
O N STAT E R E PR E SE N TAT I O N S A N D

B E H AV I O U R A L M O DE L L I N G M E T H O D S I N

R E I N F O R C E M E N T L E A R N I N G

H E N R I K S I L J E B R Å T

G O L D S M I T H S , U N I VE R S I T Y O F L O N D O N

J U LY 2 0 2 2

A T H E S IS S U B MI T T ED F O R T H E D E G R E E O F

D O C T O R O F P H I L O S O P H Y

S U P E RV I S E D B Y P R O F E S S O R A L A N P I C K E R I N G

DE DI C AT I O N

Emma,

Jag ska berätta en sak för dig.

Vi fick aldrig chansen att följa Kahneman & Tverskys fotspår.

Det här verket är inte ens nära.

Men det är gjort. Jag hoppas du är stolt ändå.

Det här lilla ljuset i det vidunderliga okända är för dig.

A B S T R A C T

Reinforcement learning (RL) – algorithms for learning from rewards

– has proved successful in the cognitive sciences for explaining both

neuronal signals and behaviour in animals, and for producing

impressive results in artificial intelligence.

Essential to RL models are state representations. Based on what

current state an animal or artificial agent is in, they learn optimal

actions by maximizing future expected reward. But how are humans

able to learn and create representations of states?

This thesis approaches this question from two fronts. First, we

thoroughly investigate methods for fitting behavioural models to

human lab data. In contrast to recent proposals, we find that the best

methods for model selection – determining what model most likely

generated some data – are based on maximum likelihood estimation,

rather than Bayesian inference. We also demonstrate the importance

of considering individual differences in model fitting: the model

which best fits the performance of one participant may not fit the

behaviour of another participant.

Second, we introduce Shapetask – a novel learning and decision-

making task where participants must find hidden structure in a

sequence, without the task explicitly rewarding the appropriate

actions. We show that some humans can find this pattern, while RL

cannot, unless equipped with appropriate state representations. We

then show how previously proposed models that integrate RL with

complex state representations can account for individual human

behaviour in the Shapetask.

We argue our results add to the growing literature indicating a

broader role for dopamine as one involving general sensory

prediction errors, not just reward prediction errors. Further, we argue

Shapetask holds promise for use in further research on the topic of

state representation and task structure. Such research may illuminate

the workings of animal brains, and contribute to artificial intelligence,

where enhanced models of state representations could improve data

efficiency and generalisability over current generation systems.

This document was typeset in Microsoft Word using the typographical look-and-

feel classicthesis developed by André Miede and Ivo Pletikosić. The style was

inspired by Robert Bringhurst’s seminal book on typography “The Elements of

Typographic Style”. classicthesis is available for both LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/

A C K N O W L E DG E M E N T S

Thanks to my supervisor Alan Pickering. You have been very patient.

Always able to bring my abstract ideas into shape (pun intended), and

entertaining of my tangential interests and distractions. I am

especially grateful you helped me through the worst of the pandemic

with all your support.

Thanks to my family for your love and support, you are the best

family I have ever had.

Thanks to my friends, older and newer. I would not have made it

without you. I mean that. A, A, A, A, A, B, C, D, F, F, H, I, J, K, K, M,

M, M, N, R, S, S, Y, Å - you're all great. I'm sure i forgot somebody.

Sorry. Next round is on me.

Wednesday club, you're okay, I guess. Your partners are great though.

