
ZSCORE: A DISTRIBUTED SYSTEM FOR INTEGRATED MIXED MUSIC
COMPOSITION AND PERFORMANCE

Slavko Zagorac
Goldsmiths, University of London

slavko@zagorac.com

Patricia Alessandrini
Goldsmiths, University of London

p.alessandrini@gold.ac.uk

ABSTRACT

This paper proposes a distributed system design for mixed
ensemble music composition and performance of stave-
based dynamic scores. ZScore is a collection of third-party
and newly-developed components which aims to imple-
ment described networked notation solutions. The solution
scope includes complex notation authoring, reliable score
data distribution over a network to heterogeneous clients,
precise performance scheduling and dynamic rendering of
interactive scores. Taking the specification of optimal sys-
tem features as a starting point, this paper looks at suitable
solutions from other industries where high-throughput, low-
latency systems have been successfully implemented. It
presents the case for SVG-based notation representation,
its distribution over a reliable message-oriented middle-
ware and the innovative alternating pane layout design for
dynamic notation rendering. Finally, the paper describes
the current state of ZScore development and outcomes from
initial user trials. It concludes with future perspectives to-
wards realizing the underlying ambition behind this project:
to blur and thereby call into question the traditional bound-
aries between the roles of a composer, performer, conduc-
tor and audience through the effective utilization of cutting-
edge technology.

1. INTRODUCTION

During the last two decades, a number of software solu-
tions able to dynamically render music scores distributed
over a local or wide area network have been developed.
Amongst the available solutions are: InScore [1], Quin-
tet.net [2] and NetCanvas [3] which utilize MaxScore [4]
for notation, Bach Composer [5], Decibel ScorePlayer [6]
and dfscore [7]. Antescofo [8] offers integrated mixed en-
semble composition and performance notation while re-
cent Odot developments also allow for OpenMusic [9] no-
tation integration over a network. Some composers and
laptop orchestras in particular develop proprietary com-
position and performance software in programming envi-
ronments such as MaxMSP, Processing, SuperColider and
ChucK programming language. While all notation applica-
tions share common high level functional objectives, their
internal data models, score rendering versatility, system

Copyright: c©2018 Slavko Zagorac et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

dependencies, time synchronization strategy and modes of
communication can vary greatly.

Open Sound Control (OSC) messaging protocol has emer-
ged as the leading choice for data and control message
encoding and distribution between music notation appli-
cations over a computer network. The majority of OSC
implementations rely on User Datagram Protocol (UDP)
connectionless communication. InScore supports OSC na-
tively, while MaxMSP-based solutions use various third-
party OSC implementations. Quintet.net additionally uses
TCP protocol where reliable messaging is required. More
recently, several solutions which utilize Websocket point-
to-point connection technology have emerged, such as Net-
Canvas which displays notation generated in MaxScore and
dfscore which relies on Node.js server event distribution.

Odot framework middleware oriented messaging [9] is
a welcome step towards network services abstraction. It
wraps OSC protocol and provides transcoding to JSON,
SVG and S-Expressions, as well as bindings to Javascript
and Lisp. Landini [10] can also be classified as a form of
a middleware as it creates an additional layer between mu-
sic applications communicating over OSC. Landini imple-
ments a reliable, ordered message delivery protocol which
detects packet loss and attempt recovery. Furthermore, it
monitors network latency and applies OSC timing correc-
tions for more accurate event synchronization. Quintet.net
also provides proprietary strategies which deal with net-
work jitter and latency.

Most of the existing compositional tools allow for the
authoring of traditional symbolic notation. Support for
graphical notation, custom symbols, staves or extended per-
formance techniques, is commonly achieved by the layer-
ing of raster graphics on top of rendered symbolic notation.
The maximum number of parts allowed in a score is either
restricted explicitly or by the available application mem-
ory. Delivery of larger instrumentation, such as a full-sized
orchestra, remains a significant challenge in all networked
notation systems. Scores are typically composed off-line
in a proprietary data model. If required, they are converted
to one of the common notation formats for sharing with
other notation applications. Currently, there is no clear
winner between competing symbolic notation formats such
as GUIDO, JMSL or MusicXML. Real-time notation gen-
eration and distribution is well supported, however, com-
munication between heterogeneous applications normally
requires transcoding of the native data models to OSC on
all participating nodes [3].

