
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

TLP-NEGCN: Temporal Link Prediction via
Network Embedding and Graph Convolutional

Networks
Akshi Kumar, Abhishek Mallik, and Sanjay Kumar

Abstract—Temporal link prediction (TLP) is a prominent prob-
lem in network analysis that focuses on predicting the existence of
future connections or relationships between entities in a dynamic
network over time. The predictive capabilities of existing models
of TLP are often constrained due to their difficulty in adapting
to the changes in dynamic network structures over time. In this
paper, an improved temporal link prediction model, denoted as
TLP-NEGCN, is introduced by leveraging network embedding,
graph convolutional networks (GCN), and bidirectional long
short-term memory (BiLSTM). This integration provides a robust
model of TLP that leverages historical network structures and
captures temporal dynamics leading to improved performances.
We employ graph embedding with self-clustering (GEMSEC) to
create lower-dimensional vector representations for all nodes of
the network at the initial timestamps. The node embeddings are
fed into an iterative training process using GCNs across times-
tamps in the dataset. This process enhances the node embeddings
by capturing the network’s temporal dynamics and integrating
neighborhood information. We obtain edge embeddings by con-
catenating the node embeddings of the end nodes of each edge,
encapsulating the information about the relationships between
nodes in the network. Subsequently, these edge embeddings are
processed through a BiLSTM architecture to forecast upcoming
links in the network. The performance of the proposed model is
compared against several baselines and contemporary temporal
link prediction models on various real-life temporal datasets. The
obtained results based on various evaluation metrics demonstrate
the superiority of the proposed work.

Index Terms—Complex networks, Graph Convolutional Net-
works (GCN), Graph Embedding with Self Clustering (GEM-
SEC), Network embedding, Temporal link prediction

I. INTRODUCTION

Temporal network analysis is a branch of network science
that focuses on the study of dynamic or time-varying networks.
Unlike traditional static networks, where the connections be-
tween entities are fixed and do not change over time, temporal
networks foster links or relationships between nodes that
appear over time. Various real-life networks like communi-
cation networks, social networks, collaboration networks, and
biological networks, are complex and dynamic networks. A
temporal network provides enormous scope for data analysis,

Manuscript received-; revised- .
Akshi Kumar is with the Department of Computing, Goldsmiths, University

of London, 8 Lewisham Way, London SE14 6NW United Kingdom. Email:-
Akshi.Kumar@gold.ac.uk
Abhishek Mallik and Sanjay Kumar are with the Department of Computer
Science and Engineering, Delhi Technological University, New Delhi-110042,
India, Email:- abhishekmallik265@gmail.com, sanjay.kumar@dtu.ac.in
Corresponding author: Sanjay Kumar (sanjay.kumar@dtu.ac.in)

especially the prediction of probable future links amongst
various elements of a system. The task of predicting probable
links amongst the nodes based on the topological and structural
details of the network is known as link prediction [1]–[3]. In
other words, it can be stated as, the problem of predicting
upcoming links amongst the nodes of a network using the
existing structural information of the network. As one of the
instances of social network analysis, link prediction has many
real-life applications like network forecasts, recommendation
systems, disease outbreaks, etc., wherein existing network
information can be used to reveal interactions and associations
amongst the users of the network.

Temporal link prediction (TLP) is a prominent task in
network analysis which involves forecasting potential future
connections between nodes in a network based on their past
topological patterns. In a temporal link prediction problem,
typically a historical record of interactions or connections
between entities at different time points is provided. These
entities could be users in a social network, products in an
e-commerce platform, genes in a biological network, or any
other relevant nodes in a network. The goal is to predict
which new connections or relationships are likely to form in
the future. By anticipating the evolution of the network, TLP
can be instrumental in various applications such as estimating
future interactions, proactive resource allocation, improved
recommendations, and others. Mathematically, temporal link
prediction can be formulated as follows. Given a temporal net-
work represented as a set of time-stamped edges E = (u, v, t)
where u and v are nodes in the network, t is the timestamp
of the edge, and a historical record of such edges observed
up to time k, E = (u, v, t)|t ≤ tk. The task of temporal link
prediction is to predict the existence of edges at future time
points t > k, typically represented as

E′ = (u, v, t)|t > tk (1)

The problem of temporal link prediction is primarily tackled
using probabilistic-based techniques, maximum likelihood-
based techniques, and similarity-based techniques. Recently,
deep learning-based techniques have been used extensively in
various domains and have given exceptional results [4], [5].
In the recent literature, several deep learning-based techniques
have been explored for link prediction with reasonably good
performances.

The real-life temporal networks are usually vast in size,
which incurs a substantial computational cost for any use-
ful analysis and mining work [6]. The high cost proves0000–0000/00$00.00 © 2021 IEEE

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

as an impediment to performing any efficient analysis of
such networks. This is where network representation learning
comes into play [7], [8]. It is a representational paradigm
that preserves the network topology and structural details and
represents the nodes in a lower dimensional vector space [9].
However, this approach has a major drawback - it requires
a large amount of memory to store the dense adjacency
matrix, making it difficult to scale up to larger networks.
Such representation of the network into smaller vector space is
known as a graph or network embedding, which generates an
embedding for all nodes of the network. The graph embedding
technique uses the nodes’ proximity substructure to create
a lower-dimensional vector representation, thereby optimally
capturing the neighborhood information of the node under con-
sideration. These techniques consider the first and higher-order
proximities in a network. Hence, they can capture the inherent
dynamics either explicitly or implicitly, thus enabling their use
in link prediction techniques [10]. However, traditional graph
embedding techniques suffer from another limitation - they
cannot handle dynamic networks, where the links change over
time [11], [12].

In this paper, we introduce an improved temporal link
prediction model, named TLP-NEGCN, by integrating graph
embedding with self-clustering (GEMSEC) and graph con-
volutional networks (GCN). The proposed model starts by
generating the node embeddings for all the nodes at the
initial timestamp using the GEMSEC algorithm. The node
embeddings are then fed to GCN iteratively on the timestamps
of the datasets to obtain improved embeddings by capturing
the changing opinions and the information contributed by the
neighborhood of the users in the network. The node embed-
dings are then employed to produce the edge embeddings
between two nodes by concatenating the node embeddings.
The dimensionality of the node embeddings is varied from
4 to 256 to estimate the performance of the node embedding
with increasing dimensionality. The generated embeddings are
then passed through a bidirectional long short-term memory
(BiLSTM) to make the link prediction on future timestamps.
The BiLSTM helps in capturing the short-term periodic-
ity in opinion changes for link prediction. The experiments
are performed on various real-life and synthetic temporal
networks. The acquired results based on various evaluation
metrics demonstrate the efficacy of the proposed model of
temporal link prediction. The innovation lies in integrating
Graph Embedding with Self Clustering (GEMSEC) and Graph
Convolutional Networks (GCN) to capture evolving opinions
and network dynamics while optimally preserving topological
features. This module assembly provides a robust model of
TLP that leverages historical network structures and captures
temporal dynamics leading to improved performances. We
exploit the topological feature preservation nature of the node
embedding, the closeness of similar node embedding in the
feature space, and the neighborhood aggregation capability
of the GCN. The contribution of this work is a specialized
model for temporal link prediction, demonstrated through ex-
periments on diverse temporal networks. Overall, the proposed
model showcases its superior performance in dynamic settings
along with being time efficient. The main contributions of this

article can be summarized as follows.
(i) The proposed model efficiently captures the structural

information of the network and transforms the high-
dimensional node features into lower-dimensional vector
representations through GEMSEC.

(ii) Through iterative training with GCN, the model effec-
tively learns the changes in link connectivity patterns as
the network evolves over time. By continuously updating
the node embeddings based on neighborhood interactions
and opinion changes, the TLP-NEGCN model ensures
that it adapts to the dynamic nature of temporal networks.

