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Abstract. The early stages of life are paramount for the baby’s brain and 
emotional development, and the quality of interaction between mother and baby 
- measured as a dyadic synchrony score, is critical in that period. This study 
proposes the first machine learning prediction modelling approach, based on 
Gated Recurrent Unit - GRU ensemble models, to automatically differentiate 
high from low dyadic synchrony between mother and baby, using a dataset of 
videos capturing this interaction. The GRU ensemble models which were post-
processed by maximising the Youden statistic in a ROC analysis procedure, show 
a good prediction capability on test samples, including a mean AUC of 0.79, a 
mean accuracy of 0.72, a mean precision of 0.87, a mean sensitivity of 0.64, a 
mean f1 performance of 0.72, and a mean specificity of 0.83. In particular the 
latter performance represents an 83% detection rate of the mother-baby dyads 
with low synchrony, suggesting these models’ high capability for automatically 
flagging such cases that may be clinically relevant for further investigation and 
potential intervention. A Monte Carlo validation procedure was conducted to 
accurately estimate the above mean performance levels, and to assess the 
proposed models’ stability. The statistical significance of the prediction ability of 
the models was also evaluated, i.e. mean AUC > 0.5 (p-value < 9.82x10-19), and 
future research directions were discussed. 
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Units - GRU, Ensemble learning, ROC analysis, Monte Carlo validation 

1 Introduction 

The early stages of life are paramount for babies’ brain and emotional development, 
and the quality of interaction between mother and baby is critical in that period. If a 
baby is denied the attention and a positive interaction, they can struggle in later life 
with forming relationships, education and functioning in society [1]. An increasing 
body of research shows that babies who were neglected from the early stages of 
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development face further social development difficulties [2]. In particular, research 
suggests that synchrony between the infant’s behaviour and their caregivers play many 
functions in the infants’ development, from co-regulations of exchanges in interactions 
to language acquisition [3]. A functional interaction between mother and baby is one in 
which the mother focuses her attention on the child and responds to their behaviour in 
a short time. Such an interaction can be described as synchronous. According to [4] 
synchrony between two people is defined as a state where they move together in the 
same or almost the same time with one another. Research suggests that synchrony in 
group interactions can have a later positive influence on forming social actions [5]. 
Synchrony is used to find patterns in movements of positive and negative interactions 
between mother and baby. Developing new methods for finding synchrony patterns can 
help to automate the process of assessing the mother-baby interaction quality.  

Due to its vital role in the early stages of baby’s development, expert assessment of 
the synchrony between mother and baby in videos capturing this interaction, is an 
important research question. Moreover, there is value in automating this assessment 
process using machine learning, as such automation could flag those videos which are 
more likely to capture a negative, lower synchrony between mother and baby, allowing 
early specialist intervention in problematic mother-baby interactions.  

Predicting synchrony between participants in videos using machine learning models, 
was previously tackled in literature including works such as [6], in which the authors 
successfully trained a model based on Long Short-Term Memory (LSTM) recurrent 
neural networks [13, 14], on facial expressions data that had been extracted from pre-
recorded videos representing a group of three interacting people. The proposed 
approach was used to predict synchrony score on a scale of 1 to 5, and the recurrent 
neural model’s predictions were validated by comparison with predictions based on a 
random permutations baseline. In another machine learning study proposing the 
prediction of synchrony between a human arm and a robot arm, the final position of the 
human arm was predicted also with recurrent neural networks based on LSTM models 
[7].  

In the present study we propose an innovative machine learning approach to 
predicting the categorical level of dyadic synchrony – high versus low, for 58 mother-
baby dyads, based on a dataset comprising 58 records with body part coordinates 
extracted from 58 videos capturing the interaction of these dyads. Our approach is based 
on Gated Recurrent Unit (GRU) recurrent neural networks [8, 13] as baseline models, 
with a focus on ensembles of such models – with the purpose to enhance the models’ 
prediction and stability on a relatively small number of record dataset. GRUs are similar 
to but involve a lesser complexity in training than LSTM models [13, 14] since they 
are able to store and filter the information using only two gates - reset and update, as 
opposed to three gates – input, output and forget, for LSTMs, respectively. GRU 
models are often capable of performance levels comparable to SLTM models, and due 
to their reduced relative complexity are preferred in this preliminary study on a dataset 
comprising a relatively small number of records. However, the volume of data extracted 
from videos is relatively large, overall, leading to a substantial computational cost. 

The rest of the paper is organised as follows: Section 2 introduces our proposed 
prediction modelling approach’s methodology, including data description and pre-
processing, and model development, evaluation, and Monte Carlo validation. Section 3 
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presents and discusses our results, and Section 4 concludes the paper and outlines future 
research directions.    

2 Methodology 

2.1 Data description and pre-processing 

This work was based on a sample of 60 videos from the SPEAKNSIGN dataset [20], 
each lasting more than 10 minutes with 25 frames per second, capturing a session of 
free-play between 4-7-month-old infants and their mothers. The videos were scored by 
experts with a dyadic synchrony score ranging from 2 (low) to 14 (high).  