For time synchronization between network nodes nota-

mailto:slavko@zagorac.com
p.alessandrini@gold.ac.uk
http://creativecommons.org/licenses/by/3.0/


tion applications typically either rely on the system clocks
or regular heartbeats sent from the master node. Network
time protocol (NTP) is used by default on most LANs for
system clocks synchronization, and by design, can cause
inaccuracies of up to 100 ms between computer clocks.
The application scheduling resolution which defines a min-
imum time interval between two scheduled events is nor-
mally defined in the milliseconds range.

2. DISTRIBUTED MUSIC COMPOSITION AND
PERFORMANCE MODEL

A distributed system consists of a number of components
which communicate and coordinate actions by passing mes-
sages over a computer network. A collection of indepen-
dent components appears as a single integrated system to
its users. The key goals of a distributed system include
transparency, openness, reliability, performance and scala-
bility. ZScore is a distributed notation system which ulti-
mately aims to provide the following:

• Reliable and scalable low latency messaging with
guaranteed data and control message delivery where
critical events are delivered and executed with hu-
manly imperceptible latency (sub 10ms compound
network and application latency)

• Accurate performance synchronization across all net-
worked nodes which includes the effects of network
latency and jitter

• Complex symbolic, graphical or algorithmic nota-
tion authoring for any instrumentation (e.g. full or-
chestra) and type (acoustic, digital, algorithmic etc.)

• Efficient score data encoding and segmentation strate-
gies which minimize transcoding and avoid packet
loss during network transport

• Dynamic and interactive networked notation views
on heterogeneous clients which allow for automated
notation update, animation, position tracking, con-
ducting signals and gestures display, event triggering
etc.

• Real-time capture of a conductor or a musician’s ges-
ture and integration with the score and performance
flow

A distributed composition and performance model en-
ables heterogeneous components to interact over a message-
oriented middleware (Figure 1).

2.1 Message-Oriented Middleware

High-throughput and low-latency messages are typically
delivered over a messaging middleware which isolates ap-
plication developers from the low level networking imple-
mentation detail and provides scalable and reliable mes-
sage delivery. Message-Oriented Middleware (MOM) is a
software or hardware infrastructure that provides message

Internet Browser

Composer’s
Notation Tool
Illustrator

 
 
Bach

MOM: reliable messaging, OSC/SBE/Protobuf
message time sync = f(latency and jitter)

Scheduling & 
Distribution
Engine

Conductor
Gesture 
Capture
(Wekinator)

Algorithmic
Composition
Engine

Musicians’ 
Score View
InScore

Musicians’ 
Score View
Internet Browsers

Digital
Sound Source
Supercollider

Audience
Score View
Animation

 
 
MaxScore

Video

MaxMSP

Figure 1: A distributed composition and performance sys-
tem over message-oriented middleware (MOM).

delivery between distributed system components. Exam-
ples of the messaging middleware in music notation sys-
tems include Odot [9] and Landini [10]. Both are built on
top of OSC protocol but offer different functionality: Odot
is conceived as a framework for flexible inter-application
communications, while Landini implements a reliable mes-
saging protocol and offers improved time synchronization
which takes network latency and jitter into account.

A common approach to make components with disparate
data models communicate with each other is to build adap-
ters which sit between the MOM client and each compo-
nent. The role of an adapter is to translate the network data
format (e.g. OSC) to the component’s native data model.
Language and platform neutral data serialization mecha-
nisms such as Google Protocol Buffers (protobuf) [11] can
make this process more flexible and streamlined. Humanly
readable protobuf data structure definitions can be rela-
tively easily imported and reused in other participating com-
ponents. The component message processing should ide-
ally be zero-copy and use preallocated, non-blocking data
structures with minimal thread switching.

A music application message data model needs to be de-
signed to allow for efficient data segmentation into chunks
of up to 1500 bytes, which is the standard network Max-
imum Transmission Unit (MTU) size. This avoids data
fragmentation during network transport and reduces the
chances of packet loss and reordering.

2.2 Reliable UDP Multicast

Multicast is a network data routing method where a mes-
sage is sent to a group of nodes from one or more sources.
It can be described as one-to-many or many-to-many rout-
ing. Client nodes have to subscribe to a Multicast group



to receive messages. Multicast protocols are almost al-
ways UDP and can be implemented at the application level.
However, it is preferable to use network assisted delivery
with Multicast enabled hardware routers where the appli-
cation publishes a single message and the network router
sends a copy of the message to all Multicast group mem-
bers. This can significantly reduce network bandwidth us-
age and the sender’s CPU load.

By default, UDP protocol does not guarantee message de-
livery. To resolve this issue, a number of reliable UDP
based Multicast protocols have been proposed and imple-
mented (PGM, TRDP, LBT-RM etc.). Unlike the TCP pro-
tocol, which sends an acknowledgment for each received
packet, most of the reliable UDP Multicast protocols track
ordered messages and only send a negative acknowledg-
ment (NAK) if they detect a missing message, which is a
much more efficient solution.

