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ABSTRACT:  11 

Creative cognition is the driving force behind all cultural and scientific progress. In recent 12 

years, the field of neurocognitive creativity research (NCR) has made considerable 13 

progress in revealing the neural and psychological correlates of creative cognition. 14 

However, a detailed understanding of how cognitive processes produce creative ideas, 15 

and how these processes interact differently across tasks and individuals, remains elusive. 16 

In this article, we argue that the increased adoption of computational modeling can help 17 

greatly in achieving this goal. While the verbal theories guiding NCR have evolved from 18 

broader accounts into more specific descriptions of neurocognitive processes, they remain 19 

more open to interpretation and harder to falsify than formal models. Translating theories 20 

into computational models can make them more concrete, accessible, and easier to 21 

compare, and helps researchers to develop causal hypotheses for how variation in 22 

cognitive factors leads to variation in creative outcomes. Currently, however, 23 

computational modeling of creativity is conducted almost entirely separately from NCR, 24 

and few attempts have been made to embody the cognitive theories of NCR in models 25 

that can simulate performance on common lab-based tasks. In this paper, we discuss 26 

theories of creative cognition and how they might benefit from the wider adoption of 27 

formal modeling. We also examine recent computational models of creativity and how 28 

these might be improved and better integrated with NCR. Finally, we describe a pathway 29 

toward a mechanistic understanding of creative cognition through the integration of 30 

computational modeling, psychological theory, and empirical research, outlining an 31 

example model based on dual-process accounts. 32 
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PUBLIC SIGNIFICANCE STATEMENT: This review argues that creativity research would 35 

benefit greatly from the wider adoption of computational modeling. We discuss how 36 

translating verbal theories of creative cognition into formal computational models can 37 

make them more rigorous, accessible, and communicable, and can highlight questions for 38 

future research. We examine previous models of creativity and explain how these can be 39 

improved to benefit our understanding of human creative cognition and the development 40 

of artificial creative systems. 41 

 42 

43 
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Towards Greater Computational Modeling in Neurocognitive Creativity Research 44 

Creativity, a hallmark of human cognition, has traditionally been considered an elusive 45 

target for scientific investigation (Hennessey & Amabile, 2010; Iger, 2019), and even 46 

today, there exists considerable variation in how creativity is conceived, operationalized, 47 

and assessed across fields (Hennessey & Amabile, 2010; Plucker, 2022; Plucker, Beghetto, 48 

& Dow, 2004; Puryear & Lamb, 2020). However, recent decades have witnessed 49 

tremendous growth in neurocognitive creativity research (NCR) – research that aims to 50 

uncover the neural and cognitive basis of creative thought. While definitions of creativity 51 

vary (e.g., Acar, Burnett, & Cabra, 2017; Simonton, 2018), most NCR defines creative 52 

cognition as the production of novel and useful ideas (Diedrich, Benedek, Jauk, & 53 

Neubauer, 2015; Runco & Jaeger, 2012; Stein, 1953). 54 

Presently, NCR covers a diverse range of research areas, and has begun to uncover how 55 

creative cognition relates to cognitive and psychological factors including attention (Frith 56 

et al., 2021b; Liu & Peng, 2020; Zabelina, 2018), memory (Benedek, Beaty, Schacter, & 57 

Kenett, 2023; Kenett et al., 2018; Madore, Addis, & Schacter, 2016; Storm, Angello, & 58 

Bjork, 2011), executive control (Benedek, Jauk, Sommer, Arendasy, & Neubauer, 2014b; 59 

Camarda et al., 2018a; Chrysikou, 2019; Lebuda & Benedek, 2023), personality (Bonetto, 60 

Pichot, Pavani, & Adam-Troïan, 2021; Kaufman et al., 2016; Oleynick et al., 2017), and 61 

reward processing (Beversdorf, 2019; Boot, Baas, van Gaal, Cools, & de Dreu, 2017; Lin & 62 

Vartanian, 2018). NCR has also made considerable progress in identifying the neural 63 

correlates of creative cognition, for example finding that greater creative performance 64 

relates to enhanced EEG alpha waves (Agnoli, Zanon, Mastria, Avenanti, & Corazza, 2020; 65 

Fink et al., 2018; Rominger et al., 2019; Stevens & Zabelina, 2020), and greater fMRI 66 

connectivity between large-scale brain networks (Beaty, Cortes, Zeitlen, Weinberger, & 67 

Green, 2021; Chen, Beaty, & Qiu, 2020; Mayseless, Eran, & Shamay-Tsoory, 2015; 68 

Sunavsky & Poppenk, 2020).  69 

However, it remains unclear how exactly these neural and psychological correlates lead to 70 

the production of creative ideas (see Beaty, Seli, & Schacter, 2018b for an overview of 71 

cognitive processes that may relate to the neural connectivity patterns observed during 72 

creative cognition). Despite the remarkable progress of NCR, our theoretical 73 

understanding of creative cognition is still in its infancy. Over recent decades, the 74 

cognitive theories that guide NCR have evolved from more abstract accounts, such as the 75 

distinction between convergent and divergent thinking (Guilford, 1959, 1967), to more 76 

specific accounts that describe how creative ideas can emerge from, for example, 77 

spontaneous and controlled processes (Benedek et al., 2023; Benedek & Jauk, 2018; Volle, 78 

2018) and flexible and persistent meta-control states (Nijstad, de Dreu, Rietzschel, & Baas, 79 

2010; Zhang, Sjoerds, & Hommel, 2020). In addition, significant efforts have been made to 80 

formalize and standardize the ontology used by NCR researchers (Gabora, 2018; Kenett et 81 

al., 2020; Simonton, 2013, 2022; Sowden, Pringle, & Gabora, 2015). However, 82 
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considerable work remains to move the field away from loosely defined verbal accounts 83 

toward mechanistic theories of creative cognition, complete with causal hypotheses 84 

regarding the cognitive operations that produce creative ideas.  85 

We argue that the wider adoption of computational modeling can help greatly in 86 

achieving this aim. Computational modeling involves formalizing a theory into a set of 87 

algorithmic operations (Farrell & Lewandowsky, 2015; Maia, Huys, & Frank, 2017). This 88 

process requires the theory to be fully described in explicit terms, which can expose 89 

assumptions that might otherwise remain hidden, and lends considerable clarity, rigor, 90 

and reproducibility to the development of theories and hypotheses (Farrell & 91 

Lewandowsky, 2015; Guest & Martin, 2021). Computational models also allow causal 92 

hypotheses to be formulated and tested, helping researchers to establish relationships 93 

between neurocognitive factors and creative behavior (Blohm, Kording, & Schrater, 2020; 94 

Wiggins & Bhattacharya, 2014). Indeed, calls for greater modeling within psychology as a 95 

whole are growing (Blohm et al., 2020; Guest & Martin, 2021; Smaldino, 2020), yet 96 

modeling is rarely used in NCR. Meanwhile, though computational creativity is itself a 97 

growing field (e.g., Carnovalini & Rodà, 2020; Gatti, Stock, & Strapparava, 2021; Mekern, 98 

Hommel, & Sjoerds, 2019a) with its own annual conference (the International Conference 99 

on Computational Creativity), it has developed in relative isolation from NCR, with little 100 

cross-pollination between the two fields. Increased collaboration could lead to both a 101 

clearer understanding of human creativity and more human-like artificial creative systems 102 

(Chateau-Laurent & Alexandre, 2021; Dipaola, Gabora, & McCaig, 2018; Gobet & Sala, 103 

2019). Critically, however, very few computational models exist that both embody a 104 

theoretical account from NCR and can perform (and thus, be validated on) common lab-105 

based creativity tasks. 106 

First, we provide an overview of NCR and recent cognitive theories of creativity. We then 107 

consider some limitations of purely verbal theories and how NCR would benefit from the 108 

increased adoption of computational modeling. Next, we discuss recent computational 109 

models of creativity, exploring several models that aim to account for performance in 110 

common lab-based creative tasks. Finally, we outline a pathway toward greater 111 

computational modeling within NCR, considering ways in which existing models might be 112 

improved (including a greater focus on modeling multiple creative tasks) and examining an 113 

example of model development. 114 

 115 

Neurocognitive creativity research (NCR) 116 

NCR aims to uncover the neural and cognitive processes that underlie creative cognition 117 

(Benedek & Fink, 2019). To this end, NCR researchers have explored how creative 118 

performance relates to numerous cognitive and psychological factors. Here, we briefly 119 

review some of this work. For example, attention research suggests that while real-world 120 
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creative achievement may relate to leaky attention (Zabelina, 2018), in-lab creative 121 

performance may relate to selective (Vartanian, 2009) or flexible attention (Zabelina, 122 

O’Leary, Pornpattananangkul, Nusslock, & Beeman, 2015; Zabelina, Saporta, & Beeman, 123 

2016). Meanwhile, research into the link between creative cognition and intelligence has 124 

found considerable overlap between the two in terms of lab-based performance (Frith et 125 

al., 2021a; Karwowski et al., 2016; Karwowski, Czerwonka, & Kaufman, 2020), and 126 

suggests that they may depend on shared neural regions (Benedek, Jung, & Vartanian, 127 

2018; Frith et al., 2021a). Research has also examined relationships between creativity 128 

and executive functions, finding that switching (Krumm, Arán Filippetti, & Gutierrez, 2018; 129 

Nusbaum & Silvia, 2011; Pan & Yu, 2018; Zabelina & Ganis, 2018), updating (Benedek et 130 

al., 2014b; Stolte, García, van Luit, Oranje, & Kroesbergen, 2020; Zabelina, Friedman, & 131 

Andrews-Hanna, 2019), and inhibition (Camarda et al., 2018a; Kaur, Weiss, Zhou, Fischer, 132 

& Hildebrandt, 2021; Zabelina et al., 2019) all relate to aspects of creative performance.  133 

Considering the relationship between creative cognition and memory, some studies report 134 

that creative cognition may benefit from greater working memory (WM) abilities 135 

(Benedek et al., 2014b; de Dreu, Nijstad, Baas, Wolsink, & Roskes, 2012; Stolte et al., 136 

2020), while other studies report mixed findings (de Vink, Willemsen, Lazonder, & 137 

Kroesbergen, 2021; Krumm et al., 2018) indicating that the role of WM in creative 138 

cognition may be task-dependent (Krumm et al., 2018). Meanwhile, studies using network 139 

science methods have indicated that more creative individuals may have more flexible and 140 

interconnected semantic memory structures (He et al., 2020; Kenett, Anaki, & Faust, 2014; 141 

Kenett et al., 2018; Ovando-Tellez et al., 2022). Research has also probed less direct links 142 

between creativity and neurocognitive processes, examining how creativity relates to 143 

variation in personality traits such as risk-taking (Dewett, 2007; Harada, 2020; Shen, 144 

Hommel, Yuan, Chang, & Zhang, 2018) and openness to experience (Batey & Furnham, 145 

2006; Kaufman et al., 2016; Lloyd-Cox, Pickering, & Bhattacharya, 2022b; Oleynick et al., 146 

2017), and how neurodevelopmental conditions including ADHD (Fugate, Zentall, & 147 

Gentry, 2013; Hoogman, Stolte, Baas, & Kroesbergen, 2020) and schizophrenia (Sampedro 148 

et al., 2020a, 2020b) impact creative cognition.  149 

Further research has explored how creative performance relates to motivation (Benedek, 150 

Bruckdorfer, & Jauk, 2020; Xue et al., 2020) and the activities of the dopaminergic (Lin & 151 

Vartanian, 2018; Zhang et al., 2020), and noradrenergic systems (Beversdorf, 2019; Boot 152 

et al., 2017; Flaherty, 2005). Considering other neural correlates of creativity, fMRI 153 

research has consistently found that creative cognition involves increased cooperation 154 

between the default mode (DMN), executive control (ECN), and salience networks (Beaty, 155 

Benedek, Silvia, & Schacter, 2016; Green, Cohen, Raab, Yedibalian, & Gray, 2015; Lloyd-156 

Cox, Chen, & Beaty, 2022a; Mayseless et al., 2015). In addition, EEG research has found 157 

that greater creative performance relates to greater cortical alpha synchronization (Agnoli 158 

et al., 2020; Camarda et al., 2018b; Fink et al., 2018; Rominger et al., 2019; Stevens & 159 

Zabelina, 2020), while research using transcranial brain stimulation has found that 160 
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increasing alpha power over the prefrontal cortex can improve the creative quality of 161 

ideas (Lustenberger, Boyle, Foulser, Mellin, & Fröhlich, 2015), while stimulation over 162 

temporal sites supports the inhibition of non-creative ideas (Luft, Zioga, Thompson, 163 

Banissy, & Bhattacharya, 2018). 164 

 165 

The theories that guide NCR 166 

Guiding this research is a range of theoretical accounts, providing a conceptual scaffold for 167 

researchers to interpret data and develop further hypotheses. These accounts range from 168 

being relatively abstract to quite specific in terms of the cognitive processes they describe. 169 

For example, an older but highly influential account is Wallas’ (1926) four-stage model, 170 

which describes the creative process as involving distinct stages of preparation, 171 

incubation, inspiration, and verification. This account is broadly suggestive of the 172 

processes that might produce creative ideas and can be seen as a precursor to more 173 

recent and specific theories.  174 

Another older account (and one that still retains tremendous popularity among NCR 175 

researchers) is the distinction between convergent and divergent thinking. These terms 176 

were first coined by Guilford (1950, 1959) as two of the (initially) five major intellectual 177 

abilities in his Structure of the Intellect model (Guilford, 1967). Guilford defined both kinds 178 

of thinking in terms of the number of solutions they produce, with divergent thinking 179 

defined as “thinking in different directions” to produce a “variety of responses”, and 180 

convergent thinking defined as producing “one right answer” (Guilford, 1959). While both 181 

modes of thought were described as ways to generate new information from old 182 

information, Guilford linked divergent thinking to creativity and convergent thinking to the 183 

ability to solve intelligence tests (but see more recent evidence linking divergent thinking 184 

to intelligence; Frith et al., 2021a; Karwowski et al., 2016). It is worth noting that the 185 

