
On the optimization of systems using
evolutionary algorithms and techniques

Itshak Tkach and Tim Blackwell

Goldsmiths, University of London, UK

In this chapter, evolutionary computation techniques, algorithms and research are presented for
the optimization and allocation problems. Several aspects of continuous optimization, systems
security and supply networks (SN) are illustrated. The real-life optimization and security
problems in systems, automation, SN and law enforcement are NP-hard optimization problems,
thus evolutionary algorithms (EA) that employ meta-heuristic methods are useful for solving
them. EA gain significant interest in recent years, and this chapter summarizes some of the
advances in that field and then summarizes their applications for real-life problems. The rest
of this chapter is organized as follows.

First, the introduction of the developments of nature-inspired EAs is described. Then the
working principles of genetic algorithms (GA), swarm intelligence, and other nature-inspired
optimization algorithms are given. Next, the overview of the various applications that were
solved and optimized by EAs is presented.

The reader of this chapter will be familiar with the following topics:

The state-of-the-art EA in AI and their working principle.

The way to harness EA for optimization and finding optimal solutions.

Function and multi-dimensional optimization.

Controlling and optimizing a collaborative system in real-time while addressing several tasks
in a complex environment.

Introduction

Evolutionary algorithms are nature-inspired techniques that are a subfield of computational and
artificial intelligence (AI). EA uses an evolutionary process within a computer to address
complex engineering problems that require an exhaustive search that traditional algorithms are
unable to solve in a finite amount of time. Part of EA is swarm (SI) intelligence algorithms,
that employ the emergent collective intelligence of simple agents to solve complex problems.

Figure 1: Computational intelligence disciplines; Neural networks, Evolutionary algorithms and fuzzy logic

EA has been developed since the early 1960s. Evolution strategies (ES) were introduced
(Rechenberg, 1973) and (Schwefel, 1974). Evolutionary programming (EP) was first used
by (Fogel, 1963) to use simulated evolution as a learning process using finite-state machines.
Genetic algorithms (GA) became popular through the work of (Holland, 1975) with studies of
cellular automata and formulation of the next generation. Genetic programming (GP) is an
extension of GA for program evolution which was introduced by (Koza, 1990). Simulated
annealing (SA) was developed by (Kirkpatrick, et al., 1983). It is a probabilistic algorithm
inspired by the annealing of metals in metallurgy. Ant colony optimization (ACO) proposed
by (Dorigo, 1992) is a probabilistic optimization technique based on the foraging behaviour of
ants seeking the shortest path between their colony and a source of food. (Kennedy & Eberhart,
1995) introduced particle swarm optimization (PSO) which is a computational method for
optimising problems by using a population of particles moving around the search space
according to the simple principle of particle's position and velocity. The bees algorithm (BA)
was formulated by (Pham, et al., 2005) based on the foraging behaviour of honey bees. The
algorithm exploits global explorative search with local exploitative search. The artificial bee

Computational
and Artificial
intelligence

Neural
networks

Evolutionary
algorithms

Fuzzy logic

colony (ABC) algorithm is a metaheuristic introduced by (Karaboga, 2010), as an extension of
BA, it has three types of bees, employed bee, onlooker bee and scout bee. Heterogeneous
Distributed Bees Algorithm (HDBA) is a multi-agent metaheuristic algorithm initially
introduced by (Tkach, et al., 2013). It enables solving of combinatorial optimization problems
with multiple heterogeneous agents that possess different capabilities and performances. The
main evolutionary algorithms are summarized in Figure 2.

Based on the Google Scholar Metrics (2022), the top 6 publications are IEEE Congress on
Evolutionary Computation, Swarm and Evolutionary Computation, Conference on Genetic and
Evolutionary Computation, Evolutionary Computation, International Conference on
Applications of Evolutionary Computation, International Conference on Genetic and
Evolutionary Computing (ICGEC).