C O N T E N T S

1 Introduction 21

1.1 Chapter Overview 22

1.2 Summary 24

2 Background 25

2.1 Reinforcement Learning and Conditioning 25

2.1.1 A brief history of reward learning 25

2.1.2 Rewards and Dopamine 28

2.1.3 RL algorithms and dopamine function 30

2.1.4 Action Selection 35

2.2 Multiple Systems and Hierarchies 37

2.2.1 Model-free and model-based signals and behaviour 38

2.2.2 Dual systems in artificial intelligence 40

2.2.3 Integrations of model-based and model-free 41

2.2.4 Hierarchies 43

2.2.5 Memory systems and beyond 46

2.2.6 Summary and consolidation 50

2.3 Representing the World as States and Tasks 52

2.3.1 From single states to task sequences 54

2.3.2 State representation in machine learning 56

2.3.3 Attention to details 57

2.3.4 Clustering states into beliefs 58

2.3.5 Cognitive maps 60

2.3.6 The successor representation 62

2.3.7 Hierarchical state-action structure 63

2.4 Summary and Discussion 64

3 Methodological Introduction by analysing the bandit task 67

3.1 What are models? 69

3.1.1 Individual differences 72

3.1.2 Our approach 75

3.2 Models and task parameters 77

3.2.1 Note on terminology 79

3.3 Simulating performance in the bandit task 80

3.3.1 Exploring effects of varying model parameters 81

3.4 Exploring task parameters 83

3.4.1 Varying bandit arm reward probabilities 84

3.5 Recovering parameters with Maximum Likelihood Estimation 86

3.6 Simulate and fit QL2 88

3.7 Recovery quality with varying number of trials 92

3.7.1 Confidence for individually fitted parameter values 98

3.7.2 Standard errors with the Hessian 101

3.8 Recovery quality for various arm reward probabilities 101

3.9 Comparing MLE to Bayesian inference 104

3.9.1 Bayesian modelling tools 107

3.9.2 Fitting Bayesian models 108

3.9.3 Hierarchical MCMC compared to VBI 114

3.10 Model comparisons 117

3.10.1 Comparing models with BIC 119

3.10.2 More advanced model comparison methods 120

3.10.3 Collected methods for model comparisons 121

3.10.4 Comparing model comparison methods 122

3.10.5 Methodological considerations and conclusions 127

3.11 Applying methodology to human subjects 129

3.11.1 Model recovery check 129

3.11.2 Parameter recovery check 130

3.11.3 Model selections for Bandit dataset 133

3.11.4 Parameter value plots for Bandit dataset 135

3.12 Chapter summary 137

4 Stepping into States with Reversal Learning 139

4.1 Simulating performance in the reversal bandit task 140

4.2 Contrasting QL2 behaviour with human behaviour 144

4.3 Alternative algorithms without states 145

4.3.1 Dual α QL 146

4.3.2 Dual update QL 147

4.4 Adding states to Q-Learning 148

4.5 Algorithms that are more stateful to begin with 150

4.6 Behavioural comparison of agents 153

4.7 Parameter recovery performance 155

4.8 Model selection performance 157

4.9 Fitting human data in the Reversal Bandit task 161

4.10 Investigating the Worthy Bandit 164

4.10.1 Agent performance in the WorthyBandit 165

4.10.2 Human behaviour in the WorthyBandit 173

4.10.3 Model selection performance in the WorthyBandit task 175

4.10.4 Fitting human data in the WorthyBandit task 180

4.11 Chapter summary and Discussion 181

5 The Shape Sequence Task 185

5.1 Creating the Shape Sequence task 186

5.1.1 Scoring the Shapetask 192

5.1.2 Pilot version 192

5.1.3 Pilot version 2 197

5.1.4 Balltask becomes Shapetask 200

5.1.5 Defining behavioural groups in Shapetask 206

5.1.6 Summary of Shapetask results 209

5.2 RL behaviour in Shapetask 210

5.2.1 QL3 behaviour in Shapetask 213

5.2.2 Manipulating states to create SEQL3 217

5.2.3 Simulating SEQL3 behaviour in Shapetask 218

5.2.4 General discussion of RL behaviour 222

5.3 Hierarchical RL 223

5.3.1 Applying HRL to Shapetask 225

5.3.2 HRL Results in Shapetask 226

5.3.3 Constraining structure 232

5.3.4 Overall behaviour of HRL-22 234

5.3.5 HRL Discussion 237

5.4 The Successor Representation 238