Structure of Intellect model was later criticized due to issues with the factor analytic 186 

evidence used to support it, and the model has little support today (Jensen, 1998; 187 

Mackintosh, 1998; Undheim & Horn, 1977). 188 

In the years since Guilford, the divergent and convergent thinking constructs have 189 

gradually evolved and been reinterpreted, with researchers now arguing that both play 190 

important roles in creative cognition (Basadur, 1995; Brophy, 2001; Caughron, Peterson, & 191 

Mumford, 2011; Cropley, 2006; Jung, Mead, Carrasco, & Flores, 2013; Runco, 2012, 2014). 192 

Indeed, many researchers have shifted away from defining divergent and convergent 193 

thinking in terms of the number of solutions they produce, toward defining divergent 194 

thinking as a generative process that produces novel ideas, and convergent thinking as an 195 

evaluative process that selects and refines ideas (Basadur, 1995; Brophy, 2001; Cropley, 196 

2006; Lee & Therriault, 2013). These generation-evaluation definitions of divergent and 197 

convergent thinking can be seen in numerous recent NCR articles (e.g., de Vink et al., 198 
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2021; Eskine, Anderson, Sullivan, & Golob, 2020; Gabora, 2018; Jung et al., 2013; 199 

Kleinmintz, Ivancovsky, & Shamay-Tsoory, 2019; Lee & Therriault, 2013), although 200 

Guilford’s original definitions (many solutions vs. a single solution) also remain popular 201 

(e.g., Gilhooly, Fioratou, Anthony, & Wynn, 2007; Lu, Akinola, & Mason, 2017; Radel, 202 

Davranche, Fournier, & Dietrich, 2015; Runco, 2010; Shamay-Tsoory, Adler, Aharon-203 

Peretz, Perry, & Mayseless, 2011; Volle, 2018). This reinterpretation of divergent and 204 

convergent thinking has its roots in another common framework for conceptualizing 205 

creativity, which suggests that creative ideas arise from iterative cycles of generation and 206 

evaluation (Basadur, 1995; Ellamil, Dobson, Beeman, & Christoff, 2012; Finke, Ward, & 207 

Smith, 1992; Jung et al., 2013; Kleinmintz et al., 2019). A prominent theory of this kind is 208 

the blind variation and selective retention (BVSR) model, first suggested by Campbell 209 

(1960) and later expanded upon by Simonton (2013, 2022). BVSR argues that creative 210 

cognition involves cycles of relatively undirected (or partially sighted; Simonton, 2013) 211 

processes to produce multiple ideas, and directed processes that select the best idea to 212 

develop further. 213 

Among the most popular frameworks for understanding creative cognition that have 214 

emerged in recent decades is the dual-process account. This argues that creative cognition 215 

emerges from the interactions of spontaneous, associative processes and controlled, 216 

analytic processes (Allen & Thomas, 2011; Barr, 2018; Benedek et al., 2023; Benedek & 217 

Jauk, 2018; Sowden et al., 2015; Tubb & Dixon, 2014; Volle, 2018). The account is based 218 

on wider dual-process theories of cognition (e.g., Evans, 2008; Evans & Stanovich, 2013; 219 

Kahneman, 2011), which describe two broad categories of processes which might be 220 

termed Type 1 and Type 2 (Evans & Stanovich, 2013). Type 1 processes are typically 221 

described as associative, fast, unconscious, and implicit, while Type 2 processes are 222 

described as controlled, slow, conscious, explicit, and dependent on WM (Evans, 2008; 223 

Evans & Stanovich, 2013; Tubb & Dixon, 2014). NCR researchers have discussed the 224 

overlaps between dual-process associative and controlled processes, divergent and 225 

convergent thinking, and generation and evaluation (Benedek & Jauk, 2018; Goldschmidt, 226 

2016; Lloyd-Cox et al., 2022a; Sowden et al., 2015), with some highlighting differences 227 

between the accounts (e.g., Sowden et al., 2015; Tubb & Dixon, 2014), and others 228 

concluding that they are broadly synonymous (e.g., Benedek & Jauk, 2018; Goldschmidt, 229 

2016). Indeed, many NCR articles now define divergent and convergent thinking in terms 230 

of associative and controlled processes (e.g., Augello et al., 2016; Cortes, Weinberger, 231 

Daker, & Green, 2019; Drago & Heilman, 2012), producing a third interpretation of 232 

Guilford’s original constructs. 233 

The accounts discussed so far are, for the most part, relatively imprecise, leaving 234 

considerable room for interpretation. For example, describing creative cognition as 235 

involving divergent and convergent thinking, or cycles of generation and evaluation, does 236 

not greatly constrain the space of possible cognitive mechanisms that might underlie 237 

creativity. However, as the findings of NCR have grown, more specific theories of creative 238 
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cognition have emerged. One example is the BVSR theory (Simonton, 2013, 2022), which 239 

defines its variational and selective processes in formal mathematical terms. Another is 240 

the contextual focus theory (Gabora, 2010, 2018) which builds on suggestions that 241 

creative cognition involves switching between narrow and broad attentional states (Bristol 242 

& Viskontas, 2006; Dorfman, Martindale, Gassimova, & Vartanian, 2008; Gabora, 2010; 243 

Herz, Baror, & Bar, 2020; Zabelina & Robinson, 2010) to define divergent thinking as the 244 

broadening of conceptual representations to include more abstract and associative 245 

information, and convergent thinking as the narrowing of representations to only the 246 

most relevant information (Gabora, 2010, 2018).  247 

Researchers have also suggested more specific cognitive mechanisms corresponding to 248 

the associative and controlled processes described by the dual-process account of creative 249 

cognition (Benedek et al., 2023; Barr, 2018; Benedek & Jauk, 2018; Volle, 2018). Drawing 250 

on evidence linking creative cognition to performance on free-association and verbal 251 

fluency paradigms, researchers have suggested that associative creative processes may 252 

include the automatic spreading of activation through semantic memory (Kenett et al., 253 

2018; Volle, 2018). Meanwhile, evidence linking creative cognition to intelligence and 254 

executive functions has led to suggestions that controlled creative processes may include 255 

strategic search processes (Avitia & Kaufman, 2014; Benedek & Neubauer, 2013; 256 

Forthmann, Bürkner, Szardenings, Benedek, & Holling, 2019a; Lebuda & Benedek, 2023; 257 

Silvia, Beaty, & Nusbaum, 2013), and the inhibition of distracting or unoriginal thoughts 258 

(Beaty, Christensen, Benedek, Silvia, & Schacter, 2017a; Camarda et al., 2018a; Volle, 259 

2018). The increased DMN-ECN cooperation observed during creative cognition is also 260 

suggestive of interacting associative and controlled processes, and may signify the DMN 261 

spontaneously activating ideas (Beaty et al., 2020; Beaty & Lloyd-Cox, 2020), while the 262 

executive control network inhibits prepotent ideas (Beaty et al., 2017a; Christensen, 263 

Benedek, Silvia, & Beaty, 2021; Lloyd-Cox, Christensen, Silvia, & Beaty, 2021) and 264 

implements creative strategies (Benedek & Jauk, 2018). Indeed, DMN-ECN cooperation 265 

during creative cognition appears to increase when there is a need for inhibition (Beaty et 266 

al., 2017a; Christensen et al., 2021).    267 

Another more specific account distinguishes between two opposing strategies for 268 

producing creative ideas: flexibility and persistence. The former involves switching 269 

between conceptual spaces to attain more diverse ideas and may depend on striatal 270 

dopamine pathways, while the latter involves the persistent exploration of one conceptual 271 

space and may depend on prefrontal dopamine pathways (Mekern, Sjoerds, & Hommel, 272 

2019b; Nijstad et al., 2010; Zhang et al., 2020). The account has strong similarities to the 273 

distinction between exploration and exploitation in creative cognition (Hart et al., 2017; 274 

Lin & Vartanian, 2018), and is primarily supported by measures of clustering (i.e., the 275 

generation of similar ideas) and switching (i.e., the generation of ideas from different 276 

conceptual categories) in divergent thinking and cognitive search tasks (Mekern et al., 277 

2019b).  278 
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 279 

 280 

How NCR can benefit from the wider adoption of computational modeling 281 

NCR has made considerable progress in uncovering a broad range of cognitive, 282 

psychological, and neural correlates of creative cognition, guided by theories ranging from 283 

older, broader accounts to more recent and specific accounts. However, a precise, 284 

mechanistic understanding of creative cognition remains elusive. We believe that the 285 

increased adoption of computational modeling can help greatly towards this goal. While 286 

verbal theories are a useful and necessary part of science, they are more ambiguous and 287 

open to interpretation than formal computational models, which require all elements of a 288 

theory to be explicitly defined (Farrell & Lewandowsky, 2015; Fried, 2020; Guest & Martin, 289 

2021; Smaldino, 2020). Defining theories in explicit and formal terms makes them more 290 

falsifiable and easier to compare in terms of their predictions and assumptions. We argue 291 

that NCR should continue to move towards more specific cognitive theories supported by 292 

computational models.  293 

For clarity, by “computational model”, we refer to dynamic computational models that 294 

aim to embody a particular cognitive theory of creativity by representing how creative 295 

ideas arise from cognitive processes. As such, we are not referring to statistical models of 296 

human fMRI (e.g., Beaty et al., 2018a; Sunavsky & Poppenk, 2020), EEG (e.g., Rosen et al., 297 

2020; Stevens & Zabelina, 2020) or behavioral data (Beaty & Johnson, 2021; Harada, 2020; 298 

He et al., 2020; Zioga, Harrison, Pearce, Bhattacharya, & di Bernardi Luft, 2020). Equally, 299 

we do not include machine learning models that generate novel or interesting products 300 

but in ways that do not seek to emulate human cognition, such as Google DeepDream 301 

(Suzuki, Roseboom, Schwartzman, & Seth, 2017), and GPT3 (Floridi & Chiriatti, 2020). Here 302 

we examine in more detail the issues that can affect purely verbal accounts, including 303 

more recent and specific accounts, and how computational modeling can provide greater 304 

clarity, rigor, and reproducibility to the development of cognitive theories (Farrell & 305 

Lewandowsky, 2015; Guest & Martin, 2021).  306 

 307 

The limitations of verbal theories 308 

At the less specific end of the spectrum of theoretical accounts of creative cognition is the 309 

distinction between convergent and divergent thinking. Researchers have defined these 310 

constructs in several distinct ways since they first appeared. The first definition separates 311 

the two constructs based on the number of ideas or solutions they produce (Guilford, 312 

1959) (i.e., one solution in convergent thinking, but multiple solutions in divergent 313 

thinking). A later definition focused on divergent thinking as idea generation and 314 

convergent thinking as idea evaluation (Basadur, 1995; Brophy, 2001; Cropley, 2006; Lee 315 
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& Therriault, 2013). Finally, a third definition draws on dual process theories of cognition 316 

to define divergent thinking as an unconscious, associative process and convergent 317 

thinking as a conscious, analytic process (Augello et al., 2016; Cortes et al., 2019; Drago & 318 

Heilman, 2012; Gabora, 2010). 319 

The existence of multiple definitions of divergent and convergent thinking suggests that 320 

they are likely to be conceptualized very differently across NCR researchers. Indeed, 321 

previous researchers have commented on the apparent contradictions that can emerge 322 

due to these varying definitions (e.g., Cortes et al., 2019; Dietrich, 2019; Gabora, 2018; Lee 323 

& Therriault, 2013). Moreover, none of these definitions are particularly precise. This can 324 

make it difficult to develop specific process-level hypotheses regarding these constructs, 325 

such as how divergent and convergent thinking might be differentially impacted by WM 326 

capacity. The definitional ambiguity of these constructs also makes it difficult to model 327 

them computationally, as to do so one would first have to translate one of their broad 328 

definitions into a specific set of processes (e.g., Gabora, 2018; Zhang et al., 2020). 329 

Whichever processes are chosen could differ greatly from those chosen by another 330 

researcher, so any conclusions drawn about these processes need not necessarily apply to 331 

the broader constructs. In essence, the reinterpretable nature of divergent and 332 

convergent thinking makes them difficult to study or falsify since any specific hypothesis 333 

can be easily dissociated from the construct.  334 

Research into divergent and convergent thinking is also affected by inconsistencies 335 

between the definitions of these constructs and the tasks used to assess them. For 336 

example, convergent thinking is commonly assessed with the Remote Associates Test 337 

(RAT; e.g., de Vink et al., 2021; Nielsen, Pickett, & Simonton, 2008; Shang, Little, Webb, 338 

Eidels, & Yang, 2021; Zhang et al., 2020), in which participants are shown three unrelated 339 

words and must generate a response word that relates to all three. While RAT problems 340 

have one correct solution (consistent with the original conception of convergent thinking), 341 

they require generating numerous candidate solutions in an associative manner (Cortes et 342 

al., 2019), contrary to later definitions of convergent thinking as an analytic, evaluative 343 

process (Cropley, 2006; Runco, 2014). Indeed, the RAT was originally developed as a 344 

measure of associative processes (Mednick, 1962) and continues to be used as a measure 345 

of unconscious insight (e.g., Kounios & Beeman, 2014; Tik et al., 2018; see also Barr, 2018; 346 

Benedek & Jauk, 2018). 347 

Meanwhile, divergent thinking is typically assessed with the Alternative Uses Task (AUT; 348 

Guilford, 1959, 1967), which requires participants to think of unusual uses for a given 349 

object. Since the AUT involves producing multiple ideas, and undoubtedly involves 350 

generative and associative thinking, it might appear to satisfy all three definitions of 351 

divergent thinking. However, the AUT is also widely considered to engage evaluative and 352 

analytic processes to ensure that the ideas generated are task-relevant and original 353 