1960 Random Search

 ES EP

1970

 GA

1980

 SA Tabu Search

1990 GP ACO

 PSO

2000

 BA ABC

2010 HDBA

Figure 2: Timeline of ET

The main EA and their working principles
Genetic Algorithm
A genetic algorithm (GA) is an evolutionary algorithm that is used for solving optimization
problems with non-polynomial complexity. It was introduced by John Holland in 1975
(Holland, 1975), as a search optimization algorithm based on the mechanics of the natural
selection process. The basic concept of this algorithm is to mimic the concept of the survival
of the fittest. The evolution usually starts from a population of randomly generated individuals
consisting of legitimate candidate solutions, and is an iterative process, with the population in
each iteration called a generation. In each generation, the fitness of every individual in the
population is evaluated; the fitness is usually the value of the objective function in the
optimization problem being solved. The more fit individuals are stochastically selected from
the current population, and each individual's genome is modified by crossover and mutation to
form a new generation. The new generation of candidate solutions is then used in the next
iteration of the algorithm. Commonly, the algorithm terminates when either a maximum
number of generations has been produced, or a satisfactory level of the objective function has
been reached.

Pseudocode of GA
 Initialize population

 Generate random genotypes representing legitimate solutions
While not terminated do

For each chromosome from the population
Compute fitness functions VI

Make next population
Select parents
Apply crossover by recombining pairs of parents
Apply mutation to offspring by changing an allocation in a genotype

Evaluate new solutions by computing fitness functions VI
Store the chromosome that obtains the best fitness function

End while
 Take the stored chromosome

Ant colony optimization

An ant colony swarm algorithm called Ant Colony Optimization (ACO) was developed by
(Dorigo, 1992). It is inspired by the behaviour of ants foraging in nature. Research on the
behaviour of ants shows that most of the information transmission between individuals in a
group and between individuals and the environment is carried out by the chemical substances
produced by ants. This is a special substance called pheromone. They use a pheromone to mark
the path on the ground, such as the path from a food source to an ant colony. When ants walk
from a food source to an ant nest or from an ant nest to a food source, they will release
pheromone on the ground they pass by, thus forming a path containing pheromone. Ants can
perceive the concentration of pheromone on the path, and select the path with the highest

pheromone concentration with a higher probability. Ants find the location of food along the
way by sensing the pheromone released by other ants. This way of influencing the path
selection of ant colonies based on the information of chemical substances released by other
ants is the inspiration for ACO. It has been widely recognized and its application has been
extended to all aspects of the optimization problem field. In ACO, each ant is an agent that
chooses a solution with a probability that is a function of the performance and the amount of
trail laid. To force the ant to make legal selections, transitions to already visited sensors are
disallowed until a cycle is completed (this is controlled by a tabu list); when it completes a
cycle, it lays a substance called a trail on each path visited. After several generations, the
algorithm converges to the best path, which hopefully represents the optimum or suboptimal
solution to the problem.

0() ()i i it n tυ ρ υ υ υ+ = × + ∆ ≥
where υi is the intensity of ant’s i trail at time t. n is the number of sensors (every n iterations –
cycle, each ant completed a cycle). ρ is a coefficient such that (1 - ρ) represents the evaporation
of trail between time t and t+n, υo is the threshold.

∑
=

∆=∆
m

k

k
ii

1
υυ

where Δυi is the quantity per unit of trail laid on sensor i by the k-th ant between time t and t+n;
it is given by:

 if k-th ant uses path i in its cycle

0 otherwise

k
ki

Q
Lυ

∆ =

where Q is a constant and Lk is the tour length of the k-th ant. Tabu list saves the sensors already
visited up to time t and forbids the ant from visiting them again. When a tour is completed, the
tabu list is used to compute the ant’s current solution (i.e., the set of sensors being reached).

The probability of going to sensor i for the k-th ant is given by:

k
() if i allowed

()()

0 otherwise
k

i i

k i i
i k allowed

t
tp t

ψ ω

ψ ω

υ ξ
υ ξ

∈

 ×
∈ ×=

∑

where, visibility ξi is quantity S, allowedk is the set of sensors not in tabu list, ψ and ω are
parameters that control the relative importance of trail versus visibility.