OpenPose library [19] was used to extract a 5D array based on coordinates of body 
part keypoints from each video. In particular, for the purpose of this analysis, data 
representation was adapted and simplified by extracting, for each frame, pairs of x and 
y coordinates for 25 body keypoints for each mother and her baby. Fig 1 illustrates the 
body part keypoints extracted by OpenPose from a single frame of the interaction video. 
3D arrays were finally obtained for the analysis, comprising the record number 
corresponding to each video, the frame number, and the sum aggregation of the x and 
y coordinates. Two records were discarded as they did not meet the data quality 
requirements, leading to a dataset of 58 records in all. Records were categorized in two 
classes by using the dyadic synchrony scores: class 1 – high synchrony, and class 0 – 
low synchrony, containing the highest 60% scores and the lowest 40% scores in the 
dataset, respectively. 

 
 
 

 

Fig. 1. Body part keypoints extracted by OpenPose from a single frame of the interaction video.  
 

The dataset was cleaned with respect to missing values which were imputed with 
linear interpolation, and outliers were detected using criteria based on the range of 
0.025 or 0.975 quantiles, and discarded. Data was normalised.  
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Fig. 2 illustrates, in a preliminary exploratory data analysis conducted in [20], a partial 
correlation between mother and baby as reflected by the whole body movement index 
aggregating differences in body coordinates in the frame sequence [20]. We note 
various levels of correlation of the body movement index between mother and baby, 
and these go as high as 0.84 in the four examples of mother-baby dyads illustrated here 
(see second plot).  

 

 

 

Fig. 2. Body movement index capturing a correlation in mother and baby’s body movement [20].  
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2.2 Model development, evaluation and Monte Carlo validation 

     The baseline GRU neural network architectures [8,13] used in this work comprised 
2 and 3 GRU layers with 200, 256, 300 nodes, and 1 hidden dense layer with 50, 64, 70 
nodes, implemented in Keras and TensorFlow. As activation functions we employed 
relu, prelu, elu, selu, softplus for the hidden dense layer and sigmoid for the output 
layer, while for the GRU layers we used tanh as activation function and sigmoid as 
recurrent activation. As loss functions we employed Binary crossentropy and binary 
focal crossentropy (for the moderate data imbalance 60:40 present in the data). The 
constant learning rate of 0.001, and the exponential learning rate scheduling were used, 
together with adam, and nadam optimisers. To prevent overfitting, an early stopping 
with 4, 5, 7, 10 patience, and L2 regularization for the dense layer, were explored.  
      Due to the relatively small number of records available in the dataset, i.e. 58, which 
may increase the variance of the model performance and hence negatively affect the 
model stability, we built ensembles of 10 and 20 GRU models whose predicted 
probabilities were averaged. After splitting the dataset into a test set and a non-test set, 
the GRU models in each ensemble were obtained by repeatedly further splitting the 
non-test set into validation and train set, for 10 and 20 times, and training the models 
in each case. The ensemble of 10 and 20 models was then evaluated on the test set. Data 
splitting was stratified, and the following proportions were used for the test, validation, 
and training set, respectively: (0.3, 0.3, 0.4), (0.25, 0.3, 0.45), (0.25, 0.25, 0.5).  

For this binary classification problem with a moderately imbalanced dataset, the 
primary performance in evaluating the models was the ROC Area Under Curve, 
denoted AUC. We utilised the Youden statistic maximisation method in a ROC analysis 
procedure [18] for estimating the optimal probability threshold on the non-test (i.e. 
training and validation) set of records, in order to apply this threshold on the test set to 
predict the high and low synchrony classes. With this optimal threshold we computed 
accuracy, precision, sensitivity, specificity, and f1 performances.  

Moreover, for each model, we computed the Cohen's kappa statistic and MCC 
(Matthews correlation coefficient) whose positive values, when sufficiently far from 0, 
suggest the existence of predictive pattern in the data that is captured by models. Model 
predictiveness was established also by running a one-side T-test, inferring statistically 
that the model's AUC is significantly larger than 0.5 which corresponds to a random 
prediction model.  

Such evaluations are useful also when working with a relatively small number of 
records, which usually increases the range of variation of models’ performance at the 
point of overlapping with the performance range of a random prediction. With the same 
rationale in mind, we conducted a Monte Carlo validation (MCV) based on 30 
experiments, each of which consisting of: (a) a test / non-test data set split; and (b) 
building the ensemble model as explained above in this subsection, and then evaluating 
it on the test set using the performances mentioned above.  

Building a GRU ensemble model especially on a large data volume extracted from 
videos is a computationally expensive procedure (even if the number of records is 
relatively small as in our approach). Moreover, an MCV multiplies this computational 
cost by the number of experiments (i.e. 30). However, this is beneficial in our case to 
reliably assess the model prediction performances and stability, given the relatively 
small number of records at our disposal in this study (i.e. 58).  
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2.3 Software and hardware 

The data analysis was conducted using Python, with libraries Numpy, Pandas, 
TensorFlow, Keras, Sklearn and Seaborn. Videos were initially processed with 
OpenPose library to detect the body, hand, facial, and foot keypoints coordinates.  