Several high-throughput, low-latency middleware libraries
which provide reliable NAK based UDP Multicast have re-
cently been released under the Open Source license. These
libraries, such as Aeron [12], are designed to deliver mil-
lions of messages per second (at 40 bytes per message
benchmark) with microsecond latencies. Aeron operates
at OSI layer 4 (Transport) and can be thought of as a TCP
replacement. Internally, it uses Simple Binary Encoding
(SBE) so it would need transcoding to OSC where required.
As OSC operates at OSI Layer 6 (Presentation), it would
naturally fit as a layer on top of Aaron.

A fully scalable and reliable distributed music notation
system should ideally incorporate the concepts mentioned
above and provide a middleware-like network layer ab-
straction for delivery of OSC (or similarly) encoded mes-
sages over a reliable NAK based UDP protocol. The choice
of UDP unicast or multicast protocol should depend on
the message type and routing mode (one-to-one or one-to-
many). The proposed middleware implementation should
also synchronize the timing of message execution on each
network node based on network latency and jitter.

2.3 Precise Network Time Synchronization

Precision Time Protocol (PTP) is similar to the NTP clock
synchronization protocol mentioned above. However, on
LAN networks, PTP can achieve sub-microsecond accu-
racy which is much more acceptable for networked nota-
tion software. The drawback is that PTP is not available
by default on most computers and needs to be installed
and configured on all network nodes. Open Source imple-
mentations PTPd and ptpd2is are available for all Unix-like
systems which includes OS X. Alternatively, there are nu-
merous PTP enabled hardware routers and switches which
can be used on LAN as master clocks.

For Internet wide performance, the most accurate master
clock that can be used is GPS time signal which has a theo-
retical accuracy of 14 nanoseconds. An example of music
system synchronization over a GPS signal is The Global
Metronome project [13]. It demonstrated that the combi-
nation of GPS for the master clock and NTP for LAN syn-
chronization can produce sub-millisecond network node
clock offsets. The main issue with The Global Metronome

is that it requires access to GPS signal and, therefore, a
clear view of the sky. The most convenient solution to
this problem is to place The Global Metronome externally,
link it via Ethernet cables to a LAN within a performance
venue, and use NTP to synchronize nodes on the network.

In many cases it might be more practical to synchronize
notation and event execution over a network in a tempo-
relative rather than absolute time. In the simplest of sce-
narios, the master application instance would send syn-
chronization events at regular intervals (e.g. every 96th
of a whole note) to all participating nodes in order to set
their internal tempo-relative position. However, excessive
synchronization events may cause network saturation, so
it would be more optimal to send master synchronization
events at a lower resolution (e.g. every beat or a bar) and
rely on network node system clocks for more granular sche-
duling and synchronization. To achieve acceptable syn-
chronization accuracy, this approach would need network
latency tracking per node and event timing adjustments
similar to the Landini [10] implementation.

2.4 SVG-based Score Representation

A composition data format produced by the score author-
ing tool needs to contain enough information to enable no-
tation rendering tools to reliably reproduce the intended
score layout and perform any time related operations. Se-
mantic data models, such as GUIDO or MusicXML, de-
fine both spatial and temporal context for notation ren-
dering. The problem with semantic representations is that
both the score authoring tool and all participating notation
rendering clients need to fully support the composer’s in-
tended notational style. Due to a vast variety of contempo-
rary composition styles, extended playing techniques and
many contemporary composers’ intentional disregard of
standardization, it would be very hard to create a generic
yet comprehensive semantic representation solution. As a
result, composers and performers are increasingly turning
towards systems which allow for constraint-free, graphical
notation representations.

Computers can process graphical information either in
raster or vector form. Raster format defines actual pixel
values that need to be displayed on the computer screen.
It is therefore fast to render, however, the file size can
grow significantly for higher resolution images, which is
not ideal for real-time network transport. Raster format
also does not scale optimally, for example, downscaling
can cause visible quality loss and it cannot be easily modi-
fied. Vector graphics on the other hand define relative x and
y positions, paths and attributes such as color, thickness,
fill, shape and curve which need to be interpreted by the
host application. Therefore, it is slower to render but much
more flexible to modify and scale. Scalable Vector Graph-
ics (SVG) is an XML-based vector image format with sup-
port for interactivity and animations. It is an open standard
supported by all major Internet browsers and many other
graphical applications.