5.4.1 Latent exploration of Gridworld mazes 242

5.4.2 Shapetask as a maze 247

5.4.3 Playing Shapetask with SRTD 249

5.4.4 Discussion of SRTD 252

5.5 Control group models 253

5.6 Model selection for Shapetask 254

5.6.1 Model selection performance with MLE fitting 255

5.6.2 Model selection with Approximate Bayesian Computation

256

5.6.3 Implementing ABC for Shapetask 259

5.6.4 ABC Model Selection Performance 259

5.6.5 Summarising Model Selection Performance 267

5.7 Fitting Models to Human Behaviour in Shapetask 268

5.8 Chapter summary and Discussion 276

5.8.1 Technical Discussion 278

5.8.2 General Discussion 278

6 Discussion and Future Work 281

6.1 Summary of Key Findings 281

6.1.1 Chapter Three 281

6.1.2 Chapter Four 283

6.1.3 Chapter Five 285

6.2 Limitations 289

6.3 Future Work 293

6.3.1 Task variations 294

6.3.2 Models 296

6.4 Final remarks 297

6.4.1 Wrapping up 299

7 References 301

L I S T O F F I G U R E S

Figure 2.1 Markov Decision Process 31

Figure 3.1 Overview of simulations (robots) as models of animal behaviour in the

world 70

Figure 3.2 Different scenarios of individual differences in some experimental task

73

Figure 3.3 Performance summary for agents QL2 and RandomBias playing the

Bandit task for 1000 trials 81

Figure 3.4 Probability of picking the correct arm – the arm with highest reward

probability – for parameter sweeps with QL2 (left) and RandomBias (right) 82

Figure 3.5 QL2 performance across different number of task trials 84

Figure 3.6 Impact of arm reward probability differences for the Bandit task 85

Figure 3.7 Correlation plots between parameter values used in simulations (y-axis)

and recovered parameter values found by fitting the QL2 model (x-axis) 90

Figure 3.8 Likelihood surfaces for two separate choice sequences, both generated

by the same QL2 agent 92

Figure 3.9 Correlation plots of α values, where simulation values are on the y-axis

and fitted values on the x-axis 94

Figure 3.10 Violin plots showing distance between simulated α parameter and fitted

α 95

Figure 3.11 Correlation plots for β parameter where fitted values are on the x-axis

and simulation values on the y-axis 96

Figure 3.12 Violin plot showing distance between simulated and fitted β on y-axis

and number of trials as categories on the x-axis 96

Figure 3.13 Correlation plots for β parameter with fitted values on x-axis and

simulation values on y-axis 97

Figure 3.14 Histograms showing the distribution of distance between fitted α values

and the α values used for simulations 99

Figure 3.15 Histograms showing the distribution of distance between fitted β values

and the β values used for simulation 100

Figure 3.16 Correlation plots for fitted α on x-axis and simulation α on y-axis 102

Figure 3.17 Violin plots showing distance between fitted and simulated α on y-axis

for each arm reward probability difference on the x-axis 103

Figure 3.18 Correlation plots for simulated β on y-axis and fit β on x-axis 103

Figure 3.19 Violin plots showing distance between simulated and fit β on y-axis and

arm difference categories on x-axis 104

Figure 3.20 Histograms showing the parameter value distributions for the 50

subjects in our dataset 109

Figure 3.21 Correlation plots for fitted β on x-axis and simulation β on y-axis 111

Figure 3.22 Boxplots showing distance between simulated α and fitted α on y-axis,

with number of trials on x-axis 112

Figure 3.23 Boxplots showing distance between simulated β and fitted β on y-axis,

with number of trials on x-axis 112

Figure 3.24 Box plots showing the distance between simulated parameter and fitted

parameter on y-axis with each trial count category on the x-axis 114

Figure 3.25 Line plots showing distance between simulated and fit β value on the

y-axis and simulated β value on the x-axis. 115

Figure 3.26 Scatterplots of distance between fitted and simulated β on y-axis and