The hardware consisted of 3 Linux servers with Xeon 6-cores processors and 96GB 
RAM each, for data exploration and pre-processing, and for code prototyping, and 2 
Linux servers with Intel 9 10-cores and AMD Ryzen 16-cores with 128GB RAM each, 
and Titan RTX 24GB and 3090 RTX 24GB GPUs, for GRU and ensemble model 
training and MCV intensive computation procedures for building and assessing the 
models’ performances and stability. 

3 Results and discussion 

   The results in the Monte Carlo validation (MCV) illustrated in Fig. 3, reveal the 
following aspects:  

 
a) The mean AUC of 0.79 of the GRU ensemble models (ens_auc_test) shows a 

good prediction level for the relatively small number of records in the dataset.  
 

b) The ROC analysis estimating optimal probability thresholds for classification 
by maximising the Youden statistic [18], led to good levels of mean accuracy 
(acc_test) 0.72, mean precision (prec_test) 0.87, mean f1 performance (f1_test) 
0.72, as well as positive, far from 0, mean Mathews correlation coefficient 
(mcc_test) 0.48 and mean Kappa coefficient (kappa_test) 0.44.   
 

c) Given the mean precision (prec_test), mean sensitivity (sens_test), and mean 
specificity (spec_test) levels achieved by the models, we can infer that 87% of 
mother-infant dyads predicted as being in the high synchrony class, were 
predicted correctly by the ensemble models, and that these ensemble models 
detected 64% of the high synchrony cases; More importantly, these ensemble 
models detected also 83% of mother-infant dyads with low synchrony. This 
suggests our models’ capability for automatically flagging such cases that may 
be clinically relevant for further investigation and potential intervention. 
 

The performance values in Fig. 3 are means computed in the Monte Carlo validation 
on 30 test sets randomly sampled from the dataset (more precisely, via random training, 
validation, test stratified splits). Due to the relatively small number of records and the 
data splitting required for building and evaluating the models, which make the training 
and test sets even smaller, the model stability has some expected limitations as 
suggested by the various performance boxplots illustrated in Fig. 3 and by the AUC 
performance histogram depicted in Fig. 4, both of which showing a significant variation 
of such performances across the Monte Carlo validation procedure. 
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ens_auc_test      0.79 
mean_auc_test     0.77 
acc_test          0.72 
prec_test         0.87 
f1_test           0.72 
mcc_test          0.48 
kappa_test        0.44 
sens_test         0.64 
spec_test         0.83 

Fig. 3. Left: Boxplots of ensemble model performances on 30 test sets in Monte Carlo 
validation. Right: mean performances in Monte Carlo validation. 

 

 

 

Fig. 4. Histogram of AUC performances on 30 test sets in Monte Carlo validation.  

   We also conducted a T-Test based on the AUC results obtained in the 30 experiments 
in the Monte Carlo validation, which led to establishing, with a significant p-value < 
9.82x10-19, the alternative hypothesis that mean AUC > 0.5. This proves also 
statistically that the models proposed in this approach predict better than chance. 

4 Conclusion and future research directions 

To our knowledge, this work represents the first machine learning based approach 
in literature, predicting the categorical level of dyadic synchrony – high versus low, in 
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mother-baby interactions captured in a dataset of videos. We processed the videos with 
OpenPose library for extracting coordinates from the mother and baby body 
movements, expected to inform mother-baby dyadic synchrony. Using the dataset of 
extracted coordinates, this work proposed a novel and substantially high-performing 
prediction modelling approach, by developing GRU models and ensembles of such 
models, which were studied in terms of exploring various model architectures, and of 
assessing prediction performances and model stability with a Monte Carlo Validation 
procedure.  

The GRU ensemble models showed a good prediction capability on test samples, 
including a mean AUC of 0.79, a mean accuracy of 0.72, a mean precision of 0.87, a 
mean sensitivity of 0.64, a mean f1 performance of 0.72, and a mean specificity of 0.83. 
In particular the latter performance represents an 83% detection rate of the mother-baby 
dyads with low synchrony, suggesting these models’ very good capability for 
automatically flagging such cases that may be clinically relevant for further 
investigation and potential intervention.  
     Future research directions to further develop the current study concern: (a) 
Extending the analysis to a superset of the current dataset, comprising additional videos 
not available in the present analysis, and incorporating further derived variables 
exploiting correlations similar to those illustrated in Fig 1; (b) Expanding the machine 
learning prediction modelling methodology including the application of autoencoders 
[13, 14] for alternative feature extraction and representation, and of transfer learning 
[17] based on other similar datasets, as further enhancements of the approach proposed 
in this study; (c) Developing explanatory models for getting insights of the prediction, 
and for performance comparison with the black-box models presented in this study; (d) 
Expanding and evaluating the generalisability of this methodology by employing 
alternative video based data capturing the interaction between parents and children in 
other various joint activities. 
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