from small-scale
experimental electro-acoustic performances to symphonic concerts and multimedia events hosted
in large-scale venues. The most encouraging finding of this study is the evident enthusiasm
expressed by both musicians and audiences towards the networked music performances, coupled
with a strong interest in future developments in the field.

The ZScore system architecture and software implementation have proven to be reliable and
resilient, providing a solid foundation for the creation of dynamic interactive scores. Nonetheless,
the complexity of scores, which encompass mixed music notation, interactive graphics, extensive
configuration, and coded algorithms, required a substantial commitment of time and effort for
each composition. As it stands, the complexity of the score authoring process poses a significant
barrier to the more widespread adoption of the system.

Due to limited rehearsal time with musicians, certain instrumental performances lacked
interpretational accuracy. Given the nature of the dynamic notation in ZScore, musicians
can only partially prepare in isolation by rehearsing from static score versions. To achieve
better results, more time and effort would be needed in ensemble rehearsals with the ZScore
system, allowing for a closer examination of the intricacies of the notated material and dynamic
overlays. Ultimately, the only way to fully explore the possibilities of interactive music-making
and improve the quality of outcomes would involve performing together with the audience in as
many diverse settings as possible.

From a personal perspective, the most rewarding aspect of the project was witnessing several
truly special moments during performances, where musicians, audiences, the composer, and
technology collaborated to create an aural and visual experience that simply could not have been
possible before. These moments included various Interludes in Socket Dialogues, as well as the
merging of the audience’s mobile device choir, Max granulated digital utterances, and the string
quartet pizzicato passages in the I Want section of Union Rose. Conversely, the fragmentation
of tonal and atonal material in Vexilla failed to convey a coherent musical aesthetic, despite its
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strong conceptual fundamentals and clear compositional intentions. A more consistent overall
compositional trajectory (Gestalt) was implemented in other portfolio compositions.

The most challenging aspect of the composition process for interactive performances was
finding an appropriate balance between user interface usability, meaningful audience engage-
ment, and dynamic notation complexity, whilst maintaining creative compositional integrity.
More complex user interfaces and engagement logic led to lower comprehension of musical
intentions by audience members, particularly when the outcomes of users’ actions were subtle
and delayed. This issue became apparent in the audience feedback for Union Rose, where
audience members had the agency to select the musical material played by the musicians. The
visually rich audience score representation of Union Rose received a high rating of 4.5, whilst
satisfaction with the perceived connection between audience actions and their outcomes received
a lower rating of 3.5. Despite the comprehensive implementation of the action model illustrated
in Figure 1.30, some attendees failed to correlate subtle changes in the musical material with
the results of their actions.

To fully develop a mental model of the action context in this case, audience members
would need to memorise the musical material played in the preceding section and link it to
the collective action (highest tile vote). In Union Rose, this task was made more complex by
having eight musical queues performed by different instruments on each repetition, posing a
challenge for most audience members. Musical cues associated with graphical elements can
be made more obvious and memorable through simplification and repetition, providing that the
outcomes match compositional intentions. Committing musical cues to memory demands a
conscious effort from the audience members, so the effectiveness of such an approach would
inevitably vary based on the audience’s size, their familiarity with the particular music style,
and willingness to participate.

Audience members benefitted from repeated engagements in networked performances. In
workshops where the same score was performed more than once, audience members reported a
higher quality of experience with each subsequent performance. This outcome is unsurprising,
as the mental representation of the performance context, score representation, and audience’s role
in a performance becomes more enriched with each repeated involvement. Broader utilisation
of networked systems would improve participants’ understanding of the interactive environment
and help establish conventions of interactive music-making.

Another important factor to consider here is the impact of participants’ focus switching.
Complex score representations can demand significant cognitive effort, potentially distracting
from participants’ ability to fully engage with the auditory aspects of the performance. In the
case of Union Rose, the audience score representation features continuously evolving interactive
elements. Some attendees reported that the rich graphic content hindered their ability to fully
immerse in music. A well-designed interactive score should incorporate designated periods
that facilitate focus switching between different performance elements, ensuring a balanced and
immersive experience for the participants.
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Socket Dialogues employed a more obvious audience interaction model with immediate
action response and a simplified user interface, leading to a higher rating for action outcomes
(4.25), but a lower rating for the mobile device score implementation (3.62). The gamification of
the user interface that incorporated thumbs up and thumbs down icons, ubiquitous in social media
applications, and music note images associated with instant sound production helped clarify the
compositional context, but somewhat reduced the aesthetic impact of the score representation.
The conceptually clear Socket Dialogues interface also helped with the focus switching, enabling
the audience to transition their attention more effectively towards music listening.

The audience feedback indicates that having full control over action outcomes and the
incorporation of gamified user interfaces has a positive impact on audience satisfaction ratings.
On the other hand, the user interface design and interaction model should be a product of
compositional intentions, aligned with aesthetic objectives that might preclude the gamification
of participants’ interactions. Gamification, however, does not necessarily imply trivialisation
and can be represented through the dialectical relationship between paidic (pleasurable, free)
and ludic (rule-bound, complex) play. This relationship can be captured and explored within the
audience score representation. Similar to the decision-making dial, the balance between paidic
and ludic user interfaces can be managed through the networked score implementation.

One possible approach to achieving a more sophisticated UI design in complex scores could
involve gradually increasing the complexity of audience involvement during a score performance,
allowing ample time for audiences to learn and understand the functionality of the user interface
and the interaction model of the score. Similarly, the quantity and intricacy of musical cues
linked to graphical elements could be gradually increased once these associations are firmly
established through repetition. Conversely, overly simplifying the UI and interaction model may
lead to a loss of interest and disengagement amongst audience members. The gradual escalation
of ludic play complexity in the score representation should help maintain the required level of
audience engagement throughout the performance.

From a compositional perspective, however, all performances worked as intended. The
audiences’ and musicians’ choices were successfully applied in real-time, generating the desired
variability in patterns of tension and release. The instrumentation combinations selected by
musicians achieved the desired harmonic and textural diversity whilst preserving the intended
compositional identity. The audience score view, constructed from the compositional material,
effectively conveyed the underlying structure and related ideas, whilst seamlessly blending its
audio output with other acoustic and digital sources. The delayed action strategy employed in
Union Rose was an integral part of the compositional intentions, and the resulting outcomes
were fully in line with compositional expectations.

During the Union Rose workshops, musicians expressed a desire for a more integrated view of
what the audience could see and do. This request was incorporated into Socket Dialogues, where
the audience voting metre was made visible to all participants, creating a shared dynamic state
view. The shared state contributed to the perception of the integrated performance environment.
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This visual integration, coupled with the audio generated by the audience, had an implicit
influence on the musicians’ output, resulting in subtle variations in dynamics and timbre,
especially when a negative audience vote led to audible white noise.

After receiving several negative comments regarding the free positioning of mixed notation
in Vexilla, a decision was made to standardise the placement of various notation elements. For
example, dynamics information was consistently placed below pitch notation, whilst notation
for timbral techniques was placed above it. Furthermore, variations of graphic clefs for different
instruments were replaced with a generic pitch stave layout in Union Rose and Socket Dialogues.
These alterations resulted in predominantly positive feedback from musicians regarding the
layout and functionality of the ZScore dynamic notation.

