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We consider a pair of traders in a market where the information available to the

second trader is a strict subset of the information available to the first trader. The

traders make prices based on information concerning a security that pays a random

cash flow at a fixed time T in the future. Market information is modelled in line

with the scheme of Brody, Hughston & Macrina (2007, 2008, 2011) and Brody,

Davis, Friedman & Hughston (2009). The risk-neutral distribution of the cash flow

is known to the traders, who make prices with a fixed multiplicative bid-offer spread

and report their prices to a game master who declares that a trade has been made

when the bid price of one of the traders crosses the offer price of the other. We

prove that the value of the first trader’s position is strictly greater than that of the

second. The results are analyzed by use of simulation studies and generalized to

situations where (a) there is a hierarchy of traders, (b) there are multiple successive

trades, and (c) there is inventory aversion.
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I. INTRODUCTION

We step outside the standard framework for arbitrage-free pricing and consider a situation
that conforms more closely to that of reality, namely that where traders with access to
superior information dominate those who are less well informed. The principle that the
more well informed should be better placed to trade successfully is intuitively satisfactory
and generally accepted, but there remains the problem of embodying this principle in the
context of a specific set of models, and within this context giving a precise mathematical
characterization of the mechanics of statistical arbitrage when the arbitrage is based on
informational advantage. That is the goal of the present investigation. Our approach to the
problem is to adapt the methods of information-based asset pricing [11] to the dynamical
setting of a hierarchy of traders stratified by the level of information that they can access.

Before embarking upon details we give an overview of the arguments we propose to
develop. In Section II we recall the construction of the information-based price in a market
with a single source of information concerning a security that delivers a single random cash
flow at a fixed time T . The price process is presented in Proposition 1 and is worked out by
filtering techniques based on the methods of references [6, 7]. Here we reformulate that work
in a rather general setting in which the cash flow is represented by an integrable random
variable.
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The setup is then generalized to the situation where prices are made by a hierarchy of
traders, wherein a tier-n trader has at their disposal the filtration generated by a collection
of n information processes, the tier-(n−1) trader works with the filtration made by the first
n− 1 of these processes, and so on. In Proposition 2 we work out the price made by a tier-n
trader, and in Proposition 3 we show that this price can be expressed in terms of a reduced
“effective” information process with a higher information flow rate given by the square root
of the sum of the squares of the flow rates of the various component information sources.

The arguments of Section II are developed within the framework of a hierarchy of specific
models for market information. The restriction to the case of a single random cash flow is
merely for simplicity and can be generalized in a straightforward way to the situation where
one has multiple cash flows dependent on multiple market factors and multiple associated
sources of information [6, 7, 24]. In Section III the discussion is lifted to the general set up
of a pair of traders where the filtration of Trader B is a sub-filtration of that of Trader A.
See [4, 10] for similar trading schemes. In the setting we consider, a game master monitors
the prices made by the two traders and declares the terms under which a trade takes place.

There is a fixed multiplicative spread ϕ > 1, and in Scenario 1, the trades take place at
a predesignated time and occur whenever the bid price of one of the traders exceeds that of
the offer price of the other. There is a pricing kernel that determines a pricing measure, and
hence a value can be assigned to Trader A’s position as he enters the arena. We assume the
bank accounts of both traders are empty at the initiation of trading. Then under a mild non-
triviality condition we prove in Proposition 4 that Trader A’s position has a strictly positive
value in this scenario. The method of proof extends that of reference [4]. In Scenario 2 we
consider the same trading setup and specialize to the case where Trader A accesses a single
information process of the Brownian bridge type and Trader B is an uninformed trader with
only the a priori distribution of X at his disposal and no updating. In that case we proceed
in Proposition 5 to establish an exact lower bound on the value of Trader A’s position.

In Section IV we return to the general setting and consider the situation where a trade
takes place on the first occasion over the trading interval (0, T ) when the spreads cross, that
is, when the bid price of A reaches the offer price of B or the bid price of B reaches the offer
price of A. The theory of stopping-time σ-algebras is well suited for this kind of analysis
(Lemma 1) and we are able to make novel use of the optional sampling theorem for uniformly
integrable martingales for the proof of Proposition 6, which shows that the profitability of the
informed trader in such a scenario is strictly positive. Figure 1 shows how the distribution of
the trading times is concentrated in the early part of the trading session for smaller spreads
and shifts towards the middle part of the trading session for larger spreads. Figure 2 shows
the rather surprising result that the informed trader’s average profit per trading session is
a concave function of the spread factor at a given level of the information flow rate.

In Section V we allow for the possibility of multiple trades under the assumption that
following a trade each trader will take the value at which the trade was carried out to be their
new quoted mid-price. Thus the quoted mid-prices are equalized and are made by adjusting
the associated information based prices upward or downward by the spread factor. The new
quoted mid-prices of the two traders then develop onward from there with the information
subsequently received, and the associated bid and offer prices are determined by a further
unit of the spread factor. Another trade takes place when the spreads cross again. In
Scenario 4 we look at the case where the game master allows for trading to continue for up
to a maximum of two trades over a given trading session, and then in Proposition 7 we show
that the profitability of the informed trader is strictly positive in such a scenario.
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In Section VI, under Scenario 5, we develop a theory of inventory aversion to take into
account the fact that in many trading situations traders prefer, everything else being the
same, to run fairly flat books, moving in and out of positions in accordance with the arrival
of favorable trading opportunities. We allow for this by keeping track of a trader’s inventory
and adjusting the quoted mid-price up or down by an inventory aversion adjustment factor ψ
for each unit of inventory. The two traders can have distinct inventory aversion adjustment
factors, reflecting the fact that inventory aversion is an individual characteristic of a trader,
unlike the spread factor, which is a market convention determined by the game master.
Nevertheless there are some global constraints: in particular, in Lemma 2 we show that the
inventory aversion risk factors are bounded from above by the spread factor. In the situation
where the game master admits a maximum of two trades to take place, our Proposition 8
establishes that even with the presence of inventory aversion (possibly asymmetric) the
profitability of the informed trader remains strictly positive.

In Section VII under Scenario 6 we examine the situation when more than two trades
are admitted under the condition of inventory aversion. We prove a combinatorial identity
in Lemma 3, a result that is of interest in its own right, illustrated in Figures 3 and 4. This
paves the way to Proposition 9, establishing in a rather general setting the positivity of the
informed trader’s profitability when there are multiple trades. Figure 5 allows one to see
in some detail examples of the trading dynamics when there are up to ten trades allowed
in a given trading session. We see the bid and offer prices quoted by both traders, and the
points at which the spreads cross are flagged with pointers to show whether the trade is
buy or a sell. The inventories are tracked in the second panel, and the third panel plots
the underlying information-based prices. The fourth panel shows the ratio of the quoted
mid prices, and we show the boundaries at which trades are triggered. Then in Figure 6
we plot the average profitability of the informed trader as a function of the spread, which
turns out to be concave, illustrating the fact that there is an ideal level for the spread, at a
given level of the information flow, at which the profitability is maximized. Figure 7 then
presents this result in the form of a profitability surface parametrized by the spread factor
and the information flow rate. Figure 8 shows the effect of inventory aversion and makes
it clear that with increased levels of inventory aversion the average value of the magnitude
of the inventory decreases. Finally, in Section VIII we show that if the trader with inferior
information is allowed the strategic flexibility of an adapted spread and an adapted risk
aversion, this makes no difference qualitatively to the outcome that the trader with superior
information will dominate. We conclude in Section IX.

II. THE MODEL

We fix a probability space (Ω, F , P) and consider a trading model with stratified informa-
tion. We look at several different variants of the model with increasing layers of complexity.
An interval of time (0, T ) is fixed over which the trading takes place. The trading is in a
contract that at time T pays a single non-negative dividend, which we model by an inte-
grable random variable X. We assume that interest rates are deterministic and that P is
the pricing measure (the risk-neutral measure), so the value of one contract at time 0 (the
present) is given by

S0 = P0T E [X] . (1)
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Here P0t denotes the discount factor out to time t ∈ R+. For simplicity, we assume that
traders have the same information and same beliefs at time 0 and that the position of each
trader is initially flat.

We introduce a hierarchy of traders as follows. By a tier-0 trader, we mean a trader
whose only information is that implicit in the set-up described. Thus, he knows the a priori
measure µX(dx) of the random variable X under P, but has no other information. As a
consequence, the prices made at later times are given by

St = 1(t < T )PtT E [X] , (2)

where PtT = P0T/P0t. Knowledge of the distribution of X is equivalent to knowledge of the
time-0 prices of all derivative securities with a payout at time T of the form 1{X ≤ x} for
some x ∈ R+. Note that St = 0 for t ≥ T since the contract pays a single random dividend
at T and nothing thereafter. With this convention the price process has the càdlàg property.

By a tier-1 trader we mean a trader who has access to a so-called information process
{ξt}t≥0. The information takes the form

ξt = σ tX + βtT , (3)

for 0 ≤ t ≤ T and ξt = σ T X for t ≥ T . Here σ is a non-negative parameter, called
the information flow rate, and {βtT}t≥0 is a Brownian bridge over the interval [0, T ]. The
Brownian bridge can be modelled by setting βtT = Bt − t T−1BT for 0 ≤ t ≤ T and βtT = 0
for t ≥ T , where {Bt}t≥0 is a standard Brownian motion. The information ξt available at
time t can be thought of as a signal X, corresponding to the upcoming cash flow, obscured
by market noise. For some applications one can treat X more generally as a market factor
with the property that the cash flow is given by a function of X. Here for simplicity we
stick to the case where X represents the cash flow itself, but the reader will be readily able
to see how the more general situation can be accommodated. The theory of information
processes along with a variety of applications is set out in references [4, 6, 7, 10, 11]; see also
[22, 24, 28].

