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Abstract

Radiology reports cover different aspects from radiological observation to the

diagnosis of an imaging examination, such as x-rays, magnetic resonance

imaging, and computed tomography scans. Abundant patient information pre-

sented in radiology reports poses a few major challenges. First, radiology

reports follow a free-text reporting format, which causes the loss of a large

amount of information in unstructured text. Second, the extraction of impor-

tant features from these reports is a huge bottleneck for machine learning

models. These challenges are important, particularly the extraction of key fea-

tures such as symptoms, comparison/priors, technique, finding, and impres-

sion because they facilitate the decision-making on patients' health. To

alleviate this issue, a novel architecture CCheXR-Attention is proposed to

extract the clinical features from the radiological reports and classify each

report into normal and abnormal categories based on the extracted informa-

tion. We have proposed a modified Mogrifier long short-term memory model

and integrated a multihead attention method to extract the more relevant fea-

tures. Experimental outcomes on two benchmark datasets demonstrated that

the proposed model surpassed state-of-the-art models.
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1 | INTRODUCTION

The emergence of electronic health records (EHR) has
created new prospects in the healthcare industry, and the
growing use of digital content has provided numerous
advantages.1 A large amount of EHR information exists
in the form of unstructured free text.2 “The free-text
reporting format tends to offer a more natural and
expressive approach to documenting clinical events
and facilitate communication among the care team in the
healthcare environment”.3

Medical imaging techniques such as x-rays, magnetic
resonance imaging (MRI), and computed tomography
(CT) scans are among the few clinical examinations used
by radiologists to diagnose pulmonary diseases.4 Radiol-
ogy reports offer the primary means of documenting
imaging diagnostics and communicating findings to phy-
sicians.5 Radiology reports are specifically important for
conveying valuable information; however, harnessing
quality information from them is difficult because of their
free-text format.6–9

Deep learning (DL) techniques have recently demon-
strated outstanding performance in natural language pro-
cessing (NLP). DL methods have been adopted for
various tasks in the medical domain. Unlike machine
learning (ML) and rule-based methods which require
handcrafted features and manual design of rules for
training purposes, DL methods automatically learn fea-
tures and have stronger generalization ability. Long
short-term memory (LSTM) is one of the most popular
DL models predominantly used by researchers owing to
its potential to capture long dependencies. Bidirectional
LSTM (BiLSTM), a variant of LSTM, has forward and
backward hidden layers to address sequential modeling
issues. BiLSTM models have achieved impressive results
for clinical-named entity recognition (CNER),10–12 core-
ference resolution,13,14 relation extraction,15,16 and classi-
fication17,18 for mainstream text processing tasks. Despite
having a multitude of advantages over LSTM, there are
some key problems with the BiLSTM model: (1) the
model becomes complex due to the presence of high-
dimensional input distance; (2) the model sometimes
fails to capture contextual features; and (3) reduced per-
formance due to the absence of medical words in pre-
trained word embeddings.

We propose a model to address the aforementioned
issues for the clinical concept extraction (CCE) and clas-
sification of chest radiographs with a modified Mogrifier
and bidirectional LSTM with multihead attention
(CCheXR-Att). CCheXR-Att utilizes pre-trained embed-
dings to generate the contextual vectors of the input
words, and because the CNER can be improved by
extracting the character-level information,19 we propose

generating character embeddings by adopting the self-
attention method. The word representations are fed into
the bidirectional Mogrifier LSTM (BiMogrifier LSTM)
layer, where backward representations are computed to
capture contextual information. Global and local charac-
ter embeddings are fed into the conventional BiLSTM
model. The outputs from both the BiMogrifier LSTM and
traditional BiLSTM are concatenated, and the
concatenated result is provided as input to the multihead
attention (MHA) layer to capture important features.
Finally, SoftMax is used to predict the final label.

The main contributions in this paper are summarized
as follows:

• Propose a novel architecture, CCheXR-Att, for radio-
logical concept extraction and classification of chest
x-ray reports.

• The model integrates pre-trained embeddings and
adopts a multihead self-attention method to generate
character-level information.

• Propose a modification in the Mogrifier LSTM to com-
pute backward representations for capturing contex-
tual information.

• Employed MHA mechanism to improve the extraction
of important features.

• Experimental results show that the proposed model
outperforms state-of-the-art models.

The remainder of the paper is structured as follows:
Section 2 discusses related work. In Section 3, we discuss
the proposed methodology. The datasets, evaluation met-
rics, and training details are discussed in Section 4. We
provide a detailed analysis of the results obtained in
Section 5. Finally, the conclusion and future work are
discussed in Section 6.

2 | RELATED WORK

In the field of healthcare and clinical practice, a substan-
tial amount of text is generated, encompassing various
aspects such as symptoms, test results, diagnoses, treat-
ments, prevention, and patient outcomes. These textual
data hold valuable information, and accurately identify-
ing all the details within a clinical report can greatly
assist healthcare professionals in understanding a
patient's overall context during their diagnosis or treat-
ment phase, thereby enhancing healthcare support. The
potential application of clinical-concept detection and
extraction within the healthcare domain is noteworthy.
This involves creating systems that can extract relevant
clinical information from medical narratives or data
found on social media platforms.