The segmentation of the score layout facilitated the creation of interactive notation overlays,
which proved to be an effective means of controlling the comprovisation decision-making dial
(Figure 1.3). Simple modifications of performance elements in the Comprov workshop led to
significant variations in sound texture, inciting creative responses from the musicians. The rep-
etition of familiar notation with varying overlay adjustments prompted different interpretations
with each pass. ZScore proved to be an effective platform for comprovised music-making.

Socket Dialogues also introduced a novel pitch line notation technique, which received mixed
feedback from the musicians. Due to its unfamiliarity, sight-reading proved to be more difficult
than anticipated. The Melody dialogue, in particular, presented a challenge for musicians
due to its dense pitch notation. The pitch line notation worked best when combined with
indeterminate pitch phrasing notation, outlining only the contour of the pitch movement. Despite
the initial apprehension expressed by musicians, Socket Dialogues were successfully performed
by different instrumentations, albeit with varied accuracy of the notation interpretation. The
pitch line notation has the potential to significantly simplify comprovisation-oriented scores, but
it would require more rehearsal time and effort from the musicians.

The democratisation of decision-making and sound production has inevitably induced the
variability of output quality across various performances. The audience’s size and level of
engagement have affected the overall sound texture in sections where audience mobile devices
generated audio output. Nevertheless, compositional strategies and default system behaviours
have ensured an uninterrupted performance flow and presentation of compositional intentions,
irrespective of the participants’ level of engagement.

The accuracy of the score interpretation depended on the level of the musicians’ preparedness
and the degree of sound production freedom given to musicians. Arguably, the most accurate
rendition of the ZScore notation can be heard in the MCME interpretation of Ukodus, a fully
notated score without any interactive elements. As the portfolio evolved, the level of notational
specificity gradually decreased, allowing performers greater interpretive freedom, particularly in
Socket Dialogues. However, recordings of live performances involving different musicians and
audiences demonstrate that the compositional identity was maintained across all performances.
Despite differing interpretations, each dialogue retained its intended character through the
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precise timing, dynamics, and timbral characteristics of each phrase, supported by consistent
digital audio output. In this context, the role of the composer was primarily focused on organising
and defining the totality of the output rather than the intricacies of individual sounds, in line
with the principles of Gestalt theory.

The process of concept-driven composition has evolved to incorporate elements of front-end
design and interactive behaviour modelling. The application of metamodern dialectics, which
explores the interplay between subjective and objective methods, has been maintained in all
aspects of the integrated composition approach. Starting point concepts, such as flag shapes in
Vexilla, sudoku patterns in Ukodus, window layout in Union Rose, or Plato’s dialogue structure in
Socket Dialogues, were mapped to the compositional material and structure through immediate
cognitive responses and objective transformational methods.

The role of the composer-performer gradually evolved to encompass active participation in
the musical output, particularly in Comprov and Socket Dialogues. The composer-performer
had the ability to shape a performance in real-time by modifying notational overlays, tempo or
presets, which had a direct impact on the musicians’ and audience’s score representations, as
well as the audience’s audio output. Additionally, the composer-performer had the capability to
generate and shape digital audio by manipulating the Max patch directly via MIDI controllers,
as demonstrated in the Socket Dialogues Interludes.

Both Union Rose and Socket Dialogues feature a blend of acoustic and digital sound sources,
including audio generated by the audience’s mobile devices. In live performances, the acoustic
instruments were intentionally not amplified to ensure that each sound source’s location could
be easily identified. The frequency spectrum of the digital audio was adjusted to complement
the spectral characteristics of the acoustic sources. Additionally, the combined dynamics of
the acoustic instruments and MAX audio had to be balanced to provide sufficient headroom for
the mobile device speakers. This approach resulted in an immersive and clear electro-acoustic
sound mix, which received mainly positive feedback from the participants.
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Chapter 5

Conclusions

The implementation of the ZScore system, together with the accompanying portfolio of works,
demonstrates the remarkable potential of computer networking technology to transform pro-
cesses of music composition and performance. Although initially explored within the context
of contemporary experimental music, the system’s implementation can be seamlessly adapted
to diverse genres and multi-media performance environments.

The research questions, along with the compositional and technical objectives outlined at
the outset (Section 1.8), have been addressed and implemented during this research. Traditional
music-making relationships have been redefined by expanding the performance participation
model to incorporate interactive real-time communications between all participants. The concept
of a music score has evolved from a static notation container to a collection of data and algorithms
capable of generating dynamic score representations specific for different participant types.
ZScore’s dynamic notation overlays and interaction strategies successfully enabled comprovised
music-making with unconstrained positioning of the decision-making dial in real-time.

A different musical aesthetic emerged from technical innovations, where the evaluation of the
overall performance output depends on how well the outcomes of actions align with participants’
expectations. The role of the composer expanded to encompass a range of technical and
performative tasks, whilst the democratisation of decision-making and notation interpretation
shifted the composer’s focus to the definition of the composition identity and the totality of the
output (Gestalt).

The balance between system usability and compositional complexity remains a challenge that
needs addressing in each score. The key to successful audience engagement lies in implementing
clear conceptual mapping between the graphical score representation and the musical context.
Complex action outcomes require a gradual learning curve during a performance, enabling a
progressive contextualisation of the participant’s role in the interaction model. Furthermore, the
time required for participants to switch their focus between musical, visual, and gestural elements
needs to be included in the compositional structure. A successful score implementation should
effectively convey compositional intentions and create an intuitive and immersive experience
for the majority of audience members.
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The ZScore system performed remarkably well in all tests and live performances, however, it
has only been deployed in small-scale venues so far. Although the system tests indicate that the
current implementation should work in a range of different scenarios, the system performance
needs to be validated in larger scale deployments. The process of authoring scores for the
ZScore system is time-consuming and demands significant technical know-how and effort. To
facilitate wider adoption of networked music-making systems, the development of standardised
user-friendly composition, performance, and system management tools is necessary.

Participants’ feedback from various workshops and live performances indicates evident
enthusiasm and willingness from both musicians and audiences to engage and participate in
real-time interactive music-making. However, realising this potential relies on the availability
of accessible, scalable, and robust networked composition and performance tools. The lessons
learned from the development of the ZScore system serve as a stepping stone towards achieving
more streamlined and widely adopted networked music-making solutions in the future.
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Appendix A

ZScore Server Testing

A.1 Testing Scope

The purpose of this testing was to verify ZScore’s web server behaviour under typical use case
scenarios and find system performance limits by increasing the web traffic load until the system’s
breaking point is found (i.e. system load and stress tests). ZScore’s web front end is currently
used to render score views on the audience’s mobile devices. Under typical load conditions, the
system is expected to serve up to 100 connected web interface users without any network packet
loss and any adverse impact on the internal network score distribution. The maximum allowed
web page load time in these tests was set to 5 seconds, whilst the maximum server state data
push latency was set to 1 second. The tests included client connectivity over wired (Ethernet)
and wireless (Wi-Fi) connections for both HTTP and WebSocket protocols. Furthermore, a set
of tests was devised to assess the impact of firewall filtering on the system throughput. The
testing scope did not include wireless access point range tests and Open Sound Control UDP
messaging to musicians’ front ends.