(Beaty, Silvia, Nusbaum, Jauk, & Benedek, 2014; Cortes et al., 2019; Gilhooly et al., 2007; 354 
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Nusbaum & Silvia, 2011; Volle, 2018), processes commonly associated with convergent 355 

thinking (Cropley, 2006; Sowden et al., 2015). Indeed, both the AUT and RAT are now 356 

thought to involve a mixture of associative and controlled processes (Cortes et al., 2019). 357 

Given the difficulties in assessing divergent and convergent thinking, their varying 358 

definitions, and the fact that they must be translated into more specific accounts when 359 

researchers attempt to model or hypothesize about their underlying processes, NCR might 360 

seek to replace these constructs with more precise subtypes of creativity defined in terms 361 

of more established cognitive processes, such as memory, attention, and cognitive control 362 

(Barbot, Hass, & Reiter-Palmon, 2019; Benedek & Fink, 2019; Chrysikou, 2018; Farrell & 363 

Lewandowsky, 2015; Kaufman et al., 2016; Plucker, 2022; Wiggins & Bhattacharya, 2014). 364 

As noted, more recent theoretical accounts of creative cognition go much further in 365 

suggesting specific mechanisms that might produce creative ideas. Besides BVSR 366 

(Simonton, 2022), another recent extension of the generation-evaluation account 367 

describes several possible neural and cognitive mechanisms that may underlie both kinds 368 

of process (Kleinmintz et al., 2019). Meanwhile, an extension of dual-process accounts has 369 

suggested how creative ideas might arise from specific associative and controlled 370 

processes operating on a semantic network (Volle, 2018). In addition, several recent 371 

review articles have provided in-depth descriptions of the roles of distinct associative 372 

(Beaty & Kenett, 2023), memory (Benedek et al., 2023), and metacognitive processes 373 

(Lebuda & Benedek, 2023) in creative cognition. Researchers have also proposed 374 

neurocognitive mechanisms that might underlie new conceptions of convergent and 375 

divergent thinking, relating them to focused and defocused mental representations 376 

(Gabora, 2010, 2018) and flexible and persistent meta-control states (Hommel & Wiers, 377 

2017; Nijstad et al., 2010; Zhang et al., 2020). The latter account may soon form the basis 378 

of a computational model. Finally, a recent review of the neural underpinnings of 379 

divergent thinking, abstraction, and improvisation has argued that all three can arise from 380 

dopaminergic novelty-seeking processes, in a framework that may soon be implemented 381 

computationally (Khalil & Moustafa, 2022). 382 

For the most part, however, these are still verbal accounts, and thus they retain a degree 383 

of ambiguity that can make them difficult to falsify and leaves them open to 384 

reinterpretation. Another key issue for verbal theories is that they can be difficult to 385 

compare in terms of their predictions or internal consistency. Despite recent efforts 386 

(Kenett et al., 2020), there is no commonly accepted ontology for conceptualizing 387 

creativity (Kenett et al., 2020; Puryear & Lamb, 2020; Saggar, Volle, Uddin, Chrysikou, & 388 

Green, 2021). Researchers tend to employ different accounts to guide their research 389 

(Abraham, 2013; Hennessey & Amabile, 2010; Wiggins & Bhattacharya, 2014), and it is not 390 

always clear to what extent these accounts are synonymous or overlapping. For example, 391 

it is unclear whether associative and controlled processes are synonyms for constructs like 392 

generation and evaluation and implicit and explicit thought, or in fact underlie them. 393 

Another example is the overlap between theories of flexibility vs. persistence (Nijstad et 394 
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al., 2010; Zhang et al., 2020) and exploration vs. exploitation (Hart et al., 2017; Lin & 395 

Vartanian, 2018), which both distinguish between the tendency to shift between 396 

conceptual spaces and the tendency to exploit a single conceptual space. Similarities also 397 

exist between accounts linking different forms of creativity to different forms of attention 398 

(Gabora, 2010, 2018; Zabelina et al., 2016; Zabelina & Robinson, 2010). However, without 399 

formal models, it is difficult to say whether these theories are broadly equivalent or 400 

describe fundamentally different kinds of operation. 401 

 402 

 403 

The benefits of modeling 404 

The benefits that computational modeling can bring to psychology and neuroscience have 405 

been discussed at length in several excellent recent articles (Blohm et al., 2020; 406 

Borsboom, van der Maas, Dalege, Kievit, & Haig, 2021; Fried, 2020; Guest & Martin, 2021; 407 

Maia et al., 2017). A computational model is the explicit formalization of a theory in 408 

equations and algorithms (Farrell & Lewandowsky, 2015; Maia et al., 2017), and therefore 409 

requires that every aspect of a theory be precisely defined. More precise theories, that 410 

describe more specific cognitive processes or operations, are more easily communicated 411 

and testable since they make clearer predictions about what should be observed under 412 

certain conditions. By contrast, imprecise or ambiguous theories provide no clear mapping 413 

to empirical research questions and can be redefined continually, potentially leading 414 

different researchers to have very different interpretations of the theory. While NCR is 415 

already working toward more rigorous and specific theories (Benedek & Fink, 2019; 416 

Gabora, 2018; Volle, 2018; Zhang et al., 2020), the process of translating a theory into a 417 

computational model is an excellent way to make it more precise. For example, building a 418 

model based on the dual process account would force researchers to be extremely specific 419 

about what associative and controlled processes are, how they produce creative ideas, 420 

and how they might vary in different creative contexts.  421 

The detail required by computational modeling can also reveal weak points, dubious 422 

assumptions, or outstanding questions in theories (Blohm et al., 2020), which can then 423 

direct empirical work. For example, modeling creative cognition as involving cycles of 424 

generation and evaluation would involve deciding how frequently the model should 425 

switch between the two modes. Researchers might also consider whether movement 426 

along a continuum between generation and evaluation (or even simultaneous generation 427 

and evaluation) is preferable to a binary switch. These decisions might inform, and be 428 

informed by, empirical research (e.g., Goldschmidt, 2016; Kleinmintz et al., 2019; Lloyd-429 

Cox et al., 2022a).  430 

In addition, modeling provides a way to demonstrate and test hypotheses for how 431 

variation in a neurocognitive factor leads to variation in behavioral outcomes. Indeed, 432 
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creative cognition is a particularly high-level construct, and there are likely to be a large 433 

number of factors that can impact creative outcomes, including a person’s attention, 434 

memory, cognitive control, and personality (Beaty et al., 2014; Benedek & Fink, 2019; 435 

Oleynick et al., 2017). With modeling, these factors can be represented as sets of 436 

operations within a computational system, enabling researchers to examine the causal 437 

pathways by which they can impact creative performance. For example, researchers might 438 

hypothesize that individuals higher in the personality trait openness to experience 439 

produce more creative ideas by engaging in broader attentional states (Gabora, 2010, 440 

2018). This hypothesis might then be embodied in a computational model by defining 441 

“openness” as a set of parameters governing the propensity to use broad instead of 442 

narrow conceptual representations. The hypothesis can then be tested by adjusting the 443 

parameters reflecting openness and observing whether the changes in simulated creative 444 

outcomes are in line with those observed among human participants with varying 445 

openness scores. 446 

Moreover, modeling several contrasting theories can provide researchers with a more 447 

concrete basis for comparing their empirical predictions, internal consistency, and 448 

theoretical complexity (with less complex models being favorable; Farrell & Lewandowsky, 449 

2015), allowing researchers to combine similar theories and select or reject opposing 450 

theories. As noted, there appear to be strong similarities between several accounts of 451 

creative cognition, such as those that describe generative and evaluative states (Jung et 452 

al., 2013; Kleinmintz et al., 2019), and those that describe associative and controlled 453 

processes (Benedek & Jauk, 2018; Volle, 2018), but it is hard to say whether these 454 

accounts are equivalent. Translating each account into a computational model could 455 

reveal opposing predictions about the role of a particular factor in creative cognition, or 456 

might instead indicate that the two accounts are referring to the same underlying 457 

mechanisms. 458 

Ultimately, modeling results in more fleshed-out, transparent, and comparable theories 459 

(Guest & Martin, 2021). For a more specific example of how computational modeling can 460 

bring clarity to verbal theories, consider a creative search task in which participants must 461 

think of unusual members of a category (e.g., “uses for a brick”, or simply “fruits”). 462 

Researchers might debate the processes that govern performance on this task, such as 463 

spontaneous association-making, attention, and cognitive control. To provide a concrete 464 

foundation for this debate, the task could be modeled as an iterative search through an n-465 

dimensional space, with dimensions representing properties that vary across concepts 466 

(e.g., the size or exoticness of fruits). Concepts (i.e., fruits or possible task solutions) could 467 

be distributed across this space, with the strength of associations between concepts 468 

defined by the Euclidean distance between them (smaller distance = stronger association). 469 

Common items (e.g., apple, pear) could be clustered around the center, with more 470 

unusual items nearer the periphery of the space. Cognitive processes could then be 471 

modeled as operations on this space, such as spontaneous processes spreading activation 472 
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from the center outward and controlled processes strategically pushing activation along 473 

one dimension (e.g., thinking of exotic locations to access more unusual fruits; Benedek & 474 

Neubauer, 2013). 475 

To further demonstrate how a creative task can be modeled computationally, we have 476 

included an implementation of this simple model in MATLAB code in the Supplementary 477 

Material, together with a detailed overview. We have made the code accessible to 478 

researchers with minimal modeling experience, implementing a major recommendation 479 

made by Barton et al. (2022) to enhance the usability of computational models. Of note, 480 

this toy model is by no means intended as a definitive model of creativity, but simply as an 481 

example of how verbal theories of creative task performance can be translated into formal 482 

models for researchers who may have limited or no prior experience in computational 483 

modeling.  484 

Once a basic model of a task is implemented, it can serve as a starting point for further 485 

models embodying different theories. In the current example, researchers who emphasize 486 

associative processes in creative search might adjust certain parameters of the model to 487 

reflect this. Others might simulate WM by limiting the number of concepts able to activate 488 

at once, or simulate processing speed, attention, or mind-wandering by adding other 489 

features. Examining and comparing how these different models fit empirical human data 490 

could then help to improve our understanding of the processes underlying creative search 491 

(Wilson & Collins, 2019). Of course, evaluating model performance against human data 492 

requires reliable and valid measures of the underlying construct, and even then, 493 

alternative models may be equally supported by empirical data. As such, models of 494 

creative performance might also be compared in terms of their internal consistency and 495 

complexity, while researchers continue to develop more fine-tuned assessments of 496 

creativity (e.g., Barbot, 2018; Hart et al., 2017, 2022). 497 

 498 

 499 

Varieties of computational model 500 

Computational models can come in a large variety of forms. However, as noted, we 501 

primarily focus on computational models embodying specific theories of human cognition. 502 

These are distinct from statistical models used to analyze empirical data, and 503 

mathematical models that outline algorithmic hypotheses concerning human cognition, 504 

but which are not implemented computationally (though these also help increase the 505 

specificity and falsifiability of theories; e.g., MacGregor, Ormerod, & Chronicle, 2001; 506 

Simonton, 2013; 2022). Indeed, recent years have seen numerous computational creative 507 

systems being developed (see Carnovalini & Rodà, 2020; Gatti et al., 2021; Mekern et al., 508 

2019a), but many of these primarily aim to create products or behaviors that humans 509 

would consider creative, such as stories (Concepción, Gervás, & Méndez, 2020), paintings 510 
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(Colton, 2012; Yalcin, Abukhodair, & DiPaola, 2020), and music (Anderson, Eigenfeldt, & 511 

Pasquier, 2013; Todd & Miranda, 2006; Yang, Choi, & Yang, 2017), without necessarily 512 

creating these in a human-like way. By contrast, the models we refer to focus on 513 

emulating human cognition, with less regard for the creative quality of the products that 514 

are generated (Hélie & Sun, 2010; Olteţeanu & Falomir, 2016; Schatz, Jones, & Laird, 2018; 515 

Wiggins, 2020).  516 

Even among computational models of human cognition, however, there is considerable 517 

variation in terms of the goals and levels of representation pursued by modelers (Kording, 518 

Blohm, Schrater, Kendrick, & Kay, 2020; Palminteri, Wyart, & Koechlin, 2017). Different 519 

modelers may have very different aims, leading to considerable variation in how models 520 

are evaluated (Kording et al., 2020). For example, some modelers may primarily aim to 521 

inspire new empirical research, but could equally be most interested in the efficiency of a 522 

model, or how clear and interpretable its predictions are. An important distinction can 523 

also be drawn between descriptive and normative computational models. Descriptive 524 

models aim to represent our best guess at what the brain is doing, while normative 525 

models aim to represent an optimal way to solve a problem based on assumptions of 526 

rationality. Existing models of creative cognition arguably fall into both camps, and both 527 

are useful to NCR. While descriptive models are crucial for a precise understanding of 528 

human creative cognition, normative models can demonstrate how a particular creative 529 

task could be optimally performed, inspiring the development of descriptive models and 530 

guiding empirical research efforts (Veale & Perez y Perez, 2020). 531 

Models can also vary in their level of representation (Palminteri et al., 2017). Cognitive-532 

level models operate at a high level of abstraction, illustrating how cognitive factors such 533 

as attention, inhibition, and associative thought might produce creative ideas (e.g., Lopez-534 

Persem et al., 2022; Schatz, Jones, & Laird, 2018). By contrast, neural models operate at 535 

the level of neurons, demonstrating how neuronal populations can give rise to the 536 

processes underlying creative cognition (e.g., Kajic et al., 2017). Both levels of 537 

representation are important for NCR. However, neural models face greater 538 

computational challenges and may not be as useful for making specific predictions about 539 

creative cognition, due to the high-level nature of creativity as a construct. Among 540 

cognitive-level models, a further distinction can be made between broader models that 541 

encompass creativity as well as other cognitive features (e.g., Hélie & Sun, 2010; Wiggins, 542 