(iii) The incorporation of a Bidirectional Long Short-Term
Memory (BiLSTM) architecture further reinforces the
model’s capability to explore and leverage temporal de-
pendencies within the data. BiLSTM enables the model
to consider both past and future contexts while processing
the edge embeddings.

(iv) The research encompasses real-life datasets from vari-
ous domains, as well as synthetic datasets with varying
sizes and applications. The proposed model’s efficacy is
rigorously assessed through extensive experimentation on
diverse temporal network datasets.

(v) By evaluating the confidence intervals over AUC values
for all datasets, the study provides a comprehensive
assessment of the model’s performance. This statistical
analysis adds an extra layer of confidence to the find-
ings, strengthening the credibility of the proposed TLP-
NEGCN model and its superiority over other methods.

The remainder of this paper is organized as follows. Section
II discusses some of the existing works previously done in
the field of temporal link prediction. Section III discusses
the proposed model for temporal link prediction in detail.
The datasets used and the performance evaluation metrics
chosen are presented in Section IV. Section V presents the
experimental analysis of the proposed model. Finally, section
VI concludes the paper.

II. RELATED WORK

In network science, temporal link prediction has drawn
huge attraction from all over the research community. Various
temporal link prediction techniques have been presented over
the years that can be categorized into some broad classes
like matrix factorization-based, maximum likelihood-based
methods, time series, and deep learning-based techniques [13].
Matrix factorization-based temporal link prediction represents
the network features by adjacency matrices. These techniques
factorize matrices to create the characteristics needed to carry
out the link prediction task. Ma et al. [14] introduced a tech-
nique by utilizing non-negative matrix factorization (NMF)
and graph communicability. The method considered the tem-
poral changes in network structure and leveraged the commu-
nicability measure to capture indirect paths between nodes.
Ahmed et al. [15] presented a technique, named DeepEye, for
predicting links in dynamic networks through the use of non-
negative matrix factorization (NMF). They employed NMF
to derive low-dimensional representations of nodes, which
are then leveraged to forecast future linkages. Yet, matrix

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

factorization-based techniques depend on the information in
the input matrix that may be incomplete or noisy that may
be incomplete or noisy. This can limit the accuracy of the
predictions. Also, these methods can become computationally
expensive for large networks, making them less scalable.
Maximum likelihood-based algorithms work by ascertaining
the network structure’s organizational details by maximizing
the probability of the observed structure. These organizational
details are based on some set of principles and rules, which can
be helpful in determining the probability of non-existent links.
However, the problem of high computational complexity and
difficulty in modeling dynamic changes are the main concerns
of maximum likelihood-based techniques.

Recently various machine learning and deep learning tech-
niques emerged toward link predictions in temporal networks.
Ozcan et al. [4] introduced an approach for predicting links in
heterogeneous networks that evolve over time. The proposed
method utilized the Nonlinear AutoRegressive beside inputs
(NARX) neural network, which is designed to handle the het-
erogeneity and dynamic nature of the network. An ensemble-
learning model integrating logistic regression and the Xgboost
method for link prediction was introduced by Li et al. [16]. In
order to extract the link structure information from the sub-
graph using a residual attention network-based model, Wang
et al. [17] constructed a deep convolutional neural network-
based technique. Kumar et al. [18] introduced features fusion-
based link prediction in temporal networks, named LGQ.
The method involved three stages: feature selection, feature
fusion, and link prediction. In the feature selection stage, the
authors extracted various local (L), global (G), and Quasi-
local (Q) node centralities. Then, in the feature fusion stage,
the chosen features are merged using a weighted combination
method that considers the relevance of each feature toward
the link prediction task. Authors in [19] explored a method
for temporal link prediction on the WikiLinkGraphs dataset.
They first analyzed baseline methods that utilize the structural
features of the network. Then formulated a link prediction task
as a supervised learning activity and applied different Graph
Neural Network techniques for link prediction. Finally, they
obtained the best performance with GraphSAGE and CTDNE.
Qiu et al. [20] introduced a motifs-based link prediction model
for temporal link prediction. A temporal network is divided
into several snapshots. They then offered a triad transition
matrix prediction tool to determine how the distribution of
triads has changed between the various snapshots. The dy-
namic evolution of the network can be captured by the learned
changes in the distribution of triads. A temporal link prediction
on weighted dynamic graphs was proposed by Qin et al.
[5] utilizing the inductive dynamic embedding aggregation
(IDEA) technique. They argued that because IDEA employs
an inductive dynamic embedding approach with a careful node
alignment unit and adaptive embedding aggregation module, it
can handle the temporal link prediction on weighted networks.

The existing methods for temporal link prediction have
their advantages and disadvantages, but there is still room for
improvement. Specifically, most of the methods do not cap-
ture temporal information and global structural information.
Moreover, recently introduced neural network-based models

produce good results but are computationally intensive and
difficult to scale for large networks. Also, balancing accuracy
with computational efficiency is a challenge. Therefore, there
is a need for a hybrid model that combines the strengths
of multiple techniques to capture both temporal and struc-
tural information along with being computationally efficient.
The proposed TLP-NEGCN framework is a hybrid temporal
link prediction model obtained by combining the strengths
of GEMSEC, GCN, and BiLSTM to capture both temporal
and structural information in temporal networks. The key
advantage of our method is that it can capture structures in
the network and improve node representations, which in turn
improves the performance of temporal link prediction.

III. PROPOSED WORK

This section discusses the proposed model of temporal link
prediction, named TLP-NEGCN, in detail. We present the
description of the various phases of the model such as dataset
creation, initial feature generation, iterative feature processing
using GCN, and link prediction using BiLSTM. The proposed
work introduces a refined temporal link prediction model by
leveraging the power of graph Embedding with self-clustering
(GEMSEC) and a graph convolutional network (GCN). The
motivation behind this work stems from the need to make
accurate predictions of future links in temporal networks.
The existing models often struggle to adapt to the evolving
network structures over time, which limits their predictive
capabilities. Also, existing models are computationally inten-
sive and time-consuming, especially for large datasets. The
innovation in our approach lies in the systematic integration
of GEMSEC and GCN to iteratively capture network dynam-
ics, thereby overcoming the limitations of existing models.
GCNs complement GEMSEC’s node embeddings by enabling
iterative learning, capturing opinion changes over time, and
incorporating neighborhood information of users, essential
in temporal link prediction. The use of edge embeddings,
derived from the node embeddings, enriches link predictions,
as it facilitates the representation of edge relationships and
captures temporal dynamics in evolving networks. Addition-
ally, employing a BiLSTM architecture for link prediction
with edge embeddings strengthens our temporal modeling
capabilities, effectively capturing temporal dependencies in the
data for more accurate predictions. Overall, the integration of
GEMSEC and GCN in the model provides a robust framework,
offering an improved approach to leverage historical network
structures and capture temporal dynamics to enhance link
prediction accuracy in real-world applications.

A. Dataset Creation

For our study, we utilize temporal networks which have
changing network structures as time advances. Let a temporal
network be denoted as G(V,E, T) with V as the node set, E
as the edge set, and T as the number of timestamps. More
formally, G(V,E, T) can be represented by Eq. 2 where gi
represents the topology of the network at ith timestamp.