A.2 Testing Environment

The ZScore web server is currently integrated into the ZScore application written in Java
(version 8). The server utilises the Undertow library (v2.0.1) to provide HTTP, WebSockets,
and SSE service. For this test, the ZScore application was run on a 16” MacBook Pro laptop
connected to the Mikrotik hAP ac router via Ethernet cable, as illustrated in Figure A.1. The
test clients (custom Java and Apache JMeter) were executed on a separate MacBook Pro laptop
(Figure A.1). The testing client laptop either connected via wired Ethernet or wirelessly to the
router, depending on the specific test scenario.
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Figure A.1: Test Environment

A.2.1 Router Setup

In a public performance situation, allowing the audience’s mobile device access to ZScore’s
internal network presents a potential security risk. To address this, a network firewall, an
industry-standard protection mechanism, was employed to isolate the internal network and limit
external users’ access. To assess the impact of the router’s firewall on both wired and wireless
connections, a separate network bridge (guestBridge) with its own IP address subnet range
was created on the router. One of the Ethernet ports on the router (port 5) and both virtual
wireless Guest WLANs (wlanGuest and wlanGuest5g) were assigned to the created guest bridge
(Figure A.2).

A set of firewall rules were then implemented to prevent guest bridge access to all standard
ports on the internal network, except for DNS (port 53) and HTTP (port 80). Additionally, a
network address translation (NAT) rule was added to route all HTTP requests originating from
the guest bridge subnet to the ZScore server, as depicted in Figures A.3 and A.4.

In order to limit the bandwidth available to guest users and prevent network congestion, two
router queues were created – one for internal connections and another for guest connections
(Figure A.5). Both queues were configured to use the SFQ (Stochastic Fairness Queuing)
algorithm, ensuring a fair round-robin distribution to all sub-streams. After conducting initial
testing and calculations, I determined that limiting guest users to 200 Mbps overall bandwidth
would be sufficient for the typical use case scenario.

A.2.2 Wi-Fi Setup

The Mikrotik hAP ac router provides two modes: 2.4 GHz (b/g/n) and 5 GHz (a/n). For this test,
both WLANs (2.4 and 5 GHz wireless LANs) were configured with the same SSID, allowing
the test client’s wireless adapter to choose the best connection mode automatically. In a real-life
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Figure A.2: Router bridge ports assignment

Figure A.3: Guest bridge firewall rules

Figure A.4: Guest bridge NAT rules

Figure A.5: Router Queue setup

performance scenario, audience mobile devices will be allowed to select the wireless connection
mode themselves, simplifying the user connection process.

The router’s channel selection setting for both 2.4 and 5 GHz WLANs was set to ‘auto’,

207



allowing the router’s algorithm to automatically select the least congested channel. The 2.4GHz
WLAN channel width was set to 20 MHz, whilst the 5 GHz WLAN channel width was set to
20/40 MHz XX, where the XX mode allows for automated control channel frequency selection.
According to the Mikrotik product specifications, the maximum theoretical hAP ac throughput
for the 2.4 GHz mode is 450 Mbit/s, and for the 5 GHz mode, it is 1300 Mbit/s. The actual
maximum throughput achieved during testing was around 120 Mb/s, which aligns with expec-
tations as the maximum theoretical throughput for a single wireless stream is 150 Mbps. The
Mikrotik AP provides multiple streams (MIMO), so when multiple Wi-Fi clients are connected,
the overall throughput should increase by up to five times (2x at 2.4 GHz and 3x at 5 GHz).

Significant congestion and interference from neighbouring wireless access points were en-
countered during testing. A total of 34 access points with better than -75 dBm wireless signal
strength were scanned from the testing site. Given the significant interference and congestion
experienced from neighbouring wireless access points during testing, it is unlikely that actual
performance sites would face worse interference issues.

A.3 Testing Procedure

Several testing scenarios were designed to cover all permutations within the testing scope.
These permutations involved both wired and wireless test client connections on both the guest
and internal bridge. Each scenario was executed five times to obtain average results and ensure
statistical reliability.

The Union Rose score was loaded into the server as a typical example of the scores written
for the ZScore system. The initial HTTP load for the audience score was approximately 1.9 MB
of data, which included required HTML, Javascript, CSS, and MP3 files. The average server
state data update size was approximately 18KB.

The firewall contained 20 filter rules, set up as described above. During tests where the client
was connected through the guest bridge, all data had to pass through the firewall. However, if the
test client was connected through the internal bridge, the data bypassed the firewall. Additionally,
wired connections on the internal bridge benefitted from the hardware switch optimisation.

For the wireless tests, the client host was positioned approximately 2 metres away from the
access point. As described above, the scope did not include wireless range testing.

Two types of testing clients were used: custom Java (Undertow) and Apache JMeter (1998).
These clients were chosen to simulate different types of user interactions and load scenarios on
the ZScore web server.

A.3.1 JMeter Tests

ZScore’s web client uses the HTTP polling mechanism when neither SSE nor WebSocket
transports are available on the client-side. The JMeter tests cover this worst case scenario. The
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client’s behaviour was first recorded through the JMeter proxy, starting with the retrieval of the
index page, which included HTML, Javascript, CSS, and MP3 content (1.9 MB overall). The
captured scenario then involved issuing 23 HTTP polling requests for the server state data at
500 millisecond intervals. Each server data state update size was approximately 18 KB. The
ramp-up time to reach the desired client number was set to 10 sec. After the ramp-up time, all
clients simultaneously issued the recorded requests. The JMeter tests were primarily used to
stress test the ZScore server and determine its system limits.

A.3.2 Custom Undertow Client Tests

The custom Java tests encompassed both typical HTTP client content retrieval and WebSocket
server data push scenarios.

The HTTP tests first created the specified number of HTTP clients, and then index HTML
page requests were issued for each client to download the initial content (HTML, Javascript,
CSS, and MP3 files, with an overall size of ~1.9 MB). The index page requests were staggered
to mimic real-life scenarios. A random number of clients (between 1 and 5) simultaneously
requested the index page. After a random time interval (between 0 and 10 seconds), the next
group of clients was randomly selected to send their requests. This process was repeated until
all test clients had submitted index page requests. For 200 HTTP clients, the average duration
of the test was around 50 seconds.

Similarly, for the WebSocket tests, the required number of clients were initialised, and they
listened for server state updates. In these tests, the ZScore server replayed server-side events for
the first 16 beats of Union Rose. This involved 8 server state data updates, each approximately
18 KB in size. The duration of a single test was approximately 12 seconds.

A.4 Findings And Analysis

Generally, the test results confirmed expected performance patterns. The most important findings
can be outlined as follows:

• In its current form, the ZScore server can handle a significantly higher load than the
typical use case scenario. Test results indicate that network data back pressure and packet
loss begin to occur at around 1500 concurrent users.

• The router’s switch can successfully serve 200 concurrent wired connections with no
firewall (WebSocket: average 8 ms, 90th percentile 19 ms, max 253 ms) and going through
the firewall, without any packet loss (WebSocket: average 40 ms, 90th percentile 114 ms,
max 869 ms).

• The router’s wireless AP can successfully serve up to 100 wireless users connected
through the firewall. The maximum number of Wi-Fi connections that did not suffer any
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packet loss was 125. However, the max latency for 100 wireless connections reached 9
sec (average: 1.6 sec, 90th percentile: 3.3 sec).

• Firewall filtering had a notable impact on wired clients’ throughput. However, for the
wireless connections, the benefits of a secure firewall outweigh a negligible performance
difference between open and firewalled connections.

• Wireless tests latency variance was almost 4 times higher than the wired tests variance.
The most likely cause for such a large difference was the significant interference from the
neighbouring wireless access points during testing, as described above.