2 of 15 RANI ET AL.

 10981098, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/im

a.23025 by T
est, W

iley O
nline L

ibrary on [08/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



The techniques employed in constructing CCE appli-
cations have largely been adapted from the broader realm
of NLP.20 These methodologies generally fall into two
categories: rule-based approaches and statistical
approaches which are further categorized into ML,21–24

DL,25–34 and hybrid methodologies.35,36

Recently, several researchers have explored this
domain and achieved remarkable performance outcomes.
For instance, Li et al.37 proposed a model combining
character-level CNN-BiLSTM-CRF and trained it using
the Nadam algorithm, achieving an F1-score of 84.61%
on the 2019 i2b2/VA concept extraction task. Gerevini
et al.38 used NLP tools for the annotation of chest CT
reports and ML methods to classify them. As DL methods
have shown competitive performance in different
domains in recent years, many authors have used DL
methods in the clinical domain. For example, Venkatara-
man and Pineda39 used an LSTM RNN-based model on
textual human and veterinary records and compared
them with decision trees and random forests. The model
scored higher than the baselines achieving macro-F1
scores of 74% and 68% for veterinary and human text nar-
ratives, respectively.

In addition to ML and DL methods, neural-based con-
textual embeddings have recently gained considerable
popularity due to their superior performance compared
to traditional word embeddings. Si et al.40 explored vari-
ous neural-based embeddings for extracting clinical con-
cepts from textual narratives. Similarly, L�opez-Ubeda
et al.,41 used transfer learning methods for the classifica-
tion of Spanish radiological reports and achieved a score
of up to 70% F1 score using a pre-trained multilingual
model. For the classification of medical texts, Prabhakar
and Won42 developed a hybrid DL model with MHA,
achieving an accuracy of 96.72% for the QC-LSTM model
and 95.76% for the hybrid BiGRU. Olthof et al.43 evalu-
ated ML techniques based on NLP for categorizing Dutch
radiology records of fractured extremities, chest radiogra-
phy, and pneumothorax. A summary of recent studies
related to clinical concept extraction is shown in Table 1.

3 | PROPOSED METHODOLOGY

This section discusses the proposed CCheXR-Att model
for extracting clinical concepts from chest x-ray reports

TABLE 1 A summary of recent studies on the extraction of clinical concepts.

Reference Objectives Model Dataset Performance

Li et al.37 To improve and optimize a named
entity recognition method based
on the LSTM-CRF model.

CNN-BiLSTM-
CRF

2010 i2b2/VA F1 score: 84.61%
Recall: 85.41%

Gerevini et al.38 To construct a system using
annotated radiology reports to
train machine learning
classifiers based on the
radiologist-developed schema
and identified textual evidence.

BoW-based
Model

Chest computed tomography
reports

Accuracy: Up to 98.5%
F-measure: Up to 98.3%

Venkataraman
and Pineda39

To assign ICD-9 codes to clinical
and veterinary records.

LSTM RNN CSU and MIMIC-III Macro-F1 score: 91%
and 70%, respectively

Si et al.40 To enhance the contextual
embeddings for clinical concept
extraction.

Contextual
embeddings

i2b2 (2010 and 2012) and
SemEval (2014 and 2015)

F1-measures: 80.74%–
93.18%

L�opez-Ubeda
et al.41

To apply transfer-learning models
for the text classification of
Spanish radiological reports.

Transfer-
learning
models

Radiological reports F1-score: 70%

Prabhakar and
Won42

To propose hybrid DL models
with MHA for medical text
classification.

QC-LSTM and
hybrid BiGRU

Hallmark dataset and AIM
dataset

Accuracy (QC-LSTM):
96.72%

Accuracy (Hybrid
BiGRU): 95.76%

Olthof et al.43 To compare different ML NLP
methods for classifying
radiology reports.

Rule-based, ML,
BERT

Dutch Radiology reports on
fractures, chest radiographs,
and pneumothorax

Accuracy: Up to 96%
F1-score: Up to 95%

Abbreviations: DL, deep learning; LSTM, long short-term memory; MHA, multihead attention; ML, machine learning; NLP, natural language processing.
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and classifying each report into normal and abnormal
categories. Figure 1 shows a flowchart of the proposed
model. The input sentences are first pre-processed and
fed into the embedding layers. We used two embedding
layers: a word-embedding layer and a character-
embedding layer. The word-embedding layer builds word
embeddings for each word in a sentence using global vec-
tor embedding (GloVe) embedding.44 In addition, the
model adopts a multi-attention neural network to gener-
ate local and global character-level features. The pro-
posed BiMogrifier LSTM layer processes word
embeddings as input, whereas the standard BiLSTM layer
processes character-level embeddings. The output from
both layers is concatenated, and the result is fed into the
MHA layer to find important features. The representa-
tions from the attention layer are then inserted into Soft-
Max to determine the ideal label (normal or abnormal).