G(V,E, T) = {g0, g1, g2, ..., gT−1} (2)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

We split the entire dataset into two parts, one for training our
model and the remaining for testing. This is done by keeping
the initial k timestamps for training while the rest for testing.
The training dataset constitutes the initial 80% of the total
timestamps in the dataset leaving the rest 20% timestamps for
testing. This is done in accordance with realistic scenarios in
which we only have structural information about the network
up to a certain timestamp which is used to make predictions for
future timestamps. Thus, the training timestamps, TTrain can
be represented as {0, 1, 2, ..., k} while the testing timestamps,
TTest is represented by {k + 1, k + 2, ..., T − 1}. We also
split the edge list E into ETrain and ETest to represent
the edges for the training and testing timestamps. Hence
we obtain GTrain(V,ETrain, TTrain) as the training network
while GTest(V,ETest, TTest) as the testing network. To have
a balanced dataset, we consider the existing edges as positive
samples and perform negative sampling by considering the
non-existing edges as negative samples which act as labels
for the dataset. Following along these lines, we modify the
edge lists ETrain and ETest to label lists LTrain and LTest,
where each pair of nodes (u, v) is associated by a label l
having values 1 and 0 on the basis of the existence and non-
existence of edges between a pair of nodes, respectively. Thus,
the training and testing graphs are modified according to Eq.
3 and Eq. 4.

GTrain(V,LTrain, TTrain) =

generateLabels(GTrain(V,ETrain, TTrain))
(3)

GTest(V,LTest, TTest) =

generateLabels(GTest(V,ETest, TTest))
(4)

Fig. 1 shows the process of dataset creation employed by
us to have well-balanced training and testing datasets. The
connected circles refer to the state of the network across the
timestamps. We can see the process of reserving the initial k
timestamps for training while using the remaining timestamps
for testing. The training and testing timestamps constitute
80% and 20% of the total timestamps, respectively. Here, the
connected circles refer to the state of the network across each
timestamp. The circles represent the nodes while the lines
represent the edges. The features for the datasets are generated
in the next step.

0 1 2 k T

Training Dataset Testing Dataset

Existing Edges/
Positive Samples

Non-Existing
Edges/ Negative

Samples

k+1

Fig. 1. Splitting of the entire temporal dataset by keeping 80% dataset for
training dataset and the remaining for 20% for testing dataset.

GEMSEC
Embedding

Instance of
network at 0th

timestamp
Generated node embeddings
for every node in the network

Fig. 2. Generating the initial features for the network’s node using GEMSEC
embedding. The network structure at the first timestamp is used to generate
the embeddings. Here, the connected circles refer to the state of the network
at the first timestamp. The circles represent the nodes while the lines represent
the edges. The array of squares shows the node embeddings for each node in
the network.

B. Initial Feature Generation

The dataset obtained in the previous step has labels, but
it lacks features. In this phase, we generate features for the
input network. There are various methods to generate features
for the nodes in the network, like the adjacency matrix, and
modularity matrix. However, these methods generate feature
sets of massive size, making it computationally infeasible to
process these matrices. To generate features for all nodes, we
adopt the recently proposed GEMSEC network embedding
[21]. It generates lower-dimensional vector representations for
every node of the network in a feature space of dimensions
d. This improves the computation cost of our algorithm while
preserving the topological features of the network. Moreover,
since GEMSEC is a self-clustering-based embedding, it helps
generate embeddings with nodes clustered in tight communi-
ties. The generated embeddings also ensure that similar nodes
are placed closer in the feature space. The dimensionality of
feature space (d) is chosen to be 256, which helps ensure
feasible computational costs while capturing sufficient network
details to be used for link prediction. Let g0(V,LTrain

0 , 0) be
the structure of the network at the 0th timestamp. So the initial
feature vectors are generated using Eq. 5.

Fn×d
0 = GEMSEC(g0(V,L

Train
0 , 0), d) (5)

Here, GEMSEC() represents the embedding generation
using the GEMSEC technique. Also, Fn×d

0 represents the 2-
dimensional feature matrix generated having dimensions n×d,
where n corresponds to the number of nodes, and d refers to
the dimensionality of the feature space. Here, F (v) represents
the feature vector for the node v. The generation of the
initial features for the network’s nodes using the GEMSEC
embedding in our model is depicted in Fig. 2. From the figure,
we can see how the feature embeddings are generated for
every node in the network at the 0th timestamp. The circles
represent the nodes while the lines represent the edges. The
array of squares shows the node embeddings for each node in
the network.

C. Iterative Feature Processing using GCN

In the previous phase, we generated initial features for the
dataset. However, these features capture only the initial state

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

of the network. To further enhance the features of the nodes,
we iteratively improve them using a Graph Convolutional
Network over the advancing timestamps of the dataset. For
iterative training, the embedding generated at timestamp ti is
used as the features of the nodes for GCN at timestamp ti+1.
These embeddings then serve as the foundation for iterative
encoding and decoding. At each subsequent timestamp, the
embeddings generated are utilized as input features for a Graph
Convolutional Network (GCN). The GCN learns to model the
changing network topologies by aggregating information from
neighboring nodes. This iterative encoding process effectively
encodes the evolving network structure and dynamics. The
resulting embeddings reflect the network’s state over time and
are used for temporal link prediction. This strategy ensures the
model adapts to temporal changes and learns temporal patterns
and evolving topology. The encoding at any timestamp can be
represented as per Eq. 6.

Em(ti) = GCN(F (ti)) (6)

where Em(ti) represents the embeddings generated at
timestamp ti. F (ti) denotes the features of the nodes at
timestamp ti. GCN signifies the Graph Convolutional Network
that encodes the features. The key innovation here is in how the
GCN parameters adapt over time to model changing network
topologies, which can be mathematically expressed as the
evolution of GCN parameters. This is shown in Eq. 7.

Θ(ti+1) = Update(Θ(ti), E(ti), F (ti+1)) (7)

where Θ(ti+1) signifies the updated parameters of the
GCN at timestamp ti+1. Θ(ti) represents the parameters of
the GCN at timestamp ti. E(ti) represents the embeddings
generated at timestamp ti. F (ti+1) represents the features of
the nodes at timestamp ti+1. The ”Update” function reflects
how the GCN parameters are adjusted to model the evolving
network structure effectively. This iterative process, along
with the neighborhood aggregation feature of GCN, optimally
incorporates contributions from neighboring nodes.

This trains the parameters of the GCN to model the chang-
ing topology of the networks. The neighborhood aggregation
feature of the GCN enables to appropriate incorporation of
the contributions of the nodes in the neighborhood of a
node under consideration. Thus, we have a feature set that
is robust to the varying network structure instead of the pre-
disposed features generated in the previous step. Hence, now
we have a proper well-labeled dataset with a proper feature set
optimally capturing the topological changes, and neighborhood
information of the network structure. We iteratively process the
feature vectors of every node in the network as per Eq. 8 till
the kth timestamp.

Fn×d
i = GCN(Fn×d

i−1 , gi(V,L
Train
i , i), d), i ∈ [1, k] (8)

Fig. 3 shows how the features or embeddings of the nodes
at timestamp ti are processed through a GCN which in turn
are used as the embedding for the nodes at timestamp ti+1.
Here, the array of squares shows the node embeddings for each
node in the network. The initial embeddings are generated for

the 0th timestamp using the GEMSEC embedding technique.
The generated embeddings are then processed iteratively while
taking into account the embeddings generated in the previous
timestamp and the network structure in the current timestamp.
This helps our model to iteratively capture the changing inter-
connectivity structure of the graph as it evolves over time.
Here, the connected circles refer to the state of the network
across the timestamps. The circles represent the nodes while
the lines represent the edges. The array of squares shows the
node embeddings for each node in the network.

Graph
Convolutional

Networks

Embeddings at time "ti"
Processed Embeddings
using GCN at time "ti"

Node Embeddings generated at
time "ti" used for network at "ti+1"

Graph
Convolutional

Networks

Processed Embeddings using
GCN at time "ti+1"

Fig. 3. Processing the features of the nodes iteratively using GCN. The
features of the nodes from the previous timestamp are used as the inputs for
the current network structure and the embeddings are processed using the
GCN architecture. The output of the first step forms the input of the second
step.