The stop criterion is given by a threshold that quantifies the desired performance of the
sensors for a given task. The optimal sensor allocation is given by:

∑
∈

≥=
list tabuk

jOS thresholdSV

where j is the index of sensors in the tabu list.

Pseudocode of the ACO algorithm

1. Initialize:
Set t=0
Δυi

k=0
Place N ants on sensors

2. If end of mission, then go to step 5
else

Clear tabu list
Upon task arrival calculate the new task priority fi
Update queue of tasks based on their priorities
Go to step 3

3. While Δi>0:
If new task arrived, then go to step 2
 For k=1 to N do
 Choose the sensor i with probability pi

k(t)
 Insert sensor i to tabu list

4. If (texi=0) then set Δi=0 and go to step 2
 else

 Go to step 4
5. Finalize:

Calculate VI
Calculate T
Stop

Particle swarm optimization
Tim – LPSO and GPSO

Particle swarm optimization (PSO) is a swarm intelligence optimization algorithm first
proposed by (Kennedy & Eberhart, 1995). The algorithm uses swarm iterations, allowing
particles to follow the optimal particle search in the solution space to simulate the mutual
cooperation mechanism of the foraging behaviour of groups of birds and fish to find the optimal
solution to the problem. All particles are searched in D-dimensional space. All particles are
determined by a fitness function to determine the fitness value to judge the current position.
Each particle must be endowed with a memory function to remember the best position found.
Each particle also has a speed used to determine the distance and direction of flight. This speed
is dynamically adjusted based on its own experience and peer flight flying experience. The d-
dimensional velocity update formula of particle i:

vk
id = w vk-1

id + c1 r1 (pbestid - xk-1
id) + c2 r2 (gbestd - xk-1

id) (21.2)

xk
id = xk-1

id + vk
id (21.3)

where xk
id is the d-dimensional component of the flying velocity vector of particle i in the k-th

iteration. vk
id is the d-dimensional component of the position vector of the particle i in the k-th

iteration. c1, c2 are acceleration constant, adjust the maximum step length of learning. R1, R2
are two random function, in the range [0,1], in order to increase the search randomness. w is a
inertia weight, non-negative, adjusting the search range of the solution space.

(Shi & Eberhart, 1998)introduced the inertia weight ω and proposed to dynamically adjust the
inertia weight to balance the global convergence and convergence speed. This algorithm is

called the standard PSO algorithm. The inertia weight ω describes the influence of the particle's
previous generation velocity on the current generation velocity. The speed update formula is
as follows:

vid = K[vid + φ1 r1 (pbestid - xid) + φ2 r2 (gbestd - xid)] (21.4)

where the shrinkage factor K is ω limited by φ1and φ2. φ1 and φ2 are models that need to be set
in advance parameters. The shrinkage factor method controls the behaviour of the system and
finally converges, and can effectively search for different areas.

Pseudocode PSO

Differential evolution

Differential evolution (DE) is a heuristic algorithm based on population. It shares some
similarities to GA since it employs similar operators; crossover, mutation, and selection, where
DE relies on mutation operation while GA relies on crossover operation. This algorithm was
introduced by (Storn & Price, 1997). Since this algorithm relies on mutation operation, it
utilizes the mutation as a search mechanism and takes advantage of the selection operation to
direct the search towards the potential regions in the search space. It aims to find the optimal
solutions to possibly nonlinear and non-differentiable functions in continuous space.

DE starts from a set of randomly initial solutions, which is called population P. Each
individual in P represents a solution, we define it as x. And the number of individuals is N.
After a certain number of generations of evolution, DE could find the global optimal solution.
DE includes crossover, mutation, and selection operators. Different from other optimization
algorithms, the evolution of the DE algorithm is reflected by the differential information of
multiple individuals. The mutation of DE is to randomly select two different individuals in the
population and then scale their vector difference to perform vector synthesis with the individual
to be mutated. The formula is as follows:

vr(t+1)=xr1(t) + F (xr2(t) - xr3(t)) (21.5)

In which r1, r2, r3 belongs to [1, N], and r1 ≠ r2 ≠ r3. F is the scale factor, t represents a
generation. xr2(t) - xr3(t) is the difference, which tends to adapt to the natural scales of the
objective landscape through the iteration of population. For example, the difference will
become smaller when a variable of the population becomes compact. And this kind of adaptive
adjustment helps speed up the exploration of solution space, which makes DE more effective.
The operation of crossover operation is as follows:

 ≥+

=+
otherwise),(

)1,0(if),1(
)1(

tx
CRUtv

tu
γ

γ
γ (21.6)

where U(0,1) represents a random real number uniformly distributed between [0,1], and CR
represents crossover probability.