The most significant difference between a real-life performance situation and these tests is
that, in the real world, there would be multiple hosts (mobile devices) making a single connection
to the server. This difference could have multiple consequences. The AP would have to manage
and route a number of connections which might impede its performance. On the other hand, the
router’s multiple wireless streams (2 for 2.4 GHz and 3 for 5 GHz) would be better utilised when
multiple client adapters are connected. This could theoretically increase available bandwidth
fivefold. The only way to measure this impact would be to have multiple (50+) mobile devices
connected to the router’s AP in a controlled environment.

In wired HTTP tests, it was not possible to connect more than 235 clients, and in wireless
tests, the maximum was 150 clients. The initial suspicion was that this was due to the test
laptop’s operating system file descriptor limits. However, even after increasing the number of
OSX file descriptors, the tests failed at the same point. As JMeter tests managed successfully to
create 2000 connections, it is likely that this is a limitation of the Undertow client implementation
(multiple non-blocking threads and OS resource utilisation).

The ZScore’s server memory heap size never went over 250 MB during the testing, indicating
a relatively light memory usage and no significant memory leaks whilst handling the web traffic.
The maximum JVM CPU load during testing was 1.5% which, again, indicates a fairly low
server-side load.

The Mikrotik Queue size reached its peak at around 110 Mbps for 100 connected users.
This aligns with expectations as each connection had to download 1.9 MB of initial files, and
the limitation of a single wireless stream is 150 Mbps. It is essential to monitor the queue size
whenever the maximum throughput or the number of connected users changes significantly.

In a real-life situation, a Wi-Fi user’s experience will depend heavily on the performance
site’s wireless channel congestion. However, it is unlikely that the throughput will be much
worse than the testing data numbers due to the reasons described above.

A.5 Scalability Ramifications And Possible Solutions

From the ZScore web user’s perspective, two factors can impact the system’s performance the
most: the size of the data to push through the network, and the number of connected users. If
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it is assumed that Union Rose is a typical score and represents the data load used in the ZScore
system, then the number of connected users becomes critical for system scalability planning.
The system design discussion could be framed around the number of expected users (audience
members) as follows.

A.5.1 System Design For Up To 100 Wi-Fi Users

Based on the test results, current system architecture should handle 100 users connected over
Wi-Fi and going through the firewall with good performance.

Figure A.6: System architecture for up to 100 Wi-Fi users

A.5.2 System Design For 200 To ~500 Wi-Fi Users

For 200 connected Wi-Fi users, the typical required throughput would increase to around 400
Mbps. Although Mikrotik’s theoretical wireless throughput is much higher, the tests have shown
that additional wireless access points might be required to support this load effectively. Based
on the testing results, it could be extrapolated that for each additional 100 users, one more
wireless AP of similar specifications to the test AP is required. Alternatively, a more powerful
MU MIMO AP (such as Unifi UAP AC HD) could be used to cater for more than 100 users.
This expansion could be done until the router’s switch becomes a bottleneck. By extrapolating
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test results, it can be concluded that the current router could serve up to 500 users, which would
require 4 additional MIMO or 2-3 MU MIMO access points. A system design suggestion for up
to 200 connected Wi-Fi users is shown in Figure A.7.

Figure A.7: System design for up to 200 Wi-Fi users

Any additional AP needs to be connected to the router via an Ethernet cable for stability
and sufficient throughput. A shielded CAT 6e Ethernet cable would be a good choice for this
purpose, as it provides reduced interference and high throughput (up to 10 Gb). Furthermore,
CAT 6a can feed power over Ethernet (PoE) to AP if required. PoE would simplify system
installation, as it replaces conventional power cabling and allows for easier deployment of the
access points without the need for separate power outlets.

Additional APs should have similar specifications to hAP ac AP (MIMO 2x2 at 2.4 GHz
and 3x3 at 5 Ghz) or better in order to provide required throughput (e.g. Unifi AP AC PRO).
The additional AP should be set up with the same guest SSID as the router’s AP to simplify
the user connection procedure. In this design, there are no guarantees as to which access point
mobile devices will connect to. However, most modern Wi-Fi adapters have built-in algorithms
to choose an AP with the strongest signal.

A potential issue could arise for audience members positioned in the middle between two
access points with similar signal quality. In this case, a mobile device’s Wi-Fi adapter could
switch intermittently between the two access points. The switching process might take several
seconds, during which users’ interaction with the network would be interrupted. This would
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create issues for any continuous streaming (audio/video) and cause disruptions in the user
experience.

WebSocket and SSE clients should be able to reconnect when mobile devices rejoin the
network. Therefore, the ZScore server would synchronise the mobile device’s state upon
reconnection. Depending on the current content in the mobile device’s web browser, users
might not notice the AP switching at all. However, the web front end and server state update
logic should be designed with this problem in mind.

A.5.2.1 Wireless Mesh vs Multiple APs

Another option for the scenario above would be to deploy a wireless mesh solution. Mesh
systems automatically negotiate client connectivity between wireless nodes, providing a superior
network client switching logic. However, it is important to consider that with a wireless mesh
system, all network traffic is transmitted wirelessly between the mesh nodes, which could create
a throughput bottleneck on the router’s entry point.

On the other hand, network traffic coming from multiple wired APs can be split through
hardware switches, allowing for much higher aggregated bandwidth. Therefore, multiple APs
are a recommended solution where high network throughput is required.

Figure A.8: System design for 500 Wi-Fi users
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A.5.3 System Design For ~500 To ~1000 Wi-Fi Users

Assuming that the required bandwidth for 100 users is 200 Mbps, it becomes evident that a 1
Gbit router would not be able to cope with the typical network traffic as the number of connected
Wi-Fi users approaches 500. In this case, an enterprise grade 10 Gbit router or a router
providing independent Gigabit Ethernet ports (such as Mikrotik CCR1009-7G-1C-1S+PC) is
required (Figure A.8). Ordinarily, enterprise grade routers typically do not provide any extra
functionality, such as a built-in wireless AP. As a result, the complexity and cost of the system
design would increase when incorporating additional access points to cater to the increased
number of users.

A.5.4 System Design For 1000+ Wi-Fi Users

Tests have shown that the ZScore server can successfully handle up to 1500 connected users.
However, once the user number goes beyond this limit, the ZScore server becomes the bottleneck,
impacting performance. To address such a high load, the ZScore server’s design needs to be
modified. A possible solution is to run web servers in separate processes, and possibly on
multiple hosts, to distribute the load (Figure A.9). Implementing a load balancing proxy in
front of the web server instances can help marshal client connections efficiently. However, it is
important to validate the WebSocket functionality when using any connection proxying, as it
could impact the real-time communication between the clients and the server.

Figure A.9: System design for 1000+ Wi-Fi users
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If the number of users exceeds 2000, then relying on a single 10 Gbit router would not be
sufficient to handle the load, and a more comprehensive solution with multiple routers connected
via optical cables is required. At that point the cost and complexity of the system deployment
increase significantly.