As demonstrated by Gottfried [14], SVG format can be
successfully transcoded to OSC and this work has been in-
tegrated into Odot library. Adobe recently announced its



support for Node.js which could allow for the network in-
tegration of their SVG authoring tool, Adobe Illustrator.
SVG can be relatively easily extended with musical context
such as the score element hierarchy and temporal informa-
tion. The addition of time-space mapping allows for pro-
grammable synchronization and easier integration with no-
tation rendering software such as InScore. Similar to com-
puter font distribution, composers can create customized
SVG symbol libraries which can then be distributed to net-
worked clients and referenced in real-time scores. In this
way, the amount of data that needs to be transferred in real-
time can be significantly reduced.

Recently proposed music notation markup standards MNX
and related GMNX (MNX-generic) [15] incorporate link-
ing and time-space mapping of SVG graphics. Eventual
adoption of these standards will allow for rendering and
synchronization of SVG notation in standard Internet brows-
ers.

2.5 Dynamic Notation View Design

Unlike static notation, the dynamic view requires a care-
fully thought out refresh strategy which does not interfere
with the currently played notation, providing enough time
and space for musicians to prepare for the upcoming ma-
terial. The refresh strategy needs to take into account net-
work and rendering latency and ensure that notation up-
dates do not interfere with the score continuity.

A good dynamic score front end design should fully uti-
lize available screen real estate and provide a clear view of
the notation, available actions, and any additional informa-
tion musicians should be aware of during a performance.
If delivery to heterogeneous platforms is required, the no-
tation should be legible when scaled to any of the com-
mon screen aspect ratios (4:3, 16:9 and 16:10), screen sizes
(10 to 17in) and resolutions (1024x768 to 2880x1800). As
most of the common laptop types can only be used in the
horizontal screen orientation, it is preferable to optimize
notation layout for the horizontal screen viewing.

Dynamic scores with linear stave notation typically either
use the full page or stave update as in Richard Hoadleys
Calder’s Violin where the entire view is replaced with new
notation at once, or the continuous scroll as in Cat Hopes
Longing and Luciano Azzigottis Spam where the notation
moves continually from left to right. These strategies are
suitable for particular score types. The full page refresh
strategy does not provide much preparation time for musi-
cians, especially where performance continuity is required
at fast tempos. The continuous scroll strategy requires mu-
sicians to focus on a fixed point on the screen where the
notation crosses a vertical synchronization line, thus reduc-
ing their capacity to look ahead and prepare for upcoming
changes. It also requires continuous notation availability
so it is not ideal for generative or free-timing scores.

2.6 Alternating Pane Layout

The alternating pane notation strategy aims to resolve dy-
namic notation update issues by providing familiar left-to-
right and top-to-bottom reading direction and ample prepa-
ration time to musicians. The notation is stationary while

several animated objects are transposed on top, indicating
tempo, current position during performance and conduct-
ing gestures. Furthermore, it defines a clear time window
for upcoming notation generation and transport. Figure 2
shows the main sections of the alternating pane layout for a
full score and an instrumental part. In both cases, the nota-
tion view is divided into three main areas (panes). The top
pane contains information about the score (title, part name,
server status etc.), actionable buttons (for interaction with
the server or other peers) and signaling information (tempo
and start indicators). The main area, which takes approxi-
mately 80% of the screen real estate, is split into two nota-
tion panes, A and B. Each of the notation panes display an
equivalent of a full score page or a single part stave. The
notation is read left to right and top to bottom, the same as
with static paper scores.

info and action pane

notation 
pane A

notation 
pane B

(a) Full Score

info and action pane

notation 
pane A

notation 
pane B

(b) Part

Figure 2: Alternating pane layout

At any point of time during a performance, there is al-
ways one active and one preparatory pane. At the very
start, pane A is active and pane B is preparatory. When the
notation content in pane A is completed, pane B becomes
active and pane A preparatory. Once the musician’s focus
is firmly moved to pane B, pane A is updated with the up-
coming notation which is scheduled to be performed after
pane B notation content is completed. The dynamic up-
date process then continues in a similar fashion, following
an ABAB... sequence.