D. Link Prediction using BiLSTM

In this step, we train a deep Bidirectional Long Short-Term
Memory (BiLSTM) model on the training dataset and make
link predictions on the testing dataset. BiLSTM is a sequential
network model that processes the input both forward and
backward across timeframes. It is a collection of multiple
LSTM cells. Now, we create a well-labeled dataset using the
feature vectors generated in the previous step and the labels
generated in section III-A. Eq. 9 and Eq. 10 show the process
of generating the training dataset, DTrain and testing dataset,
DTest.

DTrain = {F (u)⊕ F (v), LTrain(u, v)}, u, v ∈ V (9)

DTest = {F (u)⊕ F (v), LTest(u, v)}, u, v ∈ V (10)

The obtained well-labeled dataset optimally captures the
network details iteratively across the timestamps in the training
set. The training dataset is employed to train a BiLSTM model
sequentially across the timestamps in the training dataset.
The sequential processing of BiLSTM allows the model to
effectively encode the temporal relationships and the evolving
network structure. BiLSTMs consist of two LSTMs, one
processes the input sequence in the forward direction, and the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

other processes in the backward direction. The BiLSTM’s bidi-
rectional processing captures short-term periodicity and dy-
namic changes in node associations, enhancing link prediction
accuracy. The forward LSTM computes hidden states h f [t] as
per Eq. 11 and the backward LSTM computes the backward
hidden states h b[t] as per Eq. 12. Here, LSTM forward
and LSTM backward are the LSTM cell operations, and
h f [1] and h b[T] are initialized to zeros. The hidden states
from the forward and backward LSTMs are concatenated for
each time step to obtain a comprehensive representation of the
temporal context as per Eq. 13.

hf [t] = LSTM forward(DTrain(t), hf [t− 1]) (11)

hb[t] = LSTM backward(DTrain(t), hb[t+ 1]) (12)

h[t] = [h f [t], h b[t]] (13)

For temporal link prediction, we use the concatenated
hidden states h[t] as the basis for our predictions. We feed
these representations into a fully connected layer and apply
a sigmoid activation function to predict the probability of a
link existing between two events at different time steps. The
sigmoid function outputs a value between 0 and 1, where
values closer to 1 indicate a higher likelihood of a link. Let
P (y = 1|ti, tj) represent the probability of a link between
events at time ti and tj . We can calculate it as per Eq. 14.
Here, W is the weight matrix of the fully connected layer,
[h[ti], h[tj]] is the concatenated hidden state representation of
events at time ti and tj , and b is the bias term.

P (y = 1|ti, tj) = sigmoid(W ∗ [h[ti], h[tj]] + b) (14)

Our model can thereby predict future links without prior
knowledge of the network’s future structure. This innovation,
as illustrated in Figure 4, enables our method to excel in
temporal link prediction, making it a significant advancement
in leveraging temporal information for robust link prediction
in dynamic networks. Once the BiLSTM is trained on the
training dataset, it is used to make predictions on the testing
dataset to make link predictions on future timestamps without
knowing the network structure of future timestamps.

Fig. 4 shows the process of using a well-labeled and well-
balanced dataset for link prediction using the BiLSTM model.
The node embeddings generated act as the features of the
nodes while the existence or non-existence of edges act as
labels. We perform proper hyperparameter tuning for the
BiLSTM architecture to achieve optimal results. The training
of the BiLSTM model is done on the initial k timestamps
as mentioned in Section III-A. The trained BiLSTM model
is utilized to perform the final temporal link prediction on
the remaining k to T timestamps. Here, the connected circles
refer to the state of the network with circles representing
the nodes and the lines representing the edges. The array
of squares shows the node embeddings for each node in the
network. The box with the BiLSTM title shows the BiLSTM

architecture. We then evaluate the various link prediction-
based performance metrics for our algorithm.

LSTM
Cell

LSTM
Cell

LSTM
Cell

LSTM
Cell

LSTM
Cell

LSTM
Cell

Forward Backward

Well labeled &
Well balanced

dataset

BiLSTM

Binary
Classiifcation

Various Evaluation
Metrics

Fig. 4. Using a well-labeled and well-balanced dataset with embeddings as
features and existence and non-existence of edges as labels dataset, for link
prediction using the BiLSTM model.

IV. DATASETS AND EVALUATION CRITERIA

This section presents the different datasets used for the eval-
uation of the proposed model and the different performance
metrics that are calculated. For this study, we use six real-
life and two synthetic temporal datasets belonging to social
networks, biological networks, and information networks.

A. Datasets

For our study, we have used six different real-life and
two synthetic temporal networks having varied sizes, topolo-
gies, and dimensions. Brief information regarding the real-life
datasets used is as follows:

1) MathOverflow [22]: It is a temporal network represent-
ing the interaction amongst the users of Math Overflow.
It contains 24,818 nodes, and 506,550 collected over
2350 days.

2) Email [22]: This is a dataset of email messages gathered
for the European research organization. It contains 986
vertices and 332,334 edges which are collected over a
period of 803 days.

3) CollegeMsg [23]: It is a temporal network formed via the
private messaging service of the University of California,
Irvine. It has 1899 vertices followed by 59835 edges
collected over 193 days.

4) Bitcoin-OTC [24]: This is a who-trusts-whom temporal
network formed amongst the users of the Bitcoin OTC
platform (http://www.bitcoin-otc.com). This dataset con-
tains 5,881 nodes and 35,592 edges collected from 2010
to 2016.

5) Bitcoin-Alpha [24]: This is also a who-trusts-whom
temporal network formed between the traders on the
platform Bitcoin Alpha (http://www.btcalpha.com/). It
has 3,783 nodes and 24,186 edges collected over a
period from 2010 to 2016.

6) Reddit [25]: It is a temporal network representing the
interaction amongst the users on Reddit. It has 55863
nodes and 858490 edges collected from January 2014
to April 2017.

We also use two synthetic networks in our study to obtain
a more profound study. For generating the synthetic networks,

http://mathoverflow.net/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

we use the Stochastic Block Model (SBM) proposed by
Goyal et al. [26]. It is a recent and popular technique for
randomized graph modeling to simulate community structures
and evolutions. The snapshots for the real-life networks are
represented as the time period across which they’re captured.
The details about the generated synthetic datasets are given
below:

1) SBM1000: It contains 1000 nodes and around 56000
edges. The number of snapshots taken as 8.

2) SBM5000: It contains 5000 nodes and around 157000
edges. The total number of snapshots is kept as 8.

The various statistical details of all the real-life and syn-
thetic temporal datasets have been tabulated in Tab. I. Here,
| V | and | E | refer to the number of nodes and number of
edges, respectively. The time period represents the time period
across which the dataset was accumulated.

B. Evaluation metrics

For evaluating the performance of our model, we use
several popular evaluation metrics for temporal link prediction,
namely, AUC (area under the ROC curve), Precision, Recall,
and F1 Score.

m

V. EXPERIMENTAL RESULTS AND ANALYSIS

This section discusses the experimental analysis of the
proposed model for link prediction in temporal networks. In
this comprehensive experimental analysis, we conducted an
extensive evaluation of the proposed TLP-NEGCN model on
a diverse set of temporal networks. These networks, consisting
of six real-life datasets and two synthetic datasets, vary in size,
complexity, and application domains, as detailed in Section
IV-A. Our evaluation encompasses a thorough examination of
performance metrics, as outlined in Section IV-B, to provide
a holistic assessment of the model’s capabilities. Furthermore,
we performed an in-depth exploration of parameter tuning to
identify the optimal hyperparameters for the TLP-NEGCN
model. This step ensures that our results accurately reflect
the model’s full potential. The performance metrics for all
experiments are rigorously computed to provide a robust basis
for comparison.