3.1 | Embedding

The sentences are pre-processed and converted into a
vector. Given the limitations of conventional embeddings
in capturing contextual information, we opted for the uti-
lization of pre-trained embeddings in this paper. We have
used GloVe as our first embedding generation method,
and the self-attention mechanism as the second method
for generating local and global-level character embedding
to capture more character-level features.

Prior research predominantly concentrated on word
embeddings; however, it has recently been observed that
character embeddings (CE) based on the self-attention
method capture more information than word embeddings.
As a result, we employ the self-attention mechanism to
concurrently generate character embeddings at both local
and global levels. The attention score is computed as

αi¼ exp s xi,qð Þð ÞPn
j¼1 exp s xj,q

� �� � , ð1Þ

where s xi,qð Þ = xTi �q, xi represents the input status of a
word or character, and the input state represented by
q corresponds to xi.

All the character representations found in a single
sentence are combined into a global feature matrix for
global character embedding. The BiLSTM model pro-
cesses the feature matrix to incorporate more contextual
information and then employs a self-attention technique
to generate a new representation matrix. This results in
the creation of new character-level features. The next step
in obtaining the global character embeddings is to com-
pute the average value of each character feature, followed
by max pooling, which chooses the largest value of all the
characters contained in a word.

Similarly, local character embedding is generated by
employing a self-attention mechanism within one word.
Self-attention often results in a large output dimension,
hence, we construct a layer using the back-to-back pool
method. Selecting a feature as word embedding with a
single max-pool is not sufficient, and character informa-
tion is usually lost in the first pooling layer if two max-
pool layers are applied. Therefore, we employ average
pooling before max pooling, which chooses the highest
value as word embedding to generate character represen-
tation based on attention. “Back-to-back pool layers allow
for the unification of the dimensions of each output in
the character-level feature extraction layer”.45 The pro-
posed architecture of the CCheXR-Att model is illus-
trated in Figure 2.

3.2 | Bidirectional Mogrifier LSTM

In this paper, we present a modified version of the Mogri-
fier LSTM.46 The motivation behind the model is to cap-
ture contextual information that traditional LSTM cannot
extract efficiently. The BiLSTM model, which also pro-
cesses the backward information in addition to forward
information, shows a significant improvement over the
LSTM model. The functions followed in LSTM are:

It ¼ σ XtWxiþHt�1Whiþbið Þ, ð2Þ

Ft ¼ σ XtWxf þHt�1Whf þbf
� �

, ð3Þ

Ot ¼ σ XtWxoþHt�1Whoþboð Þ, ð4Þ

~Ct ¼ tanh XtWxcþHt�1Whcþbcð Þ, ð5Þ

FIGURE 1 Flowchart of the proposed model.
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Pt ¼ Pt

K
Pt�1þ It

K
~Ct, ð6Þ

Ht ¼Ot

K
tanh Ptð Þ, ð7Þ

where It �Rn�h denotes input gate, Ft �Rn�h denotes
forget gate, and Ot �Rn�h denotes the output gate. Xt

represents the input information. Wxi, Wxf , Wxo, Wxc,
Whi, Whf , Who, and Whc are the weight parameters, and
bi, bf , bo, and bc are the bias parameters. ~Ct and Pt repre-
sent the candidate memory and present memory cells
respectively, and Ht represents the present hidden state.
The input, forget, and output states are then computed
by the LSTM cell. From the Xt and Ht�1, relevant

FIGURE 2 Proposed architecture of CCheXR-Attention model. CCheXR-Att, classification of chest radiographs with a modified

Mogrifier and bidirectional LSTM with multihead attention.
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information such as the input and forget states, can be calcu-
lated. The input and forget gates produce the cell state. The
next LSTM cell is then loaded with hidden and cell states.

Since there is no connection between the previous
state hprev and the present input x in the LSTM, and with
no opportunity for interaction before the gate, this
absence of interaction could cause contextual informa-
tion to be lost. Inspired by the Mogrifier LSTM,46 which
improves the contextual modeling by providing the inter-
action before the gate, we propose a bidirectional Mogri-
fier LSTM that not only improves the contextual
modeling ability but also the concept extraction. Figure 3
shows the proposed BiMogrifier LSTM cell structure.

BiMogrifier LSTM updates the input and prior hidden
states through mutual gating. The input is crossed with the
gate in each cycle. The BiMogrifier LSTMmodel derives bidi-
rectional hidden information h

!
and h

 
from the forward

and backward directions, respectively. xi representing the
input embedding and hiprev representing the previous hid-
den states are processed by the Mogrifier operation.

h
!¼Mogrifier x

!
, h
!

prev

� �
, ð8Þ

h
 ¼Mogrifier x

 
, h
 

prev

� �
, ð9Þ

hBiMogrifier-LSTM¼ h
!
, h
 h i

, ð10Þ

xi¼ 2σ Qihi�1prev

� �
⨀xi�2, for odd i� 1…r½ �, ð11Þ

hiprev¼ 2σ Rixi�1
� �

, for even i� 1…r½ �, ð12Þ

where Qi and Ri are matrices with randomly initialized
values, and r represents the number of rounds. σ repre-
sents a logistic sigmoid function and ⨀ represents an
element-wise product.

