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Abstract

Using a single RGB camera to obtain accurate body dimensions rather than measuring

these manually or via more complex multi-camera or more expensive 3D scanners, has

a high application potential for the apparel industry.

In this thesis, a system that estimates upper human body measurements using a set

of computer vision and machine learning techniques. The main steps involve: (1) using

a portable camera; (2) improving image quality; (3) isolating the human body from the

surrounding environment; (4) performing a calibration step; (5) extracting body features

from the image; (6) indicating markers on the image; (7) producing refined final results.

In this research, a unique geometric shape is favored, namely the ellipse, to approxi-

mate human body main cross sections. We focus on the upper body horizontal slices

(i.e. from head to hips) which, we show, can be well represented by varying an ellipse’s

eccentricity, this per individual. Then, evaluating each fitted ellipse’s perimeter allows us

to obtain better results than the current state-of-the-art for use in the fashion and online

retail industry.

In our study, I selected a set of two equations, out of many other possible choices, to

best estimate upper human body horizontal cross sections via perimeters of fitted ellipses.

In this study, I experimented with the system on a diverse sample of 78 participants.

The results for the upper human body measurements in comparison to the traditional

manual method of tape measurements, when used as a reference, show ±1cm average

differences, sufficient for many applications, including online retail.
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Chapter 1

Introduction

The main purpose of this study is to develop a state-of-the-art lightweight measurement

system that is capable of extracting anthropometric measurements from multiple-depth

images to capture the surface of the upper human body with application in the apparel/-

fashion industry.

In this work, we seek to obtain a system which offers a number of key advantages

over current off-the-shelf available platforms: simplicity, accuracy, flexibility.

Simplicity is in relation to our way of representing the human body as a series of

adaptable elliptic horizontal slices, which although not following all body details, is the

main shape favored by fashion designers, and well suited for most day-to-day clothing.

Accuracy is in term of the needs in the fashion sector to achieve results at least similar

to the main traditional measurements taken directly with tape. Flexibility is in term of

designing a system which, while remaining simple in its concepts, can evolve with the

progress made in technologies, such as provided by machine learning.

Underlying these goals, we implicitly take advantage of the symmetry of the human

body, with respect to a normal standing pose. In this work, the human body is represented

by a main vertical axis going through its center from a top highest (approximated) point

at the tip of the head (when using a frontal view). Limbs (arms and legs) are assumed
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symmetric and ellipses only need be fit to one (arm or leg). However, while limbs are

very well approximated by elliptic slices (again using a central approximate skeletal

axis for each limb), we focus in this work on the more challenging parts of the human

body: from the head down to the hips. With such a grounding in symmetry, we will

describe a practical system which combines recent machine learning for object and

contour localisation in images, together with more traditional computer vision techniques

to refine our results, and selection of best equations to calculate elliptic circumferences

in two main categories as a function of an ellipse’s elongation.

Online shopping platforms have been attracting many customers since they were

introduced mainly in the last decade. Customers can purchase any products or goods

anytime and anywhere without the need to physically go from store-to-store to find a

product or wait in a queue to check out. Furthermore, in the absence of person-to-person

interaction (for example due to the COVID-19 pandemic), state-of-the-art, self-service

contactless body measuring solutions are needed, enabling a simple way to digitize

measurement capture so that made-to-measure businesses can easily operate online.

Existing body measurement systems available on portable devices (such as smart-

phones or tablets) are not able to satisfy both consumers and retailers due to a lack of

accuracy and robustness.

From previous research, a digital circumference anthropometric system was devel-

oped using only images (static views). Anthropometric dimension measurement based

on images has attracted attention due to its high potential for ease of use, portability,

and low-cost [19]. However, there are several drawbacks in existing software solutions.

There are significant errors between the direct (tape) measurement results and those

based on software, especially for upper human body circumferences such as for the

chest and waist. The problem emerges because there have not been a careful study of

which mathematical models to use to better represent upper human body circumference

anthropometric variables. Most existing approaches based on affordable consumer
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hardware, such as smartphones, heavily rely on user input. This implies that the user

needs to follow specific instructions to get the right measurements, such as performing

specific movements in front of the camera or standing still for different poses for specified

amounts of time.

1.1 A short Overview of Contactless body measuring solu-

tions

Non-contact human body measurements play an important role in surveillance, virtual fit-

ting, physical healthcare, and online business. Usually, before biometric

Fig. 1.1 A Sample of 3D body scanner into
the (TC)2 company’s database, [193, 68]

measurements1, we must obtain human

body models. The three-dimensional (3D)

body scanner and laser range scanner2

are existing biometric measurement tech-

nologies in the market that can provide ac-

curate human body reconstructions [85].

Although these technologies provide ac-

curate data, they are still very expensive,

with a range of $40,000 to $500,000, and,

also, to capture accurate information re-

quires consumers to stand with tight or

almost no clothes on in front of cameras

[178]. Therefore, they cannot be an every-

day choice for consumers in getting their

body measurements in a short amount of time. Nowadays, markerless motion capturing

1The technical terms for body measurements and calculations known as biometric measurements. It
related to metrics related to human characteristics

2The process of analysing an environment or real-world object to collect data on its shape and possibly
appearance.
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with multi-view systems are more and more capable and proficient at obtaining and

acquiring human body models because of the efforts of scientists and researchers who

spent their time on finding quicker technology for capturing the human body and make

their life easier and save more time. However, this technology requires too much space

and is difficult to set up. Recent attempts by researchers provide better solutions for

capturing the human body measurements within seconds, by taking only two photos ,

from the front and side, or utilising a video (360-degree view) of consumers and devel-

oping a 3D model based on the measurements. Although this recent attempt still does

not provide accurate data in comparison to the 3D body scanner, it is a much easier

option for consumers to have with them every time they want. This recent attempt can

be installed on any smartphone within seconds and users are able to download it. We

can mention some of the applications as well as: 3DLookMe [1], Zalando [9]„ TechMed

[7], SizeStream (MeThreeSixty) [6], Esenca [3], PreSize [5] and VyoO [8]. Later on in

this thesis, we delve into several of these applications to investigate their accuracy and

reliability in comparison to state-of-the-art methods for measuring the human body.

1.2 Background and Motivation

Nowadays the young generation is preferring online shopping. A massive amount of

clothes is bought on the internet [69, 77, 157]. The huge number of product returns is a

major problem for online retailers. Customers often order the same clothing in different

sizes to choose the right size and send back the others. This causes significant costs for

the retailer and also has a huge negative impact on the environment.

According to National Retail Federation, the total value of return Goods in 2021 only

for the US, was a total of 761 billion dollars [82]. The return rate could be dramatically

reduced if customers had an easy way of obtaining anthropometric measurements. Of

course, there should be better understanding and communication between retailer and
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customers to have a consistent definition of the anthropometric measurements relevant

for selecting the size of the correct garment. Current approaches for analysing the

accurate 3D shape of the human body often require expensive hardware. Furthermore,

most of our software is not widely available, therefore it is not portable.

Additionally, by reducing the cost of returns, we can have significant beneficial

impacts on the environment. The fashion industry is the second most water-intensive

industry in the world, consuming approximately 79 billion cubic metres of water per year

[113]. Considering that 2,7 billion people are presently affected by water scarcity, this

stunning statistic becomes even more alarming [174]. This issue gets worse by the rapid

fashion industry’s insatiable thirst for water, while billions of people lack access to an

adequate water supply. To put this in perspective, it takes an outstanding 2,700 litres of

water to produce a typical cotton T-shirt, which is enough to sustain one individual for

900 days. We can contribute to a more sustainable future by addressing the high rate of

garment returns and implementing strategies to reduce them.

Most existing approaches based on affordable consumer hardware rely on user

support. This means that the user needs to follow specific instructions to get the right

measurements, such as performing specific motions in front of the camera or standing

still for a specified amount of time. Also, the privacy of such software in keeping the

user’s data is a big question mark.

With Gen Z - which makes up to 35% of the worldwide population [98] - now enter-

ing the workforce, uniform manufacturers and distributors must prepare for changing

customer demands. Almost 50% of Gen Z customers want products tailor-made to

their needs and taste according to IBM and the National Retail Federation [66]. Also,

according to Imran et al. [81], more than 90% believe that companies are responsible

to address environmental and social issues. With the help of advanced AI-powered

technology, businesses can design, and tailor items based on accurate size, fit, and

shape data for the Gen Z market. Consumers will be pleased not just with the garment
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they receive, but also with the beneficial changes that firms are making not only to the

environment, but also a more sustainable industry

Motivated by the current situation, we propose a simple, yet effective technique to

provide a state-of-the-art lightweight measurement system, for instance, based on a

smartphone, capable of extracting sufficiently accurate anthropometric measurements

to capture the relevant upper human body data, with applications in the apparel/fashion

sector. The primary objective of this research is to address the inherent challenges

in acquiring accurate body dimensions in the context of fashion technology, aiming to

offer valuable insights and solutions to the industry by utilising a single RGB camera

for precise measurements. This innovative approach, eliminating the need for manual

measurements and complex multi-camera or laser-based sensors, holds significant

potential for enhancing garment fit and design. Further details and hypotheses related

to this research will be elaborated upon in Chapter 3.

1.3 Problems and Solutions

This thesis will address problems and possible solutions such as the Mo-Cap system [4]

(including markerless), laser scanner (including 3D body scanner), smartphone body

scanning (advance machine learning and computer vision methods), and image-based

motion capture3 to capture human body measurements. The problems of and solutions

for constructing a 3D human body from a single pose and motion from images and video

will be investigated.

One of the main problems of capturing the human body from a single camera, instead

of using a stereo or multi-camera setup, is that the 3D information will not be available

directly, in particular, because of the depth inference from a single image, the systems

cannot predict the distance of the human body from the camera. However, it greatly

3Image Based Capture (IBC) is the process of capturing the human movement by using 2d tracking
systems.
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simplifies the process of data acquisition, also speeding up the process of human body

measurement, and it potentially allows both archived film and video footage and rushes

shot directly with the final production camera to be used.

By capturing the information on the human body in motion, we are potentially able to

find the missing data that the single image methods were not able to provide. However,

the process of estimating human body measurement will be much longer.

Fig. 1.2 The image on the left handside shows a single camera inorder to capture the
human body and the image on the right handside is a multistereo motion capture studio.
[116, 109]

Estimating the human pose, with the range of physiques and the variety of clothes

that the human wears and the deformability, are all a real challenge. Once the light

and camera viewpoints change, shadows and other variations in image appearance will

have effects. Therefore, the reliable information that is extracted from image features is

irrelevant.

Secondly, the complexity of the human body with the range of multiple degrees of

freedom can be another issue in motion in both the rigid and non-rigid parts of the body.

The part of the body which is observed under the shoulder girdle, will be able to be

captured only in T-pose. Also, as the body moves, with the impact of breathing, the body

expands and contracts. section 2.11 addresses these problems in more detail.
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In terms of orientation and limb positions to characterise pose, a simplistic skeletal

human body model usually requires between 30 and 60 parameters; therefore, the

inference should be taken in a high dimensional space of possible 3D configurations,

which makes the process yet more difficult [18].

With advanced research on machine learning, and computer vision, we can capture a

higher quality image of the human body for measurements. Also, localisation and object

detection are two core methods in deep learning which have been used in many existing

applications to detect the human body in photos or video footage that was taken with

any smartphone on any background. Furthermore, by creating a mathematical models

for different human body shape to estimate upper human body circumferences, we

can minimize the difference error between direct measurement and a software solution.

Therefore, by deeply researching and investigating the machine learning, computer

vision methods, and mathematical model we can improve the quality and accuracy of

the data captured of human body performance.

1.4 Overview

Chapter 2 – Literature Review: In this literature review chapter, we explore the current

state-of-the-art methods and technologies for human body measurement and evaluation,

with a focus on garment fit. We begin by tracing the history of human body measurement

techniques and the impact they have had on the fashion industry. We discuss garment

fit and its challenges, followed by an examination of linear methods, 3D body scanning,

motion capture systems, and smartphone body scanning technology. We review related

work in human body detection and pose estimation, related technologies, datasets,

and challenges associated with body measurement and pose estimation. Overall, this

chapter provides an in-depth overview of the subject, setting the stage for the proposed

software solution.
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Chapter 3 - Methodology: This chapter outlines the methodology for developing

this software solution to improve garment fit accuracy. It starts by stating the hypotheses

and objectives of the research, followed by the selection of relevant human body mea-

surements and techniques. The participants chosen for the research are limited to who

self identified as females between the ages of 18-45. The limitations of the research

are then discussed, along with the methods for data analysis, which include statistical

analysis, t-test and anova-test. The chapter concludes by summarizing the methodology

and emphasizing the approach used to achieve the research objectives and develop the

proposed software solution. Overall, this chapter provides a clear and well-structured

overview of the research methodology.

Chapter 4 - Experiments: This chapter examines experiments conducted on existing

fashion and entertainment applications for measuring human body measurements. The

chapter reviews the datasets used and describes the methods used to measure the

human body, including fashion and entertainment applications testing, RMPE, measuring

ruler, motion tracking for consoles and smartphones, PIFuHD, AR and deep learning-

based automatic human body measurement system, and human body measurements

using computer vision. The chapter evaluates each experiment’s ability to accurately

measure human body measurements and identifies the most effective method. The

results of the experiments can be used to inform the development of the software solution

proposed in this research project.

Chapter 5 - Body Detection using MobileNet SSD: This chapter provides an

overview of object detection algorithms for automatic human body detection from a

single image, with a focus on the MobileNet SSD method. It discusses the history

of object detection, challenges, and popular datasets. The chapter compares several

object detection techniques and presents findings on their effectiveness. It explains the

region of interest and bounding box extraction methods and proposes the MobileNet

SSD method for human body detection. The chapter also discusses the identification
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of body section names and differentiation of the upper and lower human body. Finally,

it concludes with a discussion of results, limitations, and implications for the proposed

software solution.

Chapter 6 - Image Corrections, Image Segmentation, Skin Detection, and Cam-

era Calibrations for Human Body Analysis: This chapter delves into two main aspects

of improving image-based data collection - image correction and camera calibration.

Initially, the chapter outlines a software solution that emphasizes image correction to

enhance the overall quality and appearance of uploaded images. It investigates two

methodologies for image segmentation, comparing their effectiveness. The optimal

method chosen is classical computer vision image segmentation. In this context, the

specifics of skin detection using various color spaces are explored, followed by the

detailed implementation of the skin detection algorithm. Experimental results comparing

images with plain and cluttered backgrounds are presented to validate the accuracy

of the segmentation process. Subsequently, section 6.3, titled "Camera Calibration",

underscores the necessity to ascertain the distance between the camera and the human

body for precise data acquisition. This section offers a comprehensive overview of

diverse calibration techniques, with a particular emphasis on the algorithm provided by

OpenCV. Research findings reveal that a distance ranging from 0.5 to 3 meters yields

the most reliable data.

Chapter 7 - Ellipse Equation: The Ellipse Equations chapter of the thesis focuses

on using ellipse-like approximations to accurately estimate human body circumferences.

The chapter evaluates six different elliptical mathematical models, integrates them into

the software, and presents the results of the study. The findings highlight the importance

of choosing the right mathematical model to improve the accuracy of measurements in

the human body. A fully trained system is developed that can choose the best ellipse

equation based on the human body shape. The chapter emphasizes the potential for
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further research in this area and concludes with a summary of the findings and their

implications for the proposed software solution.

Chapter 8 - Results and Discussion: This Chapter presents the results and discus-

sions of this research, where we aimed to develop a software solution for precise human

body measurements, taking into account variations in clothing, lighting, backgrounds,

distances, and body forms. The software showed good accuracy, especially with mean

errors of just 0.15 cm and 0.14 cm for shoulder and sleeve lengths, respectively. For

circumference measurements such as chest, bust, waist, and hips, the accuracy was

also strong, though the waist had a slightly higher error possibly due to loose clothes.

When compared to existing solutions, our software was better in terms of accuracy,

computational efficiency, and user-friendliness. In tests with 78 participants, the system

had an average difference of ±1 cm against regular tape measurements. Notably, the

software performed well in different backgrounds and lighting conditions. With potential

improvements like user tutorials, we hope to reduce the measurement difference to

around ±0.5 cm. In the end, our software offers a practical, cost-effective tool for the

apparel industry, making processes more efficient and reducing waste and returns.

Chapter 9 - Conclusion: This chapter summarizes the methodologies, experiments,

and outcomes from this computer science doctorate research, re-evaluating the primary

hypotheses. Additionally, it outlines potential avenues for future advancements in this

area of study.





Chapter 2

Literature Review

In this chapter, we provide a comprehensive overview of the current state-of-the-art

methods and technologies for human body measurement and evaluation, with a particular

focus on garment fit. We begin by tracing the history of human body measurement

techniques, highlighting the evolution of these methods over time and their impact on

the fashion industry.

Following this, we delve into the concept of garment fit and its importance in the

fashion industry. We discuss the various factors that contribute to garment fit, including

body shape and size, and explore the challenges associated with achieving a good fit.

This leads us to examine various technical aspects of body measurement.

We explore linear methods for body measurement, including manual methods such

as tape measurement and anthropometric methods. While these methods are widely

used, we also discuss the limitations of these methods and their relevance in the context

of modern technology.

We then move on to 3D body scanning technologies, which have become increasingly

popular in recent years due to their ability to provide highly accurate measurements of
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the human body. We discuss the various types of 3D scanning technologies available

and their respective strengths and weaknesses.

Another technology used in the field is motion capture systems, which are widely

used to capture human motion and create realistic 3D shapes. We discuss the various

components of a motion capture system and their role in capturing accurate motion data.

We also explore smartphone body scanning technology, which has emerged as

a promising alternative to traditional 3D scanning methods. We discuss the various

smartphone-based scanning apps available and their respective capabilities.

Moving on to related work in human body detection and pose estimation, we review

recent research in this field, including various methods for detecting and estimating

human pose and shape from images and videos. We also discuss related technologies

that can be used to improve the accuracy and usability of our proposed software solution.

Additionally, we provide an overview of related datasets, including publicly available

datasets of human body measurements and pose data. Finally, we examine the various

challenges associated with body measurement and pose estimation, including technical

challenges and challenges related to data privacy and ethical considerations.

Overall, this chapter provides a comprehensive overview of the current state-of-the-

art in human body measurement and evaluation, setting the stage for our proposed

software solution, and highlighting key findings and insights gained from our review of

the literature.

2.1 A Brief History

The retail and fashion sectors have come a long way to make shopping as easy as it is

today, but one area in which things appear to be growing more complicated with the time
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that has passed is the sizing of clothing items. All of these guidelines, which were made

with the intention of simplifying the process of selecting an appropriate outfit, frequently

have the opposite effect. So how did we get there? [164].

Measuring tapes as we know them today were initially developed in the early 19th

century. They were considered as revolutionary because they allowed tailors to make

accurate estimates of proportions between different body measures, which in turn led

to the creation of drafting systems like the standard shirt. Ready-to-wear was made

possible by the development of cutting equipment and then the sewing machine, both of

which were based on machine technology [123].

The rise of machine-made clothing, casual lifestyles, and shopping malls contributed

to the decrease of custom and made-to-order clothing in the 19th and 20th centuries.

True custom, on the other hand, was an art form that required a significant investment of

time and money. With a multitude of fittings that only a few were able to afford to buy.

The explosion of the fashion business over the past two decades has led to the

phenomenal expansion of mass-market stores. As consumers began purchasing ap-

parel online in the early 21st century, this business model produced a sizing and fit

monster, which resulted in $751 billion in returned items in the United States alone

last year, according to the National Retail Federation [82]. As a result of consumers’

frustration with the complication of online apparel shopping, fashion companies struggle

to comprehend what body types their customers have. Add to this an emphasis on

the comprehensiveness of size and the contribution of the industry to environmental

waste. Consequently, we are witnessing the return of the made-to-order business model.

Therefore, technological progress enables innovative enterprises to create individual

outfits based on the fit, body type, and performance of each customer.
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Later on in this section, the evolution of body measuring will be discussed. Figure 2.1

represents a timeline of the body measurements’ evolution with some key information

about the advantages and disadvantages of each of these technologies.

Fig. 2.1 The Evolution of body measurement [11].

2.1.1 Linear Methods

The accuracy of a customer’s measurements is solely dependent on the skill of the

individual using the measuring tape. It is both time-consuming and expensive to send

expert tailors to the homes of customers or to have them work in the store itself. If

a company wants to expand this process, they will need to hire a large number of

tailors both nationally and internationally. Not only would this be prohibitively expensive,

but it will also result in measurement standards that are inconsistent. Even the most

experienced professional is unable to consistently achieve perfect precision in their work.

Some businesses demand that clients take their own measurements and have

integrated drawn-out video tutorials or written guidance into the purchasing process in

order to help them do so. On the other hand, these methods assume that the customer

will have access to a measuring tape at home and will be able to gather the knowledge
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necessary to properly employ it. This results in a significant margin of error and, of

course increase the return rates.

Made to measure and bespoke clothing companies are increasingly turning to the

use of more advanced technologies in order to help optimise costs, time, and efficiency,

and to provide a better experience for their customers. This is in response to the growing

demand for custom-fit clothing.

2.1.2 3D Body Scanning Technology

The purpose of a 3D body scanner is to produce an accurate rendering of an individual’s

entire body in a 3D environment. The end product is a particular three-dimensional

model that shows the exact form of the body and includes specific information regarding

body measurements, posture analysis, and numerous features of the human body.

These technologies typically look like a closed booth, which is a cabin equipped with

a number of cameras and sensors to capture an individual’s full body. The customer

must remain motionless while holding the same position during the whole scanning

process while standing in the centre of the cabin. "Stitching" the photos together is the

process that the 3D software does to assemble the final 3D model.

Sophisticated scanners can offer data for hundreds of measurements and are used

not only in the fashion industry but also in fitness, healthcare, 3D printers, and many

more domains.

Because of their size and the materials they are made of, today’s physical 3D body

scanners are rather bulky. Furthermore, these scanners still require the client to be

physically present, which results in unnecessary travel time and costs. As was indicated

in the previous chapters, the cost of a 3D scanner can be extremely expensive. The

higher the level of precision a machine can achieve, the higher its price. A minor

movement on the part of a human during the scanning process might cause a loss of
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Fig. 2.2 3D Scanning booth [2]

accuracy of several millimetres, making the scan not acceptable. As a result, individuals

are required to remain still during the process. The sensors used in 3D body scanners

are extremely sensitive and react differently depending on the temperature, lighting, and

the duration of time. The challenge of accurately adapting all of these relatively minor

distortions is a difficult one [12].

2.1.3 Motion Capture System

Motion capture systems is the process of tracking the human body of live movement,

and processing this information either live or by recording. The results is a specific 3D

data model that shows the human body movements and provide skeleton with including

details data for human body pose estimation.

These technologies require of a studio equipped with approximately 60 motion

capture cameras. These cameras will record each and every aspect of the human body’s

performance and then translate it to the character avatar in real time. In addition, the
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individual who is going to execute particular movements in front of the camera needs to

wear a suit that has approximately 36 markers placed all over the body.

This technology is used in many different fields ranging from military implementation

to medical application to entertainment. This technology is been used only in few

research studies in fashion industry for the purpose of the human body measurements

and is been barely used in real life applications. However, this technology can offer

so many valuable data in the fashion industry businesses such as 3D model. Also,

this technology can be used in technologies such as Kinect, Virtual Reality (VR) and

Augmented Reality (AR).

In the early stages of our research, we considered using motion capture (MoCap) as

a potential tool. However, after careful evaluation, we found that while MoCap excels in

pose estimation, it may not be the most reliable option for measuring precise human body

dimensions. As a result, we decided to rule out this technique and explore alternative

methods better suited to our research objectives.

2.1.4 Smartphone Body Scanning

The next generation of mobile scanning solutions has been enabled by the advance-

ment of AI-powered technologies like deep learning and computer vision. In order to

determine human body dimensions in seconds or minutes, the majority of body scanning

solutions require customers to submit multiple photographs. This new technology offers

substantial benefits to clients, including a shorter period of time required to obtain their

measurements, more portability, and cheaper costs.

"AI and machine learning are transforming the fashion industry, enabling

faster, more accurate and efficient clothing design and production. Automated

body shape detection and size recognition are helping brands to better
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understand customer preferences, and reduce time and cost to market" -

Patrick Schwerdtfeger, Forbes.

Furthermore, the advancement of this technology enables the customer to digitally

measure themselves wherever they decide to. Additionally, smartphone scanners can

obtain information from the human body and provide dress measurements for the

consumers and also create a 3D model of each specific consumer on the basis of the

data that was obtained through mobile body scanning.

This innovative technology enables the consumer to digitally measure themselves

anywhere they desire, allowing made-to-measure businesses to meet the customer’s

requirements while saving time and money. Moreover, despite the existence of 3D body

scanners, this technology can measure people while they are wearing clothes, which

makes it even much more handy and convenient to use than it already is.

The ability to provide instant access to additional, valuable data points for each

consumer beyond just their measurements alone is one of the innovations that mobile

body scanning technology brings to organisations in the modern fashion industry. This

capability is one of the benefits of mobile body scanning technology. It is possible to

segment both 3D models (avatars) and body form data in a variety of ways, such as by

location, height, gender, race, and age.

With the aid of this new advanced technology, extensive customer profiles will be

built based on measurement and shape data, providing made-to-measure firms with

fresh customer insights and paving the way for a new age of custom-driven fashion.
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2.2 Garment Fit

The theory of garment fit is the understanding of the relationship between the human

body and the garment [42, 29]. Apparel fit is the relationship of the human body to the

garment.

The fit was affected by a number of different elements. The most crucial factor

is comfort, followed closely by the way the garment looks. Garment fit analysis is a

procedure that evaluates the look, the wearer’s feeling of comfort, and the garment’s

placement on the body. This process is used to determine the relationship that exists

between apparel and the human body. It is important to perform fit analysis in order

to achieve a good and accurate fit, as well as client satisfaction and acceptable style

lines. Researchers have developed a method for visual analysis of clothing on the body,

ways to judge the appropriateness of clothing, based on the responses from expert

judges on the wearer’s subjective perception of the garment and apparel. This method

was developed on the basis of responses from expert judges on the wearer’s subjective

perception of the garment and apparel. Elements of fit include visual fit, physiological

comfort, and physical comfort, all of which can be categorised as comfort. The aesthetic

fit is evaluated by professional panels according to fit criteria as well as the comfort

assessment based on the users’ perceptions and preferences.

Comfort is one of the most important factors in clothing design. A pleasant state of

physical and physiological harmony between the environment and human being. Cheng

et al. [50], Slater [156] provided a definition of comfort, which is elaborated upon in the

following three sections: To begin, the aesthetic appearance of the garment plays a

significant role in the level of psychological comfort it provides. This includes factors

such as appropriate fit, appropriateness for the occasion, flattering garment style, body

image cathexis and fashion, and other psychological factors that affect comfort. Second,

the physiological comfort of a person is dependent on the way in which the parts of the
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body and the clothing interact with one another mechanically. The "global feeling" about

the garment and "the local feel" of the cloth against the skin are the two most important

things to take into consideration [99]. Pressure comfort, which might include a feeling

of tightness or heaviness, is related to global sensation. The term "local feel" refers to

the sensations experienced by touch, such as roughness and itching. The last factor

that contributes to physical comfort is the contact that occurs between a part of the body

and the clothes that is worn. While physiological comfort is associated with the skin,

physical comfort refers to aspects of the body such as size, posture, movement, and

dimensions. According to Ashdown and Dunne [30], the fit of a garment is the result of

interactions between a number of different aspects, including as the size of the garment,

its dimensions, its drape, and the proportions and posture of the person wearing the

garment.

The visual fit is yet another element of the fit. According to Erwin and Kinchen (1964),

there are five primary components that make up visual fit: set, line, balance, grain,

and ease. A good set is when the garment drapes about the body without creating

unattractive wrinkles and the lines of the garment follow the contours of the body to

create an attractive shape. A piece of clothing that is balanced both front to back and

side to side might be indicated by its symmetrical design. Last but not least, the ease of

movement, the ease of use as an additional fabric required for comfort, and a style that

extends beyond body measurement should run parallel to the centre of the back and

front of the grain. It is essential that a garment have enough fitting ease in order to fulfil

the functions of being comfortable and allowing for movement. Defining the fit ease of a

garment is especially significant due to the fact that both the wearer’s bodily comfort and

their desired style have an effect on the garment (visual fit) at the same time [158].
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2.2.1 Female body Landmarks and body shape

For basic pattern development to secure accurate measurements, it is clear, according

to Bye et al. [43], that consistent body landmarks as well as linear point and volumetric

circumferences are essential. Anatomical points are commonly used as landmarks for

garment pattern development. Corresponding to the anatomical points there are 21

key landmarks [61]. Figure 2.3 shows all the 21 key critical points over the figure of the

human body.

Fig. 2.3 Key body Landmarks and Critical Anatomical Points by Fan et al. [61]. Im-
age courtesy of https://depositphotos.com/171890380/stock-illustration-woman-body-
measurement-chart-scheme.html

As discussed in section 2.2, it is essential to understand the relationship between

the human body and the garment in order to have good garment fit. Therefore, to have a

good garment fit, first, we need to understand the human body landmarks well before
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Fig. 2.4 Classifying the female body types. Image courtesy of
http://www.michaelajedinak.com

starting the process of garmenting. In the next paragraph, we are investigating the key

anatomical points.

2.2.1.1 The International Organization for Standardization

The International Organization for Standardization (ISO) is a worldwide federation of

national standards bodies (ISO member bodies). The first of a series which deal with the

federation and generation of anthropometric measurements, shape profiles, the creation

sizes, and their application in the field of clothing is the international standards [13–15].

This section provides information about anthropometric measurements for females which

can be used as a basis for the creation of physical and digital anthropometric databases.

The list of measurements in this section is intended to help as a guide for the apparel

(fashion) industry and those who are required to apply their knowledge to choose the

population market segment and to develop size and shape profiles for the development

of patterns of all garment types. Over 70 measurements have been collected. Most of

them are from ISO 8559-1, and there is information from human body landmark points,

volumetric circumferences, and linear methods. The upper-body information will be

investigated for this research. More information about it can be found in section 3.2.
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To take anthropometric measurements of the human body, the list will provide a guide

on how to take the measurements of the human body, as well as information about fit

mannequin manufacturers and clothing product development teams on the principle of

measurement and their underlying anatomical and anthropometrical bases. The full list

of measurements can be found in Figure C.2, Figure C.3, Figure C.4.

2.2.2 Garment Fit and Body Movement

2.2.2.1 Ease and Movement

Body movement change analysis and body movement analysis are the most prominent

topics of research on ease allowance. Body movement analysis is one of the effective

and efficient tools for the study of ease. Regarding the construction and elongation of

clothing, it is necessary to examine the construction and elongation of each individual

body part in order to properly identify the regions where ease is required. Using body

movement analysis, one may estimate clothing comfort [80]. On the basis of Huck et al.

[80], after analysing the total variations in back length, the required crotch ease in a

one-piece protective garment was determined for a variety of active postures. In order to

calculate the ease quantities, it is necessary to simultaneously analyse both the changes

in body measurement and the changes in body movement. Choi and Ashdown [52]

was able to distinguish the pants that provided the ideal level of comfort by applying

measurements of changes in the lower body surface. The measurement around the

waist grew by eight percent, while the measurement around the hips climbed by seven

percent when compared to while the subject was standing.

Joint movements are the most essential element that has been identified in measure-

ment change analysis and body movement. Muscle start to work with the skeleton once

the joints move, when there is a movement in the body, there is a significant change in

the positions of different joints, thus this will cause body skin around the articulations to

be contracted and extended. Therefore, body skin change informs body measurement
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changes. Between clothing ease, joint movement and body measurements, there is

an interaction found by Wang et al. [172]. In the case study that they conducted, they

were particularly interested in the differences in human body measurements that were

generated by various joint movements. Up to twenty different active postures have been

measured as a result of this, including the joint motions of the knees, waist, hips, elbows,

and one of the main joints which is shoulders. Because of the movement of the joint, the

lengths and circumferences of the body around the joint were dramatically altered. The

primary body measurements were determined based on the subjects’ inactive postures.

A total of 18 measurements were assigned, including the following:

1. Circumference above the waistline: elbow girth, bust girth, forearm girth flexed,

and wrist girth

2. Width: horizontal shoulder and back width

3. Length above the waistline: arm length, under-armhole-point-to-waist length and

the 7th-cervical-to-waist length

4. Circumference below and with the waistline: knee girth, mid-thigh girth, calf girth,

ankle girth, hip girth, and waist girth

5. Length below and with the waistline: front and outside of the leg length, crotch

depth

The highest reported increases and decreases, respectively, were in the under arm-

hole, which was 8.4 centimetres, and the shoulder width, which was -15.75 centimetres.

As a result, they came to the conclusion that the essential body proportions for comfort-

able clothing are the width of the back, the circumference of the hip, the circumference

of the knee, and the length of the upper side.
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2.2.2.2 Ease and Sizing

In the vast majority of research studies on sizing clothing, ease amounts have not been

taken into account [42]. Regarding the sizing and grading of garments, LaBat and

Schofield prepared an insight into the relationship between the anthropometric data and

the pattern data in 2005. However, they did not use ease in their analysis because it was

not discussed [150]. It would appear that the same level of ease is applied to each and

every size in the range. The amount of ease varied from one size to the next but was

always one inch at the waist, two inches at the hips, and three inches at the bust. The

level of ease may also vary depending on the size of the body. Petrova and Ashdown

[126] has investigated the ease of pants in terms of their dependence on size and shape.

Ease quantities were estimated as a percentage of the relevant body measurements

after comparing body measurements to garment dimensions and finding a mismatch

between the two sets of data. The difference between these two measurements is

referred to as the "garment–body percent difference." The distance between a body scan

and a clothing item was measured with the help of a 3D scanner and technology for

creating a 3D body. According to the findings, increasing the size resulted in a decrease

in the proportion of the ease difference; however, there was no dependent form observed.

There were no significant changes in the percent differences between the groups, with

the exception of the hip circumference for size dependency. Their idea of comfort is

solely predicated on how well the garment visually fits the wearer; the user’s actual

sensations of comfort were not taken into consideration. It is generally agreed that the

ease of a garment is one of the most important factors in determining both comfort and

appropriateness of fit. As a consequence of this, there are a great deal of questions

regarding the relationship between size and comfort that remain unanswered.
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2.3 Linear Method

The technique of gathering linear measurements over the body surface with a tape mea-

sure and then utilising these measurements to draw the pattern based on approximation

and mathematical basis is what has traditionally been involved in pattern drafting in

the garment industry [121]. The linear measurements are obtained by calculating the

distance between two places on the body. Traditional measuring tools such as tape

measures, anthropometers, and callipers are utilised in the process of recording the

essential two-dimensional data related to a three-dimensional form.

Linear measures can be broken down into two categories: circumference and length.

One example of a point-to-point measurement is the length measurement, which is taken

from the shoulder to the wrist or elbow. This measurement is transferred to the design

without any adjustments, such as taking away or adding to it, just as it was when it was

obtained from the body. This procedure is straightforward and simple. A measuring

tape is used to take a circumference measurement by going around the body in a circle,

such as around the chest, the hips, the knees, and the waist. When it comes to the

measurements of ease, further tolerance is required. A circumferential ease allowance

is a component of any garment design system; however, the precise nature of this

allowance varies depending on the type of garment being constructed [Hulme, 1954]

[158].

Manual methods for measuring the body, such as tape measurements and manual

anthropometry, have been shown to have errors ranging from 1cm to 3cm [140, 44, 62].

Despite the fact that the linear technique has been widely used in a variety of research

with large sample sizes due to the fact that it is convenient, the linear technique is unable

to describe the three-dimensional character of the human body [43]. The length and

circumference of an object do not necessarily indicate its shape. For example, despite

the fact that all three human models have chests that are exactly the same, their overall
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shapes are different from one another. As a result, the majority of researchers’ efforts

are directed toward the scientific investigation of different methodologies for identifying

body form.

2.4 3D Body Scanning Technologies

In the fashion industry, the 3D body scanning system has become popular for consumers.

There are several significant issues with 3D body scanners and the three main problems

are cost, speed, and physical space requirements. There are many applications that

have been developed. With this strategy, sellers are able to keep their current consumers

by offering a value-added professional service, which in turn allows them to attract new

clients who demand a more personalised fit. The numerous varieties of 3D scanners

each come with their own set of advantages and qualities. While Table 2.1 provides an

overview of the most prominent 3D body scanner manufacturers, Table 2.2 contrasts

and compares the various types of 3D body scanners.
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Note: 3D scanner information.

Table 2.1 Major 3D scanner manufacturers [61].

Light-based system Laser-Based System Microwave-based system

Company Product Optical Method Company Product Optical Method Company Product Optical Method

Fujinon FM40SC Moire topography Cubic Cubic Laser Tech Intelifit Intelifit

Hamamatsu Body Line Scan- Infrared Tech Cyberware WB4, WBX Laser Tech

-ner C9035-02

DCTA Automate Phase Shift Hamano Voxelan Laser Tech

HEW1800

Hokuriku Conusette Infrared Tech Inspeck Capturor Photogrammetry

Loughborough LASS Photogrammetry Polhemus FastScan Laser Tech

University

RSI DigiScan 2000 Phase Shift TechMath VitusSmasrt Laser Tech

Poly U CubuCam Moire topography Human Solution Vitus LC Laser Tech

Vitus XXL

TC2 ImageTwin Phase Shift Vitronic Vitus Pro Laser Tech

Vitus Smart

Pedus

TELMAT SYMCAD Phase Shift

Wicks and TriForm Phase Shift

Wilson

Turing Turing C3D Phase Shift
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Table 2.2 Comparison between different type of 3D body scanner [61].

Scanning system Capture time Weight (kg) No. of Sensors Accuracy Room Condition

Cubic 1 sec 30 2 3mm Dark

Cyberware WB4 17 sec 450 8 5mm ×2mm Dark

Hamamatsu BodyLine 10 sec 250 8 ±0.5% Dark

HamanoVoxelan HEW1800 10-60 sec NA 8 ±2mm Dark

Hokuriku Conusette 16 sec 350 6 ±0.5% Dark

Inspeck Capturor 0.3 sec NA 2 4mm Dark

Polhemus FASTSCAN NA NA 2 1mm NA

Poly U CubiCAM 1/15000 ×3sec 8.6 1 4mm Normal

RSI DigiScan2000 1 sec NA 12 0.2mm NA

TELMAT SYMCAD 7.2 sec 50 NA ±2mm Dark

TC2ImageTwin 8 sec NA 6 5-60mm Dark

Vitronics VitusPro 8-20 sec NA 16 1-2mm Dark

Wicks and Wilson TriForm 12 sec m1120 28 ±2mm Dark
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Methods of 3D body scanning made the job of demonstrating easier, provided vital

3D data of the human body, and demonstrated the possibility of enhancing the garment’s

fit. However, these experimental research were limited to the examination of fundamental

garments. In the past two decades, 3D body scanning and its application in garment

product creation have received increased attention. Using body scanner technology, a

range of shapes and angles, as well as linear measurement data, including length, width,

and circumference, may now be generated and enhanced for use in constructing the

extraction pattern. To build ideal patterns and ensure a perfect fit, research has also

been conducted on the development of promising advanced 3D approaches. The visual

image of a 3D scanner can be rotated in order to observe a real human body shape on a

computer. The data consisting of point, shape, surface, body volume, and line produces

the most comprehensive form of any approach. In order to generate more precise

descriptive approaches than conventional linear methods, these new technologies have

the advantage of being less invasive and significantly faster than traditional methods

[158].

McKinney et al. [112] conduct research to study the relationships between body

patterns, body measurements, and the curves that are taken from body scans and used

to generate pants blocks. The ease amount has been investigated in order to analyse

the form of the pattern and the crotch shape of the body, as well as to research the

relationship between the pattern and the body. According to the findings, the ease

quantities vary in connection to body shape. As a result, in order to get a suitable fit, it is

essential to determine pattern shaping device locations, amounts, and their link to body

shape. The use of 3D scanning technology has allowed for an analysis of body shape,

which included the prominence of the bust, the location of the acromion, the shoulder

slope (angle), and the back curvature [185, 53]. It was determined that women’s body

shape information had a substantial effect on the fit of their bras when it was discovered

that there is a relationship between bra fit and the shape of a woman’s body. In a similar
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vein, research conducted by Shin and Istook [152] discovered that body form influences

garment fit issues discovered by Istook and Hwang [84]. In addition, similar issues might

arise when it comes to the fit of pants, which can be improved by employing body scan

information to compare the dimensions of different demographic body types. They also

discovered that even among people of the same type and size, different ethnic groups

showed significantly differences in body shape and fit problems. There were distinct

variations in physical size among the various ethnic groups [159].

Therefore, software and technologies such as laser scanning are the emerging

methods for clothing design and body scanning. The data from a body scan can be

converted into a digital format, allowing us to create specific designs for personal-fit

garments.

2.4.1 Laser Scanning

Laser Scanning is a technological process based on light-plane and triangulation con-

cepts. This technique uses laser beams to accurately and rapidly capture and measure

the three-dimensional surface of the human body. The laser serves as a light source, and

a piece of equipment known as the Couple Charged Device (CCD) scans the observed

region. This is accomplished by measuring the distance light has travelled on a body.

The 3D body scanner is capable of gathering as many as 60,000 points each second

[26]. Due to technological advancements, the services provided by these technologies

may now accommodate a wide variety of customers and project outcomes.

A laser scanner has a wide variety of applications, which were used to digitise the

human body in a recent research studies including anthropometric data collection [103]

ergonomic [104] and medical and sport training applications [95, 54] and also garment

fitting simulation [51].

Prior to scanning the human body, a laser beam must be projected across the entire

area of interest. Depending on the size of the human body part that needs to be captured,
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the number of laser sources may vary. Utilising the same triangulation technique, a range

of commercially available laser scanners can digitally examine the complete human

body. The fundamental difference is in the technique in which they capture and store

images, as well as the position of their laser beams. Other scanners, such as those

manufactured by Hamano Engineering, display vertical stripes over the body using two

rotatable mirrors. This is in contrast to the majority of scanners, which utilise the vertical

movement of the laser head and lay horizontal strips on the body. Such scanners are

manufactured by Creaform, Vitronic, Hamamatsu, and TechMatch, among others.

By blocking the subject’s head, we are able to acquire data of a higher quality, which

in turn allows us to cut scanning errors by up to half while simultaneously cutting scanning

time by thirty percent [56]. The time required for the laser scanning process ranges

anywhere from 5 to 20 seconds. The acquisition time for medical scanners is equal to

0.3 seconds, and their accuracy is equal to 0.2 millimetres, which is a clear indication

that their performance is better to that required by the clothing industry. The price of

body scanners, on the other hand, reflects the fact that the cost of these technologies is

not affordable for customers and that they remain quite pricey. The amount of money

that participants are required to spend on these technologies is a significant drawback,

as this significantly slows down the process of spreading this technology [125].

2.4.2 Structured Light Projection

According to Pribanić et al. [132] and Yu and Xu [183], 3D body scanners are generating

an exceptional research effort based on structured light projection. This can be seen in

both of these studies. Structured light has an advantage over laser scanning in that it

will allow for the capture of the shape in a single step, which will result in a significant

savings in the amount of time spent on the process of capturing the human body. Indeed,

projection of stripes takes approximately one second, whereas laser scanning can take

anywhere from five to twenty seconds. The quickness with which the subject is scanned
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contributes to the reduction in the total number of errors that are caused by the subject’s

uncontrolled movement. However, in order for it to function appropriately, you will need to

make use of many units, each of which will consist of CCD sensors and a light projector,

whenever the area that needs to be scanned is expansive. These scanners compete with

laser scanners despite the fact that natural light poses a significantly lower risk to the

user than the laser beam does. Additionally, because there are no moving components,

the product is simple to use, requires no maintenance, and has a low sensitivity to colour,

which are all additional advantages [125].

2.4.3 Image Processing

Image processing techniques are applied to create 3D representations of the human

body from digital photographs alone. In this section, we will examine the various image

processing application strategies.

2.4.3.1 Silhouettes Extraction

Multiple or single cameras, a single rotatable camera, or a platform can be used to

extract distinct silhouettes from a set of photos of a person using a database of captured

photographs. The photos are reportedly analysed in order to obtain 2D profiles, which,

when combined, result in the generation of the 3D model, as stated by D’Apuzzo [57].

The volumetric representation of the physical body is collected from the junction of the

visual cones described by Bottino and Laurentini [38]. This is accomplished by projecting

each silhouette onto the viewpoint that corresponds to it. This method can produce

disconnected protrusions or volumes that are not related to actual sections of the human

body, as described by Percoco [125]. This is due to the extremely complicated geometric

shape that is produced as a result of using this method.
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2.4.3.2 Photogrammetry

The collection and matching of numerous photographs in photogrammetry enables the

development of comprehensive 3D data, making photogrammetry an instantaneous 3D

imaging method. Due to their insensitivity to even minute and partial motions of the

human body, these methods are ideally suited for the digitisation of data relevant to the

human body. In order to develop and construct a model of the human body, the 3D data

of the participant can be collected either directly from the participant or by modifying a

generic model of a previous case.

According to Simmons [154], photogrammetry is not commonly used to scan the

surface of the human body because this duty is normally performed by scanners that

employ structured light or lasers. However, the deployment of photogrammetry would

result in a large decrease in these prices. The fact that the prices of these technologies

are still relatively costly poses a barrier to the proliferation of these useful scanners.

Chandler et al. [45] described the precise photogrammetric applications that might be

carried out using the participant cameras. On the basis of their findings, they explored

the potential of inexpensive digital cameras for close-range surface assessment by

applying picture-matching techniques based on image features. In order to accomplish

this, they examined the precision of three inexpensive consumer-grade digital cameras

and extracted "Digital Elevation Models (DEMs)" Other related research endeavours,

notably for medical applications, revolve around the matching techniques created by Ang

and Mitchell [24] and the invention of more accurate calibration procedures by Chong

et al. [54].

Furthermore, several studies in the body of academic research have been done

utilising proprietary software to evaluate the quality of the data that was obtained for

comparable applications. One such programme is PhotoModeler, which was developed

by Eos System Inc. Larsen et al. [96] has evaluated it with persons who are about the

same height, the inter- and intra-observer variability of human body measurements of
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dressed humans in two different examined and postures, and whether or not the lengths

of body parts could be utilised to recognise one another. For example, the height was

replicated to within 1.5 centimetres of the original in both the inter- and intra-observer

studies. Taşdemir et al. [163] was able to acquire full body measures with the same level

of precision by using a camera with a low resolution and by not setting any targets on

the body.

According to Deli et al. [58]’s explanation, the use of targets has significantly improved

the accuracy of measurements made with PhotoModeler for applications relevant to

human facial digitisation. Sub-millimetre accuracy is achieved when comparing laser

digitisation to the photogrammetric method using the Minolta Vivid 910i [125].

2.4.3.3 Microwaves Body Scanner

Kim and Forsythe [92] millimeter-wave scanning, which is utilised more commonly in

the garment industry [126], is the foundation of more modern systems than the others.

This is because these systems provide more precision. This approach uses low-power

electromagnetic waves, commonly known as millimetre (mm) waves, to generate a three-

dimensional depiction of the human body. Both millimetre waves and microwaves are

suited for usage in anthropometric applications due to their potential to be biocompatible

even at low power levels. The frequency range for millimetre waves is between 30

and 300 GHz, whereas the frequency range for microwaves is between 1 and 30 GHz.

While digitising hundreds of thousands of points, the procedure typically takes no longer

than ten seconds and has an accuracy of six millimetres. The biggest limitations are

the poor precision and the unwillingness of individuals to be exposed to radio waves.

Additionally, some individuals object to being exposed to radio frequencies. In addition,

this technology shares difficulties with other laser scanners, and it is now very expensive

for individuals to use [125].
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2.4.4 Benefit of 3D Scanned Data

Taking measures of the human body with modern body scanning technology offers a

number of significant advantages over more traditional methods, such as measuring

with a tape. For instance, the amount of time users spend using body scanners is much

shorter than the amount of time they spend having their body measures recorded in

the typical manner. In addition, body scanners necessitate no physical contact, which

eliminates the risk of erroneous, unreliable, and subjective assessment processes. When

utilising conventional methods, detailed measurements and body models serve as the

foundation for defining and designing one-of-a-kind patterns. As a result, the inherent

observer error that can arise when employing these methods is avoided.

The human form can be captured using 3D scanners, which can make it much

simpler for customers to purchase clothing that is both flattering and comfortable to wear

on their bodies. They will even have the opportunity to test garments that have only been

planned but not yet produced. According to this line of thinking, these could improve the

level of happiness that customers have with the retail business by reducing the amount

of time spent by customers in dressing and fitting rooms. According to the results of a

survey conducted for this study fig. B.2, one of the primary reasons that online shoppers

are likely to reduce the amount of time they spend shopping online is because they are

unsure about their size. As a result, they are forced to travel to the stores in order to try

on the clothing, and once there, they frequently change their minds about whether or

not they want to purchase particular items of clothing due to the limited quantity that is

currently available [26]. According to a separate research by the company 3Dlook [11],

over forty percent of all online-purchased clothing is returned to the shop because the

consumer was unhappy with the size that was provided.

The aggregation of data from a large number of consumers could offer merchants

and manufacturers with the information required to design clothing that will likely fit a

greater number of people. With the certainty that the hardware and software acquired by
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garment designers, manufacturers, and retailers would be suitable, the designers and

manufacturers of scanners and the systems that utilise the scanned data may capitalise

on wider markets. This confidence is buoyed by the availability of larger markets.

In general, 3D body scanning appears to have unlimited applications. Using 3D

form data to construct an avatar for online gaming, performing body dimension analysis

on target markets, maintaining health and fitness, and making motion graphics are

examples of these uses. However, this concession about the measurement method is

limited to a single instance. To enable continuous use of the stored data for new garment

orders, for instance. Currently, it is not possible to share the scanned data of a single

body scanner with other systems; as a result, the site where the scan was performed

increases consumer loyalty to the store where the scan was performed.

2.4.5 Disadvantages of 3D Scanned Data

Several issues might be considered a disadvantage, while body scanning technology

has the ability to greatly help the fashion industry and assist participants in acquiring well-

fitting apparel when compared to the traditional techniques of garment measurement,

part of the disadvantages are addressed by the type of technologies such as light, laser

or microwave and how the image is captured and collected.

When employing light-based systems that rely on the interaction between the color of

the scanning equipment, skin, and hair, the quality of image collection can be significantly

impacted. This influence becomes evident in the final output, primarily driven by the

lighting conditions in the scanning environment. In situations where the lighting is

insufficient or dim, it becomes more difficult to achieve high-quality scanned images.

This is because obtaining a favorable image outcome necessitates ample light reflection

or a substantial contrast between the skin and the scanning apparatus. Moreover, various

hair colors introduce specific challenges as they may cause issues when reflecting light.

Additionally, misplaced or improperly positioned hairs can obscure critical indicators
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around the shoulder and neck area, affecting the results in both laser and light-based

systems.

Due to the fact that both laser and light-based scanning systems capture the surface

of the garment on the outside of the body, clothing worn throughout the scanning process

will attract insects. Moreover, loose clothing will certainly increase the dimensions of the

extracted measures, resulting in more inaccuracies and inaccurate data. Likewise, the

opposite is also true. When consumers wear clothing that is too tight, the measurements

will be smaller than they should be. Therefore, the recommendation for both systems

is clothing that is close-fitting but not restrictive. However, it is anticipated that the

microwave system (Intellifit) clothing has no effect on the measured measurements.

There are typically parts of the body that cannot be "seen", such as the shoulder

girdle, the top of the head and the bottom of the feet, and the crotch at the junction of

the legs. This is because the quantity of data-capturing devices in a system and their

positions define which areas of the body can and cannot be caught by the scanning

technology’s vision devices. In general, a system with a higher level of sophistication will

be more expensive. Numerous technologies have developed algorithms that generate

"averaged" image data from the obtained data surrounding them in order to produce

high-quality data on the mentioned hidden areas. Clearly, this is an oversimplification;

the true technique is considerably more complex and sophisticated, and its major goal is

to fill the region, such as a hole, with the least amount of effort required by the computer.

Some of the missing information may be disregarded or ignored, If it has no importance

or relevance to apparel development/fit, it is irrelevant [83].

The importance of 3D body scanning technology lies in the capability of the systems

to not only record the 3D image of the human body but also to extract measurements at

exact locations on the human body. This ability allows the systems to analyse the human

body in a more accurate manner. The uniformity of the measuring procedures used by

the scanners is a significant and important concern and issue. According to Simmons
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and Istook [155], even if the number of scanners that are currently available is increasing,

there is a large gap between the methods that each scanner uses to extract or record

a particular body measurement. Some systems require the establishment of physical

landmarks in advance of the scanning process. This will give the human being the ability

to select the appropriate location of significant points of measurement (landmarks), such

as the hip point, shoulder, bust point, and so on. After that, the measurement-extracting

software for these particular systems uses the previously indicated landmarks as the

basis for the extracted values.

