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Abstract. Colour matching remains to be a labour-intensive task which
requires a combination of the colourist's skills and a time consuming trial-
and-error process even when employing the standard analytical model
for colour prediction called Kubelka-Munk. The goal of this study is to
develop a system which can perform an accurate prediction of spectral
re�ectance for variations of recipes of colourant concentration values,
which could be used to assist the colour matching process. In this study
we use a dataset of paint recipes which includes over 10,000 colour sam-
ples that are mixed from more than 40 di�erent colourants. The frame-
work we propose here is based on a novel hybrid approach combining
an analytical model and a Machine Learning model, where a Machine
Learning algorithm is used to correct the spectral re�ectance predictions
made by the Kubelka-Munk analytical model. To identify the optimal
Machine Learning method for our hybrid approach, we evaluate several
optimised models including Elastic Net, eXtreme Gradient Boosting and
Deep Learning. The performance stability of the models are studied by
performing computationally intensive Monte Carlo validation. In this
work we demonstrate that our hybrid approach based on an eXtreme
Gradient Boosting regressor can achieve superior performance in colour
predictions, with good stability and performance error rates as low as
0.48 for average dECMC and 1.06 for RMSE.

Keywords: Colour Re�ectance Prediction, Paints, Coatings, AI-Machine
Learning, eXtreme Gradient Boosting, Deep Learning, Elastic Net, Monte
Carlo Validation

1 Introduction

Colour matching is a specialised task which requires a colourist to mix a set of
colourants in di�erent proportions until a suitable visual match is achieved be-
tween the mix and a desired colour. The mix that is produced is a formula called
the 'recipe' which is a list of mixing ratio of the colourants used to obtain the
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colour match. Colour matching is therefore a considerably laborious task and is
achieved through a combination of the colourist's skills and trial-and-error. To
assist the colourists and to speed up the process of discovering recipes, Computer
Colourant Formulations are often used which utilises various colour prediction
software. These software allow for the prediction of colour given a recipe which
are often based on analytical models. A relatively common method of Computer
Colourant Formulation is to implement an analytical model based on the radia-
tion transfer theory known as Kubelka-Munk (K-M) [1] [2] which was originally
proposed in 1931 [1]. Brie�y, the K-M models allows for the prediction of the
spectral re�ectance for a mixture of colourants by characterising them accord-
ing to two coe�cients which are absorption (K) and scattering (S). Though the
K-M model is favoured for their simplicity and ease of use, in many cases their
approximations alone are not su�ciently accurate for real world applications.
Subsequently, to overcome some of the limitations of the modelling assumptions
made by the K-M models, multi-�ux models [3] have been proposed as alterna-
tives. However, the improvements in prediction accuracy from these models have
been relatively limited despite their added modelling complexity.

Thus, there have been numerous previous works on the application of Ma-
chine Learning methods for colour recipe predictions. In the works by Bishop
et al. [4] [5] neural network models were used to predict recipes for dye concen-
trations from CIELAB coordinates. Bezerra and Hawkayard [6] used a neural
network to predict the concentrations of �orescent dyes from spectral re�ectance
values. On the other hand, Westland et al. employed a neural network model to
predict spectral re�ectance for mixtures of inks printed on cards [7]. Furferi and
Governi [8] proposed a neural network based approach to correcting the spectral
re�ectance from an analytical model, to estimate spectrophotometer readings
for carded �ber. In the work by Hung et al. [9] a neural network was trained
to predict colour properties of cotton fabrics. Jawahar et al. [10] devised a neu-
ral network model to predict the tri-stimulus values for leather dyeing, which
was shown to perform better than a K�M model. Hemingray and Westland [11]
used a number of several separate neural networks to predict the spectral re-
�ectance at each wavelength for �bre blends, while Pan et al. used a similar
neural network for the transformation between two Spectral Spaces [12]. On the
other hand, Furferi et al. [13] proposed a hybrid K-M-neural network method
to predict the re�ectance values of a blend. Shen et al. [14] introduced a hybrid
model based on the Stearns�Noechel and a neural network model. Also, Zhang
et al. [15] proposed a method to improve predictions of K-M using a hybrid
of least squares and grid search method, for spectrophotometric colour match-
ing for �ber blend. In [27] the authors of this work proposed a neural network
approach to estimating colour re�ectance with product independent models.