In DE, the strategy of greedy selection is adopted, which means when an offspring is
generated, its fitness value of it is compared with the corresponding parent, and the individual

with the better fitness will be selected to enter the next generation. The selection formula is as
follows:

 ≤++

=+
otherwise),(

))(())1((if),1(
)1(

tx
txftuftu

tx a

γ

γγ
γ (21.7)

where f represents fitness function, and the goal is to minimize the value of fitness.

DE uses three control parameters: the population size N, the crossover possibility CR, and the
scale factor F.
Pseudocode of DE

• Choose the parameters CRϵ[0,1] , and Fϵ[0,2].
• Initialize all agents x with random positions in the search space.
• Until a termination criterion is met (e.g. a number of iterations performed, or

adequate fitness reached), repeat the following:
o For each agent x in the population do:

 Pick three agents a, b and c from the population at random,
they must be distinct from each other as well as from
agent x. (a is called the "base" vector.)

 Pick a random index Rϵ{1,…,n} where n is the
dimensionality of the problem being optimized.

 Compute the agent's potentially new
position y=[y1,…,yn] as follows:

 For each iϵ{1,…,n} , pick a uniformly

distributed random number
 If ri < CR or i=R then set yi=ai+F(bi-

ci) otherwise set yi=xi. (Index position R is
replaced for certain.)

 If f(y)≤f(x) then replace the agent x in the population with
the improved or equal candidate solution y.

• Pick the agent from the population that has the best fitness and return it as the best
found candidate solution.

Simulated Annealing

Simulated Annealing (SA) algorithm is a heuristic algorithm, which simulates the process of
annealing in metallurgy introduced by (Kirkpatrick, et al., 1983). The method models the
physical process of heating a material and then controlled cooling to alter its physical
properties, thus minimizing the system energy. Likewise, SA accepts a worse solution than the
current solution with a certain probability, so it has more possibility to jump out of the local
optimal solution and find the global optimal solution.

Pseudocode of SA

Create initial solution Sol

Initialize temperature t
repeat

for i = 1 to iteration-length do
Generate a random transition from Sol to Soli
if Cost(Sol) ≥ Cost(Soli) then

Sol = Soli

else if 𝑒𝑒
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆𝐶𝐶𝑆𝑆)−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆𝐶𝐶𝑆𝑆𝑆𝑆)
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐶𝐶 𝐶𝐶𝑐𝑐𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑡𝑡𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐> random [0,1) then

Sol = Soli
end if

end for
Reduce temperature t

until no change in Cost(Sol)
return Sol

Heterogeneous Distributed Bees Algorithm

HDBA is a swarm intelligence algorithm that enables to solve combinatorial optimization
problems that include multiple heterogeneous agents that possess different capabilities and
performances. It was developed by (Tkach, et al., 2018). HDBA uses a probabilistic technique
taking inspiration from the foraging behaviour of bees.

In this algorithm, each agent is represented as a ‘bee’, and agent utility, pik, is defined as a

probability that the agent k is allocated to the task i and depends on both priority and the
distance of the task/target from the sensor:

0 if
1

1

i

1

>∆

=

∑
=

M

j jk
j

ik
i

ik

D
F

D
F

p β

α

β
α

where α and β are control parameters that bias importance of the priority and distance
respectively (α, β > 0; α, β ϵ R). The probabilities pik are normalized, and it is easy to show
that:

1
1

=∑
=

M

i
ikp

The HDBA decision-making mechanism uses a wheel-selection rule, where each agent has
a probability with which it is allocated to the task from a set of available tasks. Once all the
agents' utilities are calculated, each of them selects a task by “spinning the wheel".