2.6.1 Time restrictions and allowances

There are several time restrictions that should be taken into
account when working with alternating notation panes. The
notation to be played after the active pane notation is com-
pleted needs to be generated, transferred and rendered in
the preparation pane by the time the active pane notation is
around half way through its duration (T/2). This is to allow
for performance continuity and preparation time for musi-
cians. Furthermore, the preparation pane notation should
only be refreshed once the active pane notation is played
for an appropriate time duration (T1, e.g. longer than one
beat) to allow for the musicians’ focus switch. This means
that the minimum time window for notation preparation
(generation, network transport, rendering etc.) is from the
active focus switch time (T1) to the active pane half du-
ration time (T/2). If, for example, the composition tempo
is 120 bpm and the active notation pane contains 5 bars
with 4/4 time signature, then the minimum notation prepa-
ration time window is 4.5 seconds (T1 = 0.5s, T/2 = 5s).
In most cases this would be sufficient time for the network
transfer of graphical stave files or generation of algorith-



mic notation. This also creates clear timeline rules for the
real-time notation generation and display when using alter-
nating pane layout.

3. ZSCORE CURRENT STATE

ZScore is a distributed networked notation system which
aims to satisfy requirements and implement the solutions
outlined in previous sections. Currently, it is a collection
of third-party and custom-made software. Composition au-
thoring is done in Adobe Illustrator extended with the new
set of JavaScript plugins. A proprietary Java engine was
developed for score distribution and synchronization over a
network, while InScore stand-alone clients are used for dy-
namic score rendering. The video “Composition for Net-
worked Ensembles” [16] explains ZScore’s main features
and user trials with Moscow Contemporary Music Ensem-
ble in March 2017.

3.1 Time-space mapping and synchronization

ZScore utilizes tempo-relative time synchronization descri-
bed in section 2.3 which takes advantage of InScore’s time-
space mapping functionality. In this mode, the master server
application sends regular synchronization messages carry-
ing the global tempo-relative position to all clients. Each
InScore client runs its internal clock and can synchronize
independently if given a tempo and time-space mapping
configuration. The master synchronization events effec-
tively override internal client clocks with the global tempo-
relative position and therefore ensure common time-space
positions across the clients. The synchronization message
frequency can be selected per composition and its choice
depends on tempos and rhythmical structures used in the
score.

Figure 3: An excerpt from “Ukodus” flute part with visible
Beat Lines used for time-space mapping.

The concepts of a Beat Line (BL, Figure 3) and Beat Di-
vision Unit (BDU) were introduced for easier time-space
mapping and event scheduling workflows. The BDU value
can be set to any fraction of a whole note (e.g. 1/8 which
is equivalent to a quaver duration) and represents the low-
est time resolution available for event scheduling and syn-
chronization. The current minimum BDU value is 1/96.
Beat Lines coincide with the bar beat onsets and contain
information about their spatial and time position. The BL
spatial position is set in terms of x and y coordinates on the

score page while their time position is expressed in a num-
ber of BDU units from the composition start. Beat Lines
are a form of proportional notation, however, there are no
restrictions regarding consecutive spatial Beat Line posi-
tioning so they can be set individually to suite the score
notation density. The time interval between Beat Lines is
measured in BDU units. For example, if the BDU value is
set to 1/8 then in a 4/4 bar each time interval between Beat
Lines is 2 BDU units and in 5/8 bar with the beat division
of (3 + 2)/8, the first beat consists of 3 and the second beat
of 2 BDU units. Beat Line spatial and time position is ex-
ported with the score data and is used in InScore client for
space-time synchronization.

3.2 Score Authoring

A vector graphics editor, Adobe Illustrator, is used for com-
position authoring at present. It allows for the unconstrain-
ed positioning of any notation type; export of SVG and
multiple raster formats; import and creation of user de-
fined symbol libraries; and is scriptable, which opens a
range of opportunities for functional extensions and po-
tential real-time network integration. Illustrator does not
provide any musical context by default, therefore, a num-
ber of improvements have been implemented for more ef-
ficient music composition flows and integration with the
networked software.

3.2.1 Hierarchical Layer Structure

Inspired by Gottfried [14], a hierarchical layer structure
was created to provide a musical context in Illustrator and
enable the automation of score creation and export. The
hierarchical layer elements can contain one or more child
layers (Figure 4). Currently, a Part layer has a one-to-one

Score Page Part BarStave

Figure 4: Hierarchical score layer entity relationships.

relationship to a Stave layer which contains all the graph-
ical data required to display an instrument staff. The Bar
layer contains all the graphical data required to render the
notation and logical data required for synchronization such
as tempo, time signature and beat line positions. The no-
tation layer contains all the symbolic or graphical data re-
quired to display bar notation and can contain arbitrary no-
tation types. The Illustrator layer structure is displayed in
the screen capture in Figure 5.