2.4.6 Comparison of existing 3D scanning companies

As was previously covered in this section, a large number of companies have developed

software for the fashion industry that is based on 3D body scanning technology. As

shown in Table 2.3, we are analysing some of the most well-known companies in this

industry based on the scanning method they use, the capturing procedure, and, as a

last point of comparison, the accuracy level they claim to achieve based on the datasets

they utilise.
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Note: This sign in table 1 means: Mini External hand scanners

Table 2.3 Comparison of existing 3D body scanners company in fashion industry

Company Name Technology Capture time Accuracy

3DMD Eye Safe laser technology 5-10 sec ±2mm

Avalution (AVAone) Depth Sensor Technology 1 sec ±5mm

Avalution (AVAtwo) Eye safe laser Technology 10 sec ±3mm

Avalution (VITUSbodyscan) Eye safe laser Technology 8 sec ±1mm

Avalution (Tiger 3D) Eye safe laser Technology (Foot Scanner) 5-10 sec ±1mm

IBV laser scanner (ShapeScan100/IBV - Foot Scanner) 6 sec ±0.16mm

myeggO Photogrametric 3D Scanner 5-10 sec ±2mm

REVOPOINT1 Blue Light 3D Scanner min of 2 mins ±0.5mm

TECHMED3D1 Variety of Sensor Laser Scanners min of 2 mins ±5mm

ZOZO 3D laser scanners + ZOZOSUIT 2-5 mins ±3.7mm
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2.5 Motion Capture System

Researchers have been able to estimate the extent to which the human body expands or

contracts during activities and over time as a result of advancements in motion capture

technologies over the past several decades. Mattmann et al. [111] has proved that

using an optical Mo-Cap system, body posture can be calculated. This method employs

body sensors that are incorporated into a close-fitting clothing. They have measured

the length of his back while sitting in various postures and with his clothing extended

out to obtain the most accurate reading. Markers were positioned at a distance of

every 5 centimetres, for a total of 90 markers. By analysing the distance that existed

between each marker, the researchers were able to determine the elongation of the

piece of clothing. Calculating the amount of stretch that clothes has allowed for can be a

useful approach for determining how the body moves and where it is positioned. This

conclusion was reached on the basis of the findings of the research study. Since it is

not possible to make an assumption about the elongations of the skin surface area to

the same extent as the elongation of the clothing and, during the activities, changes in

body postures could be observed, the data that was provided cannot be translated into

measurements of the body’s surface area. The findings, on the other hand, indicate that it

would be possible to use the Mo-Cap system to monitor the dynamic changes in the body.

According to Zhou et al. [191], the Mo-Cap system was used to record the directional

breast movements of women in order to inform the creation of women’s sports bras.

Reflective markers were used to record these motions. Although it was not quantified by

Okabe and Kurokawa [119], the particular 3D breast movement path helps to improve

the design of the sports bra when hiking or running. Although the findings of a number of

studies have demonstrated a connection between body movement and the way clothing

should fit, there is still only a small amount of research that has been done to measure

the reconstruction of the human body for the purpose of applying it to clothing. In the

past, researchers have focused mostly on variations to body surface measures that
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occurred during a variety of active postures as well as standard anthropometric positions

that were tightly controlled. The natural motions that occur when people participate in

real-world activities are more complex than the controlled postures utilised in previous

studies. When employing Mo-Cap technology, a more natural, continuous motion may be

considered. This enables for the measurement of the body’s genuine dynamic changes.

The motion capture technology is employed extensively in the entertainment industry,

as well as sports, medical applications, and the validation of computer vision. Never-

theless, with the aid of this technology, it is possible to calibrate the room to measure

the distance between customers and the camera point of view, develop a 3D model

based on the shape of the human body, and many other things in addition to measuring

the human body for the fashion industry. This technology itself is not a good option for

measuring the human body for the fashion industry.

2.5.1 Benefit of Motion Capture System

In the fashion industry, the ability to capture the human body through the use of a motion

capturing equipment has a variety of significant advantages. For instance, (i) it provides

immediate and real-time results, (ii) it enables numerous tests to be conducted with

different styles or delivery methods, (iii) it is capable of recreating complex movement

and realistic physical interactions in a physically accurate manner, (iv) it is capable of

calibrating a room, (v) it provides information such as the distance between users and

their surrounding environments, and many others.

2.5.2 Disadvantages of Motion Capture System

When it comes to motion capture systems, there are a number of issues that could be

deemed drawbacks. For example, in order to generate data that is unavailable to a

large number of individuals, this technique necessitates the use of certain hardware

and a specialised software application. It is possible that the capturing system has
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specific requirements for the environment in which it is operated. When it comes to

capturing the human body with a stereo1, not a lot of people have access to or are

able to make the effort to purchase such a system. Additionally, a motion capture

system primarily provides information such as human body movements and data as the

skeleton. This process requires specialised skills and expertise, which not a lot of people

possess. Capturing and accurately interpreting human body movements using a motion

capture system involves setting up the equipment, calibrating the system, ensuring

proper marker placement on the body, and effectively capturing the movement data.

Moreover, processing and interpreting the captured data to extract meaningful insights,

such as skeletal information, also require specific knowledge and experience. While

some researchers have been able to measure the human body with the assistance of

this technology [158], it is important to note that utilising motion capture for measuring

the human body in industries such as fashion is not yet straightforward. The technology

is still in development, and it requires a level of expertise that is not commonly found

among the general population. Furthermore, motion capture systems can be quite

expensive, which adds to the challenges of widespread adoption in certain industries.

2.6 Smartphone Body Scanning technologies

The use of smartphone body scanning technology has been increasingly commonplace

in the apparel and fashion industry over the past few of years. This technology is a

promising solution powered by artificial intelligence that enables body measurements

to be taken with a high level of accuracy. In most cases, these solutions involve the

utilisation of smartphone devices in order to provide customers with correct measure-

ments regardless of where they may be. These days, there is a variety of choices for

1Stereo refers to the use of two or more cameras placed at different positions to capture the motion of
an object or a person from different viewpoints. By having multiple camera views, it becomes easier to track
and reconstruct the 3D movement of the subject. This technique allows for more accurate and detailed
motion capture data.
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mobile body scanning solutions on the market, and the procedure for scanning differs

depending on the company that provides the equipment. AI body measurement tools

typically require the customer to take only a few photos (front/side) or record a video

(360 views) of their body in order to get scanned. This is in contrast to manual measur-

ing or hardware scanners (i.e. 3D scanners, motion capture systems), which require

customers to undergo a lengthy and uncomfortable process. These innovative solutions

use a combination of advanced technologies, such as computer vision, deep learning,

and 3D matching, to analyse the photos, detect key points, generate accurate body

measurements, and provide a 3D model of the human body in a matter of minutes based

on the detected key points.

Using computer vision technology for the analysis of images capturing and processing

human bodies is facilitated. Advanced computer vision algorithms enable the recognition

of a human body in a snapshot, regardless of the background or the type of smartphone

used to capture it. Deep learning is used to find neural networks, identify key points, and

build probability maps for each key point. And Finally, 3D Matching, which enables apps

to precisely capture human body measurements by creating a unique 3D model of each

scanned customer based on the main points identified during the scanning process.

To calculate human body measurements using current technologies, there are four

key steps: scanning, detecting key points, parameterizing, and finally, processing body

measurements.

1. Scanning: The first step is where the customer snaps a few photos from front and

side or record video (360 views) of their body.

2. Detecting key points: the second step involves determining exactly where the

person is located in the photo. There are different methods to achieve this, either by

creating a segmentation mask that can point to a person’s presence, pixel by pixel.

Or another common solution for this is to use neural networks for the determination
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of the location of a person on screen. Most sophisticated models allow getting

segmentation masks for separate body parts. Neural networks require a lot of

computation, therefore, it is the main downside of such an approach. However,

many modern smartphones have embedded neural network acceleration and even

embedded solutions for a popular machine learning task, which allowed the current

software to implement all the necessary computations on the device. Due to

privacy and policies concerns, many applications opt not to utilise cloud-based

systems for image analysis, as it goes against the preferences of users.

3. Parameterizing: The third step, based on detecting key points from pictures/videos,

develop a 3D model.

4. Processing body measurements: this is the final step where the software calculates

human body measurements.

2.6.1 Benefits of Smartphone Scanning

Convenience, portability, and lower costs are just some of the key benefits that may be

delivered by smartphone body scanning systems to online shopping platforms and their

respective users. This technology is being widely adopted by the apparel industry, which

has encouraged the development of unique applications for measuring the human body.

These technologies offer a contact-free alternative to the traditional fitting procedure

via an unique cross-platform widget that gathers body measurements from a few pho-

tographs or video recordings of the entire human body (360-degree view). A front and

side shot of the customer in tight or underwear clothing, typically taken against a clean

background, can be utilised to build an accurate 3D body model and several points of

measure that are analysed in real time. Smartphone body scanning technology has

produced a more effective fitting procedure that cuts time, productivity, and revenue
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costs for uniform suppliers and their clients by digitising the measurement process for

the online shopping apparel industry.

Employees of businesses do not all collaborate with one another, nor do they act in

unison. The most convenient solution for one employee could not be the most convenient

for another. Similarly, a tailor who has been despatched to measure employees may not

have the full day to wait for the conclusion of that important meeting. Due to smartphone

scanning technology, staff fitting can be simplified to a simple one-minute operation,

hence accelerating activities throughout the uniform production supply chain. Employees

are free to take their own actions wherever and whenever it is most convenient for them,

without assistance or support from anybody else.

With the help of these solutions, businesses are able to better optimise their planning

and production processes, which in turn reduces the production of products that are

not suitable. Additionally, businesses can ensure that their products meet the exact

size, shape, and fit requirements of their customers, thereby lowering the risk of product

returns. This is because such a system is able to rapidly process human body mea-

surement data and present it to a web-based dashboard in real time. This information

is segmented and analysed by the dashboard to assist you in applying size and fit

intelligence to the specific pattern and grading system utilised by each individual con-

sumer. By mapping human body data to product data, the solution’s algorithms may

also provide size and fit suggestions to businesses that sell their uniforms online. This is

accomplished by mapping the data on people bodies to the data on the products. The

forecasting, inventory management, and distribution processes can all be improved with

the help of this intelligence system.

2.6.2 Disadvantages of Smartphone Scanning

There are a number of concerns that could be categorised as the most significant

drawbacks of smartphone scanning solutions (AI-powered technologies). When the
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human body is captured by a single camera instead of using stereo, one of the most

difficult aspects of this technology is that the 3D information will not be directly available.

This is particularly due to the depth interference that occurs when a single image is

used, which means that the systems are unable to accurately predict how far away the

human body is from the camera. Additionally, the technology is unable to collect 3D

information within a single image. However, this method makes the process of data

acquisition significantly easier, and it also makes the process of measuring the human

body go much more quickly.

Although the actual scanning may only take a few seconds for the majority of AI-

powered technologies, the processing time can take anywhere from two minutes to five

minutes per individual before providing results for body measurements. If there is a

problem with the images that are being input, this process may take even longer, or users

may need to retake the photos until the software is able to calculate their measurements.

This issue can be very frustrating for many users.

Cluttered background, is another main challenge of such a system which can signifi-

cantly reduce the accuracy of human body measurements. Most of the existing software,

requests users to snap photos from themselves where there is a clean background as

this can affect the final results. This is because if the image is not well diffused, part of

the background can be detected as part of the body sections, therefore, it can reduce the

accuracy of the measurements. More advanced computer vision solutions can greatly

reduce the average differences in terms of accuracy, which yet is not achieved by any of

the existing applications.

There is a significant impact on the accuracy of the human body measurements if

there is any change in lighting and camera viewpoints as this could cause effects like

shadows and variations in image appearance.
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Consumers may not be willing to do things such as pose for a few photos in front of

a camera while wearing specific clothing, remaining motionless for a few minutes, not

moving, and adopting a clear point of view; they simply do not want to. Certain types of

clothing, such as tight clothing or underwear, may make consumers feel uncomfortable

in front of the camera. The impact of breathing can cause expansion and contraction of

the body. The wrong pose can observe part of the body that is not able to be captured

by the camera especially the part of the body observed under the shoulder griddle. All of

these factors can influence the final body measurement estimations.

Capturing the part of the body that is covered by hair is another of the system’s

main challenge. Since the software is unable to recognise the part of the body that is

obscured by hair, it cannot calculate the human body’s dimensions accurately.

Typically, these solutions also provide a customer-centric solution that classifies

each person into one of categories: small, medium, large and etc. You will be able to

consistently exceed your customers’ expectations if you collect a wider range of precise

measurements and shape data. This will allow you to provide products that fit the unique

body shapes of your customers and satisfy their style preferences. This cannot be

accomplished with any of the current off the shelf available solutions.

2.6.3 Comparison of existing Smartphone scanning companies

Different types of applications with different approaches have been created to measure

the human body for the purpose of garment fit. In this section, we plan to review some

of them. These technologies have been chosen on the basis of the accuracy of the

data that was provided by them. Chapter 4 investigates each of these methods and

approaches in more detail, and some of them have been tested, and the results have

been provided.

In the last couple of years, a few of of applications that calculate human body

measurements for the fashion industry were developed using AI-powered technologies
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(computer vision and machine learning). In the same amount of time, they produce

results that are nearly similar to those produced by 3D scanners; however, the price and

cost to customers is more reasonable than those produced by 3D scanners. Although

these applications contain errors comparable to those of the 3D scanner, consumers

are more inclined to utilise them. This is due to the lower cost or availability of these

applications, as well as their greater accessibility. In Table 2.4, we will compare several

of these new applications based on the technology they employ, the scanning process,

the capturing time as well as the processing of the measurements, and lastly, the

level of accuracy that the company claims to achieve based on their datasets. Please

refer to subsection 4.2.1 for additional information regarding the functionality of these

applications.
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Table 2.4 Comparison of existing smartphone scanning solutions in the fashion industry.
Please note that the accuracy mentioned here is as stated by the companies on their
respective websites.

Company Name Technology Scanning Process 3D Model Capture time Accuracy

3DLOOKME AI-Powered Technology 2 Images Yes 2 min ±0.5cm

ESENCA AI-Powered Technology 2 Images No 2 min ±1cm

Zalando AI-Powered Technology 2 Images N/A 2 min ±1cm

Bodygram AI-Powered Technology 2 Images Yes 2 min ±1cm

IBV AI-Powered Technology 2 Images Yes 2 min ±2cm

MeThreeSixty AI-Powered Technology 2 Images Yes 2 min ±2cm

Mirrorsize AI-Powered Technology 2 Images No 3 min ±2cm

VYOO AI-Powered Technology 2 Images No 2 min ±0.5cm

SizeStream AI-Powered Technology Multiple Images Yes 2 min ±5mm

+ 3D Scanner (Booth)

SWAN AI-Powered Technology Video No 1 min ±1cm

Presize.ai (Find-Size) AI-Powered Technology Video Yes 2-5 min ±2cm

Prismlabs AI-Powered Technology Video Yes 2 min ±2cm
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2.7 Evolution of Object Detectors & Related Works

Well known Computer Vision approaches for object detection include Histogram of

Oriented Gradient (HOG) is one of the most popular and classic methods used in object

detection. This method works by extracting the gradients from the image and creating a

histogram which is then used to detect the objects. The main advantage of this method

is that it is fast and has good accuracy. However, the downside is that it requires a lot of

manual feature engineering and is not very robust. Haar Cascade is another popular

method of object detection. This method is based on the Viola-Jones algorithm and

works by using a series of “Haar-like” features which are applied to an image in order

to detect objects. The main advantage of this method is that it is very fast and efficient.

However, the downside is that it is not very accurate and is not very robust.

You Only Look Once (YOLO) is a newer method for object detection which is based

on convolutional neural networks. It works by using a single network to detect multiple

objects in an image. The main advantage of this method is that it is very accurate

and is very robust. The downside is that it is computationally expensive and requires

a lot of data for training. MobileNet-SSD is a deep learning-based object detector

which is designed specifically for mobile devices. It works by using a MobileNet-based

convolutional neural network to detect objects in an image. The main advantage of this

method is that it is fast and efficient and has good accuracy. The downside is that it

requires a lot of data for training and is not very robust. EfficientNet is an innovative

deep learning-based technique for object detection that is also remarkable. Utilising

a compound scaling technique that optimises model architecture and computational

resources, EfficientNet is known for its efficiency and high accuracy. The benefits of

EfficientNet consist of its superior performance in terms of precision and efficacy. Similar

to other deep learning models, it requires a large quantity of training data and can be

computationally intensive. OpenPose is another famous object detection technique.

It is mainly dealing with human pose estimation, accurately detecting and monitoring
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human body keypoints in images and videos. OpenPose’s capacity to provide detailed

and accurate information about human poses enables applications such as gesture

recognition and motion analysis. OpenPose’s computational complexity could affect its

real-time performance on devices with limited resources.Figure 2.5 shows the progress

of significant object detection techniques throughout time [60].

Fig. 2.5 Year wise evolution of object detection algorithms2.

Not only can deep learning do well in object detection, but also in other fields.

Deep learning offers a variety of models to effectively manage fashion industry data.

From the beginning of the Covid-19 pandemic, numerous research projects have been

conducted to limit human-to-human contact. This is so designers may take customer

measurements from anywhere, at any time. Some of these machine learning approaches

will be examined in greater detail in section 5.2.

2Deformable Parts Model (DPM), Region-based Convolutional Neural Network (R-CNN), Deconvolutional
Single Shot Detector (DSSD), Feature Pyramid Network (FPN), Multi-level Feature Pyramid Network Detection
(M2Det), Single Shot MultiBox Detector (SSD) and You Only Look Once (YOLO)
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2.8 Related Work in Human Body Detection and Pose Estima-

tion

There are many different kinds of technologies and methods that have been developed

for the purpose of estimating human pose. In the following paragraphs, we will look

into several of these topics. The accuracy of the information that these technologies

delivered was a primary consideration in their selection. In Chapter 4, as the first

stage of our experiment, we investigated and tested a number of these methods and

approaches in greater detail. Later in this section, we will focus primarily on machine

learning approaches for estimating the human body pose.

2.8.1 Human Body Performance Capture

Using a simpler model, according to Wu et al. [175], can improve the quality of the

human body performance capture. The use of kinematic skeletons, human parametric

models, the facilitation of single-view reconstruction, and even the segmentation of

human subjects in motion have been proposed as additional improvements. Currently,

multi-view depth-based methods are being intensively researched in order to achieve

even higher levels of precision and greater robustness. Wang et al. [170] utilised RGB

inputs and sparse depth sensors for the purpose of measuring the textured surfaces

of moving bodies. Orts-Escolano et al. [120] should retain the services of an active

studio equipped with high-quality cameras and specialised acquisition devices in order

to perform real-time, high-quality motion capture.

Further investigation concentrated primarily on photometric stereo and the folding

patterns of clothing, deriving shape from shading and attempting to capture dynamic

details. In many of these approaches, Pons-Moll et al. [130] came up with the idea of a

multi-cloth 3D model in order to reconstruct both the clothes and the body from 4D scan

sequences; to evaluate an unclothed body shape by using and tracking the clothing over
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time; and to lessen the computational expense for the opposite rendering problem. In

addition, other methods required the actor to dress in normal clothes; however, in order

to create a template skeleton and mesh, it is necessary for each actor to be captured in

advance with this idea. An additional research approach that has not been investigated

before Huang et al. [78]’s work is to find a method that can create the mesh in a fully

automatic manner. This can be accomplished without making use of any ready-made

template models.

2.8.2 Multi-View 3D Deep Learning

In order to acquire deep learning for a wide variety of tasks, such as shape segmentation,

correspondence matching, object classification and identification, and unique view

synthesis as mentioned by Kalogerakis et al. [90], the Multi-View Convolutional Neural

Network (CNN) has been introduced. According to Arsalan Soltani et al. [28], a number

of earlier publications use multi-view CNNs to 3D reconstruction problems. These

challenges can be approached directly using supervised or unsupervised methods to

generate the final geometry, or indirectly using normal maps, silhouettes, or colour

images. Others have, according to Huang et al. [79], adjusted feature projection and ray

compatibility in a way that is easily recognisable by making use of this formula within a

finite network to predict volumetric representations of a three-dimensional object. This

formula was inspired by multi-view stereo constraints.

Moreover, Hartmann et al. [74] came up with the idea of a deep learning-based

approach to anticipate the likeness between image patches across multiple views, which

enables 3D reconstruction using stereo. In this research study, we mainly focus on

a novel idea, which is the different and more challenging task of finding the pre-point

possibility of lying on the reconstructed surface and directly connecting the 3D volume

base to 2D projections on the image plane. A research study closer to our work is a cross-

model network that measures parametric body surface shape from a single silhouette
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image [59]. There are many disadvantages to this method, such as that it cannot predict

the depth of the human from only one single image and it requires a naked body shaped

in neutral poses to predict the results, while our plan is to generalise dynamic clothed

bodies in extreme poses. However, recently there is a new technology called Multi-Level

Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitisation [145] that can

predict extremely detailed 3D model from a single image, which the following paragraph

will describe in more details about this project.

2.8.2.1 Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human

Digitisation

Recovering extremely detailed 3D model from a single 2D image is one of the most

challenging task in automated human digitisation with computer vision which has a wide

array of applications to the digital media industry.

Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization (PIFuHD)

[145] present 3D human reconstruction framework, that recovers faithful details of the

person in 3D at 1K resolution from a single image fully automatically. Many human

reconstruction model-based rely on the parametric regression model, however, the

prediction is typically for the almost naked body (tight clothes or underwear) and all the

personal details such as hairstyles and clothing are ignored. On the other hand, model-

free regression approaches have demonstrated higher flexibility and expressiveness,

as a result, it can recover details present in the input image more accurately. However,

the previous methods rely on explicit shape representation such as box-cells which is

limiting the resolution due to high memory footprint.

To address resolution limitation, the author proposed Pixel-Aligned Implicit Function

(PIFu) [143] a year before this project was released which I will briefly explain how it works

and point out that it is a limitation for a more precise human reconstruction which is the

main focus of this project. PIFu used neural impresses function for shape representation
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3D shapes are represented by the level set or by occupancy fields3 parameterize by a

neural network since this formulation does not involve any discretization which can be

effectively model 3D shapes at an arbitrary resolution.

f (X , I) =


1 if X inside mesh surface

0 otherwise
(2.1)

Implicit Shape Representation

f (X , I) = 0 ∈ R (2.2)

Fig. 2.6 Overview of clothed human digitisation pipeline [143].

All in works including occupancy network and code as input image as a global

descriptor to reconstruct corresponding 3D shapes. However, this way the network does

not leverage the special relationship between query 3D points and the input image. To

address this issue the author introduced PIFu where they utilise free conventional image

features to associate queries 3D point and the projected pixel coordinate given the pixel

align in the code and query to depth value Z, they can inverse 3D occupancy fields

in a pixel aligned manner. However, they found that the reconstruction quality is still

bounded by the feature resolution of an image encoder. the original PIFu implementation

utilises an image encoder that has done sampling to keep the spatial resolution small for

the following reasons, first small feature resolution allows for holistic reasoning as 3D

3Introduced a deep learning approach based on a volumetric occupancy field that can capture dynamic
clothed human performances using sparse viewpoints as input [78], [70]
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reconstruction requires the absolute location of where the surface is, holistic reasoning

is indispensable. Moreover, the small resolution allows the author to train the model with

a reasonable amount of time the downside is limiting the expressiveness up to the small

resolution resulting in fewer details reconstruction than the original input image. What

about utilising a shallow but high-resolution image encoder although the result becomes

sharper and more detailed the reconstruction is a pawn to add facts due to the lack of

global information. In this project, the following are addressed as disadvantages of both

architectures by a coarse to fine multi-level approach.

Several human reconstruction methods utilise a coarse-to-fine strategy. However,

Saito et al. [143] argues that since existing methods have multiple limitations, the existing

coarse model and detailed inference from the surface normal but the base geometry

tend to be low-fidelity and detail hallucination4 on top of inaccurate base geometry

does not provide a basis for high-resolution geometry. Thus, they have introduced a

latent multi-level representation. First, they have trained the coarse PIFu as in the

original PIFu implementation and reviewed intermediate latent features of the Multi-Layer

Perceptron (MLP) as a 3D embedding, and the fine image encoder takes a 3D embedding

from the coarse PIFu instead of querying the depth value. This way, the final module

can easily perform at least as well as coarse modules as it provides all 3D information

used to make the coarse prediction.

Moreover, in their pursuit of capturing fully focused geometric details, the coarse

module surpasses the capabilities of existing coarse-to-fine approaches by directly

predicting high-resolution 3D geometry without the need for additional post-processing

steps. In essence, their latent multi-level representation achieves exceptionally detailed

3D reconstruction while being memory-efficient, as demonstrated in their work [145].

For a more in-depth exploration of their experiments, please refer to subsection 4.2.5.

The results, as shown in Figure 2.7, reveal their ability to recover intricate geometry

4"Detail hallucination" is when reconstruction methods add false, high-resolution details to an inaccurate
base model, leading to inaccuracies.
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from self-captured video frames, not just on the front side but also on the backside. It’s

worth noting that these are the raw outputs from PIFuHD without any post-processing.

Additionally, they have enhanced the fidelity of the backside geometry by conditioning

the network with the inference surface normal for the backsides [144].

Fig. 2.7 Overview of PIFuHD framework. Two levels of pixel-aligned predictors produce
high-resolution 3D reconstructions. The coarse level (top) captures global 3D structure,
while high-resolution detail is added by the fine level [145].

2.8.3 Human Body Data Capture Software

Different approaches have been considered to detect human body measurements and

for estimation. In this section, we will explain briefly what the Human Pose Estimation is,

and, in Chapter 4, we will investigate and test the methods of human pose estimations

to detect human body measurements.

2.8.3.1 Human Pose Estimation

For computer vision, human pose estimation is defined as the problems of localisation

of human joints in images or video. In practice, calculating the pose of one person is

way easier than calculating the pose of numerous bodies in a video. Despite many

years of research, however, human pose estimation remains a very difficult and still

largely unsolved problem. To approach this problem, recent attempts are to use either a
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part-based or two-step framework. The part-based framework discovers human body

parts independently first and then connects and assembles the discovered and detected

body segments to form multiple human poses, while the two-step framework first draws

a bounding box around the human body and then calculates the pose within each box

independently. To date, none of those approaches can produce satisfactory results in

general; for instance, when two or more people are too close together, the assembled

human poses are ambiguous. Moreover, a part-based framework loses the capability

to recognise body parts from a global pose view, which is due to the mere utilisation

of second-order human body parts dependence, while, in the two-step framework, to

capture accurate body pose estimation, the quality of the discovered bounding boxes is

very important [64, 177, 192].

Although state-of-the-art human detectors have demonstrated good performance,

some errors in localisation and recognition are inevitable in multi-person pose estimation.

Therefore, these errors can create failures for a SPPE, especially for methods that depend

on human detection results. Regional Multi-person Pose Estimation (RMPE) is a new

top-down framework to facilitate pose estimation in the presence of inaccurate human

bounding boxes. This framework consists of three main components: SSTN, Pose-

Guided Proposals Generator (PGPG), and Non-Maximum Suppression (NMS). Figure 2.8

demonstrates a pipeline of an RMPE framework with three major components. This

method increases up to 17 % in mAP over the state-of-the-art method on the MPII

(multi-person) dataset. This method often relies on the accuracy of the person detector

in order to generate correct results, due to the fact that posture estimation is performed

on the region where the person is located. Inaccuracies in the duplicate bounding box

and localisation prediction can therefore result in suboptimal performance for the pose

extraction technique. This method proposes SSTN as a solution to this challenge in

order to extract a high-quality single-person zone from an inaccurate bounding box.

This individual’s human postural skeleton has been estimated via SPPE. SDTN is utilised
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to remap the estimated human pose to the image coordinate system in which it was

initially saved. As a solution to the problem of redundant pose detection, NMS has been

implemented. Therefore, we have investigated this method in more detail, and some of

the methods have been used as part of Chapter 4 [134].

Part of the algorithms of this method have been used in subsection 4.2.3. More

information about the algorithms can be found in subsection 4.2.2.

Fig. 2.8 RMPE framework pipeline demonstrate three main factors which are; 1 SSTN
and Parallel SPPE 2 Parametric Pose NMS 3 Pose-guided Proposals Generator.
Symmetric STN contains of SDTN and STN which are connected after and before the
SPPE. The human proposal will receive by STN and the pose proposal will generate by
SDTN. During the exercising phase, the aligned SPPE acts as an extra regularizer. In
the end, to remove unnecessary pose estimation, the parametric Pose NMS (p-Pose
NMS) is carried out. The SPPE + SSTN module with pictures generated by PGPG, unlike
traditional way [64].

2.8.4 Volumetric Representation

Volumetric representation is a method that shows a captured body scan using voxels5

that span the bounds of the scan’s volume. A body scan in this representation, therefore,

consists of a voxel inside, outside and on the surface of the scan. A correspondence

is established in this case by using the same number of voxels for all body scans in a

sample. Therefore, there would be a fixed number of voxels along with height, width and

depth of a scan. Each voxel for one scan would then correspond to a voxel in the same

5Individual elements of three-dimensional space are called volume elements or voxels
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grid location in the representation of another scan. Voxel representation (also referred to

as volumetric representation below) can then be directly compared and used to build

statistical models of human body shape. Examples of the method being used to model

human shape are described below.

Huang et al. [79] present a deep learning-based volumetric approach, as an example

of volumetric representations being used for performance capture using a passive sparse

multi-view capture system. Their method aims to estimate a dense 3D field that encodes

the probabilistic distribution of the reconstructed surface by giving multiple views and their

corresponding camera calibration parameter as input. They formulated the probability

prediction as a classification problem; therefore, at the high level, their method resembles

the spirit of the shape-from-silhouette method: to obtain 3D points staying inside the

reconstructed object, reconstructing the surface according to the consensus from the

sequence of multi-view images. However, instead of directly using silhouettes, which

only contain a limited amount of data, they leverage the deep features learnt from a

multi-view convolution neural network. Thus, the method projects the query point onto

the multi-view image planes using the input camera parameters for each query point in

the 3D space. Figure 2.9 demonstrates the network architecture.

Fig. 2.9 Network architecture by Huang et al. [79]
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Afterwards, for the query point to get the final global features, it starts to obtain

the multi-scale convolutional neural network features learnt at each projected location

and aggregate them through a pooling layer. The feature of each point is later fed to a

classification network to most likely result in lying inside and outside the reconstructed

object.

2.9 Technologies related to our proposed Software

In this section, we present the research efforts that focus on estimating human body size

by using similar techniques to our project.

2.9.1 Accurate 3D Body Shape Regression using Metric and Semantic

Attributes

The SHAPY framework, introduced by Choutas et al. [55], revolutionises the field of 3D

body shape estimation by providing a novel approach that achieves accurate results from

images without relying on explicit 3D shape supervision. By leveraging linguistic shape

attributes and anthropometric measurements as proxy annotations, SHAPY enables the

training of a regressor that can predict body shape with enhanced precision.

To evaluate the effectiveness of SHAPY, the researchers utilised various datasets,

including the "Human Bodies in the Wild" (HBW) dataset. This dataset offers a unique set

of challenges as it contains images of individuals in natural settings, showcasing diverse

body shapes and clothing variations. The HBW dataset also provides ground-truth 3D

shape data obtained from body scans, allowing for a comprehensive evaluation of the

framework’s performance.

The accuracy of SHAPY was evaluated using multiple metrics tailored for body

shape estimation. The framework demonstrated remarkable results, surpassing existing

methods in terms of accuracy and precision on the HBW dataset. It showcased superior
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performance in estimating critical body measurements such as height, chest circumfer-

ence, waist circumference, and hip circumference, with mean absolute errors ranging

from 5.8 to 6.2 mm across different gender and attribute combinations. The accuracy

of anthropometric measurements, such as height and weight, was also evaluated, with

mean absolute errors computed between the ground-truth and estimated measurements.

The SHAPY framework offers several advantages over traditional approaches. Its abil-

ity to handle diverse body shapes and clothing variations makes it suitable for real-world

applications. By reducing the cost and time associated with obtaining anthropometric

measurements, SHAPY has the potential to revolutionise industries such as virtual reality,

computer animation, and the clothing industry. Furthermore, the framework’s utilisation

of linguistic attributes and anthropometric measurements as proxy annotations enhances

accuracy and enables the generation of highly realistic digital human models.

However, there are limitations to consider. The model-agency training dataset used

in SHAPY may not represent the entire human population comprehensively, which

could impact the accuracy of predicting larger body shapes. Additionally, the computa-

tional complexity involved in estimating anthropometric measurements from dense and

accurate 3D data might pose challenges for practical deployment.

In conclusion, the SHAPY framework introduces a significant advancement in the

field of 3D body shape estimation. Its utilisation of linguistic attributes and anthropometric

measurements as proxy annotations results in improved accuracy and precision, as

demonstrated by its superior performance on challenging datasets like HBW. While

limitations exist, including the need for more diverse training data and addressing com-

putational complexities, the potential applications and promising results make SHAPY a

compelling tool for industries seeking accurate 3D body shape estimation.
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2.9.2 Automatic human body feature extraction and personal size mea-

surement

The paper by Xiaohui et al. [176], presents an automatic approach for extracting feature

points6 and measuring garments on 3D human bodies. The authors claim that the

average error of feature point extractions is 0.0617 cm, and the average errors of

shoulder width and girth are 1.332 cm and 0.7635 cm, respectively.

First, the proposed method demonstrates high accuracy in extracting feature points on

3D human bodies. The precise localisation of feature points is achieved, with an average

error of 0.0617 cm, indicating accurate and reliable results. Second, the approach

enables automatic measurement of various body dimensions, including shoulder width,

bust, hips, and waist girth. These measurements are crucial for garment fitting and

customisation, providing valuable information for personalised clothing design. Third,

the method is designed to be invariant to isometric deformations, ensuring robustness

in capturing variations in body shape and posture. This feature allows the approach

to accommodate diverse body types and poses, making it suitable for a wide range

of applications. Fourth, the scalability of the method is notable, as it can handle a

large number of body shapes and sizes. This scalability makes it applicable for mass

customisation and virtual try-on applications, enhancing the clothing shopping experience

in various settings such as shopping malls and home environments.

However, there are certain limitations to consider. Firstly, the proposed approach

relies on a depth-sensing platform, such as a Kinect sensor, which may limit its acces-

sibility as such devices are not readily available for most online shoppers. Secondly,

multiple poses need to be captured for training purposes, which adds complexity and

time requirements to the data acquisition process. While the exact number of poses

used in the research is not specified in the paper, it is generally recognised that capturing

6refer to specific anatomical or characteristic points on a 3D human body model that are essential for
measuring various aspects of the body size.
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multiple poses improves the accuracy of the method. Moreover, the approach involves

randomly selecting markers around the human body to compute feature points. While

this randomness provides flexibility, it may introduce some data errors and inconsisten-

cies due to the distribution of markers not always accurately representing the desired

features.

In terms of accuracy, the authors report that the average errors of shoulder width

and girth are 1.332 cm and 0.7635 cm, respectively. These results indicate a reasonable

level of accuracy in estimating body measurements. However, specific accuracy levels

for other feature points or dimensions are not provided in the summary.

In conclusion, the proposed method offers an automatic solution for feature extraction

and size measurement on 3D human bodies. It demonstrates high accuracy in locating

feature points and provides reliable body measurements. However, the dependency on

a depth-sensing platform, the requirement for multiple pose capturing, and the random

selection of markers are important considerations. Future work may focus on addressing

these limitations and improving the computational efficiency of the method.

2.9.3 A dynamic fitting room based on Microsoft kinect and augmented

reality technologies

Chang et al. [47] proposed a dynamic fitting room that combines Microsoft Kinect and

augmented reality technologies to allow individuals to visualise themselves in real-time

while trying on different virtual garments. The system utilises two Kinect cameras, one for

capturing the front view and the other for the side view, to estimate the user’s body height

based on head/foot joints and depth data. The system achieves sufficiently accurate

results with an error of less than a centimeter in estimating body height.

The proposed system offers several advantages. Firstly, it provides a more immersive

and interactive fitting experience by enabling users to see themselves wearing virtual
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clothes in real-time. This enhances the shopping experience for customers in clothing

stores, e-commerce platforms, and personal use, reducing the need for physical garment

try-ons and saving time. Secondly, the system leverages the capabilities of Microsoft

Kinect and augmented reality to accurately track users’ body movements and project

virtual garments onto their live video feed, creating a realistic representation of how the

selected clothes would look on their bodies.

The automated size estimation feature is another advantage of the system. By

analysing the joint data and depth information captured by the Kinect cameras, the

system calculates the user’s body size and provides size suggestions. This eliminates

the manual size selection process and reduces the chances of ordering ill-fitting clothes.

However, the system has certain limitations. One drawback is the requirement for

users to garment themselves with Kinect, which may be inconvenient or uncomfortable for

some individuals, potentially hindering the system’s adoption. Additionally, the system’s

size classification is limited to coarse ranges commonly used in retail, such as "small,

medium, large, XL, XXL." This may not provide the level of accuracy needed for precise

fitting, especially in cases where more nuanced size options are required. The system’s

size classification limitations are primarily attributed to algorithmic constraints rather than

Kinect’s capabilities. The algorithm’s reliance on coarse size ranges commonly found

in retail restricts its ability to offer more precise sizing options, potentially impacting its

suitability for applications requiring finer size distinctions.

In terms of accuracy, the system achieves sufficiently accurate results in estimating

body height, with an error of less than a centimeter. However, it is important to note that

the accuracy level may not be suitable for all practical use cases. While the system’s

size evaluation closely aligns with users’ claimed sizes in the conducted experiment, the

coarse size ranges used may not meet the requirements of applications that demand

more precise sizing information.
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In conclusion, dynamic fitting room system offers advantages such as real-time

visualisation, accurate tracking, and automated size estimation. However, it also faces

limitations related to the requirement for Kinect garmenting and the coarse size classifi-

cation used. The reported accuracy, although sufficient for certain use cases, may not

meet the demands of all practical applications.

2.9.4 Single camera body tracking for virtual fitting room application

Chandra et al. [46] proposed a system which utilises portable cameras commonly found

in smartphones to capture images of the user’s body and tracks the body outlines to

estimate relevant measurements. The system begins by detecting the presence of a

human body within its field of view. Once a body is detected, the system tracks the

outlines of the body to determine its shape and proportions. The authors specifically

focus on identifying the face, neck, and shoulders as key markers for the upper body

measurements.

The accuracy of the system in estimating body measurements is not explicitly men-

tioned in the summary. However, it can be inferred that the system aims to provide

reasonably accurate estimations based on the tracking of body outlines and key markers.

The article likely includes detailed discussions on the accuracy of the system, which

would provide more insights.

While the proposed approach offers the convenience of using a single camera for

body tracking, it has certain limitations. The system requires specific environmental

conditions to be set, including lighting, background, and the type and contrast of clothes

worn by the user. These conditions must be controlled to ensure accurate tracking

and measurement estimations. Moreover, users need to repeat the measurements to

improve the accuracy, suggesting that the initial estimations might not be completely

reliable.
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Expanding on the summary, it would be beneficial to provide more details about

the working mechanism of the system. For example, it would be interesting to explore

the algorithms or techniques used for body detection, outline tracking, and marker

identification. This information would give readers a better understanding of the technical

aspects of the proposed approach.

Furthermore, it would be useful to discuss the potential advantages and disadvan-

tages of using a single camera for body tracking in virtual fitting rooms. Some advantages

might include cost-effectiveness and accessibility since most individuals already possess

smartphones with built-in cameras. On the other hand, potential disadvantages could

involve limitations in tracking accuracy compared to more advanced tracking systems

that utilise multiple cameras or depth sensors.

To provide a comprehensive summary, it would be beneficial to include information

about the accuracy of the system in estimating body measurements. This could be

achieved by referencing specific accuracy metrics or results mentioned in the article.

In conclusion, the article presents an approach for body tracking using a single cam-

era in the context of virtual fitting rooms. The system detects the presence of a human

body, tracks body outlines, and identifies key markers for estimating body measurements.

While the proposed approach offers convenience, it requires specific environmental

conditions to be set and might require repeated measurements for improved accuracy.

Further details regarding the system’s working mechanism, pros and cons, and accuracy

metrics would enhance the understanding of the proposed approach.
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Fig. 2.10 displays the body tracking results from [46] software.

2.9.5 Fitme: Body measurement estimations using machine learning

method

Ashmawi et al. [31] proposed an approach to estimate human body measurements

through the use of smartphone cameras. The system utilises Haar-based detectors to

detect various body areas, including the upper, lower, and full body.

The working principle of the system involves several steps. First, the human body is

detected in the images captured by the smartphone camera. Next, features of the body

are extracted from the image, followed by the determination of focal points within the

body. Finally, body measurements are calculated by computing the difference between

these focal points.

However, it should be noted that the system’s ability to estimate body measurements

is limited to providing coarse ranges, such as small, medium, large, XL, XXL commonly

used in retail classification. The accuracy achieved by the system is not sufficient for

practical use, as the paper highlights the need for further improvements in this regard.
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In addition to using Haar-based detectors to estimate human body measurements

through smartphone cameras, the system also incorporates Support Vector Machine

(SVM) classifiers for predicting clothing sizes. SVM is a powerful supervised machine

learning algorithm that excels in classification tasks. Multiple SVM models are employed

to predict standard sizes (e.g., XS, S, M) for different clothing categories (upper, lower,

and full pieces), employing a one-versus-all multiclass classification approach. These

predictions determine the recommended clothing size for the shopper.

One advantage of the system is its utilisation of widely accessible smartphone

cameras, making it convenient for users to estimate their body measurements without

the need for specialised equipment. Additionally, the system’s use of Haar-based

detectors allows for real-time object detection, enhancing the efficiency of the process.

The extraction of focal points and subsequent calculation of body measurements provide

a structured approach to estimate sizes based on image analysis.

However, the system also has certain disadvantages. The coarse ranges provided

by the system may not meet the precise requirements of individuals, especially when it

comes to purchasing clothing that requires accurate sizing. The paper acknowledges

that the achieved accuracy falls short of practical usability, indicating the need for further

development and refinement of the system.

In terms of accuracy, the paper does not explicitly state the specific accuracy level

achieved by the system. However, it highlights that the obtained accuracy is not sufficient

for practical use, indicating a relatively low level of accuracy. This suggests that further

improvements are necessary to enhance the accuracy and reliability of the system’s size

estimation capabilities.

In conclusion, this system utilises smartphone cameras and Haar-based detectors

to estimate human body measurements. While the system offers convenience and

real-time object detection, it currently provides only coarse ranges of sizes and falls short
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of practical usability due to its accuracy limitations. Future research and development

efforts are needed to enhance the accuracy and make the system more suitable for

practical applications in online shopping and size estimation.

Fig. 2.11 displays features extraction using segmented the detected image into parts by
FITME: [31]

2.9.6 Anet: A Deep Neural Network for Automatic 3D Anthropometric

Measurement Extraction

This paper presents the development of Anet, a deep neural network designed for auto-

matic extraction of 3D anthropometric measurements from 3D human body scans which

proposed by Nourbakhsh Kaashki et al. [118]. Anet consists of two main components:

a feature extraction network and an anthropometric measurement extraction network.

The feature extraction network captures important features from the 3D scan, including

body posture, shape, and proportions. These features are then used by the anthro-

pometric measurement extraction network to automatically extract 3D anthropometric

measurements.
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The authors conducted comprehensive evaluations of Anet on various datasets and

compared its performance to existing methods. The results demonstrated that Anet

achieves highly accurate anthropometric measurement extraction, with a mean absolute

error of less than one centimeter. This significant improvement over existing methods

indicates the potential of Anet for a wide range of anthropometric measurement tasks.

One advantage of Anet is its ability to reduce the cost and time associated with obtain-

ing anthropometric measurements. By automating the measurement extraction process,

Anet eliminates the need for manual measurements, which can be time-consuming and

labor-intensive. This has implications for industries that require precise body measure-

ments, such as fashion, ergonomics, and healthcare.

Furthermore, Anet can streamline the generation of digital human models for ap-

plications like virtual reality and computer animation. With its accurate measurement

extraction capability, Anet can create realistic and customisable digital representations

of human bodies, enabling more realistic and personalised virtual experiences.

Despite its advantages, there are some limitations to consider. Anet’s performance

may be affected by the quality of the input scans, particularly when dealing with scans

captured by certain devices that introduce high levels of noise. Improving the robustness

of Anet to handle noisy input scans could be a focus for future research. Additionally,

while Anet demonstrates high accuracy, further validation and testing on larger and more

diverse datasets would be beneficial to establish its generalizability and performance

across various populations.

In conclusion, this paper presents Anet, a deep neural network capable of auto-

matically extracting accurate 3D anthropometric measurements from 3D human body

scans. The evaluation results highlight its superior performance compared to existing

methods. The potential benefits of Anet include cost and time reduction in obtaining

anthropometric measurements, as well as enabling automated generation of digital
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human models. Further research could focus on improving robustness to handle noisy

scans and expanding validation on diverse populations. With its advancements in anthro-

pometric measurement extraction, Anet opens new possibilities for various industries

and applications requiring precise body measurements.

2.10 Related Datasets

To the best of our knowledge, none of the currently used datasets for human body data

were collected specifically to explore the human body measurement task. Related work

can be found in body modeling, human body measurement, and computer graphics.

However, only a few of the many published works provide a dataset with a significant

number of subjects. Traditionally, there have been many models to represent the human

body. From 1D structures living in 3D space, skeleton based to 2D and 3D models.

Below we discuss existing datasets that have been used for human body data and focus

on a specific set of attributes that are important for human pose estimation and scanned

body reconstruction. Table 2.5 shows the comparison between all the top human body

datasets.

CAESAR [180] One of the most powerful resources to date is the CAESAR dataset.

This dataset was created to categorise human body models in a variety of poses and

shapes. The datasets contain 1,500 registered male and female meshes with point-to-

point correspondences, with 25K facets and 12.5K vertices for each mesh.
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Fig. 2.12 displays the example of CAESAR dataset

CAESAR3D [139] Another extensive 3D database, this one originating from the

civilian American and European Surface Anthropometry Resource Project and including

measurements from the entire North American population sample of 2400 male and

female subjects, aged between 18 and 65 years old, along with demographic information.

This is the first database of its kind, and it includes typical 1-D measurements as well

as scans of 3D models. There is a wide number of poses to choose from, such as

standing, coverage, and relaxed seating positions. In addition, there are 40 conventional

1-D anthropometric measurements in the database. These measurements were taken

with a tape measure and a calliper. This dataset is currently the most comprehensive

3D dataset derived from real scans that is available. This dataset is not freely available,

and human shape analysis may not capture all of the significant variety that exists in the

population of shapes.
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Fig. 2.13 displays the example of CAESAR3D dataset

SCAPE [25] was originally designed for capturing animated motion. Muscle defor-

mations are induced automatically by the space created and the body’s deformations.

In addition, one of the benefits of this collection is that it has extremely precise data for

every single human body pose. The collection consists of 71 registered meshes of a

specific individual in various positions. As morphs of the template models, the scape

completion of each scan and the correspondences between the template and each

scan with the original dataset have been published. Although the number of patients in

the dataset is not statistically significant, the mesh description for human body shape

analysis is quite precise.



78 Literature Review

Fig. 2.14 displays the example of SCAPE dataset

FAUST [36] new dataset is comprised of 300 scans of 10 individuals, displaying a

wide range of ages and body compositions in a variety of wide-ranging poses. The

dataset provides very high-resolution photos in addition to displaying all of the data

that was previously unavailable. The surface registration is going to be the primary

focus of this effort. Generally speaking, the registration process is difficult for non-rigid

and articulated things such as human bodies. The authors handle the registration

problem using an innovative approach to mesh registration in order to achieve high-

quality alignment. This allows them to incorporate information about the 3D shape

and look of the object. Despite the fact that this collection contains information on real

persons depicted in a variety of poses, the number and types of subjects included in it

are still quite restricted.
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Fig. 2.15 displays the example of FAUST dataset

MPII Human Shape [23] consists of about 25,000 images depicting over 40,000

individuals and their annotated joints. The dataset contains information on 410 distinct

actual human actions, and the photographs come with highly-detailed descriptions.

Fig. 2.16 displays the example of MPII Human Shape dataset

Fashion-Gen dataset [141] contains 293,000 high-definition (1360 x 1360 pixels)

fashion images paired with item descriptions provided by professional stylists. These

datasets contain multiple angles and pose for each item. The main purpose of this

dataset is to explore the text-images synthesis task.
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Fig. 2.17 displays the example of Fashion-Gen dataset

TOSCA [40] created a dataset that was designed exclusively for the recovery of 3D

shapes. In shape retrieval, the emphasis is placed on the creation of shape descriptors

or signatures that accurately capture the one-of-a-kind characteristics of the shape and

remain unchanged regardless of the type of transformation being applied. The rotation

and translation transformations are the ones that are utilised the most frequently in rigid
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shape analysis. When it comes to challenges involving shape recovery, the number

of possible transformations is significantly higher. These include scale, missing parts,

varied sampling, and triangulation. The database includes a total of 41 different animals,

such as 11 cats, 9 dogs, 8 horses, 6 centaurs, 4 gorillas, and 3 wolves. Additionally,

there are 14 human bodies in the database, with 12 distinct female figures and 2 different

male figures, each with 7 and 20 different positions. Due to the fact that this dataset

does not focus solely on the human body, it is not suitable for conducting a study of the

human body’s shape.

Fig. 2.18 displays the example of TOSCA dataset
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SHREC’10 [39] The TOSCA dataset was expanded thanks to the contributions made

by SHREC’10, which included more reliable large-scale retrieval, correspondence, and

feature recognition and description. This database grew from 80 to 148 objects during

this expansion. Unfortunately , the number of human subjects only increased slightly,

with additional 12 female subjects being the only ones to volunteer for the study.

Fig. 2.19 displays the example of SHREC10 dataset

NHANES [89] The National Health and Nutrition Examination Survey, also known

as NHANES, is a programme of research that aims to evaluate the health as well as

the nutritional status of children and adults living in the United States. The findings

from this survey will be used to identify the prevalence of major diseases as well as

the risk factors for diseases. This survey is one of a kind since it combines interviews

and physical examinations to get at its findings. Although it does not include any 3D

data or photographs of the participants, this dataset does give an enormous quantity of

information on the subjects’ habits, health, and morphology in the form of anthropometric

measures. These measurements may be found in the dataset. In addition, this dataset

is not very valuable when considered from the perspective of computer vision. However,
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it is highly beneficial when considered from the perspective of statistical analysis of the

population as well as the generation of virtual subjects.

In Chapter 4 we will focus more on these datasets and how some of them helped us

to obtain quality data from the applications and software that already exists in the store.
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Table 2.5 Comparison of different type of human body dataset

Datasets Real Human Number of images meshes Resolution Description Poses Number of items
CAESAR 1500 300K Varying size No multiple 37k

CAESAR3D 2400 Unknown Varying size No multiple Unknown

SCAPE 71 125K Varying size No multiple Unknown

FAUST 10 300 612 x 512 No multiple Unknown

MPII Human Shape 410 25K Varying Size yes multiple 40k

Fashion-Gen Dataset Unknown 325K 1360 x 1360 yes multiple 78k

TOSCA 14 Unknown Varying Size No multiple Unknown

SHREC’10 26 Unknown Varying Size No multiple Unknown

NHANES 5000 each year Unknown Varying Size yes multiple Unknown

Note: Data collected directly from each paper or original website of the following

datasets.
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2.11 Challenges

Among the most significant challenges are (1) complexity of human body, especially

non-rigid parts of the body, (2) variability of the human physique, (3) complexity of human

skeletal structure, (4) the impact of breathing, as the body expands and contracts (5)

variability in lighting condition, causing shadows (6) depth, i.e. the loss of 3D data that

results from observing the pose from 2D planar image projections, and (7) complexity in

capturing parts of the human body that are covered by loose clothes.

One of the main challenges in this research study is the complexity of the human

body with the range of multiple degrees of freedom. As the body moves, with the impact

of breathing, the body expands and contracts. To accommodate the expansion and

contraction of the body the garment may be distorted; thus, the human body changes

that occur during movement could affect the fit of the garment.

Depth is another main issue because some of the 3D information is not available

directly, in particular the depth inference from image sequences. Obtaining information

about the depth of the human using a single camera is very challenging, considering the

multiple degrees of freedom of the human body described in the previous paragraph.

Changes in lighting and camera viewpoints cause effects like shadows and other

variations in image appearance. Also, shadows are cast on areas of the subject’s body

which are covered by hair, Those are all image-based problems. All of these elements

make it impossible to reliably identify image features that can be relied on to extract

relevant information.