3.3 | Bidirectional LSTM

The basic BiLSTM network is used as the second layer to
process the character-level embeddings. Local and global
character-level embeddings are fed into the BiLSTM net-
work. The forward and backward hidden representations
h
!

and h
 

for BiLSTM are computed using Equations (13)
and (14), respectively. The final output hidden representa-
tion hBiLSTM is obtained by concatenating h

!
and h

 
as given

in Equation (15).

h
!¼LSTM h1,

�!… hn
�!h i

: ð13Þ

h
 ¼LSTM h1,

 �… hn
 �h i

: ð14Þ

hBiLSTM¼ h1,…,hn½ �: ð15Þ

The contextual representations obtained from the
BiMogrifier LSTM and the traditional BiLSTM are then
fed into the concatenation layer.

3.4 | Concatenation layer

This layer performs element-wise summations of the rep-
resentations from the previous layers.47 The concatena-
tion of two independent networks is represented by hFinal
as shown in Equation (16).

hFinal¼ hBiMogrifier-LSTMþhBiLSTM
� �

: ð16Þ

3.5 | Multihead attention

Clinical-named entities are not present in isolation in
clinical reports and hold dependencies among them,

FIGURE 3 Proposed Bidirectional Mogrifier long short-term memory cell structure.
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accompanied by a long interval between entity charac-
ters. Given the significance of this dependency, it must be
captured by assigning dependent characters more atten-
tion by assigning them higher weights for significant
characters and lower weights for less important charac-
ters. To capture this dependency, the model needs to give
extra importance to the characters that are dependent on
the current character.

We used an MHA method to locate important fea-
tures. The MHA structure is shown in Figure 4. Attention
scores are computed using Equation (17).

attention Q,K,Vð Þ¼ SoftMax
QKtffiffiffi
d
p


 �
V : ð17Þ

The MHA employs parallel h heads to concen-
trate on various components of the value vector
channels. The Q,K,andV parameters represent the
characters in the sentence and are set to be equal
while calculating self-attention. The learning parame-
ters are defined as Wi

Q �ℝn�d
h,Wi

K �ℝn�d
h, and

Wi
V �ℝn�d

h. The ith head attention is calculated using
Equation (18).

Mi¼Attention QWQ
i ,KW

K
i ,VW

V
i

� �
: ð18Þ

The computation output from these parameters is
concatenated h times, a linear transformation is per-
formed, and the output of the phrase's tth character is
obtained using Equation (19), where concat() denotes
the splicing function and W 0 �ℝn�d

h is the weight
parameter.

Mt ¼ concat h1,h2,h3,…,hhð ÞW 0: ð19Þ

3.6 | SoftMax

The next layer that we implemented after the MHA layer
is the SoftMax layer to decode the predicted labels. The
evaluation score is computed using Equation (20).

S X ,yð Þ¼
Xn
i¼1

Pi,yi þ
Xn
i¼1

Wyi,yiþ1 , ð20Þ

where X represents the input sequence, y represents the
corresponding label sequence, Pi,j represents the score of
the ith character labeled as label j, W represents the tran-
sition matrix, and Wi,j is the state transition score from
label i to j.

SoftMax is used to compute the conditional probabil-
ity of the sequence label y given X, using Equation (21).

P yjXð Þ¼ eS X ,yð ÞP
~y � Yx

eS X ,~yð Þ : ð21Þ

4 | EXPERIMENT

This section gives an overview of datasets, evaluation
metrics, and the training process. We also evaluated the
effectiveness of several baseline models and extensively
analyzed both the proposed model and its different vari-
ants. In addition, we thoroughly investigated the model's
performance through an ablation study to gain deeper
insights into the proposed model.

4.1 | Dataset

We employed two standard benchmark datasets in our
study. The first dataset, known as the Indiana University
Chest X-ray Reports (IU-CXR) dataset, comprises 3955
radiology reports and is sourced from the National
Library of Medicine.48 The second dataset, called
MIMIC-CXR,49 encompasses 377 110 images linked to
227 827 textual reports. For our research, we focused
solely on the textual reports within this dataset.