3.2.2 SVG Symbol library

To accelerate symbolic notation generation, a set of cus-
tom symbols based on open-source LilyPond notation font
were imported into Illustrator. Due to the flexibility of a
vector graphic editor, it was straight forward to extend the
library with custom symbols, such as different note head
types and sizes and instrument fingering charts etc. (Figure
6). For variable length continuous lines, such as crescendo
and decrescendo markings, a set of brushes were created
and imported into Illustrator. An example of mixed sym-
bolic and graphical notation created in Adobe Illustrator



Figure 5: Adobe Illustrator ZScore layer structure.

with the help of ZScore tools plugin and music symbol li-
braries is displayed in Figure 8.

Figure 6: Notation symbol library imported and extended
in Adobe Illustrator.

3.2.3 ZScore Tools JavaScript plugin

The set of JavaScript plugins were developed to speed up
composition workflows and automate score export. Cur-
rently ZScore Tools includes: Layer, Page, Bar and Export
plugins (Figure 7). The Layer plugin allows for Illustrator
layer structure definition, editing, XML import/export and
copying between one or more scores. Similarly, Page and
Bar plugins help create required pages and bars at specified
locations including any meter or tempo changes and Beat
Line positioning. Export plugin allows for the export of the
full score and parts in SVG or PNG graphical formats. In
order to provide accurate and automated space-time map-
ping, the export process also creates necessary data for In-
Score in the required format:

([Xstart, Xend[[Ystart, Yend[)([BDUstart, BDUend[)

where X and Y are space coordinates and BDU is the
number of units since the beginning of the piece. The ex-
ported values define two-dimensional rectangles between

Figure 7: ZScore Tools plugins for Adobe Illustrator .

two Beat Lines and the corresponding start / end tempo-
relative time. Additionally, the export process automati-
cally collates score meta data required by the score schedul-
ing engine. This information about time signatures, tempo
changes, other score events, BL positions and related BDU
values is currently stored in a csv (comma separated val-
ues) formatted file. An example of a score page authored
in Adobe Illustrator is displayed in Figure 8.

Figure 8: An example of the score page created in Adobe
Illustrator demonstrating mixed clef and notation styles.

3.3 Distribution and scheduling engine

The central hub in charge of scheduling and distributing
the score data over a network in real-time is the ZScore
server and management client written in Java programming
language. ZScore network management client (Figure 9)
can import and parse score definition data exported from
the ZScore Tools Illustrator plugin and submit to the server,
creating an internal representation of the score metadata.
The internal score metadata model mimics layer hierarchy
shown in Figure 4.

The server listens to notation client connections and sends
information about available parts to all connected clients.
When musicians select individual parts on their notation
client, the server associates the selected score part with the



client’s host address. From then on, all messages related to
a particular part will be routed to the associated client host.

The server internal scheduling resolution is 1 millisecond
with a maximum measured deviation of 0.8 milliseconds.
It translates local absolute time to a tempo-relative value
expressed in BDU units and evaluates any scheduled score
events accordingly. The server supports multiple transports
with different meters and tempos which allow for compo-
sitions and performances of polyrhythmic and polymetric
scores. Events can be preloaded in score data or dynam-
ically added during a performance according to the tim-
ing rules discussed in chapter 2.6.1. ZScore’s real-time
functionality is bounded by the timing rules, so any no-
tation generated during the performance needs to be avail-
able in the time window defined by T1 and T/2 boundaries.
The current server implementation utilizes LMAX Disrup-
tor [17] which allows for high throughput lock-free data
processing with microsecond latencies. At present time,
OSC messages are delivered over UDP unicast.

The network management client (Figure 9) can load and
start the score from any position defined in terms of the
Page, Bar and Beat number on all participating networked
clients. It also allows for tempo multiplication in the range
from 0.1 to 2.0 for rehearsal purposes. Tempo can also be
dynamically modified during the performance.

Figure 9: ZScore distribution and scheduling engine man-
agement client screen shot.

3.4 Dynamic notation rendering

InScore is currently used for dynamic notation rendering
due to its networking capabilities, native OSC support, time-
space mapping, built-in interactivity and scripting engine.
It also supports multiple graphical file formats, although
its SVG support depends on the underlying Qt library so
some features such as symbol referencing via the xref at-
tribute were not available at the time of the writing. To
work around this, all score pages were exported and dis-
tributed in PNG raster format.