The HDBA function of agents’ utility is developed for the case of heterogeneous agents
with different performances. This setting is assumed to improve system performance as it can
correlate the agents’ utility function with the value of their performances.

In order to define HDBA, a task's utility value (Vik) as a function of the agent’s performance
on that task is defined. When an agent receives information about the available tasks it
calculates its performance for that task. The agent’s utility function is updated accordingly, and
depends on the priority of the task, the distance from the task and the agent’s performance on
that task:

i

1

1

 if 0
1

i ik
ik

ik
M

j jk
j jk

F V
D

p

F V
D

β
α γ

β

α γ

=

 = ∆ >

∑

where γ is a control parameter that biases the importance of the agent’s performance and Vik is
the performance of sensor k on task i.

Pseudocode of HDBA

1. Initialize:
Set t=0
Place N bees on agents

2. If termination condition met then go to step 5
else

Upon task arrival calculate the new task priority Fi
Calculate distances of agents from task Dik
Calculate performances of agents on tasks Vik
Go to step 3

3. If new task arrived then go to step 2
For i=1 to M do
 For k=1 to N do

 Calculate probabilities for each agent pik
 Apply wheel-selection rule
Allocate agents according to the selection

4. If (texi=0) then set Δi=0 and go to step 2
 else

 Go to step 3
5. Finalize:

Calculate VI
Calculate T
Stop

Summary of implementation to optimization problems

System’s resource and task allocation

Systems typically consist of multiple resources and tasks that need to be handled with different
performances. An example of a sensory system was described in (Tkach & Edan, 2020). In this
system the performance of the sensor is defined a priori based on the sensor’s features, namely
detection distance, resolution, and response time. Each sensor can only be allocated to one task
at any given time and can be reallocated to another task at any moment. The priority of the task
is an application-specific scalar value, where a higher priority value represents a task that has
higher importance and must be attended to faster than other tasks. Higher priority tasks also
have a higher benefit for completing them. Examples of such tasks include surveillance
(gathering information on desired objects), security monitoring (preventing theft of goods and
threats, and fire monitoring (forest fire detection and protection), among many others.
This system must deal with the real-time detection of unpredictable, unknown tasks arriving at
unknown times and locations. The task occurrence is dynamic and unpredictable with different
levels of importance of each task and must be detected as fast as possible. The sensors must be
allocated to the tasks as fast as possible. The goal is to allocate each sensor an appropriate task
at an appropriate time (Figure 3) and to ensure all tasks are completed in minimum time.

Figure 3: Distributed multi-sensor system allocation scheme.

When there are several tasks that require the same sensors, the allocation depends on
the sensors’ availability and performance, the physical distance of sensors from the tasks, and
the priorities of individual tasks.

Optimization of geometric problems

Tim

Figure 4: An example of continuous optimization function – 3-dimentioanl Rastrigin

function.

Optimization of supply network security using sensory systems

Task administration protocols (TAPs) were used to overcome uncertainties and disturbances
(i.e., failures, conflicts in priorities) in supply networks (Tkach, et al., 2017). TAPs consist of
four protocols, one of which applies a bio inspired HDBA for sensors allocation and real time
detection of targets for security. The role of this algorithm is to efficiently allocate high number
of sensors to upcoming targets to detect as much targets as fast as possible.
Optimal sensors availability related to their monetary cost in the system was achieved by
deployment of redundant sensors. Employing TAPs which use HDBA allowed dynamic, real-
time allocation of distributed sensors to targets when they occur.