Wearing specific clothes, posing with a specific posture in front of the camera is

something that the consumers may not be willing to do, thus all these are creating other

issues. Most of the applications that already exist in the store require the consumer to

take some steps, such as wearing tight clothes or posing in front of the camera, which

makes them uncomfortable with using these applications.
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2.12 Summary: Literature Review

To summarise, this study have exposed several topics starting from the evolution of

human body measurements, going into the number of different 3D and smartphone body

scanning technology followed by a review of existing companies’ approaches for the

calculations of human body measurements for the fashion industry.

Through a better understanding and investigation the interaction between the human

body, garment, and pattern, this study is able to improve garment fit. In reaching a good

garment fit, body measurement is critical. For producing a better garment, researchers

have developed new methods and software to capture a higher quality of data from

the human body, such as with motion capture system, 3D body scanning technology,

smartphone body scanning. The next frontier for body measurement methods can be to

measure the human body surface from one single depth-camera. The significant element

that affects the body measurement changes is measuring and evaluating the human

body data in motion, which is related to wearing-ease amounts. The changes in body

surface measurements between various dynamic postures and standard anthropometric

measurements were mainly focused on previous research studies. By using technologies

such as computer vision and machine learning methods, we can consider more natural

continuous motion during real movement; however, there is still limited research on

the body measurement changes during natural movement and the difference in body

measurement changes across body sizes.

Moreover, by emphasis on shape in subsection 2.4.6 and subsection 2.6.3 different

software and methods have been investigated in more detail in order to find out the most

reliable option to capture human body measurements in static view or motion within

seconds. Challenges were considered, including reviewing the human body landmarks

for the purpose of finding the most accurate garment from the human body surface.
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This study also understand that capturing the human body to find out the size of the

consumers provides several benefits and becomes necessary under several scenarios;

however, owing to the complexity of finding accurate measurements and the various

parts of the body, there are still great hurdles to overcome before reliable and effective

technology becomes available for practical applications. Among the 3D body scanner

and a laser scanner that can be used, the combination of computer vision and machine

learning methods has the biggest potential, as it requires minimum pre-setting, can be

installed on any smartphone, has no need for subject cooperation and the price is fairer

for daily use. However, existing applications are still not a perfect option for clients to

use, as the captured data are not providing sufficiently information.

In section 2.10, some useful datasets with a focus on body modeling, human body

measurement, and computer graphics. These datasets are the basis for the representa-

tion that will be partially used in Chapter 4 as part of the initial stage of our experiments.

Also, taking advantage of the provided datasets and understanding the lack of them to

restrict our attention to human body measurements, we have developed our own dataset

including human body models in a more specific variety of poses and shapes according

to our research studies.





Chapter 3

Method

In this chapter, we describe the methodology used in my research, which is aimed at

developing a software solution for improving the accuracy of garment fit. We begin by

outlining the hypotheses of my PhD, which includes the objectives of this research.

Next, we discuss the selection of measurements, focusing on the human body

measurements that are relevant for achieving accurate garment fit. We describe the

various measurement techniques that we will use and explain why they are important for

our research.

Moving on to the participant selection and limitations, we explain that we have

chosen to focus on female participants, as they offer greater variability in shape but also

because they represent the majority of the online shopping sector in the fashion industry.

Acknowledging the potential challenges and constraints that may affect our results. We

discuss the limitations associated with participant selection, measurement techniques,

and data analysis.

Next, we describe the methods that we will use for data analysis, including statistical

analysis and machine learning algorithms. We explain how these methods will be used

to identify patterns and relationships in the data and to develop predictive models for

improving garment fit.
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Finally, we summarise the chapter, highlighting the key elements of our methodology

and the approach we will use for our research. Overall, this chapter provides a clear and

detailed overview of the methods that we will use to achieve our research objectives and

to develop our proposed software solution.

We have developed a state-of-the-art lightweight measurement system that is capable

of extracting anthropometric measurements from two 2D images to capture the surface

of the upper human body for application in the apparel/fashion sectors.

We have explored different approaches to achieve improvements in state-of-the-art

human body measurements with the help of machine learning, computer vision, and

ellipse mathematical equations.

We have compared the final stage of the prototype that has been generated with

the tape measurement methods. The final stage of the prototype has been generated

with the help of machine learning and computer vision methods such as; MobileNet

SSD, image corrections, chessboard detection (camera calibration), photogrammetry,

and image segmentation. These techniques helped me to improve the state-of-the-art

in terms of accuracy to ± 1cm average error (in comparison to the tape measurement

methods) on 78 actual human participants (who self-identified as female).

The following chief approaches are:

1. To capture a user-friendly way the upper body parts of human participant’s

2. To illustrate the collected data to the fashion designer who we are in contacts.

3. To compare the data with the tape measurements methods.

4. To develop user-friendly software to capture the upper body parts of human sub-

jects (at this point the final stage of the prototype is running on the terminal).
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As the habit of shopping online for clothing becomes more popular, so is the tendency

to return garments with poor fit, often due to a mismatch between what is visually

experienced online and the real-life experience of the purchaser. The high rate of returns

(for some items up to and over 50% [105, 108]) represents a major challenge for the

industry. Better capturing and understanding body measurements are known to be some

of the major factors limiting progress on this issue. Furthermore, we also conducted a

state-of-the-art survey of the younger generation and found that they are more willing to

do online shopping than before. Therefore, the demand to find a better garment fit in

digital stores is rapidly growing.

In the absence of person-to-person interaction (for example due to the COVID-

19 pandemic), state-of-the-art, self-service contactless body measuring solutions are

needed, enabling a simple way to digitise measurement capture so that made-to-measure

businesses can easily operate online.

Moreover, many human reconstructions are model-based, relying on the parametric

regression model; however, the prediction is typically for the almost naked body (tight

clothes or underwear) and all the personal details such as clothing are ignored.

Also, due to the lack of technologies based on our phase 1 experiments (please refer

to Chapter 4 for more details), the average errors of the current software and applications

for every individual part of the human body are up to ± 5cm.

3.1 Hypotheses

It is possible to develop a measurement system that is capable of extracting anthro-

pometric measurements from multiple images to capture the human body surface,

with improvements to the state-of-the-art in terms of accuracy-computational expenses.

Thus, our approach will be feasible for performing anthropometric measurements on the

new-gen of smartphone devices.
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The study has the following chief objectives:

1. Capturing human body reconstruction with the help of new AI-powered technolo-

gies (machine learning, computer vision, and 3D matching) with any backgrounds.

The proposed system aims to revolutionize the field of human body measurement

by offering the following capabilities: (i) Estimation of the human pose of the per-

son on the screen and providing accurate body measurements for the selected

areas Table 3.1. This includes capturing key joint positions, limb lengths, and

torso dimensions, enabling a detailed understanding of the human body’s physical

characteristics. (ii) Enabling precise body measurements of the selected regions,

regardless of the background. The system utilises advanced computer vision algo-

rithms to separate the human subject from the surrounding environment, ensuring

accurate and reliable measurements even in complex backgrounds or cluttered

scenes (iii) and, Facilitating body measurement from varying distances from the

camera viewpoint. By leveraging machine learning techniques, the system can

adapt to different camera distances and angles, allowing for flexible data acquisi-

tion. Whether the subject is close to the camera or positioned farther away, the

system can adjust and provide accurate body measurements consistently.

2. Capturing the human body reconstruction from multiple images at least two (where

3D information is not available directly, because of the depth inference from a

single image, the systems cannot predict the distance of the human body from the

camera).

3. Measuring the human body circumferences with the help of ellipse formulas. A

fully trained system that can choose the best ellipse equation according to the

human body shape to calculate human body circumferences.

The proposed objectives imply a number of hypotheses, namely:
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1. There is a need from both industry and the public for a better technical solution to

measure the surface of the human body for industrial applications.

2. As the demand is rapidly growing in the young generation to have better fitting

garments, this is even more desirable, so more and more people are interacting

digitally in the apparel/fashion industry.

3. There is technology to achieve this: with the help of recent machine learning and

computer vision to measure the human body surface with new-gen of smartphone

devices.

4. It is possible to develop a measurement system that is capable of extracting human

body measurements in movements, as well as body changes, that impact the

experience of wearing a piece of clothing.

5. It is possible to improve the state-of-the-art in terms of accuracy (± 2cm average

error).

6. Given Hypothesis 3 (together with Objective 2) and a supervised learning approach,

it should be possible to extract 3D information directly from multiple images to

collect the lost 3D data. The system also can predict the distance of the human

body from the camera.

7. It is possible to predict all of the personal details, such as clothing. Also, to

demonstrate higher flexibility and expressiveness, to recover details presents in

the input image more accurately [145].

Hypotheses 1, 2, 3, 4, 5, 6 (together with Objective 1) are based on several successful

attempts to develop a measurement system for human body reconstructions [145, 11].

The results will be evaluated (i) qualitatively, based on the opinion of the designer that we

are collaborating with and (ii) quantitatively based on the series of user studies. These

will be conducted at Goldsmiths University of London and will be generally aimed at
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developing better measurement systems. Hypothesis 7 is grounded on sociological

evidence that participants prefer to wear appropriate clothing in front of the camera

rather than being subjected to specific clothes (tight clothes or underwear).

3.2 Selection of Measurements

As an initial further constraint, we plan to focus our research and development on the

upper body parts. Our initial research shows that some of the most serious garment

distortions occur in the upper arm, elbow, back, and armhole areas when extended body

postures are performed.

Table 3.1 demonstrates the selected joints of the human body that are going to be in-

vestigated in this project. This table represents a list of all anthropometric measurements

that will be used obtained from the participants.

Anthropometric Measurement Identifier

1. Upperarm Circumference (UA C) measure/measure-upperarm-circ-incr|decr
2. Upperarm Length (UA L) measure/measure-upperarm-length-incr|decr
3. Lowerarm Length (LA L) measure/measure-lowerarm-length-incr|decr
4. Wrist Circumference (Wr C) measure/measure-wrist-circ-incr|decr
5. Bust Circumference (B C) measure/measure-bust-circ–incr|decr
6. Upperbust Circumference (UB C) measure/measure-upperbust-circ-incr|decr
7. Back width (B W) measure/measure-back-width–incr|decr
8. Waist Circumference (WA C) measure/measure-waist-circ-incr|decr
9. Hip Circumference (H C) measure/measure-hips-circ-incr|decr
10. Neck Circumference (N C) measure/measure-neck-circ-incr|decr
11. Neck Height (N H) measure/measure-neck-height-incr|decr
12. Shoulder Distance (S D) measure/measure-shoulder-dist-incr|decr

Table 3.1 A list of all anthropometric measurements will be used to obtain from the
participants including a list of identifiers.
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Fig. 3.1 Provide a compilation of all the anthropometric measurements based on the
table 3.1

The standard chest, bust, waist, and hip measurements will be the main focus of the

results for comparison with previously published research and validation of technique.

3.3 Choosing the participants

The participant will be divided into two groups. The first group is the volunteer students

from Goldsmiths, University of London, who will be recruited through posters or via email.

The volunteer participants will be paid a small compensation. Please look at the Ethical

Approval Forms that attached to the end of this thesis Appendix G.
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The second group of our dataset consisted of volunteer customers associated

with, Nevena Nikolova, an established fashion designer both in the UK and Bulgaria.

These participants were sourced owing to Ms. Nikolova’s willingness to collaborate and

contribute to this research study.

3.4 Limitation

The participants will be limited to the age range (18-45) and women. According to my

initial studied and surveys, women are willing to buy more clothes than men, which is

why we have decided to limit the participants to the group. Also, the younger generation

is more likely to employ modern technology to discover the best fit for their clothing.

Furthermore, on the basis of research and experiments we have been through, the

average error of different applications is higher for women than for men (Please see

Figures 4.2), this is because of the awkward positioning of certain measurement areas.

Therefore, we found it more challenging to continue our research based on this.

In addition, Ms. Nikolova’s clients are all women so based on her needs we found

that it is better to limit our participant to the women.

3.5 Analysis of the data

In order to answer the research questions, quantitative data will be collected from the

proposed applications. The quantitative data will be analysed using a descriptive statistic,

an independent t-test, Anova test and Post-hoc1. The quantitative data will be reviewed

and compared at every different stage, such as in terms of accuracy and reliability of

each method and technique. Quality data will be collected as well based on the opinion

of the designer that we are collaborating with.

1Post hoc (“after this” in Latin) tests are used to uncover specific differences between three or more
group means when an analysis of variance (ANOVA) F test is significant.
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Our data collection will be divided into four main areas: (i) comparison of the ellipse

equations, (ii) comparison of the different background images - plain/cluttered, (iii)

comparison of different human body postures (relax posture, t-pose, A-pose), and finally

(iv) analysis of the data based on the human body’s distance from the camera’s point of

view.

3.6 Summary: Research Proposal

The exploratory research will be developed on the basis of the framework for micro and

macro levels of fit. To examine body surface measurements using the new generation

of smartphone camera (which acting as a scanner) with the help of machine learning

approaches and computer vision the methods for this study will be developed. The upper

body surface in relaxed and natural posture in relation to the chest, back, shoulder and

hips will be chosen for this research. Measurements for this study will be selected on

the basis of the application to pattern development. The preparations for capturing the

opponents will be prepared well before the participants’ visit. The collected data from

each participant will be compared once the scanning process is completed using relaxed

and natural posture. The process of scanning the participants will be repeated at least

twice to compare the results with one and each other.

For the standing posture, the average value of the two trials from the proposed appli-

cation will be used to compare to the measurements from the other existing technology

(tape measurements). From the 12 selected measurements during the relaxing and

natural posture test, the mean value of minimum decrease and the maximum increase

will be used to examine the changes in body measurement. The quantitative data from

the proposed application and other existing technologies (possibly old traditional tape

measurements) will be analysed using descriptive statistics.
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Answering these research hypotheses in unison implies searching for a series of

instructions, a plausible set of processes, that when executed by a computer lead to

the generation of human body reconstructions. The identification of such processes is

intrinsically equivalent to the inference of a theory of human body measurements which

is generative as opposed to solely descriptive. In addition, the investigation of these

technologies is likely to contribute to active areas of research in the field of Computer

Science and Fashion Technology and represent a further step towards the development

of human body measurement systems for garment fit.



Chapter 4

Human Body Measurement

Experiments and Dataset

This chapter focuses on the experiments conducted on existing fashion and entertain-

ment applications to measure human body measurements. The chapter begins with a

review of the datasets used for the experiments. Then, it delves into the various methods

used to measure the human body, which are summarised in the chapter. These methods

include fashion and entertainment applications testing, RMPE (Regional Multi-Person

Pose Estimation), measuring ruler, motion tracking for consoles and smartphones, PI-

FuHD, AR and deep learning-based automatic human body measurement system for

babies, and human body measurements using computer vision.

The chapter aims to examine which experiment can obtain the most accurate infor-

mation from the human body based on macro and micro data. The experiments are

evaluated based on their ability to accurately measure human body measurements. The

chapter discusses the results of each experiment and compares them to one another to

identify the most effective method for measuring human body measurements.

In conclusion, this chapter presents an in-depth analysis of the experiments con-

ducted on existing fashion and entertainment applications for measuring human body
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measurements. The chapter provides valuable insights into the various methods used

for measuring the human body and helps to identify the most effective methods for

achieving accurate measurements. The results of the experiments can be used to inform

the development of the software solution proposed in this research project.

4.1 Dataset

A key to a successful deep learning model is a good training set of sufficient size.

To analyse the population of 3D human bodies, we had to collect data from multiple

databases. Numerous publicly accessible research datasets permit the examination

of posture and form variations simultaneously; however, they provide data on no more

than 100 individuals [25, 37, 75], which restricts the range of shape variations. We came

across the CAESAR database [127] with more than 4,500 subjects in a standard pose,

which is the largest commercially available dataset to date that contains 3D scans, and it

represents a much richer sample of the human physique. Multi-person datasets (MPII)

and MSCOCO datasets have also been reviewed as part of the Regional Multi-Person

Pose Estimation (RMPE) project. As part of our experiments subsection 4.2.1, we have

acquired a subset of 30 human body measurements, comprising 15 male and 15 female

bodies.

4.2 Measuring the Human Body

4.2.1 Experiment 1: Fashion and Entertainment Application, Testing

As part of our experiments, we have acquired a subset of 30 human body measurements,

comprising 15 male and 15 female bodies.
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How do garment applications work?

Off the shelf applications in the store which are created for human body measurement,

such as Zalando, 3DLookME, VyoO, SizeStream (methreesixty), MyFiziq, Nettelo 3D, etc.

All these applications have the same concept and work very similarly to one another. The

process of capturing the human body starts with users entering some personal details

such as height and weight in the application and afterwards taking two pictures from

the front and side of themselves and uploading it to the app. The applications generate

a 3D avatar representation of the model with a rough circumference measurement.

In the following paragraph, we look at the different steps to reaching human body

measurements.

Computer vision, machine learning, and 3D matching are the key techniques used

by these applications to capture the human body from only two photos.

What are the steps to get the size of clothes?

The existing apps have four steps to calculating human body measurements including

scanning the actual body (front and side view), detecting key points, developing a 3D

avatar (virtual model on the surface) and, finally, processing the measurement and

handing it over to the user. Figure 4.1 shows all the different steps to measuring the

human body.

Although the actual scanning only takes a few seconds, the processing time can take

around one to two minutes per person to get the results, and occasionally there can be

problem which forced the users to conduct the scanning process again and again in

order to get the final findings. The scanning process starts with a very straightforward

stage that involves using a smartphone to take pictures from the front and the side,

followed by the detection of a scan of the intended human body using computer vision.

The contour of the human body that was collected is immediately sent to be analysed by

the algorithm of the neural networks. After that, the application, determines and detects
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Fig. 4.1 shows different steps of 3DLookMe application to get the accurate measurement.
Image courtesy of [11]

key points and creates a set of probability maps for each key point (the measurement

key points could be customised, which allowed specific profiles for selected garment

types and a standardised size table to be automatically generated, so the users were

able to move the key points to the correctly located place on the images). These maps

go through continuous processing and are mixed with various specified filters at each

level. On the photos, important spots were determined in order to begin the process of

initialising the 2D contour matching.

A virtual camera is utilised in order to develop each of the 2D contour models into

parameterised 3D human character projections onto an image plane. This is done by

projecting the models onto the image plane. By matching virtual 2D with the real 3D

human character, it ensures that there are no errors, or at least just a tiny error, in the

scanning of the human body assessment and processing of measurements. The process

of 3D matching is also utilised in the construction of a 3D model of a human body. The

inaccuracy of these applications that are available in the store is demonstrated in more

detail in Figure 4.2.In the following sentence, we will provide an explanation of how we

organised our tests across all of these applications in greater depth.
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The following statistics represent the average error of different sections of the human

body in different applications. Some of the participants did the capturing process a

couple of times to obtain the most accurate data from the apps. As can be seen from

the statistics below, to obtain data from the human body, users are divided by gender on

the basis of the different anatomy of the male and female bodies. Users are asked to

wear appropriate or tight-fitting clothing to capture accurate information, otherwise the

looseness of the clothes might be observed as part of the human body. Each user stood

approximately 10 times in front of the camera, and the best data are selected for these

statistics Figure 4.2. Please refer to the Excel files to assess the outcomes for each of

these application measurements.

Fig. 4.2 displays mean difference (cm) and standard division of five existing applications
in the store (3DLookMe, SizeStream, Esenca, PreSize and TechMed). This data is
been taken from 15 (who self-identified) as female/male participants in the same room
conditions from five different applications that exist in the store. This experiment took
place in December 2022.
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Challenges in existing Applications

According to the collected data, it is not as easy as we think to find and determine

total and accurate data for clothing provision. With the traditional, manual way, precise

location of body landmarks and how these are handled can be subjective. Also, there

are many more issues of ethical consideration that are due to the awkward positioning

of certain parts of the body and measurement areas. Most up-to-date technologies are

including serious issues as well as the old traditional way in landmarking. Furthermore,

wearing undergarments in front of the camera, to capture human body measurements,

is another main issue of such a system. The other problem that we can address in this

thesis is the impact of breathing. If the part of the body which is observed is covered

by hairs, shadows are cast on areas of the subject’s body. Those are all image-based

problems, which means we could face us some errors in particular places.

4.2.2 Experiment 2: RMPE: Regional Multi-Person Pose Estimation

The RMPE project has been tested, to estimate the human pose estimation. RMPE is

one of the most popular top-down methods of pose estimation. Accuracy of the person

detector is very important for top-down methods, as pose estimation is performed on the

region where the person is located. The pipeline of the proposed RMPE is illustrated

in Figure 2.8. The RMPE framework represents three major components: 1 SSTN and

Parallel SPPE 2 Parametric Pose NMS 3 Pose-guided Proposals Generator PGPG.

Evaluation Datasets, Implementation and testing results

By utilising the terminal and PyTorch on both Windows 10 and Mac OS Mojave,

we were able to successfully implement the algorithm that was suggested in a paper

published by RMPE and that was evaluated both qualitatively and quantitatively on two
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typical multi-person datasets: MPII and MSCOCO. The minimum required GPU for this

project is 61, otherwise, the operation will not be successful and will fail.

They have used the VGG2 based SSD-5123 as the human detector (we have used

the same object), as it performs object detection effectively and efficiently. The detected

human proposal is extended by 30 % in both directions, in order to make sure that the

entire person region will be extracted.

In addition, the libraries Torch, TensorFlow, and Caffe are necessary for the oper-

ation of this project. We were finally able to get this project up and running when the

prerequisites had all been satisfied, including the installation of the necessary libraries.

It is important to keep in mind that one can speed up the process of the posture esti-

mation stage by using multi-GPU testing for large batch testing. This is possible if one

possesses a large quantity of GPU memory or numerous GPUs.

By putting the results of both datasets next to each other (MPII and MSCOCO), the

author found that this can accurately predict pose in multi-person images. Figure 4.3

displays the results of RMPEE for both MPII and MSCOCO datasets.

The quantitative findings from the comprehensive test set are presented in the

following table. An average accuracy of 72 mean Average Precision (mAP)4 was attained

by the author Fang et al. [64] when detecting problematic joints such ankles, wrists,

knees, and elbows. This is 3.3 mAP greater than the previous state-of-the-art result.

They are able to arrive at a final accuracy of 70.4 mAP for the wrist and 73 mAP for the

knee. We are able to significantly improve our results and attain 82.1 mAP by employing

a more robust human detector and posture estimator. This puts us 4.6 mAP ahead of

our previous best result.
1For the successful operation of the implemented algorithm requires a minimum GPU compute capability

of 6
2VGG is a convolutional neural network that is trained on more than a million images from the ImageNet

database.
3SSD is designed for object detection in real-time which is composed of 2 parts: 1. Extract feature maps

2. Apply convolution filters to detect objects
4Please refer to Equation 5.6 for a validation of the Mean Average Precision (mAP) formula.
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Fig. 4.3 Results on the MPII multi-person test set (mAP). “++” denotes using faster-rcnn
with softnms [35] as human detector, PyraNet [179] with input size 320x256 as pose
estimator [64].

Applications

Pose Estimation has applications in myriad fields, some of which are listed below.

1. Motion Capture and Augmented Reality

The use of human pose estimation in CGI applications is one of the more fas-

cinating applications of this technique. It is possible to superimpose graphics,

fancy upgrades, styles, artwork, and equipment on a person if the human pose

can be predicted. As the individual moves, the displayed images can "naturally

fit" the person by sensing the variety in human position and adapting themselves

accordingly.

2. Capturing the human body in 3D with Kinects and Smartphones

Tracking the human in motion is another interesting application of pose estimation.

To track the motion of the human and to use it to render the actions of virtual

characters (by using IR sensor data), Kinects use 3D pose estimation.

4.2.3 Experiment 3: Measuring Ruler

The measuring of the 2D and 3D surface by using Apple devices camera has been

analysed as part of this research study. We have developed two different measuring
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applications with the help of ARKit documents in this project to test the accuracy of such

systems to measure the surface and human body.

4.2.3.1 Experiment 3.1: Measuring Distance (Smartphone)

We have developed a basic Ruler application on iOS as one of our experiments for

this project. This application allows users to measure a 2D object from point-to-point

(x1 to x2). To achieve these results, we have used the ARKit5 framework. Figures 4.4

demonstrates how this application and the measuring process works.

5ARKit is a framework in iOS 11 which allows us to blend digital objects with the real world.
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Fig. 4.4 During the initial phase of this project, an experiment was conducted to calculate
2D measurements with the assistance of ARKit.. Results reconstructed from six views

Using XCode, we created this application just for iPhone and iPad users. The macOS

Mojave operating system and an iPhone 7s running iOS 11 or a later version were used

for all of the experimental testing that was done. While the user is dragging the plus

(+) icon from one location to another on the screen, this application is able to output the

data simultaneously.
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This application is speed-sensitive since it needs to calculate the things that are on

the surface. In addition to this, it was not developed to compute 3D data information

such as depth information. The distance to the object to be measured that has been

selected is also very crucial; without it, the system will provide the users with inaccurate

information.

One of the most significant benefits of using such tools is that the results may be

processed very quickly, whereas the majority of the currently available apps require a

processing time of no more than one to two minutes.

4.2.3.2 Experiment 3.2: Measuring Objects (Smartphones)

4.2.3.2.1 Augmented Reality The term "augmented reality" AR refers to a category

of technologies that superimpose digital information on physical items or locations in the

real world in order to improve the user experience. AR is not the same VR, which refers

to the technology that places users in a computer-generated or digital environment. The

ability to merge information from the real world and digital sources is currently the subject

of research and development in many different industries, including marketing, museums,

science, fashion, and many more. AR has a wide range of possible applications in both

the commercial and academic research sectors [34].

4.2.3.2.2 ARToolKit To achieve calculating the human body measurement recon-

struction, this framework plays an essential role: the C language software library, which

was created for the creation of AR reality. This framework uses computer vision methods

in order to compute the orientation and real camera position relative to physical markers

in real-time, which allows one to overlay virtual objects. subsection 4.2.3 shows the

experiments and testing that we went through with this technology [147].

• Acquisition of images from cameras

• Recognition of patterns and detection of markers
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• Measurement of the orientation of markers and three-dimensional locations

• Display of composite three-dimensional images and real images

A method for determining the size of any object by seeing its surroundings through the

camera of an Apple smartphone. Frameworks such as ARKit, SceneKit, and OpenGLES

were utilised during the development of such an application. This application will function

properly on mobile devices running iOS 11 or later. In order to give such data, it is

necessary to put on a few essential classes. These classes are required to be added

on. The primary operation that ARKit is responsible for was commanded and controlled

by a ARSession object. These activities involve reading data from the device’s motion

sensing hardware, managing the built-in camera of devices, and doing image analysis

on collected camera images. In addition, these processes may include reading data

from external sources. As a consequence of this, the session brings together all of

these findings to produce a connection between the virtual space and the space in

the actual world. Therefore, by making use of ARWorldTrackingConfiguration in the

beginning, users will be able to monitor and augment the world that is in front of the

position and orientation of their iOS device. This class monitors the motion of the device

using six degrees of freedom (6DOF) to measure movement along three translation axes

(movement in x, y, and z) and three rotation axes (roll, pitch, and yaw). Secondly, by

calculating the width and height, in pixels, of the captured camera image with the help of

CGSize, we are able to estimate the measurements [27].

The Simultaneous Location And Mapping (SLAM) technology is what makes the iOS

measure tool possible; it is a hybrid of photogrammetry and computer vision. The

programme processes the frames that were taken by the camera, and computer vision

analyses the collected image to locate and follow certain points of interest within the

region that was captured. These tracked points are referred to as anchors, and they are

represented by the yellow dots that can be seen in the figure 4.5 shown above. After the

software has determined where the anchors are located on the screen, it will request that
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Fig. 4.5 During the initial phase of this project, an experiment was conducted to calculate
2D measurements with the assistance of ARTKit, SceneKit and OpenGLES. demon-
strates few steps to get measurements from an object

the user move the device from one location to another. This move will update the new

location of the anchors by shifting the perspective from which the cameras are viewing

the action. This method makes adjustments to hundreds of thousands of points every

single second. The programme is able to make an estimation of the distances between

each point with a level of accuracy that is considered to be satisfactory. This estimation

is based on the distinction that exists between the anchors in the various captures, the

location of the camera, and to some extent, geometric shapes. Photogrammetry, which

is the study of obtaining measurements based on photographs, can assist in this process

so that it can accomplish its goals. An image captured by a camera is nothing more
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than a projection of three-dimensional data onto a two-dimensional plane. One loses a

dimension of information while the image is being generated, thus this must be accepted

(the depth). However, by capturing an image from different angles, as shown in Figure

4.6, we can retrieve the data that was previously lost.

Fig. 4.6 The image on the left shows capturing 3d object from different angles [100]
, The image on the right shows the concepts behind the photogrametry and how this
technique works to capture lost data [110]

This is related to how our vision works. Our two eyes produce 2D information, in

different positions, which is enough for the brain to reconstruct the depth information.

Also, this is a similar principle to how we measure the distance of the stars, by comparing

the images obtained from different places.

4.2.4 Experiment 4: Motion Tracking for Consoles and Smartphones

As part of the experiments that we conducted for this research study, we analysed the

level of accuracy that can be achieved when capturing the motion of a human body

using a Kinect console or a smartphone. The implementation of these strategies will

be discussed in further detail in the following sections. Experiment 4.1 was developed

in the past, and all that we did was test and compare the data from that experiment

with the data from Experiment 4.2, which we developed with the assistance of ARKit

documentation.
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Fig. 4.7 Using Parallax to measure a star as seen from earth 6 months apart. Credit:
ESA Science Technology [128]

4.2.4.1 Experiment 4.1: Kinect Sensors (Consoles)

The Microsoft Kinect is an example of a device that falls into the category known as

depth cameras. It is the combination of an RGB camera and a depth camera, and it has

the ability to measure simultaneously the distance to thousands of points inside a scene.

The accuracy of the depth data obtained by a Kinect is much lower than that obtained

by 3D body scanning; however, depth cameras such as Kinect are a cheaper system,

and as a result, can be an easier solution for customers to purchase. In comparison to

conventional 3D body scanning devices, depth cameras such as Kinect are a cheaper

option for the system. During the course of our investigation, we came across a project

called "Skeleton Tracking and Body Measurements using Kinect", which was carried out

at New York University using the Kinect. For this project, many Kinects were employed,

yielding exceptionally accurate results in comparison to other approaches considered.

Their findings motivated us to conduct our own experiments based on this project so that

we could evaluate its accuracy in comparison to the various other approaches that we

have considered. You may locate this piece of work on Github.

https://github.com/oveis/Body_Measurement_with_Kinect
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4.2.4.1.1 Skeleton Tracking and Body Measurements with Kinect Owing to the

lack of resources, the reliability of these methods is difficult to consider. All the data have

been reviewed and investigated from a research paper by Yuri Boykov [184].

This paper presents an implementation of the proposed method that is built with

Visual C++ and the Microsoft Kinect Software Development Kit 2.0 running on the

Windows 8 operating system. Each iteration of the test was run on a PC that featured

a Core i5 CPU running at 1.8 GHz and 4 gigabytes of random access memory. The

Microsoft Kinect SDK 2.0 is capable of extracting skeleton data at a rate of roughly 30

frames per second (fps). The results of the proposed skeleton augmentation algorithm

are generated at a pace of 10 milliseconds (msec) each frame. Because of this, the final

tracking was done at a rate of about 20 to 25 frames per second, which enabled the

extraction of skeletal data in real time.

Fig. 4.8 demonstrates a mock-up of calculating human body segments from the Kinect
sensors on the PC machine by [87]
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4.2.4.2 Experiment 4.2: Apple IOS devices - Body Detection (Smartphones)

The ARkit-3 framework, which has been made available to us, can be utilised in order to

integrate actual people into augmented reality settings, which is one method for recording

the movement of people. This brand-new function is not available on any other devices

than those made with Apple A12 processor or later, and they must also be iOS-based.

This innovative technique makes it possible to record all of a person’s motions and then

apply those recordings to the animation of a digital character, giving the character the

ability to mimic the person’s movements exactly. In the initial step of the process, an

estimate of the pose of the person displayed on the screen is generated using machine

learning technology. After that, that position is used to generate a fully-fledged skeleton

with a very high level of fidelity. In the end, we give the user the completed character by

combining this skeleton with a mesh that was provided by the user. Consequently, ARkit

was utilised in the creation of the user interface. This technology is fully compatible with

RealityKit6, and as a result, we are able to control animated figures and render them

on the screens. Machine learning is the engine that drives it, and Apple Neural Engine

ensures a smooth experience.

Fig. 4.9 Motion Capture in RealityKit [160]

Using this technology, we are able to extract data from both two-dimensional and

three-dimensional objects. A use case diagram encompassing each stage of the process

of extracting data from objects in 2D and 3D views is presented in the following graphics.

6Simulate and render 3D content for use in your augmented reality apps.
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Fig. 4.10 Extracting data from 3D skeleton [160]

Fig. 4.11 Extracting data from 2D skeleton [160]

Figure 4.12 depicts a human body that was taken using the Body-Detection software

that was offered by Apple developers to catch the human in motion. This app was used

to take the picture that is seen in the figure. In order to gain further insight into the

processes and procedures utilised by the application, we re-created it as part of our

research and testing.
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Fig. 4.12 demonstrates capturing and detecting human body in this experiment

4.2.5 Experiment 5: PIFuHD

PIFuHD is a new technology that was released by Facebook. It is capable of and does

create 3D models of humans from one single photo. PIFuHD works by employing a multi-

level architecture that is based on a deep neural network. This architecture enables users

to create highly detailed 3D models using only a photograph. The process of automating

picture digitisation is applicable to a variety of fields, including medical imaging and

virtual reality, thanks to this technology. Additionally, consumers have the ability to put

this technology through its paces on Google Colab. PIFuHD utilises a trainable end-to-end

coarse-to-fine framework for an implicit surface, with a target image resolution of 1K.

This allows for high-resolution 3D human reconstruction. This technology first uses

image-to-image translation to obtain front and back perspective, and then it delivers

the 3D figure in high-resolution by processing the input image through coarse-PIFu

at a downsampled resolution so that it obtains global 3D structure at a low resolution.

In this way, the technology is able to obtain global 3D structure at a lower resolution.

The primary contribution of this article is the addition of finer-level details to this at a

higher resolution, which, as a result, provides a reconstruction of the input image that is

accurate down to the pixel level [145].
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For optimal performance, the PIFuHD project must be run in a setting that contains

at least 8 GPU7. The demonstration can also be executed on Google Colab for users of

this project who do not have access to the environment described above. The process

of putting PIFuhd through its paces on Google Colab shouldn’t take more than five to ten

minutes to complete. This technology can convert any photo into a 3D gaming avatar in a

matter of minutes, making it one of the most cutting-edge features available in this sector.

The end outputs are delivered to the consumers in three different file formats:.png,.obj,

and.mp4 respectively [144].

Fig. 4.13 demonstrates the .png results from Google Colab

Fig. 4.14 demonstrates the .obj results from Google Colab

4.2.6 Experiment 6: AR and Deep Learning based Automatic Human

Body Measurement System for babies

During the course of the experiments that we carried out for the purpose of this research

study, we came across a project that aimed to provide a dependable answer for parents

7For the successful operation of the implemented algorithm requires a minimum GPU compute capability
of 8.
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to know the correct baby’s body measurements in order to get the appropriate size

diaper and clothing and to get a future size prediction with the assistance and support of

AR and machine learning techniques [131]. The purpose of these experiments was to

provide a reliable answer for parents to know the correct baby’s body measurements in

order to get the appropriate size diaper and clothing and to get. The author was able to

determine the distance between two key locations on the body, which is an essential

component of AR measuring, with the use of technology known as ARkit and/or ARCore.

Pose estimation and edge keypoint recognition, both based on machine learning, are

utilised in the process of locating keypoints on a server that is located on the other side

of the network. These keypoints are then sent to the device that is located on the server

side, where measurements are then made after they have been received. TensorFlow

is going to be used for machine learning and to train models on the web server, as the

author has made this decision because it is faster and easier to configure.

PoseNet, the engine that drives this programme, has the capability of estimating

a single posture or many poses simultaneously. The single person posture detector

is not only quicker and easier to use, but it also requires that the image contain only

one subject. Because they only need to measure one body at a time, they only employ

a single pose estimate for body measurements. This allows them to measure more

accurately. On a broad scale, posture estimation can be broken down into two stages:

First, A convolutional neural network is used to process an RGB image that serves as

the input. Decoding poses, pose confidence scores, keypoint placements, and keypoint

confidence scores from the model outputs can be done with either a single-pose or

multi-pose decoding algorithm. Secondly, PoseNet will provide a pose object as its final

output. This object will have a list of keypoints as well as an instance-level confidence

score for each individual that was detected. A keypoint position is a pair of x and y

coordinates in the original input image that have been determined to be the location of a

keypoint.
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[131] did not have access to an image dataset consisting of baby photographs, thus

in order to validate the method, [131] used a dataset that consisted of pictures of the

human body in general. In addition to this, we have evaluated their program based on

the comprehensive human body dataset.

This piece of software was built on the foundation of six fundamental sections:

architecture, outputStride, inputResolution, multiplier, quantBytes, and modelUrl.

• Architecture: both MobileNetV1 and ResNet50 are available to users as potential

networks for use by the user. It decides which version of PoseNet’s architecture

should be loaded based on the current state of the network.

• OutputStride8: Users have the option of picking between 8, 16, and 32. (Stride 16,

32 are supported for the ResNet architecture and stride 8, 16, 32 are supported

for the MobileNetV1 architecture). It outlines the stride that will be produced by

the PoseNet model. The lower the value, the higher the output resolution, and the

more precise the model will be; however, this will come at the expense of speed.

If you want more speed but are willing to sacrifice some accuracy, increase this

amount.

• InputResolution: A number or an object with the "width: number, height: number"

type property set. The default value is 257. Before being input into the PoseNet

model, the image will be scaled and padded to this size, which is specified by this

parameter. When this value is increased, the model’s accuracy improves, albeit

at the expense of its speed. You can boost the speed of this at the expense of

its accuracy by lowering this setting. If a number is specified, the image will be

resized and padded such that it has the same width and height but is in the shape

8OutputStride is a feature in PoseNet that regulates the relationship between the resolution of the input
image and the scale of the model’s output. Lower values provide higher accuracy but slower processing,
while higher values sacrifice some accuracy for faster performance.
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of a square. If width and height are specified, the image will be scaled and padded

to match the width and height values that have been provided.

• Multiplier: User’s can choose any value between 1.01 and 1.0, 0.75 and 0.50.

(The value is used only by the MobileNetV1 architecture and not by the ResNet

architecture). It is the float multiplier for the depth, which is the number of channels,

for each and every convolution operation. When this value is increased, the amount

of the model’s layers also increases, leading to a more accurate representation

at the expense of speed. You can boost the speed of this at the expense of its

accuracy by lowering this setting.

• QuantBytes: The bytes that are utilised for weight quantization are under the

control of this argument.

• ModelUrl: A string that, if present, identifies the model’s custom url. This parameter

is optional. This is useful for local development or countries that don’t have access

to the model hosted on GCP.

Fig. 4.15 demonstrates the calculation of the baby’s body posture step-by-step. image
courtesy of: https://github.com/AI-Machine-Vision-Lab/body-measure

This research demonstrates a creative edge keypoint recognition based on the

keypoints that are produced by the single pose estimate approach. These edge keypoints
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are going to be necessary in order to collect measurements of the baby’s body. Using this

procedure, the keypoints on the edge of the body are moved. They work with the image

that has the contours detected. Because the location of the posture keypoint is already

known, the nearest detected contour may be computed based on that information. The

nearest contour is marked as one keypoint, and for another keypoint, a vector that is at

an angle that is opposite to the current vector is indicated. The second keypoint will be

the nearest contour that is detected on that vector. The length of the thigh will need to

be measured using these two important areas.

Despite the fact that this software provides several features and fast single pose

estimations, based on this research, the findings were not very promising, and numerous

bugs were discovered while using this software. Also, this program cannot be considered

a viable solution for measuring the human body.

4.2.7 Experiement 7: Body Measurements with Computer Vision

Another experiment that we carried out as part of these research studies involved

determining how to calculate human body measurements with the help of computer

vision, which was proposed by Faraz [65]. This piece of software requires only a single

snapshot to evaluate the human body and generate a three-dimensional representation

of the subject based on the evaluation results. After mapping a single input image onto a

three-dimensional model, this piece of software then extracts body measures like waist,

chest, and so on. Human Mesh Recovery (HMR) is utilised in order to complete the 3D

reconstruction. TensorFlow version 1.13.1 was used for testing.

The Human Mesh Recovery (HMR) system is a framework that can reconstruct a

whole 3D mesh of a human body using just a single RGB image of the subject. This

framework generates a mesh representation that is richer and more usable than the bulk

of the approaches that are currently in use, which compute 2D or 3D joint locations. The

framework does this by parameterising the mesh with form and 3D joint angles. The
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major objective is to lessen the amount of keypoints that are lost due to reprojection. This

will make it possible for the model to be trained utilising photographs taken in the wild with

only ground-truth 2D annotations. However, reprojection loss by itself has a significant

amount of room for for improvement. Training in HMR can be done with or without the

assistance of paired 2D-to-3D supervision. Without resorting to an intermediate method

of locating 2D keypoints, this method infers 3D location and shape characteristics directly

from the picture’s individual pixels. All models are executed in real time when provided

with a bounding box that contains a person. This framework proves its methodology

on various images taken in their natural environments, beats earlier optimization-based

systems that build 3D meshes, and obtains competitive results on tasks such as 3D joint

position prediction and component segmentation [91].

This software use a pre-trained COCO datasets [101] model to calculate the recon-

struction of human body measurements. The authors were able to calculate the human

body with the use of these datasets and the computer vision technologies. However,

coco’s pre-trained model was not developed specifically for their software’s needs; hence,

the result obtained is insufficient.

Despite the fact that this program is capable of measuring a significant number of

human body sections (23 in total), the results are not very precise, with an average

difference of 6.5 cm based on our testing. This indicates that the tool is not yet accurate

enough to be used.

4.3 Summary: Experiments

According to the data obtained in this chapter, the existing fashion and entertainment

applications will not be a solution to satisfy consumers’ needs, mainly due to the lack of

accuracy. Awkward positioning in front of the camera, as well as standing without moving

for a certain amount of time, wearing tight clothes, adjusting the camera in the right
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place to cover all the body, all cause issues that do not encourage consumers to use this

new technology. However, minimising the error and finding a way to make users more

comfortable while using the applications and creating a user-friendly experience, such

applications based on image processing have the highest potential in comparison to the

other existing software and scanners. Therefore, these applications grab our attention

because of the potential they have.

Also, results on the RMPE and Microsoft Kinect experiments show that such methods

are a powerful way to capture pose estimation and human body in motion. However,

these methods required powerful systems to compile data, which is not accessible

for many users. Also the accuracy of the data is not good enough to satisfy retailers,

compared to a 3D body scanner.

The Measuring Ruler application provided very accurate data in comparison to the

other systems and apps by achieving less than 1 cm average errors. Various techniques

have been combined in these applications to provide such accurate data, including

deep learning, computer vision and 3D matching. By investigating more about such

applications and adding or adapting machine learning and computer vision techniques,

we can calculate human body information during activities.



Computer Vision and Machine

Learning Approaches for

Calculating the Human Body

Measurements

"Machine learning is revolutionizing the fashion industry, providing new in-

sights into body shape and size, body measurements, and fabric detection

with unprecedented accuracy." - Nancy Wang, Forbes

In the following chapters, we utilised computer vision and machine learning methods,

to estimate human upper body measurements and predict their body size from 2D images

(front-side) taken from regular smartphones based on our findings in the previous chapter.

To calculate human body measurements, in our approach, (i) once a body is detected

(using a smartphone camera and a deep learning model), we then (ii) improve the image

quality, (iii) use region of interest (ROI) to discard irrelevant or unwanted part of an image

(iv) use calibration to determine the depth of field (distance from the camera focal point

to the human body), (v) extract body features from the image, (vi) semi-automatically

set a small number of markers, and (vii) by computing difference between markers, we

estimate human upper body measurements.
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The overall pipeline is illustrated in Figure 4.17. As part of the data capture process

users can wear casual clothing. Main constraints are that they should wear clothing

which is tight enough (does not mask) around the waistline, the shoulder line and the

neck. Note that this is much less restrictive than many other proposed approaches which

require to be naked or wearing only tight clothes over the entire body. In terms of poses,

our system requires a T-pose/A-pose or relax-pose for the frontal view capture, while

there are no restrictions for the side views (examples to follow). The T-pose/A-pose is

only needed for situating markers for the shoulders. Again, this is more flexible than

what can be found currently in available applications or published work using only a

smartphone camera to provide (only) image data.

Fig. 4.16 Pipeline - The following flowchart display every stage to calculate the human
upper body measurements
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Fig. 4.17 Proposed method as a diagram view of a pipeline of steps and processes
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All images of participants’ faces have been obscured to maintain anonymity in the

following chapters. This is in line with our ethical approval commitment, which ensures

the confidentiality of participant information in any published papers or thesis.

The following algorithms represents the process of our proposed software from the

beginning to the end.
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Algorithm 4.1: Semi Automatic - Human Upper Body Measurements
Result: Set of Measurements M, where tth row is the measurement around joint

jt
1 while Full Body Detected do
2 if Region of Interests (ROIs) Detected then
3 Crop each ROI - Isolate Human body from Surrounding Environments

(ROI) ;
4 Affine & Metrics Correction;
5 Execute Image Processing for each ROIs;
6 (i) Convert image to grayscale;
7 (ii) Bilateral Filtering (Gaussian Kernels);
8 (iii) Execute Canny Edge follow by findContours();
9 (iv) Color Space Conversion (HSV & YCrCb) + thresholding;

10 (v) Masking image ;
11 Compute Mid-Point markers;
12 Apply to Markers at the edge of each body contour;
13 Optional - (Request user to Draw Markers);
14 Get head point;
15 Calibrate the camera using the provided height data;
16 if User calibrated then
17 Save calibrated pose;
18 Call Calibration;
19 while Calibration=Success do
20 Call getDistance;
21 for Joint label t = 1: T do
22 if Jt is available then
23 Set automated point around body;
24 Request semi=auto marker from user - Optional;
25 Convert pixel unit to cm;
26 Compute intersection points;
27 Ellipse fitting to obtain mt ;
28 if Semi-Major axes is not 3 times longer than Semi-Minor

axes then
29 Use Equation 7.2;
30 if mt is available for all T joints then
31 Save M;
32 Break;

33 if Semi-Major axes is 3 times longer than Semi-Minor axes
then

34 Use Equation 7.3;
35 if mt is available for all T joints then
36 Save M;
37 Break;

38 Print Perimeter;
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Algorithm 4.2: Manual - Human Upper Body Measurements
Result: Set of Measurements M, where tth row is the measurement around joint

jt
1 while Full Body Detected do
2 if Region of Interests (ROIs) is NOT Detected then
3 Affine & Metrics Correction;
4 Execute Image Processing for Full Body;
5 (i) Convert image to grayscale;
6 (ii) Bilateral Filtering (Gaussian Kernels);
7 (iii) Execute Canny Edge follow by findContours();
8 (iv) Color Space Conversion (HSV & YCrCb) + thresholding;
9 (v) Masking image ;

10 Request user to draw markers;
11 Get head point;
12 Calibrate the camera using the provided height data;
13 if User calibrated then
14 Save calibrated pose;
15 Call Calibration;
16 while Calibration=Success do
17 Call getDistance;
18 for Joint label t = 1: T do
19 if Jt is available then
20 Convert pixel unit to cm;
21 Compute intersection points;
22 Ellipse fitting to obtain mt ;
23 if Semi-Major axes is not 3 times longer than Semi-Minor

axes then
24 Use Equation 7.2;
25 if mt is available for all T joints then
26 Save M;
27 Break;

28 if Semi-Major axes is 3 times longer than Semi-Minor axes
then

29 Use Equation 7.3;
30 if mt is available for all T joints then
31 Save M;
32 Break;

33 Print Perimeter;





Chapter 5

Body Detection using MobileNet

SSD

This chapter provides an overview of object detection algorithms for fully automatic

human body detection from a single image, with a focus on the MobileNet SSD method.

The chapter starts with a brief history of object detection, followed by a discussion of

machine learning and computer vision, object classification and localisation, challenges

in object detection, and popular datasets and characteristics. The chapter then compares

several object detection techniques, including Haar-Cascade, Histogram of Oriented

Gradients, MobileNet SSD, YOLO (You Only Look Once, and EfficientNet and presents

findings on their effectiveness. The inclusion of these object detectors in our comparison

was motivated by several factors. Firstly, previous research has utilised some of these

techniques, such as Haar Cascade, which was employed in Ashmawi et al. [31]’s paper.

Additionally, these detectors were chosen due to their relevance, high accuracy, and

being the latest techniques available.

The chapter proceeds to explain the region of interest and bounding box extraction

methods used to detect the human body from an image. The proposed method for this

chapter is MobileNet SSD, which is chosen based on the datasets used and the findings
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from the comparison of object detection techniques. The chapter then discusses the

identification of body section names, such as head, chest, bust, waist, hips, and height,

as well as the differentiation of upper and lower human body.

Finally, the chapter includes a discussion on the results of the proposed method

and its potential limitations. It concludes with a summary of the chapter’s findings and

implications for the development of the proposed software solution. Overall, this chapter

provides a comprehensive overview of object detection algorithms and their application

to human body detection, with a focus on the MobileNet SSD method.

5.1 A brief history of object detection

Object detection is a computer vision task that involves detecting an object in an image

or a video. Many Machine Learning (ML) and Deep Learning (DL) models are used to

improve the performance of object detection and associated tasks. Historically, two-stage

object detectors were extremely popular and effective. In compared to the majority of

two-stage object detectors, single-stage object detection and its underlying algorithms

have substantially improved with recent advancements. Object detection is the process

of locating an object in an image or video, and outlining its boundaries. It may also

include the identification of the object, such as the type of object or its class.

Object detection stands as a foundational challenge in the field of computer vision. It

functions as a foundation for a variety of other computer vision tasks, including instance

and image segmentation, image captioning, and object tracking, among others. Object

detection applications cover a broad range of tasks, including identifying pedestrians,

detecting animals, recognising vehicles, counting people, detecting features, extracting

text, and estimating poses. It is also used in areas such as medical imaging and fashion

industry. In the fashion industry, object detection is used to detect body parts in images
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of people wearing clothes. This can help designers to understand how the clothes fit the

body, and how they look on different body types. Object detection algorithms have come

a long way since their early days, and they are continuing to improve.

The history of object detection can be traced back to the early days of computer

vision research. Early object detection algorithms used hand-crafted features to detect

objects in images. These algorithms relied on manual feature extraction and were limited

in their accuracy.

In the late 2000s, deep learning algorithms began to be used for object detection.

These algorithms use CNN to automatically extract features from images and videos.

This allowed for more accurate object detection, as the CNNs are able to learn the

features that are important for detecting objects.

One of the significant advantages of object detectors is their remarkable versatility

and adaptability. These detectors can be programmed to perform a wide variety of

responsibilities and accommodate specialised applications. Through the automated

recognition of objects, individuals, and scenes, it is possible to extract valuable infor-

mation, thereby facilitating the automation of tasks at various phases of business value

chains. This capability enables businesses to streamline processes such as enumeration,

inspection, and verification, resulting in greater productivity and efficiency.

However, a significant disadvantage of object detectors is their high computational

requirements and substantial processing power requirements. This can present difficul-

ties, especially when deploying large-scale object detection models. The operational

costs associated with operating these models can accumulate rapidly, posing a threat

to the economic viability of business use cases. The need for extensive processing

resources and the attendant costs may prevent organisations from adopting object detec-

tion technology, particularly in circumstances where cost-effectiveness is of paramount

importance.
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5.1.1 Machine Learning and computer vision

Body detection for the fashion industry is the process of using computer vision and

machine learning algorithms to detect the shape, size and proportions of a person’s body.

This data can then be used to make recommendations for clothing and other fashion

items that would fit and look good on them.

Computer vision is a field of artificial intelligence that deals with analysing and

understanding images and videos. It’s used to identify objects, identify patterns, and

even reconstruct 3D models of the world. Computer vision algorithms are used to detect

and analyse the human body in order to extract meaningful information such as body

shape, size, and proportions.

Machine learning is a subset of artificial intelligence that focuses on the development

of computer programs that can learn from data and make decisions with minimal human

intervention. Machine learning algorithms can be used to identify patterns in data and

make predictions about future outcomes. In the fashion industry, machine learning

algorithms are used to analyse customer data and make recommendations for clothing

that would fit and look good on them.

The use of computer vision and machine learning for body detection in the fashion

industry has a number of advantages. First, it can reduce the amount of time and effort

required to measure someone’s body in order to determine their size and shape. Second,

it can provide more accurate measurements than manual methods, resulting in better

fitting clothes. Third, it can provide personalised recommendations to customers based

on their body shape, size and proportions. Finally, it can help to reduce returns and

improve customer satisfaction by providing accurate size information.