Once the ZScore startup file is opened, all communica-
tion with the server can be done directly from InScore client.
The start-up file contains configuration for the alternating

pane layout and the set of JavaScript functions which han-
dle all interactive tasks. An example of the dynamic score
with alternating pane layout is presented in Figure 10. The
active notation pane is highlighted with red borders while
the preparatory pane is slightly dimmed. Several features
aiming to replace some of the conducting gestures have
been added. The signalling traffic light at the top left cor-
ner aims to draw the attention of the musicians and provide
an indication of the starting tempo. The animated position
line, visible as the light green line on the upbeat leading to
bar 28 (Figure 10), indicates the current real-time position
within the score. It also has the attached tempo indicator
ball which is visible as the red circle on top of the stave in
Figure 10. For ease of orientation, the actual starting posi-
tion is marked with a light purple line (on the first beat of
bar 28 in Figure 10). The starting position can be set to any
Beat Line from the network management client (Figure 9).
When the score performance is started in the network man-

Figure 10: InScore view of the cello part dynamic notation
in alternating pane layout.

agement client (Figure 9), the traffic light signal flashes in
the starting tempo frequency and the position line starts
moving from left to right, indicating the current position
on the screen. The attached tempo indicator ball starts sim-
ulating conductor signals with vertical movements calcu-
lated from the simplified pendulum motion formula where
the ictus plane is at the top of the stave. The current posi-
tion line always starts from the upbeat before the selected
starting position in order to mimic the familiar conductor
gesture on start. When the position line reaches the penul-
timate beat of the active pane stave, the preparatory pane
current position line will start from the upbeat at the same
time to provide notation view continuity.

3.5 User trials

In March 2017, a trial session was held with the Moscow
Contemporary Music Ensemble at Goldsmiths, University
of London [16] to test ZScore’s technical functionality and
user experience in a workshop situation. The piece Uko-
dus for flute, clarinet, cello and piano quartet was com-
posed by Slavko Zagorac for this occasion. A combina-



tion of laptops and tablets running both OS X and Win-
dows operating systems were used for the musicians’ front
ends while the Java scheduling engine and the management
client were hosted on OS X laptop. The musicians’ devices
were networked over the dedicated tri-band wireless hard-
ware router while the scheduling engine laptop was con-
nected directly to the router over the ethernet cable. The
maximum round trip latency recorded during the workshop
was 12 ms. Apart from some intermittent instability of the
notation clients on older Windows OS versions, there were
no significant technical issues during the performance.

The system setup was relatively time consuming as all
musicians’ devices needed software installation and WiFi
network configuration as well as the initial functional test-
ing. Due to the familiarity of the notation layout, these
highly skilled musicians were able to quickly grasp the
technical aspects of the system and perform the entire piece
without stopping on their first sight-reading attempt. The
mixed clef staves and spatial layout of the notation did not
require any additional explanations, nor did they present
any particular problems during the performance. The mu-
sicians feedback on the alternating pane layout usability
and overall system performance was positive and encour-
aging.

4. CONCLUSIONS AND FUTURE WORK

This successful user trial of the current ZScore implemen-
tation has reinforced the case for SVG-based complex no-
tation representation and the alternating pane layout dy-
namic notation view design. The downsides of the pro-
posed approach are SVG authoring complexity and the con-
siderable development effort required to enable distributed
system interoperability. The ZScore Tools Adobe Illus-
trator JavaScript plugins have significantly accelerated the
SVG authoring process while further planned automation
should make the composition process even more stream-
lined. The distributed system complexity can be encap-
sulated on the server side and within the client API im-
plementation, thereby simplifying the end user experience.
Future ZScore development plans include the reliable UDP
multicast middleware integration and SVG-based notation
authoring and rendering in standard Internet browsers, thus
enabling the utilization of any mobile device without any
additional software installation. The planned publication
of ZScore OSC API for score data scheduling and distri-
bution is expected to encourage collaboration and open the
system to third-party software integration. The machine
learning software Wekinator [18] integration would enable
conductor gesture capture and mapping to score events,
thereby allowing for humanized real-time tempo and dy-
namic changes. The existing beat tracker could be en-
hanced to provide a much richer representation of the con-
ductor gestures on musicians’ screens through animation
of its velocity, shape and color. Similarly, direct audience
participation and integration with the score decision logic
during the performance may be achieved through propri-
etary audience score views on mobile devices. This would
allow not only composers, but also conductors, perform-
ers and audience members to significantly impact the com-

position flow and even create new compositional material
through algorithmic functions. The expectation is that these
technical innovations may lead to new creative possibilities
in music composition and performance.

5. REFERENCES

[1] D. Fober, Y. Orlarey, and S. Letz, “Programming In-
teractive Music Scores with INScore,” in Proc. SMC
Sound and Music Computing conference, 2013, pp.
185–190.

[2] G. Hajdu, “Quintet.net: An Environment for Compos-
ing and Performing Music on the Internet,” Leonardo
Music Journal, vol. 38, pp. 23–30, 2005.