4.2 | Evaluation metrics

We assess the performance of the proposed approach
through various evaluation metrics: accuracy, F1-score,
sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV). These metrics are
computed using the following equations:

FIGURE 4 Multihead attention structure.
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Accuracy¼ TPositiveþTNegative

TPositiveþFNegativeþTNegativeþFPositive
: ð22Þ

F1-score¼ 2�Precision�Recall
PrecisionþRecall

: ð23Þ

Sensitivity¼ TPositive

TPositiveþFNegative
: ð24Þ

Specificity¼ TNegative

TNegativeþFPositive
: ð25Þ

PPV¼ TPositive

TPositiveþFPositive
: ð26Þ

NPV¼ TNegative

TNegativeþFNegative
: ð27Þ

We have also used the Matthews Correlation Coeffi-
cient (MCC), a statistical tool for evaluating model per-
formance that considers TPositive, TNegative, FPositive, and
FNegative, thus making it a balanced measure of classifica-
tion performance. This is particularly important in CCE,
where the goal is to identify all relevant concepts accu-
rately without missing any or generating FPositive. The
MCC is computed using Equation (28).

MCC¼ TPositive �TNegative
� �� FPositive �FNegative

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPositiveþFPositiveð Þ TPositiveþFNegative

� �
TNegativeþFPositive
� �

TNegativeþFNegative
� �q :

ð28Þ

4.3 | Training details

The assessment of all models is done on a Windows
machine with an NVIDIA RTX3070 GPU. The word
‘embedding’ originated as a 100-dimensional GloVe pre-
trained representation sourced from Wikipedia domain
text. Character embedding was configured at a dimension
of 40. ADAM optimizer with a learning rate of 0.0001 is
employed. Each iteration was based on a batch size of
16, and the training spanned 40 epochs. Dropout regular-
ization with a rate of 0.5 was employed to enhance the
model's stability.

5 | RESULTS AND DISCUSSION

This section provides a detailed analysis of the results
obtained from the proposed model. A comparative

analysis is conducted between the proposed model and
traditional as well as state-of-the-art models to assess its
efficacy.

5.1 | Baselines

We evaluated the performance of the CCheXR-Att model
in comparison with several baseline and state-of-the-art
models, including LSTM, BiLSTM, CNN-BiLSTM-CRF,37

BoW-based model,38 FasTag,39 BERTLARGE,
40 Hybrid

BiGRU,42 Fine-Tuned BERT,43 Mogrifier LSTM,46 and
MSAM.50

LSTM relies on a single LSTM network to represent
the sentence. The final sentence representation is derived
by averaging all hidden states. BiLSTM creates representa-
tions in both the forward and backward directions,
enabling it to capture the semantic meanings of a sentence
from both directions. CNN-BiLSTM-CRF37 receives pre-
processed text and offers two choices for character-level
representation generation: CNN and BiLSTM. The
BiLSTM method captures neighboring information, with
forward LSTM capturing the left context and backward
LSTM capturing the right context. The final labeling, influ-
enced by local label dependencies, is optimized using the
CRF layer to assign the most suitable tag to each word.
BoW-based model38 relies on the bag-of-words framework
wherein the complete textual content of the report is
employed for classification purposes. This method omits
the use of manually curated annotated datasets and auto-
mated annotation tools. FasTag39 involves sequential
embeddings of terms abstracted from medical narratives.
By utilizing the GloVe technique, these terms undergo
compact encoding, enabling the portrayal of a vector space
in which semantically similar terms exhibit close associa-
tions. BERTLARGE

40 is improved by adding extra BiLSTM
layers atop its architecture, making it deeper and more
complex. BERTLARGE is fine-tuned by replacing the CRF
layer with a BiLSTM architecture due to BERT's effective
sequence labeling. Hybrid BiGRU42 consists of a CNN for
extracting local features and a BiGRU along with an MHA
mechanism to model the semantic features to enhance the
overall effectiveness of the model. Fine-Tuned BERT43

understands the relationships within single words and
complete sentences. BERT is initialized with pre-trained
parameters and then optimizes all parameters using
labeled data for the CCE task. Mogrifier LSTM46 intro-
duces a “Mogrifier” update, a gating mechanism that
enhances LSTM networks by integrating information from
different time steps, improving their ability to capture
complex dependencies in sequential data. MSAM50

employs self-attention mechanisms with MHA heads to
capture temporal dependencies and patterns effectively.
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This allows the model to focus on the most relevant fea-
tures, enabling the accurate classification of radiological
concepts.

5.2 | Performance comparison with
traditional and state-of-the-art models

We compared CCheXR-Att with traditional and state-of-
the-art models to prove its effectiveness. Performance
achieved by various models on the IU-CXR and MIMIC-
CXR datasets is presented in Tables 2 and 3, respectively.

It is observed that LSTM achieved the lowest accuracy
of 82.19% on IU-CXR, and an accuracy of 80.65% on the
MIMIC-CXR dataset. One reason for the poor perfor-
mance of LSTM is that it is unidirectional and processes
each word in a sentence equally. BiLSTM exhibited a
slightly improved performance compared with LSTM on
both datasets. In comparison with conventional LSTM
and BiLSTM models, CNN-BiLSTM-CRF exhibited supe-
rior performance. The inclusion of both CNN and
BiLSTM architectures combined with CRF contributed to
an enhanced performance level on both datasets. The
BoW-based model achieved slightly reduced performance
as it neglects word order and syntactic information. The
existence of misspellings, abbreviations, and medical ter-
minologies influenced the performance of FasTag. BER-
TLARGE showcased great performance on both datasets.
This is due to its extensive pre-trained knowledge, pro-
viding an inherent benefit in comprehending specialized
terminology and patterns within clinical reports.