SD estimate on x-axis 116

Figure 3.27 HDI check for β estimates for MCMC and VBI methods 117

Figure 3.28 Left: Confusion matrix. Right: Inverse confusion matrix 119

Figure 3.29 Plots showing what model was selected (left) and whether the model

selected was correct (right) 123

Figure 3.30 Parameter value distances for each method and agent/model 123

Figure 3.31 Plots showing model selection results for dataset B across different

model selection methods 124

Figure 3.32 Parameter value distances between simulated parameter value and

fitted parameter value for each method considered 124

Figure 3.33 Model selection plots comparing different model selection methods for

dataset C 125

Figure 3.34 Parameter value distances between simulated and fitted values for QL2

(left, middle) and RandomBias (right) 125

Figure 3.35 Model selection performance for the different methods 126

Figure 3.36 Parameter value distances between simulated parameter value and

fitted value 126

Figure 3.37 Model selection plots for 1000 simulated subjects where half were QL2

agents and half were RandomBias 130

Figure 3.38 Barplots showing details on how many of the misidentified cases were

RandomBias misidentified as QL2 (left), or QL2 identified as RandomBias (right)

130

Figure 3.39 Boxplots showing average distance between simulated parameter and

fitted parameter across the methods 131

Figure 3.40 Plots for QL2 α parameter for each method 131

Figure 3.41 Plots for QL2 β parameter for each method 132

Figure 3.42 Plots for RandomBias bias parameter for each method 132

Figure 3.43 Model selection counts for the Bandit dataset 133

Figure 3.44 Plot showing what action was selected 134

Figure 3.45 VBAT-MLE model selections contrasted by task order 134

Figure 3.46 Probability of model being QL2 across all subjects 135

Figure 3.47 Plot showing fitted RandomBias parameter value for bias on y-axis,

across all subjects (x-axis) 136

Figure 3.48 Plot showing fitted QL2 α parameter value on y-axis for each subject on

x-axis 136

Figure 3.49 Plot showing fitted QL2 β parameter value on y-axis for each subject on

x-axis 136

Figure 4.1 Performance averaged across QL2 agents using parameter values from

the entire parameter space 141

Figure 4.2 Performance for parameter value combinations of QL2 α (x-axis) and β

(coloured lines) 142

Figure 4.3 Action selections for QL2 agents using α =0.4 and β as per the plot legend

143

Figure 4.4 Proportion of correct choices (y-axis) for QL2 agents using α=0.4 and β

as per the plot legend 143

Figure 4.5 Average proportion of correct arm choices (y-axis) for human subjects

performing the reversal bandit task 144

Figure 4.6 Average arm (action) selection across subjects (y-axis) for each individual

trial (x-axis) 145

Figure 4.7 Proportion correct arm choices (y-axis) for Dual-α QL agents 146

Figure 4.8 Proportion of correct choices (y-axis) for parameter combinations of Dual

Update QL agent 148

Figure 4.9 Action selections (y-axis, arm1 or arm2, 0 or 1 respectively) on each trial

150

Figure 4.10 Proportion of correct choices (y-axis) in the ReversalBandit task for the

HMM agent (left) and HMM-δ agent (right) 152

Figure 4.11 Proportion of action choices (y-axis; arm1=0, arm2=1) on each trial (x-

axis) for 100 HMM agents 153

Figure 4.12 Proportion of correct choices (y-axis) in the ReversalBandit task for our

agents and two human groups (x-axis) 154

Figure 4.13 Proportion correct choices (y-axis) at different number of trials after

each switch point (x-axis) 155

Figure 4.14 Simulated parameter value (y-axis) plotted against fitted parameter

value (x-axis) 156

Figure 4.15 Simulated parameter value (y-axis) plotted against CBM-HBI fitted

parameter value (x-axis) for subjects simulated with and fitted with HMM-δ 157

Figure 4.16 Proportion of correctly identified cases (y-axis) for each method (colours

as per legend) 159

Figure 4.17 Proportion of cases (y-axis) for each simulated agent (x-axis) identified

as what model (differently coloured bars as per legend) 160

Figure 4.18 Number of subjects (y-axis) that were best fit with each model (x-axis)