In order to use computer vision and machine learning for body detection, a number

of steps need to be taken. First, a data set of images and videos of people of all body

shapes and sizes needs to be collected. This data can then be used to train the computer
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vision and machine learning algorithms. Once the algorithms are trained, they can then

be used to detect the shape, size and proportions of a person’s body from a single image

or video.

The use of computer vision and machine learning for body detection in the fashion

industry is still in its early stages. However, it has the potential to revolutionise the way

people shop for clothes and make recommendations for clothing that would fit and look

good on them. With continued development and refinement of computer vision and

machine learning algorithms, body detection could soon become an integral part of the

fashion industry.

This chapter focused on object detection and its subfields, such as object localisation

and segmentation, as one of the most essential and widely used tasks in computer vision.

Convolution Neural Network (CNN), Deep Belief Networks (DBN), Deep Boltzmann

Machines (DBM), Restricted Boltzmann Machines (RBM), and Stacked Autoencoders

are examples of standard deep learning models that can be used to any computer vision

job [168].

5.1.2 Object classification and localisation

Object classification and localisation is a method of computer vision used to identify

and localise objects in an image or video. It is a type of supervised learning, in which

algorithms are trained to recognize objects from a given set of images. The algorithm

learns to recognize an object based on its features, such as colour, shape, texture, size,

etc.

Image Classification is the classification of an image or object within an image into

one of the established categories. Typically, this problem is tackled using supervised

machine learning or deep learning techniques in which the model is trained using a large

labelled dataset. ANN, SVM, Decision trees, and KNN are a few of the most often used

machine learning models for this job [165]. CNNs and its architectural successors and
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modifications dominate other deep models for categorising photos and related works on

the deep learning side. In addition to well-defined machine learning and deep learning

models, additional approaches such as fuzzy logic and genetic algorithms are also used

for the aforementioned objectives [67].

Object localisation is the process of determining the position of a single object or

numerous objects in an image or frame using a rectangular box known as a bounding

box. Image segmentation is the process of dividing an image into several segments,

with each segment including either an entire object or a portion of an object. Image

segmentation is often used to identify the objects, lines, and curves that define the

segment or object boundaries in an image. In general, pixels inside a segment share

a set of attributes, such as brightness, texture, etc. The primary objective of image

segmentation is to provide a meaningful representation of the image. Object detection

is also a combination of categorisation, localisation, and segmentation. It is the task

of accurately classifying and effectively localising single or many objects in a picture,

typically using supervised algorithms with a suitably big labelled training set. In the

context of object detection, Figure 5.1 provides a clear grasp of classification, localisation,

and segmentation for single and numerous items in an image.

Fig. 5.1 Detection or localisation and segmentation for single and multiple objects image
from [135]
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In the fashion industry, object classification and localisation can be used to identify

body parts for body detection. Body detection is the process of detecting human body

parts in images or videos. It is used to improve the accuracy and speed of clothing

selection for online shopping. By recognizing body parts, the system can identify the

best-fitting clothes for a person.

Body detection is an important task for the fashion industry, as it can help reduce the

time and effort required for customers to find clothes that fit them. It can also reduce the

chances of customers buying clothes that do not fit them.

Body detection can be used in combination with object classification and localisation

to identify body parts in images. The system can learn to recognize body parts by

training on a set of images with labeled body parts. The algorithm can then be used to

detect body parts in images or videos. This can be used to accurately identify the size

and shape of the body, which can then be used to recommend the best-fitting clothes.

Object classification and localisation can also be used to detect the pose of a person

in an image. This can be used to recommend clothes that are suitable for different

activities, such as running or yoga.

In overall, object classification and localisation is an important tool for the fashion

industry. It can be used to accurately detect body parts, identify the pose of a person,

and recommend the best-fitting clothes. This can help improve the accuracy and speed

of online shopping, and reduce the chances of customers buying clothes that do not fit

them.

5.1.3 Challenges in object detection

The primary challenges in object detection include (i) the occupancy of an object in an

image has an inherent variation, such that objects in an image may occupy the majority

of the pixels (70–80%) or very few pixels (10–20%), (ii) processing of low-resolution
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visual contents, (iii) dealing with multiple objects of varying sizes within a single image,

(iv) Availability to labelled data, and (v) dealing with overlapping objects in visual content.

Object detection is a challenging task for computer vision and machine learning

applications, particularly in the fashion industry. As the fashion industry is becoming

increasingly digitized, object detection algorithms are being used to help identify clothing

items in images and videos. Object detection involves using an algorithm to detect and

classify objects in an image or video, such as clothing items, people, and objects in a

scene.

The main challenges in object detection involve recognizing objects in an image

or video and correctly classifying them. This requires the algorithm to be able to

accurately identify objects and differentiate them from other objects in the image or

video. Additionally, object detection algorithms must be able to deal with varying levels

of occlusion, scale, and pose. For example, in the fashion industry, an algorithm must be

able to detect and identify clothing items regardless of whether the item is partially or

fully occluded, or at different angles or distances.

Another major challenge in object detection is dealing with different lighting conditions.

When dealing with images or videos from the fashion industry, the lighting conditions can

vary greatly depending on the environment. For example, an image/scene that been shot

outdoor/indoor will have different lighting conditions. Additionally, the lighting conditions

can also vary based on the time of day, the weather outside, and the type of lighting

used. An object detection algorithm must be able to detect and classify clothing items,

human body segments regardless of the lighting conditions.

Finally, object detection algorithms must be able to deal with a variety of different

body types. In the fashion industry, clothing items are designed to fit a variety of body

types, and an object detection algorithm must be able to accurately detect clothing

items on different body types. This requires the algorithm to be able to recognize and
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differentiate different body types, as well as accurately detect clothing items on those

body types.

The following is a summary of the problems that most object detectors have when

trying to solve them using deep learning methods.

• Multi-scale training: The majority of object detectors are trained for a particular

resolution of input. In general, these detectors underperform for inputs with varying

scales or resolutions.

• Foreground-background class imbalance: Imbalance or disproportion among

instances of different categories might have a significant impact on the performance

of the model.

• Detection of relatively smaller objects: If the model is trained on larger items, all

object detection techniques will tend to perform well when detecting larger things.

Unfortunately, these models perform poorly with respect to smaller-sized objects.

• Necessity of large datasets and computational power: Deep learning object

detection techniques require larger datasets for computing, labor-intensive ap-

proaches for annotations, and significant computer resources for processing [102].

Owing to the exponential growth of generated data from multiple sources, anno-

tating each and every object in the visual contents has become a laborious and

time-consuming operation [102, 169, 187].

• Smaller sized datasets: Deep learning models display poorer performance when

evaluating on datasets with fewer occurrences, despite the fact that they outperform

classical machine learning algorithms by a significant margin and have a significant

advantage in this regard.

• Inaccurate localisation during predictions: Bounding boxes are approximations

of the actual ground conditions. Typically, background pixels are also incorporated
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in algorithmic forecasts, which reduces its accuracy. localisation errors are typically

caused by the presence of background in the predictions or the detection of

comparable items.

5.1.4 Popular dataset and characteristics

MSCOCO[101] (Microsoft Common Objects in Context) and Pascal VOC (Visual Ob-

ject Classes) are two of the most commonly used datasets for object detection tasks.

MSCOCO is a large-scale dataset that contains over 330,000 images with more than

2 million labeled object instances, while Pascal VOC is a smaller dataset consisting of

roughly 10,000 images with 20 object classes. Both datasets have been widely used for

benchmarking object detection algorithms and for developing new approaches for object

detection.

MSCOCO is a well-known and widely used dataset for object detection tasks. It

contains a large number of images from different domains, including both indoor and

outdoor scenes. The images are annotated with a variety of objects such as people,

animals, vehicles, and furniture. Additionally, MSCOCO contains a large amount of

semantic information, such as scene categories and captions. This makes it ideal

for training deep learning models that require a large amount of data. Furthermore,

MSCOCO contains a variety of tasks, such as object detection, instance segmentation,

and caption generation, which makes it suitable for a wide range of applications.

Pascal VOC is another commonly used dataset for object detection tasks. It consists

of 10,000 images with 20 different object classes. It contains both indoor and outdoor

scenes, with objects such as cars, animals, and furniture. Unlike MSCOCO, Pascal VOC

does not contain any semantic information. However, it is smaller in size and easier to

use for training deep learning models. Also, it contains a variety of tasks, such as object

detection, semantic segmentation, and image classification.
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In terms of advantages and disadvantages, MSCOCO is larger in size and contains

more semantic information, making it ideal for training deep learning models that require

a large amount of data. However, it is more difficult to use and can be time-consuming to

annotate. On the other hand, Pascal VOC is smaller in size and easier to use. However,

it does not contain any semantic information, making it less suitable for deep learning

tasks.

In conclusion, both MSCOCO and Pascal VOC are two of the most commonly used

datasets for object detection tasks. MSCOCO is larger in size and contains more

semantic information, making it ideal for training deep learning models. However, it is

more difficult to use and can be time-consuming to annotate. On the other hand, Pascal

VOC is smaller in size and easier to use, but does not contain any semantic information.

5.1.5 Object detection algorithms

Recent object detection techniques can be divided broadly into two types two stage

object detectors and Single stage object detector. In the former, the first stage is

responsible for creating Regions of Interest (RoI) using the Region Proposal Network

(RPN), while the second stage predicts the items and bounding boxes for the proposed

regions. In this section, we will explore both object detectors, as well as their applications

in diverse sectors. Figure 5.2 displays different example of single and two stage object

detectors.
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Fig. 5.2 Different type of object detetion algorithms

Single stage detectors, while faster, typically sacrifice some accuracy in comparison

to two-stage detectors.

5.1.5.1 Two Stage Detector

In the case of two-stage detection, the first stage makes use of regional design networks

to generate high-probability regions of interest. Object detection is the second stage,

and it is responsible for the final bounding box regression and classification. Among the

many two-stage detectors are RCNN, Fast RCNN, SPPNET, Faster RCNN, etc.
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5.1.5.2 Single Stage Detector

Where object detection is a simple regression problem that learns probability classes and

bounding box coordinates from incoming data. EfficientDet, YOLO, SSD, and RetinaNet,

among others, fall under the same phase detector. Object detection is an advanced kind

of imaging classification in which a neural network predicts the presence of objects in an

image and highlights them via bounding boxes.

5.2 Comparison of the object detection techniques

Now that we have a better understanding of how object detections function, let’s examine

how we can detect human body segments using existing technologies. Detecting a

human body in an image or video can be challenging since humans can perform a

number of poses, each with a different shape.

In order to specify the properties of the upper human body, we studied numerous

object detection and segmentation techniques. Table 5.1 compares the available object

detection and segmentation techniques. Five relevant machine learning algorithms

(including Haar-Cascade Classifier, HOG, MobileNet SSD, YOLO, and EfficientNet) were

selected to detect the human torso, and they will be examined and studied in greater

depth in this section.

5.2.1 Haar-Cascade

Haar Cascade was the first approach that we researched in OpenCV1. Haar Cascade

uses machine learning to accurately identify every object on which it has been trained.

It operates by training using a huge number of images that are positive examples of

whatever you are attempting to detect, as well as a large number of images that are

negative examples of whatever you are attempting to detect. Then, it creates Haar

1OpenCV (Open Source Computer Vision Library: http://opencv.org) is an open-source BSD-licensed
library that includes several hundreds of computer vision algorithms
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Table 5.1 Comparison of the object detection and segmentation

Object detection and segmentation
RCNN family: RCNN, Fast RCNN, Mask RCNN 2015-18
multiple iterations over an image
robust, but slow

YOLO family: YOLO, YOLO 9000, YOLOv3, YOLOv4, YOLO-LITE 2015-20
single shot for multiple objects
robust and fast

CrowdDet 2020
one proposal, multiple predictions
earth mover’s distance and Set NMS

EfficientDet 2020
bidirectonal feature pyramid
uniform scaling of resolution, depth and width of backbone,
feature network and prediction networks

UniverseNET 2021
built on RetinaNet baseline
detects both small and large objects, both in and out of natural image domains

YOLOR 2021
combining implicit and explicit knowledge
multi-task learning

MobileNet V3 2019
tuned to mobile CPUs using hardware-aware network architecture search
NetAdapt algorithm

HRNet-OCR 2020
attention-based approach to combining multi-scale predictions
hierarchical attention mechanism – memory efficiency

CDCL+Pascal 2020
combine real and synthetic data
use skeleton representation of human bodies to bridge the gap
between real and synthetic domains
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Features that are an ideal match for the positive set. In order for the Haar Cascade

method to recognise the torso of a human body from an image, the following algorithm

steps must be executed in order: (1) Calculating Haar Features (2) Creating Integral

Images (3) Using Adaboost (4) Implementing Cascading Classifiers.

The algorithm will examine each rectangular portion of the image in an effort to

identify any (Haar features) that it identifies as being consistent with a human body.

fi =
{+1 vi≥t1

−1 vi≤t1
(5.1)

In this context, "v_i" is the response of a weak classifier to a specific Haar-like feature

in an image’s region of interest, showing how well the feature aligns with the desired

pattern. The threshold "t_1" determines the presence of this feature. If "v_i" is greater

than or equals "t1", the classifier deems the feature present, outputting "+1". If it’s less

than or equal, it outputs "-1", indicating the feature’s absence. The Haar cascade method

amalgamates numerous weak classifiers, each associated with distinct Haar-like features

and thresholds. This combination creates a powerful classifier. By applying these weak

classifiers in a cascade manner, the technique effectively and precisely detects intricate

objects in images.

Different kinds of Haar-like features are illustrated in Figure 5.3. When dealing with

large images, it may be more difficult to identify these features. Therefore, integral

images play a significant role in this context, which helps to reduce the total number of

operations. Integral images is an algorithm for quickly and efficiently computing the sum

of values in a rectangle subset of a grid. It is also known as a summed area table, which

is another name for this type of table.
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Fig. 5.3 Types of Haar-like features [86]

In these features, the colours white and black don’t literally refer to colours in an

image but instead represent regions of relative intensity. The white region signifies a

positive weight while the black indicates a negative weight. In essence, the Haar-like

feature calculations involve subtracting the sum of pixel intensities in black regions from

the sum in white regions. This difference can highlight contrasts in intensity patterns,

enabling the detector to recognize specific structural features in images, like edges or

contrasting regions. These contrasts are pivotal for object recognition processes, such

as detecting facial structures.

Instead of computing each pixel individually, it creates sub-rectangles and array

references for each sub-rectangle to speed up the process. This is done to save time.

Using these, the Haar features are subsequently reconstructed.
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Fig. 5.4 Illustration of the integral image and Haar-like rectangle features (a-f) [186].

The integral image and Haar-like rectangle features are foundational in rapid object

detection, as used in the Viola-Jones face detection algorithm. When you see an

illustration with points A, B, C, and D, these typically represent the four corners of a

rectangular region in the image. The concept of an integral image is to simplify the

calculation of the sum of pixel values within a rectangular region. For any point (x,y), the

value at the integral image gives the sum of all pixel values above and to the left of that

point, inclusive.

For the Haar-like features (a-f): (a) represent vertical edges, (b) detect horizontal

edges, (c) recognizes vertical lines, (d) recognizes horizontal lines, (e) A 2x2 checker-

board pattern which is sensitive to diagonal features, and (f) it is the inverse of "e".

When it comes to object detection, virtually all of the Haar features will be rendered

irrelevant because the only features that matter are those that are possessed by the

object itself. Consequently, this is where the AdaBoost (AD) come into play.
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The AD is a method that combines a number of hypotheses that are considered

to be "weak classifiers" in order to come up with highly accurate hypotheses that are

considered to be "strong classifiers." The best features are selected by the AD learning

algorithm, and the classifiers are then trained to use these features. The process of

creating weak learners involves moving a window across an input image and calculating

Haar features for each subsection of the image. This results in the creation of weak

learners. A learned threshold is used to differentiate between non-objects and objects,

and this difference is compared to that threshold. Because these are "weak classifiers,"

a significant number of Haar features’ attributes are necessary to achieve the desired

level of accuracy when constructing a robust classifier.

In conclusion, the cascade classifiers turn the weak learners into strong learners

by combining them. Boosting is a method of training weak learners that enables the

construction of a highly accurate classifier based on the average prediction of all of the

weak learners. As a result, the classifier will either decide to mark the object as known (a

positive decision) or not indicate the object as known (a negative decision), after which it

will proceed to the next stage. Since the bulk of the windows do not depict the human

torso, the negative samples were created to move on as quickly as possible in order to

hasten the procedure. This was done in order to save time (upper human body).

Fig. 5.5 Cascade classifier [133]

If the user’s legs or torso were not entirely in frame, we would be able to tell thanks

to Haar Cascade’s ability to differentiate between upper and lower bodies as well as
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full bodies. This would allow us to direct the user to move backwards or adjust their

phone to the appropriate angles. Following a significant amount of testing carried out in

a variety of settings, we came to the conclusion that we needed to adopt a new strategy.

Haar Cascade was capable of locating bodies, but the results were not very reliable.

Based on the findings, it was determined that the precision of the Haar approaches was

only 0.52. For further details, please refer to Table 5.4. In addition to the challenges we

encountered when attempting to apply the algorithms to side views, it was necessary to

have adequate lighting and an extremely clean background.

Fig. 5.6 A demonstration of the haar-cascade tegnique: Upper detector, lower detector
and full detector from front image

5.2.2 Histogram of Oriented gradients (HOG)

The HOG method operates in a manner that is similar to that of the Haar method; however,

rather than detecting blocks of dark and light, it identifies the angles of gradients. The

HOG is designed to extract features into a vector, which is then fed into a classification

algorithm such as a support vector machine (SVM), which determines whether or not

a human body (or any other object that the software has been trained to recognise) is

present in a certain region.



152 Body Detection using MobileNet SSD

The HOG algorithm to detect human body can be explained in the following four

stages: (1) Compute the Gradient Images (2) Compute the HOG (3) Block normalisation

(4) Feeding the vector into SVM.

Firstly, the algorithm needs to compute the (x, y) gradients of the image, by filtering

the image with the kernels. The kernel used for computing gradients in the HOG

algorithm consists of two filters: the horizontal filter [-1, 0, 1] and the vertical filter

[-1, 0, 1]. Each value in the filter represents a weight or coefficient. The "-1" and "1"

coefficients emphasize horizontal and vertical edges, respectively, when the kernel

is applied to an image region with intensity transitions. The "0" coefficient has no

effect on the convolution operation and acts as a neutral element. Convolution involves

multiplying the pixel intensities with the corresponding weights and summing up the

results, highlighting specific patterns in the image. These gradients are vital for computing

gradient magnitudes and orientations in the subsequent stages of the HOG algorithm.

It is important that the input image have a fixed aspect ration in HOG. The gradient

image will remove a lot of non-essential information such as coloured background, and

in return will highlights outlines. The image still can be identified and at each pixel, the

gradients has a magnitude and a direction.

After computing the HOG, the image is divided into 8x8 cells to provide a compact

representation and make the HOG more noise-resistant. The use of 8x8 cells in the

HOG computation instead of 16x16 enhances the algorithm’s sensitivity to local image

details and helps capture finer-grained gradient information, resulting in improved object

detection performance. Smaller cells allow for a more fine-grained representation of

gradient directions, contributing to the HOG’s noise resistance and discriminative power

in object recognition tasks. The HOG will thereafter be computed for each of these cells.

To determine the gradient direction inside a region, we simply produce a histogram of

64 (8x8) values. Each bin corresponds to a gradient direction (0-180 degrees, 9 bins
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per cell) (20 degree for each bin). Consequently, this will decrease the values of the 64

vectors to only 9 values.

A block with dimensions of 16 by 16 can be added to the image in order to normalise

it and make it independent of the illumination. By reducing the value of each pixel by

a factor of two (16x16), we are making the image darker; thus, the magnitude of the

gradient will change by half, and the values of the histogram will also change by half.

Block normalisation refers to this particular procedure.

In conclusion, a block with dimensions of 16 by 16 contains four histograms, each of

which can be chained together to produce a vector with 36 elements and one element

vector. After that, the window is shifted to the left by 8 pixels, a normalised 36x1 vector is

produced over this window, and the operation is carried out once again. This approach

can train a soft SVM and make predictions about the human torso (or any other object

been trained for).

Fig. 5.7 A demonstration of the HOG feature extraction method: a) the input image; b)
HOG visualisation emphasizing structural patterns; c) Gradient map of a sub-block; d)
Accumulated Gradient Orientation

Gradient map of a sub-block: A detailed view of a small part (sub-block) of the

input image, showing the gradient magnitude and direction. The arrows (quivers) point

in the direction of the gradient and their colour and length represent the magnitude of

the gradient. This visualisation gives an idea of how gradient information is extracted

from the image at a micro level.
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Accumulated Gradient Orientation: A histogram showing how often specific gradi-

ent orientations (angles) occur in the selected sub-block, weighted by their magnitudes.

This gives an aggregate view of the dominant directions of edges or transitions within

the sub-block.

Despite the fact that we used the Haar technique, HOG was able to function correctly

once we implemented the code, even in poorly light conditions, and it had no difficulty

identifying textured backgrounds. However, the human subject must be located within a

"perfect" area on the screen for the HOG technique to work well. If you get too close (less

than 0.5m), it won’t be able to see the person. When the distance is too far (more than

1.5m), it will not detect the human. In addition, one of the most major disadvantages of

utilising this approach is the fact that it will need a significant amount of time in order to

be operational. Based on the findings, it was determined that the Inference time of the

HOG approaches was 38.3. For further details, please refer to Table 5.4.

5.2.3 MobileNet SSD

MobilenetSSD is a model for object detection that computes the object’s bounding box

and category from an input image. This Single Shot Detector (SSD) object detection

approach utilises Mobilenet as its backbone to deliver mobile device-optimized, rapid

object detection. It is a lightweight, low power convolutional neural network (CNN)

designed for efficient object detection. It is based on a combination of depthwise

separable convolutions and pointwise convolutions. This makes it much faster and more

efficient than regular CNNs.

The goal of MobileNet SSD is to provide a fast, accurate and efficient object detection

model that can be deployed on mobile devices. It was developed by Google and has

been used in several mobile applications such as Google Photos, Google Play Store

and Google Maps.
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The MobileNet SSD architecture is based on a series of convolutional layers, which

are used to extract features from the input image. This layer is followed by a series

of depthwise separable convolutions, which are used to reduce the computational

complexity of the network. The output of this series of convolutions is then passed

through a 1x1 pointwise convolution layer, which is used to reduce the number of

parameters. The output from the pointwise convolution layer is then fed into a series of

fully connected layers, which are used to classify the objects in the image.

One of the main innovations in MobileNet is the use of depthwise separable convo-

lutions to reduce the number of parameters and computations. Let’s break down how

MobileNet does this:

1 .Standard Convolution: In a standard convolution, if you’re processing an input

feature map with D f channels using Dk filters, each of size K ×K , the number of

computations would be roughly: D f ×Dk ×K ×K

2. Depthwise Separable Convolution: This type of convolution splits the standard

convolution into two parts: a depthwise convolution and a pointwise convolution.

(a) Depthwise Convolution: This involves applying a single filter per input channel.

The number of computations for this would be: D f ×K ×K

(b) Pointwise Convolution: After the depthwise convolution, you apply a 1×1 convo-

lution. This is the "pointwise" step that combines the output channels from the depthwise

step. The number of computations here would be: D f ×Dk Adding the computations

from the depthwise and pointwise steps, you get: (D f ×K×K)+(D f ×D_k) This is much

less than the computations in the standard convolution if K ×K is much larger than 1

(e.g., K = 3 for a 3×3 filter).

By replacing standard convolutions with depthwise separable convolutions, MobileNet

significantly reduces the number of parameters and computations, making it efficient.
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The MobileNet SSD architecture also uses the non-maximum suppression (NMS)

algorithm for post-processing. This algorithm is used to identify the most likely object in

the image and suppress the other less likely objects in the scene. This algorithm helps

to reduce false positives, which increases the accuracy of the model.

The MobileNet SSD model is trained using a transfer learning approach. This means

that the model is pre-trained on large datasets such as ImageNet, and then fine-tuned for

the specific task. This helps to reduce the time and computational complexity required

to train the model from scratch.

Fig. 5.8 SSD Mobilenet Layered Architecture, image coutesy of:
https://lilianweng.github.io/posts/2018-12-27-object-recognition-part-4/

When compared to approaches that are based on regional proposal networks (RPN),

such as the R-CNN series, which require two shots, one for generating region proposals

and one for detecting the object of each proposal, SSD only requires us to take a single

shot in order to detect multiple objects within an image.

5.2.4 YOLO

Redmon et al. [136] introduced the YOLO model in 2016, which was designed for real-

time processing. By utilising a novel technique, YOLO revolutionised object detection.

Rather than segmenting an image into smaller sections, YOLO applies a single neural

network to the entire image and then divides it into smaller regions to simultaneously

predict probabilities and bounding boxes [115]. This distinguishing feature of YOLO
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enables it to utilise a single-stage deep learning algorithm based on convolutional neural

networks [117].

YOLO has gone through significant development over the years, culminating in

multiple versions including YOLOv3, YOLOv4, YOLOv5, YOLOv6, YOLOv7, and most

recently YOLOv8 [117]. Each version features unique enhancements and modifications.

Notably, YOLOv3 employs a distinct feature extractor known as Darknet-53, which

utilises 3x3 and 1x1 convolutional networks [137]. In contrast, YOLOv4 and YOLOv5 use

CSPDarknet53 as their primary feature extractor. In terms of class predictions, YOLOv3

and YOLOv4 use binary cross-entropy loss [117], [137], [88], whereas YOLOv5 employs

binary cross-entropy and logits loss functions [117], [88].

At the core of the YOLO architecture is the YOLO model’s deep neural network,

which is typically based on a CNN. The network takes an image as input and processes

it through several convolutional and pooling layers, gradually capturing higher-level

features. The final layers of the network then make predictions for object classes and

bounding boxes.

To improve accuracy, YOLO assigns each bounding box prediction to the cell with

the highest overlap, or Intersection over Union (IoU), between the predicted box and the

ground truth box. This approach ensures that each object in the image is assigned to

the most relevant cell, reducing the chances of multiple cells detecting the same object.

The YOLO architecture introduces anchor boxes to handle objects of different scales

and aspect ratios. Anchor boxes are pre-defined bounding boxes of various sizes and

shapes. Each anchor box is associated with specific aspect ratios and scales, allowing

the model to adapt to different object dimensions. The model adjusts the predictions

based on the anchor boxes to accurately localise objects in the image.

One of the significant advantages of the YOLO architecture is its speed. By applying

the neural network to the entire image at once, YOLO avoids the need for sliding
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windows or region proposal networks, significantly reducing computation time. The

single-pass processing approach makes YOLO highly efficient and well-suited for real-

time applications where fast and accurate object detection is essential.

Furthermore, YOLO achieves a good balance between accuracy and speed. Although

it may not match the detection accuracy of slower, two-stage models like Faster R-

CNN, YOLO provides a practical solution for many real-world scenarios where real-time

processing is crucial. Its real-time capabilities make it suitable for applications such as

video surveillance, autonomous driving, and robotics.

However, the YOLO architecture does have some limitations. One of the primary

challenges is detecting small objects. Since the network operates on a grid scale,

small objects may not be accurately captured. YOLO struggles with objects that are

significantly smaller than the grid cells, leading to lower detection performance for tiny

objects.

Another drawback is the loss of fine-grained spatial information. Since the entire

image is divided into a grid, YOLO may struggle with precise localisation, especially

for objects with complex shapes or occlusions. This limitation can lead to slightly less

accurate object boundaries compared to two-stage models that refine object proposals.

Furthermore, YOLO may have difficulty detecting densely packed objects. When

objects overlap or are tightly packed, the model can struggle to separate and accurately

predict individual objects. This limitation can affect the detection performance in crowded

scenes.

5.2.5 EffiecientNet

EfficientNet and EfficientDet are state-of-the-art models in the field of computer vision,

specifically designed for efficient and accurate object detection tasks. The Efficient-

Net architecture was introduced by Tan and Le [161] in 2020, while EfficientDet was



5.2 Comparison of the object detection techniques 159

developed as an extension of EfficientNet. These models have achieved remarkable

performance by carefully balancing network depth, width, and resolution, leading to

improved accuracy and efficiency.

The EfficientNet architecture is based on a scaling method that uniformly scales

all dimensions of depth, width, and resolution using a compound coefficient. The key

idea is to balance these dimensions to achieve optimal performance. By scaling up the

network, EfficientNet achieves better accuracy without sacrificing efficiency. The baseline

network, EfficientNet-B0, is obtained through a multi-objective neural architecture search

that optimizes both accuracy and FLOPS (floating-point operations per second). The

main building block of EfficientNet is the mobile inverted bottleneck MBConv, which is

augmented with the squeeze-and-excitation optimization technique.

To further enhance the performance, EfficientNet undergoes a two-step scaling

process. In the first step, the scaling coefficients, denoted as α,β and γ , are determined

through a grid search, assuming twice the available resources. These coefficients are

chosen based on the constraint α ·β 2 ·γ2 ≈ 2. In the second step, the baseline network is

scaled up with different scaling factors, denoted as , to obtain models from EfficientNet-

B1 to EfficientNet-B7. The scaling factors are determined using the previously fixed

α,β and γ coefficients. This approach allows for efficient scaling of the network while

maintaining the desired accuracy and resource efficiency.

EfficientNet has demonstrated outstanding performance on various benchmark

datasets. For instance, EfficientNet-B7 achieved state-of-the-art 84.3% top-1 accu-

racy on ImageNet, outperforming previous ConvNets while being significantly smaller

and faster in terms of inference time [161]. The EfficientNet models also generalize well

to other datasets, achieving state-of-the-art accuracy on CIFAR-100, Flowers, and other

transfer learning datasets, with significantly fewer parameters.
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EfficientDet, on the other hand, builds upon the EfficientNet backbone and extends it

to object detection tasks. It combines the EfficientNet feature extractor with a custom

detection and classification network. EfficientDet offers highly efficient and accurate

object detection capabilities, particularly suited for real-time applications.

EfficientDet has achieved state-of-the-art performance on the COCO dataset, sur-

passing models such as YOLOv3 [161]. The architecture of EfficientDet varies according

to different versions, ranging from EfficientDet D0 to D7. These versions correspond to

models with increasing size and capacity, providing a trade-off between accuracy and

resource requirements.

Fig. 5.9 : Comparison of Model Size and ImageNet Accuracy of various object detectors
from [161].
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EfficientDet-D0, the smallest version of EfficientDet, contains only 4 million weight

parameters and achieves impressive performance. It can run inference in just 30ms and

requires 17 megabytes of storage, making it both fast and compact.

5.2.6 Dataset Description and Splitting Strategy

The dataset utilised in this study consists of images obtained from 78 who self identified

as female participants during the measurement process. Specifically, a collection of

312 frontal view images was gathered from these participants, and each image was

annotated accordingly. Table 1 provides an overview of the class distribution and the

corresponding balances within the dataset.

Table 5.2 Class Balance

Classes Amount

Head 312
Chest 312
Bust 312
Waist 312
Hips 312

To facilitate a comparative analysis of different object detection algorithms, the

experiment was conducted using the ementioned dataset. The dataset was divided into

two different sets of data, namely the training and test data, with proportions of 80% and

20% respectively.

Table 5.3 Class Balance

Classes Amount

Train Data 249
Test data 63

Initial image pre-processing for the MobileNet-SSDv2, YOLO, and EfficientNet models

involves resizing and cropping the images based on the input layer sizes while preserving

a specified aspect ratio. After resizing the dataset, data augmentation techniques are
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implemented. This process permits the application of various geometric and colour

transformations to the images, including scaling, transformation, and colour adjustment.

During the comparison, the latest version of YOLO available was YOLOv5. Additionally,

we included SSD MobileNetv2 FPN-Lite and EfficientDet D0 512x512 in our testing.

5.2.7 Performance Metrics

Several performance metrics were used to evaluate each algorithm. Precision, recall,

F1-score, Average Precision (AP), mAP, and inference time were chosen in this research.

Precision =
TruePositive(T P)

TruePositive(T P)+FalsePositive(FP)
(5.2)

Recall =
TruePositive(T P)

TruePositive(T P)+FalseNegative(FN)
(5.3)

F1−Score = 2× Precision.Recall
Precision+Recall

(5.4)

AP =
∫ 1

0
p(r)dr (5.5)

mAP =
1
N

N

∑
i=1

APi (5.6)

Equation 5.2, Precision quantifies the accuracy of prediction results by calculating

the percentage of correct predictions in relation to both false positives and true positives.

It assesses the level of correctness in the predictions made. Equation 5.3, Recall

determines the effectiveness of an algorithm in identifying all positive cases. It measures

how well the algorithm captures and includes all instances of positive cases in its

predictions. Equation 5.4, The F1-Score represents a balanced measure between

precision and recall, with values ranging from 0 to 1. A higher F1-Score indicates
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a better balance between precision and recall, indicating that the algorithm achieves

both high accuracy in its predictions (precision) and effectively captures a significant

portion of positive cases (recall). Equation 5.5, AP has become the standard measure of

assessment for Object detection. This is calculated as the average accuracy of detection

at multiple recall levels and is assessed individually for each class Equation 5.6, To

compare the performance of all the classes, the mAP of each class is taken and used as

the final measure for evaluation in Object detection and related areas.

In this study, various Intersection over Union (IoU) values were used to determine the

mean average precision (mAP). The IoU measures the proportion of overlap between the

predicted and ground-truth bounding boxes. mAP@.5 indicates that the IoU threshold

for calculating the mean average precision has been set to 0.5. In addition, mAP@.5:95

is utilised, which represents the average mAP across different IoU thresholds varying

from 0.5 to 0.95. Another important metric is inference time, which indicates the rate at

which the algorithm makes predictions in real-time. Real-time applications would benefit

from a reduced inference time. In addition, we considered the resource requirements,

including GPU utilisation and the viability of implementation on mobile devices, favouring

methods that require fewer resources and are more compatible with mobile devices.

5.2.8 Findings

Our investigations were divided into two sections. During the initial stage, we investigated

conventional computer vision techniques, such as HOG and Haar-cascade. These

techniques are extensively employed for object detection, but we wanted to evaluate

their performance using real-world data. Therefore, we moved on to the next phase,

where we trained more sophisticated models capable of detecting human body parts

and labelling them into five distinct regions: head, chest, bust, waist, and hips (as shown

in Figure 5.10. We conducted a comparative analysis of three cutting-edge models for

this purpose: MobileNet SSD v2, YOLOv5, and EfficientDet-D0. The selection of these
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models was based on extensive prior research that evaluated their efficacy in a variety

of studies, particularly in the field of human body detection on smartphone devices.

Fig. 5.10 : Labelling our datasets

MobileNet SSD v2, YOLOv5, and EfficientDet-D0 were selected due to a number of

technical factors demonstrating their suitability for our particular human body detection

task.

MobileNet SSD v2 is renowned for its efficiency and precision in mobile device

object detection. It utilises depth-wise separable convolutions, which enables it to attain

high performance at low computational cost. MobileNet SSD v2 was chosen due to its

balance between accuracy and real-time processing, which aligns well with our goal of

efficient human body detection on mobile devices.

YOLOv5 models are well-known for their real-time object detection abilities. The most

recent version of YOLO at the time of our study, YOLOv5, features several improvements

over previous versions. Its architecture is optimised for speed and precision, making it

an attractive option for detecting human body parts on mobile devices. Incorporating

YOLOv5 into our comparative analysis was a no-brainer due to its ability to process

frames quickly and robust detection performance.
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EfficientDet-D0 is a member of the EfficientDet model family, which provides a

balance between efficiency and precision. EfficientDet-D0, the series’ smallest variant,

is ideally adapted for environments with limited resources, such as smartphones. It

provides satisfactory object detection results while preserving a lightweight architecture,

which makes it an attractive candidate for our human body detection task.

By selecting these models, we ensured that our comparative analysis included a

variety of cutting-edge approaches that have demonstrated efficacy in object detection

and human body detection in particular. We evaluated the technical advantages of each

model, such as their optimised architectures, efficient processing capabilities, and ability

to operate efficiently on mobile devices. These factors were crucial in determining the

suitability of these models for our research and allowed us to make informed comparisons

of their performance in human body detection.

Given the inherent differences between computer vision techniques and deep learn-

ing models, it may not be ideal to compare the results directly. To ensure a fair com-

parison and determine the most suitable option for our software, we made every effort

to ensure that all models had similar settings. In Table 5.4, we present the testing

outcomes of our experiments involving a combination of computer vision techniques

(HOG and Haar-Cascade) and machine learning models (MobileNet SSD v2, YOLOv5,

and EfficientDet-D0). By comparing the performance metrics of each object detection

algorithm, we hoped to obtain a better understanding of their capabilities and select the

most suitable one for our software.
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Table 5.4 Comparison of the various computer vision and machine learning techniques
for Body Detection

Measure HOG Haar-Cascade MobileNet SSD v2 YOLOv51 EfficientDet-D0

Precision 0.68 0.52 0.79 0.82 0.85

Recall 0.26 0.29 0.54 0.54 0.58

F1-Score 0.22 0.3 0.61 0.64 0.61

mAP@.5 N/A N/A 0.70 0.69 0.73

mAP@.5:95 N/A N/A 0.55 0.53 0.6

Inference Time (ms) 38.3 35.41 8.4 24.28 21.34

Note that metrics such as mAP (mean Average Precision) or mAP at different IoU

thresholds (mAP@.5, mAP@.5:95) are not typically calculated for HOG and Haar-

cascade.

On the basis of the performance metrics, EfficientDet-D0 and YOLOv5 achieve high

precision values of 0.85 and 0.82, respectively, when identifying bodies. EfficientDet-D0

also excels in recall, with a value of 0.58, followed by YOLOv5’s 0.54. In terms of F1-

score, mAP@.5, and mAP@.5:95, both techniques outperform others, with EfficientDet-

D0 achieving F1-scores of 0.61 and mAP@.5 values of 0.73. MobileNet SSD v2 and

YOLOv5 also perform fairly well with respect to these metrics. MobileNet SSD v2 has

the fastest inference time at 8.4 milliseconds, followed by EfficientDet-D0 and YOLOv5 at

21.34 and 24.28 milliseconds, respectively. HOG and Haar-Cascade have significantly

longer inference times than the other techniques.

Based on a comparison of mAP@.5 and inference time, EfficientDet-D0 offers the

highest accuracy with a mAP@.5 of 0.73, surpassing MobileNet SSD v2 and YOLOv5.

MobileNet SSD v2 has a lower inference time of 8.4 milliseconds, which indicates quicker

processing and makes it suitable for real-time applications. While EfficientDet-D0 offers

greater precision and YOLOv5 performs better in F1-Score, MobileNet SSD v2 was
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selected for our software due to its balanced performance, lower GPU requirements, and

mobile-optimized design.

5.3 Method

Several steps are required to use the mobileNet SSD (computer vision and machine

learning) model for body detection. First, a collection of photos of people with varying

body types must be compiled. This information can subsequently be used to train

computer vision and machine learning systems. Once the algorithms have been trained,

a single photograph can be used to detect the size, sections and proportions of a

person’s body.

Our primary focus in this chapter does not merely lie in extracting only the human

body from the image; we are also interested in extracting the upper human body, as well

as classifying each part of the body into categories such as head, chest, bust, waist,

hips, shoulder, and height. This will enable us to speed up the process of measuring

each body area more precisely.

To achieve this, we utilise LabelImage [166], an open-source mobile computer vision

and machine learning software library, It uses a MobileNet SSD model. This functionality

will allow us to train our image databases and appropriately label them. The model can

then be utilised to identify things inside an image. This is achieved by applying the image

to the model. The model will then produce the detected object’s bounding box and label.

By utilizing these labels, we can automatically extract the regions of interest from each

section of the body and utilize the relevant area of the image to calculate the various

components of the human body. Let’s move on to the approach of this part and explore

in further detail how we were able to detect the human body using mobileNet SSD and

what its dependencies are.
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5.3.1 Identify body section names

To train a custom human body detector, we must divide our project into 2 different phases,

each with its own sub-steps (as shown in Figure 5.11):

1. Training: Here, we’ll concentrate on loading a human body detection dataset from

disc, training a model on this dataset using TensorFlow, and then serialising the

human body detector to disc. Serializing a human body detector entails saving the

trained model’s architecture and parameters to a file, enabling easy reuse, sharing,

and deployment in various applications.

2. Deployment: Once the human detector is trained, we can then move on to loading

the human detector, performing upper body detection, and then classifying each

upper body as head, chest, bust, waist, hips and height
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Fig. 5.11 : Phases and individual steps for building a human body detector with computer
vision and deep learning using Python, OpenCV, and TensorFlow/.

5.3.1.1 Phase 1: Train Human Body Segment’s Detector

The initial phase involves training a classifier to detect and segment the human body.
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1. Load Human Body Dataset: The first step involved the collection and preparation

of our own unique dataset. It was observed that publicly available datasets such as

COCO or MPII Human Pose were not ideally suited for our specific requirements.

Consequently, we compiled our own custom dataset, featuring a total of 312 images

from a total of 78 who self-identified as female participants. This was intended to

provide our model with a diverse set of data and improve its ability to recognize

and segment the human body.

2. Train Human Body Classifier with TensorFlow: After the dataset was prepared,

the next step was to train our classifier using this data. TensorFlow is an excellent

library for building and training deep learning models. In this case, the model of

choice was MobileNet SSD (Single Shot MultiBox Detector), an architecture well-

known for its efficiency and effectiveness in real-time processing tasks, even on

less powerful hardware. Training the model involved feeding it our images, adjusting

the internal weights and biases of the MobileNet SSD via backpropagation, and

optimizing this process in an iterative manner to minimize the difference between

the model’s prediction and the actual labeled data (loss function).

3. Serialize Human Body Classifier to Disk: Post-training, it was essential to save

the model for future use, a process known as model serialization. TensorFlow pro-

vides this functionality through its model.save() function. This enables the model’s

architecture, weight values, and training configuration to be stored, facilitating its

loading from disk for subsequent use or further analysis.

5.3.1.2 Phase 2: Apply Human Body Detector

This second phase involved applying our trained classifier to detect and label different

sections of the human body in new, unseen images.
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1. Load Human Body Classifier from Disk: I began by loading our serialized model

from disk. This was made possible through TensorFlow’s tf.keras.models.load_model()

function. Armed with the trained model, our software was now capable of detecting

human body sections.

2. Detect Human Body in Image: The next step involved processing new images

and detecting human bodies using our trained model. This generally required pre-

processing activities such as image normalization, resizing to match the model’s

input shape, and converting the image to an array. The processed image was then

passed through the model for inference, resulting in a set of bounding boxes and

confidence scores for each detected human body part.

3. Extract Each Body Section ROI: After detection, the software pinpointed Regions

of Interest (ROI) subsection 5.3.2 - areas containing each body part. These ROIs

were then extracted for further analysis. OpenCV, a powerful library for image

processing and computer vision tasks, was essential in this process.

4. Apply Human Body Classifier to Each Section’s ROI: The next step was to

apply the classifier to each extracted body section’s ROI. The aim was to determine

the specific type of each body part - an head, shoulder, chest, etc. At this point,

the labeling of each body section occurred, based on the detections made by our

MobileNet SSD classifier.

5. Show Results: Finally, results are provided. This was typically done by drawing

bounding boxes and labels around the detected body parts on the original image

and then displaying it as shown in Figure 5.12.

5.3.2 Region of Interests

The utilization of the Region of Interest (ROI) in our project forms a core aspect of

the Single Shot MultiBox Detector (SSD) architecture we are employing, playing an
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invaluable role in defining the focus of our image processing. Before moving into the

technicalities of the RoI application, let’s consider why we chose to use RoI in the first

place.

The RoI method serves as a viable solution to isolating the entire human body from

its surrounding environments, an essential step that significantly aids our second and

third pipeline stages—Chapter 6. This task of removing a background scene to separate

a human body from a scene has posed a substantial challenge, mainly due to the rapid

change of the background environment. Although multiple experiments were conducted,

we concluded that the image correction steps by themselves cannot entirely separate the

human body from the background. This recurring issue hinged on the fact that extraction

of human contours is vital for the development of vision-based non-contact human body

measurement and modelling systems. The efficiency of the RoI arises from its ability to

focus on specific areas of an image and discard irrelevant or unwanted parts.

Given this backdrop, the RoI becomes a crucial component in our system. It di-

rectly affects the accuracy of subsequent measures of body size, making the accurate

extraction of human outlines from photos a priority. However, the varying background

environment has a direct effect on the accuracy of human identification segmentation

techniques. Our solution to this, therefore, is a method that enables us to accurately

extract human body contours from a complex background environment.

The RoI technique, in its essence, is a digital image manipulation technique. Users

can isolate specific parts of an image or video frame for further processing, with a

focus on the chosen areas of an image, discarding the irrelevant sections. This process

is achieved by selecting a rectangular area, or region, of an image, and then only

processing the pixels in that region.

In our software, this concept is extended to define regions of the human body in

relation to the bounded rectangle of the mask image. These regions encompass the
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head, neck, hands (shoulder width for side views), bust/chest, waist, hips, and height.

This division allows the software to treat each region as an independent unit of interest

for more precise measurements (as can be seen in Figure 5.12). To accomplish this, we

use a unique approach. We employ a different colour space to differentiate between the

upper and lower regions of the human body.

Fig. 5.12 : Image obtained by adding masks from a set of training images

This feature is beneficial because our software primarily focuses on measuring the

upper body. While data from the lower body is collected, it isn’t used in the automatic
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computations, ensuring that the software’s focus remains on the upper body (see

Figure 5.13). After the initial differentiation of the upper and lower sections of the human

body by the SSD, the software proceeds to apply unique colour spaces to each of these

sections, enhancing the distinguishing characteristics of each segment of the body. This

step allows for better isolation and analysis of each part, improving the detection and

measurement processes.

Fig. 5.13 : SSD predicts two distinct classes from a single image by selecting the class
with the greatest score for the bounded object and assigning the class ’0’ to non-bounded
objects. CX and CY in MobileNet SSD are the x and y coordinates of the center of the
bounding box. These coordinates are used to determine the location of the detected
object within the image.

One significant attribute of the RoI within the SSD framework is its ability to efficiently

manage the high-dimensionality problem. While SSD can detect objects at different

scales due to the varying sizes of its feature maps, this flexibility also introduces an

array of bounding box aspect ratios, leading to a significant number of RoIs to consider.

Here, the RoI acts as a strategic filter to pinpoint the areas worth analysing, significantly

reducing the number of candidate boxes.

Our implementation leverages the multi-layer architecture of MobileNet SSD, using

different feature map layers for detecting objects of different sizes. This unique ability, in
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the context of our project, allows for the segmentation of the human body into upper and

lower sections. The SSD can extract RoIs from various feature map layers, enabling the

differentiation of various body sections based on their size and spatial location in the

image.

Finally, the RoI pooling layer, a part of the Fast R-CNN structure embedded in SSD,

enables the model to handle RoIs of varying sizes and create fixed-size feature maps.

This ensures that, regardless of the human body’s size in the image, we can create

consistent and fixed-size feature maps of the upper and lower body sections, ensuring

the uniformity of the data and the resulting measurements.

5.4 Summary

In this chapter, we began by providing a brief history of object detection and specifically

focused on detecting the human body. We highlighted the challenges faced in human

body detection, particularly emphasizing the impact of backgrounds on the accuracy of

detection results.

To address these challenges, we explored several machine learning methods for

object detection, including Haarcascade, HOG, YOLO, MobileNet SSD and EfficientNet.

While EfficientDet-D0 exhibited impressive accuracy with an mAP@.5 value of 0.73, it

had a slightly higher inference time of 21.34 milliseconds. After careful examination

and analysis, we concluded that MobileNet SSD is the most suitable choice for our

application. Our decision was based on key factors such as mean Average Precision

(mAP) and Inference Time. MobileNet SSD demonstrated superior performance with an

mAP value of 0.7 and the ability to process up to 8.4 milliseconds, making it a compelling

option for real-time object detection in our specific scenario.
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We also considered the future deployment of our software on mobile devices, and

MobileNet SSD stood out as it has been specifically designed for such systems. It

combines accuracy and efficiency, making it an ideal choice for real-time applications.

Following the selection of MobileNet SSD, we delved into the implementation details

of our method, which consists of two phases: training and deployment. In the training

phase, we loaded a human body dataset and trained a human body classifier using

TensorFlow. The resulting classifier was serialized and stored on disk for later use.

In the deployment phase, we loaded the human body classifier from disk and applied

it to detect human bodies in images. We employed the concept of Region of Interest

(RoI) to isolate each section of the body, leveraging the capabilities of MobileNet SSD.

RoI proved to be a viable solution for separating the human body from its surroundings,

allowing for better isolation and analysis of each body part.

Furthermore, our system prioritizes the upper body by differentiating it from the lower

body during the initial stages of detection. Although data from the lower body is collected,

it is not utilised in the automatic computations, ensuring that the software’s focus remains

on the upper body. Additionally, we applied unique colour spaces to each section of

the body, enhancing their distinguishing characteristics. This step further improves the

detection and measurement processes, facilitating more accurate analysis.



Chapter 6

Image Corrections, Image

Segmentation, Skin Detection, and

Camera Calibrations for Human

Body Analysis

This chapter of our proposed software solution aims to enhance the overall quality

and appearance of uploaded images through image correction. The chapter begins by

discussing the challenges posed by cluttered backgrounds, noise, and shadows, which

can impact the accuracy of collected data. We explore two potential approaches for

image segmentation, classical computer vision image segmentation and DeeplabV3,

and compare their effectiveness in improving image quality. Based on our findings, we

select classical computer vision image segmentation as the optimal method for our

software solution.

Next, we discuss skin detection, which involves identifying the human body’s skin

color using different color spaces such as RGB, HSV, and YCbCr. We explain the skin

detection algorithm and how we implement it into our software solution. Finally, we
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present the results of our experiments, which compare plain and cluttered backgrounds

to ensure the effectiveness of our image correction and skin detection methods in

accurately collecting data from the human body in two images.

In what follows, we also give details on how we used camera calibration based

on OpenCV’s functions, which allows to accurately convert pixel measurements to

corresponding centimeters. We also summarise ours findings which identify the range of

0.5 to 3 meters as the most accurate distance for data collection, given the architecture

of our designed system.

Furthermore, this chapter provides insights into the automatic and semi-automatic

methods for detecting and localizing landmarks on the body. These methods contribute

to the overall precision of the software solution, enabling efficient data collection and

analysis.

The chapter concludes with a summary of the findings and implications for the

development of the software solution. By utilising classical computer vision image

segmentation and skin detection algorithms, it becomes possible to enhance the quality

of uploaded images and gather precise data from the human body. The significance

of image correction in elevating the overall image quality and ensuring accurate data

collection is underscored in this chapter. Detailed results and discussions are presented

in Chapter 8.

6.1 Image Corrections

Before launching into the methods of this chapter, it’s useful to review some of the

problems that need to be fixed in advance. Two general categories of problems as follow.

1. An image needs Improvement
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2. Low-level features must be detected

When an image needs improvement, it is often due to low-resolution, poor lighting,

an incorrect color balance, or the use of an incorrect color space. Low-resolution images

can be improved by up-sampling or interpolation, which can increase the detail and

definition of the image. Poor lighting can be improved by using a flash or using a light box

to create even lighting. Color balance can be adjusted using color correction tools, such

as curves or levels. Color spaces can also be adjusted to match the intended output.

On the other hand, Low-level features must be detected in an image to perform more

advanced image processing algorithms, such as object recognition and classification.

This can be done using edge detection algorithms, which can detect lines, corners and

curves in an image. In addition, texture detection algorithms can be used to detect

different characteristics of an image. Edge detection is then applied based on the classic

Canny edge detection algorithm. We conduct edge contour tracking via hysteresis to

detect body part contour segments by suppressing weak pixels not connected to strong

ones as highlighted by the Canny operator (Additional details on this topic can be located

within the section D.1.). These algorithms can be used to detect regions of interest, or to

identify different objects within an image. By detecting these low-level features, more

advanced image processing algorithms can be applied to the image.

In the context of image processing, two key categories of issues that need to be

addressed: image enhancement and low-level feature detection. Image improvement

involves enhancing image quality by addressing issues like low resolution, poor lighting,

incorrect color balance, and color space discrepancies. Techniques such as up-sampling,

flash usage, and color correction tools are employed for this purpose. On the other

hand, low-level features pertain to fundamental elements within an image, including lines,

corners, curves, and textures. Detecting these features is essential for advanced image

processing tasks like object recognition and classification, facilitating the identification of

regions of interest and objects within images.
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In order to detect low-level features, improve the image quality; we must purge the

image of various types of noise, improve the contrast between adjacent regions and

features, and simplify the image through selective smoothing and the elimination of

features at small scales while maintaining other features at desired scales - [107], we

have considered two different image segmentation’s methods;

1. Classical computer vision image segmentation

2. DeeplabV3

6.1.1 Classical computer vision image segmentation

In what follows, we provide a quick overview of the various stages of image improvement

and low-level feature recognition using traditional computer graphics segmentation. We

proceed as follows; (i) metric correction of an affine camera model, (ii) grey level mapping

of an RGB input [151] [17], (iii) removal of small image regions and image smoothing

(blurring) [151] [17], (iv) detecting edges [107], (v) mask operations on matrices and (vi)

thresholding [17].