The hybrid BiGRU model also achieved comparable
performance with fine-tuned BERT. The performance
comparison on the IU-CXR dataset indicates that the
models consistently achieved relatively similar accuracies
with the Hybrid BiGRU model. By contrast, the fine-
tuned BERT model demonstrated the highest accuracy as
it involves training BERT on labeled data, allowing it to
learn task-specific features, relationships, and intricacies
present in the clinical reports. Notably, the Mogrifier
LSTM demonstrated a substantial accuracy of 85.59% on
the IU-CXR dataset and an accuracy of 81.43% on the
MIMIC-CXR dataset. MSAM which incorporates self-
attention mechanisms, exhibited an accuracy of 84.6% on
the IU-CXR dataset and 85.91% on the MIMIC-CXR data-
set. MSAM showed a better performance than the base-
line owing to the self-attention method adopted by the
model to give extra weight to important entities.

Remarkably, the CCheXR-Att model emerged as a
standout performer across both datasets. On the IU-CXR
dataset, it attained the highest accuracy of 92.89%, an
F1-score of 89.31%, sensitivity of 88.23%, a specificity of
81.51%, PPV of 87.75%, NPV of 90.45%, and MCC
of 88.62%. Similarly, on the MIMIC-CXR dataset,
CCheXR-Att achieved an accuracy of 93.58%, an F1-score
of 92.03%, sensitivity of 88.32%, specificity of 81.49%, PPV
of 90.23%, NPV of 92.64%, and MCC of 82.72%. This
impressive performance can be attributed to the incorpo-
ration of word and character embeddings in the construc-
tion of a bidirectional model of the basic Mogrifier
LSTM. BiMogrifier LSTM-Att also displayed favorable
outcomes, achieving an accuracy of 90.73% on the IU-

TABLE 2 Performance comparison of traditional, state-of-the-art, and proposed models on the IU-CXR dataset.

Model Accuracy F1-score Sensitivity Specificity PPV NPV MCC

LSTM 82.19 81.78 80.61 77.54 79.07 81.56 72.38

BiLSTM 85.36 84.12 79.53 76.03 81.91 83.48 75.41

CNN-BiLSTM-CRF37 86.44 82.62 81.31 80.42 83.27 87.17 73.55

BoW-based model38 83.43 80.74 79.25 78.47 81.59 85.38 72.42

FasTag39 84.62 83.41 81.53 79.82 81.72 86.75 73.86

BERTLARGE
40 86.91 84.38 80.42 77.43 83.64 87.29 76.34

Hybrid BiGRU42 85.35 82.63 80.26 78.29 84.64 87.85 74.64

Fine-Tuned BERT43 86.71 83.24 81.36 79.36 85.62 87.59 75.35

Mogrifier LSTM46 85.59 84.93 82.93 78.36 84.60 85.74 74.76

MSAM50 84.6 82.4 79.91 75.42 80.7 84.13 75.23

LSTM-Att 85.12 85.9 81.81 78.49 84.3 87.17 74.68

BiLSTM-Att 88.93 87.69 83.01 78.83 85.16 88.53 80.35

Mogrifier LSTM-Att 86.55 85.4 80.32 79.45 82.87 86.41 78.59

BiMogrifier LSTM-Att 90.73 91.99 84.81 80.73 89.57 90.38 81.27

CCheXR-Att 92.89 89.31 88.23 81.51 87.75 90.45 88.62

Abbreviations: LSTM, long short-term memory; NPV, negative predictive value; MCC, Matthews Correlation Coefficient; PPV, positive predictive value.
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CXR dataset and 89.6% on the MIMIC-CXR dataset. The
Boxplots of performance metrics for the CCheXR-Att and
its variants on both datasets are shown in Figure 5. The
training and validation accuracy comparisons per epoch
for different variants of the CCheXR-Att on both datasets
are shown in Figure 6.

5.3 | Proposed model analysis

We examined different variations of CCheXR-Att to see
how well they work. The variants include LSTM-Att,
BiLSTM-Att, Mogrifier LSTM-Att, and BiMogrifier
LSTM-Att.

The LSTM-Att model utilizes separate LSTM layers
for word and character-level representation learning. The
representations obtained from both LSTM layers are
concatenated at the concatenation layer followed by
MHA to learn relevant position-specific information.
SoftMax classifier is then used to predict the final output.
By contrast, the BiLSTM-Att variant replaces both LSTM
layers with a bidirectional LSTM while keeping other
layers consistent. Conversely, the Mogrifier LSTM-Att
introduces a Mogrifier LSTM layer in place of BiLSTM in
the previous variant, to learn word and character-level
representation. The rest of the architecture remains the
same. Similarly, the BiMogrifier LSTM-Att employs two
bidirectional Mogrifier LSTM layers among which one
layer learns the word and the other layer learns
character-level embeddings, followed by concatenation,

MHA, and finally a SoftMax layer to predict the class.
Alternatively, the CCheXR-Att model considers bidirec-
tional Mogrifier LSTM and bidirectional LSTM layers for
word and character-level representations, respectively.
The output from both layers is then concatenated at the
concatenation layer and is followed by the MHA layer. A
SoftMax classifier is then applied for class prediction, as
elaborated in Section 3 of the paper.