162

Figure 4.19 Model probability (y-axis) for each subject (x-axis) 163

Figure 4.20 Reward magnitude (y-axis) for each card in the decks (x-axis) 165

Figure 4.21 Total score in the task (y-axis) depending on how many cards are picked

(x-axis) from each deck (coloured lines as per legend) 165

Figure 4.22 Number of cards drawn (y-axis) from the good deck for each α (x-axis)

and β (coloured lines as per legend) parameter value combination 167

Figure 4.23 Total reward score (y-axis) for each α (x-axis) and β (coloured lines as

per legend) parameter value combination 167

Figure 4.24 Closer look at the parameter combination α=0.4, β=10 with standard

rewards 168

Figure 4.25 Behavioural differences between winners and losers 169

Figure 4.26 Performance for RandomBias agent (y-axis, total points scored) across

the parameter value space (x-axis) 170

Figure 4.27 Simulations for SEQL2 agent across the parameter space 171

Figure 4.28 Performance and behaviour of the HMM agent in the WorthyBandit

task 172

Figure 4.29 Performance and behaviour of the HMM-δ agent in the WorthyBandit

task 173

Figure 4.30 Human behaviour in the WorthyBandit task 174

Figure 4.31 Score in the WorthyBandit task (y-axis) for each agent type (x-axis) 175

Figure 4.32 Model selection plots for the two methods 177

Figure 4.33 Proportion of cases (y-axis) for each agent type (x-axis) identified as

what model type (different coloured bars as per legend) 178

Figure 4.34 Probability (y-axis) for the model (coloured boxes as per legend) being

the best fit for the group of simulated subjects of each agent type (x-axis) 179

Figure 4.35 Count of model selections (y-axis) for each model (x-axis) for each

method (coloured bars as per the legend) 180

Figure 4.36 Histogram with number of subjects (y-axis) across the total score (x-

axis) received in the experiment 181

Figure 5.1 The basic structure of the shape sequence task 187

Figure 5.2 Shapetask version 1, a.k.a. Balltask 193

Figure 5.3 Summary scores for all subjects in the pilot version of Shapetask 195

Figure 5.4 Averaged Likert choice (left) and Shift Predict score (right) for each pilot

participant (coloured lines) and for each shape position (x-axis) 196

Figure 5.5 Likert choice (left) and proportion of shift predict choices (right) for

subject two in the pilot data 196

Figure 5.6 Proportions (y-axis) across all subjects and trials for each score type (x-

axis), separated by experiment version (rows) and ball position (columns) 198

Figure 5.7 Proportion of choices being “shift predict” (y-axis) for each ball position

(x-axis) 199

Figure 5.8 Proportion of choices (y-axis) for each score type (x-axis) averaged across

all subjects and trials 202

Figure 5.9 Proportion of choices (y-axis) for each score type (coloured lines as per

legend) averaged across all subjects 204

Figure 5.10 Proportion of choices (y-axes) for each score type (columns) and each