Figure 5: System procedure scheme
The system was designed as a dual-layer network; a process layer and a monitoring layer. The
process layer consists of multiple sensors and is responsible for allocating them to complete
tasks. As multi-sensor systems are vulnerable to some risks and problems, the monitoring layer
functions at a higher level than the process layer and is used to monitor those problems in the
process layer by applying TAPs to handle them. The first problem has to do with tasks that
require very long attendance times. These tasks may occupy the sensors allocated to them for
long time durations, thus delaying the handling of other tasks by those sensors. In this

overloading problem, the sensors are overloaded with a portion of tasks which delays them. A
time out policy, which recognizes if a sensor is experiencing a delay while other tasks are
waiting for execution, can overcome this problem. The second problem that the sensory system
must overcome relates to tasks that may have much higher priority over other tasks or the same
priority as other tasks. A similar problem may arise when, due to malfunction or recognition
problems, tasks are perceived by the system to be of a higher priority than they should be. Such
tasks may unnecessarily occupy some sensors. The system may need to reprioritize those
sensors which are unable to perform other tasks that must be handled quickly, ahead of less
urgent tasks, due to being close to their deadline. In this deception problem, sensors are
occupied and delayed by some tasks which may be neither urgent nor important. The third
problem that the sensory system must overcome is related to a failure of a portion of sensors in
the system. In this tampering problem, sensors may fail due to internal properties (e.g. hardware
reliability) and external reactions (e.g. weather conditions). The system should be able to
monitor these problems to ensure that system performance is unharmed.

Figure 6: An illustration of a dual-layer logistic system with distributed sensors to monitor

security.
This example presented a dual-layer system for applying task allocation algorithm and task
administration protocols for efficient target detection for SN security that can deal with
problems in the allocation process and a protocol for analysing the status of sensors to modify
the allocation if necessary. It repeatedly identifies the current state of the system and takes
proper actions to deal with allocation problems and improve system performance.

Optimization of dynamic multi-agent task allocation in law enforcement
EAs were implemented by (Tkach & Amador, 2021) for solving a realistic Law enforcement
problem by employing HDBA to FMC_TAH+ and SA. This was a multi-agent problem with
heterogeneous skills that work together on tasks to share the workload and improve response
time. The workload associated with each task, indicating the amount of work to be completed
for the incident to be processed was different. EAs allocated agents to dynamic tasks whose
locations, arrival times, and importance levels are unknown a priori. The employed methods
were compared to different performance measures that are commonly used by law
enforcement authorities. This evaluation was shown to be effective in allocating dynamic
tasks to heterogeneous police agents.

Figure 7: An example of police officers to incidents/task allocation problem.

Optimizer benchmark
A novel benchmark framework with known geometric properties and critical point topologies
was introduced in by (Tkach & Blackweel, 2022). This benchmark tackled the problem of
existing methods to analyse algorithm performance due to their inherent complexity. The
benchmark made a realization of a specified barrier tree function in which funnel and basin of
attraction geometries, and values and locations of all critical points are predetermined. In this
work, the behaviour of two evolutionary algorithms, PSO and DE, on the simplest
manifestations of the framework, ONECONE and TWOCONES geometries, and relate
algorithm performance to a downhill walker (DHW) reference algorithm was analysed. The
success rate, defined as the probability of optimal basin attainment, and inter-basin mobility
were studied. It was found that local PSO is the slowest optimiser on the unimodal ONECONE
but surpasses global PSO, DE and DHW algorithms on the bimodal TWOCONES in all
problem instances below 70 dimensions.

Figure 8: Example of a 2-CONES function

Future research perspectives

N cones
Based on the developed optimizer benchmark, a future general benchmark that includes N
different cones and M funnels will be developed. This benchmark will allow constructing any
problem with any complexity for testing and tuning EAs.
Parameter tuning methodology
A novel parameter tuning methodology might be needed to improve the generalization of
evolutionary algorithms performance for different problems. As current methods for tuning
the different parameters of these algorithms does not allow proper generalization to other
problems, this novel methodology holds great potential for eliminating the need to retune
parameters for each problem and therefore making the EA more practical for the real-world
problems.
SwarmWalker algorithm
A novel algorithm that combines the simplicity of the DHW with the ability and the
advantages of swarms is in the development and testing phase. It holds great potential for a
highly efficient algorithm with fast operation.
Summary

The methods and systems described in this chapter provide several examples for the practical
use of EA and metaheuristics. The examples include optimizers and optimization tools for
geometric problems, multi-sensory systems and supply network security methods with the
ability to solve complex problems and allocate agents to tasks in real time.
The structure of presented algorithms and protocols can be used for different scenarios and
problems, but the parameters should be adjusted and tuned for a specific case study and be
optimized based on the objective of the specific system for optimal results.
It enables designers to determine the best method for the specific problem which is essential
for systems that require continuous operation, e.g., monitoring systems, lifesaving systems,
complex systems with different types of agents and complex formations.