Now, let us write {Ft}t≥0 for the smallest right-continuous complete filtration containing
the natural filtration of {ξt}. Thus, we let NP denote the set whose elements are subsets of
the null sets of P, and for each t ≥ 0 we set

Ft =
⋂
u>t

σ[{ξs}s≤u] ∨NP . (4)

We refer to {Ft} as the filtration generated by {ξt}. Then the price of the asset at time t is

St = 1(t < T )PtT E [X | Ft ] , (5)

and we have the following:

Proposition 1. The information-based price of a contract that pays a non-negative inte-
grable random cash flow X at time T takes the form

St = 1(t < T )PtT

∫
x∈R+ x e

(σ x ξt− 1
2
σ2 x2 t) T

T−t µX(dx)∫
x∈R+ e(σ x ξt− 1

2
σ2 x2 t) T

T−t µX(dx)
. (6)



5

Proof. One can show that the information process has the Markov property [6], from which
it follows that

St = 1(t < T )PtT E [X | ξt ] . (7)

Now write {FX(x)}x∈R+ for the distribution of X, where FX(x) = P (X ≤ x), and let Y be
a continuous random variable with distribution {FY (y)}y∈R and density {fY (y)}y∈R. Then
there is a generalized Bayes theorem ([22], Lemma 3) to the effect that for all y ∈ R at
which fY (y) ̸= 0 it holds that

F
(x)
X|Y=y =

∫
u∈[0,x] f

(y)
Y |X=u µX(du)∫

u∈[0,∞)
f
(y)
Y |X=u µX(du)

, (8)

where F
(x)
X|Y=y denotes the conditional distribution P (X ≤ x |Y = y), and

f
(y)
Y |X=u =

d

dy
P (Y ≤ y |X = u) . (9)

It follows that for any outcome of chance ω ∈ Ω we have

E [X | Yω ] =

∫
x∈R+ x f

(Yω)
Y |X=x µX(dx)∫

x∈R+ f
(Yω)
Y |X=x µX(dx)

, (10)

where Yω denotes the value of Y at ω ∈ Ω. Then if we let the random variable ξt play the
role of Y in the setup described above and use the fact that ξt is conditionally Gaussian
with mean σtX and variance t(T − t)/T , it is straightforward to work out the conditional
distribution of X given ξt by use of (10), and (6) follows.

We refer to St as the information-based price made at time t by a tier-1 trader. Note
that ST = 0, whereas limt→T St = X. By a higher-tier trader we mean a trader who has one
or more additional information processes at his disposal in such a way that the filtration
accessible to the tier-n trader is a sub-filtration of that accessible to the tier-(n+ 1) trader.
We adapt the notation above to the case where we have n information processes and write

ξit = σi min(t, T )X + βi
tT (11)

for i ∈ {1, . . . , n}, t ≥ 0. Here σi denotes the information flow rate for the information
process {ξit}, and the {βi

tT}i=1, ... , n are independent Brownian bridges. In principle, one could
look at the seemingly more general situation where the n Brownian bridges are correlated,
but after suitable linear transformations this can be reduced to the case under consideration.
We recall that a tier-0 trader has no information available other than that which is available
a priori to all traders. A tier-0 trader thus makes the price

S0
t = 1(t < T )PtT E [X] . (12)

A tier-1 trader makes the price

S1
t = 1(t < T )PtT E

[
X | ξ1t

]
, (13)

a tier-2 trader makes the price

S1:2
t = 1(t < T )PtT E

[
X | ξ1t , ξ2t

]
, (14)
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and a tier-n trader makes the price

S1:n
t = 1(t < T )PtT E

[
X | ξ1t , . . . , ξnt

]
. (15)

Then, it becomes an exercise to prove the following:

Proposition 2. The tier-n price is given by

S1:n
t = 1(t < T )PtT

∫∞
0
x e(σ1 x ξ1t−

1
2
σ2
1 x2 t) T

T−t · · · e(σn x ξnt −
1
2
σ2
n x2 t) T

T−t µ(dx)∫∞
0

e(σ1 x ξ1t−
1
2
σ2
1 x2 t) T

T−t · · · e(σn x ξnt −
1
2
σ2
n x2 t) T

T−t µ(dx)
. (16)

Proof. It will suffice to look at the case n = 2 to illustrate the method of proof. We wish to
show that

S1:2
t = 1(t < T )PtT

∫∞
0
x e(σ1 x ξ1t−

1
2
σ2
1 x2 t) T

T−t e(σ2 x ξ2t−
1
2
σ2
2 x2 t) T

T−t µ(dx)∫∞
0

e(σ1 x ξ1t−
1
2
σ2
1 x2 t) T

T−t e(σ2 x ξ2t−
1
2
σ2
2 x2 t) T

T−t µ(dx)
. (17)

We observe that

E
[
X | ξ1t , ξ2t

]
= E

[
X |σ1 ξ1t + σ2 ξ

2
t , σ2 ξ

1
t − σ1 ξ

2
t

]
, (18)

from which one deduces that

E
[
X | ξ1t , ξ2t

]
= E

[
X | ξ1:2t , η1:2t

]
, (19)

where

ξ1:2t =
σ1 ξ

1
t + σ2 ξ

2
t√

σ2
1 + σ2

2

, η1:2t =
σ2 ξ

1
t − σ1 ξ

2
t√

σ2
1 + σ2

2

. (20)

In fact, {ξ1:2t }t≥0 can be interpreted as the “effective information” generated jointly by
{ξ1t }t≥0 and {ξ2t }t≥0. One can check that {ξ1:2t } is an information process and that {η1:2t } is
an independent Brownian bridge. Indeed, we have

ξ1:2t = σ1:2 tX + β1:2
t , (21)

where

σ1:2 =
√
σ2
1 + σ2

2 (22)

and the process {β1:2
t }t≥0 defined by

β1:2
t =

σ1 β
1
tT + σ2 β

2
tT

σ1:2
(23)

is a standard Brownian bridge over [0, T ]. The fact that {η1:2t } is itself a Brownian bridge and
that {ξ1:2t } and {η1:2t } are independent can be deduced from covariance relations. Moreover, it
should be evident that the σ-algebras σ [σ[X], σ[{ξ1:2t }t≥0] ] and σ [{η1:2t }t≥0] are independent.

Now, we recall the following fromWilliams [30], §9.7(k) in his well-known list of properties
of conditional expectation. Suppose that Z is an integrable random variable on a probability
space (Ω,F ,P) and that A and B are sub-σ-algebras of F . Then if σ[σ[Z],A] and B are
independent, we have

E [Z |σ[A,B ] ] = E [Z | A ] . (24)



7

It follows in the case under consideration that

E
[
X | ξ1t , ξ2t

]
= E

[
X | ξ1:2t

]
. (25)

That is to say, the tier-2 price only depends on the effective information associated with the
two given information processes. Thus, we have

S1:2
t = 1(t < T )PtT

∫∞
0
x e(σ12 x ξ1:2t − 1

2
σ2
12 x

2 t) T
T−t µ(dx)∫∞

0
e(σ12 x ξ1:2t − 1

2
σ2
12 x

2 t) T
T−t µ(dx)

. (26)

Then if we substitute (21) into (26), a straightforward calculation gives the result (17). The
proof for higher values of n is similar.

It is interesting to note, as we have pointed out above, that the tier-2 price (26) can
be expressed as a function of a single effective parcel of information, given by (21), with
effective flow rate (22). This property generalizes to higher n. In particular, we have:

Proposition 3. The tier-n price of an asset paying X at time T can be put in the form

S1:n
t = 1(t < T )PtT

∫∞
0
x e(σ1:n x ξ1:nt − 1

2
σ2
1:n x2 t) T

T−t µ(dx)∫∞
0

e(σ1:n x ξ1:nt − 1
2
σ2
1:n x2 t) T

T−t µ(dx)
, (27)

where the effective information (ξ1:nt )t≥0 is defined by

ξ1:nt =
1

σ1:n

n∑
i=1

σi ξ
i
t, σ2

1:n =
n∑

i=1

σ2
i (28)

Proof. We observe that

E
[
X | ξ1t , . . . , ξnt

]
= E

[
X | ξ1:nt , η1:2t , . . . , η1:nt

]
, (29)

where ξ1:nt is the effective information at t and the (η1:it )t≥0, defined for i ∈ {2, . . . , n} by

η1:it =
1

σ1:i

(
σi ξ

1: i−1
t − σ1: i−1 ξ

i
t

)
, (30)

constitute a family of n− 1 independent Brownian bridges. For each value of i ∈ {2, . . . , n}
the X-dependence cancels in the terms on the right and hence we can write

η1:it =
1

σ1:i

(
σi β

1: i−1
t − σ1: i−1 β

i
t

)
, β1:i

t =
1

σ1:i

i∑
j=1

σj β
j
t . (31)

The fact that the (η1:it ) are indeed independent Brownian bridges can be then checked by the
use of covariance relations. The σ-algebras σ[X, ξ1:nt ] and σ[η1:it : i = 2, . . . , n] are therefore
independent and thus

E
[
X | ξ1t , . . . , ξnt

]
= E

[
X | ξ1:nt

]
, (32)

as claimed.
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We observe that as a consequence of these relations the effective information flow rate
for a tier-n trader takes the form

σ1:n =

√√√√ n∑
i=1

σ2
i , (33)

a relation that might appropriately be referred to as a Pythagorean law of information flow:
when there are multiple sources of information, the square of the effective information flow
rate is equal to the sum of the squares of the information flow rates of the sources [4, 10].