A.6 Detailed Test Results

Latency Percentile
Test Id Client Type Connection type Firewall Client No Avg Min Max 90th 95th 99th
1 WebSocket Wired No 200 10 0 476 19 40 420
1 WebSocket Wired No 200 9 0 471 15 39 316
1 WebSocket Wired No 200 8 0 471 29 39 188
1 WebSocket Wired No 200 7 0 464 13 37 195
1 WebSocket Wired No 200 8 0 574 13 35 145

AVG 8 0 491 18 38 253

Table A.1: Test Case 1: Undertow WebSocket, Wired, No Firewall, 200 Clients

Latency Percentile
Test Id Client Type Connection type Firewall Client No Avg Min Max 90th 95th 99th
2 WebSocket Wired No 100 8 0 461 6 14 308
2 WebSocket Wired No 100 11 0 462 6 105 308
2 WebSocket Wired No 100 8 0 472 4 13 408
2 WebSocket Wired No 100 15 0 464 5 154 408
2 WebSocket Wired No 100 6 0 458 2 11 158

AVG 10 0 463 5 59 318

Table A.2: Test Case 2: Undertow WebSocket, Wired, No Firewall, 100 Clients

Latency Percentile
Test Id Client Type Connection type Firewall Client No Avg Min Max 90th 95th 99th
3 WebSocket Wired Yes 200 48 0 1044 260 401 726
3 WebSocket Wired Yes 200 39 0 841 141 365 460
3 WebSocket Wired Yes 200 39 0 960 50 361 570
3 WebSocket Wired Yes 200 39 0 791 41 363 692
3 WebSocket Wired Yes 200 35 0 702 77 339 508

AVG 40 0 868 114 366 591

Table A.3: Test Case 3: Undertow WebSocket, Wired, With Firewall, 200 Clients
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Latency Percentile
Test Id Client Type Connection type Firewall Client No Avg Min Max 90th 95th 99th
4 WebSocket Wired Yes 100 30 0 626 24 305 391
4 WebSocket Wired Yes 100 24 0 390 26 268 355
4 WebSocket Wired Yes 100 30 0 676 27 303 370
4 WebSocket Wired Yes 100 29 0 518 63 269 379
4 WebSocket Wired Yes 100 26 0 390 20 293 377

AVG 28 0 520 32 288 374

Table A.4: Test Case 4: Undertow WebSocket, Wired, With Firewall, 100 Clients

Latency Percentile
Test Id Client Type Connection type Firewall Client No Avg Min Max 90th 95th 99th
5 WebSocket Wireless Yes 200 54 0 979 162 527 727
5 WebSocket Wireless Yes 200 60 0 1755 352 493 864
5 WebSocket Wireless Yes 200 54 0 1610 176 512 734
5 WebSocket Wireless Yes 200 49 0 1285 164 443 711
5 WebSocket Wireless Yes 200 55 0 1232 181 481 836

AVG 54 0 1372 207 491 774

Table A.5: Test Case 5: Undertow WebSocket, Wireless, With Firewall, 200 Clients

Latency Percentile
Test Id Client Type Connection type Firewall Client No Avg Min Max 90th 95th 99th
6 WebSocket Wireless Yes 100 46 0 745 133 413 582
6 WebSocket Wireless Yes 100 36 0 621 139 348 472
6 WebSocket Wireless Yes 100 41 0 823 135 431 478
6 WebSocket Wireless Yes 100 33 0 678 104 338 436
6 WebSocket Wireless Yes 100 41 0 514 193 388 482

AVG 39 0 676 141 384 490

Table A.6: Test Case 6: Undertow WebSocket, Wireless, With Firewall, 100 Clients

Latency Percentile
Test Id Client Type Connection type Firewall Client No Avg Min Max 90th 95th 99th
7 WebSocket Wireless No 200 55 0 1666 154 539 844
7 WebSocket Wireless No 200 56 0 1808 131 520 946
7 WebSocket Wireless No 200 64 0 1310 166 559 963
7 WebSocket Wireless No 200 60 0 1387 201 506 1002
7 WebSocket Wireless No 200 64 0 1653 204 520 953

AVG 60 0 1565 171 529 942

Table A.7: Test Case 7: Undertow WebSocket, Wireless, No Firewall, 200 Clients

Latency Percentile
Test Id Client Type Connection type Firewall Client No Avg Min Max 90th 95th 99th
8 WebSocket Wireless No 100 47 0 962 134 451 804
8 WebSocket Wireless No 100 37 0 1014 94 336 603
8 WebSocket Wireless No 100 46 0 881 137 464 868
8 WebSocket Wireless No 100 37 0 882 72 424 502
8 WebSocket Wireless No 100 29 0 831 117 315 461

AVG 39 0 914 111 398 648

Table A.8: Test Case 8: Undertow WebSocket, Wireless, No Firewall, 100 Clients
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Latency Percentile
Test Id Client Type Connection type Firewall Client No Avg Min Max 90th 95th 99th
9 HTTP Wired No 200 109 69 233 164 186 189
9 HTTP Wired No 200 109 69 229 167 196 229
9 HTTP Wired No 200 102 60 234 141 168 232
9 HTTP Wired No 200 118 63 459 148 268 311
9 HTTP Wired No 200 112 64 260 175 188 259

AVG 110 65 283 159 201 244

Table A.9: Test Case 9: Undertow HTTP, Wired, No Firewall, 200 Clients

Latency Percentile
Test Id Client Type Connection type Firewall Client No Avg Min Max 90th 95th 99th
10 HTTP Wired Yes 200 1025 182 4722 2095 3045 4675
10 HTTP Wired Yes 200 974 201 3678 2062 2788 3359
10 HTTP Wired Yes 200 982 190 3786 2173 2514 3592
10 HTTP Wired Yes 200 1271 187 6506 2541 4390 5993
10 HTTP Wired Yes 200 942 182 3553 2008 2841 3549

AVG 1039 188 4449 2176 3116 4234

Table A.10: Test Case 10: Undertow HTTP, Wired, With Firewall, 200 Clients

Latency Percentile
Test Id Client Type Connection type Firewall Client No Avg Min Max 90th 95th 99th
11 HTTP Wireless Yes 100 1335 273 4739 2657 3335 4739
11 HTTP Wireless Yes 100 2357 270 6209 4650 5151 6209
11 HTTP Wireless Yes 100 1134 251 3372 2155 2730 3372
11 HTTP Wireless Yes 100 1465 271 4492 2808 3108 4492
11 HTTP Wireless Yes 100 2073 322 9220 4521 6420 9220

AVG 1673 277 5606 3358 4149 5606

Table A.11: Test Case 11: Undertow HTTP, Wireless, With Firewall, 100 Clients

Latency Percentile
Test Id Client Type Connection type Firewall Client No Avg Min Max 90th 95th 99th
12 HTTP Wireless Yes 50 2190 318 5719 3935 5054 5719
12 HTTP Wireless Yes 50 895 274 2543 1662 1770 2543
12 HTTP Wireless Yes 50 1070 280 2129 1882 1919 2129
12 HTTP Wireless Yes 50 1570 304 5810 2952 3328 5810
12 HTTP Wireless Yes 50 3105 270 7162 5600 6292 7162

AVG 1766 289 4673 3206 3673 4673

Table A.12: Test Case 12: Undertow HTTP, Wireless, With Firewall, 50 Clients

Latency Percentile
Test Id Client Type Connection type Firewall Client No Avg Min Max 90th 95th 99th
13 HTTP Wireless No 100 2637 382 6299 4714 5348 6299
13 HTTP Wireless No 100 1000 241 3901 2091 2805 3901
13 HTTP Wireless No 100 4279 606 8522 6970 8154 8522
13 HTTP Wireless No 100 3051 258 8278 5514 6535 8278
13 HTTP Wireless No 100 2751 284 8623 4785 5553 8623