To gauge the effectiveness of the TLP-NEGCN model, we
compared its performance against a range of baseline temporal
link prediction methods, including GCN [27], GraphSage
[28], TemporalWalk [29], as well as recent techniques like
Ensemble-model-based link prediction (EMLP) [16], deep
convolutional neural network (DCNN) [17], Local-Global-
Quasi (LGQ) [18], GraphSAGE with CTDNE [19], and
TLPSS [30]. Notably, we optimized the parameters for both
baseline and contemporary techniques to ensure a fair com-
parison and to provide insights into the TLP-NEGCN model’s
superiority.

In addition to these comparisons, as part of our ablation
study, we assessed the performance of the TLP-NEGCN
model against four state-of-the-art node embedding tech-
niques: Laplacian eigenmaps [31]-based node embedding,
HOPE [32], node2vec [33], and SDNE [34]. This analysis

offers valuable insights into the utility and advantages of our
proposed model in the context of temporal link prediction. The
evaluation metrics outlined in Section IV-B were consistently
applied across all selected networks to maintain consistency
and ensure a comprehensive evaluation. To gain a more holistic
understanding of the TLP-NEGCN model’s performance, we
conducted additional analyses. Firstly, we computed confi-
dence intervals for Area Under the Curve (AUC) values,
providing statistical validation for the robustness of our results.
Secondly, we performed runtime complexity analysis to assess
the model’s efficiency and practicality in real-world applica-
tions.

In summary, our experimental results and analysis provide
a thorough and rigorous assessment of the TLP-NEGCN
model’s performance. We present insights into its effective-
ness compared to baseline methods, contemporary techniques,
and state-of-the-art node embedding approaches. This com-
prehensive evaluation, including parameter tuning, statistical
validation, and runtime analysis, offers a holistic view of the
model’s capabilities in the domain of temporal link prediction.
The simulation of the proposed model and other comparing
methods are performed in a Python programming environment
including several Python libraries like NumPy, TensorFlow,
sklearn, etc.

A. Parametric Setting

This section discusses the initial parametric setting for the
proposed model. We performed careful hyperparameter tuning
to select the best parameters for our model. We used the
Random Search heuristic to determine suitable parameters to
attain optimal results. It is a hyperparameter tuning heuristic,
in which several random combinations of various hyperparam-
eters are tried from a list of pre-determined hyperparameters
to achieve the best results. The obtained hyperparameters are
tabulated in Tab. II. From Tab. II, it can be seen that we use
one BiLSTM layer and two dense layers. The dimensionality
of the feature space d to be chosen as 256. The recurrent
dropout and dropout values are chosen to be 0.2 and 0.25,
respectively. We use ReLU and Softmax as the activation func-
tion. Stochastic gradient descent is employed as an optimizer
with a learning rate (lr) equal to 1e-4 and the momentum
being 0.9. The number of epochs is chosen to be 50. Since
temporal link prediction is referred to as a binary classification,
hence, we used ”Binary-crossentropy” as the loss function.
The ”ReduceLRonPlateau” is used as the callback function to
reduce the value of the learning rate as the results tend to
plateau.

Further, we performed the dimensionality analysis, and
Splitting Ratio vs. AUC as a part of hyperparameter tuning.

1) Dimensionality Analysis: We analyzed the simulations
performed to determine the appropriate dimensionality of the
feature space. Fig. 5 shows the accuracy percentages obtained
for various datasets as the dimensionality is varied. From the
figure, we see that the accuracy for all the datasets increases
as the dimensionality is increased. This is due to the additional
knowledge associated with the higher dimensionality. It is

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

TABLE I
THE VARIOUS STATISTICAL DETAILS OF THE SEVERAL TEMPORAL NETWORKS USED BY US.

Datasets | V | | E | Time Period Description
MathOverflow 24818 506550 2350 days Math stack exchange interaction network

Email 986 332334 803 days Email interaction network
CollegeMsg 1899 59835 193 days College messaging network for UC, Irvine
Bitcoin-OTC 5881 35592 6 years Bitcoin trading platform trust network
Bitcoin-Alpha 3783 24186 6 years Bitcoin trading platform trust network

Reddit 55863 858490 3 years Reddit users interaction network
SBM1000 1000 56000 8 Snapshots Stochastic Block Model
SBM5000 5000 157000 8 Snapshots Stochastic Block Model

TABLE II
CHOSEN HYPERPARAMETERS FOR THE PROPOSED TLP-NEGCN

APPROACH.

Hyperparameter Description or Value
Number of BiLSTM layers 1

Dimension of the network embedding 256
Number of Dense layers 2
Recurrent dropout rate 0.20

Dropout rate 0.25
Activation function ReLU and Softmax

Optimizer SGD(lr=1e-4, momentum=0.9)
Number of epochs 50

Loss function Binary-crossentropy
Callbacks ReduceLROnPlateau

evident that the results obtained an almost saturation point for
dimensionality equal to 256, beyond which the improvement
in accuracy is very minute. But as the dimensionality increases
the computation cost increases drastically. Hence, for our
study, we considered the dimensionality of the feature space
to be 256, to achieve an optimal balance between accuracy
and computational cost.

16 32 64 128 256 512
Dimensionality of feature space (d)

60

65

70

75

80

Ac
cu

ra
cy

 P
er

ce
nt

ag
e(

%
)

MathOverflow
NYCRestaurant
CollegeMsg
Bitcoin-OTC
Bitcoin-Alpha
Reddit
SBM1000
SBM5000

Fig. 5. Dimensionality of feature space (d) vs. Accuracy for various datasets.

2) Splitting Ratio vs. AUC: Here, we discuss the AUC
results obtained by the proposed TLP-NEGCN model for
temporal link prediction as the splitting ratio is varied for
each dataset. The splitting ratio for dividing the dataset into
training and testing datasets is varied from 50 to 95% in steps
of 5%. Fig. 6 depicts the obtained results. It is noted that as
the splitting ratio increases, the value of AUC also increases.
This is due to the availability of sufficient data available for
training the model. However, the poor performance of the

50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0
Splitting Ratio(%)

0.70

0.75

0.80

0.85

0.90

AU
C

Pe
rc

en
ta

ge
(%

)

MathOverflow
NYCRestaurant
CollegeMsg
Bitcoin-OTC
Bitcoin-Alpha
Reddit
SBM1000
SBM5000

Fig. 6. AUC values obtained by our algorithm as the value of the splitting
ratio for the dataset is varied on all the datasets.

introduced model at a lower splitting ratio is due to under-
fitting. Moreover, for all the datasets it achieves maxima
at a splitting ratio value of around 80%. As the splitting
ratio increases further, the performance of our framework
deteriorates. This is due to the over-fitting of our model to
the dataset. The above analysis shows that the splitting ratio
value of 80% is an optimal choice to achieve better results.

B. Comparison with existing link prediction techniques

we examined the performance of the proposed model
against some baseline and contemporary temporal link predic-
tion methods. Tab. III shows the results obtained for various
comparing methods as compared to the proposed model, TLP-
NEGCN. The results were evaluated on all the temporal
networks and for all the evaluation metrics. From Tab. III
we see that our proposed TLP-NEGCN approach performs
the best across all the datasets in terms of AUC. In terms of
Precision also, our TLP-NEGCN approach performs optimally
well for all the datasets except for Bitcoin-Alpha by a very
minute margin. In terms of recall, our TLP-NEGCN algorithm
lags behind some algorithms only for Bitcoin-OTC, Reddit,
and Ubuntu datasets by a very small percentage. For all the
other datasets, the proposed TLP-NEGCN model performs
better as compared to other models. This can be inferred as
a result of the inverse proportionality of Precision and Recall.
Further, the proposed model performed well in terms of F1
Score owing to the better results obtained for Precision and
Recall. The improved results of the proposed model can be
attributed to the appropriate sequential capturing of the opinion

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

TABLE III
THE RESULTS OBTAINED FOR VARIOUS CLASSICAL AND CONTEMPORARY LINK PREDICTION ALGORITHMS AS COMPARED TO OUR PROPOSED

TLP-NEGCN METHODOLOGY ACROSS ALL THE DATASETS AND ALL THE EVALUATION METRICS. THE BEST RESULT IN EACH CASE IS MARKED IN BOLD.