III. DETERMINISTIC TRADING TIME

It will be useful to establish some general principles regarding trading with information. As
in the previous section, we consider a market where a single risky security is traded that
pays a random dividend X ≥ 0 at a fixed time T > 0. As before, we take interest rates to
be deterministic and we let P denote the pricing measure. In a more extended treatment we
might enter into a discussion of how the pricing measure is determined, but that is not our
goal here.

We look at the situation where there are two traders, a higher-tier Trader A who has the
information FA = {Fn

t } generated by {ξ1:nt }t≥0 at his disposal, and a lower-tier Trader B
who has the information FB = {Fm

t } generated by {ξ1:mt }t≥0 at his disposal, where n > m.
Then clearly at each time t we have FB

t ⊂ FA
t , reflecting the fact that the higher-tier trader

has more information at his disposal than his lower-tier counterparty. Equivalently, we say
that the filtration FA is finer than the filtration FB and that FB is courser than FA. The key
point is that at the outset of the trading the traders have identical information and identical
beliefs, both embodied in P. After time 0 and up to time T the traders gain information
and make prices based on this information in such a way that the information gained by
Trader B is always a subset of the information gained by Trader A.

Let us assume that the market conventions are such that traders make prices with a
fixed multiplicative spread. We refer to the information-based price St computed by a given
trader at time t as his mid-price at that time. The spread factor ϕ is taken to be a fixed
real number that is strictly greater than unity. Then the trader’s offer price (the price at
which he is willing to sell the asset) will be ϕSt, and his bid price (the price he is willing to
buy the asset at) will be ϕ−1St.

The so-called bid-offer (or bid-ask) spread is then given by (ϕ − ϕ−1)St. The discussion
can be easily adjusted to accommodate the case of a fixed additive spread, but we shall leave
that to the reader and stick with multiplicative spreads here. The mid-price is then given
by the geometric mean of the bid price and the offer price.

We shall assume in what follows that the market is overseen by a game master (e.g., an
exchange or central planner). The traders report their mid-prices to the game master (but
not to one another) on a continuous basis, and the game master determines, in accordance
with certain conventions, when a trade is deemed to have taken place. Neither trader is
aware of informational status of the other trader. Trader A receives the information that
Trader B receives, but he is not aware of the fact that this is the only information being
received by Trader B. There are various situations that can be envisaged, and we refer to
these as trading scenarios, several examples of which we proceed to examine.
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Scenario 1. The game master selects a fixed time t ∈ (0, T ) at which a trade can take
place. The traders each initially have flat positions. We shall write

SA
t = 1(t < T )PtT E

[
X | FA

t

]
(34)

for the mid-price made by Trader A at time t, and let SA−
t = ϕ−1SA

t and SA+
t = ϕSA

t denote
his bid price and offer price, respectively. For the mid-price of Trader B at t, we write

SB
t = 1(t < T )PtT E

[
X | FB

t

]
, (35)

with bid price SB−
t = ϕ−1SB

t and offer price SB+
t = ϕSB

t . The game master declares that
Trader A sells one unit of the asset to Trader B at time t if SA+

t ≤ SB−
t ; the game master

declares that Trader A buys one unit of the asset from Trader B at time t if SA−
t ≥ SB+

t ; if
neither of these conditions hold then no trade takes place. By convention, the game master
assigns the mean price (SA+

t SB−
t )1/2 to the trade if A sells to B; the game master assigns

the mean price (SA−
t SB+

t )1/2 to the trade if A buys from B. In fact, these prices are the
same, both being equal to the geometric mean of the mid-prices made by A and B. The
overall profit (or loss) HA

T accruing to Trader A at time T is thus given by

HA
T =

[
(PtT )

−1(SA
t S

B
t )

1/2 −X
]
1(SA+

t ≤ SB−
t ) +

[
X − (PtT )

−1(SA
t S

B
t )

1/2
]
1(SA−

t ≥ SB+
t ),
(36)

where payments made or received at t are future-valued to T . The profit (or loss) of Trader
B is clearly HB

T = −HA
T . Now, since P is the risk neutral measure, it is meaningful to assign

an overall value to Trader A’s strategy, given by

HA
0 = P0T E

[
HA

T

]
. (37)

Here we have taken the P-expectation of Trader A’s profit when that profit is expressed in
units of the money-market account at time T , which in a deterministic interest-rate system is
given by (P0T )

−1. Armed with (37), we are now in a position to say more specifically in what
sense the additional information possessed by Trader A gives him a financial advantage. To
this end, let us say that a trading model is non-trivial if the probability of a trade occurring
over a given trading session is non-vanishing. Note that we do not require that a trade
should definitely occur, merely that it might occur. Since the pricing measure and the
physical measure share the same null sets, it follows that a trading model is non-trivial if
and only if the probability of a trade occurring in any given trading session is non-zero under
the measure P. Then we have:

Proposition 4. The value of Trader A’s position under Scenario 1 is strictly positive in
any non-trivial trading model.

Proof. If A sells then SA+
t ≤ SB−

t and hence (SA
t S

B
t )

1/2 = (SA+
t SB−

t )1/2 ≥ SA+
t = ϕSA

t ;
whereas if A buys then SA−

t ≥ SB+
t and hence (SA

t S
B
t )

1/2 = (SA−
t SB+

t )1/2 ≤ SA−
t = ϕ−1SA

t .
It follows that

HA
T ≥

[
(PtT )

−1ϕSA
t −X

]
1(SA+

t ≤ SB−
t ) +

[
X − (PtT )

−1ϕ−1SA
t

]
1(SA−

t ≥ SB+
t ) . (38)

Then if we take into account the fact that FB
t ⊂ FA

t and hence that SB
t is FA

t -measurable,
as are the two indicator functions in the expression above, it follows by use of (34), (35),
(37), (38) and the tower property that

HA
0 ≥ P0t E

[
(ϕ− 1)SA

t 1(S
A+
t ≤ SB−

t ) + (1− ϕ−1)SA
t 1(S

A−
t ≥ SB+

t )
]
, (39)
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which gives us a strictly positive lower bound on the value of Trader A’s position, providing
that at least one of the two indicator functions takes the value unity on a set that is not of
measure zero, which is the condition that the model is non-trivial.

The idea of the proof of Proposition 4 is deceptively simple. We only require that SB
t

should be FA
t -measurable. If the information available to A is marginally better than that

available to B, then their mid-prices will not tend to diverge much, and the probability of a
trade occurring will be relatively low; whereas if the information available to A is of signif-
icantly better quality, then the prices will tend more to diverge, and hence the probability
of a trade occurring will be higher, and the price at which the trade occurs will tend to be
more advantageous to A than B. It should be emphasized that in setting the trading time
to be a fixed time t we are not suggesting that such a scenario is representative of the way in
which real trades are carried out. The point is rather that under that simplifying assumption
we are able to identify how Trader A can take advantage of his informational superiority.
By stripping away some of the clutter associated with more realistic trading scenarios, we
can focus on the mathematical principle that allows the informationally superior trader to
succeed. Of course, we must check that the advantage is not spoiled in the setting of more
elaborate trading scenarios, and this is what we do in subsequent examples. We observe that
the value of Trader A’s position at the beginning of the trading session is strictly positive.
This means that he can in principle monetize his advantage by selling off some or all of his
stake in the eventual outcome of the trading session to a third party at the market price
given by (37). The fact that such a monetization is feasible is what we mean by statistical
arbitrage. There is no guarantee that in any particular trading session Trader A will prevail.

Scenario 2. Continuing with a deterministic trading time, we remark that in the situation
where A is a tier-1 trader and B is a tier-0 trader (only having knowledge of the a priori
distribution of X) one can work out the lower bound on Trader A’s position exactly if we use
the model of Section 2 when the payout is that of a defaultable discount bond, thus allowing
for an explicit realization of the effects of the spread and the flow rate on the profitability
of the informed trader’s market activity. In the case of a defaultable discount bond with no
recovery we assume that X takes the values 1 (no default) and 0 (default) with probabilities
p and 1− p respectively. Then the mid-prices made by the two traders are given by

SA
t = 1(t < T )PtT

p e(σ ξt− 1
2
σ2 t) T

T−t

p e(σ ξt− 1
2
σ2 t) T

T−t + (1− p)
, SB

t = 1(t < T )PtT p . (40)

A straightforward calculation shows that

1(SA+
t ≤ SB−

t ) = 1

(
ξt ≤

T − t

σT
log

1− p

ϕ2 − p
+ 1

2
σt

)
(41)

and

1(SA−
t ≥ SB+

t ) = 1

(
ξt ≥

T − t

σT
log

ϕ2(1− p)

1− ϕ2p
+ 1

2
σt

)
. (42)

The indicator function in (42) is able to take the value unity only if ϕ2p < 1. This is because
under Scenario 2 a trade can take place where Trader A is a buyer only if this condition is
satisfied. Otherwise Trader A can only be a seller. In the following we let N : R → [0, 1]
denote the standard normal distribution function.
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Proposition 5. The lower bound on the value of Trader A’s position under Scenario 2 is

HA
0 ≥ pP0T (ϕ− 1)N

[
1

σ

√
T − t

t T
log

(
1− p

ϕ2 − p

)
− 1

2
σ

√
T t

T − t

]

+ pP0T (1− ϕ−1)N

[
1

σ

√
T − t

t T
log

(
1− ϕ2p

ϕ2(1− p)

)
+ 1

2
σ

√
T t

T − t

]
. (43)

Proof. We need to work out the right hand side of (39) when we substitute (40), (41) and
(42) into it. This gives

HA
0 ≥ pP0T (ϕ− 1)E

[
e(σ ξt− 1

2
σ2 t) T

T−t

p e(σ ξt− 1
2
σ2 t) T

T−t + (1− p)
1

(
ξt ≤

T − t

σT
log

1− p

ϕ2 − p
+ 1

2
σt

)]

+ pP0T (1− ϕ−1)E

[
e(σ ξt− 1

2
σ2 t) T

T−t

p e(σ ξt− 1
2
σ2 t) T

T−t + (1− p)
1

(
ξt ≥

T − t

σT
log

ϕ2(1− p)

1− ϕ2p
+ 1

2
σt

)]
.