6.1.1.1 Affine and Metrics Correction

With an affine and metric correction step, we may increase the visibility and geometry of

the many regions into which an image can be segmented, as well as the clarity of image

features inside these regions. Affine and Metrics Correction in image segmentation is

a process which is used to rotate an image and make it 90 degrees in order to better

analyse or segment the image. It involves adjusting the scaling, rotation, and translation

of an image so that the original shape of the image is maintained.

An affine transformation is a linear mapping between two coordinate systems. It

involves three parameters, a scaling factor, a rotation angle, and a translation vector.

Metrics Correction is the process of adjusting an image to better fit the desired shape
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or size. This involves changing the aspect ratio of the image, or making changes to the

coordinates of the image. Both before and after the conversion, parallel lines will stay

parallel. An image’s affine transformation can be represented by a mapping that looks

like this: x |→ Mx+b, where M is a linear transform (matrix) and b is an offset vector. This

mapping applies to every pixel in the image.

The process of the affine and matrices corrections is as follows: (i) Read the color

image, convert it into grayscale, and obtain the grayscale image shape (ii) scale the

image based on the result of the camera calibration (iii) Rotate the image by the results

that is obtained on camera calibration counter-clockwise. It is a composite operation first,

need to shift/center of the image, apply rotation, and then apply inverse shift(iv) Apply

reflection and transition transform (along the x-axis) (v) Apply shear transform to the

image (x,y axis)

This will helps to accurately measure the distance and area of the objects and also

helps in object detection and image segmentation.

6.1.1.2 Grey level mapping

Grey level mapping in image segmentation is a process used to convert an image

from its original color format to a grey scale version. This can be used for a variety of

tasks such as image segmentation, object recognition, and edge detection. Because

it is common practise to extend the grey values of an image that is too dark onto the

complete set of grey values that are available, the process of remapping the grey value

is frequently referred to as "stretching". We have altered the intensity values of the pixels

in order to improve the images. Gamma correction is used to scale the image pixel

intensities from the range of [0, 255] to [0, 1.0]. The following equation shows the output

gamma-corrected image:

Iout = I(1/G)
in
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Where Iin is our input image and G is the gamma value. This level mapping, helps

to reduce problems due to wearing light-colored clothing (such as white or off-white),

as well as those affecting people whose input photographs contained shadows and

reflections.

In our case we converted the image to greyscale by calling cv2.cvtColor and

providing the image and cv2.COLOR_BGR2GRAY flag. The cv2.COLOR_BGR2GRAY

function takes the three color channels (Red, Green, and Blue) and calculates the

average of them, which is then used as the grey level of the pixel.

Once the image has been converted to a grey scale version, it can then be used for

image segmentation. A variety of thresholding methods can be used to divide the image

into two groups: background and foreground. The most common thresholding methods

are Otsu’s thresholding and Adaptive thresholding;

Fig. 6.1 Display the original image on the left and gray-scale image on the right
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6.1.1.3 Removal of Small Image Regions, Image Smoothing and Blurring

There are occasions when cropping out little sections of an image can be quite helpful.

It’s possible that this is just the consequence of noise, but it could also reflect low-level

detail that has to be omitted from the image description that’s being generated. It is

possible to get rid of small regions either by modifying individual pixels or by eliminating

components once a region retrieved [151].

Often, we want to detect and describe some underlying ideal structure from the

composed image, together with some random noise or artefact which we want to

remove. For instance, we can observe that blurring is utilised during the construction of

a simple body scanner, and that smoothing is utilised to assist us in locating our marker

throughout the process of determining the distance between an object and our camera

(Appendix E.1.3). As a result, in this particular illustration, the image’s precise points

have been simplified, but the majority of the picture’s structural elements have been left

unchanged.

According to the findings of the research that I have conducted, a great deal of the

image processing and computer vision functions, such as the thresholding described in

Appendix D.1.2.3 and the edge detection described in subsubsection 6.1.1.4, produce

superior outcomes if the image is first blurred or smoothed as it reduce the potential

effects of noise or tiny high frequency features.

Although this may appear at first counter-intuitive, reducing the number of details in

an image allows us to more easily locate the objects of interest in an image that (i.e. the

upper human body). For additional details on this topic, please refer to Appendix D.1.

On the basis of our findings, we have decided to employ Gaussian blur to eliminate

noises and smooth the images in our software. It keeps the majority of the image’s edges,

which is essential for the next phase in our image optimization phase. The amount of

blurring is controlled by the blur value variable, which is a tuple describing the blurring
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kernel size. It is also very efficient to compute with a pair of 1D convolutions along the

horizontal and vertical directions.

Next, by detecting edges using masks, we then replace the background pixels of

the image with the blurred image’s pixels. In the following part, we will elaborate on the

various types of edge detection utilising masks.

6.1.1.4 Detecting Edges using Masks

When we speak of image edges, we are referring to abrupt changes in an image’s inten-

sity. Changes in intensity typically correspond to physical changes such as differences

in texture, object boundaries, reflectance and depth or orientation discontinuities or

differences in the objects’ lighting when it comes to certain properties of the surfaces

of imaged three-dimensional objects. Edge detection is generally assumed important

for higher-level vision tasks, and it can also lead to some inferences about the physical

features of the 3D world.

Filtration can use either a linear or nonlinear approach. Additionally, the enhancement

may either be directional or isotropic in nature. Algorithms for edge detection contain the

following steps:

• Noise Filtering: Reduce noise as much as possible without damaging the actual

edges. Filtering is often used to enhance the effectiveness of an edge detector

relative to noise. There is a tradeoff, however, between edge strength and noise

reduction. More filtering to eliminate noise can diminish edge strength.

• Enhancement: Applying a filter to improve the overall quality of the image’s edges.

• Detection: Only the points with strong edge content require our attention at this

time. However, there are a lot of locations in an image that have a value that’s not

zero for the gradient, and our software shall not consider all of those points to be

edges.
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• Localisation: determine the location of an edge is possibly with sub-pixel resolu-

tion.

For additional details on this topic, please refer to Appendix D.1.2.

6.1.2 DeeplabV3

With the aid of traditional computer vision, our software is able to handle challenges

such as shadows, noise, lighting, thresholding, etc. As an example of more sophisticated

neural network methods, we considered DeepLabV3, a popular semantic segmentation

algorithm. Hence, it has been decided to analyse this technology and compare the

results to those of traditional computer vision in order to determine which methods are

superior for our use-case.

DeepLabV3 is a state-of-the-art human body detection algorithm developed by

researchers at Google. It is based on convolutional neural networks (CNNs), a type of

deep learning algorithm that is becoming increasingly popular for image segmentation

tasks. DeepLabV3 uses an encoder-decoder architecture, where the encoder is a

powerful CNN used for feature extraction, and the decoder is a simple CNN used for

pixel-level prediction after training. It takes an input image and produces a pixel-level

segmentation map that labels each pixel in the image with one of the classes of interest.

The algorithm has been shown to have superior performance compared to other methods,

and is currently one of the leading methods for human body detection.

DeepLabV3 utilizes a fully convolutional network (FCN) architecture, which is com-

posed of an encoder network and a decoder network. The encoder network consists

of several convolutional and pooling upsampling layers, which are used for extracting

features from the input image. These features are then passed to the decoder network,

which is composed of several convolutional and upsampling layers. The upsampling

is used to reconstruct the pixel-level segmentation map from the features extracted by
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the encoder network. In addition to the FCN architecture, DeepLabV3 also utilizes an

Atrous Spatial Pyramid Pooling (ASPP) module, which is used to capture richer context

information from the input image. ASPP consists of multiple parallel atrous convolutional

layers with different receptive field sizes, which are used to capture different scales

of context information from the input image. This helps the algorithm to better detect

objects at different scales.

The algorithm is trained using a combination of supervised and unsupervised tech-

niques. For supervised learning, it is trained using a large dataset, containing images

labeled with the different classes of interest. For unsupervised learning, it uses a self-

supervised learning technique called image inpainting, which is used to fill in missing

pixel-level information in the training images.

6.1.2.1 Atrous Separable Convolution

Atrous Convolution (also known as dilated convolution) is an algorithm used in deep

learning and computer vision to increase the receptive field of convolutional neural net-

works. It is used in the DeepLab v3 architecture to capture more contextual information

from the input images, than with more traditional CNN architecture.

Atrous convolution works by applying convolutions with larger than normal filters to

the input data, while preserving the spatial resolution of the data. By increasing the

size of the filter, it is possible to capture more context from the data. This can be used

to extract features from the images, such as edges and objects, with a much higher

accuracy than standard convolutional neural networks.
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Fig. 6.2 Variable-rate atrous convolution with a 3 3 kernel size. Conventional convolution
corresponds to atrous convolution with a rate of 1. Utilizing a high atrous rate enlarges
the model’s field of view, enabling the encoding of objects of various sizes - Chen et al.
[48].

y[i] =
K

∑x[i+ r.k]w[k] (6.1)

For each position i at the output y and filter w, the atrous convolution is performed on

the input characteristic map x, where the atrous rate r corresponds to the sampling

step of the input signal. This is the same as inputting x deviation with sampled filters,

which are constructed by inserting zeros r-1 zero between two consecutive filter values

along each spatial dimension. With r = 1, it is conventional convolution. By altering r,

we can adaptively modify the filter’s field of vision. Also known as dilated convolution

(DilatedNet) or the Hole Algorithm. For additional details on this topic, please refer to

Appendix D.1.3.
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Fig. 6.3 Encoder-Decoder Architecture (with the sample of our software predictions)
[153]

In terms of simplicity and GPU usage, classical image segmentation is a better

choice for simple software that needs less GPU power. However, if accuracy is a priority,

then Deeplab v3 is a better option. Deeplab v3 can achieve much better accuracy than

classical image segmentation methods, but it requires more GPU power.

DeepLabV3 is also able to capture multi-scale contextual information, which allows it

to accurately segment objects in complex scenes. Yet, this semantic segmentation is

better suited to video recording or complicated image frames. As a result, while we are

just attempting to improve a small number of frames (two photos), we have decided to

employ traditional computer vision, as it greatly aids the software’s processing speed

and the results are sufficient for measuring human body circumferences1. In addition,

as mentioned in the previous chapters, our human body subjects will be detected by

mobileNet SSD, including parts of their environments. This will greatly simplify the image

1A bounding box will be positioned arounf the subject
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segmentation, so traditional computer vision methods can be used in certain cases for

further analysis.

In overall, Classical image segmentation is better than Deeplab v3 for software that

needs less or no GPU because classical image segmentation algorithms are generally

more computationally efficient.

6.2 Skin Detection

The objective here is to classify regions within an image that resemble human skin. The

process often begins by transforming the given image from the standard RGB (Red,

Green, Blue) color space to a color space that separates luminance from chrominance,

like the YCbCr or HSV (Hue, Saturation, Value) color spaces. This separation is important

as it enables more effective discrimination between skin and non-skin regions, given that

skin tones, across diverse ethnicities, mainly differ in chrominance rather than luminance.

The core of the skin detection mechanism often relies on a set of threshold values

in the selected color space. For instance, in the YCbCr color space, typical skin color

values might be restricted within certain bounds for the Cb and Cr channels. Once the

image has been transformed into the chosen color space, every pixel’s chrominance

values are evaluated against these thresholds to determine whether they fall within the

skin color range.

Mathematically, a simple thresholding algorithm can be expressed as:

skin(x,y) =


1, if Cbmin ≤Cb(x,y)≤Cbmax and Crmin ≤Cr(x,y)≤Crmax

0, otherwise
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Where skin(x,y) is a binary mask indicating the presence (1) or absence (0) of skin

at pixel location (x,y). Cb(x,y) and Cr(x,y) are the chrominance values of the pixel at

(x,y), and Cbmin, Cbmax, Crmin, and Crmax are the predefined threshold values for skin

detection.

However, relying solely on chrominance values can sometimes lead to false positives,

as many objects might share color characteristics with human skin. To enhance the

accuracy, machine learning approaches, such as support vector machines (SVM) or

neural networks, can be employed. These models are trained using labeled datasets

that contain both skin and non-skin samples, enabling them to learn a more complex

decision boundary that goes beyond simple thresholding.

It’s essential to remember that while these methods can be effective, they are not

flawless. Factors such as lighting conditions, shadows, or individual variations in skin

tones can challenge the accuracy of skin detection algorithms. Regularly updating the

training dataset and fine-tuning the model can help mitigate some of these challenges.

As described in the previous section, proactive image pre-processing techniques are

used in response to these challenges. These adjustments include gray-level mapping,

noise reduction, and color calibration. These measures are designed strategically to

reduce possible challenges, thus improving the overall resilience and effectiveness of

the skin detection procedure.

As part of our seventh objective, we mentioned that it is possible to predict all

of the personal characteristics of a human body from two images, such as clothing.

Consequently, the primary objective of this section is to first distinguish skin from clothing

and then, with the help of ROI as described in the preceding chapter (subsection 5.3.2),

improve the image correction procedures. Before we evaluate our region of interest, we

proceed as follows:

1. Convert input image after image correction to HSV Color Space
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2. Convert input image after image correction to YCbCr Color Space

At this point, the primary objective of the RGB-HSV-YCbCr color space is to identify

the human body skin, separate it from clothing, and then isolate the entire body from

its surrounding environments. Once these processes are completed, we will train our

system to extract the region of interest from the human body. The proposed body contour

extraction flowchart is displayed in Figure 6.4. This section focuses on the properties of

the human body and how to efficiently and effectively extract the human body.

Fig. 6.4 : Body contour extraction flow chart

Our method was inspired by the influential study on the detection of human skin with

a combined RGB-HSV-YCbCr color space model [94]. We initiated an effort to enhance

and broaden the scope of this field of research. The foundation of their study was

based on the application of a threshold color space model for the purpose of detecting

human facial skin. The selected methodology employed a process that transformed an

image into a two-dimensional matrix, where each element of the matrix corresponds to a
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pixel in the image. Upon careful examination, the ARGB2 color of each individual pixel

was determined. The 32-bit ARGB value was carefully adjusted to obtain distinct sub-

values including red, green, blue, and alpha. The significance of the alpha channel was

underscored, highlighting the difference in opacity levels for individual pixels. Afterwards,

a system of threshold values was developed in order to determine whether a pixel

corresponds to human skin.

However, the paper’s primary focus was the facial aspect of human skin detection.

Beyond facial analysis, our methodology seeks to conduct a thorough examination of

the entire human body. In doing so, our primary objective is not only to distinguish skin

from its surroundings, but also to distinguish it from apparel.

Our approach expands the horizons of this study by transitioning from a localised

facial analysis to an exhaustive examination of the entire human body. We move into the

domain of whole-body skin detection by separating the human body’s skin from clothing

materials. In the subsection 6.2.4, we shall go deeper, explaining the processing of our

skin detection algorithm. But first, let’s review the color space in greater detail.

The color space is a mathematical representation of color information as three or

four different color components. For various applications, such as computer graphics,

image processing, TV broadcasting, and computer vision, several color spaces (models)

are utilised. There are various color spaces accessible for skin detection. They are

RGB-based color spaces (RGB), Hue-based color spaces (HSI, HSV, and HSL), and

Luminance-based color spaces (YCbCr, YIQ, and YUV), [167]. These models are

explained in the succeeding sections. The selection of the color space is the first step in

skin color modelling and classification. One or more color spaces can provide the best

threshold value for skin detection in a picture. The choice of color space is frequently

affected by the skin detection technique and the application. We utilise the following

2ARGB represents a color model that includes Alpha, Red, Green, and Blue channels. "A" stands for
Alpha, which determines the opacity or transparency level of a pixel.
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color spaces for skin pixel recognition: RGB Color Space, HSV Color Space, YCbCr

Color Space. For more details on colorimetry refer to the book by Koenderink [93].

6.2.1 RGB Color Space

RGB is an additive color model in which red, green, and blue light are combined in a

variety of ways to create an extensive color palette. RGB color is utilised in the creation

of digital images and videos because it is the most efficient method of representing

the entire color spectrum. Additionally, it is the most popular color space for digital

photography, computer graphics, and television.

In the early days of television, when engineers needed a way to display color images

on a black-and-white television, they developed the RGB color model. Engineers were

able to create a spectrum of colors by combining red, green, and blue lights of differing

intensities. Since then, the computer industry has widely adopted this color model, which

is now used in virtually all digital images and videos.

The RGB color model uses three primary colors—red, green, and blue—and assigns

each of these primary colors a numerical value as shown in Figure 6.5. This value is

used to create a spectrum of colors ranging from the darkest black to the brightest white.

For instance, if the numerical value of all three primary colors is 0, the resulting color is

black. The result is white if all three primary colors have a numerical value of 255 (the

maximum value that can be assigned to each primary color). By adjusting the numerical

values of each primary color, it is possible to create a variety of hues.

Depending on how much is taken from each base color, any color can be created.

Reversing this technique, a specific color can be broken down into its red, blue and

green components as shown in equation Equation 6.2

r =
R

R+G+B
, g =

G
R+G+B

, b =
B

R+G+B
(6.2)
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RGB color model has its strengths and weaknesses. Its strengths include its direct

representation, as it signifies the primary colors used in digital imaging directly, making it

easy to extract and work with. Another advantage is its ubiquity; most digital images are

in RGB by default, and the primary color values are straightforward to obtain without any

conversions. However, it has its downsides. One significant weakness is its sensitivity

to lighting variations, where changes in the environment can result in considerable

variations in RGB values. Another drawback is its lack of human-centric perception,

as our eyes perceive color and intensity differently from the linear progression of RGB

values.

6.2.2 HSV Color Space

The HSV color model is close to the human color-aware simulation model: H stands

for chromaticity (a measure of the composition of the color spectrum), S for saturation

(the pure wavelength ratio in the main wavelength) as shown in Figure 6.5, indicating

the degree to which two colors are the same brightness, and V for value (relative to

the brightness of white light). As shown in Equation 6.3, the RGB color space can be

converted into the HSV color space.



6.2 Skin Detection 195

V = max(R,G,B)

S =


V−min(R,G,B)

V , if V ̸= 0

0 , if V = 0

H =



60×(G−B)
V−min(R,G,B) , if V = R and G ≥ B

60×(G−B)
V−min(R,G,B) +360 , if V = R and G < B

120+ 60×(B−R)
V−min(R,G,B) , if V = G

240+ 60×(R−G)
V−min(R,G,B) , if V = B

H = H + 360 , H < 0
(6.3)

Examining the image’s HSV channels as well as its histogram is the first step in

separating the various parts of the human body from one another. The use of HSV

channels has a number of advantages, the most prominent of which are that these

channels are great for describing images that are difficult to automatically segment and

do not need for the spatial positions of objects to be taken into consideration. It can be

very difficult to directly find the threshold of the human body based on the histograms.

It is possible to utilise H as a color comparison tool since H is essentially unaffected

by changes in the lighting; this enables objects to be differentiated from their colorful

backgrounds.

HSV color model one of its primary strengths is its human-centric perception, as

HSV provides a color representation more aligned with how humans interpret color. It

distinguishes the color aspect (hue) from its intensity (value) and vividness (saturation).

Another strength lies in its ability to handle lighting variations. Due to the separation of

hue from value, changes in brightness, such as from a shadow, might modify the value
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but not notably impact the hue. However, HSV isn’t without its challenges. One main

weakness is associated with saturation extremes. At very high or low saturations, the

hue can become unreliable. Specifically, in regions of very low saturation, colors might

tend to shift toward grayscale.

6.2.3 YCbCr Color Space

The YCbCr color space is ofthen used to identify objects of interest within an image.

YCbCr stands for luminance (Y), chrominance blue (Cb), and chrominance red (Cr) as

shown in Figure 6.5. The YCbCr color space is commonly used in digital video and

image processing, as it allows for the separation of luminance and chrominance signals,

which allows for the identification of objects within an image, as well as the removal of

unwanted objects.

In order to select a region of interest in a mask image YCbCr, a threshold must be

set in order to determine which pixels will be classified as part of the region of interest.

This is done by selecting a region of interest in the YCbCr color space, such as a specific

range of luminance and chrominance values. Any pixels within this range are then

considered to be part of the region of interest.

Once the region of interest has been selected, a mask can then be created. This

mask will be used to remove any unwanted objects from the image. The mask will

contain only the pixels that have been selected as part of the region of interest. All other

pixels will be ignored.

YCbCr color model most notable strength lies in the luminance-chrominance sep-

aration. The color space uniquely divides the brightness of a color (luminance) from

its color particulars (chrominance). Such a distinction becomes especially beneficial

in situations where one aims to detect features independent of the lighting conditions.

Additionally, due to YCbCr’s approach of handling color and brightness as separate

entities, it can yield a more consistent color representation under varying illuminations.
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Despite these advantages, there’s a challenge associated with YCbCr. Specifically, its

weakness revolves around complexity. The process of converting to and understanding

YCbCr values tends to be somewhat more intricate than RGB.

The integration of RGB, HSV, and YCbCr allows for a much more comprehensive

approach to skin detection.

Complementing Information: Each color space provides a unique view of the image.

While RGB offers a raw view of the colors, HSV provides a human-centric perspective,

and YCbCr gives a separation of luminance and chrominance. Combining the three

ensures that the diverse facets of color and brightness information are considered.

Mitigating Weaknesses: The shortcomings of one color space can be offset by the

strengths of the others. For example, while RGB might struggle with lighting variations,

the hue in HSV remains relatively consistent, and YCbCr’s separation further aids in

maintaining color consistency.

Enhanced Precision: By simultaneously analysing the same pixel across multiple

color spaces, the algorithm can make more informed decisions. If two spaces indicate a

pixel is likely skin while one does not, the algorithm can weigh this information and make

a better-informed decision than if relying on a single space.

Versatility: Different images might have different quirks. Some might be more affected

by lighting, some might have colors that are hard to differentiate in one space but not the

others. By using all three spaces, the algorithm ensures it is equipped to handle a wide

variety of image challenges.

In essence, while each color space can offer valuable insights individually, their

combined strength provides a more robust and adaptable framework for skin detection

across diverse scenarios and challenges.
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Fig. 6.5 : Color mode [94]

6.2.4 Skin Detection Algorithm

Many skin detection techniques have been proposed over the years. By analysing

various studies and techniques [162], [94], [21], [122], certain similarities and patterns

regarding effective thresholds in the HSV and YCbCr color spaces become evident. The

initial values for our thresholds were informed by these findings, giving us a reliable

starting point, which will be covered further in this section. To validate and refine these

initial values, a diverse dataset comprising images of individuals of varying skin tones,

under different lighting conditions, and from multiple sources was assembled. This

dataset ensured our thresholds would be robust across varied scenarios.

Using our dataset, we began the process of experimental testing. The idea was

to adjust these threshold values and observe the performance of the skin detection

technique. Metrics like accuracy, false positives, and false negatives were used to

measure effectiveness. Firstly, for each color space channel (H, S, V, Y, Cb, Cr), we

adjusted the thresholds iteratively, optimizing for the best balance between precision

(minimizing false positives) and recall (minimizing false negatives), and afterwards,

visual inspections were also conducted to ensure the results were in line with human

perception.

Based on the performance metrics, the thresholds were established this involved

fine-tuning the value to enhance the balance between detecting actual skin regions

and reducing the inclusion of non-skin regions. We began with broader ranges and,
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using feedback loops, systematically narrowed down the values that produced the most

accurate and consistent results. Based on our experimental findings, we identified

optimal values for detecting human skin. These values will be detailed in the following

paragraphs.

The core function of skin detection algorithm takes in an image in the BGR color

space and a key skin value in the YCbCr space. The image is first converted to the

HSV color space, then to BGR, and finally to YCbCr. A mask is generated based on the

Euclidean distance between the pixels in the Cb and Cr channels and the key skin value.

This mask represents the detected skin regions.

The RGB image is first converted into two separate color spaces: HSV and YCbCr.

The conversion from RGB to HSV is given by:

H =


θ if B ≤ G

360−θ if B > G
(6.4)

Where θ = arccos
(1

2

(R−G
R−B

))
.

Saturation S and Value V are calculated as:

S = 1− 3
R+G+B

min(R,G,B)

V =
1
3
(R+G+B)

For YCbCr, it separates the luminance (Y) from the chrominance (Cb and Cr). The

conversion is primarily a linear transformation from RGB:

Y = 0.299R+0.587G+0.114B

Cb =−0.169R−0.331G+0.500B

Cr = 0.500R−0.419G−0.081B
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Each pixel’s HSV and YCbCr values are then tested against empirically determined

thresholds to check if they likely belong to skin or not. The criteria are:

80 ≤H ≤ 255

50 ≤S ≤ 255

0 ≤V ≤ 255

0 ≤Y ≤ 255

80 ≤Cb ≤ 120

133 ≤Cr ≤ 177

The skin detection step involves checking every pixel of the image, resulting in a

time complexity of O(n×m), where n and m are the height and width of the image,

respectively.

Afterwards, a binary mask is generated where pixels that satisfy the above conditions

are set to white (255) and others remain black. This results in a preliminary mask

where white regions indicate detected skin areas. To refine the mask and reduce noise,

morphological operations are employed:

• Opening: An erosion followed by dilation. This operation aims to eliminate small

white noise present in the mask. Mathematically, the operation can be denoted for

an image I and a kernel K as:

Opening(I) = Dilation(Erosion(I,K),K) (6.5)

• Closing: A dilation followed by erosion, aiming to close small holes in the detected

skin regions:

Closing(I) = Erosion(Dilation(I,K),K) (6.6)
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The final processed mask is displayed, where the white regions represent detected

skin, offering a visual verification of the skin detection process. This method presents a

straightforward yet efficient technique for skin detection. By leveraging the discriminative

power of the HSV and YCbCr color spaces and refining the results through morphological

operations, it offers a robust solution for our software. The algorithm’s steps are shown

in flowchart form in Figure 6.6, which may be seen here.

Fig. 6.6 Flow chart of the skin detection
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Fig. 6.7 is divided into three parts. The leftmost image captioned "HSV skin detections
without any smoothing" shows HSV skin detections without any smoothing. In the
middle, we have the YCbCr representation itself without any smoothing, and on the
right-hand side, the caption reads "YCbCr + HSV with image smoothing," representing
the combination of YCbCr and HSV with the application of image smoothing.
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Fig. 6.8 Experimental results on sample images. The code first converts the input image
to masks in both YCbCr and HSV colorspaces using predefined threshold values. Then,
it combines these masks to identify potential human skin regions. Finally, it refines the
skin detection by applying the Watershed algorithm and morphological operations [73],
resulting in a final skin mask that can be overlaid onto the original image to highlight the
skin regions.

While many traditional methods focus mainly on face or hand detection, our method

pivots towards the apparel industry. We utilise skin detection for precise human body

measurements. This assists in efficient image processing, enabling superior segmenta-

tion by eliminating disruptions like noise, lighting conditions, and shadows. Our method

processes HSV and YCbCr simultaneously and combines the results. This synchronised

technique saves processing overhead and increases detection accuracy by using both

colour fields, While the other techniques move between different colour spaces.
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Unlike some recent techniques that necessitate high computational power or GPUs,

our method is designed for speed. This translates into faster processing times, making it

more feasible for real-time applications. Our current limitation is the size of our dataset.

However, we recognise this challenge and are working on to collect a more extensive

dataset. This will make the way for potential training and refinement, thereby improving

our system’s robustness. Our method is built around being open to all ethnicity. We have

tried our skin detection algorithm on people of many different races, and it has always

given us accurate results, which shows that it can be used by anyone.

6.3 Camera Calibration and Distance Estimation

Accurate image measurements require camera calibration. The focal length, principal

point, and distortion coefficients are its core. Calibration usually involves taking multiple

images from different angles and distances. Software libraries such as OpenCV and

SciPy are prominent for their calibration utilities. The OpenCV library, in particular,

provides functions that calculate both a camera’s intrinsic parameters and the affine

transformation between pair of images, which is essential for 3D reconstructions and

measurements.

During our initial research phase, multiple calibration techniques were evaluated

including OpenCV’s Camera Calibration Algorithm, Zhang’s Method, and the Direct

Linear Transformation (DLT) [173, 41, 32]. Out of these, the OpenCV Camera Calibration

Algorithm proved most effective, mainly due to its combination of feature detection,

optimization, and calibration techniques. It also stands as the most accurate method.

Calibration is needed for determining the camera parameters, including the intrinsic

3x3 matrix K, the 3x3 rotation matrix R, and the 3x1 translation vector t using a set of

known 3D points and their corresponding image coordinates. The camera is considered

calibrated when both intrinsic and extrinsic parameters have been precisely estimated.
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Intrinsic parameters are determined by assessing the image size in pixels and

the size of the object within the image. We leverage the checkerboard pattern for

its orthogonal and regular geometry, which makes it recognizable for both users and

computer vision systems. Modern calibration systems display a live feed of the camera’s

perspective, allowing users to adjust the checkerboard’s orientation towards the camera.

The calibration software automatically detects the checkerboard pattern in the captured

image. If recognized, it confirms that the pattern is visible and approximately aligned

with the camera. Else, the user may be prompted to adjust it. Furthermore, these

systems are designed with a built-in tolerance, ensuring accurate calibrations even if the

checkerboard isn’t perfectly aligned.

While the checkerboard is effective, its practicality for everyday users is limited. Rec-

ognizing this, we transitioned to using the user’s height as a calibration reference. Just

as the checkerboard’s corners serve as identifiable points, the user’s height provides a

tangible reference for conversion from pixel units to real-world measurements. However,

our research indicates that around 70% of users may not know their exact height, intro-

ducing potential calibration inaccuracies. Hence, we champion alternative, standardized

reference points to enhance precision. To address this, we’re exploring using universally

accessible and standard-sized cards, like credit or bank cards, as calibration tools.

Our literature review reveals that many applications now use the user’s height for

calibration. However, they often overlook potential inaccuracies stemming from users’

inaccurate height knowledge. In our experiments, accurate height inputs align well with

checkerboard-based measurements. Deviations in height inputs, however, can reduce

accuracy. Additionally, it’s worth noting that some existing applications employ a two-step

calibration process. They not only rely on user-provided height but also instruct users to

stand within a specific distance from the camera’s point of view. Users are directed to

move forward and backward within the app until they are positioned at their ideal distance

from the camera. These distance measurements are then used in conjunction with the
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user’s height input to convert pixel units to centimeters, further contributing to the overall

calibration process. For a comprehensive discussion on the calibration methods and

detailed insights from the research and the reasons for selecting this method, please

refer to the Appendix E.1.1.

6.4 Selecting Markers

The primary objective of our feature extraction phase is to identify specific points of

interest — we call markers — from the detected body outline segments for each body

part. The 3D measurements of various horizontal body regions, including the waist,

chest, hips, and shoulders, can then be estimated based on these markers. We identify

markers in pairs, along horizontal body “slices”. To accomplish this, we first find the best

vertical body line to utilise as an approximate mirror-like splitting axis. Then, we search

for the right and left pairs of body extremities in each ROI, i.e., pixel locations at the

body’s edge.

Initially, the top central head point—head tip—is identified from the “height” ROI,

serving as the reference to center the vertical splitting line. Subsequently, one can walk

along a body contour segment, for each ROI, on one side (left or right) and monitor

the slope. When this slope goes through a large change in value, such as for the neck

and shoulder ROIs, a potential marker location is determined. Alternatively, a locus

mid-way along a contour segment is selected, which proves useful for other ROIs (see

Figure 6.9.).
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Fig. 6.9 Illustration of the procedure for automatic marker detection, applied to individual
ROIs. A proper A-pose leads to a useful automatic marker localisation (red dots, also
indicated by arrows for greater visibility).

A collection of measurements from the ISO 8559 [13] standard, which prescribes

the location of anthropometric measurements used in the production of physical and

digital anthropometric databases, has been selected in order to compare the suggested

method with other state-of-the-art approaches.

Currently, in the system, there’s the provision for a semi-automatic method where a

user can move the proposed (detected) markers of one ROI either horizontally, along the
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current line joining markers, or by first moving vertically that same line along the main

body axis. This proves useful, especially when the automatic method may fail, such as

when the A-pose is too “weak”, e.g., when the arms of the user are kept too close to

their chest, such that an armpit is not clearly visible (see Figures 6.10 and 7.7).



6.4 Selecting Markers 209

Fig. 6.10 Illustration of the procedure for automatic marker detection (red dots), which
leads to incorrect localisation in some cases. An incorrect A-pose (with the arms kept
too close to the upper body) results here in the inaccurate automatic detection of some
markers, near the chest and bust areas.
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Fig. 6.11 Automatic and interactive localisation of detected markers. The first two images
on the left illustrate the markers automatically detected (red dots) for the front and side
views. The other two images on the right correspond to the final marker localisation after
the user has modified some markers. Only the third image (front view) sees two pair of
markers having been moved horizontally (yellow dots); other markers are judged fine by
the user and kept as provided by the system.

Note that this step could also be performed automatically in adverse cases, by using

an ML-based method; however, it would require additional training data, which has yet

to produce. In contrast, having a semi-automatic method for the selection of markers

permits the user to take back some control on the system, which is often seen as a

desirable feature, particularly by fashion designers or tailors.

After obtaining the set of marker pairs, the circumferences of the upper human body

for each horizontal slice can be approximated by fitting an ellipse to the data points, using

both the frontal and side views. The idea of using an ellipse as a useful geometric model

of human horizontal body contours has been previously validated [181]. By evaluating

the semi-axes of the ellipse from the two images (front and side), the circumference of

a human body “slice” with respect to the selected marker pair can be estimated with

sufficient accuracy (e.g., waist circumference).
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Note that for our domain of application in the fashion sector, using an ellipse-like form

tightly fit to a body horizontal contour (slice) is what is needed in most cases: i.e., the

goal is not to have a piece of clothing follow too closely all the body contour details

and deformations when considering or designing a pattern for cutting the fabric to be

assembled into a wearable piece. For a different application domain, such as the medical

realm, recovering detailed contour measurements might be desirable and the ellipse

fitting process may only provide an initial approximation. Therefore, in the upcoming

chapter, the focus will be on computing the perimeter of fitted ellipses and understanding

its importance within the context of human body circumference measurements.

In conclusion, this chapter has focused on improving the quality and appearance of

uploaded images for data collection purposes. The challenges posed by cluttered back-

grounds, noise, and shadows were addressed, and two image segmentation approaches

were explored: classical computer vision image segmentation and DeeplabV3. The

results and discussions have highlighted classical computer vision image segmentation

as the optimal choice for the software solution. Additionally, skin detection techniques

using various color spaces were discussed, along with the outcomes of experiments

comparing plain and cluttered backgrounds. The camera calibration process using

OpenCV’s functions was detailed, and the ideal distance range of 0.5 to 3 meters for

accurate data collection was identified. Please refer to section 8.1 for a comprehensive

review of the summary, results, and discussion in this chapter.





Chapter 7

Evaluation of using Ellipses for

Human Body Measurements

This chapter focuses on finding accurate measurements for human body horizontally

aligned perimeters through the fitting of ellipses. We begin by evaluating six different

elliptical mathematical models and discussing the findings. We then describe how the

selected equations are integrated into our system. Finally, we present results, comparing

the six elliptic equations and identify a pair of best equations for estimating human body

horizontal perimeters.

Based on these results, a fully trained system is developed that can choose the best

ellipse equation based on the human body shape. We conclude with a summary of the

findings and their implications for the development of the proposed software solution. By

using ellipse equations that are well fitted to the body shape, we are able to accurately

estimate horizontal perimeters. Overall, this chapter emphasizes the importance of

choosing the right mathematical model to improve the accuracy of measurements in the

human body.

Two types of dimensions can be calculated in our proposed method, one type includes

shoulder and sleeve lengths. The second type includes the perimeters of the chest,
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bust, waist, hip, and other useful horizontal “slices”, which can be well approximated by

ellipses of varying eccentricity Yao et al. [181]. However, the real perimeters of human

subjects are only approximately elliptical (Figure 7.1). The challenge is to discover the

best fit. Unlike a circle, there is no closed form solution for exactly calculating the ellipse’s

perimeter; only approximations, more or less complex, exist.

Fig. 7.1 Female template chosen from ISO, image 20947 [10]. Examples of virtual body
horizontal cross sections.

When it comes to the challenging task of accurately capturing the human body’s

horizontal perimeters, various curves can be considered, such as Bezier curves and

splines, cardioids, ovals, and more. Our comprehensive research led us to prioritize the

use of ellipse equations. There are several reasons for this decision, as we discuss next.

Firstly, the ellipse, in its essence, is a straightforward curve. Only the major and

minor axes are needed to define it, thereby streamlining the measurement process.

This inherent simplicity becomes indispensable, especially when processing 2D image

analyses; by reducing complexities, we can achieve faster and more efficient results.

Afterwards, we recognized that while an ellipse might not perfectly represent every

section of the human body, it has shown commendable accuracy in a wide array of

scenarios. For instance, in our examination of the breast area, known for its significant
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variability among individuals, we found the cardioid formula might fall short in some

cases. The ellipse, in comparison, provided a more general fit.

Furthermore, our choice of the ellipse does not stop one from exploring other ge-

ometrical shapes or fitting models. The ellipse can be used as a basis or reference

that can be complemented or refined if needed by more advanced image analysis tech-

niques. As we gather a larger and more varied dataset, we envision delving into other

geometric formulas, from complex curves to splines and other geometrical primitives.

Such explorations — beyond the scope of this thesis — hold the promise of more finely

capturing the human body to address other potential application domains, such as in bra

design and fit, of health purposes.

Lastly, an often overlooked factor in this discussion is the innate elliptic (and symmet-

ric) shape evident in many clothing designs when viewed slice-wise. Given that clothing

serves as a primary application point for these measurements, this observation naturally

supports our preference towards ellipse equations.

As we already mentioned, perimeters of ellipses cannot be calculated exactly using

a standard (aka closed form) formula. However, numerous approximation formulas have

been proposed in the past. In order to calculate the upper human body circumferences

in this study, we investigated six different formulas to approximate the perimeter of

an ellipse, with the goal to identify the most accurate ones in comparison to tape

measurements (used a ground truth). Next, we summarise how we identified the two

best formulae to use for our application domain. Additional details can be found in

Appendix F.1.1.

7.1 Selection of best formulae to compute elliptic perimeters

First, we notice the large range of human body shape variations which is apparent

when considering horizontal slices from accurate 3D scans (Figure 7.2). Also, we re-

emphasise that the human upper body (from the hips and up) can be well approximated
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by mixing ellipses with varying eccentricities. We also know that the differences between

each shape can impact the final estimation (Figure 7.5).

Fig. 7.2 shows the participant shapes for which We collected data during our capture
procedure. We used PifuHD (for more information please refer to subsection 4.2.5) to
turn the photos into a 3D model (.fbx file), and then we used Autodesk Maya to separate
the body parts from the 3D model.
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Fig. 7.3 For individuals with a body shape resembling a circle from the hips upward, we
use this equation.
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Fig. 7.4 For those with a more distinctly elongated elliptical shape from the hips up, we
use this equation.

In our comparison presented in Figure 7.5, Ramanujan’s formula, Equation 7.3 [20,

33], stands out alongside another favorite of ours, Equation 7.2, for its simplicity and high

accuracy in representing different human body shapes as detailed in subsection 7.2.1

(Figure 7.9). This figure charts various ellipse equation approximations with the x-

axis depicting the ellipse’s major axis and the y-axis showing the error rate. The

shape of the ellipse greatly influences the approximation’s accuracy. For instance,
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Equation F.1 is more accurate for shapes resembling circles. However, its accuracy

reduce as the ellipse’s major axis lengthens. In addition, Equation F.6 and Equation F.5a

consistently offer the best accuracy among all equations in the figure. Some methods for

approximating ellipses involve never-ending series of calculations which, while slightly

more accurate, can slow down software and don’t offer a significant advantage, as shown

in Figure 8.9. We prioritize methods that are both fast and nearly as precise.

Fig. 7.5 The y-axis represents the error rate, while the x-axis refers to the major axis of
the ellipse. As we move from left to right, the error rate rises, indicating that a longer
major-axis corresponds to a higher error rate. Image from [138]

Once our proposed software detect the contour of the human body, we require two

orthogonal views to calculate 10 landmarks, labeled such that the person is facing the

camera in one image and is seen from a side in another (aka front and side views).
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The anthropometric dimensions are obtained from landmarks extracted in the front

and side views. As shown in Figure 7.6, the dimensions obtained include two lengths

(F-L1:F-L2), eight perimeters (F-B1:F-B4, S-D1:S-D4). The definition of the dimensions

for the upper human body according to the ISO 8559-1 [13], 8559-2 [14], 8559-3 [15] can

be found in Table 7.1. While state-of-the-art methodologies may include a broader set of

landmarks for entire human body measurements, our research intentionally focuses its

attention to the selected landmarks which prove sufficient.

Fig. 7.6 The anthropometric dimensions (a) front image (b) side image - 3d model
image from: https://www.turbosquid.com/3d-models/female-basemesh-realistic-body-
3d-142544

Shoulder and sleeve lengths are one of two types of measurements that can be

determined with the help of our proposed method. In the context of these measurements,
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it is not necessary to employ two images; instead, the length can be determined by calcu-

lation using a single image. The second group consists of various body measurements

such as the bust, waist, and hips circumferences.

Table 7.1 The definition of dimensions

Dimensions Definition Dimensions Definition

F-L1 Shoulder Lengths F-B4 Hip Breadth

F-L2 Sleeve Lengths S-D1 Chest Depth

F-B1 Chest Breadth S-D2 Bust Depth

F-B2 Bust Breadth S-D3 Waist Depth

F-B3 Waist Breadth S-D4 Hip Depth

The length between each point of the front view corresponds to the major axis and

the length between each point of the side view corresponds to the minor axis (as shown

in Figure 7.7). Hence, by computing such data from the images, we can calculate both

the length and perimeter of (ellipses approximating) the human torso.

Once the points of interest are extracted, the Euclidean distance between pairs of

points (x1,y1) and (x2,y2) is given by the usual equation:

√
(x2 − x1)2 +(y2 − y1)2 (7.1)

This gives pixel distances between the points. These need to be converted to real-world

measurements (like centimeters or inches), using a reference or scale. For example,
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Fig. 7.7 demonstrates how these markers were selected around each body landmark
using our software.

if we know that a certain object in the image is exactly 10 cm in the real world and

it measures 100 pixels in the image, then the conversion factor is 0.1 cm per pixel.

Using such a conversion factor, you can then translate all pixel measurements to real-

world units. To automate this step, the conversion factor is obtained through a camera

calibration process previously mentioned.

To calculate the pixel unit to centimetre conversion, first, we must know the distance

between the camera and the object (review section 6.3). This can be accomplished by

measuring the size of chessboard squares or any known object size in the image of
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camera calibration and dividing by the distance between the camera and the chessboard.

This value represents the pixel size in centimetres. The equation for converting pixels

units to centimeters is then simply:

Size of object in cm = Number of pixels in objectx
Size o f chessboard square in pixels

Distance between camera and chessboard in cm

We compared six popular and relatively simple (i.e. not involving an integral or infinite

series) ellipse equations at the beginning of our study, which we then reduced to the

following two due to the better accuracy level they permit (details in section 7.2), the

second being one of the famous equations discovered by Ramanujan:

P ≈ 2×Π×

√
(dist2

a)+(dist2
b)

2
(7.2)

P ≈ π

[
3(dista +distb)−

√
(3dista +distb)(dista +3distb)

]
(7.3)

Where dista = Semi-Major axis, distb = Semi-Minor axis.

Using the distances calculated from the points on the human body circumferences

from both front/side image, we can estimate the major and minor axes of the ellipse, and

then use the formula above to compute the approximate perimeter.

Based on human images from multiple angles, a multi-ellipse model has been

developed in the polar coordinate system, which is a general model for calculating the

dimension of an ellipse. Due to the special structure of the human torso, the curvature of

different segments of the same part is different. As shown in Figure 7.8, the calculated

dimensions are the cumulative sum of the elliptical sections with different curvatures.
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(a) Individual female waist profile (b) Individual female Chest profile

Fig. 7.8

Using the major and minor axes calculated from the front and side images, the

algorithm will automatically select Equation 7.2 for those sections of the body where the

major and minor axes are no more than three times longer, and Equation 7.3 for those

sections where the major and minor axes are more than three times longer, leading to

better accuracy.

7.2 Results and Discussion

This result and discussion contain two parts: In the first part of this section, we analyse

the similarities and differences between six different elliptical equations; in the sec-

ond part, we dive deep into three of these equations by evaluating how they apply to

individuals with different body shapes.

In this case study, 78 female torsos and 234 images were used to investigate various

elliptical equations. All the images in this area have plain background, without any lighting

issues (such as shadow), with a perfect distance (0.5cm-2cm) between the participants

and the camera to identify the best possible equations. As noted previously traditionally,

the following female body types (i.e. chest, bust, waist and hips circumferences) have

been chosen to assess our data in comparison to the tape measurements for ground
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truth comparison. In our data, we are analysing mean value, minimum and maximum

accuracy and standard deviations. We are also looking at a plot that displays the average

error correlations values of each separate body segment in detail for all the chosen 78

female body participants for this case study. In addition, we are examining into female

body torso in more details to understand how each varied body shape influences on

the accuracy of the chosen equations. Lastly, in the summary of this section, we are

discussing about the optimal equation or equations for our proposed software.

7.2.1 Comparison of six elliptic equations

Considering the findings from the previous sections, we were able to calculate the

human body horizontal perimeters by including each equation into the software that we

proposed. Also, we were able to discover the variance between each equation and the

tape measurement method so that we could make a comparison to the ground truth (i.e.

tape measurements).

In summary, Formula A (Equation F.1) has a mean difference and standard deviation

of (m=0.86cm, sd=0.446), Formula B (Equation F.2), (m=0.82cm, sd=0.443), Formula C

(Equation 7.2), (m=0.76cm, sd=0.464), Formula D (Equation 7.3), (m=0.66, sd=0.445),

Formula E (Equation F.5) (m=0.83, sd=0.435) and finally, Formula F (Equation F.6)

(m=0.66, sd=0.445).
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Fig. 7.9 Comparison of Ellipse equations in our propose software

Hence, Equation 7.3 and Equation F.6 offered the highest level of accuracy compared

to the other equations. However, a closer examination of the data reveals that, in some

instances, Equation 7.2 provides greater accuracy than the other formulae. As illustrated

in Figure 7.10 and discover that, Equation 7.2 is more accurate than all other equations

for around 35% of participants, despite the fact that, it provides less overall accuracy in

compare to Equation 7.3 and Equation F.6.
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Fig. 7.10 Error Difference (cm) for each and every Ellipse formula. This diagram illustrates
the error variance for 78 subjects’ chest, bust, waist, and hip circumferences.

In the next section, we examine the three best elliptic equations based on the data

obtained we will evaluate and the results for each equation based on various human

body shapes.

7.2.2 Comparison of the three best elliptic equations for human body

shapes

The quantitative data for the 78 female participants were analysed by using a descriptive

statistic, an ANOVA single factor, and Post-hoc (t-test with two samples assuming equal

variances).

Data description has been used throughout all phases of our data collection. The

dependability of measured data is compared between Equation 7.2, Equation 7.3 and

Equation F.6 using an ANOVA test. Lastly, we utilised a t-test: Two-sample comparison

assuming equal variances to compare individual equations to ensure that we were able
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to improve the accuracy of the state-of-the-art. At each stage, the quantitative data were

analysed and compared in terms of the accuracy and reliability of each method and

technique. The following tables report on the mean, median, minimum and maximum

differences as well as the standard deviation according to different body shape.

We have divided our Anova analysis according to different categories of measure-

ments we have, which include Chest circumference, bust circumference, waist circumfer-

ence, and hip circumference.

These results indicate that, as a function of variations in body shape (horizontal

slices), one formula is more accurate than others in minimizing the difference between

direct measurement and software solutions. For body shapes with semi-major axes

that are not more than three times longer than their semi-minor axes (— in other words,

ellipses that are not overly elongated), Equation 7.2 provides more accurate results,

whereas Equation 7.3 or Equation F.6 provide more accurate results for body shapes

with semi-major axes that are more than three times longer than their semi-minor axes

(squashed ellipses). Due to the complexity of Equation F.6, we have depended in practice

just on the first two formulas. Equation 7.3 and Equation F.6 provide remarkably similar

accuracy, thus we have relied on only the Equation 7.2 and Equation 7.3.

By knowing the human body shape and ellipse equation better, we were able to

reduce the mean difference. Using Equation 7.2 for those whose major and minor axes

are less than three times longer and Equation 7.3 for those whose major and minor axes

are more than three times longer allowed us to reduce the mean difference to less than

0.5cm for this case study. As previously stated, Equation 7.2 has a mean and standard

deviation of (m=0.76cm, sd=0.47) while Equation 7.3 has a mean and standard deviation

of (m=0.67cm, sd=0.45). Figure 7.11 illustrates the overall outcome.

Additionally, in this research study, we have undertaken extra analysis (post-hoc)

to support our findings. it was discovered that Equation 7.2 significantly differs from

Equation 7.3 and Equation F.6. This finding aligns with the ANOVA results.
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Body Type Chest Bust Waist Hips

Mean (cm) 0.727 0.701 0.850 0.751

Median (cm) 0.765 0.705 0.769 0.764

Max Differences (cm) 2.386 2.480 3.009 3.022

Min Differences (cm) 0.006 0.002 0.017 0.015

Standard Deviation 0.462 0.399 0.474 0.506
(a) Equation 7.2

Body Type Chest Bust Waist Hips

Mean (cm) 0.621 0.708 0.613 0.714

Median (cm) 0.619 0.697 0.574 0.654

Max Differences (cm) 1.733 2.208 1.754 3.398

Min Differences (cm) 0.038 0.018 0.039 0.032

Standard Deviation 0.355 0.432 0.363 0.588
(b) Equation 7.3

Body Type Chest Bust Waist Hips

Mean (cm) 0.618 0.707 0.612 0.715

Median (cm) 0.624 0.695 0.569 0.664

Max Differences (cm) 1.732 2.202 1.754 3.398

Min Differences (cm) 0.038 0.022 0.039 0.029

Standard Deviation 0.357 0.431 0.362 0.590
(c) Equation F.6

Table 7.2 Summary of the differences between our software and tape-measured data
for the 78 participants included in this study. All participants captured in the same room
conditions; lighting, backgrounds, and also, they have been told to wear tight clothes
to discover the best possible equations. The best, worst, mean (ABS) and standard
deviation of the accuracy of all the three different ellipse equations on female body torso
for comparison with the tape measurements.
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Fig. 7.11 displays the mean difference between Equation 7.2, Equation 7.3, as well as
our proposed programme based on the application of both equations.

Fig. 7.12 Image right: (F-B3 = waist circumference, dista = Major axes, distb = Minor
axes). Image left: (F-B4 = hips circumference, dista = Major axes, distb = Minor axes)
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However, there is no statistically significant difference between Equation 7.3 and

Equation F.6, implying that their means are statistically similar. Hence, the selection

of various multi-ellipse equations was made in accordance with different human body

shapes, as illustrated in the Figure 7.12. The comprehensive details of our ANOVA test

and post hoc test can be found in Appendix F.1.2.1.





Chapter 8

Results and Discussion

This research focused on developing a software solution for accurately measuring

various body dimensions without the need for tight or specific clothing, lighting conditions,

background variations, distance between the camera and participants, and different body

postures and shapes. Overall, the software demonstrated promising results, showcasing

its potential for accurate body measurements.

For length measurements such as shoulder and sleeve length, the software achieved

excellent accuracy, with mean errors of only 0.15 cm and 0.14 cm, respectively. These

results highlight the reliability and precision of the software in capturing length-related

body parameters.

In terms of circumference measurements, including chest, bust, waist, and hips, the

software performed exceptionally well compared to existing solutions in the market. The

mean errors for these measurements ranged from 0.78 cm to 0.96 cm, indicating a high

level of accuracy. However, the waist area exhibited the highest mean error, which can

be attributed to challenges posed by loose-fitting clothes and occasional inclusion of

hands in the measurement.

In the comparative analysis conducted, the software exhibited superior performance

compared to other existing methods with regard to accuracy, computational efficiency,
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and user-friendliness. This highlights the potential of this approach to surpass current

state-of-the-art standards in the field.

In conclusion, the system designed for estimating upper human body measure-

ments through the application of computer vision and machine learning techniques

demonstrates promising results. The study involving 78 participants reveals an average

difference of ±1 cm compared to tape-measured data, with minimal deviations ob-

served across various body circumferences. The system’s robustness against cluttered

backgrounds and varying lighting conditions, in addition to its simplicity and accuracy,

positions it as a valuable tool for the apparel industry. Potential enhancements, such

as the provision of clear user instructions and tutorials, hold the capacity to reduce

the mean difference in software measurements to approximately ±0.5 cm. Overall, the

system presents a convenient and cost-effective solution for precisely capturing human

body dimensions, thereby contributing to increased efficiency in the apparel industry,

while also reducing waste and returns.