Methods MathOverflow Email CollegeMsg Bitcoin-OTC
AUC Prec. Rec. F1 AUC Prec. Rec. F1 AUC Prec. Rec. F1 AUC Prec. Rec. F1

TemporalWalk 0.7772 0.7697 0.5565 0.6459 0.7776 0.7959 0.7391 0.7665 0.7201 0.6719 0.8101 0.7345 0.6879 0.6767 0.3233 0.4804
GraphSage 0.8232 0.8229 0.2475 0.3917 0.8157 0.7957 0.8692 0.8308 0.8331 0.8278 0.8278 0.8278 0.6891 0.6851 0.4029 0.5633

GCN 0.8274 0.8153 0.4606 0.5962 0.8370 0.8799 0.7757 0.8245 0.8480 0.8300 0.8627 0.8460 0.7772 0.7697 0.5565 0.6459
EMLP 0.8051 0.8331 0.1604 0.2751 0.8121 0.7518 0.8879 0.8142 0.8204 0.8095 0.8360 0.8225 0.7596 0.6979 0.3683 0.5006
DCNN 0.8018 0.8287 0.7705 0.7985 0.7961 0.7799 0.8160 0.7975 0.8098 0.8368 0.7692 0.8016 0.7662 0.7190 0.8493 0.7787
LGQ 0.7999 0.8054 0.3888 0.5558 0.7875 0.7857 0.8684 0.8250 0.8225 0.8051 0.8796 0.8407 0.7407 0.7160 0.4051 0.5569

CTDNE 0.7272 0.6643 0.8788 0.75668 0.8491 0.8296 0.8865 0.85714 0.8680 0.8786 0.8658 0.8722 0.7866 0.7469 0.9002 0.8164
TLPSS 0.8113 0.7480 0.8980 0.8162 0.8589 0.8466 0.8750 0.8605 0.7042 0.6164 0.9492 0.7474 0.7581 0.7722 0.7223 0.7464

TLP-NEGCN 0.8522 0.8677 0.9077 0.8708 0.866 0.8484 0.8944 0.8708 0.9077 0.8669 0.9572 0.9098 0.8413 0.8308 0.4440 0.6056
Bitcoin-Alpha Reddit SBM1000 SBM5000

AUC Prec. Rec. F1 AUC Prec. Rec. F1 AUC Prec. Rec. F1 AUC Prec. Rec. F1
TemporalWalk 0.7107 0.6765 0.7819 0.7254 0.6891 0.6851 0.4029 0.5633 0.7008 0.6663 0.8731 0.7558 0.6046 0.6212 0.5632 0.5908

GraphSage 0.7718 0.8175 0.7254 0.7687 0.6879 0.6767 0.3233 0.4804 0.7418 0.6735 0.8647 0.7572 0.5730 0.5562 0.7787 0.6489
GCN 0.7700 0.7952 0.7213 0.7564 0.6057 0.5511 0.8860 0.6796 0.7977 0.7546 0.8741 0.8100 0.6391 0.6081 0.7422 0.6685

EMLP 0.7237 0.7043 0.7546 0.7286 0.7012 0.6929 0.7409 0.7161 0.8296 0.7819 0.9162 0.8437 0.6627 0.6114 0.6858 0.6464
DCNN 0.7201 0.6719 0.8101 0.7345 0.7056 0.7095 0.6739 0.6913 0.8454 0.8020 0.9157 0.8551 0.7748 0.7422 0.8622 0.7977
LGQ 0.7776 0.7959 0.7391 0.7665 0.7675 0.7630 0.7678 0.7654 0.8536 0.8331 0.8927 0.8619 0.7254 0.7075 0.8041 0.7527

CTDNE 0.8149 0.7743 0.8687 0.8188 0.7584 0.7573 0.7731 0.7651 0.8726 0.8694 0.8968 0.8829 0.7898 0.7636 0.8229 0.7922
TLPSS 0.6971 0.6535 0.9210 0.7645 0.7042 0.6164 0.9492 0.7474 0.8113 0.7480 0.8980 0.8162 0.7277 0.6835 0.8549 0.75973

TLP-NEGCN 0.8260 0.8083 0.8437 0.8256 0.8010 0.8035 0.8083 0.8059 0.9276 0.8970 0.9403 0.9181 0.7962 0.7867 0.8222 0.8041

and relationship changes amongst the nodes in the network
across the various timestamps. Moreover, the use of GCN
processes the features of the nodes to better incorporate the
neighborhood information for every node of the network to
produce the feature vectors that represent the network topology
in a better way.

C. Ablation study: Comparison with various node embedding
methods:

The Ablation study aims to evaluate the effectiveness of var-
ious node embedding techniques in the TLP-NEGCN model
for temporal link prediction. To perform a suitable comparative
study, we replace the GEMSEC node embedding in the initial
feature generation phase with well-known node embedding
techniques like Laplacian eigenmaps (Lap) [31] based node
embedding, HOPE [32], Node2Vec [33], SDNE [34]. Tab. IV
presents the results obtained for the various evaluation metrics
obtained on all the datasets for all the chosen node embeddings
augmented in our framework. The results indicate that the pro-
posed methodology surpasses other node embeddings in AUC,
Precision, and F1 Score. However, Our model falls slightly
behind in Recall for only the Bitcoin-OTC and Ubuntu datasets
by a narrow margin. The results obtained exhibit the efficacy
of the proposed model of temporal link prediction. The better
performance of the proposed work also exhibits the utility
of the model in choosing the GEMSEC node embedding for
initial feature generation over other node embedding methods.

The GEMSEC embedding used by us helps in yielding com-
pact and informative embeddings that retain crucial network
structure while reducing computational complexity. Moreover,
the iterative nature of our algorithm also helps in learning
the evolving temporal patterns for temporal link prediction.
The Laplacian eigenmaps on the other hand are sensitive to
the connectivity and density of the graph, which can lead

to suboptimal representations, especially in networks with
varying density or disconnected components. HOPE’s reliance
on higher-order proximity information may pose challenges
in obtaining such information in real-world temporal net-
works, potentially limiting its effectiveness. Node2Vec, while
proficient in capturing neighborhood structures, is highly
parameter-dependent and may produce biased representations
if suboptimal parameters are chosen for random walk sim-
ulations. SDNE, with its deep learning approach, demands
careful hyperparameter tuning and considerable computational
resources, potentially leading to longer training times, which
might be less practical for real-time temporal link prediction
applications. The Ablation study’s comparative analysis en-
ables us to identify the most suitable node embedding method
for the TLP-NEGCN model in temporal link prediction tasks.

D. Confidence Interval on AUC

Here, we discuss the statistical significance of the results
obtained by the introduced model by evaluating the confi-
dence interval over AUC values for all the datasets. Tab. V
presents the confidence intervals obtained by us. From Tab.
V, it is evident that the confidence interval for our proposed
model lies very near across the AUC results obtained by the
model. Even the lower limit of the interval is significant in
terms of performance. The obtained results further justify the
exemplary performance of the proposed model of temporal
link prediction.