(44)

Here we have used the fact that P0t PtT = P0T in a deterministic interest system. It may
not be obvious how to take the expectations in (44), but these can be worked out in closed
form. The trick is to observe that the process {Φt}0≤t<T defined by

Φt =
1

p exp
(
σ ξt − 1

2
σ2 t

)
T

T−t
+ (1− p)

(45)

is a unit-initialized martingale under P with respect to the filtration generated by {ξt}0≤t<T ,
and hence can be used to change measure to a new measure P∗ under which {ξt}0≤t<T is a
Brownian bridge. In fact, P∗ is an example of the so-called bridge measure introduced in
reference [6]. Thus for any event At ∈ Ft we define

P∗(At) = E[ Φt 1(At) ] , (46)

and we obtain

HA
0 ≥ pP0T (ϕ− 1)E∗

[
e(σ ξt− 1

2
σ2 t) T

T−t 1

(
ξt ≤

T − t

σT
log

1− p

ϕ2 − p
+ 1

2
σt

)]
+ pP0T (1− ϕ−1)E∗

[
e(σ ξt− 1

2
σ2 t) T

T−t 1

(
ξt ≥

T − t

σT
log

ϕ2(1− p)

1− ϕ2p
+ 1

2
σt

)]
, (47)

where the expectation is now taken under P∗. Finally, we use that fact that ξt is a P∗

normally distributed random variable with mean zero and variance t(T − t)/T , and the
problem reduces to evaluating a Gaussian integral of a standard type, leading to (43).

IV. TRADING WHEN THE SPREADS CROSS

Scenario 3. We consider a setup like that of Scenario 1, but where the game master declares
that a trade occurs the first time the spreads cross. To make the ideas precise we need a
few results from the theory of stopping times (see, e.g., [13, 14, 27]). We recall that by a



12

stopping time on a filtered probability space (Ω,F , {Ft}t≥0,P) we mean a random variable
τ taking values in [0,∞] with the property that {τ ≤ t} ∈ Ft for all t ≥ 0. It follows that
if τ1 and τ2 are {Ft} stopping times, then min(τ1, τ2) is also an {Ft} stopping time. This is
because {min(τ1, τ2) ≤ t} = {τ1 ≤ t} ∪ {τ2 ≤ t}. We recall that in our model the filtration
{FA

t } accessed by Trader A is strictly finer than the filtration {FB
t } accessed by Trader B.

Thus the mid-prices made both by Trader A and Trader B are adapted to {FA
t }. Now,

for any càdlàg process {Zt}t≥0 adapted to {Ft}t≥0, and for any Borel set D ∈ B[0,∞] the
random variable τ = inft∈[0,∞](Zt ∈ D) is an {Ft} stopping time. We can therefore introduce
the following {FA

t } stopping times:

τ+ = inf
t∈[0,T ]

(ϕ−1SA
t ≥ ϕSB

t ), τ− = inf
t∈[0,T ]

(ϕSA
t ≤ ϕ−1SB

t ) , (48)

and we set τ = τ+ ∧ τ−, the minimum of τ+ and τ−. Here for any index set Λ ⊂ R
and any collection {Aλ}λ∈Λ of elements of F we write infλ∈Λ{Aλ} for the random variable
inf{λ ∈ Λ : 1(ω ∈ Aλ) = 1}. We observe that τ+ is the first time the bid price of A hits
the offer price of B, that τ− is the first time the offer price of A hits the bid price of B, and
that τ is the first time the spreads cross. We recall that the prices made by both traders
drop to zero at time T . Therefore if τ takes the value T for some outcome of chance, then
no trade has taken place in that outcome of chance.

We assume that once a trade has been made then the position will be held until maturity
and no further trades will take place. With this setup in mind, we see that the overall profit
HA

T accruing to Trader A at time T in Scenario 3 is

HA
T =

[
X − P−1

τ+T ϕ
−1SA

τ+

]
1(τ+ < τ−) +

[
P−1
τ−T ϕS

A
τ− −X

]
1(τ− < τ+). (49)

As in Scenario 1, we can work out the value of Trader A’s position by use of the risk-neutral
pricing relation (37). For this purpose, we need a few additional mathematical tools. For any
stopping time τ on a filtered probability space (Ω,F , {Ft}t≥0,P), the so-called stopping-time
σ-algebra Fτ is defined by

Fτ = {A ∈ F : A ∩ {τ ≤ t} ∈ Ft , ∀t ≥ 0} . (50)

Given a pair of stopping times τ1 and τ2, one can show that if τ1 < τ2 then Fτ1 ⊂ Fτ2 . The
following is fundamental:

Lemma 1. If α and β are stopping times based on the filtration {Ft}t≥0, then each of the
events α < β, α ≤ β, α = β, α ≥ β, α > β belongs to Fα and to Fβ .

Proof. Let us demonstrate that {α < β} ∈ Fβ. The other cases then follow analogously.
Thus by (50) we need to show that {α < β} ∩ {β < t} ∈ Ft , ∀t ≥ 0 . Now,

{α < β} =
⋃
q∈Q

{α < q} ∩ {q < β} , (51)

and hence for any t ≥ 0 it holds that

{α < β} ∩ {β ≤ t} =
⋃
q∈Q

{α < q ≤ t} ∩ {q < β ≤ t} , (52)

for q rational. But each of the events {α < q ≤ t} and {q < β ≤ t} is in Ft . Thus we have
expressed {α < β} ∩ {β ≤ t} as a countable union of sets in Ft.
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Continuing with our discussion of stopping times, we recall that a collection C of random
variables on a probability space (Ω,F ,P) is said to be uniformly integrable (UI) if given
ϵ > 0 ∃ δ ∈ [0,∞) such that E [|Z|1(|Z| > δ)] < ϵ, ∀Z ∈ C. A martingale {Mt}t≥0 on a
filtered probability space (Ω,F , {Ft}t≥0,P) is said to be closed by a random variable Y if
E[|Y |] < ∞ and Mt = E[Y | Ft] for 0 ≤ t < ∞. If a right-continuous martingale {Mt} is
UI, then M∞ = limt→∞Mt exists almost surely, E[|M∞|] < ∞, and M∞ closes {Mt}. In
what follows, we need the optional sampling theorem, which states that if a right-continuous
martingale (Mt) is closed by a random variable M∞, and if τ1 and τ2 are stopping times
such that τ1 ≤ τ2 almost surely, then Mτ1 and Mτ2 are integrable and

E [Mτ2 | Fτ1 ] =Mτ1 . (53)

This relation holds in particular in the case of a UI martingale. These results can be applied
as follows:

Proposition 6. The value of Trader A’s position under Scenario 3 is strictly positive in
any non-trivial trading model.

Proof. We observe that if (St)t≥0 is the price process of an asset that pays a single dividend
X at time T , then the so-called deflated gain process (Gt)t≥0 defined by

Gt = P0t St + P0T 1(t ≥ T )X (54)

is a P-martingale. The deflated gain process is obtained by taking the current value of the
asset, expressed in units of the money market account, and adding to it the cumulative
dividend process, where each dividend is expressed in units of the money-market account at
the time the dividend is paid. In the case of a single dividend payment and a deterministic
interest rate system, the result is given by (54). Thus, by (34) it holds, in fact, that

Gt = P0T E
[
X | FA

t

]
, (55)

and we see that the deflated gain process is a UI martingale under P, closed by P0T X. It
follows by the optional sampling theorem that

Gτ± = E [GT | Fτ± ] (56)

and hence
(Pτ±T )

−1 Sτ± +X 1(τ± = T ) = E [X | Fτ± ] . (57)

Then, since 1(τ+ < τ−) is Fτ+ measurable and 1(τ− < τ+) is Fτ− measurable we can use
the tower property alongside (49) and (57) to deduce that

HA
0 =P0T (1− ϕ−1)E

[
P−1
τ+T S

A
τ+1(τ

+ < τ−)
]

+ P0T (ϕ− 1)E
[
P−1
τ−T S

A
τ−1(τ

− < τ+)
]
. (58)

It should be evident that both of the terms on the right side of (58) are non-negative. Then
since by assumption it holds that P(τ+ < τ−) > 0 or P(τ− < τ+) > 0, or equivalently
P(τ < T ) > 0, we deduce that HA

0 > 0.