In this chapter, the evaluation of the results and discussion will begin with an individual

examination of the image corrections and camera calibrations. Subsequently, the overall

performance and results of our proposed software, focusing on addressing the challenges

mentioned in the section 2.11. These challenges include issues related to different

lighting conditions, background variations, distance between the human body and the

camera, and different body postures and shapes.

In the previous chapters, we presented data related to specific measurements such

as chest, bust, waist, and hips circumferences, based on our hypothesis and validation

techniques. However, in this chapter, we will examine the overall performance of the

software, including length measurements such as shoulder and sleeve length, which

were also collected from each participant during data collection.
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It is important to note that we faced several challenges throughout this research

study. The complexity of the human body, especially non-rigid parts, variability in human

physique, complexity of the skeletal structure, the impact of breathing on body shape,

lighting variability causing shadows, loss of 3D data in 2D image projections, and difficulty

capturing body parts covered by loose clothing were among the significant challenges

we encountered.

The complexity of the human body with multiple degrees of freedom poses a chal-

lenge as the body moves and undergoes changes during breathing. This can affect the

fit of garments and distort their shape.

Depth inference from image sequences is another challenging aspect as obtaining

accurate depth information from a single camera is difficult, especially considering the

multiple degrees of freedom in human body movements.

Changes in lighting conditions and camera viewpoints introduce variations in image

appearance, including the presence of shadows. Shadows cast on areas covered by

hair further complicate the extraction of relevant information from images.

Additionally, the requirement for participants to wear specific clothes or pose in front

of the camera creates discomfort for consumers, making it necessary to develop a

solution that does not rely on such constraints.

Based on our hypothesis, it is feasible to develop a measurement system that can

extract anthropometric measurements from multiple depth images, thereby capturing

the surface of the human body. This system aims to improve accuracy while minimiz-

ing computational expenses, making it suitable for implementation on new-generation

smartphone devices.

Considering our primary objectives, the software needs to be capable of capturing the

human body accurately regardless of the background, whether it is plain or cluttered. It

should be able to measure various human body dimensions at any distance between the
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camera and the participants. Additionally, the software should be able to accommodate

different body postures and shapes during measurement. Furthermore, it should have

the capability to predict personal details such as clothing and provide accurate mea-

surements based on that information. Of course, it is important to note that our system

is not an X-ray technology, and it is designed to work specifically with certain types of

clothing, such as shirts, t-shirts, and dresses. It is not intended for measuring garments

like jackets and similar items. However, even with these limitations, the software still

offers significant advantages over existing solutions that require participants to wear tight

clothes or even underwear in order to obtain accurate measurements.

The limitations of the software have implications for its practicality and usability in

real-world scenarios. One limitation is the inability to accurately measure garments

like jackets. This can affect the applicability of the software in scenarios where users

are interested in obtaining measurements for garments that cover the body extensively.

While it is generally understood that the accuracy level may be impacted by such clothing

due to their volume and potential obscuring of body contours, the software offers more

flexibility by allowing users to align the measurement points around their body if needed.

This feature provides an opportunity to capture more accurate results even with clothing

variations.

In comparison to other applications in the market, where users may not have the

option to adjust the measurement points, the software’s approach enhances user expe-

rience and addresses the limitations associated with garment measurements. Users

can align the points around their body to account for clothing variations and improve the

accuracy of measurements. It is important to note that these limitations are inherent

in most body measurement applications, and the software offers a more user-friendly

approach by empowering users to participate in the measurement process.

Considering these implications, the software remains a practical and usable solution

for capturing body measurements in real-world scenarios. By providing users with
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control over the alignment of measurement points and accommodating different clothing

types, the software offers enhanced versatility and convenience. While certain limitations

persist across all applications, the software’s user-adjustable points feature provides an

added advantage in achieving accurate measurements, thereby improving the overall

usability and user satisfaction

To assess the effectiveness of the software, we gathered a dataset consisting of

78 female bodies, which encompassed a total of 1560 images captured from front and

side views including a total of 312 data. This dataset enabled us to thoroughly evaluate

and analyse the accuracy of the software across various scenarios. The collected

images illustrated static human body shapes, obtained from scans taken in a similar

standing stance, although not precisely identical. The dataset comprised diverse poses

and variations in limb and whole-body shapes. The images also featured different

backgrounds, ranging from plain to cluttered, and were captured at varying distances

between the participants and the camera. Furthermore, we accounted for different

camera orientations, including portrait and landscape modes, as well as different lighting

conditions.

Participants who were over 18 years old. To ensure a diverse representation, we

included participants with different body types based on the somatotype system. The

somatotype system categorises individuals into distinct body types, namely ectomorph,

mesomorph, and endomorph, based on variations in body proportions, fat distribution,

and overall body composition. By including participants with different body types, we

aimed to capture a range of body shapes and sizes, enhancing the representativeness

of our dataset. This approach allows us to evaluate the performance of the software

across different body types, considering potential variations in body proportions and fat

distribution that may affect measurement accuracy. The inclusion of participants with

diverse body types ensures that the software is designed to provide to a broader user

base and is applicable to a wide range of body shapes and sizes.
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Therefore, we present a comprehensive view of our datasets, including results from

Chapter 6, Chapter 7 collectively. We assess the performance of the software across

various stages, encompassing factors such as high/low resolution, varying lighting

conditions, correct/incorrect color balance, plain/cluttered background, a range of 0

to 3 meters distance between the camera and participant, A-poses/T-poses and relax

posture, different body shapes, as well as tight and loose clothing.

In the sections that follow, descriptive statistics derived from our results are presented

first. These statistics provide a comprehensive overview of the data and insight into the

software’s efficiency. To determine the efficiency of our strategy, we evaluate multiple

metrics, including accuracy, precision, and recall. By analysing these statistics, we gain

a better understanding of the capabilities and limitations of the software.

In addition, we conduct a thorough comparison between the software and existing

methods in the field. This comparative analysis enables us to determine if the software

outperforms cutting-edge alternatives. To determine the superiority of our approach, we

consider multiple factors, such as measurement accuracy, computational efficiency, and

user-friendliness.

Through this comprehensive evaluation, we aim to determine if the software has

achieved a higher level of accuracy and reliability compared to other methods available in

the market. By leveraging cutting-edge techniques and addressing limitations observed in

previous approaches, we strive to provide an advanced software solution that surpasses

the state-of-the-art standards in the field.

8.1 Image Corrections and Camera Calibrations Evaluation

As discussed in Chapter 6, we have employed classical computer vision image segmen-

tation, Skin detection and Camera calibration techniques to enhance the image quality,

isolate the human body from its surrounding environment and estimate the distance in
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order to convert pixel units to centimeters. It is important to note that ROI assisted us in

enhancing our final algorithms. Our findings and subsequent discussions are divided into

two parts. Initially, we will showcase the results for image corrections and skin detections.

In the second segment, we will display outcomes related to camera calibration. This

calibration was important in measuring the distance between the camera’s viewpoint

and the human body, facilitating the conversion from pixel measurements to centimeters.

8.1.1 Image Corrections and Skin Detection

According to our hypothesis 1 (together with objectives 5 and 7), it is crucial to ensure

that the software can offer accurate data in any environment, including images with poor

diffusion, a noisy background, and shadows. Also, it is possible to correctly measure

the human body on many types of apparel, like T-shirts, shirts, skirts, among others.

Furthermore, garments that are either too tight or too loose. Therefore, in this case

study, 78 female subjects and 312 images were utilised to examine how our program

performs in variety of backgrounds situations. Images contain plain/cluttered background,

high/low resolution, good/poor lighting and correct/incorrect color balance for validation

of technique. In the following paragraphs, we will examine the findings that the software

has generated.

At all phases of our data collecting, data description has been utilised. Using a

t-test: two-sample assuming unequal variance to compare individual situations in order

to enhance the accuracy of the state-of-the-art, the reliability of measurement data is

evaluated between plain and cluttered backgrounds. At each stage, the quantitative

data for each environment and type of clothing were analysed and compared in terms of

accuracy and reliability.

Table 8.1, Table 8.2 display the results for all of our subjects who were photographed

in various environments, including those with good/poor lighting and shadows, correct/in-

correct color balance, and tight/loose clothing.
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Body Type Chest Bust Waist Hips

Mean (cm) 0.48 0.5 0.56 0.52

Median (cm) 0.48 0.56 0.56 0.56

Best (cm) 0.01 0.01 0.02 0.02

Worst (cm) 1.73 1.25 1.75 3.02

Standard Deviation 0.35 0.30 0.35 0.42

Table 8.1 The best, worst, mean (ABS), median and standard deviation of the accuracy
of female body torso for comparison with the tape measurements on a plain background

Body Type Chest Bust Waist Hips

Mean (cm) 0.57 0.56 0.65 0.59

Median (cm) 0.59 0.54 0.66 0.58

Best (cm) 0.03 0.02 0.06 0.03

Worst (cm) 1.74 1.26 1.92 3.03

Standard Deviation 0.38 0.30 0.38 0.43

Table 8.2 The best, worst, mean (ABS), median and standard deviation of the accuracy of
female body torso for comparison with the tape measurements on a cluttered background

As can be seen in the above tables, subjects photographed against a plain back-

ground with better image quality and lighting circumstances provide greater accuracy;

yet, the difference between these findings and those obtained with a cluttered back-

ground are not large. The average difference for a plain background is 0.52 cm, whereas

the average difference for a cluttered background is 0.59 cm. Using t-test, we conducted

more research on our results to ensure that the software can process input images with

any type of background.

Due to the fact that the human body is composed of various body portions, it is

essential that we compare and study each body section against a plain and cluttered
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background. This is owing to the fact that some parts of the body are simpler to capture

than others. For each participant, we will analyse chest, bust, waist, and hips against a

plain and cluttered background. For example, Participant 1, who was photographed in

two different environments, will be analysed as Chest Plain background versus Chest

Cluttered background, etc. In addition to the presented data, further analysis was

conducted using t-tests and descriptive statistics for each section of the human body

torso.

T-tests were conducted to examine whether background conditions (plain vs. clut-

tered) had a significant impact on chest, bust, waist, and hip circumference measure-

ments. The null hypothesis for all tests was that there is no difference between measure-

ments taken in different backgrounds.

For chest circumferences, the mean measurements were 0.48 (plain) and 0.57

(cluttered), with n = 78 in both cases. T-test results with 153 degrees of freedom yielded

a p-value of 0.07 for a one-tailed test and 0.13 for a two-tailed test. Fail to reject the null

hypothesis.

Bust circumferences showed mean measurements of 0.50 (plain) and 0.56 (cluttered),

with n = 78 in both cases. T-test results with 154 degrees of freedom gave a p-value of

0.12 for a one-tailed test and 0.24 for a two-tailed test. Fail to reject the null hypothesis.

Waist circumferences displayed mean measurements of 0.56 (plain) and 0.65 (clut-

tered), with n = 78 in both cases. T-test results with 153 degrees of freedom yielded a

p-value of 0.05 for a one-tailed test and 0.11 for a two-tailed test. Fail to reject the null

hypothesis.

Hip circumferences indicated mean measurements of 0.52 (plain) and 0.59 (cluttered),

with n = 78 in both cases. T-test results with 154 degrees of freedom yielded a p-value of

0.16 for a one-tailed test and 0.32 for a two-tailed test. Fail to reject the null hypothesis.
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Overall, measurements taken in plain and cluttered backgrounds did not show

statistically significant differences. Error correlations between background conditions

were strong (ranging from 0.90 to 0.96), suggesting consistent measurement trends. You

can find more details about the t-test and descriptive statistics in the Appendix D.2.1.

The results obtained demonstrate that the software provides consistent and accu-

rate measurements, even in challenging environments such as cluttered backgrounds,

poor lighting, and variations in clothing tightness. This sets the software apart from

existing technologies in the market, which often require specific conditions like a white

background and optimal lighting for accurate measurements.

The performance of the software was evaluated by comparing the measurements

taken by the software with tape measurements for various body circumferences, including

chest, bust, waist, and hips. The statistical analysis conducted using t-tests and error

correlation provided insights into the accuracy and reliability of the software in different

backgrounds. Despite minor variations in accuracy, the results showed that the software

consistently provided accurate measurements in both plain and cluttered backgrounds.

In terms of accuracy, the majority of measurements obtained from the software

had an error difference of less than 1 cm, indicating a high level of precision. This

demonstrates the effectiveness of our image processing and correction techniques,

which contribute to the accurate detection and isolation of the human body from the

background and clothing.

Comparing the software to existing technologies in the market, we can emphasize

the superiority of our approach. Many current technologies heavily rely on controlled

environments, requiring users to stand against a white background with good lighting

conditions to ensure accurate measurements. In contrast, the software surpasses these

limitations by providing accurate results irrespective of the background environment.

This versatility and robustness make the software more practical and user-friendly, as

users are not constrained by specific setup requirements.
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The success of the software can be attributed to the careful implementation of

classical computer vision techniques and skin detection algorithms. Initially, using

just MobileNet SSD-v2, we achieved a mean Average Precision (mAP) of 70% at an

Intersection over Union (IoU) threshold of 0.5 for isolating the human body (please

review the information presented in Table 5.4). We then further enhanced our approach

by leveraging advanced methods like image corrections, which significantly improved

our body detection performance. Consequently, with these corrections, we achieved a

remarkable mAP of 98% at an IoU threshold of 0.5 for isolating the human body from its

surroundings, according to our datasets.

Moreover, the software demonstrates consistency in performance across different

body circumferences. Whether measuring chest, bust, waist, or hips, the software

provided accurate results, with minimal variations observed between plain and cluttered

backgrounds. This consistency further highlights the reliability of the software in capturing

accurate measurements across various environmental conditions.

Lastly, the results of the test showed that the software worked well with both plain

and cluttered backgrounds. The majority of the measurements had an error difference of

less than 1 cm, and the software’s accuracy differed little between plain and cluttered

backgrounds. As a result, the software can be used to accurately measure human torso

circumferences in both environments.

To ensure the widespread usability and convenience of the software, we acknowl-

edge the need to address certain limitations, such as the software’s accuracy may be

influenced by variations in clothing types and styles. While we have tested the software

on different types of apparel, including T-shirts, shirts, and skirts, there may still be limi-

tations when it comes to measuring body circumferences on certain clothing materials

or designs. For example, loose or flowing garments may introduce additional challenges

in accurately capturing body contours. Therefore, users should consider the clothing

characteristics and their potential impact on measurement accuracy.
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8.1.2 Camera Calibration and Distance Estimation

OpenCV’s camera calibration algorithm was used to first measure the distance between

the camera point and the human body and then use this value to convert every pixel

unit to centimetres. We collected a set of data from 78 female participants (including

312 images) for this case study. From the camera’s viewpoint, images were captured at

various distances from the human body, ranging from 0 to more than 3 metres. This is to

ensure that the software can accurately convert pixel units to centimetres at practical

useful distances from the human body.

The datasets, created for this study, were divided into two different groups based

on participants’ distance to the camera. The first group includes individuals standing

within a range of 0.5 to 3 metres from the camera’s viewpoint, while the second group

comprises those standing within a range of 0 to 0.5 metres or more than 3 metres from

the camera’s viewpoint. To establish the reliability of the method employed in this study,

all the participants were photographed under consistent environmental conditions, which

entailed a uniform background, evenly distributed lighting, and the absence of shadow

effects.

A t-test with two-sample assuming unequal variance to compare individual situations

in order to enhance the accuracy and reliability of measurement data, evaluated between

each group of data. The results for all participants who were photographed from different

distances relative to the camera’s perspective are displayed in Table 8.3 (range: 0.5m –

3m) and Table 8.4 (ranges 0 – 0.5m and more than 3m).
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Body Type Chest Bust Waist Hips

Mean (cm) 0.48 0.5 0.56 0.52

Median (cm) 0.48 0.56 0.56 0.56

Best (cm) 0.01 0.01 0.02 0.02

Worst (cm) 1.73 1.25 1.75 3.02

Standard Deviation 0.35 0.30 0.35 0.42

Table 8.3 The best, worst, mean (ABS), median and standard deviation of the accuracy
of female body torso for comparison with the tape measurements within the range of
(0.5m – 3m).

Body Type Chest Bust Waist Hips

Mean (cm) 1.02 1.02 1.29 0.99

Median (cm) 0.99 1.01 1.10 0.98

Best (cm) 0.02 0.02 0.13 0.02

Worst (cm) 3.13 2.64 3.16 3.81

Standard Deviation 0.58 0.53 0.62 0.60

Table 8.4 The best, worst, mean (ABS), median and standard deviation of the accuracy
of female body torso for comparison with the tape measurements within the range of (0 –
0.5m and more than 3m).

In Table 8.3, the mean accuracy values for the body parts range from 0.48cm to

0.56cm, with the waist having the highest mean accuracy. The median accuracy values

range from 0.48cm to 0.56cm, with the bust and waist having the highest median

accuracy. The best accuracy values range from 0.01cm to 0.02cm, while the worst

accuracy values range from 1.73cm to 3.02cm. The standard deviation values range

from 0.30cm to 0.42cm, indicating a moderate level of variability in the measurements.

In Table 8.4, the mean accuracy values for the body parts range from 1.02cm to

1.29cm, with the waist having the highest mean accuracy. The median accuracy values
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range from 0.98cm to 1.10cm, with the waist having the highest median accuracy. The

best accuracy values range from 0.02cm to 0.13cm, while the worst accuracy values

range from 2.64cm to 3.81cm. The standard deviation values range from 0.53cm to

0.62cm, indicating a slightly higher level of variability compared to Table 1.

Overall, the comparison of the two tables suggests that the software performs better

for measurements within the range of 0.5m to 2m compared to measurements within the

range of less than 0.5m or more than 3m. The mean accuracy, median accuracy, and

standard deviation values are all better for the former range. However, it is important to

note that the accuracy results for both ranges are still relatively consistent across the 78

participants. Therefore, the proposed software may still be useful for body measurements

within the range of less than 0.5m or between 0.5m to 2m, but further improvements

may be necessary to enhance the accuracy of the measurements.

In addition to the presented data, further analysis was conducted using t-tests and

descriptive statistics for each section of the human body torso. These additional analyses

provide more detailed insights into the accuracy measurements.

A t-test was conducted to assess whether significant differences exist between chest

circumferences measured at distances between 0.5 to 3 meters and those measured

at distances less than 0.5 meters or more than 3 meters. The data suggests that

measurements taken at a distance less than 0.5 meters or more than 3 meters exhibit

higher stress levels compared to those taken at a distance between 0.5 to 3 meters (t(127)

= -7.14, p < 0.001, one-tail). Similar results were observed for bust circumferences,

where measurements at distances less than 0.5 meters or more than 3 meters showed

higher stress levels compared to those taken between 0.5 to 3 meters (t(154) = -7.42,

p < 0.001, one-tail). For waist circumferences, the measurements taken at a distance

less than 0.5 meters or more than 3 meters displayed higher stress levels compared to

those at distances between 0.5 to 3 meters (t(122) = -9.13, p < 0.001, one-tail). Lastly,

the analysis of hips circumferences revealed that measurements taken at distances less



8.1 Image Corrections and Camera Calibrations Evaluation 247

than 0.5 meters or more than 3 meters showed higher stress levels compared to those

taken at distances between 0.5 to 3 meters (t(138) = -5.56, p < 0.001, one-tail).

Overall, the findings consistently indicate that circumferential measurements taken at

closer or farther distances from the camera tend to exhibit higher stress levels, although

the software’s accuracy remains satisfactory in both scenarios. Additional information

concerning the t-test and descriptive statistics can be referenced in the Appendix E.3.1.

The results presented in the previous paragraphs demonstrate the effectiveness of

our method in measuring body dimensions from images captured by a camera. However,

the accuracy of the measurements varied depending on the distance between the

camera and the human body. In this discussion, we will delve into the implications of

these findings and provide insights into the potential applications and limitations of the

software.

Firstly, the results revealed that the software performed better for measurements

taken within the range of 0.5 meters to 3 meters compared to measurements taken at

distances less than 0.5 meters or more than 3 meters. The mean accuracy, median

accuracy, and standard deviation values consistently favored the former range. This

suggests that the software is more reliable when the subject is positioned at a moderate

distance from the camera. The accuracy of the measurements decreases as the distance

increases, likely due to the decrease in pixel resolution and the influence of other factors

such as lighting conditions.

Nevertheless, it is important to note that the overall accuracy of the software remained

acceptable even for measurements outside the optimal range. The mean accuracy values

for the body dimensions in both ranges ranged from 0.48 cm to 1.29 cm, indicating a

reasonably accurate estimation of body measurements. While the standard deviation

values ranged from 0.30 cm to 0.62 cm, indicating a moderate level of variability, the

measurements were still within an acceptable range for most applications.

One significant implication of our findings is the potential utility of the software for body

measurements in various domains. The ability to accurately measure body dimensions
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from images can have a wide range of applications, including custom clothing design,

virtual try-on systems, and fitness tracking. For instance, fashion retailers can utilise

the software to provide personalised sizing recommendations to customers, reducing

the need for physical try-ons and improving the overall shopping experience. Fitness

tracking applications can leverage the software to accurately monitor body changes over

time, enabling users to track their progress and make informed decisions about their

health and fitness goals.

Furthermore, the software has the potential to address a common challenge faced

by existing body measurement solutions: the need for users to know their exact height.

Our research revealed that more than 70% of participants were unsure about their

precise height. This lack of accurate height information can significantly affect the

accuracy of body measurements. However, by using computer vision techniques and

the OpenCV camera calibration algorithm, the software eliminates the need for users

to input their height manually. Instead, it calculates the distance between the camera

and the human body, enabling accurate measurements without relying on (potentially

inaccurate) user-provided data.

Despite these promising outcomes, there are certain limitations and areas for im-

provement that should be considered. Our current approach requires users to have a

chessboard for calibration purposes in order to capture accurate results. This constraint

may pose practical challenges, as not all users may have access to a chessboard or be

familiar with its usage. To address this issue, we have devised an alternative method

that leverages the user’s accurate height to achieve comparable accuracy in body mea-

surements. We can then estimate the camera’s intrinsic and extrinsic parameters using

only the user’s height information. This enables us to align the measurements obtained

from the camera with real-world distances, almost replicating the precision achieved

through traditional circumference measurements.

By offering this option, we ensure that a broader range of users can benefit from our

advanced AI-powered technology without the need for specialized calibration patterns.
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However, it is worth noting that this constraint (of calibration via some external input, be

it a pattern or a precise measure like height) can be addressed and improved in future

iterations of the software. One possible solution is to replace the need for a chessboard

with a known common object size in the image, such as a credit or business card (or

some object of standard size). By incorporating an object of known dimensions, the

software can calibrate the camera and accurately estimate distances without relying on

the presence of a specific unusual calibration pattern. This approach would enhance

the usability and accessibility of the software, as credit cards or similar objects are more

commonly available to users.

By removing the requirement for a chessboard and introducing a more readily

available reference object, we can further streamline the process and increase the

practicality of using the software for body measurements. This improvement would

contribute to a more user-friendly and inclusive experience, enabling a wider range of

individuals to benefit from the accurate measurement capabilities of the software.

Additionally, the analysis of error differences revealed that a small percentage of

measurements had larger errors, especially in the range of less than 0.5 meters or

above 3 meters. These outliers could be attributed to factors such as occlusion, subject

movement, or difficulties in accurately estimating depth at extreme distances. Future

iterations of the software should focus on addressing these challenges to improve the

overall accuracy and reliability of the measurements.

8.2 Final Results

The quantitative data for the 78 female participants were analysed using descriptive

statistics. We captured 2D images of each participant based on the following scenarios:

1. With a plain background;

2. With a cluttered or textured background;
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3. Using a pair of different body postures (A-pose and relax pose);

4. Using different distances from the camera;

5. With clothing that has visible creases;

6. Under different lighting conditions;

7. Using devices with different camera specifications:

(a) Apple devices;

(b) Samsung devices.

With 78 participants, this has resulted in an initial dataset with 312 data points.

In the following table, we will examine the complete descriptive statistics for specific

body measurements, including chest, bust, waist, and hip circumferences, as well as

shoulder and sleeve lengths. These statistics will be analysed based on the different

stages previously mentioned, encompassing factors such as lighting conditions, back-

ground variations, distance between the camera and participant, body posture, body

shape, and clothing type.

Body Type Chest Bust Waist Hips shoulder sleeve

Mean (cm) 0.78 0.78 0.96 0.78 0.15 0.14

Median (cm) 0.76 0.76 0.82 0.76 0.15 0.15

Best (cm) 0.01 0.01 0.02 0.02 0.001 0.001

Worst (cm) 3.14 2.66 3.19 3.82 0.33 0.31

Standard Deviation 0.55 0.50 0.62 0.56 0.07 0.07

Table 8.5 The best, worst, mean (ABS), median and standard deviation to assess the
accuracy of female body torso measurements compared to tape measurements.

The results indicated promising outcomes for the software. In terms of length

measurements, specifically shoulder and sleeve length, we achieved excellent accuracy,
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with the best mean error measuring only 0.15 cm and 0.14 cm, respectively. These

findings demonstrate the reliability and precision of the software in capturing length-

related body parameters.

For the circumference measurements, which included chest, bust, waist, and hips,

the results were generally acceptable and showcased superior performance compared to

other existing software in the market. The mean error values for these areas ranged from

0.78 cm to 0.96 cm, indicating a high level of accuracy in capturing the circumference

measurements. However, it is worth noting that the waist area exhibited the highest

mean error among all parameters. Further investigation revealed that the inaccuracy in

waist measurements could be attributed to the participants’ clothing. Loose-fitting clothes

worn by some participants caused significant variations in the captured data, resulting

in less accurate waist circumference measurements. Additionally, in the relax posture

where the hands were placed next to the body, parts of the hands were occasionally

captured as part of the waist, potentially contributing to increased inaccuracies in this

specific region. Despite these challenges, the overall performance in the circumference

measurements remained satisfactory.

Analysing the best and worst results across all parameters, we observed remarkable

precision for the best case scenario, with mean errors as low as 0.01 cm for chest, bust,

and as low as 0.02 cm for waist and hips. These exceptional outcomes indicate that the

software can consistently provide highly accurate measurements. On the other hand,

the worst-case scenarios revealed some outliers, with mean errors reaching 3.14 cm for

waist, 2.66 cm for bust, 3.19 cm for hips, and 3.82 cm for shoulder. These deviations

can be attributed to various factors, including participant posture variations, clothing

constraints, and occasional challenges in accurately identifying specific body landmarks.

Nonetheless, even with these outliers, the software outperformed competing solutions

available in the market.
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The overall performance was further validated through statistical analysis, where

the median values closely mirrored the mean errors, confirming the reliability of the

software’s measurements. Additionally, the standard deviation values for all parameters

were relatively low, ranging from 0.50 cm to 0.62 cm. This indicates the consistency

and stability of the software’s performance, as lower standard deviations suggest less

variation in the measurements.

A comprehensive comparative analysis between the software and several popular

applications available in the market was conducted as part of this study. The selected

applications, namely 3Dlook, PreSize, TechMed, SizeStream (methreesixty), and Es-

enca, employ similar techniques as the software, utilising computer vision, machine

learning, and 3D matching for body measurement purposes. These applications were

chosen based on various factors such as accuracy, reliability, popularity, availability, and

relevance to our research topic.

Through this experiments and evaluation, we compared the performance of these

existing applications with the software using a dataset collected in 2022. The dataset

comprised measurements of 30 participants across different body dimensions. The

analysis focused on key body circumferences, namely chest, bust, waist, and hips.

The average differences in measurement errors, expressed in centimeters, were

calculated for each application. When comparing the software’s performance against the

selected applications, our results showcased exceptional accuracy and outperformed the

other applications across various body measurements. For chest circumferences, the

software exhibited an average error of 0.78 cm, significantly lower than the average error

of 5.80 cm reported by 3Dlook, PreSize, TechMed, SizeStream, and Esenca. Similarly,

for bust circumferences, the software achieved an average error of 0.78 cm, surpassing

the average error of 6.37 cm reported by the other applications. In terms of waist

circumferences, the software demonstrated an average error of 0.96 cm, outperforming

the average error of 5.2 cm from the comparison group. Finally, for hip circumferences,
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the software showcased an average error of 0.78 cm, which was substantially lower than

the average error of 4.77 cm reported by the other applications.

This comprehensive comparative analysis highlights the strengths of the software

in terms of measurement accuracy and reliability when compared to existing solutions.

While each application has its own merits, the software consistently demonstrated

superior performance across multiple body dimensions.

It is important to note that the comparative analysis was based on data collected

in 2022, and advancements or updates to the existing applications may have occurred

since then. However, at the time of our research, the software surpassed the other

applications in terms of accuracy and reliability

In the following figures, we will look into a detailed analysis of the average error

differences for each specific body section. For a comprehensive understanding, we

will present individual plots that highlight the error differences in greater detail for each

parameter, providing a more in-depth perspective on the performance of the software in

capturing accurate measurements for different areas of the body.
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Fig. 8.1 Average margin of error for all circumference measurements.
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Fig. 8.2 Average margin of error for all length measurements.
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Fig. 8.3 Error Difference Analysis: This plot showcases the error difference (in centime-
ters) between software and tape measurements for chest circumference across various
conditions and scenarios. The analysis encompassed 78 participants, resulting in a total
of 312 data points. The evaluated factors included high and low resolutions, varying
lighting conditions, correct and incorrect color balance, plain and cluttered backgrounds,
distances ranging from 0 to 3 meters between the camera and participant, A-poses
and T-poses and relax posture and relax posture, different body shapes, as well as
tight and loose clothing. The plot provides a comprehensive overview of the software’s
performance under diverse conditions, offering valuable insights into its accuracy and
potential areas for improvement.
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Fig. 8.4 Error Difference Analysis : This plot showcases the error difference (in centime-
ters) between software and tape measurements for bust circumference across various
conditions and scenarios. The analysis encompassed 78 participants, resulting in a total
of 312 data points. The evaluated factors included high and low resolutions, varying
lighting conditions, correct and incorrect color balance, plain and cluttered backgrounds,
distances ranging from 0 to 3 meters between the camera and participant, A-poses
and T-poses and relax posture and relax posture, different body shapes, as well as
tight and loose clothing. The plot provides a comprehensive overview of the software’s
performance under diverse conditions, offering valuable insights into its accuracy and
potential areas for improvement.
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Fig. 8.5 Error Difference Analysis : This plot showcases the error difference (in centime-
ters) between software and tape measurements for waist circumference across various
conditions and scenarios. The analysis encompassed 78 participants, resulting in a total
of 312 data points. The evaluated factors included high and low resolutions, varying
lighting conditions, correct and incorrect color balance, plain and cluttered backgrounds,
distances ranging from 0 to 3 meters between the camera and participant, A-poses
and T-poses and relax posture and relax posture, different body shapes, as well as
tight and loose clothing. The plot provides a comprehensive overview of the software’s
performance under diverse conditions, offering valuable insights into its accuracy and
potential areas for improvement.
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Fig. 8.6 Error Difference Analysis : This plot showcases the error difference (in centime-
ters) between software and tape measurements for hips circumference across various
conditions and scenarios. The analysis encompassed 78 participants, resulting in a total
of 312 data points. The evaluated factors included high and low resolutions, varying
lighting conditions, correct and incorrect color balance, plain and cluttered backgrounds,
distances ranging from 0 to 3 meters between the camera and participant, A-poses
and T-poses and relax posture and relax posture, different body shapes, as well as
tight and loose clothing. The plot provides a comprehensive overview of the software’s
performance under diverse conditions, offering valuable insights into its accuracy and
potential areas for improvement.
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Fig. 8.7 Error Difference Analysis : This plot showcases the error difference (in cen-
timeters) between software and tape measurements for shoulder length across various
conditions and scenarios. The analysis encompassed 78 participants, resulting in a total
of 312 data points. The evaluated factors included high and low resolutions, varying
lighting conditions, correct and incorrect color balance, plain and cluttered backgrounds,
distances ranging from 0 to 3 meters between the camera and participant, A-poses
and T-poses and relax posture and relax posture, different body shapes, as well as
tight and loose clothing. The plot provides a comprehensive overview of the software’s
performance under diverse conditions, offering valuable insights into its accuracy and
potential areas for improvement.
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Fig. 8.8 Error Difference Analysis : This plot showcases the error difference (in cen-
timeters) between software and tape measurements for sleeve length across various
conditions and scenarios. The analysis encompassed 78 participants, resulting in a total
of 312 data points. The evaluated factors included high and low resolutions, varying
lighting conditions, correct and incorrect color balance, plain and cluttered backgrounds,
distances ranging from 0 to 3 meters between the camera and participant, A-poses
and T-poses and relax posture and relax posture, different body shapes, as well as
tight and loose clothing. The plot provides a comprehensive overview of the software’s
performance under diverse conditions, offering valuable insights into its accuracy and
potential areas for improvement.

In conclusion, this research has demonstrated the effectiveness and potential of

the software in accurately capturing body measurements. However, there are several

avenues for future work and improvement. Firstly, we can continue to refine and opti-

mize the algorithms and techniques used in the software to enhance its accuracy and

robustness, especially in challenging scenarios such as capturing measurements with

voluminous garments or in complex lighting conditions. Secondly, expanding the range
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of measurement parameters to include additional body dimensions will further enhance

the versatility and utility of the software in various applications.



Chapter 9

Conclusion

This chapter conclude the works that has been carried out in this computer science

doctorate research. The methodology, experiments and results of the different aspects

of this research are reviewed and used the evaluate the main hypothesis of this thesis.

Future work is then outlined and discusses possible advances to this research.

9.1 Objective of this Research and the Main Hypothesis

Our research began with a clear objective: to investigate the possibility of developing a

measurement system capable of extracting anthropometric measurements from multiple

in-depth images that capture the surface of the human body. We aimed to improve the

state-of-the-art in terms of accuracy-computational expenses, focusing on creating a

software that would be compatible with the next generation of smartphone devices.

Our study’s primary objectives can be divided into three broad categories. First, we

attempted to recreate the human body using AI technologies, such as machine learning,

computer vision, and 3D matching. Our objective was to estimate the human pose of the

person displayed on the screen and provide body measurements for specific areas.
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The second objective centred on reconstructing the human body from multiple

depth images, particularly in situations where direct 3D data was unavailable. We

acknowledged that systems using a single image have difficulty estimating the distance

between the camera and the human body. Consequently, our solution aimed at avoiding

this limitation.

Thirdly, we attempted to measure the circumferences of the human body using ellipse

formulas. To accurately calculate body circumferences, it was necessary to design a

system capable of selecting the optimal ellipse equation based on human body shape.

Our research was supported by several hypotheses. One significant assumption was

that the public and industry required a more advanced technical solution to measure the

surface of the human body, especially for industrial applications. We also hypothesised

that the demand for this technology among younger generations seeking better-fitting

garments is growing rapidly. This demand is a result of the growing digitisation of the

apparel/fashion industry and the need for more precise, personalised fittings.

We also assumed that, with the help of recent advances in machine learning and

computer vision, it is possible to measure the surface of the human body using next-

generation smartphones. We hypothesised that the development of a measurement

system capable of extracting human body measurements during movement, as well

as body changes that affect the experience of wearing a garment, was not simply a

possibility but an approaching reality.

In addition, we anticipated an increase in the precision of the state of the art. As

opposed to the current margin of error of 2cm, we set our sights on achieving an average

error of less than 1cm. Finally, we hypothesised that, using Objective 2 and a supervised

learning approach, it should be possible to directly extract 3D information from multiple

depth images in order to recover lost 3D data. We hypothesised that our system would

accurately determine the distance between the human body and the camera.
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Our research confirmed these hypotheses and exceeded our expectations. However,

there were a few restrictions. Our system was accurate within a range of 0.5cm to 3m,

but accuracy started declining at distances of less than 0.5cm and greater than 3m. In

addition, our current system is partially automated. There is room for improvement in

order to fully automate the system, and this can be accomplished with larger datasets.

The implications of our research for the real world are immense. We’ve proposed

a technique that significantly improves the E-Commerce apparel/fashion industry by

enabling users to estimate their body measurements using a pair of 2D smartphone

images in a straightforward and accurate manner. It is a revolutionary tool for the modern

world, where digital shopping is becoming routine and personalised, well-fitted clothing

is in high demand.

In this study, 78 self-identified female participants were used to test our method.

Compared to traditional tape measurement methods, we discovered that our method

improved the accuracy of the state-of-the-art by a maximum of 1 cm. This represents a

significant step forward in achieving our goal of an error of less than two centimetre.

9.2 Future Work

In considering future directions, there are several opportunities for further enhancing our

software and advancing the field of body measurement technology. While currently, our

system requires either a checkerboard or the user’s height for calibration, our goal is to

develop mechanisms that eliminate or minimize the need for these calibration references,

streamlining the measurement process and enhancing user experience. Developing a

larger database to test our system on a more diverse population will also be an objective

of this future work. By adding additional images and postures to the training set, we aim

to improve the consistency and precision of body shape extractions.
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Having access to larger datasets will also allow us to accurately label more body

parts. With more data, the system’s ability to identify and label body shapes and parts

in new images will improve. In turn, this will reduce the inaccuracy of the multi-ellipse

model, maximising the overall efficiency of the system.

As we delve into larger datasets, we intend to improve our skin detection capabilities,

aiming to distinguish human skin from non-skin regions with increased precision. A

promising avenue of research is to investigate if such refined detection can help in

labeling apparel and potentially estimating clothing thickness. Determining the boundary

between clothing and actual body surface could be pivotal in reducing measurement

errors. With the expanded datasets and by exploring the potential of our dual HSV and

YCbCr technique, we hope to ascertain the feasibility of accurately estimating the body

measurements, factoring in the influence of varied apparel thickness.

Another avenue for future improvement lies in exploring new measurement pa-

rameters beyond the ones considered in this study. While we focused on key body

circumferences and length measurements, there are other important body dimensions

that could be incorporated into the software (lower body), such as leg length. Expand-

ing the range of measurement parameters will enhance the software’s versatility and

usefulness in various domains, including fashion, fitness, and healthcare.

As we continue to expand and improve our software, it is crucial that we ensure its

inclusivity and relevance to diverse user groups. One important direction of our future

research will be to adapt and optimize our body measurement technology for individuals

with mobility challenges. Capturing accurate measurements for this particular group is

essential, as they often face difficulties in obtaining well-fitted garments and assistive

devices due to non-standard postures or physical conditions. By prioritizing this inclusion,

we hope to bridge the gap in measurement precision, providing a comprehensive solution

that caters to all, regardless of their mobility status. This endeavor not only enhances the
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universality of our software but also demonstrates our commitment to fostering inclusivity

in technological advancements.

Furthermore, considering applications in different domains can also be a promising

future direction. Our software has demonstrated its potential for accurate body measure-

ments, and its application can extend beyond personal use. For instance, it could be

integrated into clinical settings for monitoring body changes in medical interventions.

Another promising direction for our software’s evolution is the integration of a "Virtual

Try-On" feature. After our system has accurately captured a user’s measurements, it

would allow them to virtually "try on" apparel items from a digital catalogue. Not only

does this ensure the fit and feel are right, but it also provides an immersive shopping

experience from the comfort of one’s home. This feature holds great potential for the

e-commerce industry, eliminating the need for size guesswork and reducing product

returns due to misfit

By pursuing these future directions, we can continue to push the boundaries of

body measurement technology, improve the accuracy and usability of our software,

and contribute to advancements in fields such as fashion, healthcare, sports, and

body-related research. Continued research and development efforts in these areas will

open up new possibilities for enhancing the accuracy, practicality, and impact of body

measurement software in both consumer and professional contexts

In conclusion, our research sets the foundation for future applications in a variety

of industries, including garment customization, virtual fitting, 3D human modelling,

and related applications. The developed system satisfies the increasing demands of

the fashion industry and establishes a new standard for anthropometric measurement

precision. While there is still room for improvement, our research provides a promising

foundation for advancing this technology and ultimately enhancing the digital fashion

industry’s user experience.
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Public Dimensions

A.1 Supplementary Materials

Research Website: https://www.montazerian.com/research/ Mohammad [114]

ResearchGate Profile : https://www.researchgate.net/profile/Mohammad_Montazerian2

A.2 Published Papers

1. Research Workshop 2: Technical and conceptual innovations (EVA London 2020) -

How to Measure Human Body When Wearing Clothes by Using Camera Systems

2. Conference Paper: Measuring the Human Body from a Single Camera, with

Applications to the Clothing and Fashion Industry (Proceedings of 3DBODY.TECH

2022 13th Int. Conference and Exhibition)

3. Conference Paper: Adaptive Body Circumference Measurement Technique Using

Ellipse Formula (Proceedings of 3DBODY.TECH 2022 13th Int. Conference and

Exhibition)

https://montazerian.com/research/
https://www.researchgate.net/profile/Mohammad_Montazerian2
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4. Article: Simple Hybrid Camera-Based System Using Two Views for Three-Dimensional

Body Measurements (Symmetry (mdpi) - 2024)

5. In Process of Publishing this paper: A Survey Paper on the Evolution of Human

Body Measurement (2024)
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Research Survey

Research Questions(Survey) https://www.surveymonkey.co.uk/r/PHYQXH6

The specific research questions are:

1. Age:

2. Gender:

3. Have you ever had Online clothing shopping ?

(a) Yes

(b) No

• If No why ?

4. How often do you purchase new item of clothing ?

(a) 1-5times a year

(b) 5-10times a year

(c) Once a month

(d) 2/3 times a month

(e) 4+ per month

https://www.surveymonkey.co.uk/r/PHYQXH6
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5. What are your 2 main criteria when purchasing clothing?

(a) Quality

(b) Price

(c) Comfort

(d) Style

(e) Size

(f) Material

6. Have you felt any problem while conducting online purchase ?

(a) Yes

(b) No

• If yes what kind of problems ?

7. Please tell us if you agree or disagree with each of the following statement?

(a) Not being able to physically inspect the goods before purchase

(b) Online shopping is convenient to shop

(c) Online shopping saves time and energy

(d) Not too sure about my size

8. Have you ever used any application to measure your body ?

(a) Yes

(b) No

• If yes please tell us the name of the application

• If No why

9. Which one of the method do you prefer to garment your body ?
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(a) Traditional way

(b) Application

• Why ?

10. How many times did you return the product because the size of the items &

products it was not your good fit ?

(a) 0

(b) 1-3

(c) 3-6

(d) 6+
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Fig. B.1 A survey was carried out with a sample size of 100 individuals, consisting of 77
female participants and 23 male participants.
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Fig. B.2 A survey was carried out with a sample size of 100 individuals, consisting of 77
female participants and 23 male participants.
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Appendices1

Phase 1 Studies The research method is considered in the following order:

1. Research design

2. Choosing the participants

3. Limitations

4. Dataset and data collection

5. Analysis of the data

C.1 Research Design

Research Questions?

1. Which methods are the most reliable option to capture and measure the human

body reconstruction in the fashion industry?

(a) Mo-Cap System

(b) Machine Learning approaches
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(c) 3D Scanner

(d) Mobile Scanner approaches

(e) Photogrammetry approaches

2. Is the new generation of smartphone cameras a reliable method to measure the

human body reconstruction in motion?

(a) How accurate is the new smartphone scanner in comparison to the other

methods?

(b) How are the new smartphone scanners recovering lost data (i.e. depth) during

capturing for human body reconstruction?

3. For the human body in motion are there any changes to the human body surface?

(a) For the body scanner and the Mo-Cap system, are there any changes between

the body measurements extracted?

(b) Are there any changes in other parts of the body during the shoulder girdle

movement?

(c) What are the maximum and minimum changes of the elected upper body

measurements during the shoulder movement?

4. Among participants with different body sizes, is there any difference in measure-

ment changes?

C.2 Machine Learning and the Mo-Cap System

Collections of samples are used for the process of deriving successful mathematical

models for the process of machine learning. The model is useful in instances where the

process is difficult to model exactly and it is often statistical. Even when partial models
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are available, in verifying different models and approximating their parameters by fitting

them to the data, the learning technique can play an important role.

In markerless motion capture, by learning how to predict 3D configuration directly

from images that are observed, we can escape the need for human body rendering

and accurate data modelling. As for turning data, these need a set of images and their

associated configurations. One way to create such information and data is using motion

capture, which is one of the technologies that exists today. We are able to record the

movements of humans or any subjects performing a range of different activities. As the

details of representation vary between systems, such methods can typically provide

the human body configuration as a set of angles between limbs at the main body joints.

The corresponding images can be found by providing an artificial image based on the

motion capture data, because it is used to synthesise motion in graphics, or by using a

synchronised conventional video camera with the camera of the motion capture systems.

Therefore, the data will be compressed into mathematical models that can be used to

predict the human pose from new images by using machine learning methods.

How to show the image content is one of the challenges. Usually, for input in the

learning process, into a vector to create a feature space representation some low-level

visual attributes are gathered. As mentioned in section 1.3, to recognise the suitable

set of features for measuring human body appearance, there are multiple elements

creating difficulty. However, by using a set of pictures as training data, we can learn

about effective representations, by creating statistics from the pictures and the main

responses featuring on them.

Dynamic methods are other features of human motion analysis that can be useful for

learning-based methods. The development of human body 3D models (avatars) in motion

needs a clear understanding of biomechanics and complicated interdependencies of

various parts of the body, which in the next chapter we review in more detail. In contrast,

it is much easier to capture the correlations and the temporal dependencies between
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the movement of multiple parts of the body through statistical models. To synthesise

natural-looking motion for human motion analysis, machine learning technology has

begun to be used more and more Safonova et al. [142], Fang and Pollard [63], Lee et al.

[97].

C.2.1 Selection of technologies

To measure the human body surface in motion, different techniques have been consid-

ered such as computer vision, machine learning and 3D matching. Such technologies

are key parameters to record and measure the human body measurements and also

analyse to provide accurate numerical data simultaneously on new smartphones. New

smartphones contain a maximum of three cameras. Each camera can capture the hu-

man body (x, y and z coordinates of each marker) over time. With the help of computer

vision, first to analyse photos or video from which we acquire and process the human

body. Secondly, by using a neural network to detect and determine key-points and

produce a set of probability maps for each key point (machine learning). Finally, by using

statistical modelling and 3D geometry to create a 3D model of the human body, based on

the detected key-points, which allows to accurately obtain human body measurements

(3D matching). Recent advance in AI-powered technologies on smartphone scanners,

make in it possible, to see the 3D data from any orientation since it can convert the

2D data to 3D. This system can provide measurement change over time, instead of a

measurement at a certain stage of motion, this is one of the main benefits of the new

mobile generation.

Note: Selection of Motion Capture system has been also considered for our phase 1

studies, however, owing to the lack of ability of such system to capture the human body

mass, we have decided to not to continue our work based on this system. Please refer

to section C.4 for more information
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C.3 Dataset and Data Collection

Preparation of the application, as well as subject registration and recording process, are

the three steps of the data collection procedure.

C.3.1 Preparation of the application

Preparation of the application will be done in the following order: preparing the camera

phone and working area, testing, taking few photos from multiple perspective or a short

video (360 view). iPhone 11 and later devices will be chosen (is that these devices

contain minimum of 3 cameras).

Before initiating the scanning process, a test has to determine where the participants

needs to perform a natural and relaxed posture, standing still, looking forward, and

breathing normally during the scanning.

C.3.2 Subject Registration

The research process will take place at Goldsmiths, University of London, where we can

access to our tools and system. Once participants are selected through the screening

process, they will be asked to schedule a 30-minute appointment with the researcher.

C.3.3 Recording Process

Participants will be asked to stand in front of the camera twice to perform the motion. The

reason for asking participants to perform their motion twice is that we want to compare

the first results with the second results, for which participants will do some stretching

exercises to warm up the muscles (5 minutes). The participants will perform the motion

several times according to a reference video and the researcher’s guidance, for this

study.
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Participants will be asked to take the natural and relaxed posture, standing still,

looking forward, and breathing normally during the scanning process, in order to compare

data on the maximum and minimum increases and decreases of the body in motion.

When the participants are ready, they will be asked to perform the selected movements.

As the shoulder is one of the joints of the body that every other part of the upper body

is connected to, the participants will be asked to perform an arm rotation in order to

compare the maximum and minimum expansion and contraction of the muscles that are

connected to the shoulder.

C.4 Selection of Motion Capture System

To measure the human body surface in motion, different systems have been considered

such as an optical motion tracking system and body motion capturing in 3D with the help

of ARKits framework on new smartphones. Such technologies can record and measure

the human body measurements and also analyse to provide accurate numerical data

simultaneously. An optical motion capture tracking system contains several cameras

(minimum six) to capture various reflective markers on the moving object, and new

smartphones contain a maximum of three cameras. Each camera is able to capture

the human body (x, y and z coordinates of each marker) over time. Thirty-six markers

will be attached to each participant to capture the full human body shape in optical

Mo-Cap-system while capturing the body motion in 3D by using a new generation of

smartphones, with the help of machine learning, first to estimate the human pose of the

person on the screen and afterwards to create a full-fledged, high-fidelity skeleton for

every individual limb by using the pose. Mo-Cap systems have the ability to see the 3D

data from any orientation since it is able to convert the 2D data to 3D. This system can

provide measurement change over time, instead of a measurement at a certain stage of

motion, this is one of the main benefits of the motion capture system.
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C.5 Dataset and Data Collection

Preparation of the Mo-Cap system, as well as subject registration, placement of marker

process, 3D scanning process and the Mo-Cap process, are the five steps of the data

collection procedure.

C.5.1 Preparation of the Mo-Cap System

Preparation of the motion capture system will be done in the following order: preparing

the camera and working area, calibration, and pilot testing. The 12 cameras will be

placed around the Goldsmiths studio and the motive system is turned on in order to aim

the cameras precisely and focus the lens at the centre of the studio.

Calibration is necessary for using the two hinged axes and wand provided with

the system after positioning the cameras. To store calibration parameters for each

participant, it is necessary to create a new calibration file before starting to capture each

individual body in the studio. Calibration included six essentials steps:

1. Prepare and optimise the capture setup

2. Clear existing masks.

3. Use Mask Visible to mask extraneous reflections that cannot be removed from

capture volume.

4. Wanding

5. Calculate and review the calibration results.

6. Set the Ground Plane.

Before initiating the capture process, a pilot test has to determine where the markers

need to be attached to the human body and how many markers are necessary. It
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is necessary to examine and refine the marker positioning during the pilot test. To

measurement placement, attaching the markers is fundamental.

C.5.2 Subject Registration

The research process will take place in the Mo-Cap Studio at Goldsmiths, University

of London, where the motion tracking system and body scanner is located. Once

participants are selected through the screening process, they will be asked to schedule

a 30-minute appointment with the researcher.

C.5.3 Placement of Marker Process

Markers are the essentials part of the motion capture tracking system and by placing

them on a wrong part of the body or missing them, data will be distorted; therefore, the

markers need to be placed at the correct location on the body corresponding to the

selected measurements.

Markers are around 15 mm in diameter and are attached to the participant’s body

with double-sided sticky tape, which is made for this system. The markers will be placed

at the two end-points of each measurement.

Anatomical landmarks related to pattern development helped to determine the exact

location of the markers. The markers will be attached to the human body where the

anatomical landmarks, such as the acromion and the cervical, are obvious. The motion

software has a feature to show an avatar of a person with the markers attached, which

needs to be followed, as the software and the program will then be ready to capture the

human body.
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C.5.4 3D Scanning Process

As part of this research study, scanning the body plays an important role in getting

high-quality information and quite accurate data from every joint of the human body.

The body scanner is not a good option to measure the human body in motion; however,

because it is a natural and relaxed posture that participants take, the data that we can

collect from them are significantly better than any other technology that already exists in

the market.

One of the advantages of the laser scanner compared to motion capturing technology

is that the participants do not need to attach any sensors or wear any specific suits in

order to capture their body. So once the participants were ready, the process of scanning

can start and they should stand in front of the laser scanner with a natural and relaxed

posture, standing still, looking forward, and breathing normally during the scanning.

To obtain a high-quality measurement from the human body, we came across software

that already exist in the store (Structure Sensor Mark II 1). This single laser camera

will attach to the iPhone’s or iPad’s camera and users need to download the Tech-Med

application (free apps in the app store) to start the process of scanning the human body.

Once the application is opened and the camera is connected to the iPad or iPhone,

the process of scanning will start. Thus, the basic standing posture can be described:

the participants will be asked to stand upright but naturally and relaxed, looking straight

ahead, arms hanging relaxed at the sides with feet together Aldrich et al. [22]. Once

the scanning process is finished, the data will be checked for quality and, if needed,

the participants will be asked to participate in the process of scanning once again.

Afterwards, the participants will be asked to get ready and move to the Mo-Cap Studio

lab for motion capturing.

1Structure Sensor Mark II is powerful laser scanner that will be mounted on an iPad or iPhone camera,
which requires no cables or PC nearby and offers you real freedom to scan
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C.5.4.1 TechMed3D

As part of this research study, one of the main goals is to gather as much data as possible

to create a dataset that can be used in future for the implementation and final testing.