Recent works have also attempted to solve the inverse problem of spectral
re�ection prediction. In the works by Tarasov et al. [16], [17] and [18], a feed-
forward neural network was used to predict the colourant recipe values from the
observations of spectral data. The work by Zhang et al. proposed a method for
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dye recipe prediction from colour measurements for cotton fabrics, using a novel
recurrent neural network [19].

Our present work focuses on the prediction of spectral re�ectance from co-
lourant concentration values for paints recipes. We design a system which is able
to perform predictions of spectral re�ectance for variations of recipes. However,
rather than attempting to model the relationship of the colourants to spectral
re�ectance directly, we propose a unique solution for colour prediction which
is based on a combined approach of the K-M analytical model and Machine
Learning. More speci�cally, our approach uses the Machine Learning models
to correct the spectral re�ectance approximations made by the K-M analytical
models thereby overcoming some limitations of the traditional analytical models.
Thus, it is a hybrid approach of the analytical and Machine Learning methods
which always provides a better predictive performance than the K-M analytical
model alone.

In addition, our work includes a comparison of several di�erent varieties of
Machine Learning algorithms, including Elastic Net, Extreme Gradient Boosting
and Deep Learning. Interestingly, our experimental results demonstrates that
the Extreme Gradient Boosting algorithm provides the most stable and best
performance among them.

The remainder of the paper is organised as follows. In Section 2 we describe
the methodology, the data that is used, and the Machine Learning predictive
models used for this study. Section 3 discusses the experimental results. Finally
Section 4 provides the conclusions.

2 Methodology

2.1 Dataset

The data used in this study originates from a commercial database of paint
colour recipes used for coatings. The database includes recipes for more than
10,000 colour samples which are mixed from more than 40 di�erent colourants in
de�ned proportions with each having a corresponding spectral re�ectance curve
measured for their colour by a Spectrophotometer. The measurements of the
re�ectance spectra include 31 wavelengths of the visual spectrum in the range of
400 to 700 nanometres at each 10 nanometre step intervals under the illuminant
D65, measured at 45 degree face angle. The re�ectance values are therefore
vectors of length 31 which correspond to each wavelength for the measured range
of the spectral curve. All variables in the data are numerical and continuous, and
thus this work is considered a regression task of predicting 31 target variables.

Data cleansing: For the data cleansing process we removed samples with in-
complete paint recipes and incomplete measurements. Additionally, as a precau-
tionary measure, we excluded some of the data by ranking the samples which
have the highest dECMC [26] errors between the measured colour and a pre-
dicted colour from the K-M analytical model, by removing 2 percent of those
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top ranked samples. The assumption here is that some of the samples may con-
tain errors which may originate from the data collection or from the process of
entering the data in the database. Using the K-M analytical model also as a
proxy for assessing sample quality, we �nd this data cleansing process is able to
assure better quality of data, resulting in a dataset with a population of reliable
and consistent samples.

2.2 A hybrid approach to colour prediction

The aim of this work is to perform a reliable prediction of the spectral re�ectance
for any given recipe. Our approach distinguishes itself from most colour predic-
tion approaches in the sense that we combine the analytical K-M model with
Machine Learning methods. This can be described as a two step process of (1)
making an initial prediction of the spectral re�ectance by using a K-M model
for the recipe from the colourant concentration values, followed by (2) using the
Machine Learning model to correct the initial prediction made in step (1) such
that the �nal estimates are closer to the actual spectral re�ectance (measured by
the spectrophotometer). This is achieved by optimising the Machine Learning
models to predict the residuals of the K-M model's predictions of the measured
spectral re�ectance values. For the inference of new datapoints, the K-M model's
predictions are summed up with the Machine Learning model's predictions.