14

Now, the information-based model described in Section 2 based on Brownian bridge
information is evidently non-trivial, so Proposition 6 is applicable, and we should be able to
work out the profitability of Trader A by use of simulation studies. In Figure 1, we show the
distribution of trading times over the interval [0, T ] under Scenario 3. The information flow
rates for both information processes are set at unity. Charts are shown for four different
values of the spread factor.

One observes that for relatively low spreads, e.g. ϕ = 1.02, the bulk of the trades occur
relatively early on in the trading session, whereas as the spread is increased to higher levels
such as ϕ = 1.10 the trades tend to take place later in the session. This is because it takes
more time on average in the case of large spreads for the prices to diverge sufficiently for
the spreads to cross.

0.0 0.2 0.4 0.6 0.8 1.0
time

0
1.0×104
2.0×104
3.0×104
4.0×104
5.0×104
6.0×104

tra
de

s

= 1.02 1 , 2 = 1

0.0 0.2 0.4 0.6 0.8 1.0
time

0

3.00×103

6.00×103

9.00×103

1.20×104

tra
de

s

= 1.06

0.0 0.2 0.4 0.6 0.8 1.0
time

0

2000

4000

6000

tra
de

s

= 1.10

0.0 0.2 0.4 0.6 0.8 1.0
time

0
1000
2000
3000
4000
5000

tra
de

s

= 1.14

Figure 1: Distribution of trading times under Scenario 3 based on 100,000 simulations, including

both buys and sells. In this case r = 0 and p = 0.8.

In Figure 2 below we plot a heat map showing the average profits taken by Trader A
under Scenario 3 as a function of the information rate and the spread factor. We look both
at average per-trade profits and average per-session profits. In the latter case, we allow for
the fact that a trade may or may not actually occur in a given trading session. We consider
100,000 trading sessions in each case, using the same outcomes of chance. The average profit
is plotted as a function of the spread (x-axis) and the information rate (y-axis).

We note that the per-trade profits is an increasing function of the spread factor. On the
other hand, the per-session profit is for each value of the information flow rate a concave
function of the spread factor, over the range of parameters considered. This allows us to
conclude that from the perspective of the better informed trader there is an optimal market
spread at which to be trading for any given level of the information flow rate, if the objective
is to optimize the per-session profitability.

These conclusions are of course based on a relatively simple trading model, but neverthe-
less give a useful qualitative picture of the interplay of information and market convention
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in the determination of trading profits. Our philosophy is not to present the most elaborate
trading models possible, with bells and whistles, but rather the simplest versions of the
models that illustrate the underlying mathematical principles that guarantee the success of
the more well-informed trader.
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Figure 2: Heat chart of average profit as a function of the spread and the information flow rate. We

look at per-trade profits on the left and per-session profits on the right. Here r = 0 and p = 0.8.

V. SUCCESSIVE RANDOM TRADES

Scenario 4. In this scenario we consider the situation where trading occurs when spreads
cross, as in Scenario 3, but where additionally prices are adjusted following each trade in
such a way that the mid prices are equalized and trades occur when the spreads cross again.
The setup is as follows. As before, we consider a contract that pays a random dividend
X ≥ 0 at time T . Let (SA

t ) and (SB
t ) denote the mid-prices computed by Trader A and

Trader B on the basis of the information they have gained, respectively, from the information
processes at their disposal, and let ϕ > 1 be the spread factor. The filtration available to
Trader B is assumed to be a strict sub-filtration of that available to Trader A. Then we
define a collection of {FA

t } stopping times as follows. First we write

τ+1 = inf
t∈[0,T ]

(ϕ−1SA
t ≥ ϕSB

t ) , τ−1 = inf
t∈[0,T ]

(ϕSA
t ≤ ϕ−1SB

t ) , (59)

and set τ1 = τ+1 ∧ τ−1 . Thus τ1 is the time at which the first trade occurs, with the under-
standing that τ1 = T corresponds to the situation where no trade takes place in the given
trading session. Trader A buys if τ+1 < τ−1 and Trader A sells if τ− < τ+1 . Next we introduce
an indicator function Q1 for Trader A taking the values plus one, minus one, or zero, to tell
us whether the trade was a buy or sell or if there was no trade. We set

Q1 = 1(τ+1 < τ−1 )− 1(τ−1 < τ+1 ) . (60)

After a trade has taken place, the seller adjusts his mid-price up by one unit of the spread
factor, whereas the buyer adjusts his price down by one unit of the spread factor. In this
way, the two new mid-prices are equalized. One might envisage that the traders would
adjust their prices by taking into account the additional information gained by knowledge
of the fact that another trader must have made a price in such a way that the spreads would



16

cross. But since neither trader has knowledge of the other’s informational status, it is not so
obvious how this could be achieved. We shall assume that it is simply a market convention
that the prices are adjusted in line with the procedure stated. Thus each trader adjusts his
mid-price to the price at which the trade just took place. This is not unreasonable. Once
the prices have been equalized, the traders create bid and offer prices by multiplying or
dividing the new mid-prices by a further unit of the spread factor. The game master then
declares the time τ2 = τ+2 ∧ τ−2 at which the second trade occurs, where

τ+2 = inf
t∈[τ1,T ]

(ϕ−Q1−1SA
t ≥ ϕQ1+1SB

t ) , τ−2 = inf
t∈[τ1,T ]

(ϕ−Q1+1SA
t ≤ ϕQ1−1SB

t ) , (61)

with the understanding that τ2 = T corresponds to the situation where there is no second
trade. The profits made by Trader A over the course of the first two trades are given in
total by the following expression:

HA
T =

[
X − P−1

τ1T
ϕ−1SA

τ1

]
1(τ+1 < τ−1 ) +

[
P−1
τ1T

ϕSA
τ1
−X

]
1(τ−1 < τ+1 )

+
[
X − P−1

τ2T
ϕ−Q1−1SA

τ2

]
1(τ+2 < τ−2 ) +

[
P−1
τ2T

ϕ−Q1+1 SA
τ2
−X

]
1(τ−2 < τ+2 ) . (62)

By use of the tower property, the optional sampling theorem, and measurability properties
of the stopping times involved, we deduce that the value of Trader A’s position is

HA
0 =P0T (1− ϕ−1)E

[
P−1
τ1T

SA
τ1
1(τ+1 < τ−1 )

]
+ P0T (ϕ− 1)E

[
P−1
τ1T

SA
τ1
1(τ−1 < τ+1 )

]
+ P0T (1− ϕ−2)E

[
P−1
τ2T

SA
τ2
1(τ+1 < τ−1 )1(τ

+
2 < τ−2 )

]
+ P0T (ϕ

2 − 1)E
[
P−1
τ2T

SA
τ2
1(τ−1 < τ+1 )1(τ

−
2 < τ+2 )

]
. (63)

One notes that the terms involving a pair of opposite trades, that is to say, a buy followed
by a sell, or a sell followed by a buy, generate no value for Trader A, and hence do not
appear in the formula above. But the single trade positions, and the positions involving
two buys or two sells, have strictly positive value, assuming that the events in question take
place with nonzero probability. Thus we arrive at:

Proposition 7. The value of Trader A’s position under Scenario 4 is strictly positive in
any non-trivial trading model.

VI. INVENTORY AVERSION

Scenario 5. We consider the situation where traders prefer to keep a low profile in the
market and thus wish to avoid taking excessively long or short positions. This is not unusual:
it is often the case that traders are market-neutral and tend to keep their position flat on
average. This situation can be modelled as follows. Suppose in the context of the general
setup of the last two sections that a trade has just been undertaken, and the new mid-price
now shared by both traders is S̄τ1 where τ1 is the time of the trade. Thus S̄τ1 = ϕ−1SA

τ1
if

the initial trade was a purchase by Trader A, and S̄τ1 = ϕSA
τ1

if the initial trade was a sale
by Trader A. Now let QA

τ1
be the inventory of Trader A at time τ1. By inventory, we mean

the number of contracts held by A. Then the inventory of Trader B is given by QB
τ1
= −QA

τ1
since the initial positions of each trader are assumed to have been flat. We shall assume
now that at the time the new mid-price is determined there is a further small adjustment of
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the mid-price set in such a way as to discourage the development of excessively large long or
short positions – that is to say, to keep the absolute inventory relatively small. The required
adjustment, which holds with effect from time τ , takes the form

S̄τ1 = ϕ−QA
τ1SA

τ1
→ ϕ−QA

τ1ψ
−QA

τ1
A SA

τ1
, (64)

for Trader A, where the adjustment factor ψA is taken to be strictly greater than unity.
Thus, if the inventory is positive (long position), the mid-price is knocked down by a factor
ψ−1
A , hence lowering both the bid price and the offer price a bit. This will tend to suppress

further purchases by the trader and will encourage sales. But if the inventory is negative
(short position), the mid-price is bumped up by a factor of ψA, and this will raise the bid
price and the offer price, encouraging purchases by the trader and discouraging sales.