One of the software that is considered is TeckMed3D, which controls and optimises 3D

scanning with the Structure Sensor Mark II. This app can obtain very accurate data from

the human body shape structure for individual segments of the body.

C.5.5 Mo-Cap Process

Participants will be asked to stand in the motion capture studio twice to perform the

motion. The reason for asking participants to perform their motion twice is that we want

to compare the first results with the second results, for which participants will do some

stretching exercises to warm up the muscles (5 minutes). The participants will perform

the motion several times according to a reference video and the researcher’s guidance,

for this study.

With 12 cameras surrounding the participants, they will stand in the optical motion

tracking space. participants will be asked to take the same posture as in the body

scanning process, in order to compare data on the maximum and minimum increases

and decreases of the body in motion. When the participants are ready, they will be asked

to perform the selected movements. As the shoulder is one of the joints of the body

that every other part of the upper body is connected to, the participants will be asked to

perform an arm rotation in order to compare the maximum and minimum expansion and

contraction of the muscles that are connected to the shoulder.
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C.6 Measuring App with ARKit

ARKit is a framework in IOS 11 that allows us to blend digital objects in the real world. It

is been used in Pokemon Go or IKEA app and etc. ARKit runs on the Apple A9 and A10

processors.

C.6.1 ARuler app

Lets start with coding in Xcode. first thing we need to do is to create emtpy project that

supports ARkit which Xcode 9 has a separate template for this.

I have created very simple UI for this demo, to represent some labels which inform

us about the final outcome and results. Figure 4.4 shows a view from the application

So, what it is next, we need to setup the session and set the sessionConfig. As part

of using ARkit we are able to detect only horizontal planes but it is not a problem in our

app, as we will relate to the features points.

Based on Features points - points identified by the framework as part of the

surface, we are able to detect things

1 func setupScene () {
2 sceneView.delegate = self
3 sceneView.session = session
4

5 session.run(sessionConfig , options: [. resetTracking , .
removeExistingAnchors ])

6

7 resetValues ()
8 }

For better detection, we need a function for detecting feature points, then to calculate

the distance between two points we need to trasnlate it into 3D coordinates. The code

below shows an extension of the ARSCNView:

The next step that I did was to implement the method to updateAtTime and after

that call our detection function.
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1 func realWorldVector(screenPos: CGPoint) -> SCNVector3? {
2 let planeTestResults = self.hitTest(screenPos , types: [.

featurePoint ])
3 if let result = planeTestResults.first {
4 return SCNVector3.positionFromTransform(result.worldTransform

)
5 }
6

7 return nil
8 }

1 func renderer(_ renderer: SCNSceneRenderer , updateAtTime time:
TimeInterval) {

2 DispatchQueue.main.async {
3 self.detectObjects ()
4 }
5 }

Finally, I have developed a function to save the beginning and end point that we want

to measure. Therefore, we need to calculate the distance between the first and end

points which is called typeSCNVector3. Please refer to the code below to see how this

section is done:

1 func distance(from vector: SCNVector3) -> Float {
2 let distanceX = self.x - vector.x
3 let distanceY = self.y - vector.y
4 let distanceZ = self.z - vector.z
5

6 return sqrtf(( distanceX * distanceX) + (distanceY * distanceY) +
7 (distanceZ * distanceZ))
8 }

To conclude, the results that I have achieved was surprised me a lot as it was quite

accurate, however, because of featurePoits we get some strange results sometimes

and this can be easily fixed by moving the device and find the best spot or place to start

measuring.

C.7 Key Landmark by ISO
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Fig. C.1 Key body Linear by 8559-1 [13] 8559-2 [14] 8559-3 [15]
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Fig. C.2 Key body Linear by 8559-1 [13] 8559-2 [14] 8559-3 [15]
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Fig. C.3 Key body Volumetric circumferences by 8559-1 [13] 8559-2 [14] 8559-3 [15]
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Fig. C.4 Key body Landmark points by 8559-1 [13] 8559-2 [14] 8559-3 [15]
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D.1 Removal of Small Image Regions, Image Smoothing and

Blurring

In the following few paragraphs, we are going to talk about the four primary smoothing

and blurring options that we had, as well as the one that we ultimately decided was the

best option for this project.

D.1.1 Image Blurring

1) Average Blurring

An average filter takes a region of pixels surrounding a central pixel, calculates the

average of these pixels, and replaces the central pixel with this average. By averaging

the region surrounding a pixel, we smooth it out and replace it with the neighborhood’s

local value. By focusing on the average, we are able to lower noise and detail levels.

To achieve the average blur, we actually wrap our image with a normal M × N filter,

both M and N are odd integers.
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This kernel shifts its position within our input image from left to right and top to bottom

for each every pixel (Human body image - front view). The pixel that is located in the

middle of the kernel has its value set to be the same as the average of the other pixels

that are located nearby. Let’s begin by defining an average 3 × 3 kernel that can be

used to blur the central pixel with a radius of 3 pixels:

K =
1
9


1 1 1

1 1 1

1 1 1

 (D.1)

If you have noticed, we are assigning the same amount of weight to each pixel that is

a part of the kernel, therefore each element in the kernel matrix is weighted uniformly.

When the size of the kernel rises, we are able to cover a larger part of the image, which

results in a more blurred picture overall.

2) Gaussian Blurring

The Gaussian blurring technique is quite comparable to the medium blurring technique;

however, rather than utilising a basic mean, we employ a weighted mean. This means

that neighbouring pixels that are closer to the centre pixel contribute more "weight" to

the mean. It is a very common effect in graphics software, and its primary purpose is to

lessen the appearance of image noise while maintaining the level of detail.

Compared to the average procedure outlined in the previous section, our image is

less blurred and seems more "naturally." Moreover, compared to average smoothing, we

can preserve the majority of image edges using this weighting. When doing Gaussian

blurring, the kernel size is M × N, just as it is when performing average blurring; however,

both M and N are odd integers. Because we will be weighting pixels according to their

distance from the central pixels, we will require an equation in order to generate our

kernel.
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G(x) =
1√

2πσ2
e−

x2

2σ2 (D.2)

It is the sum of two Gaussian functions, one in each dimension, in two dimensions::

G(x) =
1

2πσ2 e−
x2+y2

2σ2 (D.3)

Where x and y represent the distances away from the origin in the horizontal and

vertical centres of the kernel, respectively, and where X is the standard deviation of the

Gaussian kernel.

Gaussian blurring is commonly used with edge detection that are are sensitive to

noise; the 2-D Laplacian which is highly sensitive to noisy environment (Please refer to

subsubsection 6.1.1.4 for more information). Also lower-end digital cameras, including

many smartphone cameras, commonly use Gaussian smoothing to cover up image

noise caused by higher ISO light sensitivities.

Since we need to detect the edges of the human body in the image, we have utilised

this blurring technique as part of our image smoothing.

The computation of the weighted mean, rather than allowing all pixels in the kernel

neighbourhood to have the same weight, is what gives the Gaussian Blur its more natural

appearance when compared to the averaging approach. This is the reason why the

Gaussian Blur is preferred. When the value is higher, there is a greater amount of blur,

and vice versa.

3) Median Filtering

The operation known as "Median blur" is very much like the other ways of averaging.

The median of all the pixels in the kernel area is substituted for the element that was

previously located in the centre of the image. During this operation, the noise is also
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removed while the edges are being processed. The median blur technique is often

considered to be the most efficient way to get rid of the salt-and-pepper noise.

When applying for the median blur, the first thing we do is define the size of the

kernel. Then, in the same way that we did with the approach of averaging and blurring,

we consider all of the pixels in the surrounding area of size k × K, where K is an odd

integer, because there are no true middle pixels otherwise.

It is imperative that the kernel size for the median blurring be square, in contrast to

the average and Gaussian blurring, in which the kernel size is rectangular. Unlike to

the average blurring, which replaces the central pixels with the neighborhood’s average

value, this method will instead replace the central pixels with the median value.

Because each central pixel in median blurring is always replaced with the pixel

intensity that already exists in the image, this technique is more effective than others

at removing the salt-and-pepper type of noise that can be found in an image. Since

the median is unaffected by outliers more than other statistical methods, such as the

average, the salt-and-pepper noise will have less of an impact on the median.

4) Bilateral Filtering

A bilateral blurring filter is one option we have that will both reduce noise and preserve

edge. The effect of bilateral blurring can be achieved by using two Gaussian distributions

in the calculation. The first Gaussian consists of pixels in the image’s (x, y)-coordinate

space that are located in close distnce into one and another. The second Gaussian

transform modifies the pixel by substituting the intensity value of each pixel with a

weighted average of the intensity values of neighbouring pixels.

Intuitively, this is logical. If the pixels in a (small) neighbourhood all have the same

value for that pixel, then they most likely represent the same object. However, if two

adjacent pixels in a neighbourhood have values that are different from one another, we
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are able to analyse the edge or boundary of an item, and we are able to preserve this

edge.

This technique can preserve the edges of an image while also minimising the amount

of noise in the picture. The fact that it is so much slower than the other approaches that

were covered in this section is by far the most serious disadvantage associated with

using this strategy.

D.1.2 Classical Computer Vision Image Segmentation

D.1.2.1 Detecting Edges Using Masks

D.1.2.1.1 Linear Edge Operators In linear edge detection, filtering and enhancement

are both accomplished through the use of linear convolutions. These two steps can be

combined into one using the derivative of the smoothing kernel in the single stage of the

convolution process. There are three well-known methods for edge detection, and they

are as follows:

• Convolution with Edge Templates

• ZeroCrossings of Laplacian-of-Gaussian Convolution

• ZeroCrossings of Directional Derivatives of Smoothed Image

D.1.2.1.2 Morphological Edge Detection Morphological transformations are some

simple operations that are performed on an image based on its shape. Binary images

are the typical targets of this operation. Only needs two inputs: the first is the original

image, and the second is what’s known as the "structuring element" or the "kernel,"

which determines the type of operation to be performed. Both "Erosion" and "Dilation"

are well-known morphological operators; nevertheless, for the purposes of this study,

the "Erosion" procedures were utilised.
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"Erosion" works in the same way that soil erosion does; it slowly dissolves at the

edges of the foreground object (by keeping the foreground in white). So what does it

accomplish? The kernel can be seen moving through the image (as in 2D convolution).

Only if every pixel that falls under the kernel of the original image has a value of 1, would

a pixel in the original image, which may be either 1 or 0, be regarded to have a value of

1. (which is made to 0 as black).

After then, depending on the size of the kernel, all of the pixels that are close to

the upper human body boundary will be removed from consideration. As a result, the

foreground object’s thickness or size, as well as the overall amount of white region in the

image, both decrease.

Figure D.1 displays an experimental comparison of the LoG and the morphological

second derivative in detecting edges by Maragos [107].
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Fig. D.1 (a) Display the original image along with two versions affected by additive
Gaussian noise with a signal-to-noise ratio (SNR) of 20 and 6 dB. (b) Show ideal edges
as well as edges derived from zero-crossings of the Laplacian-of-Gaussian for each of
the two noisy images. (c) Ideal edges, as well as edges derived from zero-crossings of
the 2D morphological second derivative (nonlinear Laplacian) of the two noisy images,
after some Gaussian pre-smoothing has been applied [107].

D.1.2.2 Mask operations on matrices

By computing the differences in intensity across local image regions, it is possible to

identify image spots with a strong contrast. In most cases, such points originate from
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the boundary between two distinct items or parts of a scene; nevertheless, in the case

of our experiments, it is the edge extractions of the human upper body. Each pixel value

in an image has been recalculated by me in accordance with the mask matrix (also

known as the kernel). This mask contains values that allow the amount of influence

that surrounding pixels (as well as the value of the current pixel) have on the new pixel

value to be adjusted. This indicates that with the assistance of this method, we are able

to isolate significant characteristics from the edges of an image (e.g., corners, lines,

curves). These features are utilised by computer vision algorithms operating at a higher

level. In essence, what we want to do is apply the following formula to each and every

pixel in the image:

I (i, j) = 5 * I (i,j) [ I (i1, j) + I (i+1, j) + I (i, j1) + I (i, j+1) ]

I (i,j) * M, where M =



i\ j −1 0 +1

−1 0 −1 0

0 −1 5 −1

+1 0 −1 0


The first notation involves the use of a formula, and the second notation involves

the use of a mask to create a quick summary of the first. We made use of the mask

by positioning the centre of the mask matrix (in the upper case, this was indicated by

the zero-zero index) over the pixel whose value we wanted to calculate, and then we

counted the value of that pixel multiplied by the values of the overlapping matrix.

D.1.2.3 Thresholding

Thresholding is a segmentation technique used to distinguish the foreground and back-

ground of an image. All pixels over the threshold are assigned to one region, while all

pixels below the threshold are assigned to another. This is a sort of supervised machine

learning algorithm since the threshold value is determined by the user. Here, the values

of pixels are assigned based on the thresholds you define. In computer vision, grayscale



D.1 Removal of Small Image Regions, Image Smoothing and Blurring 315

pictures are thresholded via thresholding. In a variety of image processing procedures,

thresholding is an important intermediary function. Using these tools, we can mask

of undesired details such as dark or light areas and outlines. Thresholding is an effective

method for extracting important visual elements that are obscured by noise in an image.

• The foreground of the image is represented by pixel values that are set to be

between 225 and 255, with white being the highest value (i.e, Human upper body).

• Collecting every pixel in the grey image that is greater than 225 and assigning it to

0 (black), which is the colour that represents the background of the image.

As part of our research, we have researched a variety of thresholding methods in

order to determine the best alternative for our suggested programme. The following is

the number of thresholding techniques that we have examined:

1. Binary thresholding: is the most straightforward and prevalent type of thresholding.

It is utilised to segment images using a single threshold value. It sets all pixels in

an image to either 0 (black) or 255 (white), based on whether their intensity value

is less than or greater than the specified threshold value.

2. Adaptive Thresholding: is one of the most frequently employed thresholding tech-

niques. Image segmentation based on multiple threshold values can be accom-

plished with its help. When dealing with images that have non-uniform lighting, this

thresholding method is utilised so that the problem can be solved. In order for it to

work, it must first determine the mean of the area surrounding a pixel, and then

choose a threshold value based on the mean.

3. Otsu’s Thresholding: is an automatic thresholding method that maximises the inter-

class variance. This method is especially useful when the image’s background

and foreground have varying intensities. It functions by calculating the image’s

histogram and then identifying the optimal threshold value that maximises the

inter-class variance.
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4. Triangle thresholding: is a form of image thresholding method that is used to turn a

grayscale or colour image into a binary image. It is based on the idea of determining

the ideal threshold value by maximising the resemblance of the generated image

histogram to a triangle. The triangle thresholding method is implemented by setting

the threshold value to the histogram’s peak, which is placed in the middle of the

range of grey level values. The grey level values below the threshold are set to

zero, and those above it are set to one. This method can be used to recognise and

segment objects in images and has been proven to be useful in many applications,

such as medical imaging and document analysis.

5. Mask thresholding: is a sort of image segmentation that divides an image into two

sections, a foreground and a background, using a specified threshold value. It

operates by comparing each pixel in an image to a specified threshold value. If the

pixel is over the threshold, it is deemed to be part of the foreground; otherwise, it is

deemed to be part of the background. In image processing applications such as

object detection, image segmentation, and image analysis, mask thresholding is

an useful technique.

Based on our findings, we have chosen to employ mask thresholding because: 1. it

is relatively straightforward and requires minimal user input. 2. It’s also fast, as there

is no need to search for the optimal threshold value. 3. it is also gives better results

than global thresholding, especially when working with photographs with non-uniform

backgrounds. 4. it can also be used to detect things in a more complex background.

Thresholding by itself is not a particularly effective approach, but when combined

with other strategies, as we will see later, it may be quite valuable. Figure D.2 shows

every phase of image corrections in our software, from affine and metrics corrections to

skin detection.
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Fig. D.2 demonstrated every step of the image adjustments, beginning with (a) affine
modifications, (b) grayscale conversion, (c) edge detection, (d) canny edge identification,
(e) threshold application, and (f) skin detection.
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D.1.3 DeeplabV3

Fig. D.3 An atruous 2D convolution, with a 3 kernel, a 2 atrous rate, and no padding -
Paul-Louis [124]

Atrous Separable Convolution

Lets go deeper with atrous convolution using Multi-Grid.

• (a) Without Atrous Convolution: Standard convolution and integration are per-

formed, which increases the output stride, for instance, the output feature map
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becomes smaller as it deepens. However, because location/spatial data is losing at

deeper layers, therefore, consecutive striding is harmful for semantic segmentation.

• (b) With Atrous Convolution: With a larger field-of-view without increasing the

number of parameters or the calculation, we can keep the stride constant. Finally,

we can have a larger output feature map which is good for semantic segmentation.

Fig. D.4 Depthwise Separable Convolution Using Atrous Convolution [153]

Figure D.4 is introduces in MobileNetV1 where;

• (a) and (b), Depthwise Separable Convolution: It transforms a conventional convo-

lution into a depthwise convolution followed by a point-wise convolution (i.e., an

1x1 convolution), which substantially decreases processing complexity.

• (c) Atrocious Depthwise Convolution: The depthwise convolution supports atrous

convolution. And it is discovered that it greatly decreases the computational

complexity of the suggested model while preserving (or improving) performance.

• Combining with point-wise convolution, it is Atrous Separable Convolution.

D.1.3.1 DeepLabv3 as Encoder and Decoder

The Encoder-Decoder architecture is a deep learning architecture used in DeepLabV3

and other computer vision tasks. It consists of two parts: the encoder and the decoder.
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The encoder is responsible for extracting features from the input image, while the decoder

is responsible for mapping the features to a higher level representation.

The encoder part of the architecture is typically a convolutional neural network (CNN).

The network takes the input image and passes it through a series of convolutional layers,

each of which extracts features from the image, and produces a feature map. This

feature map is then passed to the decoder part of the architecture, which takes the

feature map and produces the desired output.

The decoder part of the architecture typically consists of a series of upsampling

layers, which increase the size of the feature map, and a set of convolutional layers

which map the feature map to the final output. In DeepLabV3, the decoder part of the

architecture also includes a “context module”, which helps the model to better distinguish

between objects in the image.

Usually, the spatial resolution of the final feature maps for image classification is 32

times lower than the resolution of the original image, hence the output step is 32. It is

too tiny to segment semantically. By adopting output stride = 16 (or 8) and applying the

Athros complexity to the stride from the last block’s one (or two), a denser feature can be

extracted. In addition, DeepLabv3 improves the Atrous Spatial Pyramid Pooling module,

which evaluates convolution qualities at various scales by applying atrous convolution at

varying rates on image-level features.

The encoder features are first bilinearly upsampled with a coefficient of 4 and then

linked to the matching low-level feature. There is a 1 x 1 complexity to low-level features

prior to accession to minimise the number of channels since the matching low-level

feature typically has a large number of channels (i.e. 512 or 1024) that may exceed

the significance of the rich encode features. To fix some characteristics, we use 3 x 3

convolutions after concatenation and then do a basic bilinear upsampling by a factor of

4.
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D.2 Results

D.2.1 Statistical Analysis and Comparison of Chest Circumference Mea-

surements: Plain Background vs. Cluttered Background."

A t-test was conducted to determine whether there is a statistically significant difference

between the plain-background and cluttered-background measurements of chest cir-

cumferences. The hypothesis was that the mean chest circumference in the cluttered

background condition would be greater than in the plain background condition.

The plain-background measurements had a mean of 0.48 (SE = 0.04), while the

cluttered-background measurements had a mean of 0.57 (SE = 0.04). The variances of

the two samples were 0.12 and 0.15 for the plain and cluttered backgrounds, respectively.

The sample sizes for both conditions were 78.

The t-statistic for the two-sample t-test assuming unequal variances was calculated

to be -1.51. The degrees of freedom (df) for the test were 153. For a one-tailed test, the

p-value (P(T<=t)) was found to be 0.07, which is greater than the significance level of

0.05. The critical value for a one-tailed test at a 0.05 significance level (alpha) with 153

degrees of freedom is 1.65.

For a two-tailed test, the p-value (P(T<=t)) was calculated as 0.13, also greater than

the significance level of 0.05. The critical value for a two-tailed test at a 0.05 significance

level with 153 degrees of freedom is 1.98.

Based on the t-test results, we fail to reject the null hypothesis. There is no statistically

significant difference between the chest circumferences measured in the plain and

cluttered backgrounds. The two data sets are likely similar.
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Fig. D.5 : demonstrate the each background’s stress level on the bell curve.

For the plain background measurements, the mean chest circumference was M =

0.48 with a standard error of SE = 0.04. The median was 0.48, and the mode was not

identified. The standard deviation and sample variance were SD = 0.35 and variance =

0.12, respectively. The data had a positive skewness of 0.79 and a kurtosis of 1.03. The

range of measurements was 1.73, with the minimum value being 0.01 and the maximum

value being 1.73. The sum of measurements was 37.17, and the sample size was n =

78.

For the cluttered background measurements, the mean chest circumference was M =

0.57 with a standard error of SE = 0.04. The median was 0.54, and there was no mode

identified. The standard deviation and sample variance were SD = 0.38 and variance =

0.15, respectively. The data had a positive skewness of 0.85 and a kurtosis of 0.64. The

range of measurements was 1.71, with the minimum value being 0.03 and the maximum

value being 1.74. The sum of measurements was 44.13, and the sample size was n =

78.
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Fig. D.6 : displays the error correlation for the chest circumferences measurements

The error correlation between the plain-background and cluttered-background mea-

surements was found to be 0.90. This indicates a strong positive correlation between

the errors in the two sets of measurements.

Additionally, when examining the chest circumference error measurements, it was

found that for the plain background measurements, 53.85% of the data fell within the

range of 0 to 0.5, 39.74% fell within the range of 0.5 to 1, 5.13% fell within the range

of 1 to 1.5, and 1.28% fell within the range of 1.5 to 2. Similarly, for the cluttered

background measurements, the percentages were as follows: 53.85% in the range of

0 to 0.5, 39.74% in the range of 0.5 to 1, 5.13% in the range of 1 to 1.5, and 1.28% in

the range of 1.5 to 2. These results provide insights into the distribution of errors in both

backgrounds.
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Overall, the results of the chest circumference error measurements conducted on

both the plain and cluttered backgrounds indicate that the software is accurate and

reliable, as the majority of measurements had an error difference of less than 1 cm,

and only a small minority had an error difference of greater than 1.5 cm. However, it is

important to note that the accuracy of the software was slightly lower on the cluttered

background than on the plain background, with a greater percentage of measurements

having an error difference greater than 1.5 cm on the cluttered background.

The accuracy of the software on both plain and cluttered backgrounds is within

acceptable parameters, however it is important to note that the software is slightly more

accurate on the plain background than on the cluttered background. In order to ensure

consistent accuracy, it is recommended that the software be used on plain backgrounds

whenever possible. Additionally, it is recommended that users of the software take extra

care when measuring on cluttered backgrounds, as the accuracy of the software is

slightly lower in that scenario.

D.2.2 Statistical Analysis and Comparison of Bust Circumference Mea-

surements: Plain Background vs. Cluttered Background."

A t-test was conducted to determine whether there is a statistically significant differ-

ence between the plain-background and cluttered-background measurements of bust

circumferences. The hypothesis was that the mean bust circumference in the cluttered

background condition would be greater than in the plain background condition.

The plain-background measurements had a mean of 0.50 (SE = 0.03), while the

cluttered-background measurements had a mean of 0.56 (SE = 0.03). The variances of

the two samples were 0.09 and 0.09 for the plain and cluttered backgrounds, respectively.

The sample sizes for both conditions were 78.
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The t-statistic for the two-sample t-test assuming unequal variances was calculated

to be -1.19. The degrees of freedom (df) for the test were 154. For a one-tailed test, the

p-value (P(T<=t)) was found to be 0.12, which is greater than the significance level of

0.05. The critical value for a one-tailed test at a 0.05 significance level (alpha) with 154

degrees of freedom is 1.65. For a two-tailed test, the p-value (P(T<=t)) was calculated

as 0.24, also greater than the significance level of 0.05. The critical value for a two-tailed

test at a 0.05 significance level with 154 degrees of freedom is 1.98.

Based on the t-test results, we fail to reject the null hypothesis. There is no statisti-

cally significant difference between the bust circumferences measured in the plain and

cluttered backgrounds. The two data sets are likely similar.

Fig. D.7 : demonstrate the each background’s stress level on the bell curve.

For the plain background measurements, the mean bust circumference was M =

0.50 with a standard error of SE = 0.03. The median was 0.56, and the mode was not

identified. The standard deviation and sample variance were SD = 0.30 and variance =

0.09, respectively. The data had a negative skewness of -0.01 and a kurtosis of -0.52.

The range of measurements was 1.25, with the minimum value being 0.00 and the
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maximum value being 1.25. The sum of measurements was 39.28, and the sample size

was n = 78.

For the cluttered background measurements, the mean bust circumference was M =

0.56 with a standard error of SE = 0.03. The median was 0.59, and there was no mode

identified. The standard deviation and sample variance were SD = 0.30 and variance =

0.09, respectively. The data had a positive skewness of 0.07 and a kurtosis of -0.67. The

range of measurements was 1.24, with the minimum value being 0.02 and the maximum

value being 1.26. The sum of measurements was 43.72, and the sample size was n =

78.

Fig. D.8 : displays the error correlation for the bust circumferences measurements

The error correlation between the plain-background and cluttered-background mea-

surements was found to be 0.94. This indicates a strong positive correlation between

the errors in the two sets of measurements.
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Additionally, when examining the bust circumference error measurements (as seen

in Figure 6.19), it was found that for the plain background measurements, 42.31% of

the data fell within the range of 0 to 0.5, 53.85% fell within the range of 0.5 to 1, and

3.85% fell within the range of 1 to 1.5. On the other hand, for the cluttered background

measurements, the percentages were as follows: 39.74% in the range of 0 to 0.5,

53.85% in the range of 0.5 to 1, and 6.41% in the range of 1 to 1.5. These findings

provide insights into the distribution of errors in both backgrounds.

Overall, these results indicate that there is a slightly higher error rate when taking

measurements in a cluttered background than in a plain background.

D.2.3 Statistical Analysis and Comparison of Waist Circumference Mea-

surements: Plain Background vs. Cluttered Background."

A t-test was conducted to determine whether there is a statistically significant difference

between the plain-background and cluttered-background measurements of waist cir-

cumferences. The hypothesis was that the mean waist circumference in the cluttered

background condition would be greater than in the plain background condition.

The plain-background measurements had a mean of 0.56 (SE = 0.04), while the

cluttered-background measurements had a mean of 0.65 (SE = 0.04). The variances of

the two samples were 0.12 and 0.15 for the plain and cluttered backgrounds, respectively.

The sample sizes for both conditions were 78.

The t-statistic for the two-sample t-test assuming unequal variances was calculated

to be -1.62. The degrees of freedom (df) for the test were 153. For a one-tailed test, the

p-value (P(T<=t)) was found to be 0.05, which is greater than the significance level of

0.05. The critical value for a one-tailed test at a 0.05 significance level (alpha) with 153

degrees of freedom is 1.65. For a two-tailed test, the p-value (P(T<=t)) was calculated
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as 0.11, also greater than the significance level of 0.05. The critical value for a two-tailed

test at a 0.05 significance level with 153 degrees of freedom is 1.98.

Based on the t-test results, we fail to reject the null hypothesis. There is no statistically

significant difference between the waist circumferences measured in the plain and

cluttered backgrounds. The two data sets are likely similar.

Fig. D.9 : demonstrate the each background’s stress level on the bell curve.

For the plain background measurements, the mean waist circumference was M =

0.56 with a standard error of SE = 0.04. The median was 0.56, and the mode was not

identified. The standard deviation and sample variance were SD = 0.35 and variance =

0.12, respectively. The data had a positive skewness of 0.61 and a kurtosis of 1.05. The

range of measurements was 1.74, with the minimum value being 0.02 and the maximum

value being 1.75. The sum of measurements was 43.53, and the sample size was n =

78.

For the cluttered background measurements, the mean waist circumference was M =

0.65 with a standard error of SE = 0.04. The median was 0.66, and there was no mode

identified. The standard deviation and sample variance were SD = 0.38 and variance =
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0.15, respectively. The data had a positive skewness of 0.67 and a kurtosis of 0.85. The

range of measurements was 1.86, with the minimum value being 0.06 and the maximum

value being 1.92. The sum of measurements was 50.92, and the sample size was n =

78.

Fig. D.10 : displays the error correlation for the waist circumferences measurements

The error correlation between the plain-background and cluttered-background mea-

surements was found to be 0.94. This indicates a strong positive correlation between

the errors in the two sets of measurements.

Additionally, when examining the waist circumference error measurements (as seen

in Figure 6.19), it was found that for the plain background measurements, 38.46% of the

data fell within the range of 0 to 0.5, 53.85% fell within the range of 0.5 to 1, 5.13% fell

within the range of 1 to 1.5, and 2.56% fell within the range of 1.5 to 2. On the other

hand, for the cluttered background measurements, the percentages were as follows:

30.77% in the range of 0 to 0.5, 53.85% in the range of 0.5 to 1, 11.54% in the range
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of 1 to 1.5, and 3.85% in the range of 1.5 to 2. These findings provide insights into the

distribution of errors in both backgrounds.

Overall, it appears that taking measurements in a cluttered background resulted in

slightly lower accuracy than taking measurements in a plain background. This could be

due to the fact that the participants may have been wearing loose clothing around their

waists, making it more difficult to accurately measure their waist circumference.

To further improve the accuracy of waist circumference measurements, it may be

beneficial to make sure that the participant is wearing tighter fitting clothing so that there

is less room for error. It may also be beneficial to move the measurements to a controlled

environment to reduce the amount of clutter in the background.

In conclusion, it appears that taking waist circumference measurements in a cluttered

background results in slightly lower accuracy than measurements taken in a plain

background.

D.2.4 Statistical Analysis and Comparison of Hip Circumference Measure-

ments: Plain Background vs. Cluttered Background."

A t-test was conducted to determine whether there is a statistically significant difference

between the plain-background and cluttered-background measurements of hip circumfer-

ences. The hypothesis was that the mean hip circumference in the cluttered background

condition would be greater than in the plain background condition.

The plain-background measurements had a mean of 0.52 (SE = 0.05), while the

cluttered-background measurements had a mean of 0.59 (SE = 0.05). The variances of

the two samples were 0.18 and 0.18 for the plain and cluttered backgrounds, respectively.

The sample sizes for both conditions were 78.

The t-statistic for the two-sample t-test assuming unequal variances was calculated

to be -1.00. The degrees of freedom (df) for the test were 154. For a one-tailed test, the
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p-value (P(T<=t)) was found to be 0.16, which is greater than the significance level of

0.05. The critical value for a one-tailed test at a 0.05 significance level (alpha) with 154

degrees of freedom is 1.65. For a two-tailed test, the p-value (P(T<=t)) was calculated

as 0.32, also greater than the significance level of 0.05. The critical value for a two-tailed

test at a 0.05 significance level with 154 degrees of freedom is 1.98.

Based on the t-test results, we fail to reject the null hypothesis. There is no statistically

significant difference between the hip circumferences measured in the plain and cluttered

backgrounds. The two data sets are likely similar.

Fig. D.11 : demonstrate the each background’s stress level on the bell curve.

For the plain background measurements, the mean hip circumference was M =

0.52 with a standard error of SE = 0.05. The median was 0.53, and the mode was not

identified. The standard deviation and sample variance were SD = 0.42 and variance =

0.18, respectively. The data had a positive skewness of 2.63 and a kurtosis of 14.80. The

range of measurements was 3.01, with the minimum value being 0.02 and the maximum

value being 3.02. The sum of measurements was 40.85, and the sample size was n =

78.
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For the cluttered background measurements, the mean hip circumference was M =

0.59 with a standard error of SE = 0.05. The median was 0.58, and there was no mode

identified. The standard deviation and sample variance were SD = 0.43 and variance =

0.18, respectively. The data had a positive skewness of 2.52 and a kurtosis of 12.97. The

range of measurements was 2.99, with the minimum value being 0.03 and the maximum

value being 3.03. The sum of measurements was 46.16, and the sample size was n =

78.

Fig. D.12 : displays the error correlation for the hips circumferences measurements

The error correlation between the plain-background and cluttered-background mea-

surements was found to be 0.96. This indicates a strong positive correlation between

the errors in the two sets of measurements.

Additionally, when examining the hip circumference error measurements (as seen

in Figure 6.19), it was found that for the plain background measurements, 46.15% of

the data fell within the range of 0 to 0.5, 47.44% fell within the range of 0.5 to 1, 5.13%
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fell within the range of 1 to 1.5, and 1.28% fell within the range of 3 to 3.5. On the

other hand, for the cluttered background measurements, the percentages were slightly

different: 38.46% in the range of 0 to 0.5, 52.56% in the range of 0.5 to 1, 6.41% in the

range of 1 to 1.5, 1.28% in the range of 1.5 to 2, and 1.28% in the range of 3 to 3.5.

These findings provide insights into the distribution of errors in both backgrounds.

Overall, the results of measuring human upper body circumferences using our

software in comparison to tape measurements for human body circumferences showed

that the accuracy of our software is good for both plain and cluttered backgrounds. The

results showed that the majority of the measurements had an error difference of less than

1 cm, and the differences between the accuracy of the software in plain and cluttered

backgrounds were minimal. Therefore, our software can be used with confidence for

measuring human torso circumferences in both plain and cluttered backgrounds.
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E.1 Camera Calibration and Distance Estimation using OpenCV

E.1.1 Introduction

Calibration of a camera is the process of identifying the parameters of an imaging system,

such as the focal length, principal point, and distortion coefficients, to permit the accurate

measurement of item sizes in an image. It is crucial for any application that demands

exact measurements of objects in images, including robots, surveillance, autonomous

driving, and computer vision.

Camera calibration is performed by capturing a sequence of images of an object or

scene from different angles and distances. The calibration process can be automated

using software, such as OpenCV, or with the help of a specialized hardware device.

To measure the size of a human body in an image, it is necessary to understand

the camera’s parameters. Without calibration, reliable measurements are impossible.

For applications like 3D reconstruction, scene comprehension, and augmented reality,

calibration is also crucial.
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Using Python, camera calibration can be performed using various libraries such

as OpenCV and SciPy. The most common approach is to use the camera calibration

library from OpenCV. This library provides functions for calculating the camera’s intrinsic

parameters, such as the focal length, principal point, and distortion coefficients. It

also provides functions for calculating the rotation and translation vectors between two

images, which are essential for 3D reconstruction.

In addition to OpenCV, the SciPy library also contains useful functions for camera

calibration. Using the camera calibration technique from the SciPy library is the most

popular method. This algorithm is based on the Algebraic Distance Minimization (ADM)

algorithm, which is used to compute the intrinsic parameters of the camera.

Camera calibration is an essential step for any application that requires precise

measurements of objects in images. By using Python, the camera calibration process

can be automated and the calibration parameters can be determined with high accuracy.

With the use of these parameters, we were able to design a system that can estimate

the human body’s measurements with precision.

We utilised this method to estimate the distance between the human body and the

camera and to convert pixel units to centimetres. When using 3D imaging and computer

vision applications, camera calibration is required.

It is now established that to determine the size of an object, such as the upper human

body in an image, calibration is necessary. Prior to getting into the details of the methods

employed in this section, a survey of several camera calibration techniques is presented.

In the course of my research, I examined ten techniques which are described below, that

were utilized to calibrate the camera with an image.

1. Single Point Calibration: is a method used to calibrate a camera’s focus and

exposure settings. It allows you to manually adjust a single point in the image

to have the desired effect. This allows for more accurate and consistent results
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across different lens types and shooting conditions. This method is often used in

applications that require precise control over the focus and exposure settings.

2. Two-Point Calibration: is a method used to calibrate a camera’s focus and

exposure settings. It involves adjusting two different points in the image to have

the desired effect. This method is often used for applications that require more

control over the focus and exposure settings than what is available with single point

calibration.

3. Multi-Point Calibration: is a method used to calibrate a camera’s focus and

exposure settings. It involves adjusting multiple points in the image to have the

desired effect. This method is often used for applications that require greater

control over focus and exposure settings, or when dealing with complex scenes.

4. Planar Calibration: is a method used to calibrate a camera’s focus and exposure

settings when shooting a planar surface, such as a wall or a table. This method is

often used for applications that require a greater level of precision when shooting a

planar surface.

5. Radial Distortion Calibration: is a method used to calibrate a camera’s focus

and exposure settings when shooting with a wide-angle lens. This method is often

used to correct for the distortion caused by wide-angle lenses, which can cause

objects in the image to appear distorted or stretched.

6. 3D Calibration: is a method used to calibrate a camera’s focus and exposure

settings when shooting in three-dimensional space. This method is often used for

applications that require accurate 3D measurements, such as in augmented reality

or virtual reality applications.

7. Autocalibration: is a method used to automatically calibrate a camera’s focus and

exposure settings. This method is often used for applications that require frequent

calibration of the camera’s settings, such as in video surveillance systems.
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8. Zhang’s Method: is a method used to calibrate a camera’s focus and exposure

settings. This method is based on a mathematical model of the camera’s optics

and uses a set of images to determine the camera’s internal parameter values.

This method is often used for applications that require precise control over the

focus and exposure settings.

9. Direct Linear Transformation (DLT): is a method used to calibrate a camera’s

focus and exposure settings. This method is based on a mathematical model of

the camera’s optics and uses a set of images to determine the camera’s internal

parameter values. This method is often used for applications that require precise

control over the focus and exposure settings.

10. OpenCV’s Camera Calibration Algorithm: is a method used to calibrate a cam-

era’s focus and exposure settings. This method is based on a mathematical model

of the camera and its optics, and is often used for applications that require accurate

calibration of the camera’s settings. It is used in a wide variety of applications,

such as video surveillance, medical imaging, and robotics.

Based on the research conducted for this chapter [71, 189, 76], the OpenCV Camera

Calibration Algorithm is the most effective method because it combines techniques for

feature detection, optimisation, and camera calibration. This algorithm is considered

the most accurate and trustworthy method available. OpenCV’s Camera Calibration

Algorithm is the most precise technique. Zhang’s Method is the second most precise

technique. Combining camera calibration and optimisation techniques, this method

calibrates cameras precisely and precisely. Direct Linear Transformation (DLT), the third

technique on the list, is a camera calibration method that estimates parameters using a

mathematical methodology. Both Radial Distortion Calibration and Planar Calibration

can be used to calibrate cameras, but they are less precise than the preceding three

techniques. Two-Point Calibration and Multi-Point Calibration are more reliable, but less
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precise, than the preceding two methods. Both 3D Calibration and Autocalibration can be

used to calibrate cameras, but they are less accurate than the preceding methods. Single

Point Calibration, which involves manually calibrating a camera using a single point, is

the least accurate of the described procedures. OpenCV’s Camera Calibration Algorithm

is the most precise method, followed by Zhang’s Method, Direct Linear Transformation

(DLT), Radial Distortion Calibration, Planar Calibration, Two-Point Calibration, Multi-Point

Calibration, 3D Calibration, Autocalibration, and Single Point Calibration. Therefore, we

chose to calibrate the images using the Camera Calibration Algorithm of OpenCV.

E.1.2 Camera Calibration Parameters

As previously stated, the primary objective of camera calibration is to identify the focal

length, principal point, and distortion coefficients in order to provide accurate measure-

ments from objects inside an image. Before diving into our methodology, we ’ll review

the meaning of each of these terms in the following paragraphs

Focal length is the distance between the optical centre of a lens and the point

where parallel light rays converge. It is commonly measured in millimetres (mm) and is

one of the most important lens selection and image quality parameters. Field of view,

magnification, and depth of field are all determined by a lens’ focal length. This makes it

a crucial consideration when choosing how to capture an image. A shorter focal length

produces a wider field of view, whereas a longer focal length produces a narrower field

of view. This is due to the fact that the shorter the focal length, the more of the scene is

contained within the frame. Longer focal lengths are utilised to magnify distant objects,

whereas shorter focal lengths are utilised to capture a broader perspective. The focal

length also influences the depth of field, which is the portion of an image that appears

in focus. A shorter focal length will result in a greater depth of field, allowing a greater

portion of the image to be in focus. This makes it ideal for architectural and landscape

photography. In contrast, a longer focal length will have a shallower depth of field, making
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it ideal for portraiture by blurring the background. Lastly, focal length also affects an

image’s magnification. A shorter focal length will result in a lower magnification, whereas

a longer focal length will result in a higher magnification. For this reason, telephoto

lenses are used to photograph distant subjects, such as wildlife and sporting events. In

conclusion, focal length is an essential consideration when selecting a lens and taking

photographs. A shorter focal length will result in a wider field of view and greater depth

of field, while a longer focal length will result in a narrower field of view and shallower

depth of field. It also affects an image’s magnification, making it a crucial parameter for

any photographer [190, 106].

The principal point is the image’s centre, and it is where all incoming light rays

converge to form a single image. It is an essential camera calibration parameter used to

determine the image’s centre and the camera’s orientation. Typically, the principal point

is measured in pixels and is used to calculate the coordinates of other points within an

image. The focal point is determined by the optics and geometry of the camera. It is

determined by locating the optical centre of the lens, which is the point where light rays

converge. This point is then employed to determine the coordinates of the primary point.

The focal point is crucial in determining the orientation and distortion of the camera.

It is utilised to calculate the angle of view, which is the camera’s field of view. It is

also utilised to calculate radial distortion, which is lens-induced distortion. Additionally,

the principal point is used to determine the position of the camera in relation to other

images. It is possible to determine the relative position of the camera in each image by

determining the coordinates of the principal point in each image. This is essential for

applications such as stereo vision and three-dimensional reconstruction. In conclusion,

the principal point is an essential camera calibration parameter used to determine the

image’s centre and camera orientation. Calculated from the optical centre of the lens, it

is used to determine the camera’s field of view, radial distortion, and relative position.
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For any application requiring accurate measurements of objects in images, it is essential

to comprehend the main point [146, 182, 129, 171].

Distortion coefficients are parameters that used to model the distortion of an optical

system. However, they can also be used to represent telescopes and microscopes.

The coefficients are used to calculate the image’s distortion, which is then applied to

correct the lens’ aberrations. Frequently, the distortion of a lens is represented by a

polynomial equation. This equation is used to calculate the distortion coefficients, which

are parameters that describe the lens’ distortion. Coefficients are typically represented

as k1, k2, and k3, with higher order coefficients added as needed. Using the distortion

coefficients, image distortion can be calculated. This information can then be used

to correct lens-induced aberrations. The coefficients can be used, for example, to

compute the distortion of a fisheye lens, which can then be corrected through image

processing techniques. The distortion coefficients are also crucial for camera calibration

and applications involving robotic vision. They are used to determine the distortion

of a camera lens, which is then used to calculate camera parameters such as focal

length and centre of gravity. This information is then used to precisely measure the size

of objects in an image. In conclusion, the coefficients of optical system distortion are

model parameters. However, they can also be used to simulate other optical systems.

The coefficients are used to calculate the image’s distortion, which is then applied to

correct the lens’ aberrations. In addition to determining the camera’s parameters, they

are required for camera calibration and robotic vision [188, 72, 49].

E.1.3 pixel per metric "ratio"

One of the very first and common approaches in the existing software/applications to

determine size of an upper human body in an image was to perform a "calibration" (not

to be confused with intrinsic/extrinsic calibration) using a reference object Adrian [16].

Our reference object should have two important properties;
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1. We should know the dimension of one of the object in the image (in terms of width

or height) in a measurable unit (such as inches, millimeters and etc.)

2. Our reference object should be visible and easily found in an image, either based

on the appearances (like being a distinctive color or shape , unique and different

from all other objects in the image) or via the placement of the object (such as the

reference object always being placed in the bottom-right corner of an image). In

either case, our reference should be uniquely identifiable in some manner.

Most of the current applications by asking the height of the participants the use that

information as a reference to calculate the pixels per metric. We take this a bit further by

using chessboard paper as our reference object in central of the image with the known

width.

By guaranteeing the chessboard paper is in the central of the image, we can sort our

upper body contours from top to bottom, and use it to define our pixel-per-metric, which

we define as;

pixels_per_metric = ob ject_width/know_width (E.1)

However, this approach is not very accurate and stable for the following reasons;

1. First, as the photos are taken with the smartphones (such as; iPhone, Android),

the angle is most certainly not a perfect 90-degree angle at the object. Without a

perfect 90-degree view (or as close to it as possible), the dimensions of the objects

can be appear distorted.

2. Second, We did not calibrate our smartphones using the intrinsic and extrinsic

parameters of the camera which caused us having prone to radial and tangential

lens distortion on the photos.

3. Third, by having a wrong value (width) we will recieve completely different results.
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Performing an extra calibration step to find these parameters can “un-distort” our

photos and lead to a better upper human body size approximation.

E.1.4 Zhang Method

This method uses a set of known object points to estimate the intrinsic and extrinsic

parameters of the camera. The intrinsic parameters are the focal length, principal point,

and skew, while the extrinsic parameters are the position and orientation of the camera.

The code first loads the image and then uses the cv2.findChessboardCorners()

function to find the corners of the chessboard. The corners are then refined using the

cv2.cornerSubPix() function. The code then uses the cv2.calibrateCamera() function to

estimate the intrinsic and extrinsic parameters of the camera.

Once the camera parameters are estimated, the code can be used to convert pixel

units to centimeter. To do this, the code first calculates the pixel size of the image. This

is done by dividing the width of the image by the number of pixels in the width. The code

then uses the camera parameters to calculate the physical size of the chessboard in

centimeter. This is done by multiplying the pixel size of the image by the focal length of

the camera. The code then uses the physical size of the chessboard to calculate the

physical size of each pixel in centimeter. This is done by dividing the physical size of the

chessboard by the number of pixels in the chessboard.

The code then uses the physical size of each pixel to convert pixel units to centimeter.

To do this, the code first finds the coordinates of the point in the image that corresponds

to the top left corner of the chessboard. The code then uses the physical size of each

pixel to calculate the physical coordinates of the top left corner of the chessboard. The

code then uses the physical coordinates of the top left corner of the chessboard to

calculate the physical coordinates of any point in the image.

The following is an example of how the code can be used to convert pixel units to

centimeter:
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1 import cv2

2

3 # Load the image

4 image = cv2.imread(’image.jpg’)

5

6 # Find the corners of the chessboard

7 corners = cv2.findChessboardCorners(image , (9, 6))

8

9 # Refine the corners

10 corners = cv2.cornerSubPix(image , corners , (5, 5), (-1, -1), criteria)

11

12 # Estimate the intrinsic and extrinsic parameters of the camera

13 camera_matrix , dist_coeffs , rvecs , tvecs = cv2.calibrateCamera(corners ,

image.shape [1::-1], None , None , flags=cv2.CALIB_RATIONAL_MODEL)

14

15 # Calculate the pixel size of the image

16 pixel_size = image.shape [1] / float(corners.shape [0])

17

18 # Calculate the physical size of the chessboard

19 chessboard_size = 6 * pixel_size

20

21 # Calculate the physical size of each pixel

22 pixel_size_centimeter = chessboard_size / float(corners.shape [0])

23

24 # Convert pixel units to centimeter

25 for i in range(corners.shape [0]):

26 for j in range(corners.shape [1]):

27 corners[i, j] = corners[i, j] * pixel_size_centimeter

28

29 # Display the image with the converted coordinates

30 cv2.imshow(’Image’, image)

31 cv2.waitKey (0)

Listing E.1 Grayscale code in python
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The code first loads the image and then uses the cv2.findChessboardCorners()

function to find the corners of the chessboard. The corners are then refined using the

cv2.cornerSubPix() function. The code then uses the cv2.calibrateCamera() function to

estimate the intrinsic and extrinsic parameters of the camera.

The cv2.calibrateCamera() function takes the following parameters:

• corners: A list of 2D points that correspond to the corners of the chessboard in the

image.

• image_size: A tuple that contains the width and height of the image.

• object_points: A list of 3D points that correspond to the corners of the chessboard

in the real world.

• camera_matrix: A 3x3 matrix that contains the intrinsic parameters of the camera.

• dist_coeffs: A 5-element vector that contains the distortion coefficients of the

camera.

• rvecs: A 3x1 vector that contains the rotation vectors of the camera.

• tvecs: A 3x1 vector that contains the translation vectors of the camera.

The cv2.calibrateCamera() function returns the following values:

• camera_matrix: A 3x3 matrix that contains the intrinsic parameters of the camera.

• dist_coeffs:

E.1.5 OpenCV’s Camera Calibration Algorithm

OpenCV is an open source computer vision library which has a wide range of functions

for processing and analysing digital images. One of the most important functions of

OpenCV is camera calibration, which helps to correct the distortions in the captured

images caused by the camera’s optics.
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Collecting a collection of images with a specified calibration pattern is the initial stage

in camera calibration. This design, which is often a checkerboard pattern, can be made

digitally or printed on paper or cardboard. For instance, the OpenCV library offers a

collection of functions for producing a checkerboard pattern. For each image in the

calibration set, the checkerboard pattern must be positioned in the camera’s field of view.

After capturing the calibration images, the following step is to identify the calibration

pattern in each image. This is accomplished by recognising the corners of the checker-

board pattern in the image. OpenCV includes functions for recognising the pattern’s

corners and computing the transformation between the pattern and the picture.

After the location of the calibration pattern is known, the internal parameters of the

camera may be computed. These parameters characterise the optics of the camera,

including its focal length, lens distortion, and other features. OpenCV includes functions

for computing these parameters from the identified corners of the calibration pattern.

The next step is to fix the distortions in the images using the computed parameters.

For carrying out this task, OpenCV offers a collection of functions. These functions can

be used to rectify lens distortion and other optically-induced distortions in cameras.

The corrected images can then be utilised to generate a three-dimensional repre-

sentation of the calibration pattern. OpenCV includes functions for computing the 3D

coordinates of the calibration pattern from the corrected images. This 3D model can be

used to calibrate additional cameras or make models of other items.

E.1.6 Distance calibrating using checkerboard

E.1.6.1 Geometry of Image Formation

Before beginning the calibration procedure and dive into our method, we must first

understand the geometric shape of the image. To facilitate comprehension, let’s imagine

a camera in a room. Given the 3D point P in the room, the pixel coordinates (u, v) of this
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3D point in the image captured by the smartphone camera must be determined. In this

configuration, three coordinate systems are in play. including (i) the World Coordinate

System, (ii) the Camera Coordinate System, and (iii) the Image Coordinate System

[148].

(i). World Coordinate System

Fig. E.1 The World Coordinate and the Camera Coordinate system are relates by six
parameters (3 for rotation, and 3 for translation) which are called the extrinsic parameters
of a camera [148].

To establish the location of points in this room, we must first describe its coordinate

system, which requires two things: 1. The room’s origin 2. X, Y, Z axes. It is now

possible to determine the three-dimensional coordinates of any point in this room by

measuring its distance from the origin along the X, Y, and Z axes.

This coordinate system attached to the room is called the World Coordinate System

shown as a orange colored axes in Figure E.1. We will use (’) i.e. Xw
′
to show the axis,

and regular font to show a coordinate of the point (i.e. Xw). Let’s imagine a point called P

in this room. The coordinates of P are given in the world coordinate system by (Xw, Yw



348 Chapter-6.3∗

and Zw). By measuring the distance of this point along the three axes from the origin, we

may get the coordinates of this point(Xw, Yw and Zw). Now let’s move on the next step

and put the camera in this room.

(ii). Camera Coordinate System

The results of placing the camera at the origin of the room and aligning it so that its

X, Y, and Z axes correspond to the Xw
′
, Y w

′
, and Zw

′
axes of the room will be identical.

Nevertheless, we are limited because the camera cannot be placed anywhere in the

room. In this instance, it is necessary to determine the relationship between the 3D

room (e.g., world coordinates) and the 3D camera coordinates.

Let’s say that our camera is situated at arbitrary location (tx, ty and tz) in the room.

In technical words, (tx, ty and tz) converts the camera coordinates to world coordinates.

In other words, the camera can view in any direction because it rotates to the world

coordinate system.

In 3D rotation, three characteristics, yaw, pitch, and roll, are collected. Moreover, we

can view it as a three-dimensional axis (two parameters) and a single angular rotation

about that axis (one parameter). The world and the camera coordinate are related to

the rotation matrix R and a 3 elements translation vector t. This means that point P is

different for the Xw, Yw and Zw coordinate values in world coordinates and Xc, Yc and Zc

coordinate value in the camera coordinate system. In Figure E.1, the camera coordinate

system is shown as red. According to the following equations, the two coordinate values

are related.


Xc

Yc

Zc

= R


Xw

Yw

Zw

+ t (E.2)

Importantly, displaying rotation as a matrix allowed us to perform the rotation by

multiplying the simple matrix, as opposed to laboriously manipulating the symbols
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required by other displays, such as yaw, pitch, and roll. I hope this clarifies why rotations

are represented as matrices. Sometimes, the mentioned equations are stated in a more

compact form. The 3x1 translation vector is added as a column to the 3x3 rotation matrix

to produce a 3x4 matrix known as Extrinsic Matrix.