We have also analyzed different parameter values,
including learning rate and dropout rates, which affected
model performance. Among the tested learning rates,
0.0001 stood out as optimal, delivering the highest accu-
racy and F1-score for IU-CXR and MIMIC-CXR datasets.
Various dropout rates were tested, and optimal outcomes
emerged as dropout rates increased incrementally from
0.2 to 0.5. The best accuracy and F1-score occurred at a
0.5 dropout rate for both IU-CXR and MIMIC-CXR data-
sets. Specifically, IU-CXR achieved 90.17% accuracy and
84.97% F1-score, while MIMIC-CXR attained 91.62%
accuracy and 90.65% F1-score.

We explored local and global self-attention methods
using various head values (20, 40, 60, and 80) for the
CCheXR-Att. Results from the experiments revealed that,
for the local character-level self-attention approach, the
highest accuracy occurred at 80 attention heads, and the
highest F1-score emerged at 60 attention heads for
the IU-CXR dataset. Similarly, on the MIMIC-CXR data-
set, the accuracy occurred at 60 attention heads and the
F1-score at 80 attention heads. On analyzing various
head values with the global self-attention method, we

TABLE 3 Performance comparison of traditional, state-of-the-art, and proposed models on the MIMIC-CXR dataset.

Model Accuracy F1-score Sensitivity Specificity PPV NPV MCC

LSTM 80.65 79.19 79.38 76.12 78.92 81.72 71.61

BiLSTM 84.89 83.92 80.82 78.87 82.67 85.58 72.48

CNN-BiLSTM-CRF37 87.22 83.18 82.53 80.31 84.61 88.32 75.37

BoW-based Model38 84.64 81.36 80.83 79.46 83.52 85.23 74.15

FasTag39 86.42 84.23 84.05 83.75 84.13 87.76 75.44

BERTLARGE
40 87.84 85.61 82.32 78.92 85.75 89.43 77.82

Hybrid BiGRU42 87.83 83.52 82.36 81.27 83.41 88.28 76.26

Fined-Tuned BERT43 88.57 84.64 82.23 80.41 84.34 87.73 76.35

Mogrifier LSTM46 81.43 79.01 80.50 80.30 80.34 85.12 70.62

MSAM50 85.91 85.28 82.91 80.73 84.78 88.39 73.57

LSTM-Att 83.42 82.39 80.5 79.59 81.61 85.18 74.21

BiLSTM-Att 90.06 89.73 86.69 85.25 87.21 88.45 76.43

Mogrifier LSTM-Att 84.11 82.1 82.33 78.72 80.46 89.44 75.63

BiMogrifier LSTM-Att 89.6 88.97 87.12 81.68 85.93 89.92 80.58

CCheXR-Att 93.58 92.03 88.32 81.49 90.23 92.64 82.72

Abbreviations: CCheXR-Att, classification of chest radiographs with a modified Mogrifier and bidirectional LSTM with multihead attention; LSTM, long short-
term memory; NPV, negative predictive value; MCC, Matthews Correlation Coefficient; PPV, positive predictive value.
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observed that CCheXR-Att achieved its highest accuracy
at a head value of 40, while the F1-score reached its max-
imum at 60 for the IU-CXR dataset. By contrast, the high-
est accuracy and F1-score for the MIMIC-CXR dataset
were observed with an 80 head value.

5.4 | Ablation study

To comprehensively assess the individual contributions of
the components comprising CCheXR-Att, we conducted
an ablation study using the IU-CXR and MIMIC-XR data-
sets. The results achieved by our model in the absence of
various proposed modules are presented in Table 4.

5.4.1 | Removing self-attention-based
character-embedding module

Utilizing CE through the self-attention technique proves
to be more informative than word embeddings. The find-
ings in Table 4 show the relatively reduced performance

of the model in the absence of CEs, thus affirming their
efficacy. This highlights the valuable role of character
embeddings at both local and global levels in helping the
model understand detailed character-level features.
The model's performance decline without CEs indicates
that the omission of such embeddings introduces contex-
tual information gaps, potentially introducing bias and
consequent performance deterioration.

5.4.2 | Removing BiMogrifier LSTM module

The incorporation of the BiMogrifier LSTM introduces a
dynamic updating mechanism that involves mutual gat-
ing, enabling contextual modeling by facilitating interac-
tion preceding the gating process. Our results show a
significant performance drop on both IU-CXR and
MIMIC-CXR datasets when the BiMogrifier LSTM mod-
ule is removed. This confirms the essential nature of the
dynamic updating mechanism and strongly suggests that
the including of the BiMogrifier LSTM module greatly
improves concept extraction and classification.