We have assumed so far that traders have the same initial beliefs and initial knowledge,
and hence the same initial mid-price; at this stage we can allow for the possibility that they
have different levels of inventory aversion. Then Trader B adjusts his mid-price after the
first trade by the prescription

S̄τ1 = ϕQB
τ1SB

τ1
→ ϕQB

τ1ψ
QB

τ1
B SB

τ1
, (65)

where ψB > 1 is the inventory aversion adjustment factor for Trader B.
In fact, one can derive an upper bound for the inventory aversion factors. The argument

is as follows. Let us assume that at some given time in the trading session Trader A buys
(resp., sells) the contract paying (resp., receiving) the amount ϕ−1SA

t (resp., ϕSA
t ). Then,

the trader’s new mid price becomes ϕ−1ψ−1
A SA

t (resp., ϕψAS
A
t ). Now, this new mid-price has

to satisfy the condition that the associated new offer price ψ−1
A SA

t (resp., bid price ψAS
A
t )

based on it, should be strictly greater than (resp., strictly less than) the price just paid (resp.,
received). In other words, ψA has to satisfy an inequality of the form ψ−1

A SA
t > ϕ−1SA

t (resp.,
ψAS

A
t < ϕSA

t ). For it would be irrational, or at least inefficient, in the absence of further
information, for Trader A to be willing to immediately sell the contract for less than or the
same as what he has just bought it (resp., buy the contract for more than or the same as
what he has just sold it). For such actions would at the very least lead to some loss of shoe
leather and in general would lead to opportunists taking advantage of him by arbitrage.
Hence we obtain:

Lemma 2. The inventory aversion adjustment factors ψA and ψB are strictly bounded from
above by the spread factor ϕ.

With this scheme in mind we return to the setup of Scenario 4 but we allow now for
inventory aversion in our Scenario 5. The profit made by Trader A on the first trade remains
the same as in Scenario 4, whereas the inventory aversion adjustments begin to take effect
in relation to the prices made in anticipation of a second trade. In particular we now set

τ+2 = inf
t∈[τ1,T ]

(ϕ−QA
1 −1ψ

−QA
1

A SA
t ≥ ϕ−QB

1 +1ψ
−QB

1
B SB

t ) , (66)

and
τ−2 = inf

t∈[τ1,T ]
(ϕ−QA

1 +1ψ
−QA

1
A SA

t ≤ ϕ−QB
1 −1ψ

−QB
1

B SB
t ), (67)
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where for convenience we write QA
1 for QA

τ1
and QA

1 for QB
τ1
. Assuming that trading stops

after two trades, we see that the profit made by Trader A when both traders have inventory
aversion takes the form

HA
T =

[
X − P−1

τ1T
ϕ−1SA

τ1

]
1(τ+1 < τ−1 ) +

[
P−1
τ1T

ϕSA
τ1
−X

]
1(τ−1 < τ+1 )

+
[
X − P−1

τ2T
ϕ−QA

1 −1 ψ
−QA

1
A SA

τ2

]
1(τ+2 < τ−2 )

+
[
P−1
τ2T

ϕ−QA
1 +1 ψ

−QA
1

A SA
τ2
−X

]
1(τ−2 < τ+2 ) . (68)

The value of Trader A’s position can be worked out by the methods already discussed, and
the result is as follows:

HA
0 =P0T (1− ϕ−1)E

[
P−1
τ1T

SA
τ1
1(τ+1 < τ−1 )

]
+ P0T (ϕ− 1)E

[
P−1
τ1T

SA
τ1
1(τ−1 < τ+1 )

]
+ P0T (ϕ

2ψA − 1)E
[
P−1
τ2T

SA
τ2
1(τ−1 < τ+1 )1(τ

−
2 < τ+2 )

]
+ P0T (ψ

−1
A − 1)E

[
P−1
τ2T

SA
τ2
1(τ+1 < τ−1 )1(τ

−
2 < τ+2 )

]
+ P0T (1− ψA)E

[
P−1
τ2T

SA
τ2
1(τ−1 < τ+1 )1(τ

+
2 < τ−2 )

]
+ P0T (1− ϕ−2ψ−1

A )E
[
P−1
τ2T

SA
τ2
1(τ+1 < τ−1 )1(τ

+
2 < τ−2 )

]
. (69)

Here the first two terms represent the profits from the first trade, whereas the remaining
terms represent the profits from the second trade, allowing for the different possible ways in
which the history of the second trade might evolve.

Proposition 8. The value of Trader A’s position under Scenario 5 is strictly positive in
any non-trivial trading model with inventory risk.

Proof. First we use the optional sampling theorem together with Lemma 1 to show that

E
[
P−1
τ1T

SA
τ1
1(τ±1 < τ∓1 )

]
= E

[
E [X | Fτ1 ]1(τ

±
1 < τ∓1 )

]
= E

[
E
[
E [X | Fτ1 ]1(τ

±
1 < τ∓1 ) | Fτ2

]]
= E

[
E [E [X | Fτ1 ] | Fτ2 ]1(τ

±
1 < τ∓1 )

]
= E

[
E [X | Fτ2 ]1(τ

±
1 < τ∓1 )

]
= E

[
P−1
τ2T

SA
τ2
1(τ±1 < τ∓1 )

]
. (70)

Then if we substitute the relation

1(τ±1 < τ∓1 ) =1(τ±1 < τ∓1 )1(τ2 = T )

+ 1(τ±1 < τ∓1 )1(τ
+
2 < τ−2 ) + 1(τ±1 < τ∓1 )1(τ

−
2 < τ+2 ) (71)

into (69) and make use of (70), we obtain

HA
0 =P0T (ϕ

2ψA + ϕ− 2)E
[
P−1
τ2T

SA
τ2
1(τ−1 < τ+1 )1(τ

−
2 < τ+2 )

]
+ P0T (ψ

−1
A − ϕ−1)E

[
P−1
τ2T

SA
τ2
1(τ+1 < τ−1 )1(τ

−
2 < τ+2 )

]
+ P0T (ϕ− ψA)E

[
P−1
τ2T

SA
τ2
1(τ−1 < τ+1 )1(τ

+
2 < τ−2 )

]
+ P0T (2− ϕ−1 − ϕ−2ψ−1

A )E
[
P−1
τ2T

SA
τ2
1(τ+1 < τ−1 )1(τ

+
2 < τ−2 )

]
+ P0T (1− ϕ−1)E

[
P−1
τ1T

SA
τ1
1(τ+1 < τ−1 )1(τ2 = T )

]
+ P0T (ϕ− 1)E

[
P−1
τ1T

SA
τ1
1(τ−1 < τ+1 )1(τ2 = T )

]
, (72)

and by Lemma 2 it follows that the coefficients of all six terms are strictly positive.
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VII. MULTIPLE TRADES

Scenario 6. When multiple successive trades take place in a given trading session one can
adapt the notation of the previous sections by recursively defining the stopping times

τ+k = inf
t∈[τk−1,T ]

(ϕ−QA
k−1−1ψ

−QA
k−1

A SA
t ≥ ϕ−QB

k−1+1ψ
−QB

k−1

B SB
t ) , (73)

and

τ−k = inf
t∈[τk−1,T ]

(ϕ−QA
k−1+1ψ

−QA
k−1

A SA
t ≤ ϕ−QB

k−1−1ψ
−QB

k−1

B SB
t ) , (74)

where k = 1, . . . , n, with the convention that τ0 = 0. Here, the inventory QA
k of Trader A

after the first k trades is given by

QA
k =

k∑
r=1

1(τ+r < τ−r )− 1(τ−r < τ+r ) , (75)

and it should be evident that QB
k = −QA

k . With this notation in mind, let us consider the
situation where the game master permits up to n trades in the trading session. We introduce
a collection of indices ϵk for k = 1, . . . , n that take the values ±1. Thus, for k ∈ {1, 2, . . . , n}
the index ϵk ranges over the set {+1,−1}. To analyze the profitability of Trader A over the
given trading session it will be useful to have a compact expression for the trading profits.
We note that in the case of a single trade, the profit can be written

HA
T (1) =

∑
ϵ1

ϵ1
(
X − ϕ−ϵ1Sτ1P

−1
τ1T

) [
1
2
(1 + ϵ1)1(τ

+
1 < τ−1 ) +

1
2
(1− ϵ1)1(τ

−
1 < τ+1 )

]
, (76)

and it can be verified that this reduces to formula (49), with which we are already familiar.
A little less obviously, one can check that for n = 2 we have

HA
T (2) =

∑
ϵ1

ϵ1
(
X − ϕ−ϵ1Sτ1P

−1
τ1T

) [
1
2
(1 + ϵ1)1(τ

+
1 < τ−1 ) +

1
2
(1− ϵ1)1(τ

−
1 < τ+1 )

]
+
∑
ϵ1,ϵ2

ϵ2
(
X − ϕ−(ϵ1+ϵ2)ψ−ϵ1Sτ2P

−1
τ2T

) ∏
k=1,2

[
1
2
(1 + ϵk)1(τ

+
k < τ−k ) +

1
2
(1− ϵk)1(τ

−
k < τ+k )

]
.