individual subject (separate lines) 205

Figure 5.11 Shapetask groups 207

Figure 5.12 Shapetask groups for individual subjects 208

Figure 5.13 Simple maze task 211

Figure 5.14 Comparison of QL2 (top) and QL3 (bottom) agents 212

Figure 5.15 Q-Learning with future discount in simple maze example 213

Figure 5.16 Overview of behaviour for all simsets 214

Figure 5.17 Average score (y-axis) for each simset (coloured lines) and shape

position (x-axis), separated by score type (columns) 214

Figure 5.18 QL3 behaviour groups as per legend 215

Figure 5.19 QL3 parameter values separated by behavioural group 216

Figure 5.20 QL3 parameter value plots for each group 217

Figure 5.21 SEQL3 performance in Shapetask for each simset (separate lines),

averaged across all trials 219

Figure 5.22 Behavioural groups for SEQL3 in Shapetask 220

Figure 5.23 Parameter value correlations for SEQL3 separated by groups (colours

per legend) 221

Figure 5.24 Overview of HRL 224

Figure 5.25 Overview of HRL performance in Shapetask 227

Figure 5.26 HRL performance in Shapetask by group 227

Figure 5.27 Parameter value pair plot for HRL in Shapetask 228

Figure 5.28 Proportion of choices (y-axis) for each shape position (x-axis) and score

type (columns) for each group (coloured lines as per legend) 229

Figure 5.29 Proportion of Shift-predict (y-axis) for each shape position (x-axis) for

example simset 230

Figure 5.30 Taskset selections (y-axis) for each trial (x-axis) and subject type (rows)

231

Figure 5.31 Behaviour of two example subjects from the same simset 231

Figure 5.32 Taskset selections for best and worst subjects in best performing simset

using HRL-22 232

Figure 5.33 Taskset selections for best and worst subjects in best performing simset

using HRL-22 and 270 trials in Shapetask 233

Figure 5.34 Behaviour of the worst and best subjects in the best performing simset

using HRL-22 and 270 trials in Shapetask 233

Figure 5.35 Taskset selections for the best and worst subjects in best performing

simset using HRL and 270 trials for Shapetask 234

Figure 5.36 Behaviour of the best and worst subjects in best performing simset using

HRL and 270 trials for Shapetask 234

Figure 5.37 HRL-22 performance in Shapetask, separated by groups as per legend

235

Figure 5.38 Pair plot comparing parameter value spaces for each group 236

Figure 5.39 Gridworld maze 242

Figure 5.40 Illustration of the Hotel California problem 244

Figure 5.41 Overall SRTD behaviour in Shapetask 250

Figure 5.42 SRTD behaviour grouped by winners and others 251

Figure 5.43 SRTD behaviour grouped by high winners, winners and others 251

Figure 5.44 SRTD parameter values for each group 252

Figure 5.45 RandomBias behaviour in Shapetask 254

Figure 5.46 Overall model selection performance for Shapetask 255

Figure 5.47 Model selection performance in Shapetask 256

Figure 5.48 Model selection performance when HRL is excluded from models fitted

260

Figure 5.49 Model selection performance in Shapetask for ABC method 261

Figure 5.50 Confusion matrices for model fitting of Shapetask 263

Figure 5.51 Bayes Factor (y-axis) for the best (colours as per legend) and second best

fitted models for each simulated model (x-axis) 264

Figure 5.52 Behavioural curves for each simulated agent type (rows) showing

proportion of choices (y-axis) for each shape position (x-axis) and score type

(columns) 266

Figure 5.53 Model selections for human subjects in Shapetask 269

Figure 5.54 Boxplot showing Bayes Factor (y-axis) for each fitted model (colours as

per legend) and Shapetask version (x-axis) 270

Figure 5.55 Behavioural plots for human subjects in Shapetask, grouped by fitted

model as per colours in legend, with score type in columns and task version on rows

271

Figure 5.56 Learning curves for human subjects in BOB task 272

Figure 5.57 Individual summary scores for subjects playing Shapetask BOB 274

Figure 5.58 Shapetask BOB subjects, coloured by fitted model (see legend) and

separated by behavioural groups (rows) 275

Figure 5.59 Learning curves for individual subject 38 in BOB-NR task, fitted best

with SRTD model 276

L I S T O F TA B L E S

Table 3.1 Bayes Factor interpretation for values on log scale (left most column), raw