[3] S. James, C. Hope, L. Vickery, A. Wyatt, B. Carey,
X. Fu, and G. Hajdu, “Establishing connectivity be-
tween the existing networked music notation packages
Quintet.net, Decibel ScorePlayer and MaxScore,” in
Int. Conf. on New Tools for Music Notation and Repre-
sentation – TENOR 2017, 2017, pp. 171–181.

[4] G. Hajdu and N. Didkovsky, “MaxScore - Current
State of the Art,” in International Computer Music
Conference, 2012, pp. 156–162.

[5] A. Agostini and D. Ghisi, “Bach: An environment for
computer-aided composition in Max,” in International
Computer Music Conference, 2012, pp. 373–378.

[6] C. Hope, L. Vickery, A. Wyatt, and S. James, “The
Decibel ScorePlayer – a digital tool for reading graphic
notation,” in Int. Conf. on New Tools for Music Nota-
tion and Representation – TENOR 2015, 2015, pp. 59–
69.

[7] R. Constanzo, “Dfscore: networked notation soft-
ware,” last accessed: 29 Dec 2017. [Online].
Available: http://www.rodrigoconstanzo.com/dfscore/

[8] G. Burloiu, A. Cont, and C. Poncelet, “A visual frame-
work for dynamic mixed music notation,” Journal of
New Music Research, vol. 46, pp. 54–73, 2017.

[9] J. MacCallum, R. Gottfried, I. Rostovtsev, J. Bresson,
and A. Freed, “Dynamic Message-Oriented Middle-
ware with Open Sound Control and Odot,” in Interna-
tional Computer Music Conference, 2015, pp. 58–65.

[10] J. Narveson and D. Trueman, “Landini: a network-
ing utility for wireless lan-based laptop ensembles,” in
SMC Sound and Music Computing conference, 2013,
pp. 309–316.

[11] Google, “Protocol Buffers (protobuf) documentation,”
last accessed: 29 Dec 2017. [Online]. Available:
https://developers.google.com/protocol-buffers

[12] M. Thompson, “[12] Aeron, messaging middleware
documentation,” last accessed: 29 Dec 2017. [Online].
Available: https://github.com/real-logic/aeron

http://www.rodrigoconstanzo.com/dfscore/
https://developers.google.com/protocol-buffers
https://github.com/real-logic/aeron


[13] R. Oda and R. Fiebrink, “The Global Metronome: Ab-
solute Tempo Sync For Networked Musical Perfor-
mance,” in Int. Conf. New Interfaces for Musical Ex-
pression, 2016, pp. 26–31.

[14] R. Gottfried, “SVG to OSC Transcoding: Towards A
Platform for Notational Praxis and Electronic Perfor-
mance,” in Int. Conf. on New Tools for Music Notation
and Representation – TENOR 2015, 2015, pp. 155–
162.

[15] W. M. N. C. Group, “MNX Draft Specification,”
last accessed: 29 Dec 2017. [Online]. Available:
https://w3c.github.io/mnx/

[16] S. Zagorac, “Composition for Networked Ensembles,”
last accessed: 29 Dec 2017. [Online]. Available:
https://youtu.be/ioqNP4qg6JQ

[17] LMAX, “Disruptor documentation,” last accessed: 29
Dec 2017. [Online]. Available: https://lmax-exchange.
github.io/disruptor/

[18] R. Fiebrink, “Wekinator: machine learning software,”
last accessed: 29 Dec 2017. [Online]. Available:
http://www.wekinator.org/

https://w3c.github.io/mnx/
https://youtu.be/ioqNP4qg6JQ
https://lmax-exchange.github.io/disruptor/
https://lmax-exchange.github.io/disruptor/
http://www.wekinator.org/

	 1. Introduction
	 2. Distributed Music Composition and Performance Model
	2.1 Message-Oriented Middleware
	2.2 Reliable UDP Multicast
	2.3 Precise Network Time Synchronization
	2.4 SVG-based Score Representation
	2.5 Dynamic Notation View Design
	2.6 Alternating Pane Layout
	2.6.1 Time restrictions and allowances


	 3. ZScore Current State
	3.1 Time-space mapping and synchronization
	3.2 Score Authoring
	3.2.1 Hierarchical Layer Structure
	3.2.2 SVG Symbol library
	3.2.3 ZScore Tools JavaScript plugin

	3.3 Distribution and scheduling engine
	3.4 Dynamic notation rendering
	3.5 User trials

	 4. Conclusions and Future Work
	 5. References