2020), and narrower models that focus on how humans perform a single creative task 543 

(e.g., Olteţeanu & Falomir, 2016; Schatz, Jones, & Laird, 2018). Again, both types of 544 

models are useful. Broader models provide a holistic understanding of how creativity fits 545 

together with more general cognition, while narrower models of specific tasks provide an 546 

effective means to test cognitive theories of creativity since their performance can be 547 

readily compared to human data. While few middle-ground models of creative cognition 548 

exist currently (Mekern et al., 2019a), demonstrating how the same cognitive processes 549 

can be employed in multiple distinct creative tasks would greatly contribute to our 550 
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understanding of human creativity. We will consider some existing models of creative 551 

cognition in greater detail below. 552 

 553 

Challenges for computational models of creativity 554 

One reason why computational modeling has yet to have a significant impact on NCR may 555 

be that models of creative cognition face key challenges not encountered by models in 556 

other areas of cognitive science. For example, creative cognition is a high-level and 557 

complex construct involving many cognitive and psychological factors (Benedek & Fink, 558 

2019; Volle, 2018). While this complexity makes computational modeling all the more 559 

important to NCR, simulating creative cognition effectively may be considerably more 560 

difficult than modeling processes like memory retrieval. In addition, creative performance 561 

can be assessed with a wide range of tasks, across verbal, visual, and auditory domains 562 

(Plucker, 2022; Puryear & Lamb, 2020). Consequently, a precise model of creative 563 

processing in one specific task or domain may not easily generalize to others, making it 564 

difficult to build a comprehensive and cohesive model of creative cognition as a whole. 565 

These challenges, while significant, need not deter NCR researchers from developing new 566 

models. Models do not need to account for every factor that might affect creative 567 

cognition. All models are simplifications (Smaldino, 2018), and representing a few 568 

processes effectively is often more useful than trying to simulate all possible relevant 569 

factors, especially when the goal is to create models that are easily understandable and 570 

which generate clear predictions (Farrell & Lewandowsky, 2015; Guest & Martin, 2021). 571 

Likewise, the diversity of creative tasks implies that NCR may require a corresponding 572 

diversity of models, at least initially (Poile & Safayeni, 2016; Wilson & Collins, 2019). While 573 

a single model capable of explaining performance across multiple tasks or domains would 574 

be a significant advance for the field, models focusing on individual creative tasks have 575 

proved highly useful to our understanding of how creative outcomes can arise from 576 

cognitive processes (Lopez-Persem et al., 2022; Olteţeanu & Falomir, 2016; Schatz, Jones, 577 

& Laird, 2018). 578 

An additional challenge for modeling in NCR relates to the nature of creativity data, which 579 

does not readily lend itself to simulation. Computational models of human cognition 580 

typically need to simulate data from participants to allow the model to be evaluated. 581 

Models of perception or memory often aim to simulate data such as reaction time, 582 

perceptual or recall accuracy, or patterns of neural activity (Kahana, 2020; Karimi-583 

Rouzbahani, Bagheri, & Ebrahimpour, 2017; Pramod, & Arun, 2016; Rotaru, Vigliocco, & 584 

Frank, 2018). Within NCR, however, the main measure of interest is often the subjective 585 

creativity rating of generated ideas, drawings, or musical sequences (Amabile, 1982; Cseh 586 

& Jeffries, 2019). While models can be developed to generate such products, which can 587 

then also be rated for creativity, this requires incorporating knowledge of sentence 588 
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construction, or artistic or musical composition into the model. These tasks pose 589 

significant challenges even for highly skilled computational modelers.  590 

One alternative for modelers is to simulate specific features of creative output without 591 

simulating the output itself (e.g., response times, number of responses made, or number 592 

of concepts included in a drawing). Researchers can also focus on simpler creative tasks. 593 

For example, paradigms such as free association and the RAT have just single words as 594 

input and output, removing the need to model sentence generation. Indeed, several 595 

recent models of creative cognition have investigated the generation of single words using 596 

semantic networks, as an effective means to study creativity quantitatively (Lopez-Persem 597 

et al., 2022; Olteţeanu & Falomir, 2015; Schatz, Jones, & Laird, 2018). Semantic networks 598 

are formed of nodes representing concepts, and edges representing associative links, and 599 

can simulate how activation spreads from a cue to a response (Beaty & Kenett, 2023). 600 

Fitting semantic networks to participant data can be done in various ways. One approach 601 

is to divide participants into low and high creative groups, and then construct group-level 602 

semantic networks based on participants’ free association data (Kenett et al., 2018). By 603 

comparing the properties of these networks, researchers can then identify differences in 604 

semantic memory structure between the groups. Another approach is to construct 605 

networks from individual participant data, and explore their structural properties in 606 

relation to measures of creative cognition (Benedek et al., 2017; He et al., 2021). A further 607 

option for semantic network models is to build a single, standard network using free 608 

association data (Nelson, McEvoy, & Schreiber, 2004) or distributional semantics methods 609 

(Rotaru et al., 2018), and then fit the model to individual participants by modifying the 610 

simulated processes that operate on this network (e.g., Lopez-Persem et al., 2022; see 611 

also Benedek & Neubauer, 2013; Volle, 2018). This involves defining a set of processes 612 

that determine how activation spreads through memory, such as associative and 613 

controlled processes, and then adjusting the parameters governing these processes to fit 614 

an individual participant’s data and mimic their creative behavior. Semantic networks, 615 

thus, provide a promising means to examine the production of qualitative ideas as a 616 

quantitative process (Beaty & Kenett, 2023; Kenett & Faust, 2019). 617 

In summary, despite the challenges, computational modeling remains a useful and 618 

enlightening approach for NCR. While creativity is a complex and multifaceted construct, 619 

simple models focusing on specific instances of creativity can still be useful (Smaldino, 620 

2018). Given the diversity of creative tasks, NCR will likely require numerous models to 621 

explore how cognitive processes operate in different contexts. In addition, since any task 622 

can be modeled in various ways, it is important to develop multiple models of each task 623 

and then compare their performance to human data (Poile & Safayeni, 2016; Wilson & 624 

Collins, 2019). For example, semantic memory retrieval can be modeled as a random walk 625 

(Kenett & Austerweil, 2016; Lopez-Persem et al., 2022) or as an exploratory process of 626 

optimal foraging (Hills, Jones, & Todd, 2009). By comparing the goodness of fit of different 627 
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models to human data, we can determine which model and its underlying hypotheses are 628 

more supported, leading to the development of further models and empirical research 629 

questions. As models become more sophisticated, identifying commonalities across 630 

models of distinct tasks might allow researchers to simulate multiple tasks using a single 631 

model, demonstrating how the same cognitive processes operate in different creative 632 

contexts. Finally, though creative outcomes are often qualitative in nature and 633 

subjectively evaluated, there are methods available for simulating quantitative aspects of 634 

creative performance. 635 

 636 

 637 

Existing computational models of creativity 638 

Having discussed the theoretical accounts that guide NCR and how these might benefit 639 

from the increased adoption of computational modeling, we now consider some recent 640 

computational models of creativity, and the steps that might be taken to improve these 641 

and better integrate them with NCR. Computational models of human creative cognition 642 

come in two main forms: broader models and cognitive architectures that focus on 643 

creativity as a general feature of cognition (e.g., Hélie & Sun, 2010; Wiggins, 2020), and 644 

narrower models that aim to simulate human performance in specific lab-based creative 645 

tasks (e.g., Olteţeanu & Falomir, 2016; Schatz, Jones, & Laird, 2018).  646 

Examples of broader models include recent attempts to model conceptual blending - the 647 

creative association of ideas or features from two distinct conceptual spaces (Falomir & 648 

Plaza, 2020; Schorlemmer & Plaza, 2021), and the simulation of both individual and 649 

cultural creativity using autocatalytic networks (Gabora, Beckage, & Steel, 2022; Gabora & 650 

Steel, 2020). Other examples include the Copycat (Hofstadter & Mitchell, 1994) and 651 

Metacat systems (Marshall, 2006), which focus on simulating analogical thought. 652 

Meanwhile, the CLARION cognitive architecture draws on Type 1 and Type 2 processes 653 

(Evans & Stanovich, 2013) to model creative thinking as the outcome of both associative, 654 

implicit processes and rule-based, explicit processes (Hélie & Sun, 2010). Researchers have 655 

also adapted the ACT-R cognitive architecture to simulate aspects of creativity including 656 

conceptual blending (Guhe, Smaill, & Peace, 2010). Finally, the IDyOT model, inspired by 657 

theories of predictive intelligence (Clark, 2013; Friston, 2010) and global workspace theory 658 

(Baars, 1988), focuses on cognition as the hierarchical prediction of perceptual input, with 659 

creativity emerging from the system “free-wheeling” in the absence of an external 660 

stimulus (Wiggins, 2020). 661 

Although informative, the generality of these broad-focus models means that they are not 662 

best placed to model the cognitive theories of NCR, which typically focus on how humans 663 

perform specific lab-based creative tasks. For example, Copycat and Metacat operate on a 664 

limited set of abstract symbolic concepts, far removed from a human-like associative 665 
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memory. Meanwhile, CLARION has only modeled elements of cognition relevant to 666 

incubation and insight, and must be set up and trained in a specific way for each task. 667 

Finally, IDyOT focuses on the perception and generation of sequential information such as 668 

music. Critically, these models lack the specific input/output components needed to 669 

simulate standard laboratory-based measures of creativity. 670 

By contrast, narrow-focus models aim to simulate the cognitive processes that operate in 671 

specific creative tasks (e.g., Kajić, Gosmann, Stewart, Wennekers, & Eliasmith, 2017; 672 

Olteţeanu & Falomir, 2016; Schatz et al., 2018). NCR would arguably benefit most from 673 

increased modeling of this kind, since NCR and the theories that guide it focus mainly on 674 

lab-based creativity, and the performance of such narrow-focus models could be readily 675 

compared to large amounts of human data. While such models lack the flexibility needed 676 

to account for performance across multiple tasks, they have demonstrated how relatively 677 

simple operations on associative memory structures can lead to human-like creative 678 

performance on tasks such as the AUT and RAT.  679 

To consider the structure of these narrow-focus models in more depth, one example 680 

comes from Kajić et al. (2017), who developed a spiking neural network model of the RAT. 681 

The model utilized a distributed memory architecture where each simulated neuron could 682 

be part of several concept representations. Words were represented as vectors encoded 683 

in neural activity, with word associations defined using the Free Association Norms 684 

dataset (Nelson, McEvoy, & Schreiber, 2004). When retrieving solutions, RAT cues were 685 

activated in sequence, with only one cue able to activate associations at any one time. 686 

Competing associations inhibited each other, and activation gradually decayed over time 687 

until a solution was reached. The model produced behavior comparable to human 688 

participants in terms of the number of RAT problems it could solve, the number of 689 

responses it generated, and the similarities between its responses. By examining the 690 

model parameters most relevant to performance, the researchers concluded that two 691 

main cognitive processes underlie RAT performance: one that generates potential 692 

responses and one that filters responses. 693 

In contrast to the neural-level model of Kajić et al. (2017), Olteţeanu and Falomir (2015) 694 

developed a cognitive-level model of RAT performance in which concepts were 695 

represented as sets of associations to other concepts. The model’s memory was 696 

constructed from a database of unique 2-word phrases (i.e., 2-grams), with the strengths 697 

of associations between words (i.e., associative strength) defined by the frequency of 698 

their co-occurrence in 2-grams. When solving RAT problems, all three cues and their 699 

associated concepts were activated in memory simultaneously (again in contrast with the 700 

sequential activation employed by Kajić and colleagues, 2017). Solutions were then 701 

selected from the most strongly activated associated concepts. While the authors did not 702 

directly compare the model to humans in terms of the number of RAT problems it could 703 

solve, model performance suggested that the difficulty of RAT items relates to both the 704 
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strength of associations between cues and solutions, and the number of associations each 705 

cue word has (known as “fan”). Since these properties impact how activation spreads 706 

automatically between ideas in memory, these findings emphasize the role of automatic 707 

associative processes in the RAT. 708 

Building on this work, Schatz, Jones, and Laird (2018) developed a model of the RAT using 709 

the Soar cognitive architecture. The authors tested two versions of the model. A baseline 710 

model simply searched memory for words that linked to all three cue words. By contrast, 711 

a second “free recall model” used spreading activation, which propagated through 712 

memory from the three cue words according to both associative strength and fan. The 713 

authors also tested two knowledge bases for the model: one formed of 2-grams (following 714 

Olteţeanu & Falomir, 2015) and one based on a larger corpus not limited to 2-grams and 715 

including several kinds of word association. The authors found that the “free-recall” model 716 

and the more sophisticated knowledge base produced the most human-like performance 717 

in terms of the number of RAT problems solved, highlighting the important roles of 718 

memory structure and associative processes in modeling RAT performance. 719 

Models of the AUT are rare, but one attempt comes from Olteţeanu and Falomir (2016). 720 

The model used a knowledge base of 70 objects, each composed of a set of features 721 

(manually added by the authors), in a hierarchical memory. These features enabled the 722 

simulation of several cognitive strategies that people are known to employ when thinking 723 

of unusual uses for objects in the AUT (Gilhooly et al., 2007), including object replacement 724 

(matching the cue object to the typical uses of another object with similar features) and 725 

object decomposition (breaking the object into components and generating uses for 726 

these). The model did not aim to model memory retrieval processes such as spreading 727 

activation, but served as a proof-of-concept that matching features of cue objects (and 728 

components of objects) to features of other objects can produce solutions to AUT 729 

problems. 730 

Another recent model of creative idea generation, this time focusing on free association, 731 

comes from Lopez-Persem et al. (2022). The model included separate modules for 732 

exploration, valuation, and selection. The exploration module simulated activation 733 

spreading through a semantic network using random walks biased by associative strength 734 