(77)

Here we have separated the profits resulting from the first trade from the profits resulting
from the second trade. Alternatively, we an write

HA
T (2) = HA

T (1)1(τ2 = T ) +
∑
ϵ1,ϵ2

[(
ϵ1
(
X − ϕ−ϵ1Sτ1P

−1
τ1T

)
+ ϵ2

(
X − ϕ−(ϵ1+ϵ2)ψ−ϵ1Sτ2P

−1
τ2T

))
×

∏
k=1,2

[
1
2
(1 + ϵk)1(τ

+
k < τ−k ) +

1
2
(1− ϵk)1(τ

−
k < τ+k )

]]
, (78)

which splits the profits into those deriving from the situation where there is a single trade
and those deriving from situations where there are two trades. The advantage of (78) is
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that this expression, when taken with (76), readily generalizes to the n-trade case. To this
end, it will be useful to define the random variables

Ik(ϵk) =
1
2
(1 + ϵk)1(τ

+
k < τ−k ) +

1
2
(1− ϵk)1(τ

−
k < τ+k ) , (79)

for k = 1, . . . , n. Thus, Ik(1) = 1(τ+k < τ−k ) and Ik(−1) = 1(τ−k < τ+k ). Let us write∑
ϵ1,...,ϵn

=
∑
ϵ1

∑
ϵ2

. . .
∑
ϵn

. (80)

One can then check that the total profitability of Trader A over the given time frame in a
multiple trade situation is given by

HA
T (n) = HA

T (n− 1)1(τn = T )

+
∑

ϵ1,...,ϵn

[
n∑

k=1

ϵk

(
X − ϕ−

∑k
r=1 ϵrψ−

∑k−1
r=1 ϵrSτkP

−1
τkT

) n∏
k=1

Ik(ϵk)

]
. (81)

The profits registered in (81) are those for the first n trades, allowing for the possibility
that there may be fewer than n trades. The first term on the right takes into account the
situation where there are n− 1 (or fewer) trades, and the second term on the right gives the
profitability when there are exactly n trades. Here, to ease the notation we have written ψ
in place of ψA, since ψB enters only indirectly, via the stopping times. As a step towards
establishing Proposition 9 below, we introduce the following:

Lemma 3. Let ϕ > ψ ≥ 1, let n ∈ N, and let the series (ϵk)k=1,2,...,n be chosen such that
ϵk ∈ {1,−1} for each k ∈ {1, . . . , n}. Then

n∑
k=1

ϵk

(
1− ϕ−

∑k
r=1 ϵrψ−

∑k−1
r=1 ϵr

)
> 0 . (82)

Proof. We proceed by induction. It is straightforward to check that (82) holds for n = 1
and for n = 2. Our goal is to show that if (82) holds for n− 1 then it holds for n. Let the
index series (ϵk)k∈{1,...,n} be given. Define the series (Qk)k∈{0,1,...,n} by setting Q0 = 0 and
Qk = Qk−1 + ϵk for k = 1, . . . , n. We observe that (82) can be written

n∑
k=1

ϵk
(
1− ϕ−Qkψ−Qk−1

)
> 0 . (83)

We consider the case ϵ1 = 1, the case ϵ1 = −1 being analogous. Within the chosen case,
we observe that if a negative value is taken by an element of the series (Qk)k∈{1,...,n}, then
∃m ∈ {2, . . . , n − 1} such that Qm = 0 and Qm+1 = −1. Define the series (Rk)k∈{0,...,n−m}
by R0 = 0 and Rk = Rk−1 + ϵk+m for k ∈ {1, . . . , n−m}. Then we have

n∑
k=1

ϵk
(
1− ϕ−Qkψ−Qk−1

)
=

m∑
k=1

ϵk
(
1− ϕ−Qkψ−Qk−1

)
+

n−m∑
k=1

ϵm+k

(
1− ϕ−Rkψ−Rk−1

)
. (84)
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Since m < n and n − m < n, it holds by the inductive hypothesis that both terms on
the right hand side of (84) are positive. Thus, it suffices to restrict our attention to the
case where all elements of the series (Qk)k∈{1,...,n} are non-negative. Now let N < n be the
number of times ϵk is negative for k = 1, 2, . . . , n. That is to say,

N = |{k ∈ {1, . . . , n} : ϵk = −1}| , (85)

where |{·}| denotes the cardinality of the set {·}. If N = 0, then ϵk = 1 for all k ∈ {1, . . . , n}
and (82) holds. Thus, we turn to the case N ≥ 1. Let α1 denote the first k for which ϵk
is negative, let α2 denote the second k for which ϵk is negative, and so on up to αN , which
denotes the N -th k for which ϵk is negative. Let β1 be α1 − 1, and for k ∈ {2, . . . , N} set

βk = sup
{
j ∈ {1, . . . , αk} \ {β1, . . . , βk−1} : Qj > Qαk

}
. (86)

It should be evident that for each αk such that k ∈ {1, . . . , N} there exists a number βk
satisfying (86). To fix ideas, in Figure 3 we present an example of the trajectory of Trader
A’s inventory (Qk)k∈{0,...,6} over six trades, where we work out αk and βk for k ∈ {1, 2}.

0 1 2 3 4 5 6
0

1

2

3

Figure 3: The total profitability of Trader A is illustrated in this example involving six trades, where

ϵ1 = 1, ϵ2 = 1, ϵ3 = 1, ϵ4 = −1, ϵ5 = −1, ϵ6 = 1. A line leading up to a trading point indicates a

buy at that point and a line leading down indicates a sell. The inventory rises to 3 at trade 3, then

drops to 1 at trade 5, then rises to 2 at trade 6. Thus α1 = 4, α2 = 5, β1 = 3, β2 = 2. The value

of Trader A’s position is given by the risk-neutral probability of the trade sequence multiplied by

(1−ϕ−1)+(1−ϕ−2ψ−1)+(1−ϕ−3ψ−2)−(1−ϕ−2ψ−3)−(1−ϕ−1ψ−2)+(1−ϕ−2ψ−1). We observe

that since ϕ > ψ ≥ 1 the difference between the third trade and the fourth trade is positive, and

likewise the difference between the second trade and the fifth trade is positive.

Define Λ = {1, . . . , n} \ ({γ1, . . . , αN} ∪ {β1, . . . , βN}). Then

n∑
k=1

ϵk
(
1− ϕ−Qkψ−Qk−1

)
=

∑
k∈Λ

(
1− ϕ−Qkψ−Qk−1

)
+

N∑
i=1

(
ϕ−Qαiψ−Qαi−1 − ϕ−Qβiψ−Qβi−1

)
,

(87)

which is strictly greater than zero. In particular, we note that the first term of the right
hand side of (87) is strictly positive, since Q1 = 1 and ϕ > ψ ≥ 1. Furthermore, since by
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construction Qβi
−Qαi

≥ 1 for i = 1, . . . , N , we have Qβi−1 −Qαi−1 ≥ −1, and hence

ϕ−Qαiψ−Qαi−1 − ϕ−Qβiψ−Qβi−1

= ϕ−Qβiψ−Qβi−1(ϕQβi
−Qαi ψ−Qβi−1−Qαi−1 − 1) ≥ ϕ−Qβiψ−Qβi−1(ϕψ−1 − 1) , (88)

from which we deduce that the second term on the right side of (87) is strictly positive.

Figure 4 provides a visual representation of the inequality (82) for sequences (ϵk)1≤k≤m up
to m = 10.
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Figure 4: Positivity of profitability for ϕ = 1.02 and ψA = 1.01. The positivity of (82) is shown for

these parameters and for all combinations of buys and sells up to a total of ten trades (m ≤ 10).

For n ≥ 2 we consider the binary representation of n given by the binary number 1υ1 υ2 · · · υm and

we plot the value of (82) for the sequence (ϵk)1≤k≤m where ϵk = 2 υk − 1 for k ∈ {1, . . . , m}.

Armed with Lemma 3 we are now in a position to assert the following:

Proposition 9. The value of Trader A’s position under Scenario 6 is strictly positive in
any non-trivial trading model with inventory risk.

Proof. We wish to show that the expectation of the total profitability (81) is positive for
any n ∈ N. By use of the optional stopping theorem we observe that the value of Trader
A’s position under Scenario 6 is strictly positive if

n∑
k=1

ϵk

(
1− ϕ−

∑k
r=1 ϵrψ−

∑k−1
r=1 ϵr

)
> 0 (89)

for any choice of the parameters ϕ > ψ ≥ 1 and for any sequence (ϵk)k=1,2,...,n such that
ϵk ∈ {1,−1} for all k ∈ {1, . . . , n}. We conclude the proof by use of Lemma 3.

With the framework of Scenario 4 in mind, we conduct simulation studies for the case
when the game master allows up to ten trades. Figure 5 illustrates the trading mechanism.
To make the various features of the model apparent to the naked eye, we have shown the
first one-fifth of the time frame of the trading session. The lower right-hand panel shows
the trajectory of the ratio of the quoted mid-prices, given by

SA
t ϕ

−QA
t ψ

−QA
t

A /SB
t ϕ

−QB
t ψ

−QB
t

A . (90)



23

0.000 0.025 0.050 0.075 0.100

0.70

0.75

0.800.80

time

pr
ic

es

0.000 0.025 0.050 0.075 0.100
-1

0

1

time

in
ve

nt
ro

ry

0.000 0.025 0.050 0.075 0.100

0.70

0.75

0.800.80

time

pr
ic

es

0.000 0.025 0.050 0.075 0.100

0.96

0.98

1.00

1.02

1.04

time
cr

ite
rio

n

Figure 5: Trading dynamics when game master allows up to ten trades. The model parameters

are T = 1, σB = 1, σA =
√
2, ϕ = 1.02, ψA = 1, ψB = 1 and r = 0. A single outcome of chance

is shown spanning the first one-tenth of the trading session. The top left panel shows the bid and

offer quotes of Trader A (red dashed line for offer, red solid line for bid) and for Trader B (blue

dash-dot line for offer, blue dotted line for bid). We indicate that a trade has taken place with

an upward pointing arrow when Trader A buys and a downward pointing arrow when Trader A

sells. The top right panel shows the inventories of Trader A (dotted red line) and Trader B (solid

blue line). The bottom left panel shows the trajectories of SA
t (dotted red line) and SB

t (solid blue

line). The bottom right panel shows the trajectory of the quotient of the quoted mid-prices and

the boundaries ϕ2 and ϕ−2. A trade occurs whenever the quotient process hits a boundary.