The following gives a description of the input and output variables for the
Machine Learning predictive models used in this work.

Descriptions of input variables:

� The paint recipe which are the concentrations of the colourants given by per-
centage composition values - a sparse vector where each element represents
the concentration amount of a colourant (where a value of 0 indicates that
the colourant is not in use).

� The spectral re�ectance of the K-M model's predictions - a vector of length
31 for each value in the spectral re�ectance curve.

Descriptions of the target variables: The target variables in this study
are the residuals between the measured spectral re�ectance values of the 31
wavelengths and the predictions made initially by the K-M model.

2.3 Predictive models and �ne tuning

In this study we developed several optimised predictive models in order to com-
pare performances among them. The predictive models that we explored in this
work are the Elastic Net, two types of eXtreme Gradient Boosting (linear and
tree based models) and Deep Learning.



Predicting Colour Re�ectance with Gradient Boosting and Deep Learning 5

Elastic Net: Firstly, an Elastic Net model [20] was tuned for each of the 31
target variables individually. Elastic Net is a type of regularized regression model
which provides a middle ground between Ridge regression and Lasso regression.
Elastic Net uses a regularisation term which is a simple mix or both Ridge and
Lasso which is shown in the Equation 1 below.

J(θ) =MSE(θ) + rα

n∑
i=1

|θi|+
1− r
2

α

n∑
i=1

θ2i (1)

The r hyperparameter is a regularisation mix ratio; when r = 0, Elastic Net
is equivalent to Ridge regression, whereas when r = 1, it is equivalent to Lasso
regression. The α hyperparameter represents the strength of the regularisation.
The Elastic Net was tuned by searching for the optimal hyperparameter values
by a using a grid search with a 3 fold-cross validation on the training set in
the search ranges shown in Table 1. A �nal model was then �tted on the entire
training set data.

Table 1. Hyperparameter search grid for Elastic Net algorithm

ENet hyperparameters Hyperarameter Search Range

α [0.001 - 100]

r [0.1 - 1]

eXtreme Gradient Boosting with linear models: Secondly, we applied
the eXtreme Gradient Boosting [21] regressor algorithm based on linear mod-
els, with the squared error objective. For this implementation, 31 individual
eXtreme Gradient Boosting models were tuned with a grid search to �nd the
optimal con�gurations for the learning rate, estimator numbers, lambda and al-

pha hyperparameters using a 3 fold-cross validation on the training set. After
the optimal hyperparameters were found, the �nal models were �tted on the
entire training set data. Table 2 shows the table of the searched hyperparameter
ranges.

Table 2. Hyperparameter search grid for eXtreme Gradient Boosting (linear based)
algorithm

XGBoost (linear) hyperparameters Hyperparameter Search Range

learning rate [0.05 - 0.2]

n estimators [500 - 2500]

lambda [0.1 - 100]

alpha [0.1 - 100]
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eXtreme Gradient Boosting with Tree models: Thirdly, we tuned the
eXtreme Gradient Boosting regressor based on tree models, with the squared
error objective. 31 individual eXtreme Gradient Boosting models were tuned
with a grid search to �nd the optimal con�gurations for the hyperparameters for
learning rate, max depth, subsample rate, min child weight, number of estimators,

column sample by node, column sample by tree for the search ranges shown in
Table 3. Once the optimal hyperparameters were found, the �nal model was
�tted on the entire training set.

Table 3. Hyperparameter search grid for eXtreme Gradient Boosting (tree based)
algorithm

XGBoost (Tree) hyperparameters Hyperparameter Search Range

learning rate [0.05 - 0.2]

max depth [5 - 20]

subsample [0.5 - 1]

min child weight [0.5 - 1]

n estimators [500 - 2500]

colsample bynode [0.33 - 1]

colsample by tree [0.33-1]

Deep Learning: For our Deep Learning approach we experimented with vari-
ous Multilayer Perceptron (MLP) model architectures including a fully-connected
feed-forward model, a Resnet [22] like model (with skip-connections), and a wide-
and-deep-learning [23] like model. In all the experiments, the network architec-
ture is a single model which has a �xed number of input nodes which is equal
to the number of the variables used, and has 31 output nodes. Di�erent con�g-
urations were searched for the optimal number of layers, hidden node numbers,
and di�erent hidden node activations such as:

� Logistic Sigmoid:

sigmoid(x) =
1

1 + exp(−x)

� Hyperbolic tangent:

tanh(x) =
ex − e−x

ex + e−x

� ReLU (Recti�ed Linear Unit):

ReLU(x) =

{
0 if x < 0

x if x ≥ 0
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� SELU and ELU:

SELUα,λ(x) = λ

{
α( exp(x)− 1) if x < 0

x if x ≥ 0

where α and λ are constants 1.6732 and 1.0507 respectively for standard
scaled inputs., and

ELUα(x) =

{
α( exp(x)− 1) if x < 0

x if x ≥ 0

where value for alpha is picked typically between 0.1 and 0.

� Softplus:

Softplus(a) = ln(1 + ea),

The Deep Learning model was tuned using the Adam optimiser [25] to min-
imise various loss functions such as the MSE, MAE and Huber loss. The Huber
loss Lδ, as de�ned below, was used in particular to prevent the potential impact
of any remaining outliers in the data:

Lδ =

{
1
2 (y − f(x))

2 for |y − f(x)| ≤ δ
δ(|y − f(x)| − 1

2δ), otherwise.

The network was trained up to 2000 epochs to minimise the loss. In addition,
to control for model over�tting, the L2 regularisation was applied to the hidden
layer weights, and an early stopping criteria was used to �nd the appropriate
number of epochs, by observing if a validation loss did not improve within the
next 100 epochs based on a validation set which was randomly selected from 10
percent of the training set population. Table 4 shows the searched ranges for
hyperparameters values in the Deep Learning algorithm.

Table 4. Hyperarameter search grid for Deep Learning algorithm

Deep Learning params Hyperparameter Search Range

number of layers [1 -5 ]

hidden node size [50 - 500]

loss functions [MSE, MAE, Huber ]

learning rate [0.001 - 0.1]

L2 regularization [0.0001 - 0.1]

hidden activations [sigmoid, tanh, relu, elu, selu, softplus]
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2.4 Hardware and software

Due to the signi�cant computational requirements of the Monte Carlo validation
that we use in our framework, the implementation of this work was performed on
two servers with Xeon 6-cores processors and 96GB of RAM each, and one server
with a Ryzen 16-cores processor, 128GB of RAM and an RTX 3080 GPU. The
experiments were carried out with Python 3 and Numpy, Pandas, scikit-learn,
XGBoost, Tensor�ow and Keras packages.

3 Experiments and Results

3.1 Evaluating performances

From the dataset, 90 percent was used as the training set for optimising and
building the predictive models while the remaining 10 percent was used as testing
set to evaluate the performance of the modelling.

The main concern of this work is to minimise the visual di�erence between
the spectrophotometer's measured colour and the predicted colour of the recipe
samples. Therefore the dECMC colour distance [26] in the Equation 2 below is
appropriate for measuring the performances of the proposed methods as it takes
the colour sensitivities of the human visual system into consideration. For each of
the compared models, the performance was measured as the calculated averages
of dECMC for the test set predictions. Additionally, in the Results subsection
below we also provide the root mean squared error RMSE for the prediction
results.

dECMC =

√(
dL

lSL

)2

+

(
dC

cSC

)2

+

(
dH

SH

)2

(2)

3.2 Monte Carlo Validation

To investigate stability of the performance of the models we further evaluate
results by running a Monte Carlo validation which consists of repeating the pro-
cess of randomly splitting the dataset into training and testing sets as described
previously, rebuilding the models on the training sets and evaluating them on
the test sets. This allows for the variation in model performances to be assessed.
For the Monte Carlo validation, the average and the standard deviation (SD)
of the performances are provided for each performance measure. Our Monte
Carlo validation consists of 30 runs, i.e. 30 data splits with model training and
evaluation.