FIGURE 5 Boxplot of performance metrics for the proposed model and its variants on the datasets: (A) IU-CXR, and (B) MIMIC-CXR.

IU-CXR, Indiana University Chest X-ray Reports.
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FIGURE 6 Training and validation accuracy throughout 40 epochs for the proposed model and its variants on datasets: (A) IU-CXR,

and (B) MIMIC-CXR. IU-CXR, Indiana University Chest X-ray Reports.
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5.4.3 | Removing MHA module

The integration of an MHA mechanism that extracts
important insights from different parts of a sentence and
gives priority to relevant elements greatly benefits classi-
fication results. Our experimental findings confirm that
incorporating this MHA mechanism significantly
improves the effectiveness of the proposed model. Con-
versely, the lack of such a mechanism suggests that the
model struggles to capture essential semantic information
that spans various representation dimensions and posi-
tions, resulting in a noticeable decline in performance.

5.5 | Discussion and findings

Applying the proposed model to chest x-ray reports offers
comparatively simple and low-effort means to overcome
the limitations discussed in this paper. Traditional ML
and DL models are not able to effectively capture contex-
tual features, and the presence of a high-dimensional
input distance causes complexity in the models. Another
reason for the poor performance of traditional models is
the absence of medical words in pre-trained word
embeddings.

To this end, the proposed model is useful given its
ability to utilize word and character embedding by inte-
grating the local and global-level attention methods, and
further enhancing the Mogrifier LSTM to include infor-
mation from the backward direction through the gating
mechanism. Additionally, the model is improved through
an MHA method to capture important information
obtained from the concatenation layer.

In addressing complex CCE tasks, we find the combi-
nation of word and character embeddings to be highly
effective. Word embeddings capture comprehensive word
information, while character embeddings excel in han-
dling out-of-vocabulary (OOV) words, collectively
enhancing our model's CCE performance. CCheXR-Att
utilizes both BiMogrifier LSTM and BiLSTM to success-
fully extract meaningful features. CCheXR-Att exhibited

higher accuracy compared with BiMogrifier LSTM-Att.
This variation in accuracy between CCheXR-Att and
BiMogrifier-Att is attributed to distinctions in clinical
narratives, the presence of rare words, and dataset size.
By leveraging both word and character embeddings, our
model adeptly captures word relationships, leading to
improved concept extraction. It excels in annotating enti-
ties of varying lengths, demonstrating superior informa-
tion extraction capabilities. While BiLSTMs are
particularly effective at learning complex features and
patterns, the introduction of Bi-Mogrifier LSTM enhances
contextual information identification, thereby boosting
the overall performance of CCheXR-Att. The combina-
tion of architectural elements and embedding techniques
positions CCheXR-Att as a robust solution for advancing
CCE tasks, showcasing its proficiency in capturing con-
textual information and achieving superior performance
across diverse datasets.

6 | CONCLUSION AND
FUTURE WORK

This paper presents CCheXR-Att, a novel approach for
the clinical concept extraction and classification of chest
x-ray reports. Specifically, the model integrates pre-
trained word embeddings and character-level embed-
dings based on the self-attention method that is further
processed with proposed Bi-Mogrifier LSTM and
BiLSTM, respectively.

The proposed model aims to fetch useful entities from
clinical narratives and provide support to healthcare pro-
fessionals, radiologists, and researchers to make better
decisions through the detected information, and to
increase patients' quality of life. In addition, the experi-
ment demonstrated the effectiveness of CCheXR-Att
which suggests that the framework with different compo-
nents introduced in the model can capture accurate infor-
mation and classify the reports correctly. In the two
benchmark datasets, the proposed model performs better
than the state-of-the-art models.

TABLE 4 The performance

comparison of our model without

various proposed modules on the IU-

Xray and MIMIC-CXR datasets.

Model

IU-CXR MIMIC-CXR

Accuracy F1-score Accuracy F1-score

Without CE 80.07 72.94 82.37 79.21

Without BiMogrifier LSTM 82.53 77.23 85.63 80.76

Without MHA 84.42 80.77 84.11 81.54

CCheXR-Att 92.89 89.31 93.58 92.03

Abbreviations: CCheXR-Att, classification of chest radiographs with a modified Mogrifier and bidirectional
LSTM with multihead attention; CE, character embeddings; IU-CXR, Indiana University Chest X-ray
Reports; LSTM, long short-term memory; MHA, multihead attention.
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In the future, an investigation into the efficacy of
incorporating state-of-the-art language models will be
undertaken. Furthermore, a comprehensive assessment
and comparison of alternative neural architectures for
clinical concept extraction and classification will be
conducted. It is also planned to include external domain-
specific knowledge in future implementation. The exten-
sibility of the model to encompass multiple languages is
also a prospective avenue of exploration.
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