(defined using a database of word associations). The valuation module then calculated the 735 

value of activated ideas based on their novelty and appropriateness (estimated as linear 736 

and quadratic functions of the associative strength between each idea and the cue word). 737 

Finally, the selection module selected a word from among activated ideas according to 738 

their value. The authors then adjusted parameters of the model, and compared the 739 

resulting changes in performance to the performance of human participants. They found 740 

that certain model parameters were more relevant to the performance of individual 741 

modules than others, indicating the processes that may underlie these different 742 

components of creative cognition. For example, the exploration module performed well 743 
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(i.e., matched human performance well) using just associative strength, and was not 744 

improved by considering the value of ideas, which only played a role in the subsequent 745 

valuation stage. The performance of the exploration module was also unaffected by 746 

whether human participants were asked to produce the first response that came to mind 747 

or an original but still associated response. These findings indicate that the initial 748 

activation of ideas during exploration does not depend on how valuable ideas are, and 749 

does not vary depending on the specific task being performed. By contrast, the selection 750 

module performed better when considering appropriateness more among first responses, 751 

and value more among original responses. 752 

In each of these studies, the authors found evidence that particular computational model 753 

structures and parameters can mimic human performance on creative tasks, in some 754 

cases finding that certain structures and parameters perform better than others. In this 755 

way, models can provide considerable insight into the cognitive operations that underlie 756 

performance in creative tasks. However, despite the progress of these models, and the 757 

benefits that models of this kind could bring to NCR, computational modeling of creativity 758 

is currently conducted largely separately from empirical research. The researchers who 759 

build models rarely overlap with those involved in empirical work, and models are rarely 760 

mentioned by NCR. One method to increase integration between the two fields would be 761 

to improve the value of models to empirical researchers. For example, with some 762 

exceptions (e.g., Lopez-Persem et al., 2022; see also Augello, 2016), the models discussed 763 

have not explicitly aimed to embody a particular cognitive theory from NCR in a way that 764 

would enable researchers to examine the theory’s predictions or to test new hypotheses. 765 

Indeed, several clear steps could be taken to improve future models of creativity, to 766 

increase their ability to simulate human cognition and maximize their explanatory value to 767 

NCR. 768 

 769 

 770 

Future steps for computational models of creative cognition 771 

We have argued that NCR would benefit greatly from the increased adoption of 772 

computational modeling. To this end, the neurocognitive theories that guide NCR should, 773 

where possible, be formally defined in computational models that can simulate 774 

performance in typical lab-based tasks. Hypotheses can then be developed with the aid of 775 

computational models, with models adjusted on the basis of empirical data. This approach 776 

would bring considerable clarity to our understanding of creative cognition, allowing 777 

researchers to rigorously compare different theories and make inferences about 778 

underlying processes. Such integration between NCR and computational modeling would, 779 

in turn, aid the development of artificial creative systems (Chateau-Laurent & Alexandre, 780 

2021; Wiggins & Bhattacharya, 2014) since a more algorithmic understanding of human 781 
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creative cognition could inform models of autonomous creativity (Dipaola et al., 2018; 782 

Veale & Pérez y Pérez, 2020).  783 

In addition to a heavier focus on modeling theories from NCR, future models of specific 784 

creative tasks should aim to meet several additional criteria (see also Mekern et al., 785 

2019a). As already noted, it is highly important that computational models can simulate 786 

performance on common creative tasks, to allow model output to be compared to human 787 

data. This provides a means to evaluate the structure of the model, and the cognitive 788 

theories and hypotheses that the model intends to represent. Different models of the 789 

same task can also be compared in terms of how well they fit human data (Guest & 790 

Martin, 2021; Wilson & Collins, 2019). We have suggested that smaller, narrow-focus 791 

models may be best placed to simulate creative performance on lab-based tasks, though 792 

the option also exists to adapt larger cognitive architectures, such as Soar and ACT-R, for 793 

this purpose (e.g., Schatz et al., 2018).  794 

Indeed, future models should ideally aim to simulate performance on multiple creative 795 

tasks. This is needed to explain how the same cognitive processes can produce creative 796 

ideas in different contexts. The first step here would likely be to simulate performance 797 

across different verbal tasks, since tasks in different modalities, such as musical 798 

composition and drawing paradigms, would require modality-specific components (e.g., 799 

memory with visual and auditory representations). Since there is considerable diversity 800 

even amongst verbal tasks, which include free-association, metaphor tasks, insight 801 

problem-solving in the RAT, and strategic search in the AUT, modeling performance in just 802 

some of these tasks would be a good starting point. 803 

Models might also seek to adopt more complex and human-like memory structures. While 804 

several studies have modeled human semantic memory as a static network (see, e.g., 805 

Kenett et al., 2018; Rotaru et al., 2018), with nodes representing concepts, and edges 806 

representing associations, in reality, human memory is far more complex and dynamic. 807 

Building more complexity into a model's memory (or “knowledge base”) provides it with 808 

more information about concepts and their relationships, enabling more nuanced 809 

cognitive processes to be simulated. For example, a simple network in which concepts are 810 

represented in a single layer and linked by only a single kind of association does not allow 811 

the simulation of search processes that might restrict activation to only one type of 812 

concept (e.g., objects), or to concepts that possess a particular property (e.g., roundness) 813 

rather than simply being associated with that property. 814 

The benefits of more sophisticated memory structures have already been seen in a model 815 

of the RAT, in which a larger memory network with multiple kinds of association produced 816 

more human-like behavior than a smaller and simpler network (Schatz et al., 2018). Other 817 

examples of more complex memory structures include distributed and hierarchical 818 

memory. In distributed memory, concepts are represented as patterns of activity across 819 

multiple nodes, where each node can form part of multiple concept representations. This 820 
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provides a more natural and biologically plausible basis for spreading activation, which 821 

now moves between concepts that share nodes (Kajić et al., 2017). In hierarchical memory 822 

(e.g., Olteţeanu & Falomir, 2016; Wiggins, 2020), concepts in each layer are represented 823 

as sets of concepts in lower layers, which serve as features or properties of higher-level 824 

concepts. In both cases, richer conceptual representations provide a basis for more 825 

complex and flexible processes to operate on memory.  826 

Other critical goals for future models include the simulation of individual differences and 827 

context effects (see also Mekern et al., 2019a). While simulating creative performance 828 

allows models to be evaluated in relation to other models, the capacity to model 829 

individual differences in a given psychological or cognitive factor (e.g., WM capacity or 830 

response inhibition) goes a step further, enabling researchers to develop and test causal 831 

hypotheses for how variation in the factor leads to variation in creative performance. To 832 

do this, the factor must first be embodied in the model as a set of parameters. These 833 

parameters can then be modified, leading to changes in simulated creative outcomes. If 834 

these changes align with individual differences observed among human participants (who 835 

also vary in the designated factor), then the modeled causal pathway is supported. 836 

Indeed, different versions of a model can be designed to reflect contrasting hypotheses 837 

regarding how a factor affects creative outcomes. This gives researchers a powerful tool 838 

to compare two or more causal hypotheses by examining which model set-up best fits 839 

human data. 840 

Finally, modeling context effects allows the conceptual representations stored in a model 841 

to be adjusted in response to the current context or sensory input. Concepts in human 842 

memory are not equally active at all times, but rather become more activated in certain 843 

environments or after certain stimuli. Simulating context effects would thus lead to more 844 

realistic models, and might involve allowing activated concepts (such as cue words in the 845 

AUT and RAT) to modify the associations, weights, or features that define inactive 846 

concepts, thus changing their representations. 847 

 848 

Towards greater integration between NCR and computational modeling 849 

Progress toward a more precise, mechanistic understanding of creative cognition cannot 850 

be made by modeling alone, but will require the cooperation of theorists, modelers, and 851 

experimenters (Dongen et al., 2022; Hitchcock, Fried, & Frank, 2022; Wiggins & 852 

Bhattacharya, 2014). How might greater integration between NCR and computational 853 

modeling look? We would argue that any research group that proposes a theory of 854 

creative cognition should aim to produce a computational model to demonstrate their 855 

thinking explicitly. Such models would make theories more rigorous and complete, and 856 

could highlight questions for future research. Following the recommendations of Barton et 857 

al. (2022), these models should be easily reproducible, with publicly available code that is 858 
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accessible to those with minimal modeling experience, allowing them to be adapted by 859 

other researchers who wish to develop their own hypotheses. As noted, it is also 860 

important that future models can simulate performance on common creative tasks, to 861 

allow models to be readily compared to both human data and the performance of other 862 

models. While we have focused on models of the AUT and RAT, NCR makes use of a large 863 

number of other tasks, including metaphor tasks (Beaty, Silvia, & Benedek, 2017b; 864 

Benedek et al., 2014a), drawing tasks (Ellamil et al., 2012; Rominger et al., 2018), musical 865 

improvisation (Pinho, de Manzano, Fransson, Eriksson, & Ullén, 2014; Rosen et al., 2020), 866 

and story writing (Fink, Reim, Benedek, & Grabner, 2020; Prabhakaran, Green, & Gray, 867 

2014). NCR should ideally aim to model all of these tasks computationally to improve our 868 

understanding of the cognitive processes that enable creative performance in these 869 

different contexts.  870 

Designing a model 871 

Above, we have briefly considered a simple model of creative search, but to show more 872 

clearly how theories can be represented in formal models and how modeling can inform 873 

empirical research and theoretical debate, we now outline how a more complex model 874 

might be built, based on dual-process accounts (Figure 1). A simple starting point would 875 

be a semantic network, where nodes are words and edges are associative links, which 876 

could be constructed from human free-association data (e.g., Kenett et al., 2018; Schatz et 877 

al., 2018) or distributional semantics methods (e.g., Rotaru et al., 2018). The next step is 878 

to examine the literature for theoretical processes that might be represented as 879 

operations on this network. For example, the spontaneous and deliberate processes 880 

described by dual process theories might conceivably be modeled as collections of several 881 

computational elements and mechanisms (Table 1).  882 

Spontaneous processes are often described as propagating through memory, 883 

reinterpreting information, and activating distant concepts (Benedek & Jauk, 2018; Volle, 884 

2018), and so could be modeled via the structure of memory itself, the automatic 885 

spreading of activation through memory, and the spontaneous activation of tangential 886 

(i.e., non-task-relevant) ideas. Deliberate processes, meanwhile, are described as 887 

inhibiting unoriginal or distracting ideas (Beaty et al., 2017a; Camarda et al., 2018a; 888 

Chrysikou, 2019) and directing thought to fulfill strategies (Forthmann et al., 2019b; 889 

Gilhooly et al., 2007; Nusbaum & Silvia, 2011). As such, modeling deliberate processes 890 

might involve specifying mechanisms that can prevent certain ideas from activating and 891 

inhibit certain associative pathways to guide thought in particular directions (Volle, 2018).  892 

Table 1. Summary of cognitive mechanisms that might feature in a computational model of 
verbal creativity 
Broader cognitive 
construct 

Specific feature or 
mechanism 

Example from the literature 
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 893 

To be modeled effectively, these processes seem to require additional features. For 894 

example, guiding thought to fulfill strategies suggests the existence of multiple kinds of 895 

associative pathway, which could be modeled either with a hierarchical or distributed 896 

memory, or by defining the part-of-speech of words (e.g., verbs, nouns) and using these to 897 

define different kinds of association. In the context of the AUT, this latter option could 898 

allow the simulation of the strategy of object replacement (where the cue object performs 899 

the typical use of another object; Gilhooly et al., 2007) by directing activation first along 900 

noun-adjective-noun associative pathways (to find an object with similar properties; e.g., 901 

brick -> heavy -> hammer) and then noun-verb pathways (to find uses; e.g., hammer -> 902 

pound a nail). More importantly, the notion that ideas can be distracting, and require 903 

inhibition to allow more relevant or original ideas to activate, implies that active concepts 904 

occupy a finite WM, access to which must be managed by cognitive control. Indeed, WM 905 

is not often discussed in significant depth by dual-process accounts of creative thought, 906 

yet in the context of modeling appears central to the need for controlled mechanisms.  907 

Spontaneous 
Associative Processes 

Memory structure Semantic memory structure relates to creative 
ability (Kenett et al., 2018). 

Automatic spreading of 
activation between 
concepts 

Free association and verbal fluency relate to 
creative performance (Beaty et al., 2014; 
Marron et al., 2018).  

Spontaneous activation of 
tangential or task-
unrelated ideas 

In the absence of cognitive control, distraction 
and mind-wandering can occur (Fox & Beaty, 
2018; Zabelina, 2018). 

Deliberate Control 
Processes 

Inhibition of unoriginal 
and distracting ideas 

Less original and distracting ideas require 
suppression (Camarda et al., 2018a; Chrysikou, 
2018; Lloyd-Cox et al., 2021). Inhibition relates 
to creative ability (Benedek, Franz, Heene, & 
Neubauer, 2012; Benedek et al., 2014b; Kaur et 
al., 2021). 

Strategic search processes Strategic search occurs in the AUT (Gilhooly et 
al., 2007; Silvia et al., 2013). Search can vary 
between more flexible and persistent strategies 
(Lin & Vartanian, 2018; Nijstad et al., 2010). 

Control over WM input Creativity relates to the breadth of attentional 
focus (Gabora, 2010; Zabelina, 2018), and WM 
updating and shifting (Benedek et al., 2014b; 
Krumm et al., 2018; Zabelina & Ganis, 2018). 