The main aspects covered in this chapter:

1. Evolutionary algorithms and meta-heuristics descriptions for systems collaboration,
integration and optimization.

2. Optimization of some geometric problems and functions.
3. Supply network security framework, applicable to physical and digital systems which

computes the expected value of system performance given the sensor, environmental,
and task parameters.

4. A system applying heterogeneous agent algorithm to decide in real-time which sensor
addresses which target without knowing a-priori when, where and which task will enter
or leave the environment.

5. A suite of task administration protocols to handle risks and problems within the sensory
system such as sensor availability, conflicts in task priorities and high time-consuming
tasks.

6. A dual-layer system to ensure fault-tolerant sensor operation that is robust enough to
sensor failure, deception, overloading and tampering.

Bibliography
Dorigo, M., 1992. Optimization, learning and natural algorithms, Milan:
Ph.D. Thesis, Politecnico di Milano.

Fogel, L. J., 1963. Biotechnology: Concepts and Applications. New York:
Prentice Hall .

Holland, J., 1975. Adaptation in Natural and Artificial Systems. s.l.:MIT
press.

Karaboga, D., 2010. Artificial bee colony algorithm, s.l.: Scholarpedia.
Kennedy, J. & Eberhart, R., 1995. Particle swarm optimization. s.l., s.n.,
p. 1942–1948.

Kirkpatrick, S. C., Jr, D. G. & Vecchi., M. P., 1983. Optimization by

simulated annealing. Science, pp. 671-680.
Kirkpatrick, S., Gelatt, J. C. D. & Vecchi, M. P., 1983. Optimization by

Simulated Annealing. Science, pp. 671-680.
Koza, J., 1990. Genetic Programming: A Paradigm for Genetically Breeding
Populations of Computer Programs to Solve Problems, s.l.: Stanford
University Computer Science Department technical report.

Pham, D. et al., 2005. The Bees Algorithm, Cardiff University, UK:
Technical Note, Manufacturing Engineering Centre.

Rechenberg, I., 1973. Evolutionsstrategie – Optimierung technischer
Systeme nach Prinzipien der biologischen Evolution (PhD thesis), s.l.:
Frommann-Holzboog.

Schwefel, H.-P., 1974. Numerische Optimierung von Computer-Modellen (PhD
thesis), s.l.: s.n.
Shi, Y. & Eberhart, R., 1998. A modified particle swarm optimizer. s.l.,
s.n., p. 69–73.

Storn, R. & Price, K., 1997. Differential Evolution—A Simple and Efficient

Heuristic for Global Optimization over Continuous Spaces. Journal of Global
Optimization, p. 341–359.

Tkach, I. & Amador, S., 2021. Towards addressing dynamic multi-agent task

allocation in law enforcement. Autonomous Agents and Multi-Agent Systems.
Tkach, I. & Blackweel, T., 2022. Measuring Optimiser Performance on a
Conical Barrier Tree. Boston, s.n.
Tkach, I. & Edan, Y., 2020. Distributed Heterogeneous Multi Sensor Task
Allocation Systems. s.l.:Springer Nature.
Tkach, I., Edan, Y., Jevtic, A. & Nof, S. Y., 2013. Automatic Multi-sensor
Task Allocation Using Modified Distributed Bees Algorithm. s.l., IEEE
International Conference on Systems, Man, and Cybernetics.

Tkach, I., Jevtic, A., Nof, S. Y. & Edan, Y., 2018. A Modified Distributed

Bees Algorithm for Multi-Sensor Task Allocation. Sensors, p. 759.
Tkach, I., Nof, S. Y. & Edan, Y., 2017. Multi-sensor task allocation

framework for supply networks security using task administration protocols.

International Journal of Production Research.