Xc

Yc

Zc

= [R | t]



Xw

Yw

Zw

1


(E.3)

where, the Extrinsic Matrix P is given by;

P = [R | t] (E.4)

As you may have noticed, Equation E.4 uses homogeneous coordinates, which

means that homogeneous coordinates have an additional dimension called W that

scales the X, Y, and Z dimensions. When W = 1, the X, Y, and Z values are deemed

"correct." A point in coordinates (X, Y, Z) can be expressed as (X, Y, Z, 1) in homogeneous

coordinates. When W = 0, homogeneous coordinates provide the representation of

infinite quantities with finite numbers.

(iii). Image Coordinate System
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Fig. E.2 displays the projection of point P onto the image [148].

Once we have a point in the camera’s 3D coordinate system, we can project it

onto the picture plane to determine its location in the image by applying a rotation

and translation to the point’s world coordinate. Figure E.3 illustrates a point P whose

camera coordinates are (Xc, Yc and Zc). We can still transform the global coordinate

system using the Extrinsic Matrix. Since we do not know the coordinates of this location

in the camera’s coordinate system, we can determine the world’s coordinates using

Equation E.3.

The projection of a simple optical centre (pin hole) camera is shown in Figure E.3.

The pinhole is represented by Oc. In the real world, a point on the screen produces

an inverted image. For mathematical convenience, we perform all the computations

as though the picture plane is in front of the optical centre, as the image read from

the sensor can be rotated somewhat by 180 degrees to compensate for the inversion.

According to Olaf Peters, this is not required in the actual world - "Even simpler, a real
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camera’s sensor simply reads from the lowest row in reverse (from right to left) and then

from bottom to top for each row. By using this procedure, the image is automatically

created with the correct left-to-right orientation. So, it is no longer necessary to rotate

the image in practise ". The distance f (focal length) separates the image plane from the

optical centre.


x
′

y
′

z
′

=


f 0 0

0 f 0

0 0 1




Xc

Yc

Zc

 (E.5)

We may display the projected picture (x, y) of the 3D point (Xc, Yc and Zc) using the

simplified matrix equations shown in Equation E.5.

x =
Xc

Zc
y =

Yc

Zc
(E.6)

The K matrix following Equation E.5 is known as the Intrinsic Matrix and comprises

the intrinsic properties of the camera.

K =


f 0 0

0 f 0

0 0 1

 (E.7)

As the pixels in the image sensor may not be square, we may have two distinct focal

lengths, fx and fy, despite the fact that the matrix K displays only the focal length. The

optical centre (cx, cy) of the camera may not match with the image coordinate system’s

centre. In addition, the x and y axes of the camera sensor may have a slight variation

around. With the previous information in mind, the camera matrix may be rewritten as;
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K =


fx γ cx

0 fy cy

0 0 1

 (E.8)

Fig. E.3 illustrates a more realistic scenario when the origin of the image pixel coordinate
is in the upper left corner. The camera’s intrinsic matrix must take into account the
location of the main point, the skew of the axes, and different focal lengths along with
different axes. [148].

Equation E.13 requires the x and y pixel coordinates relative to the image’s centre.

When working with photos, however, the origin is in the upper left corner. Let’s define

image coordinates as (u, v).



E.1 Camera Calibration and Distance Estimation using OpenCV 353


u
′

v
′

w
′

=


fx γ cx

0 fy cy

0 0 1




Xc

Yc

Zc

 (E.9)

where,

u =
u
′

w′(E.10)

v =
v
′

w′(E.11)

E.1.6.2 Camera Calibration

Camera calibration is the process of estimating the parameters of a camera. This means

we have all the information (parameters or coefficients) about the camera required

to determine an accurate relationships between a 3d point in the real world and its

corresponding 2D projection (pixel) in the image captured by that calibrated camera

[149]. Usually, this means recovering two kinds of parameters;

1. Internal parameters of the camera/lens system (such as; focal length, optical

center and radial distortion coefficients of the lens.)

2. External parameters which refers to the orientation (rotation and translation) of

the camera with respect to some world coordinate system.

The calibration process is needed to find camera parameters, when these are left

unknown or deemed unreliable. With calibration we determine the classic: 3x3 matrix

intrinsic matrix K, 3x3 rotation matrix R, and 3x1 translation vector t using a set of known

3D points (Xw, Yw, Zw) and their corresponding image coordinates (u, v). By having

both values of intrinsic and extrinsic ([R | t] ) parameters, the camera is then said to be

calibrated.
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The following flowchart illustrates the main two steps of camera calibration.

E.1.6.2.1 Step 1: Define real-world coordinates with checkerboard pattern Our

world coordinates system are fixed by the checkerboard pattern that is given to the

participants to face it in front of the camera. the corners in the checkerboards are our 3D

points. The origin of the world coordinate systems is any corner of the following checker-

board which can be seen in Figure E.4. The Xw and Yw are along to the participant’s

hand which they are face it in front of the camera as well as the Zw axis is perpendicular.

All points on the checkerboard are therefore on the XY plane (e.g. Zw = 0).
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Fig. E.4 Checkerboard

We calculate the camera parameters by a set of know 3D points (Xw, Yw, Zw) and

their corresponding image coordinates (u, v) in the process of calibrating.

We photograph a checkerboard pattern with a known dimension at many different

orientations for the 3D points. Since all the corner points lie on a plane and the world

coordinate is attached to the checkerboards, we can arbitrarily choose Zw for every point

to be 0. Since points are equally spaced in the checkerboard, the (Xw, Yw) coordinates

of each 3D point are easily defined by taking one point as reference (0, 0) and defining

remaining concerning that reference point.

Why it is important to use checkerboard pattern in calibration?

Since checkerboard pattern is easy to detect in an image, not only that, the corners

of squares on the checkerboard are ideal for localizing them, this is because they have

sharp gradients in two directions. These corners are also related to the fact that they are

at the intersection of checkerboard lines. All these facts are used to robustly locate the

corners of the squares in a checkerboard pattern.
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Fig. E.5 The following dummy checkerboard illustrates the result after drawing detected
checker board corners

E.1.6.2.2 Find 2D coordinates of checkerboard After defining real-world coordi-

nates, what we need are the locations of the 2D pixels of checkerboards corners in

the image which contains two steps. First to call the function that provided by OpenCV

findChessboardCorners that looks for a checkerboard and return coordinates of the

corners. Second, to get good results it is important to collect the position of corners with

a sub-pixel level of accuracy which is an OpenCV’s function cornerSubPix that takes in

the original image, the location of corners and looks for the best corner location inside a

small neighbourhood of the original location. The algorithm is iterative and therefore, we

need to specify the termination criteria (e.g. number of iterations and/or accuracy)

E.2 Method

The first step in camera calibration is to identify the camera’s intrinsic parameters, starting

with the focal length and principal point, which can be determined by measuring the
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size of the image in pixels and the size of the object in the image. The next step is to

determine the camera’s extrinsic parameters, including the position of the camera in 3D

physical space relative to the object. This is typically done using a calibration pattern or

calibration object.

Once the intrinsic and extrinsic parameters have been determined, the next step is

to measure the distance between the camera and the object. This is done by measuring

the size of the object in pixels and then converting the pixel units to centimeters. This

can also be achieved using a calibration pattern (and the calculated camera parameters).

We can then convert pixel units to centimeters using a conversion factor determined

by dividing the distance between the camera and the object by the size of the object in

pixels: Distance in centimeters = (Pixel distance in pixels) * (Focal length in centimeters)

/ (Image width in pixels)

In practice, our current (classic) camera calibration process involves capturing im-

ages of a calibration object — in our case, a checkerboard pattern — from multiple

angles, and using the captured images to estimate and refine the camera parameters.

The first step in the calibration process is to create a set of object points that represent

the 3D coordinates of the calibration object corners. These points are defined in the coor-

dinate system of the calibration object, and their values remain constant throughout the

calibration process. We detect the checkerboard corners in the captured images using

the OpenCV cv2.findChessboardCorners() function, which returns the pixel coordinates

of the detected corners.

Once the object and image points have been obtained for each image, the function

cv2.calibrateCamera() is called to estimate the camera matrix, distortion coefficients,

rotation and translation vectors. The camera matrix contains the intrinsic parameters

of the camera, including the focal length, principal point, and skew. The distortion

coefficients describe the lens distortion caused by the camera optics, and the rotation

and translation vectors describe the camera’s position and orientation in the 3D world.
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We note that the cv2.calibrateCamera() function uses a mathematical optimization

algorithm to minimize the reprojection error between the observed image points and

the projected 3D object points. The reprojection error is the difference between the

observed image points and the corresponding points reprojected onto the image plane

using the estimated camera parameters. The optimization algorithm minimizes the sum

of the squared reprojection errors across all images, which results in the most accurate

estimate of the camera parameters.

To summary the following are the steps involved in our camera calibration algorithm:

1. Take a set of images of a checkerboard pattern from different viewpoints.

2. For each image, find the corners of the checkerboard pattern.

3. Use the corners of the checkerboard pattern to estimate the intrinsic and extrinsic

parameters of the camera.

4. Save the intrinsic and extrinsic parameters of the camera.

The following are the mathematical equations used in the camera calibration algo-

rithm:

The intrinsic parameters of the camera are estimated using the following equation:

K =
1
fx


fx 0 u0

0 fy vy

0 0 1

 (E.12)

where fx is the focal length in the x-direction, fy is the focal length in the y-direction,

u0 is the principal point in the x-direction, and v0 is the principal point in the y-direction.

The extrinsic parameters of the camera are estimated using the following equation:
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R =


R11 R12 R13

R21 r22 R23

R31 R32 r33

 (E.13)

where Ri j is the element of the rotation matrix in the ith row and jth column.

The translation of the camera is estimated using the following equation:

t =


tx

ty

tz

 (E.14)

The following are the metrics used in the camera calibration algorithm:

The reprojection error is the error between the actual and reprojected points. The

reprojection error is calculated using the following equation:

e =

√
N

∑
n=1

(xi − xi
i)

2 +(yi − yi
i)

2 (E.15)

where xi and yi are the actual coordinates of the ith point, and xi
′

and yi
′

are the

reprojected coordinates of the ith point.

The number of inliers is the number of points that are within a certain threshold of

the reprojection error. The number of inliers is calculated using the following equation:

Ni =
N

∑
n=1

I(ei <∈) (E.16)

where I(·) is the indicator function, and ∈ is the threshold.

The reprojection error is used to evaluate the performance of the camera calibration

algorithm. The lower the reprojection error, the better the performance of the algorithm.
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The number of inliers is used to determine the number of points that are needed to

calibrate the camera. The more inliers, the more accurate the calibration will be.

The following are the mathematical algorithms used in the camera calibration algo-

rithm:

The Levenberg-Marquardt algorithm is used to estimate the intrinsic and extrinsic

parameters of the camera. The Levenberg-Marquardt algorithm is a nonlinear least-

squares algorithm that is used to solve problems with multiple variables.

The RANSAC algorithm is used to estimate the number of inliers. The RANSAC

algorithm is a robust estimator that is used to estimate parameters in the presence of

outliers.

The following are the limitations of the camera calibration algorithm in our software:

• The algorithm assumes that the checkerboard pattern is perfectly planar. This

is not always the case in practice, as the checkerboard pattern may be slightly

warped or distorted. This can lead to errors in the calibration results.

• The algorithm assumes that the camera is perfectly still during the calibration

process. This is not always the case in practice, as the camera may be slightly

moved or shaken during the calibration process. This can also lead to errors in the

calibration results.

• The algorithm assumes that the lighting conditions are constant during the cali-

bration process. This is not always the case in practice, as the lighting conditions

may change during the calibration process. This can also lead to errors in the

calibration results.

• The algorithm is sensitive to noise in the image data. This can lead to errors in the

calibration results.
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• The algorithm is not robust to outliers. This means that if there are a few points in

the image data that are not from the checkerboard pattern, these points can cause

errors in the calibration results.

To avoid these limitations, we ran the input image through advanced image pro-

cessing and segmentation to minimise the error that can be caused by the camera

calibrations which we did mention them Chapter 6. This can help to ensure that the

checkerboard pattern is as planar as possible, that the camera is as still as possible,

and that the lighting conditions are as constant as possible. It can also help remove any

noise or outliers from the image data.

E.3 Results

E.3.1 Statistical Analysis and Comparison of Chest Circumference Mea-

surements: Distance between 0.5 to 3 meters vs. Distance less than

0.5 m or more than 3 meters.

The T-test was conducted to determine whether there is a statistically significant dif-

ference between the chest circumferences measured at a distance between 0.5 to 3

meters and those measured at a distance less than 0.5 m or more than 3 meters. It

was hypothesized that the stress level of the latter group (M = 1.02, SD = 0.58, n = 78)

would be greater than the stress level of the former group (M = 0.48, SD = 0.35, n = 78)

based on the data received from the participants and by considering the distance from

the camera. The results indicated a statistically significant difference between the two

groups (t(127) = -7.14, p < 0.001, one-tail). This suggests that the two data sets are

likely different, with the stress level being higher for measurements taken at a distance

less than 0.5 m or more than 3 meters.
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Fig. E.6 : demonstrate the each background’s stress level on the bell curve.

The descriptive statistics for the chest circumference measurements at a distance

between 0.5 to 3 meters showed a mean of 0.48 (SE = 0.04), with a standard deviation

of 0.35. The median was 0.48, and the mode was 0.56. The measurements ranged from

0.01 to 1.73, with a sample size of 78.

For the chest circumference measurements taken at a distance less than 0.5 m or

more than 3 meters, the mean was 1.02 (SE = 0.07), with a standard deviation of 0.58.

The median was 0.99, and the mode was 1.02. The measurements ranged from 0.02 to

3.13, with a sample size of 78.

The analysis of error differences revealed that, for the distance between 0.5 to 3

meters group, 53.85% of the measurements had an error difference of less than 0.5 cm,

39.74% had an error difference between 0.5 and 1 cm, 5.13% had an error difference

between 1 and 1.5 cm, and 1.28% had an error difference between 1.5 and 2 cm. In

contrast, for the distance less than 0.5 m or more than 3 meters group, the percentages

were as follows: 16.67% had an error difference of less than 0.5 cm, 37.18% had an error

difference between 0.5 and 1 cm, 33.33% had an error difference between 1 and 1.5
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cm, 7.69% had an error difference between 1.5 and 2 cm, 1.28% had an error difference

between 2 and 2.5 cm, 2.56% had an error difference between 2.5 and 3 cm, and 1.28%

had an error difference between 3 and 3.5 cm.

Fig. E.7 : displays the error correlation for the chest circumferences measurements

The error correlation between the two sets of measurements was found to be 0.52,

indicating a moderate positive correlation between the errors in the two groups.

These findings suggest that there is a significant difference in chest circumference

measurements depending on the distance from the camera. Measurements taken at

a distance less than 0.5 m or more than 3 meters tend to have higher stress levels

compared to those taken at a distance between 0.5 to 3 meters. However, it is important

to note that the overall accuracy of the software remains acceptable in both cases.
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E.3.2 Statistical Analysis and Comparison of Bust Circumference Mea-

surements: Distance between 0.5 to 3 meters vs. Distance less than

0.5 m or more than 3 meters.

The T-test was conducted to determine whether there is a statistically significant dif-

ference between the bust circumferences measured at a distance between 0.5 to 3

meters and those measured at a distance less than 0.5 m or more than 3 meters. It

was hypothesized that the stress level of the latter group (M = 1.02, SD = 0.53, n = 78)

would be greater than the stress level of the former group (M = 0.50, SD = 0.30, n = 78)

based on the data received from the participants and by considering the distance from

the camera. The results indicated a statistically significant difference between the two

groups (t(154) = -7.42, p < 0.001, one-tail). This suggests that the two data sets are

likely different, with the stress level being higher for measurements taken at a distance

less than 0.5 m or more than 3 meters.

Fig. E.8 : demonstrate the each background’s stress level on the bell curve.

The descriptive statistics for the bust circumference measurements at a distance

between 0.5 to 3 meters showed a mean of 0.50 (SE = 0.03), with a standard deviation
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of 0.30. The median was 0.56, and the mode was 0.70. The measurements ranged from

0.00 to 1.25, with a sample size of 78.

For the bust circumference measurements taken at a distance less than 0.5 m or

more than 3 meters, the mean was 1.02 (SE = 0.06), with a standard deviation of 0.53.

The median was 1.01, and the mode was 1.02. The measurements ranged from 0.02 to

2.64, with a sample size of 78.

The analysis of error differences revealed that, for the distance between 0.5 to 3

meters group, 42.31% of the measurements had an error difference of less than 0.5

cm, 53.85% had an error difference between 0.5 and 1 cm, and 3.85% had an error

difference between 1 and 1.5 cm. In contrast, for the distance less than 0.5 m or more

than 3 meters group, the percentages were as follows: 15.38% had an error difference

of less than 0.5 cm, 30.77% had an error difference between 0.5 and 1 cm, 39.74% had

an error difference between 1 and 1.5 cm, 8.97% had an error difference between 1.5

and 2 cm, 3.85% had an error difference between 2 and 2.5 cm, and 1.28% had an error

difference between 2.5 and 3 cm.
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Fig. E.9 : displays the error correlation for the bust circumferences measurements

The error correlation between the two sets of measurements was found to be 0.43,

indicating a moderate positive correlation between the errors in the two groups.

These findings suggest that there is a significant difference in bust circumference

measurements depending on the distance from the camera. Measurements taken at

a distance less than 0.5 m or more than 3 meters tend to have higher stress levels

compared to those taken at a distance between 0.5 to 3 meters. However, the overall

accuracy of the software remains acceptable in both cases.
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E.3.3 Statistical Analysis and Comparison of Waist Circumference Mea-

surements: Distance between 0.5 to 3 meters vs. Distance less than

0.5 m or more than 3 meters.

The T-test was conducted to determine whether there is a statistically significant dif-

ference between the waist circumferences measured at a distance between 0.5 to 3

meters and those measured at a distance less than 0.5 m or more than 3 meters. It was

hypothesized that the stress level of the latter group (M = 1.29, SD = 0.62, n = 78) would

be greater than the stress level of the former group (M = 0.56, SD = 0.35, n = 78) based

on the data received from the participants and by best matching the human body shape.

The results indicated a statistically significant difference between the two groups (t(122)

= -9.13, p < 0.001, one-tail). This suggests that the two data sets are likely different, with

the stress level being higher for measurements taken at a distance less than 0.5 m or

more than 3 meters.

Fig. E.10 : demonstrate the each background’s stress level on the bell curve.

The descriptive statistics for the waist circumference measurements at a distance

between 0.5 to 3 meters showed a mean of 0.56 (SE = 0.04), with a standard deviation
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of 0.35. The median was 0.56, and the mode was also 0.56. The measurements ranged

from 0.02 to 1.75, with a sample size of 78.

For the waist circumference measurements taken at a distance less than 0.5 m or

more than 3 meters, the mean was 1.29 (SE = 0.07), with a standard deviation of 0.62.

The median was 1.10, and the mode was 1.02. The measurements ranged from 0.13 to

3.16, with a sample size of 78.

The analysis of error differences revealed that, for the distance between 0.5 to 3

meters group, 38.46% of the measurements had an error difference of less than 0.5 cm,

53.85% had an error difference between 0.5 and 1 cm, 5.13% had an error difference

between 1 and 1.5 cm, and 2.56% had an error difference between 1.5 and 2 cm. In

contrast, for the distance less than 0.5 m or more than 3 meters group, the percentages

were as follows: 10.26% had an error difference of less than 0.5 cm, 20.51% had an

error difference between 0.5 and 1 cm, 33.33% had an error difference between 1 and

1.5 cm, 24.36% had an error difference between 1.5 and 2 cm, 8.97% had an error

difference between 2 and 2.5 cm, 1.28% had an error difference between 2.5 and 3 cm,

and 1.28% had an error difference between 3 and 3.5 cm.
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Fig. E.11 : displays the error correlation for the waist circumferences measurements

The error correlation between the two sets of measurements was found to be 0.48,

indicating a moderate positive correlation between the errors in the two groups.

These findings suggest that there is a significant difference in waist circumference

measurements depending on the distance from the camera. Measurements taken at

a distance less than 0.5 m or more than 3 meters tend to have higher stress levels

compared to those taken at a distance between 0.5 to 3 meters. However, the overall

accuracy of the software remains acceptable in both cases.
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E.3.4 Statistical Analysis and Comparison of Hips Circumference Mea-

surements: Distance between 0.5 to 3 meters vs. Distance less than

0.5 m or more than 3 meters.

A T-test was conducted to examine whether there is a statistically significant difference

between the hips circumferences measured at a distance between 0.5 to 3 meters and

those measured at a distance less than 0.5 m or more than 3 meters. It was hypothesized

that the stress level of the latter group (M = 0.99, SD = 0.60, n = 78) would be greater

than the stress level of the former group (M = 0.52, SD = 0.42, n = 78) based on the

data received from the participants and by best matching the human body shape. The

results revealed a statistically significant difference between the two groups (t(138) =

-5.56, p < 0.001, one-tail), indicating that the two data sets are likely different, with the

stress level being higher for measurements taken at a distance less than 0.5 m or more

than 3 meters.

Fig. E.12 : demonstrate the each background’s stress level on the bell curve.

The descriptive statistics for the hips circumference measurements at a distance

between 0.5 to 3 meters showed a mean of 0.52 (SE = 0.05), with a standard deviation



E.3 Results 371

of 0.42. The median and mode were both 0.53. The measurements ranged from 0.02 to

3.02, with a sample size of 78.

For the hips circumference measurements taken at a distance less than 0.5 m or

more than 3 meters, the mean was 0.99 (SE = 0.07), with a standard deviation of 0.60.

The median was 0.98, and the mode was 1.02. The measurements ranged from 0.02 to

3.81, with a sample size of 78.

The analysis of error differences revealed that, for the distance between 0.5 to 3

meters group, 46.15% of the measurements had an error difference of less than 0.5 cm,

47.44% had an error difference between 0.5 and 1 cm, 5.13% had an error difference

between 1 and 1.5 cm, and 1.28% had an error difference between 3 and 3.5 cm. In

contrast, for the distance less than 0.5 m or more than 3 meters group, the percentages

were as follows: 20.51% had an error difference of less than 0.5 cm, 32.05% had an

error difference between 0.5 and 1 cm, 32.05% had an error difference between 1 and

1.5 cm, 11.54% had an error difference between 1.5 and 2 cm, 2.56% had an error

difference between 2 and 2.5 cm, and 1.28% had an error difference between 3.5 and 4

cm.
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Fig. E.13 : displays the error correlation for the hips circumferences measurements

The error correlation between the two sets of measurements was found to be 0.51,

indicating a moderate positive correlation between the errors in the two groups.

In conclusion, the findings suggest a significant difference in hips circumference

measurements depending on the distance from the camera. Measurements taken at

a distance less than 0.5 m or more than 3 meters tend to exhibit higher stress levels

compared to those taken at a distance between 0.5 to 3 meters. However, the overall

accuracy of the software remains satisfactory in both scenarios.
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F.1 Evaluation and Comparison of Elliptical Mathematical

Models for Human Body Measurements

F.1.1 Evaluate elliptical mathematical models

Before proceeding, let’s first try to understand what perimeter means. The perimeter is

the distance around any shape’s contour or edge. It is also known as the circumference of

the ellipse.

Fig. F.1 Ellipse perimeter

A practical example of measuring the perimeter

of an ellipse would be the distance walked along

the perimeter of an elliptical field. Or the length

of fence necessary to surround it. In the follow-

ing paragraphs, we shall determine the ellipse’s

perimeter.

Perimeters of ellipses and other figures of the

conic section cannot be calculated exactly (or accurately) using a standard formula,

unlike most other shapes. However, there are numerous approximation formulas for

calculating the perimeter’s approximate value. Six equations have been chosen in order
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to calculate the ellipse’s perimeter, which is represented by P. The selection of equations

with a low complexity level was chosen because it was thought to be the most effective

way for calculating the length of the circumference of an ellipse, such as:

(A) Approximation I

This equation is used to determine the circumference of a circle or an ellipse. ""dista1""

and ""distb2"" are variables that represent the lengths of the semi-major and semi-minor

axes of the ellipse or circle, respectively.

Because the perimeter of an ellipse is equal to the circumference of a circle with the

same semi-major and semi-minor axes lengths, the equation can be applied to both

circles and ellipses. The equation approximates the true perimeter of the circle or ellipse

since it assumes that the ellipse is a perfect circle and that all locations along the ellipse’s

perimeter are equally distant from its centre.

P = Π(dista +distb) (F.1)

where,

• dista = distb

• the length the major axis is 2(dista)

• the coordinates of vertices are (±dista, 0)

• the length the major axis is 2(distb)

• the coordinates of vertices are (±distb, 0)

(B) Approximation II

1"dista" is semi major axis
2"distb" is semi minor axis
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This is the second approximation of the ellipse equations, when the shape resembles

a circle but has two axes of varying lengths, known as the major and minor axes. The

major axis of an ellipse has the longest diameter, while the minor axis has the shortest

diameter.

This equation is derived from the formula for the circumference of an ellipse, which

is based on the fact that the circumference of any ellipse is equal to the product of the

lengths of its major and minor axes multiplied by the constant Π [20], [33].

P = Π

√
2dist2

a +dist2
b (F.2)

Where,

• dista ≥distb (where major axis is not three times bigger than minor axis)

• the length the major axis is 2(dista)

• the coordinates of vertices are (±dista, 0)

• the length the major axis is 2(distb)

• the coordinates of vertices are (±distb, 0)

(C) Approximation III

The Equation 7.2 is used when one of the values of "dista" is slightly bigger than the

"distb". where "dista" is a major and "distb" minor axes. It is important that in this formula

"dista" is not three times bigger than "distb" since it will effect on the average error (i.e.,

the ellipse is not overly "compressed").

P ≈ 2×Π×

√
(dist2

a)+(dist2
b)

2
(F.3)

Where,
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• dista ≥distb (where major axis is not three times bigger than minor axis)

• the length the major axis is 2(dista)

• the coordinates of vertices are (±dista, 0)

• the length the major axis is 2(distb)

• the coordinates of vertices are (±distb, 0)

(D) Ramanujan Formulas

An ellipse has equation (x/distb)2 + (y/distb)2 = 1. If the ellipse is close to the circle,

the following approximation is very good.

P ≈ π

[
3(dista +distb)−

√
(3dista +distb)(dista +3distb)

]
(F.4)

Where,

• dista > distb (where major axis is three times bigger than minor axis)

• the length the major axis is 2(dista)

• the coordinates of vertices are (±dista, 0)

• the length the major axis is 2(distb)

• the coordinates of vertices are (±distb, 0)

The advantage of Ramanujan’s equation is that it more accurately describes the

shape of an ellipse. In particular, it is able to better approximate the shape of an ellipse

when it is highly elongated or has a large eccentricity. In addition, it can be used to

accurately describe the shape of an ellipse even when the coefficients of the equation

are not known.

(E) Ramanujan Formulas II
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Other equations were also developed by Ramanujan.

P ≈ Π((dista)+(distb))(1+
3h

10+
√
(4−3h)

) (F.5a)

Where h is:

h =
(dista −distb)2

(dista +distb)2 (F.5b)

Where,

• dista > distb (where major axis is three times bigger than minor axis)

• the length the major axis is 2(dista)

• the coordinates of vertices are (±dista, 0)

• the length the major axis is 2(distb)

• the coordinates of vertices are (±distb, 0)

(F) The perimeter and elliptic integrals

The parametric equations of the ellipse are; x = dista cos θ and y = distb sin θ .

Using the arc length formula of parametric equations, we have the arc length of a

function (x(θ ), y(θ )) over the interval [dista, distb] is given by
∫ distb

dista (x′ (θ ))2 + (y′ (θ ))2

dθ . Applying this formula for the ellipse over the interval [0, π/2], we get the ellipse

circumferences perimeter for only in the first quadrant. Thus, we can estimate the total

perimeter, by multiplying the resultant integral by four.

P = 4
∫

π/2

0

√
dist2

a cos2θ +dist2
b sin2θdθ (F.6)

Where,

• dista > distb (where major axis is three times bigger than minor axis)
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• the length the major axis is 2(dista)

• the coordinates of vertices are (±dista, 0)

• the length the major axis is 2(distb)

• the coordinates of vertices are (±distb, 0)

Equation F.6 was proposed by Xun Wang et al. [10] who developed an approach that

can estimate anthropometric dimensions based on 2D images by extracting landmarks

through a convolutional neural network and by building a general multi-ellipse model in

which body shape information is added to obtain more accurate results. This equation

approaches the perfect integral formula of the ellipse equations pretty closely.

F.1.1.1 Findings

Now, the question is which of these equations is the best option for our software. The

Ramanujan Formula I is the most popular of the existing technologies, according to our

analysis. This is due to the accuracy of the Ramanujan Approximation. It calculates the

perimeter of an ellipse to within 0.3% of its actual perimeter. This precision is impressive,

as it is significantly superior to the most used estimate for determining the perimeter of

an ellipse, the Archimedes-Euler approximation. The Archimedes-Euler approximation

approximates the perimeter to within 2.6% of its true value.

The Ramanujan Approximation is also quite efficient. Using the Archimedes-Euler

approximation to calculate the perimeter of an ellipse involves two integrals, which can be

computationally demanding. The Ramanujan Approximation uses only a single integral,

which is considerably quicker than the Archimedes-Euler approximation. In addition,

the Ramanujan Approximation can be calculated with a small number of terms, which

increases its efficiency.
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Lastly, the Ramanujan Approximation is straightforward and simple to understand.

The Ramanujan Approximation formula is easy and may be implemented simply in any

programming language. As a result, it is an excellent option for computing the perimeter

of an ellipse.

F.1.2 Results

F.1.2.1 Analysis of Variance (ANOVA) Results and Post-hoc Analysis for Chest

Circumferences

This report presents the results of an Analysis of Variance (ANOVA) test performed on

data collected from three different groups - Equation 7.2, Equation 7.3, and Equation F.6

for Chest circumferences. The context for this analysis is that these mean values

represent error differences in centimeters, hence the group with the lower mean signifies

higher accuracy.

In the summary statistics, the ANOVA test is used to see if there is a statistically

significant difference between the ellipse formulas by testing for differences in the mean.

Based on our collected data from the participants, and by best fitting the human body

shape (horizontal slices) by ellipses, we observed that for elliptic profiles such that their

major axis were not more than 3 times longer than their minor axis, Equation 7.2 has the

lowest mean value of 0.345. Equation 7.3 has a mean value of 0.777, and Equation F.6

has the highest mean value of 0.779. The variances of the three groups are quite close,

with Equation 7.2 at 0.105, Equation 7.3 at 0.101, and Equation F.6 at 0.101.

The ANOVA test, which evaluates if there are significant differences between the

three groups, indicates a Between Groups sum of squares (SS) of 3.260 and a Mean

Square (MS) value of 1.630. The F-statistic is 15.88, and the critical value of F is 3.118.

The p-value obtained from the test is 1.77752E-06, which is smaller than the com-

monly used significance level of 0.05. This means that we reject the null hypothesis of



380 Chapter-7∗

equal means and conclude that there is a significant difference between at least two of

the groups.

The Post-hoc analysis reveals that Equation 7.2 is significantly different from Equa-

tion 7.3 and Equation F.6. This finding supports the ANOVA results. However, when

comparing Equation 7.3 and Equation F.6, no significant difference is found, suggesting

that their means are statistically equivalent.

In conclusion, the ANOVA test provides significant evidence that the means of the

three groups are not all equal. Equation 7.2 is notably different from Equation 7.3 and

Equation F.6. This may suggest that the factors influencing Equation 7.2 are different

from those impacting Equation 7.3 and Equation F.6, or that Equation 7.2 is exposed to

a different set of conditions.

Fig. F.2 displays each formula’s stress level on the bell curve Note that Equation 7.3 and
Equation F.6 provide almost the same results, which is why the curve only displays a
single colour.
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On the other hand, it was hypothesized that when the major axis of the body shape is

three (or more) times longer than the minor one, it is observed that Equation 7.2 has the

highest mean value of 0.918, followed by Equation 7.3 with a mean value of 0.542, and

Equation F.6 with the least mean value of 0.537. The variances of the three groups are

relatively similar, with Equation 7.2 having the highest value of 0.159, and Equation F.6

having the lowest value of 0.123.

The ANOVA test, which seeks to ascertain whether there are significant differences

between these three groups, shows a Between Groups sum of squares (SS) of 4.971

and a Mean Square (MS) value of 2.486. The F-statistic is 18.5, and the critical value of

F is 3.055.

The p-value obtained from the test is 6.36507E-08 (practically zero when considering

typical significance levels), which is less than the commonly used significance level of

0.05. This indicates that the null hypothesis of equal means is rejected, and we can infer

that there is a significant difference between at least two of the groups.

In our Post-hoc analysis, it is discovered that group Equation 7.2 is significantly

different from the other two groups (Equation 7.3 and Equation F.6). This supports the

ANOVA results. However, when comparing Equation 7.3 and Equation F.6, no significant

difference is found, indicating that the means of Equation 7.3 and Equation F.6 are not

statistically different from each other.

In conclusion, the ANOVA test provides significant evidence that the means of the

three groups are not all equal, with Equation 7.2 being significantly different from both

Equation 7.3 and Equation F.6. This could imply that the factors affecting Equation 7.2

are different from those influencing Equation 7.3 and Equation F.6, or that Equation 7.2

is subjected to a different set of conditions.
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Fig. F.3 displays each formula’s stress level on the bell curve Note that Equation 7.3 and
Equation F.6 provide almost the same results, which is why the curve only displays a
single colour.

F.1.2.2 Analysis of Variance (ANOVA) Results and Post-hoc Analysis for Bust

Circumferences

This report presents the results of an Analysis of Variance (ANOVA) test performed on

data collected from three different groups - Equation 7.2, Equation 7.3, and Equation F.6

for bust circumferences. The context for this analysis is that these mean values represent

error differences in centimeters, hence the group with the lower mean signifies higher

accuracy.

Based on our collected data from the participants, and by best fitting the human

body shape (horizontal slices) by ellipses, we observed that for elliptic profiles such that

their major axis were not more than 3 times longer than their minor axis, Equation 7.2
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has the lowest mean value of 0.509. Equation 7.3 has a mean value of 0.920, and

Equation F.6 has a similar mean value of 0.918. The variances of the three groups

are more disparate, with Equation 7.2 having the smallest variance of 0.086, and

Equation 7.3 and Equation F.6 having larger, similar variances of 0.188 each.

The ANOVA test, which assesses whether there are significant differences between

the three groups, indicates a Between Groups sum of squares (SS) of 4.253 and a Mean

Square (MS) value of 2.127. The F-statistic is 13.816, and the critical value of F is 3.078.

The p-value obtained from the test is 4.38645E-06, which is smaller than the com-

monly used significance level of 0.05. This means that we reject the null hypothesis of

equal means and conclude that there is a significant difference between at least two of

the groups.

The Post-hoc analysis shows that Equation 7.2 is significantly different from Equa-

tion 7.3 and Equation F.6. This finding corroborates the ANOVA results. However, when

comparing Equation 7.3 and Equation F.6, no significant difference is found, suggesting

that their means are statistically similar.

In conclusion, the ANOVA test provides significant evidence that the means of the

three groups are not all equal. Equation 7.2 is notably different from Equation 7.3 and

Equation F.6. This may suggest that the factors influencing Equation 7.2 are different

from those impacting Equation 7.3 and Equation F.6, or that Equation 7.2 is exposed to

a different set of conditions.
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Fig. F.4 displays each formula’s stress level on the bell curve Note that Equation 7.3 and
Equation F.6 provide almost the same results, which is why the curve only displays a
single colour.

On the other hand, it was hypothesized that when the major axis of the body shape

is three (or more) times longer than the minor one, Equation 7.2 has the highest mean

value of 0.882, followed by Equation 7.3 with a mean of 0.507 and Equation F.6 with

a mean of 0.506. The variances for these three groups are similar, with Equation 7.2

having a slightly higher value of 0.163, and Equation F.6 having the lowest value of

0.103.

The ANOVA test, used to determine if there are significant differences between these

three groups, shows a Between Groups sum of squares (SS) of 3.757 and a Mean

Square (MS) value of 1.879. The F-statistic is 15.142, and the critical value of F is 3.074.

The p-value obtained from the test is 1.418E-06, which is far below the standard

significance level of 0.05. This indicates that we reject the null hypothesis of equal
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means, and conclude that there is a significant difference between at least two of the

groups.

In our Post-hoc analysis, it is found that Equation 7.2 is significantly different from the

other two groups, Equation 7.3 and Equation F.6. This finding supports the ANOVA re-

sults. However, when comparing Equation 7.3 and Equation F.6, no significant difference

is found, indicating that their means are statistically similar.

In conclusion, the ANOVA test provides significant evidence that the means of the

three groups are not all equal, with Equation 7.2 being significantly different from both

Equation 7.3 and Equation F.6. This could imply that the factors affecting Equation 7.2

are different from those influencing Equation 7.3 and Equation F.6, or that Equation 7.2

is subjected to a different set of conditions.

Fig. F.5 displays each formula’s stress level on the bell curve Note that Equation 7.3 and
Equation F.6 provide almost the same results, which is why the curve only displays a
single colour.
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F.1.2.3 Analysis of Variance (ANOVA) Results and Post-hoc Analysis for Waist

Circumferences

The following report provides an analysis of the Analysis of Variance (ANOVA) test

performed on three different groups - Equation 7.2, Equation 7.3, and Equation F.6 for

waist circumferences. The context for this analysis is that these mean values represent

error differences in centimeters, hence the group with the lower mean signifies higher

accuracy.

Based on our collected data from the participants, and by best fitting the human body

shape (horizontal slices) by ellipses, we observed that for elliptic profiles such that their

major axis were not more than 3 times longer than their minor axis, Equation 7.2 has a

mean of 0.532, while Equation 7.3 and Equation F.6 have similar mean values of 0.755

and 0.756 respectively. Variance is also comparable across all three groups, ranging

from 0.073 in Equation 7.2 to approximately 0.084 in Equation 7.3 and Equation F.6.

The ANOVA test was carried out to determine whether there are significant differ-

ences between the means of these three groups. The Between Groups sum of squares

(SS) is calculated to be 0.637, with a corresponding Mean Square (MS) value of 0.318.

The computed F-statistic is 3.971, and the critical value of F is 3.168.

The p-value of the test is 0.0246, which is lower than the common significance level

of 0.05. This suggests that we can reject the null hypothesis of equal means, indicating

that there are significant differences between at least two of the groups.

Upon performing the post-hoc analysis, it was found that Equation 7.2 is signifi-

cantly different from Equation 7.3 and Equation F.6, aligning with the results from the

ANOVA. However, there is no significant difference observed between Equation 7.3 and

Equation F.6, implying that their means are statistically similar.

In conclusion, the ANOVA test provides evidence that there are significant differences

in the means between Equation 7.2 and the other two groups. Equation 7.2 appears to
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be distinct from Equation 7.3 and Equation F.6, suggesting a different set of influencing

factors or conditions for Equation 7.2.

Fig. F.6 displays each formula’s stress level on the bell curve Note that Equation 7.3 and
Equation F.6 provide almost the same results, which is why the curve only displays a
single colour.

On the other hand, it was hypothesized that when the major axis of the body shape

is three (or more) times longer than the minor one, Equation 7.2 has the highest mean

value of 0.952, while Equation 7.3 and Equation F.6 have similar mean values of 0.567

and 0.565 respectively. The variance within each group is also similar, with Equation 7.2

having the highest variance of 0.232 and Equation 7.3 and Equation F.6 having variances

of 0.140 each.

The ANOVA test was conducted to determine if there are significant differences

between the mean values of the three groups. The results show a Between Groups sum
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of squares (SS) of 5.864 and a Mean Square (MS) value of 2.932. The F-statistic is

17.222, with a critical value of F being 3.048.

The p-value obtained from the test is 1.4993E-07, which is significantly smaller than

the typically used significance level of 0.05. This implies that the null hypothesis of equal

means is rejected, indicating that there are significant differences between at least two

of the groups.

Post-hoc analysis reveals that Equation 7.2 is significantly different from Equation 7.3

and Equation F.6, which is in agreement with the results from the ANOVA. However,

when comparing Equation 7.3 and Equation F.6, there is no significant difference found,

indicating that their means are statistically similar.

In conclusion, the ANOVA test provides strong evidence that the means of the three

groups are not all the same. Equation 7.2 is significantly different from both Equation 7.3

and Equation F.6. This suggests that the factors influencing Equation 7.2 are distinct

from those affecting Equation 7.3 and Equation F.6, or that Equation 7.2 is exposed to a

different set of conditions.
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Fig. F.7 displays each formula’s stress level on the bell curve Note that Equation 7.3 and
Equation F.6 provide almost the same results, which is why the curve only displays a
single colour.

F.1.2.4 Analysis of Variance (ANOVA) Results and Post-hoc Analysis for Hips

Circumferences

This report provides an analysis of the Analysis of Variance (ANOVA) test carried out

on three groups - Equation 7.2, Equation 7.3, and Equation F.6 for hips circumferences.

The context for this analysis is that these mean values represent error differences in

centimeters, hence the group with the lower mean signifies higher accuracy.

Based on our collected data from the participants, and by best fitting the human body

shape (horizontal slices) by ellipses, we observed that for elliptic profiles such that their

major axis were not more than 3 times longer than their minor axis, Equation 7.2 group

has an average of 0.544, while Equation 7.3 and Equation F.6 show higher and quite

similar average values of 0.969 and 0.971, respectively. The variance is also relatively
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comparable across the groups, with a range from 0.282 in Equation 7.2 to 0.549 in

Equation F.6.

The ANOVA test was conducted to examine if there are significant differences among

the means of the three groups. The Sum of Squares (SS) for Between Groups is 4.243,

and the corresponding Mean Square (MS) value is 2.122. The resulting F-statistic for

the test is 4.635, and the critical F-value is 3.085.

The p-value of the ANOVA test is 0.0118, which is below the conventional threshold

of 0.05 for statistical significance. This indicates that we can reject the null hypothesis of

equal means across all groups. There is evidence to suggest that there is a significant

difference between at least two of the groups.

Upon further analysis with post-hoc tests, it is established that Equation 7.2 signifi-

cantly differs from both Equation 7.3 and Equation F.6. This finding aligns with the results

of the ANOVA test. However, no significant difference was found between Equation 7.3

and Equation F.6, suggesting that their means are statistically similar.

In conclusion, the ANOVA test results show significant differences in the means

of Equation 7.2 and the other two groups. Equation 7.2 appears to be distinct from

Equation 7.3 and Equation F.6, implying different influencing factors or conditions in

Equation 7.2. Additional investigation is advised to comprehend the significance of these

observed differences.
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Fig. F.8 displays each formula’s stress level on the bell curve Note that Equation 7.3 and
Equation F.6 provide almost the same results, which is why the curve only displays a
single colour.

On the other hand, it was hypothesized that when the major axis of the body shape is

three (or more) times longer than the minor one, Equation 7.2 has a mean value of 0.918,

whereas Equation 7.3 and Equation F.6 both have similar mean values of 0.506 and

0.507, respectively. The variance across all three groups is also somewhat comparable,

ranging from 0.096 in Equation 7.3 and Equation F.6 to 0.177 in Equation 7.2.

The ANOVA test was executed to investigate whether there are significant differences

among the means of these three groups. The Between Groups sum of squares (SS)

comes out to be 4.849, with a corresponding Mean Square (MS) value of 2.425. The

computed F-statistic for the test is 19.689, and the critical F-value is 3.068.

The p-value of the ANOVA test is extremely small (3.63E-08), which is significantly

below the conventional significance level of 0.05. This suggests that we can reject the
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null hypothesis that assumes equal means across the groups. It indicates that there are

substantial differences between at least two of the groups.

In the post-hoc analysis, it was discovered that Equation 7.2 significantly differs from

Equation 7.3 and Equation F.6. This finding aligns with the ANOVA results. However,

there is no statistically significant difference between Equation 7.3 and Equation F.6,

implying that their means are statistically similar.

In summary, the ANOVA test reveals significant differences in the means between

Equation 7.2 and the other two groups. Equation 7.2 appears to differ from Equation 7.3

and Equation F.6, indicating different underlying factors or conditions impacting Equa-

tion 7.2. Further investigation is recommended to understand the implications of these

observed differences.

Fig. F.9 displays each formula’s stress level on the bell curve Note that Equation 7.3 and
Equation F.6 provide almost the same results, which is why the curve only displays a
single colour.



Appendix G

Ethical Approval Forms

This thesis, entitled "Designing a Contactless, AI System to Measure the Human Body

using a Single Camera for the Clothing and Fashion Industry" has undergone the

requisite ethical review and has been formally approved by the Ethical Review Board

of the Goldsmiths, University of London, in compliance with the university’s ethical

guidelines and standards. The approval was granted to facilitate the data collection

process integral to the research conducted for this thesis.

For verification purposes and further details, the related documents and approval

forms can be located within the supplementary materials of this thesis under the ’Ethical-

Approval-Forms’ folder. These documents provide evidence of the thorough and careful

consideration given to the ethical implications associated with the research undertaken,

ensuring the protection and respect of all participants involved, the integrity of the

research process, and the responsible use of the collected data.




	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 A short Overview of Contactless body measuring solutions
	1.2 Background and Motivation
	1.3 Problems and Solutions
	1.4 Overview

	2 Literature Review
	2.1 A Brief History
	2.1.1 Linear Methods
	2.1.2 3D Body Scanning Technology
	2.1.3 Motion Capture System
	2.1.4 Smartphone Body Scanning

	2.2 Garment Fit
	2.2.1 Female body Landmarks and body shape
	2.2.2 Garment Fit and Body Movement

	2.3 Linear Method
	2.4 3D Body Scanning Technologies
	2.4.1 Laser Scanning
	2.4.2 Structured Light Projection
	2.4.3 Image Processing
	2.4.4 Benefit of 3D Scanned Data
	2.4.5 Disadvantages of 3D Scanned Data
	2.4.6 Comparison of existing 3D scanning companies

	2.5 Motion Capture System
	2.5.1 Benefit of Motion Capture System
	2.5.2 Disadvantages of Motion Capture System

	2.6 Smartphone Body Scanning technologies
	2.6.1 Benefits of Smartphone Scanning
	2.6.2 Disadvantages of Smartphone Scanning
	2.6.3 Comparison of existing Smartphone scanning companies

	2.7 Evolution of Object Detectors & Related Works
	2.8 Related Work in Human Body Detection and Pose Estimation
	2.8.1 Human Body Performance Capture
	2.8.2 Multi-View 3D Deep Learning
	2.8.3 Human Body Data Capture Software
	2.8.4 Volumetric Representation

	2.9 Technologies related to our proposed Software
	2.9.1 Accurate 3D Body Shape Regression using Metric and Semantic Attributes
	2.9.2 Automatic human body feature extraction and personal size measurement
	2.9.3 A dynamic fitting room based on Microsoft kinect and augmented reality technologies
	2.9.4 Single camera body tracking for virtual fitting room application
	2.9.5 Fitme: Body measurement estimations using machine learning method
	2.9.6 Anet: A Deep Neural Network for Automatic 3D Anthropometric Measurement Extraction

	2.10 Related Datasets
	2.11 Challenges
	2.12 Summary: Literature Review

	3 Method
	3.1 Hypotheses
	3.2 Selection of Measurements
	3.3 Choosing the participants
	3.4 Limitation
	3.5 Analysis of the data
	3.6 Summary: Research Proposal

	4 Human Body Measurement Experiments and Dataset
	4.1 Dataset
	4.2 Measuring the Human Body
	4.2.1 Experiment 1: Fashion and Entertainment Application, Testing
	4.2.2 Experiment 2: RMPE: Regional Multi-Person Pose Estimation
	4.2.3 Experiment 3: Measuring Ruler
	4.2.4 Experiment 4: Motion Tracking for Consoles and Smartphones
	4.2.5 Experiment 5: PIFuHD
	4.2.6  Experiment 6: AR and Deep Learning based Automatic Human Body Measurement System for babies
	4.2.7  Experiement 7: Body Measurements with Computer Vision

	4.3 Summary: Experiments

	5 Body Detection using MobileNet SSD
	5.1 A brief history of object detection
	5.1.1 Machine Learning and computer vision
	5.1.2 Object classification and localisation
	5.1.3 Challenges in object detection
	5.1.4  Popular dataset and characteristics
	5.1.5 Object detection algorithms

	5.2 Comparison of the object detection techniques
	5.2.1 Haar-Cascade
	5.2.2 Histogram of Oriented gradients (HOG)
	5.2.3 MobileNet SSD
	5.2.4 YOLO
	5.2.5 EffiecientNet
	5.2.6 Dataset Description and Splitting Strategy
	5.2.7 Performance Metrics
	5.2.8 Findings

	5.3 Method
	5.3.1 Identify body section names
	5.3.2 Region of Interests

	5.4 Summary

	6 Image Corrections, Image Segmentation, Skin Detection, and Camera Calibrations for Human Body Analysis
	6.1 Image Corrections
	6.1.1 Classical computer vision image segmentation
	6.1.2 DeeplabV3

	6.2 Skin Detection
	6.2.1 RGB Color Space
	6.2.2 HSV Color Space
	6.2.3 YCbCr Color Space
	6.2.4 Skin Detection Algorithm

	6.3 Camera Calibration and Distance Estimation
	6.4 Selecting Markers

	7 Evaluation of using Ellipses for Human Body Measurements
	7.1 Selection of best formulae to compute elliptic perimeters
	7.2 Results and Discussion
	7.2.1 Comparison of six elliptic equations
	7.2.2 Comparison of the three best elliptic equations for human body shapes


	8 Results and Discussion
	8.1 Image Corrections and Camera Calibrations Evaluation
	8.1.1 Image Corrections and Skin Detection
	8.1.2 Camera Calibration and Distance Estimation

	8.2 Final Results

	9 Conclusion
	9.1 Objective of this Research and the Main Hypothesis
	9.2 Future Work

	References
	Appendix A Public Dimensions
	A.1 Supplementary Materials
	A.2 Published Papers

	Appendix B Research Survey
	Appendix C Appendices1
	C.1 Research Design
	C.2 Machine Learning and the Mo-Cap System
	C.2.1 Selection of technologies

	C.3 Dataset and Data Collection
	C.3.1 Preparation of the application
	C.3.2 Subject Registration
	C.3.3 Recording Process

	C.4 Selection of Motion Capture System
	C.5 Dataset and Data Collection
	C.5.1 Preparation of the Mo-Cap System
	C.5.2 Subject Registration
	C.5.3 Placement of Marker Process
	C.5.4 3D Scanning Process
	C.5.5 Mo-Cap Process

	C.6 Measuring App with ARKit
	C.6.1 ARuler app

	C.7 Key Landmark by ISO

	Appendix D Chapter-6*
	D.1 Removal of Small Image Regions, Image Smoothing and Blurring
	D.1.1 Image Blurring
	D.1.2 Classical Computer Vision Image Segmentation
	D.1.3 DeeplabV3

	D.2 Results
	D.2.1 Statistical Analysis and Comparison of Chest Circumference Measurements: Plain Background vs. Cluttered Background."
	D.2.2 Statistical Analysis and Comparison of Bust Circumference Measurements: Plain Background vs. Cluttered Background."
	D.2.3 Statistical Analysis and Comparison of Waist Circumference Measurements: Plain Background vs. Cluttered Background."
	D.2.4 Statistical Analysis and Comparison of Hip Circumference Measurements: Plain Background vs. Cluttered Background."


	Appendix E Chapter-6.3*
	E.1 Camera Calibration and Distance Estimation using OpenCV
	E.1.1 Introduction
	E.1.2 Camera Calibration Parameters
	E.1.3 pixel per metric "ratio"
	E.1.4 Zhang Method
	E.1.5 OpenCV's Camera Calibration Algorithm
	E.1.6 Distance calibrating using checkerboard

	E.2 Method
	E.3 Results
	E.3.1 Statistical Analysis and Comparison of Chest Circumference Measurements: Distance between 0.5 to 3 meters vs. Distance less than 0.5 m or more than 3 meters.
	E.3.2 Statistical Analysis and Comparison of Bust Circumference Measurements: Distance between 0.5 to 3 meters vs. Distance less than 0.5 m or more than 3 meters.
	E.3.3 Statistical Analysis and Comparison of Waist Circumference Measurements: Distance between 0.5 to 3 meters vs. Distance less than 0.5 m or more than 3 meters.
	E.3.4 Statistical Analysis and Comparison of Hips Circumference Measurements: Distance between 0.5 to 3 meters vs. Distance less than 0.5 m or more than 3 meters.


	Appendix F Chapter-7*
	F.1 Evaluation and Comparison of Elliptical Mathematical Models for Human Body Measurements
	F.1.1 Evaluate elliptical mathematical models
	F.1.2 Results


	Appendix G Ethical Approval Forms