AVG 2744 354 7125 4815 5679 7125

Table A.13: Test Case 13: Undertow HTTP, Wireless, No Firewall, 100 Clients
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Latency Percentile
Test Id Client Type Connection type Firewall Client No Avg Min Max 90th 95th 99th
14 HTTP Wireless No 50 2112 257 5598 4869 4987 5598
14 HTTP Wireless No 50 1018 321 3014 1857 2338 3014
14 HTTP Wireless No 50 701 244 2987 1372 1576 2987
14 HTTP Wireless No 50 684 255 2892 1215 1321 2892
14 HTTP Wireless No 50 1014 271 5114 1814 1821 5114

AVG 1106 270 3921 2225 2409 3921

Table A.14: Test Case 14: Undertow HTTP, Wireless, No Firewall, 100 Clients

100 Users, Wired, No Firewall Latency milliseconds Percentile
Label Sample No KO Error % Average Min Max Median 90th 95th 99th
/htp-112 100 0 0.00% 3.46 2 6 3 4 4.95 5.99
/htp-113 100 0 0.00% 3.36 2 5 3 4 4 5
/htp-114 100 0 0.00% 3.32 2 5 3 4 4 4.99
/htp-115 100 0 0.00% 3.22 2 9 3 4 4 8.99
/htp-116 100 0 0.00% 2.97 2 4 3 4 4 4
/htp-117 100 0 0.00% 2.95 2 4 3 4 4 4
/htp-118 100 0 0.00% 2.93 2 5 3 4 4 4.99
/htp-119 100 0 0.00% 2.81 2 5 3 3 4 5
/htp-120 100 0 0.00% 2.76 2 5 3 4 4 4.99
/htp-121 100 0 0.00% 2.91 2 27 3 3 4 26.77
/htp-122 100 0 0.00% 2.71 2 8 3 3 4 7.96
/htp-123 100 0 0.00% 2.69 2 4 3 3 3 4
/htp-124 100 0 0.00% 2.63 2 4 3 3 4 4
/htp-125 100 0 0.00% 2.54 1 5 3 3 3 4.99
/htp-126 100 0 0.00% 2.63 1 12 2.5 3 3.95 11.93
/htp-127 100 0 0.00% 2.51 1 7 2 3 4 6.98
/htp-128 100 0 0.00% 2.54 1 6 2 3 3 6
/htp-129 100 0 0.00% 2.45 1 7 2 3 3 6.97
/htp-130 100 0 0.00% 2.51 1 4 2 3 3.95 4
/htp-131 100 0 0.00% 2.45 2 4 2 3 3 4
/htp-132 100 0 0.00% 2.46 2 3 2 3 3 3
/htp-133 100 0 0.00% 2.48 2 6 2 3 3.95 5.99
/htp-134 100 0 0.00% 2.4 2 5 2 3 3 5
Polling Avg 2300 0 0 2.77 2 7 3 3 4 7
/test.html-103 100 0 0.00% 19.52 14 62 19 23 24 62

Table A.15: Test Case 15: JMeter, Wired, No Firewall, 100 Clients
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500 Users, Wired, No Firewall Latency milliseconds Percentile
Label Sample No KO Error % Average Min Max Median 90th 95th 99th
/htp-112 500 0 0.00% 6.85 1 133 3 14 28.9 66.97
/htp-113 500 0 0.00% 6.64 1 142 3 13 24.95 69.9
/htp-114 500 0 0.00% 6.16 1 78 4 12 19.95 59.99
/htp-115 500 0 0.00% 6.41 2 211 3 12 17 52.95
/htp-116 500 0 0.00% 5.91 1 148 3 11 15.95 59.89
/htp-117 500 0 0.00% 5.87 1 156 3 11 19.95 49.96
/htp-118 500 0 0.00% 6.4 2 272 3 11 19 68.86
/htp-119 500 0 0.00% 5.86 1 167 3 12 17 48
/htp-120 500 0 0.00% 6.55 1 272 3 11 19.95 65.86
/htp-121 500 0 0.00% 7.39 1 316 3 13 26.9 68.89
/htp-122 500 0 0.00% 6.88 1 273 3 12 19.95 67.94
/htp-123 500 0 0.00% 6.8 1 321 3 12 22 61.84
/htp-124 500 0 0.00% 6.23 1 263 3 11.9 20.95 55.99
/htp-125 500 0 0.00% 5.54 1 79 3 13 18 41.99
/htp-126 500 0 0.00% 5.71 1 83 3 13 21 50.85
/htp-127 500 0 0.00% 5.64 1 139 3 12 17 56.97
/htp-128 500 0 0.00% 5.59 1 202 3 10 15 45.98
/htp-129 500 0 0.00% 5.58 1 108 3 11 18 44
/htp-130 500 0 0.00% 5.92 1 87 3 12 21.95 65.96
/htp-131 500 0 0.00% 6.29 1 136 3 11 21 62.99
/htp-132 500 0 0.00% 6.51 1 194 3 10.9 20.95 72.94
/htp-133 500 0 0.00% 6.58 1 302 3 10 21 51.98
/htp-134 500 0 0.00% 7.29 2 204 3 11 23.95 104.96
Polling Avg 11500 0 0 6.29 1 186 3 12 20 61
/test.html-103 500 0 0.00% 30.4 14 421 18 50 88 268

Table A.16: Test Case 16: JMeter, Wired, No Firewall, 500 Clients

1000 Users, Wired, No Firewall Latency milliseconds Percentile
Label Sample No KO Error % Average Min Max Median 90th 95th 99th
/htp-112 1000 0 0.00% 173.1 11 557 161 264.5 335.9 452.96
/htp-113 1000 0 0.00% 163.69 4 625 154 239 283.95 436.86
/htp-114 1000 0 0.00% 161.56 20 848 150 233 286.8 411.94
/htp-115 1000 0 0.00% 157.86 18 580 148 228 274.85 420.93
/htp-116 1000 0 0.00% 155.36 37 575 144 229.9 275.9 403.97
/htp-117 1000 0 0.00% 152.35 26 574 145 223 250.95 405.99
/htp-118 1000 0 0.00% 154.8 34 611 145 227.9 267.95 409.97
/htp-119 1000 0 0.00% 152.19 4 542 145 223 268.85 399.99
/htp-120 1000 0 0.00% 154.82 5 621 147 227.9 289.5 440.88
/htp-121 1000 0 0.00% 150.88 6 576 146 223 255.9 388.97
/htp-122 1000 0 0.00% 153.04 5 576 148 220 265.75 410.96
/htp-123 1000 0 0.00% 152.84 29 554 148 221.9 253.9 408.94
/htp-124 1000 0 0.00% 151.98 14 633 147 220 270.95 418.8
/htp-125 1000 0 0.00% 153.16 17 519 151 217 260.95 410.91
/htp-126 1000 0 0.00% 147.35 3 598 146 211.9 245.95 395.95
/htp-127 1000 0 0.00% 148.74 20 737 143.5 223 259.75 447.94
/htp-128 1000 0 0.00% 141.63 5 555 141 209 241.9 384.99
/htp-129 1000 0 0.00% 139.2 3 598 139 208 236 378.84
/htp-130 1000 0 0.00% 138.32 3 438 141 207.8 236.85 351.92
/htp-131 1000 0 0.00% 135.42 2 488 141 205.9 222.95 314.99
/htp-132 1000 0 0.00% 140.73 2 512 144.5 214.9 249.9 402.98
/htp-133 1000 0 0.00% 141.6 3 586 144 219.9 261.95 417.94
/htp-134 1000 0 0.00% 141.19 2 605 144.5 218.9 253.9 400.99
Polling Avg 23000 0 0 150.51 12 587 146 222 263 405
/test.html-103 1000 0 0.00% 2584.36 76 5338 2382 4982 5041 5246