In the figure below we plot the profitability of Trader A as a function of the spread factor ϕ,
based on 100,000 simulations. The concavity of the profitability as a function of the spread
is clear.

Figure 6: This plot shows the profitability of Trader A as a function of the spread. The model

parameters are r = 0, ψA = 1, ψB = 1, σA =
√
2, σB = 1, and p = 0.8.
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Figure 6 provides the insight that as the spread is decreased information is transferred to
the less informed trader at a lower cost. This means that there is a duality for Trader B,
at least regarding the average profitability, between (i) acquiring more information while
remaining less-informed than Trader A, and (ii) trading in a market where the game master
declares a smaller spread.

In Figure 7 we show the profitability surface as the spread factor and the information flow
rate change. Figure 8 demonstrates how the average inventory decreases as the inventory
aversion parameter is rachetted up. It is interesting to observe that the dependence is
essentially linear.
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Figure 7: Trading profitability surface plotted as a function of the information flow rate σB and

the spread factor ϕ. For each point on the surface we work out Trader A’s average profitability

over the course of 100,000 simulations, with T = 1, ψA = 1, ψB = 1, r = 0, and σA =
√
2σB.

Figure 8: This plot shows the average of the maximum value of the inventory of Trader A as a

function of the inventory aversion parameter ψA. The model parameters are r = 0, ϕ = 1.02,

σA =
√
2, σB = 1, and p = 0.8. For a given value of ψA ∈ [1, ϕ) we take ψB = ψA.
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VIII. INFORMATION DOMINATES STRATEGY

Scenario 7. In this scenario Trader A has a fixed spread ϕ and a fixed ambiguity aversion
parameter ψ satisfying 1 ≤ ψ < ϕ. But Trader B now employs an {FB

t }t≥0 adapted
multiplicative spread {ϕt}0≤t≤T , assumed to be càdlàg, such that ϕt > 1 for all t ∈ [0, T ].
Trader B also uses an {FB

t }t≥0 adapted ambiguity aversion {ψt}0≤t≤T , assumed to be càdlàg,
satisfying 1 ≤ ψt < ϕt for all t ∈ [0, T ]. We define the stopping times

τ+k = inf
t∈[τk−1,T ]

(ϕ−QA
k−1−1ψ

−QA
k−1

A SA
t ≥ ϕ

−QB
k−1+1

t ψ
−QB

k−1

t SB
t ) , (91)

and

τ−k = inf
t∈[τk−1,T ]

(ϕ−QA
k−1+1ψ

−QA
k−1

A SA
t ≤ ϕ

−QB
k−1−1

t ψ
−QB

k−1

t SB
t ) , (92)

where k = 1, . . . , n, with the convention that τ0 = 0. Here, the inventory QA
k of Trader A

after the first k trades is given by

QA
k =

k∑
r=1

1(τ+r < τ−r )− 1(τ−r < τ+r ) , (93)

and one has QB
k = −QA

k . Then we obtain the following.

Proposition 10. The value of Trader A’s position under Scenario 7 is strictly positive
in any non-trivial trading model with inventory risk and where Trader B makes use of an
adapted multiplicative spread and an adapted inventory aversion.

Proof. As in Proposition 9, we wish to show that the expectation of Trader A’s profitability
(81) is positive for any n ∈ N. Given that {ϕt}0≤t≤T and {ψt}0≤t≤T only enter (81) indirectly,
via stopping times, it follows by use of the optional stopping theorem that the value of Trader
A’s position under Scenario 7 is strictly positive if (89) holds for any choice of the parameters
ϕ and ψ satisfying 1 ≤ ψ < ϕ and for any sequence (ϵk)k=1,2,...,n such that ϵk ∈ {1,−1} for
all k ∈ {1, . . . , n}. Lemma 3 then applies and leads to the desired result.

Proposition 10 offers an interesting insight: superior information trumps strategy – in
other words, regardless of the strategy that Trader B uses, the superiority of Trader A’s
information ensures that Trader A’s profitability is positive.

IX. CONCLUSIONS

That superior information leads to superior trading need not come as a surprise, for who
would have thought otherwise? But it is one thing to speculate so in general terms with
waving hands, and it is another thing to embody the principle in mathematical terms under-
pinned with explicit models. Our examples illustrate the variety of venues under which the
informed trader will practice his trade, and the professionals will realize that strategy is but
of little impact, that knowledge exceeding that of oÉ polloÐ is what is required. When the
traded instrument admits a single payout, as in the case of the defaultable discount bond
considered, the advantage taken by the informed trader diminishes as the terminal date is
approached, and at the point of reckoning traders of either class are equally knowledgeable.
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This is an artefact of the simple structure of the example, and not representative of the
situation in general; for in reality the informed trader will have already taken his profit
and moved on to the next presented opportunity. With coupon bonds and dividend paying
stocks, by the time Trader B has caught up with Trader A’s knowledge of some coupon or
dividend, the intention is already on the next. We do regard it significant that the filtration
accessed by Trader B is a strict sub-filtration of that of Trader A. For we assign a value
to a trader’s strategy and for that we require a pricing kernel adapted to the filtration of
the larger mass of the less-informed represented by Trader B. The change of measure thus
induced allows one to work with risk-neutral pricing for all traders, whose differences in
pricing are due to differences in knowledge – not, in the main, in our scheme, to differences
in behavioral characteristics or issues of supply and demand.

Throughout the analysis we have worked at two different levels, which we might call the
general and the specific. For some considerations we look at general trading models based
on a market with a pricing kernel and a hierarchy of filtrations. For other considerations
we construct specific examples of market information flows. It is a general feature of the
information-based approach that quantification of the magnitude of the information is left
as an abstraction, and one might be left wondering what the information flow rate signifies.
This issue has been addressed in references [6, 7], where it is pointed out that one can back
out an implied information flow rate from option prices, alongside the implied P-distributions
of the cash flows. Whether or not such options are actually traded is not the point; rather, we
emphasize that the flow rate parameters and the a priori P-distributions can in principle be
determined from market data. We envisage a variety of practical applications of the trading
scenarios that we have considered in this paper. Both in-house risk managers and market
regulators may find our model useful to stress market conditions such as volatility and spread
and to look at average profitability, volume traded, and other variables of interest. More
generally, our model can be readily extended to the situation where there are more than
two traders in which the traders are stratified into hierarchies. Such scenarios may form
the basis for viability studies for large markets and eventually new approaches to the vexing
issues of systemic risk in such markets [23]. In the specialized aspects of our analysis we
have confined our studies to the consideration of Brownian bridge information processes of
the type set out and studied in [2, 4, 6, 7, 10, 11, 15, 16, 21, 24, 28]. This can be justified on
the basis of the high degree of analytic tractability found in such models. But it should be
clear that the more general aspects of our analysis extend into the categories of information
processes admitting jumps, and hence it would also be worth exploring trading models based
on Lévy processes and Lévy-Ito processes [1, 3, 5, 8, 9, 12, 17–20, 22, 25, 26, 29].

The information-based trading models that we set out here can be placed in the context of
the distinct and overlapping contributions made by various authors, including those of the
present paper, to the development of the trading mechanisms built on information-based
asset pricing. The early work [6–8, 24, 28] in this area was concerned with applications
to asset pricing, derivatives risk management, and insurance markets. The story of how
these collaborations came about can be found in the preface to [11] where a bibliography
of later work on the topic by a host of authors can be found. The first applications to
trading mechanisms appear in reference [4]. In that paper, the trading involves (i) a large
homogeneous market with access to a single flow of information, together with (ii) a single
“informed” trader, who has access to an additional flow of information. Since the informed
trader also has access to the information flow available to the general market, his filtration
is strictly larger than that of the market as a whole.
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In the language of the present paper, the market as a whole in [4] can be represented
by a tier-1 trader, whereas the informed trader is a tier-2 trader. In reference [4] one also
finds a version of the “Pythagorian” formula as well as elements of the statistical arbitrage
argument that we use in the present paper. In reference [10] one sees the first applications
of the information-based approach to trading in a truly heterogeneous market. In that work
each trader has access to a distinct information process and it is assumed for simplicity that
the Brownian bridges are independent. The traders make prices with bid-ask spreads and
trades occur when the spreads cross. Some of the traders have informational superiority in
the sense that their information flow rates are higher than those of other traders, but the
relationship of the traders to one another is not “hierarchical” in the way that it is in the
present paper. The model of [10] was extended and analyzed in great depth in the work
of Aydın [2] and has been further extended (with the inclusion of noise correlations and
extensive numerical analysis) by Fukuda, Kondo & Takada [16]. All in all, one sees two
distinct lines of development in the construction and analysis of trading models making use
of the information-based framework. On the one hand, there are the heterogeneous models
of [2, 10, 16], and on the other hand there are the hierarchical models of [4] and the present
paper. These two classes of models apply to different types of markets and each can be
generalized in various ways. An open problem in the theory of heterogeneous markets, in
the situation where each trader has his own supply of information, is to show rigorously
(or else provide a counterexample) that informational superiority – that is, having a higher
information flow rate – is advantageous in the sense that it leads to a statistical arbitrage.
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