Working Memory 

A finite set of currently 
active concepts 

WM capacity impacts creative thought (Fugate 
et al., 2013; Lee & Therriault, 2013). Context 
effects play a role in creative thought (Gabora, 
2018). 
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Modeling WM also provides a way to simulate attention. Researchers have suggested that 908 

creative performance involves adjusting attention between narrower and broader states 909 

(Dorfman et al., 2008; Gabora, 2010; Zabelina, 2018; Zabelina & Robinson, 2010) and 910 

shifting between exploratory and exploitative search strategies (Mekern et al., 2019b; 911 

Nijstad et al., 2010). Such processes might be simulated by adjusting input to WM. For 912 

example, broad or exploratory attentional states might be simulated as a wider input to 913 

WM, where activation flows more freely, and tangential ideas can activate spontaneously. 914 

By contrast, narrow or exploitative attentional states might involve limiting WM input to 915 

only closely related ideas (see Figure 1). Embodying different attention-based theories of 916 

creativity in models of this general sort would allow them to be more rigorously 917 

compared. Alternatively, if a single model could simulate the behavioral outcomes 918 

discussed by different theoretical accounts, that would strongly suggest that the theories 919 

are consistent and could be combined into one. Indeed, it is hypothetically possible that 920 

all creativity-relevant control processes, including inhibition, adjustment of attentional 921 

breadth, and switching between generative and evaluative modes, are based on adjusting 922 

WM input, a possibility that could be investigated empirically. 923 

 924 
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In principle, such a model could meet many of the requirements for future models noted 925 

earlier. Active concepts in WM could form the current context, modifying conceptual 926 

representations in memory by changing their associative weights. Individual differences 927 

could be simulated by varying parameters governing specific features or operations in the 928 

model (e.g., WM capacity or the strength of inhibition). Finally, performance on multiple 929 

creative tasks might be achieved using spreading activation to complete RAT problems 930 

(e.g., Schatz et al., 2018) and the activation of specific associative pathways to perform 931 

strategic idea generation in the AUT.  932 

 

Figure 1. Diagram of an example 
dual-process computational model 
of creative cognition. Semantic 
memory is represented as a 
network of concept nodes (yellow = 
active; blue = inactive). Creative 
performance depends on a 
combination of spontaneous 
processes (SP) and controlled 
processes (CP). Active concepts in 
working memory (WM) form the 
current context and can bias the 
representation of other concepts. 
Dashed lines indicate the breadth of 
WM input. 
 
(a) In broad focus attentional states, 
associative processes, including 
spreading activation (1), and 
spontaneous activation of tangential 
concepts (2), combine with strategic 
controlled processes that can force 
activation in specific directions (3), 
to produce a broader input to WM. 
 
(b) In narrow focus attentional 
states, cognitive control can 
suppress distracting concepts (4) 
and inhibit specific associative 
pathways (5) to constrain WM input 
to the most relevant ideas.  
Different creative tasks may require 
different attentional states and 
different combinations of processes.  
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Implementing a model 933 

Before such a model can actually simulate human data, it needs to be implemented 934 

computationally. This process requires several additional steps, which we now describe in 935 

more detail. The first step is to construct the memory base of the model, which in the 936 

current example is the semantic network. Regardless of whether this is based on human 937 

free association data or distributional semantics methods, researchers would have to 938 

make several decisions, such as how many words to include, whether to exclude 939 

prepositions, articles, and quantifiers, whether to combine singular and plural forms of 940 

words, whether to exclude associations below a certain strength threshold, and so on. 941 

Researchers also have the option to create multiple semantic networks and tailor each 942 

one to an individual participant (e.g., Benedek et al., 2017; He et al., 2021). 943 

Once a memory base is constructed, the next step is to choose which processes to model 944 

and how to simulate them. For example, associative processes could be modeled as 945 

spreading activation alone, or as both spreading activation and the spontaneous activation 946 

of tangential concepts. Each approach requires specifying parameters that determine, for 947 

example, how quickly or distantly activation should spread through memory, or how often 948 

tangential ideas should activate. Similar decisions need to be made to simulate 949 

components such as WM or cognitive control processes (e.g., how strongly inhibition 950 

operates to suppress distracting ideas). These parameters can be selected based on 951 

existing hypotheses or left open and later adjusted to fit participant data, as described 952 

below. 953 

In addition, researchers need to decide how to manage model input and output. For 954 

example, in the verbal model described above, one option is to simulate input by 955 

activating cue words strongly in memory (e.g., Kajic et al., 2017; Schatz et al., 2018). 956 

Activation may then propagate outwards from these cue words to other concepts. The 957 

process of selecting concepts as responses for output also requires careful consideration. 958 

In tasks like the RAT, this might involve selecting the most strongly activated concept (e.g., 959 

Olteţeanu & Falomir, 2015). However, tasks like the AUT may require more sophisticated 960 

evaluation and selection processes, potentially based on a specified trade-off between 961 

proximity to the cue word (which improves the usefulness of the response) and distance 962 

from the cue word (which improves the novelty). 963 

Finally, researchers need to consider how the model will update over time to simulate 964 

cognition. One approach is to update the model in discrete time steps. At each time step, 965 

activation might spread to new concepts, while the activation of previous concepts 966 

gradually decays. Further, each update might involve control processes switching to 967 

inhibit different concepts or pushing activation in a different direction. Once all these 968 

factors and decision points have been implemented in the code, the model is ready to 969 

simulate task performance. As discussed, spreading activation alone might be sufficient to 970 

model performance on tasks such as chain association and the RAT (e.g., Lopez-Persem et 971 
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al., 2022; Schatz et al., 2017). However, simulating performance on the AUT might require 972 

a slightly different model setup depending on the particular strategy used, such as object 973 

replacement or object decomposition (Gilhooly et al., 2007). 974 

Once the initial model is developed computationally, researchers can refine it and its 975 

parameters to fit human data better. One option is to build a model with a specific 976 

structure (i.e., with certain components linked by causal pathways) based on theories and 977 

hypotheses, and then fit the parameters governing model behavior to human data. For 978 

example, the distance traveled by spreading activation processes could be set based on a 979 

certain weighting of participants’ verbal fluency or chain association data. Researchers 980 

could train the parameters of the model using data from one group of participants and 981 

then test its ability to predict the creative outcomes of another group. Different 982 

hypotheses can then be tested by building different versions of the model with varying 983 

causal structures, for example by modifying the process by which inhibition operates (as 984 

opposed to how strongly it operates). After testing and training, different model versions 985 

can be compared in terms of how well their performance predicts human data. Another 986 

option is to specify both the structure of the model and its parameters based on 987 

preexisting theories. Different hypotheses, for example regarding how much impact 988 

inhibition should have on creative outcomes, can then be tested by defining several sets 989 

of parameters and assessing their fit to human data (Lopez-Persem et al., 2022). 990 

This brief sketch of model development clarifies how theories of creative cognition can be 991 

translated into formal models. It also demonstrates the potential of modeling to identify 992 

new research avenues and the importance of cognitive factors, such as WM, that may 993 

have been overlooked in verbal accounts. Importantly, this example highlights that 994 

modeling inevitably requires making many reasonable assumptions to “fill the gaps” left 995 

by verbal accounts. Verbal theories rarely describe all the details necessary to implement 996 

a computational model, leaving the modeler to decide factors such as how exactly to 997 

structure semantic memory or simulate inhibition processes. For each of these decisions, 998 

alternatives are possible, and so ideally multiple models should be constructed by 999 

different research groups and their performances compared (Poile & Safayeni, 2016; 1000 

Wilson & Collins, 2019). It is crucial to note that the design and implementation of the 1001 

model discussed here may differ substantially from models focused on the neural level or 1002 

based on alternative theories of creative cognition, such as flexibility vs. persistence 1003 

(Mekern et al., 2019b; Zhang et al., 2020). This also highlights the importance of building 1004 

and comparing multiple models of each creative task. 1005 

 1006 

Concluding remarks 1007 

NCR has greatly increased our understanding of creative cognition and its relations to 1008 

psychological phenomena, including memory, attention, and cognitive control (Beaty et 1009 
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al., 2021; Benedek & Fink, 2019; Chrysikou, 2019; Kenett et al., 2018; Kleinmintz et al., 1010 

2019; Volle, 2018). However, the field remains far from a mechanistic understanding of 1011 

creativity complete with causal hypotheses for how cognitive processes produce creative 1012 

ideas and how such processes interact differently in different tasks and individuals. We 1013 

believe that the increased adoption of computational modeling can significantly advance 1014 

the field and bring it closer to this goal. The verbal theories that guide NCR (and 1015 

psychology in general) are intrinsically more open to interpretation, more difficult to 1016 

falsify, and less transparent than formal models (Farrell & Lewandowsky, 2015; Fried, 1017 

2020; Guest & Martin, 2021; Smaldino, 2020). By contrast, embodying these theories in 1018 

computational models can help make them more complete, accessible, and comparable. 1019 

Modeling forces researchers to exchange abstract constructs for concrete definitions of 1020 

cognitive processes as operations in a computational system (Benedek & Fink, 2019; 1021 

Wiggins & Bhattacharya, 2014). Moreover, computational modeling can allow the 1022 

complex pathways that produce creative ideas to be predicted effectively.  1023 

For its part, though several computational models of creativity exist, they have been 1024 

developed in relative isolation from empirical research, and surprisingly few are well-1025 

suited to modeling the cognitive theories of NCR in a way that can be easily compared to 1026 

human performance. Since a clearer understanding of human creativity could lead to 1027 

more creative artificial systems, further integration and collaboration between 1028 

computational modeling and NCR stands to benefit both fields greatly (Chateau-Laurent & 1029 

Alexandre, 2021; Dipaola et al., 2018; Veale & Pérez y Pérez, 2020; Wiggins & 1030 

Bhattacharya, 2014).  1031 

Indeed, among all areas of cognitive neuroscience, NCR may benefit especially well from 1032 

computational modeling. After all, creativity is a complex and heterogeneous construct, 1033 

and its underlying processes undoubtedly vary greatly depending on the specific task, 1034 

domain, and other contextual and interpersonal factors. Ultimately, science seeks to 1035 

establish cause and effect relationships, and so to truly advance, NCR needs clear 1036 

hypotheses about how the same cognitive processes operate in different contexts, 1037 

explicitly demonstrated in computational models. Integrating NCR with computational 1038 

modeling will require considerable time and coordination between fields. The stakes, 1039 

however, are high, and we fervently hope this article will help stimulate the necessary 1040 

dialogue across disciplines (“Theorists and experimentalists must join forces”, 2021). 1041 
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 1750 

The attached code (in MATLAB®; see https://github.com/Alan-Pickering/example-creativity-1751 

model) implements a simple toy model of within-category search processes. We have left 1752 

extensive comments in the code but this supplementary text explains in greater detail how the 1753 

provided model code works and how one might experiment with it. In the spirit noted in the main 1754 

article, our primary objective in this exercise is to demonstrate a simple but formal model related 1755 

to creative cognition. We have tried to do this in the most accessible and transparent fashion. The 1756 

hope is to enable those new to formal computational modeling to get a clearer insight into the 1757 

modeling process, rather than making any major claims for the specific features of this particular 1758 

model. It also makes transparent the process of making assumptions and modeling choices 1759 

inherent in every formal model. 1760 

This model was designed to simulate creativity tasks in which the instructions are to search a 1761 

conceptual space for an unusual item or response (e.g., trying to come up with an unusual 1762 

exemplar from the category of “fruit”, where unusual is defined as a response that would have 1763 

been suggested by very few people when asked to generate fruit exemplars).  1764 

 1765 

Concept network as a multidimensional space 1766 

The central idea in this model is to represent the concept network (e.g., fruits) as an n-dimensional 1767 

space. In the code provided, we simplify this space to just two dimensions (in the code ndims=2). 1768 

Our first assumption (A1) is that the number of dimensions will not affect the qualitative behavior 1769 

of the model. We should investigate that assumption by running simulations using higher-1770 

dimensional models. In general, we recommend starting with simplifying assumptions but, where 1771 

possible, one should test the impact of each assumption one makes.  1772 

The model's key feature is that each exemplar is represented as a unique point in the space and 1773 

the Euclidean distance1 between any two exemplars reflects the overall strength of association 1774 

 
1 See https://en.wikipedia.org/wiki/Euclidean_distance. 

mailto:j.bhattacharya@gold.ac.uk
https://github.com/Alan-Pickering/example-creativity-model
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between the exemplars. Our second assumption (A2) is that the free-wheeling, undirected flow of 1775 

thought in this space will more likely move between exemplars strongly associated with one 1776 

another (e.g., apple and orange; these examples will have a small Euclidean distance between the 1777 

points they occupy). The construction of the model as outlined below ensures that the model 1778 

generally behaves according to assumption A2. 1779 

In this model space, the dimensions might be considered features over which items such as fruits 1780 

might be associated. For example, one dimension might be “size”, and because apple and orange 1781 

are similar in size, the distance between them on the size dimension would be small; alternatively 1782 

put, their association in terms of size would be strong. Consider another dimension, “citrus-ness”; 1783 

here, we expect the distance to be larger as oranges are citrus fruits but apples are not. However, 1784 

it seems likely that orange and apple would be close together on most of the model dimensions, 1785 

so the overall Euclidean distance separating them (across dimensions) would be small in our 1786 

model space. Thus, when one thinks of apple (as an example from the fruit category), one is likely 1787 

to spontaneously think of orange, and vice versa.  1788 

We have used a simple formal feature in our model (the Euclidean distance between items) to 1789 

capture the relatedness of two items, which seems a “reasonable”2 approach. In defense of this 1790 

claim, we would argue that the associative strengths of a set of items should have “distance-like” 1791 

properties. For example, if the associative strength between items apple and orange is 1 1792 

(arbitrary) unit and the associative strength between orange and pear is 1.5 units, then the 1793 

associative strength of apple and pear should be less than or equal to 2.5 units. We would 1794 

refine/change this basic feature if the model based upon it was shown to be unable to simulate 1795 

some aspects of observed behavior in creative tasks. 1796 

 1797 

Simulating the concept network using multivariate normal distributions 1798 

To generate the position of the items in the model space, we use a random number generation 1799 

process. Specifically, we generated the exemplars using a multivariate normal (MVN) random3 1800 

generator (bivariate in this case as our space has two dimensions). This is a key mathematical 1801 

choice which we have adopted because it is mathematically simple and well-understood. By doing 1802 

so, we are not saying that the positions of items in a conceptual space always behave exactly as if 1803 

they follow a MVN distribution but that it will usually be close enough to the true distribution so as 1804 

to have little effect on the accuracy of the simulations we are going to perform. If the model 1805 

simulations fail to capture observed behavior accurately, then we would revisit this choice for our 1806 

model. 1807 

Before explaining the simple implementation procedure to generate an MVN distribution in 1808 