Table A.17: Test Case 17: JMeter, Wired, No Firewall, 1000 Clients
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1500 Users, Wired, No Firewall Latency milliseconds Percentile
Label Sample No KO Error % Average Min Max Median 90th 95th 99th
/htp-112 1500 11 0.73% 430.89 3 17031 186.5 361.7 583.45 8433.16
/htp-113 1500 0 0.00% 275.61 14 16491 182 307 355.95 1316.99
/htp-114 1500 0 0.00% 213.16 4 1697 171 323 374 1309.99
/htp-115 1500 0 0.00% 213.58 4 1514 165 331.8 397 1307.99
/htp-116 1500 0 0.00% 197.58 3 1711 155 302 378.7 1233.98
/htp-117 1500 0 0.00% 170.9 4 1534 142 266.9 328 573.95
/htp-118 1500 0 0.00% 172.51 3 1697 138 249 325.95 1232.99
/htp-119 1500 0 0.00% 172.29 4 1710 133 251.8 324.95 1308
/htp-120 1500 0 0.00% 153.7 3 1704 127 228 282 1219.98
/htp-121 1500 0 0.00% 141.66 3 1315 124 219.9 274.9 407.9
/htp-122 1500 0 0.00% 141.12 3 1322 122 211.9 264.85 453.34
/htp-123 1500 0 0.00% 134.42 3 1518 120 201 248 339.95
/htp-124 1500 0 0.00% 134.92 4 1309 121 201 242.95 369.97
/htp-125 1500 0 0.00% 134.79 4 1307 123 197 230 396.82
/htp-126 1500 0 0.00% 134.91 4 1307 124 202.9 236.95 354
/htp-127 1500 0 0.00% 135.34 4 554 126 202.9 229.95 309
/htp-128 1500 0 0.00% 139.91 5 1221 132 213 233 322.98
/htp-129 1500 0 0.00% 144.49 3 1234 137 217 248.9 367.97
/htp-130 1500 0 0.00% 151.26 3 719 143 223 258 470.99
/htp-131 1500 0 0.00% 156.76 3 721 150 227 263 562.93
/htp-132 1500 0 0.00% 166.42 2 803 155 251 306.95 636.97
/htp-133 1500 0 0.00% 170.18 2 848 158 258 328.95 608.96
/htp-134 1500 0 0.00% 173.64 2 847 162 268 342.9 607.99
Polling Avg 34500 11 0 176.52 4 2614 143 248 307 1050
/test.html-103 1500 43 2.87% 7226.27 1 18070 7418 13530 16493 17008

Table A.18: Test Case 18: JMeter, Wired, No Firewall, 1500 Clients

100 Users, Wireless, With Firewall Latency milliseconds Percentile
Label Sample No KO Error % Average Min Max Median 90th 95th 99th
/htp-112 100 0 0.00% 25.36 6 453 13 51.5 64.7 450.3
/htp-113 100 0 0.00% 53.17 6 445 18 154.7 227.45 444.92
/htp-114 100 0 0.00% 53.6 9 474 19 129.5 334.55 473.8
/htp-115 100 0 0.00% 53.67 11 555 19 125.7 285.25 554.29
/htp-116 100 0 0.00% 50.73 8 501 20 153 212.55 499.55
/htp-117 100 0 0.00% 38.35 7 452 20 53 82.75 451.21
/htp-118 100 0 0.00% 33.38 7 207 21 68 143.85 207
/htp-119 100 0 0.00% 44.72 6 467 20 82.5 193.8 466.79
/htp-120 100 0 0.00% 53.61 8 446 23.5 144.5 181 445.38
/htp-121 100 0 0.00% 57.02 9 705 21.5 128.4 305 702.96
/htp-122 100 0 0.00% 38.16 8 683 22 57.5 101.6 678.71
/htp-123 100 0 0.00% 35.37 8 390 21 56.6 114.1 388.1
/htp-124 100 0 0.00% 41.18 9 374 21 94.5 147.6 372.22
/htp-125 100 0 0.00% 61.4 9 718 25 113.5 355.5 715.42
/htp-126 100 0 0.00% 42.33 7 372 30 67.9 103.75 371.26
/htp-127 100 0 0.00% 44.04 7 459 22 60.6 120.65 458.74
/htp-128 100 0 0.00% 51.71 9 622 20 102.9 236.25 620.59
/htp-129 100 0 0.00% 50.17 6 517 21 88.9 219.4 516.51
/htp-130 100 0 0.00% 50.38 8 675 23 74.9 213.95 673.05
/htp-131 100 0 0.00% 45.14 8 505 20 58.9 191.35 504.96
/htp-132 100 0 0.00% 39.39 7 637 20 49.7 88.8 635.11
/htp-133 100 0 0.00% 33.98 5 333 20 56.6 99.15 331.42
/htp-134 100 0 0.00% 49.71 7 640 19.5 120.6 246.3 637.48
Polling Avg 2300 0 0 45.50 8 506 21 91 186 504
/test.html-103 100 0 0.00% 573.08 121 3254 331 1157 2059 3252

Table A.19: Test Case 19: JMeter, Wireless, With Firewall, 100 Clients
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200 Users, Wireless, With Firewall Latency milliseconds Percentile
Label Sample No KO Error % Average Min Max Median 90th 95th 99th
/htp-112 200 0 0.00% 366.58 15 2502 193 723.9 1388.05 2311.04
/htp-113 200 0 0.00% 393.04 15 4551 176 1008.1 1282.05 3128.61
/htp-114 200 0 0.00% 364.12 18 1900 192.5 932 1122.5 1880.18
/htp-115 200 0 0.00% 349.76 13 1766 203.5 756.6 1191.25 1669.01
/htp-116 200 0 0.00% 366.02 13 1873 199.5 836.8 1171.4 1823.57
/htp-117 200 0 0.00% 368.83 14 3254 171 951.4 1301.45 2351.16
/htp-118 200 0 0.00% 377.87 12 2783 172.5 1019.8 1304.55 2761.02
/htp-119 200 0 0.00% 350.49 12 2446 174 858.4 1003.95 2393.43
/htp-120 200 0 0.00% 377.49 12 2074 208.5 960 1271.75 1864.42
/htp-121 200 0 0.00% 362.61 10 3235 196.5 742.9 1102.3 2105.69
/htp-122 200 0 0.00% 379.71 11 4271 193 878.1 1102.65 2955.25
/htp-123 200 0 0.00% 359.36 10 2338 171 910.8 1259.1 2100.58
/htp-124 200 0 0.00% 316.94 15 1716 159.5 683.9 1290.55 1696.66
/htp-125 200 0 0.00% 366.63 11 2406 169.5 973.1 1204.3 2255.53
/htp-126 200 0 0.00% 289.68 13 1879 148.5 646.3 1011.45 1646.47
/htp-127 200 0 0.00% 283.97 21 1763 148.5 666.5 916.9 1221.24
/htp-128 200 0 0.00% 277.5 15 1680 147.5 658.2 866.9 1510.51
/htp-129 200 0 0.00% 250.61 13 1787 132.5 625.3 841.65 1733.67
/htp-130 200 0 0.00% 239.68 12 1256 141.5 630.7 909.9 1089.9
/htp-131 200 0 0.00% 280.4 12 3121 135.5 603.8 1023 2139.75
/htp-132 200 0 0.00% 247.69 11 2349 124 655 848.15 1850.74
/htp-133 200 0 0.00% 260.35 11 2066 126.5 618.9 1158.3 1802.99
/htp-134 200 0 0.00% 245.23 13 1681 117.5 627.5 815.35 1660.39
Polling Avg 4600 0 0 324.98 13 2378 165 781 1104 1998
/test.html-103 200 0 0.00% 7712.39 460 18398 8300 13253 14035 16356