3.3 Results

A summary of the results for the best performances, measured as dECMC and
RMSE errors (smaller �gures are better for both measures), can be found in
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Table 5. Evaluation of performances for di�erent algorithms for average dECMC and
RMSE

Machine Learning Methods Avg. dECMC RMSE
Elastic Net 0.675 1.366
Extreme Gradient Boosting (Linear) 0.674 1.326
Extreme Gradient Boosting (Trees) 0.479 1.057
Multilayer Perceptrons 0.539 1.111

Table 6. Evaluation of performances of di�erent algorithms for average dECMC and
RMSE with Monte Carlo validation based on 30 runs

Machine Learning Methods Avg. dECMC RMSE
Elastic Net 0.708 ± 0.009 1.400 ± 0.045
Extreme Gradient Boosting (Linear) 0.677 ± 0.018 1.403 ± 0.062
Extreme Gradient Boosting (Trees) 0.477 ± 0.010 1.089 ± 0.047
Multilayer Perceptrons 0.547 ± 0.014 1.188 ± 0.061

Fig. 1. Box plots for average dECMC performance results for Monte Carlo validation
based on 30 runs
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Fig. 2. Box plots for RMSE performance results for Monte Carlo validation based on
30 runs

Table 5. Of the 4 compared Machine Learning methods, the best model was ob-
tained using the eXtreme Gradient Boosting with trees, which achieved the best
performances of 0.479 and 1.057 for average dECMC and RMSE, respectively.
This was followed by the second best model obtained using the Deep Learning
method. The latter achieved 0.539 and 1.11 for average dECMC and RMSE, re-
spectively. Elastic Net and the Extreme Gradient Boosting linear based methods
however, achieved the two worst performances across the 4 Machine Learning
methods.

A similar ranking of performances can be observed from the average results of
30 runs in the Monte Carlo validation, with eXtreme Gradient Boosting based
on trees, being on top and followed by Deep Learning, as shown in Table 6.
Moreover it should be noted that the most stable models are obtained with the
eXtreme Gradient Boosting based on trees, and with Elastic Net methods, since
they led to the lowest standard deviations (SD) in the Monte Carlo validation
procedure, as shown in the same Table 6. The performance ranking and stabil-
ity conclusions above are also visually recon�rmed by the boxplots shown for
dECMC and RMSE in Fig. 1 and Fig. 2, respectively (lower positioned boxplot
is better for performance, and smaller boxplot is better for stability).

4 Discussions and Conclusions

Currently, colour matching is still a labour-intensive task which requires a combi-
nation of the colourist's skills and a time consuming trial-and-error process even
when employing one of the most used analytical models for colour prediction,
namely Kubelka-Munk (K-M). The goal of this study was to develop a system
which can perform an accurate prediction of spectral re�ectance for variations
of recipes of colourant concentration values, which could be used to assist the
colour matching process.
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This work explored the prediction of spectral re�ectance from colourant con-
centration values using a dataset of paints recipes, and proposed a combined
approach based on the K-M conventionally-employed analytical method and a
selection of Machine Learning methods. This hybrid approach involves using
optimised Machine Learning models to correct the initial predictions made by
a K-M model trained on the data. In particular, the Machine Learning models
were used to predict the residuals of the K-M model, computed as the di�erence
between the measured spectral re�ectance values of the colour recipes and the
K-M predictions. In order to obtain the �nal re�ectance predictions, the Machine
Learning predictions were then added to the K-M predictions. We explored 4 Ma-
chine Learning methods for our proposed approach, including Elastic Net, two
types of eXtreme Gradient Boosting methods (linear and tree based), and Deep
Learning. The Machine Learning methods were assessed for their performances
(for which lower is better) in terms of the error measures of average dECMC and
RMSE. The experiments demonstrated that the best performing model was
the tree based eXtreme Gradient Boosting which outperformed all other models
tested, achieving the smallest error measures of dECMC and RMSE. Moreover,
the same model was also the most stable, together with Elastic Net which in
turn was among the two worst performing models with respect to dECMC and
RMSE.
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