MATLAB (of note, the procedure will be similarly easy in most other coding languages), we need to 1809 

 
2 The somewhat subjective notion of reasonableness will crop up more than once and so we will try to give a 
flavor of how one can justify something as reasonable. 
3 See https://en.wikipedia.org/wiki/Multivariate_normal_distribution 
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check the reasonableness of our decision to use an MVN distribution. Supplementary Figure 1 1810 

(SF1) shows an example of a multivariate normal random sample of 100 items using 2 dimensions. 1811 

One can see different samples by changing the plot2show control variable in the code provided. 1812 

SF1 was generated using plot2show=1 and is the set of items used in simulation number 1.  1813 

SF1 shows that most items are clustered close to the center of the space, and the density of items 1814 

gets less as we move outwards from 0 on either dimension. This implies that the sample items at 1815 

the center of the space have lots of closely associated items and that as one moves towards the 1816 

edge of the space, each item has fewer close associates. This seems to capture the associative 1817 

properties of sets of items such as fruits in a reasonable way: there will be some items in the set 1818 

with lots of strongly associated items (apple, pear, orange etc.), but others will be associated 1819 

closely with only a small number of items (jackfruit for example). 1820 

 1821 

 1822 

Supplementary Figure 1: A random sample of 100 items generated using a multivariate normal 1823 

random number generation process in 2 dimensions. The distances along each dimension are 1824 

arbitrary and standardized. 1825 

We are trying to use our model to simulate the search for unusual items, where unusual items are 1826 

those that few other people would think of in a limited period of time. Good answers will be items 1827 
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that have few strong associates because people will generate candidate items by searching 1828 

associatively through the space. Thus, people will be less likely to come up with items towards the 1829 

periphery of the space.   1830 

In Figure SF1 we used 100 items (in the code, nitems=100). Once again, we felt that this was 1831 

reasonable: it should be roughly equal to the total number of fruits an adult human might be able 1832 

to name given enough time. Our third assumption (A3) relates to this choice of number; namely, 1833 

that the precise number chosen is not going to change the way the model would behave, so long 1834 

as we avoid really small values (<10). Such small values are unreasonable for the sorts of sets of 1835 

items we might use in the task we are simulating. 1836 

The multivariate normal (MVN) random process means that, along each dimension, the 1837 

distribution of item positions follows a univariate normal distribution. While a univariate random 1838 

variable has a mean and a standard deviation (0 and 1 respectively, for a standard normal 1839 

distribution), the MVN distribution has a mean vector and a variance-covariance matrix (mu and 1840 

sigma, respectively, in the code). We set the means to be zero on each dimension and the item 1841 

variances to be 1 (itemvar in the code). These are just standardized values and are not important. 1842 

Nevertheless, they do allow us to scale other parameters in our model easily, given that we know, 1843 

with these choices, that roughly 5% of our items will lie outside the values of -2 and 2 on each 1844 

dimension.  1845 

We also can choose whether there is any covariation between the values on the separate 1846 

dimensions of our space. In the model code, this is specified via itemcov. Our next assumption (A4) 1847 

is that these two dimensions are not related; therefore, we set itemcov = 0. This ensures that the 1848 

cloud of points in our 2-d space is roughly circular; non-zero values for the covariance would 1849 

stretch the cloud of points into an elliptical shape. This is, of course, an initial simplifying 1850 

assumption which we believe is almost certainly wrong even if the other aspects of the model 1851 

might be useful. Over all of the dimensions on which fruits can vary, we feel confident that the 1852 

associative distance between pairs of items on some dimensions will be correlated with their 1853 

distances along some other dimensions (e.g., fruit size will be somewhat inversely correlated with 1854 

the intensity of flavor, think melon vs blackcurrant or raspberry). Once again, tests of the impact of 1855 

adopting assumption A4 should be made if the simpler model proves useful. We need to use >2 1856 

dimensions to explore this assumption properly; with >2 dimensions, we can arrange it so that the 1857 

degree of covariation between pairs of dimensions can vary over different pairs of dimensions. 1858 

As already noted, generating the MVN distributed items is simple: it is a single line of code once 1859 

we have the parameters described above. In MATLAB, we use the mvnrand command and write 1860 

(line 105):- 1861 

itemvals=mvnrnd(mu, sigma, nitems); 1862 
 1863 
It is important to note that we do not specify a precise set of fruits in this model or try to set their 1864 

associative closeness to one another to reflect some objective reality. Our assumptions and model 1865 

specification create a set of exemplars that we propose could represent any set of exemplars in a 1866 



Towards Greater Computational Modeling in Neurocognitive Creativity Research 

 

58 
 

category of finite size that is broadly similar to the category of fruits. We could test this by seeing if 1867 

the real behavior on this task was similar irrespective of the specific set of items being employed 1868 

(e.g. fruits, or British Olympic gold medalists at London 2012).  1869 

An obvious alternative approach would be to create an associative network for a specific category 1870 

with the weights of association (distances) between items being set to “realistic” values. This could 1871 

be done by evaluating the associative strength between exemplar pairs for real categories using 1872 

lexical databases, or by collecting suitable experimental data from human participants. The 1873 

weights used would then be set to be proportional to the measures of associative strength 1874 

obtained. This sort of approach has been used in past computational models of creativity see 1875 

section “Existing computational models of creativity“ in the main text for examples. This is a more 1876 

complex approach, and we could test whether our simplifying assumptions lead to a model which 1877 

is capable of producing simulated behavior similar to that produced using a more elaborate model 1878 

based on “real” associative weights. 1879 

 1880 

 1881 
  1882 
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Modeling free-wheeling associative thoughts  1883 
 1884 
The next key aspect of the model is our choice for implementing the free association of thoughts. 1885 
This is intended to capture one facet of the dual-process models discussed in the main text (see 1886 
Box 1 in particular): the “spontaneous”, or “generative”, or “automatic” flow of ideas during the 1887 
search for a creative response. We did this using a random walk4. Random walks have been used 1888 
quite extensively in modeling behavior in varied fields within psychology [1-5]. Once again, this is 1889 
probably because their basic mathematical processes are well-understood. We leave it to the 1890 
reader to decide if a random walk is a reasonable choice for this aspect of our model. 1891 
 1892 
In the model, there is a loop of 200 simulations (nsims=200), and each simulation can be thought 1893 
of as a different simulated participant attempting to generate an unusual fruit (one that would be 1894 
thought of by as few other participants as possible). The choice of 200 is fairly arbitrary but, given 1895 
the extensive use of random variables in the model, it needs to be large enough to give 1896 
representative outcomes when aggregated across all simulations. Within each simulation, there is 1897 
an inner loop of up to 10000 steps (nsteps=10000). Each step is one step of the random walk. The 1898 
number of steps is initially set to be large, although we adjust this to a lower number (1500) for 1899 
reasons explained below. The length of a timestep is arbitrary, but one could rescale the numbers 1900 
of steps into response times (e.g., 100 steps equates to 1 second) so that the simulated response 1901 
times are of the right magnitude. The walk has to start at an initial position. In the simplest version 1902 
of the model, we assume (A5) that the walk starts at the center of the space: (0,0) in two 1903 
dimensions (coded as mystart). This seems reasonable because, if we are asked to think of fruits, it 1904 
is highly likely that we would first think of common exemplars at the center of our space. 1905 
 1906 
Another feature is the walk step size, i.e., the amount that the walk might move in each direction 1907 
on a single step. Bearing in mind that 95% of the items lie along values in the range -2 to 2 on each 1908 
dimension (see above), we set the step size to 0.05 for each dimension (coded as stepsize). To 1909 
make the walk random, we used a uniform random number generator to create a random move 1910 
direction for each of the nsteps (=10000) steps of a simulation along each of the ndims (=2) 1911 
dimensions. The direction for each step on each dimension was either -1, 0 or +1 (each occurring 1912 
randomly with equal probability), generating 9 possible moves on each step (3*3 over the two 1913 
dimensions). To do this, we used the randi command in MATLAB to create a matrix of values with 1914 
10000 rows and 2 columns for each simulation (called mymoves): 1915 
 1916 
mymoves=randi([-1 1],nsteps,ndims); 1917 
 1918 

The actual walk is thus a combination of the direction specified by mymoves multiplied by the 1919 

amount moved in that direction, specified by stepsize. On the k-th step of the walk, the variable 1920 

currpos keeps track of the current 2-d position of the walk iteratively, thus:- 1921 

currpos=currpos+stepsize.*(mymoves(k,:)); 1922 
 1923 

 
4 https://en.wikipedia.org/wiki/Random_walk 
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Clearly, the larger the values used for stepsize, the more space will be covered by the random 1924 
walk. All other things being equal, our model intuition5 is that larger stepsize values will enable the 1925 
simulated participant to encounter more unusual (peripheral) items more quickly. 1926 
 1927 
 1928 
Retrieval of candidate items 1929 
 1930 
The next aspect of the model is how we interrupt the free-associative process of the random walk 1931 
with attempts to retrieve candidate items. The way we capture this in our model is that, every so 1932 
often, the walk pauses and the simulated participant attempts to retrieve an example item from 1933 
the current position of the random walk in our space of items. The frequency with which this 1934 
attempt at retrieval occurs is controlled by a parameter in the code called walkfor (a default value 1935 
of 50 steps). This means that after every walkfor random walk steps, an attempt at item retrieval is 1936 
made. This feature of the model embeds another assumption (A6); namely, that the spontaneous 1937 
free-association processes are in alternating phases with memory retrieval and subsequent 1938 
evaluative processes. This is a feature present in some theoretical accounts in the literature (see 1939 
[33] in the main article). 1940 
 1941 
Which items might be retrieved at each attempt? Following the underpinning logic of the model – 1942 
i.e., that the distance in the model space represents the closeness of the association of an item – 1943 
we implemented this using a competitive probabilistic retrieval process based on the relative 1944 
distance of items from the current position of the walk. This means that the items nearest to the 1945 
current position are compared in terms of their relative distances, and the probability of their 1946 
retrieval is directly linked to those relative distances (closer items being more likely to be 1947 
retrieved). The retrieval competition is limited to those items which are within a specific Euclidean 1948 
distance of the current position.  This selection of potential items for retrieval is controlled by a 1949 
parameter, denoted closeto in the code (default =1 distance unit). This parameter is used by 1950 
computing the Euclidean distance between each item in the space and the current position 1951 
(computed as eucdist, see line 140), and then computing a “logical filter” (choicefilt in the code) 1952 
with value = 1 for those items with a Euclidean distance (ED) less than closeto, and 0 otherwise. 1953 
The filter is used later on in the code to restrict the choice function to apply to only those items 1954 
with values of choicefilt=1. In mathematical terms, we can define a set S of potentially retrievable 1955 
items where the Euclidean distance of item i from the current walk position, 𝐸𝐷𝑖 is smaller than 1956 
closeto for all items i  in the set S.6  1957 
 1958 
The default value of closeto represents a wide search radius given that 95% of the items are within 1959 

a circle of radius 2 units from the center of the space. One might imagine that different individuals 1960 

might vary in the value of closeto that they use. Our next model intuition is that someone with an 1961 

ability to think more creatively might have a higher value of closeto, than their less creative 1962 

counterpart, and so such a person would include more potential items in their retrieval searches. 1963 

 
5 A model intuition is what effect we think the model parameter will have. Even if these intuitions seem 
reasonable, it is important to test these out. Formal modeling allows one to move from intuitions to clear 
predictions when we run the simulations. 
6 In mathematical notation if item i is a member of a set S, this can be written as 𝑖 ∈ 𝑆  
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The more creative person (based upon their higher value of closeto) would, according to the 1964 

model, be more likely to alight upon a more creative (unusual) choice of fruit in a fixed amount of 1965 

thinking time. 1966 

The actual formula used to compute the probabilities of retrieval of the items lying within closeto 1967 

distance units of the current position was based upon a widely adopted choice function in 1968 

psychological modeling: the softmax function.7 Specifically, the softmax formula used to define the 1969 

probability of retrieving item i, given that i is a member of the set S of competing potentially 1970 

retrievable items, is as follows: - 1971 

 1972 

𝑝(𝑅𝑖 | 𝑖 ∈ 𝑆) =  
𝑒𝜏/𝐸𝐷𝑖

Σ𝑗∈𝑆 𝑒
𝜏/𝐸𝐷𝑗

 1973 

 1974 

The above formula suggests that the smaller the Euclidean distance of a candidate item i from the 1975 

current position, the higher the probability that it is retrieved amongst all the competitor items in 1976 

set S. In the code, it is computed across lines 157-159. The following lines of code (165-167) use a 1977 

random number generator to retrieve a specific item in accordance with the probabilities returned 1978 

by the softmax function. 1979 

A key parameter in the softmax function is 𝜏 (in the code, this is tau), and it can take values of zero 1980 

or greater. This parameter has different names in modeling contexts (e.g., inverse temperature, 1981 

stochasticity or exploration-exploitation parameter), but it simply controls how noisy the choice 1982 

process is. As 𝜏 gets larger then the closest item is more and more likely to be retrieved (i.e., a 1983 

more deterministic choice), even when it is only slightly closer than the next nearest competitor. 1984 

By contrast, as 𝜏 approaches zero, all competitor items tend to be chosen with similar probabilities 1985 

irrespective of their relative distances (more random, noisy choice). We can see this effect of 𝜏 in 1986 

Supplementary Figure 2 (SF2) during one retrieval decision during simulation number 1. 1987 

 1988 

  