ratio (middle column) 118

Table 5.1 SR example using a gridworld maze 240

Table 5.2 Overview of Shapetask as a maze 248

E Q U AT I O N S

List of equations

2.1 Rescorla-Wagner 30

2.2 RL State value 32

2.3 RL State-action value 32

2.4 TD prediction error 33

2.5 Actor-critic Value update 33

2.6 Actor-critic Policy update 34

2.7 SARSA 34

2.8 Q-learning 34

3.1 QL2 78

3.2 SoftMax 78

3.3 Likelihood a posteriori 86

3.4Likelihood 87

3.5 Maximum likelihood 87

3.6 Bayes’ rule 105

3.7 Bayes Factor 117

3.8 Bayes Factor with uniform priors 118

3.9 Bayesian Information Criterion 119

4.1 State Enhanced QL2 149

4.2 HMM posterior belief 151

4.3 HMM probability of observation 151

4.4 HMM probability of next state 151

4.5 HMM Timestep change for γ 152

4.6 HMM Probability of observation for WorthyBandit 171

5.1 QL3 210

5.2 HRL 223

5.3 SR value calculation 239

5.4 SR successor representation update 239

5.5 SR temporal difference error 239

5.6 SRTD value calculation 241

5.7 SRTD successor representation update 241

5.8 SRTD weights update 241

5.9 SRTD reward prediction error 241

5.10 RandomBias control model 253

C O DE SN I PP E T S

Code Snippet 3.1 Q-learning algorithm in Python 78

E T H I C A L STAT E M E N T

Experiments in chapter five were approved by the ethics board of the Computing

Department of Goldsmiths, University of London. No animals were harmed in

making this work. However, we do rely on previous research where unnecessary

harm was done to animals, for example lesion studies. We hope such harm may be

avoided in the future.

1 I N T R O DU C T I O N

How do we find structure in the world around us?

When we are born, the world is blurry mess. The only shapes we

can see in the fog of light are faces [1]. We are helpless. But through

the combination of nature and nurture, we learn to make sense of our

senses and control our limbs. We walk, we talk, we learn to see the

birds and the bees.

As we grow, we also learn to look beyond the physical into the

abstract. Like children learning how to count farther than the fingers

on their hands. Somehow, we manage to find structure within

ourselves, the world and the interaction in-between. We know what

is important to recognise for the task at hand, but it may be irrelevant

for another. We have to infer invisible truths, like reading someone’s

feelings on their face. Get it right, and you are rewarded with a hug.

This thesis interrogates these topics. More specifically, how do we

learn and use structure – models of the world – to support reward-

based learning?

In the last decade, reward-based learning algorithms in the form of

reinforcement learning (RL) have demonstrated impressive feats such

as playing video games at human level and beyond [4, 179, 202]. This

is especially intriguing from a neurobiological perspective as we have

quite strong evidence that these algorithms have neural correlates in

the midbrain dopaminergic system of the mammalian brain [197].

This system projects, among other areas, to a large part of the basal

ganglia, which is an evolutionarily old system of brain structures that

exists in all vertebrates [106]. Reward-based learning can be found in

very basic vertebrates [5], as well as invertebrates [17, 208]. Recent

evidence suggests RL-like mechanisms exist even in insects [22].

Taken together, we thus have strong reasons to study RL more closely

as one of the most basic forms of learning in humans and other

animals.

Although the discovery of the neurobiological correlates of RL,

now often described as the reward prediction error hypothesis of

dopamine [240], is a big success in the cognitive sciences, there are

still many outstanding questions. There is disparate evidence for

what specific algorithm(s) are used – can one algorithm explain all

varieties of learning mechanisms or are there several? Are there

2 2 I N T R O D U C T I O N

hierarchical organizations in the brain that may explain these

disparate results, and in what way would the higher order systems be

involved? How may such interacting systems allow animals to create

and use structure from and in complex real-world environments [116,

139, 196, 235]?

Investigating these questions is the main goal of this thesis. The

underlying hypothesis we will work from is one where RL is a basic

form of learning, which is supported by multiple higher-order, and

probably evolutionary newer, systems. We assume these higher order

systems create, use and manipulate “state representations”

appropriate for the current task, and feed these to the RL system. We

base these hypotheses partly on the above-mentioned strong

evidence of RL as a basic form of learning in many animals. Partly,

we are inspired by recent proposals that the dopaminergic system

may indeed code for general prediction errors, not just rewards [47,

91, 118, 227].