E. Run time Complexity Analysis

Now, we compare the absolute runtime taken by various
baseline and contemporary methods along with the proposed
model, TLP-NEGCN, to perform temporal link predictions
on different datasets. Here, the absolute runtime refers to the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

TABLE IV
THE RESULTS OBTAINED FOR VARIOUS WELL-KNOWN NODE EMBEDDING METHODS AS COMPARED TO THE PROPOSED TLP-NEGCN METHODOLOGY

ACROSS ALL THE DATASETS. THE BEST RESULT IN EACH CASE IS MARKED IN BOLD.

Methods MathOverflow Email CollegeMsg Bitcoin-OTC
AUC Prec. Rec. F1 AUC Prec. Rec. F1 AUC Prec. Rec. F1 AUC Prec. Rec. F1

SDNE 0.7258 0.7475 0.6877 0.7164 0.7479 0.7237 0.8203 0.7690 0.7413 0.8196 0.6176 0.7044 0.7545 0.7225 0.8615 0.7859
Node2Vec 0.7249 0.7423 0.6919 0.7249 0.7526 0.7453 0.7832 0.7638 0.7611 0.8295 0.6636 0.7373 0.8015 0.8046 0.8046 0.8046

HOPE 0.8007 0.8504 0.7368 0.7895 0.7642 0.7545 0.7850 0.7695 0.7971 0.8569 0.7133 0.7785 0.7150 0.7398 0.6946 0.7165
Lap 0.8436 0.8506 0.8276 0.8389 0.7762 0.7612 0.8081 0.7840 0.8370 0.8799 0.7757 0.8245 0.7458 0.8398 0.7398 0.7398

TLP-NEGCN 0.8522 0.8677 0.9077 0.8708 0.866 0.8484 0.8944 0.8708 0.9077 0.8669 0.9572 0.9098 0.8413 0.8308 0.4440 0.6056
Bitcoin-Alpha Reddit SBM1000 SBM5000

AUC Prec. Rec. F1 AUC Prec. Rec. F1 AUC Prec. Rec. F1 AUC Prec. Rec. F1
SDNE 0.7054 0.7007 0.7441 0.7218 0.5628 0.6415 0.2741 0.3841 0.7191 0.7118 0.7347 0.7230 0.5935 0.5690 0.8110 0.6688

Node2Vec 0.6451 0.6814 0.5877 0.6311 0.6089 0.6213 0.5203 0.5663 0.7533 0.7183 0.8079 0.7605 0.5202 0.4755 0.9145 0.6257
HOPE 0.7647 0.7739 0.7295 0.7510 0.6536 0.8474 0.3816 0.5263 0.7674 0.7602 0.7846 0.7722 0.6708 0.6508 0.8333 0.7308

Lap 0.7216 0.8226 0.6991 0.7107 0.6895 0.7422 0.5760 0.6486 0.7791 0.7624 0.8159 0.7882 0.6918 0.6187 0.8389 0.7122
TLP-NEGCN 0.8260 0.8083 0.8437 0.8256 0.8010 0.8035 0.8083 0.8059 0.9276 0.8970 0.9403 0.9181 0.7962 0.7867 0.8222 0.8041

TABLE V
STATISTICAL SIGNIFICANCE OF THE PERFORMANCE OF THE PROPOSED MODEL ON THE BASIS OF CONFIDENCE INTERVAL OVER AUC VALUES

Dataset 90% 95% 98% 99%
MathOverflow [85.2208, 85.2192] [85.2210, 85.2190] [85.2212, 85.2188] [85.2213, 85.2187]

Email [86.6010, 86.5990] [86.6012, 86.5988] [86.6014, 86.5986] [86.6015, 86.5985]
CollegeMsg [90.7719, 90.7681] [90.7723, 90.7677] [90.7728, 90.7672] [90.7731, 90.7669]
Bitcoin-OTC [84.1332, 84.1268] [84.1338, 84.1262] [84.1345, 84.1255] [84.1350, 84.1250]
Bitcoin-Alpha [82.6040, 82.5960] [82.6048, 82.5952] [82.6057, 82.5943] [82.6063, 82.5937]

Reddit [80.1007, 80.0993] [80.1008, 80.0992] [80.1010, 80.0990] [80.1011, 80.0989]
SBM1000 [92.7618, 92.7582] [92.7621, 92.7579] [92.7626, 92.7574] [92.7628, 92.7572]
SBM5000 [79.6217, 79.6183] [79.6220, 79.6180] [79.6224, 79.6176] [79.6226, 79.6174]

TABLE VI
ABSOLUTE RUN TIME (IN MS.) COMPARISON OF VARIOUS BASELINE AND CONTEMPORARY MODELS TO PERFORM TEMPORAL LINK PREDICTION ON

DIFFERENT DATASETS.

Methods MathOverflow Email CollegeMsg Bitcoin-OTC Bitcoin-Alpha Reddit SBM1000 SBM5000
TemporalWalk 759 165 345 604 454 1533 258 509

GraphSage 717 145 378 633 487 1504 272 589
GCN 762 142 360 659 464 1526 281 585

EMLP 985 308 558 756 686 1761 437 764
DCNN 1008 375 536 787 645 1713 451 777
LGQ 1058 350 598 769 665 1754 419 727

TLP-NEGCN 963 246 489 697 563 1618 339 681

amount of time required by the trained model to perform the
temporal link prediction amongst the nodes of the network.
The absolute run time is calculated in milliseconds (ms).
The obtained results are listed in Tab. VI that illustrate the
baseline methods take the least time to make link predictions
over all the datasets. However, compared to the contemporary
methods, the proposed TLP-NEGCN model takes the least
amount of time. The difference in the absolute runtimes of
the contemporary and the baseline algorithms is due to the
deep learning architecture used by all the chosen contemporary
algorithms. The baseline algorithms, on the other hand, use
very trivial architectures which improves their computation
time. The consistent performance of the proposed model
shows its stability across the varying dimensionalities and
intricacies of the datasets. The grouping of the dataset based
on timestamps to establish appropriate granularity while re-
moving the irrelevant information helps our model to achieve
good computational time. Moreover, performing choosing the
suitable parameters also helps in speeding up the task of link
prediction and generating efficient results.

The above discussion reveals the usefulness of the proposed
work, named TLP-NEGCN, for temporal link prediction as
compared to various baseline and contemporary temporal link
prediction methods. The experimental analysis also demon-
strates the use of GEMSEC for generating the initial features
for all nodes of the network. The better performance of our
model can be inferred due to the appropriate representation
of the topological properties of the relationships amongst
the nodes via the GEMSEC embedding which are further
processed by the GCN architecture. This helps our model to
aggregate the neighborhood contribution of nodes in generat-
ing the feature set for every node of the network. Moreover,
the use of a BiLSTM architecture to make the final link helps
in capturing the short-term periodicity and changes in the
association amongst the nodes optimally.

VI. CONCLUSION

Temporal link prediction is among the most-studied topic
in network science. In this paper, an improved temporal link
prediction model has been introduced using GEMSEC graph

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

embedding and graph convolutional networks (GCN). We
adopted the GEMSEC node embedding to generate the initial
feature vectors for each node of the network. The necessary
changes are made in the GCN architecture to iteratively
process these feature vectors for the dataset’s timestamps,
which enables better capture of the opinion changes over time
and neighborhood information of the users in the network.
Then, using the node features vectors and the existence or
absence of the edges between nodes as labels, we produced
a well-labeled and well-balanced dataset. Following that, the
dataset is divided into training and testing parts. The BiLSTM
model is trained using the training dataset, and the trained
model is then used to predict links based on future timestamps
in the testing datasets. The hyperparameter studies are carried
out to acquire appropriate model parameters. We conducted
intensive experiments on six real-life and two synthetic tem-
poral datasets and computed various evaluation metrics. Our
model’s performance was compared to various baseline and
contemporary temporal link prediction methods. Further, as a
part of the ablation study, the result of the proposed model
is also compared with some prominent node embedding tech-
niques. The results obtained illustrate the proposed model’s
effectiveness in predicting links on temporal networks. Further,
we can apply a similar idea for link prediction on weighted
temporal links in the near future.