 
7 https://en.wikipedia.org/wiki/Softmax_function 
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 1989 

Supplementary Figure 2: The effect of parameter 𝜏 on retrieval probabilities as a function of 1990 

Euclidean distance (ED) from the current walk position. Note the difference in y-axis scale across 1991 

the two panels. In the left panel (𝜏 = 2), there are 7 potentially retrievable items, but the closest 1992 

two, with EDs < 0.3 have the greatest chance of being retrieved (0.55 and 0.35 approximately). 1993 

Items with ED ≥ 0.5 have virtually a zero probability of retrieval. In the right panel (𝜏 = 0.2) all 9 1994 

potentially retrievable items have a similar probability of being retrieved (0.1 < p < 0.13) 1995 

irrespective of their EDs from the current position, even though the range of EDs goes from just 1996 

below 0.5 to almost 1. 1997 

 1998 

Once again, one has a strong model intuition that the parameter 𝜏 should directly affect the 1999 

breadth of the search of the category space and thus the ability to generate more creative 2000 

solutions. When 𝜏 is smaller, then more items can be retrieved at any position of the random walk 2001 

than for higher values of 𝜏. This means that, over a fixed period, the random walk has a greater 2002 

chance of retrieving more peripheral items (i.e., more unusual, creative choices) for lower values 2003 

of 𝜏, all other things being equal. We can think of 𝜏 in conjunction with the value of closeto 2004 

(already discussed) as opening up the retrieval process to a broader range of possible items. In 2005 

terms that have been widely used in the creativity literature, one might view these two 2006 

parameters as reflecting the degree of inhibition in memory retrieval; specifically, the combination 2007 

of large closeto and low 𝜏 equates to weak inhibition. 2008 

 2009 

Response selection as a controlled decision process 2010 

The final part of the model is the decision process used to decide if a retrieved item is “unusual 2011 

enough” to be worthy of being given as a response. This represents the other facet of dual-process 2012 

theories: the “deliberate”, or “evaluative”, or “controlled” process. 2013 

If a retrieved item is considered unusual enough, then it will be given as a response (e.g., I have 2014 

thought of the fruit “durian” and I am happy to give this as my example of an unusual fruit). If it is 2015 

not deemed unusual enough, then the random walk resumes from the position of the retrieved 2016 

item8 until a future retrieval attempt is made, walkfor random walk steps later. What decision rule 2017 

might a participant use to decide that a retrieved item was unusual enough? We considered that it 2018 

must be some simple property of the retrieved item that a simulated participant could use to 2019 

decide upon unusualness. For example, perhaps after retrieving an item, the participant finds that 2020 

 
8 The position of the random walk is supposed to represent where one’s thoughts currently are at within the 
category space. Thus, if one has retrieved an item then the position of that item seems a reasonable choice 
for the current “position” of your thoughts. In the code the current walk position is moved to the position of 
the retrieved item on line 177. So, strictly, the model is a random walk punctuated with jumps to retrieved 
items. 
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it brings to mind very few close associates, then one might decide that it is worth offering as a 2021 

creative response. As a simple proxy for this, we used an alternative related decision rule 2022 

(controlled in the code by the parameter respmethod taking a value of 1; respmethod=2 has a 2023 

different effect see below): the retrieved item has to be more than a threshold Euclidean distance 2024 

from the center of the space. The threshold distance is specified by a parameter called respthresh 2025 

in the code. At the start of each simulation, respthresh is set to respthreshbase (=2.0 by default). 2026 

We chose this value in light of the parameters chosen for the multivariate normal distribution of 2027 

the items (which force 95% of the items to lie between -2 and 2 on each dimension). If the 2028 

retrieved item has an ED from the center which exceeds the value of respthresh, then the 2029 

response is made and the current random walk stops (controlled in the code by setting endkflag to 2030 

1). The simulation loop records the response information and then moves on to the next simulated 2031 

participant. 2032 

To reflect the potential effect of time pressure on the task we assumed (A7) that participants 2033 

might relax their decision threshold the longer they could not produce a suitable response. We 2034 

simulated this by having a decrement to the value of respthresh (called threshdrop in the code, 2035 

default value =0.01). The decrement is applied every 100 steps of the random walk if a response 2036 

has not been made (in the code this is controlled by setting a parameter, threshtime = 100). This is 2037 

a minor feature of the model and we can explore its effect by setting threshdrop=0 in the model. 2038 

 2039 

Exploring the effects of parameters 2040 

It is relatively easy to explore the effect of the model parameters, which are likely to affect the 2041 

ability to give more creative responses. As noted above, for example, we have clear model 2042 

intuitions for the effects of stepsize, closeto, and tau. Thus, it is essential to test these model 2043 

intuitions, along with the effects of the assumptions listed above. For example, below, we show 2044 

the effect of changing the value of tau. 2045 

It was noted above that the maximum number of time steps (nsteps) per simulation was set to 2046 

10000. This large value was used to develop and set the values of the model parameters. This 2047 

parameter setting was chosen because it allowed every simulated subject to retrieve an unusual 2048 

item across the whole range of tau values used (0.2 to 2). To test the model, we inspected the 2049 

response time distributions achieved when 10000 walk steps per simulation were permitted. 2050 

Based on the mean response times over 200 simulations (generally around 1600-1700 steps), we 2051 

set the maximum response time to 1500 timesteps in our test simulations. This change was made 2052 

to reflect our assumption (A8) that, under a small amount of time pressure, not all subjects would 2053 

be able to select a genuinely unusual response (using the respthresh decision rule). That is, they 2054 

feel that all the candidate responses they thought of in the time allowed are likely to have been 2055 

thought of by lots of other people as well. The model does not yet implement what response they 2056 

offer in these circumstances. Perhaps they would give one of the less unusual items previously 2057 

retrieved but still in their (working) memory. As the simulations below confirm, using the 1500 2058 
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step maximum per simulation ensures that not every simulated participant can produce an 2059 

unusual item (i.e., one that passes the decision threshold) in the time allowed. 2060 

Supplementary Figure 3 (SF3) shows the simulation results for two very different tau values (0.2 2061 

vs. 2.0). Our model intuition above was that a lower value of tau would lead to more creative 2062 

responses. In our simulation, this intuition would be confirmed if a higher proportion of the 200 2063 

simulated participants (with tau=0.2) can give a response that passes the respthresh decision rule 2064 

compared with 200 simulated participants (with tau=2). The simulation confirmed our intuition: 2065 

88/200 simulated participants (with tau=2) were able to generate an unusual response. By 2066 

comparison, 123/200 simulated participants (with tau=0.2) were able to generate an unusual 2067 

response. The responses made were generally in very similar average positions in the model space 2068 

see SF3) and were all towards the periphery of the space, in keeping with the nature of the 2069 

respthresh decision rule. In addition to the greater number of responses in the low tau condition, 2070 

SF3 shows that the responses were made more rapidly in the low tau simulations (an average of 2071 

734 random walk steps, s.d.=358) compared with the high tau simulations (average= 878 2072 

walksteps, s.d.=364). Thus, in respect of tau, our model intuitions are confirmed. We leave it as an 2073 

exercise for the interested reader to explore the effects of stepsize and closeto in relation to the 2074 

model intuitions offered above. 2075 

  2076 
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 2077 

Supplementary Figure 3: The effect of parameter 𝜏 on the ability to make an unusual category 2078 

response in the time allowed. The leftmost panels are for tau = 2.0, and the rightmost panels are 2079 

for tau = 0.2. The upper row records the position of the response items made (note the greater 2080 

number of responses made for the 200 simulations with tau = 0.2). The bottom row records the 2081 

distribution of response times for the responses given. 2082 

 2083 

Making new predictions with the model and testing them 2084 

It is an essential first step to show that the model behaves in the ways our intuitions suggested it 2085 

would. As already noted, one must also explore, as fully as possible, the impact of the numerous 2086 

assumptions and choices made in developing the model. However, for the model to be useful, it 2087 

should lead to novel predictions for real creative behaviors that can be tested in actual human 2088 

participants. Below we illustrate how even this simple model can generate testable predictions. 2089 

The model can easily be made to simulate a fluency task as well (where one has to name as many 2090 

exemplars of the category as one can in a fixed time). In fact, the provided code already records 2091 
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the number of category exemplars retrieved during the “think of an unusual fruit” simulation. To 2092 

simulate a fluency task, the “unusual response” decision process must be turned off. This can be 2093 

achieved by setting respmethod to have a value of 2 (instead of the usual value of 1; 2094 

respmethod=2 makes no decision about whether a retrieved item is unusual). Then one can run 2095 

the code with nsteps=1500 (to represent the fixed amount of response time for the fluency task) 2096 

with tau=0.2 vs 2.0. Across 200 simulations, the mean number of unique items retrieved for 2097 

tau=0.2 was 22.1 (s.d.=2.5). For tau=2.0, the average number of unique items retrieved was 16.9 2098 

(s.d.=3.5). The model thus shows that variation in parameter tau can underlie an ability to 2099 

generate an unusual response more often and be more fluent in generating category exemplars. 2100 

We leave it as an exercise for the interested reader to see if the same patterns over both tasks can 2101 

be obtained using variation in the parameters closeto and stepsize. 2102 

Of course, one might argue that by using verbal reasoning alone, one could have arrived at the 2103 

prediction that more creative people would generate more unusual responses and also be more 2104 

fluent (i.e., retrieving more exemplars from the category). Having a formal model allows one to 2105 

explore this predicted effect more rigorously and thoroughly. In the main article, the idea was 2106 

briefly noted that a strategic search along one dimension of the category might help find unusual 2107 

items. For example, one might think of exotic locations that one has visited and thereby recall 2108 

unusual fruits experienced specifically in those locations. A simple way to give dimensional 2109 

directionality (of this kind) in the search could be to make the step sizes for the random walk 2110 

different for each dimension. In the code provided, the step size along dimensions 1 and 2 was 2111 

equal (0.05). With the same average stepsize, a more directed walk would be achieved with step 2112 

sizes of 0.025 and 0.075 (or vice versa). For low tau settings (tau=0.2), this had little effect on the 2113 

number of unusual responses made (in fact, they decreased slightly to 118/200 simulations c.f. 2114 

123/200 simulations with equal step sizes). For high tau settings (tau=2.0), unequal stepsizes 2115 

increased the number of unusual responses achieved to 103/200 (c.f. 88/200 with equal 2116 

stepsizes). This is a novel prediction of the model: in the “find an unusual exemplar task”, people 2117 

with lower creativity (higher tau) are more likely than their more creative counterparts (low tau) 2118 

to benefit from a suggestion to use a strategy of focusing their search along one/some specific 2119 

feature dimension(s).  This prediction could be tested with actual participants by testing them 2120 

under conditions when provided with a dimensional search strategy by the experimenter and 2121 

comparing the results with performance under a control condition where no such strategy was 2122 

given. Strictly the prediction applies only to those whose high vs. low creativity stems from 2123 

processes captured by the parameter tau (which controls the noisiness of the exemplar retrieval 2124 

process). 2125 

 2126 

Model limitations 2127 

There are many limitations and unrealistic features of the current model. There is not space here 2128 

to consider them all. Two striking illustrative examples of limitations are noted. First, the random 2129 

walk phases in each simulation are of a fixed duration (controlled by the parameter walkfor). If 2130 
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these phases are intended to represent periods of mind-wandering around the conceptual space, 2131 

then it seems unreasonable that these periods would all be of the same duration. An easy fix 2132 

would be to use a Gaussian random variable (with mean and standard deviation) for walkfor, so 2133 

that in a particular simulation, the number of steps of the random walk between each retrieval 2134 

attempt would vary randomly about the mean value. The parameters of the random variable 2135 

could vary across different simulated individuals.  2136 

Secondly, and more importantly, the item retrieval process takes no time in the model. Therefore, 2137 

the model should be extended to include a retrieval time component. Such a component should 2138 

ensure that the pattern of Euclidean Distances (EDs) of potentially retrievable items influences the 2139 

time taken for the retrieval in a principled way. For example, one would imagine that a pattern of 2140 

EDs in the left panel of SF2 (two exemplars with small EDs and high probabilities of retrieval; the 2141 

rest further away and with very low probabilities of retrieval) would lead to quite different 2142 

retrieval times than the pattern in the right panel (no close exemplars and all exemplars have a 2143 

similar probability of retrieval). A pervasive finding is that response times are slower for more 2144 

difficult decisions [6]. It is relatively straightforward to incorporate retrieval times into the model 2145 

in a realistic way; for example, one might use a so-called accumulator model [7]. 2146 

 2147 

Supplementary References 2148 

1) Mathys, C., Daunizeau, J., Friston, K. J., & Stephan, K. E. (2011). A Bayesian foundation for 2149 

individual learning under uncertainty. Frontiers in Human Neuroscience, 5, 39. 2150 

 2151 

2) Nosofsky, R. M., & Palmeri, T. J. (1997). An exemplar-based random walk model of speeded 2152 

classification. Psychological Review, 104(2), 266–300.  2153 

 2154 

3) Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59-108. 2155 

 2156 

4) Simkin, M. V., & Roychowdhury, V. P. (2014). Stochastic modeling of a serial killer. Journal of 2157 

Theoretical Biology, 355, 111–116. 2158 

 2159 

5) Tuerlinckx, F., Maris, E., Ratcliff, R., & De Boeck, P. (2001). A comparison of four methods for 2160 

simulating the diffusion process. Behavior Research Methods, Instruments, & Computers: A 2161 

Journal of the Psychonomic Society, 33(4), 443–456. 2162 

 2163 

6) Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: theory and data for two-choice 2164 

decision tasks. Neural Computation, 20(4), 873–922. 2165 

 2166 

7) Ratcliff, R., & Starns, J. J. (2013). Modeling confidence judgments, response times, and multiple 2167 

choices in decision making: Recognition memory and motion discrimination. Psychological 2168 

Review, 120(3), 697–719. 2169 