Table A.20: Test Case 20: JMeter, Wireless, With Firewall, 200 Clients

100 Users, Wireless, No Firewall Latency milliseconds Percentile
Label Sample No KO Error % Average Min Max Median 90th 95th 99th
/htp-112 100 0 0.00% 48.96 8 549 22 122 231.6 548.61
/htp-113 100 0 0.00% 91.41 8 1536 29 215.2 397.4 1528.32
/htp-114 100 0 0.00% 92.35 7 1329 36 224.7 474.5 1321.85
/htp-115 100 0 0.00% 80.63 7 959 38 203.8 518.95 955.29
/htp-116 100 0 0.00% 64.08 7 699 32 91.5 429.05 697.83
/htp-117 100 0 0.00% 64.47 7 871 33 113.2 246.55 869.02
/htp-118 100 0 0.00% 100.63 7 1196 36 409.8 568.4 1192.94
/htp-119 100 0 0.00% 71.46 7 1045 32 99.2 497.4 1042.65
/htp-120 100 0 0.00% 81.24 7 968 33.5 192.1 527.7 965.69
/htp-121 100 0 0.00% 60.7 6 544 32.5 75 374.45 543.82
/htp-122 100 0 0.00% 75.33 7 1050 34.5 127 502.85 1046.66
/htp-123 100 0 0.00% 80.61 5 984 34 188.7 524.55 979.95
/htp-124 100 0 0.00% 74.83 4 729 33 168 505.7 727.84
/htp-125 100 0 0.00% 94.36 4 681 36 371.4 551.9 680.16
/htp-126 100 0 0.00% 52.98 4 534 34.5 89.2 185.55 532.9
/htp-127 100 0 0.00% 76.04 4 967 36 145.1 366.8 965.39
/htp-128 100 0 0.00% 59.86 4 968 35 83.7 148.85 963.87
/htp-129 100 0 0.00% 56.99 5 559 33 71.2 220.1 558.95
/htp-130 100 0 0.00% 79.95 4 1535 33 147.4 443.95 1530.34
/htp-131 100 0 0.00% 92.06 5 967 33 190.2 531.75 966.94
/htp-132 100 0 0.00% 66.5 4 636 34 119.7 380.15 635.08
/htp-133 100 0 0.00% 57.79 5 541 33 87.4 368.75 540.65
/htp-134 100 0 0.00% 65.35 5 571 32.5 131.4 424.85 570.47
Polling Avg 2300 0 0 73.42 6 888 33 159 410 885
/test.html-103 100 0 0.00% 807 240 2196 661 1460 1590 2196

Table A.21: Test Case 21: JMeter, Wireless, No Firewall, 100 Clients
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200 Users, Wireless, No Firewall Latency milliseconds Percentile
Label Sample No KO Error % Average Min Max Median 90th 95th 99th
/htp-112 200 0 0.00% 346.25 9 2225 103 1049.7 1411.45 2184.22
/htp-113 200 0 0.00% 382.01 15 4290 119.5 965.9 1479.4 3460.38
/htp-114 200 0 0.00% 378.89 18 2912 116.5 1098.5 1614.95 2704.52
/htp-115 200 0 0.00% 335.24 19 3958 105 984 1353.2 2619.35
/htp-116 200 0 0.00% 327.52 16 2820 105.5 1001.5 1275.55 2384.91
/htp-117 200 0 0.00% 354.98 15 4894 100 1017.4 1227.05 2774.12
/htp-118 200 0 0.00% 331.85 22 3192 122.5 938.1 1244.6 2116.89
/htp-119 200 0 0.00% 438.9 14 4717 110 1178.1 1751.5 4664.63
/htp-120 200 0 0.00% 352.19 15 3592 106.5 959 1212.8 2518.44
/htp-121 200 0 0.00% 333.76 19 4177 103.5 963.8 1202.85 3108.28
/htp-122 200 0 0.00% 308.24 13 3629 114 715.8 1101.8 3391.06
/htp-123 200 0 0.00% 401.42 9 5894 109.5 1051.6 1667.7 5000.55
/htp-124 200 0 0.00% 316.66 8 4482 95.5 793.6 1366.65 3611.46
/htp-125 200 0 0.00% 288.8 7 2158 98 793.4 1119.95 1822.7
/htp-126 200 0 0.00% 319 6 5891 102 878.2 1123.25 2247.85
/htp-127 200 0 0.00% 290.3 8 2341 92 711.1 1309.4 2159.25
/htp-128 200 0 0.00% 259.7 9 3941 91 591.5 1098.3 3381.09
/htp-129 200 0 0.00% 299.42 6 3170 100.5 977.7 1173.4 2329.67
/htp-130 200 0 0.00% 272.29 5 3056 94.5 696 1094.95 2174.54
/htp-131 200 0 0.00% 265.19 6 3016 84 678.9 1249.4 2524.31
/htp-132 200 0 0.00% 243.72 5 3769 86.5 716.8 1046.65 2057.21
/htp-133 200 0 0.00% 247.42 5 2898 89.5 611.5 1087.75 2843.65
/htp-134 200 0 0.00% 186.91 4 3111 81 557.8 582.8 1956.43
Polling Avg 4600 0 0 316.55 11 3658 101 867 1252 2784
/test.html-103 200 0 0.00% 5697 267 14238 4675 11099 12383 13315

Table A.22: Test Case 22: JMeter, Wireless, No Firewall, 200 Clients
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Appendix B

Participants’ Feedback

B.1 Musician Feedback Form

Figure B.1: Musicians’ Feedback Form
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B.2 Musicians’ Feedback

B.2.1 Union Rose Workshop 23 Feb 2022
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B.2.2 Socket Dialogues Workshop 9 Jan 2023

227



228



229



B.2.3 Vexilla Musician Feedback 1 May 2018
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B.3 Audience Feedback Form

Figure B.2: Audience Feedback Form

B.4 Audience’s Feedback

B.4.1 Union Rose Workshop 23 Feb 2022
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B.4.2 Socket Dialogues Workshop Audience Feedback 4 Jul 2022
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B.4.3 Socket Dialogues Workshop, Audience Feedback 9 Jan 2023

238



239



240



B.4.4 Analysis Of The Audience Keyword Mention Frequency

Question: What were the most satisfying aspects of the performance?

Figure B.3: Audience feedback keyword analysis
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Appendix C

Flags Used In Vexilla

SFR Yugoslavia

SR Slovenia

SR Croatia

SR Serbia

SR Bosnia & Herzegovina

SR Montenegro
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SR Macedonia

EU

Bosnia & Herzegovina
(1998 — Now)

UK
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