REFERENCES

[1] C. Muro, B. Li, and K. He, “Link prediction and unlink prediction
on dynamic networks,” IEEE Transactions on Computational Social
Systems, 2022.

[2] L. Wang, J. Ren, B. Xu, J. Li, W. Luo, and F. Xia, “Model: Motif-
based deep feature learning for link prediction,” IEEE Transactions on
Computational Social Systems, vol. 7, no. 2, pp. 503–516, 2020.

[3] C. Muro, B. Li, and K. He, “Link prediction and unlink prediction
on dynamic networks,” IEEE Transactions on Computational Social
Systems, 2022.

[4] A. Ozcan and S. G. Oguducu, “Link prediction in evolving hetero-
geneous networks using the narx neural networks,” Knowledge and
Information Systems, vol. 55, no. 2, pp. 333–360, 2018.

[5] M. Qin, C. Zhang, B. Bai, G. Zhang, and D.-Y. Yeung, “High-quality
temporal link prediction for weighted dynamic graphs via inductive
embedding aggregation,” IEEE Transactions on Knowledge and Data
Engineering, 2023.

[6] H. Gao, J. Huang, Y. Tao, W. Hussain, and Y. Huang, “The joint method
of triple attention and novel loss function for entity relation extraction
in small data-driven computational social systems,” IEEE Transactions
on Computational Social Systems, vol. 9, no. 6, pp. 1725–1735, 2022.

[7] Z. Cao, L. Xu, D. Z. Chen, H. Gao, and J. Wu, “A robust shape-aware
rib fracture detection and segmentation framework with contrastive
learning,” IEEE Transactions on Multimedia, vol. 25, pp. 1584–1591,
2023.

[8] H. Gao, J. Xiao, Y. Yin, T. Liu, and J. Shi, “A mutually supervised
graph attention network for few-shot segmentation: the perspective of
fully utilizing limited samples,” IEEE Transactions on neural networks
and learning systems, 2022.

[9] D. Zhang, J. Yin, X. Zhu, and C. Zhang, “Network representation
learning: A survey,” IEEE transactions on Big Data, vol. 6, no. 1, pp.
3–28, 2018.

[10] P. Goyal and E. Ferrara, “Graph embedding techniques, applications,
and performance: A survey,” Knowledge-Based Systems, vol. 151, pp.
78–94, 2018.

[11] M. Xing, W. Ding, T. Zhang, and H. Li, “Stcgcn: a spatio-temporal
complete graph convolutional network for remaining useful life predic-
tion of power transformer,” International Journal of Web Information
Systems, vol. 19, no. 2, pp. 102–117, 2023.

[12] M. Chen, X. Luo, H. Shen, Z. Huang, Q. Peng, and Y. Yuan, “A chinese
nested named entity recognition approach using sequence labeling,”
International Journal of Web Information Systems, vol. 19, no. 1, pp.
42–60, 2023.

[13] A. Divakaran and A. Mohan, “Temporal link prediction: A survey,” New
Generation Computing, vol. 38, pp. 213–258, 2020.

[14] X. Ma, P. Sun, and G. Qin, “Nonnegative matrix factorization algorithms
for link prediction in temporal networks using graph communicability,”
Pattern Recognition, vol. 71, pp. 361–374, 2017.

[15] N. M. Ahmed, L. Chen, Y. Wang, B. Li, Y. Li, and W. Liu, “Deepeye:
link prediction in dynamic networks based on non-negative matrix
factorization,” Big Data Mining and Analytics, vol. 1, no. 1, pp. 19–
33, 2018.

[16] K. Li, L. Tu, and L. Chai, “Ensemble-model-based link prediction of
complex networks,” Computer Networks, vol. 166, p. 106978, 2020.

[17] W. Wang, L. Wu, Y. Huang, H. Wang, and R. Zhu, “Link prediction
based on deep convolutional neural network,” Information, vol. 10, no. 5,
p. 172, 2019.

[18] M. Kumar, S. Mishra, and B. Biswas, “Features fusion based link
prediction in dynamic neworks,” Journal of Computational Science,
vol. 57, p. 101493, 2022.

[19] N. Bowman, R. Jones, and S. Shafi, “Temporal link prediction on the
wikilinkgraphs dataset.”

[20] Z. Qiu, J. Wu, W. Hu, B. Du, G. Yuan, and P. Yu, “Temporal link
prediction with motifs for social networks,” IEEE Transactions on
Knowledge and Data Engineering, vol. 35(3), 2023.

[21] F. Spezzano, W. Chen, and X. Xiao, Proceedings of the 2019 IEEE/ACM
International Conference on Advances in Social Networks Analysis and
Mining. ACM, 2019.

[22] A. Paranjape, A. Benson, and J. Leskovec, “Motifs in temporal networks
in: Proceedings of the international conference on web search and data
mining, 601–610,” 2017.

[23] P. Panzarasa, T. Opsahl, and K. M. Carley, “Patterns and dynamics
of users’ behavior and interaction: Network analysis of an online
community,” Journal of the American Society for Information Science
and Technology, vol. 60, no. 5, pp. 911–932, 2009.

[24] S. Kumar, B. Hooi, D. Makhija, M. Kumar, C. Faloutsos, and V. Sub-
rahmanian, “Rev2: Fraudulent user prediction in rating platforms,” in
Proceedings of the Eleventh ACM International Conference on Web
Search and Data Mining. ACM, 2018, pp. 333–341.

[25] S. Kumar, W. L. Hamilton, J. Leskovec, and D. Jurafsky, “Community
interaction and conflict on the web,” in Proceedings of the 2018 world
wide web conference, 2018, pp. 933–943.

[26] P. Goyal, N. Kamra, X. He, and Y. Liu, “Dyngem: Deep embedding
method for dynamic graphs,” arXiv preprint arXiv:1805.11273, 2018.

[27] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[28] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Advances in neural information processing
systems, vol. 30, 2017.

[29] G. H. Nguyen, J. B. Lee, R. A. Rossi, N. K. Ahmed, E. Koh, and
S. Kim, “Continuous-time dynamic network embeddings,” in Compan-
ion proceedings of the the web conference 2018, 2018, pp. 969–976.

[30] R. Zhang, Q. Wang, Q. Yang, and W. Wei, “Temporal link prediction via
adjusted sigmoid function and 2-simplex structure,” Scientific Reports,
vol. 12, no. 1, p. 16585, 2022.

[31] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques
for embedding and clustering,” Advances in neural information process-
ing systems, vol. 14, 2001.

[32] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, “Asymmetric transitivity
preserving graph embedding,” in Proceedings of the 22nd ACM SIGKDD
international conference on Knowledge discovery and data mining,
2016, pp. 1105–1114.

[33] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, 2016, pp. 855–
864.

[34] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,”
in Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining, 2016, pp. 1225–1234.

	Introduction
	Related Work
	Proposed work
	Dataset Creation
	Initial Feature Generation
	Iterative Feature Processing using GCN
	Link Prediction using BiLSTM

	Datasets and evaluation criteria
	Datasets
	Evaluation metrics

	Experimental results and analysis
	Parametric Setting
	Dimensionality Analysis
	Splitting Ratio vs. AUC

	Comparison with existing link prediction techniques
	Ablation study: Comparison with various node embedding methods:
	Confidence Interval on AUC
	Run time Complexity Analysis

	Conclusion
	References