Our approach to studying these questions is to introduce a new

decision-making task called the shape sequence task. We show how

this task is appropriate to study the questions we are interested in. We

will introduce models found in existing literature and test their

accounts of how complex state representations may explain our

results from experiments with human participants.

However, in order to test scientific models of the world on theories

of human brain models of the world, we need data modelling

methods. We compare and contrast common methods for modelling

behavioural data in existing human behavioural datasets and show

the importance of fully testing such methods before applying them.

We show the best performing methods are not those one may expect.

Based on those results we also highlight the need to consider

individual differences in task performance, which can be marked.

These differences thus change what models may fit best to the data

from an individual participant.

1 . 1 C H A P T E R O V E R V I E W

Following this introductory chapter, in chapter two, we start

investigating the question of state representations by connecting

them to the concepts of model-free and model-based RL: learning

action values directly from experience or learning/using a model of

1 . 1 C H A P T E R O V E R V I E W 2 3

the world, respectively. From there we will see how the picture is

perhaps even more complex, involving many systems and

hierarchies. Common to each idea is that animals such as human

beings manage to create useful representations of incoming sensory

information, representations then used for learning and decision

making.

In chapter three, we survey some of the methodological landscape

of fitting models to data. We show how often this is a technically

difficult process (for real lab data at least) and how important it is to

fully test the algorithm- and task combination under consideration.

This may sound like a well-studied subject, but we think there is

surprisingly little published work addressing these questions.

Published papers often use brief descriptions of their models and

fitting methods because they use “standard methods”. However, in

our experience, even using such standard methods reveal many

difficulties that are under-emphasized in the existing literature.

Adding to that, we further show, using a standard two-armed bandit

task, with both simulated and human subjects, how modern methods

that often are promoted as better, may not actually always work that

well with real data.

In chapter four, we introduce the concept of states by modelling

data from two kinds of reversal learning tasks. We further investigate

the methodological aspects found in chapter three and apply our

findings to datasets with human participants. We show that it is

possible individuals use different strategies approaching a task, that

are all successful, highlighting the need for individual differences in

model fitting.

In chapter five, we introduce the novel shape sequence task – or

Shapetask for short. We explain the process of developing the task

and show how and why this task is appropriate for the research

questions under investigation. We present results from experiments

with human subjects playing various versions of Shapetask, showing

how some participants are able to find the underlying pattern of the

task surprisingly quickly. We then show how standard RL with

manipulated state representations is needed to account for humans

solving the task. Models from the literature proposing how such state

representations may be connected with neurobiological correlated are

introduced, and their behaviour in Shapetask simulated. Finally, we

2 4 I N T R O D U C T I O N

introduce another numerical method for model fitting, required to fit

one of the models under consideration. Using this method, and

knowledge gained in previous chapters, we fit the collected models

to our human data and discuss the results. We argue Shapetask holds

great prospects for further research in the field.

1 . 2 S U M M A R Y

We aim to investigate how humans are able to find task structure and

apply appropriate state representations to successfully solve tasks.

Our most important contributions to this field are two-fold.

First, we investigate and critique existing methods for fitting

behavioural models to human lab data. We find that the best methods

are not the ones that are usually promoted. We also highlight the

importance of considering individual differences in model fitting: the

model which best fits the performance of one participant may not be

able to fit the behaviour of another participant.

Second, as noted above, we introduce a novel decision-making task

called Shapetask, and show how it can be useful for investigating

state representations in humans. We test how well previously

proposed models that integrate RL with complex state

representations may account for human behaviour in the Shapetask.

We argue our results adds to the growing literature indicating a

broader role for dopamine as one involving general sensory

prediction errors, not just reward prediction errors. Further, we argue

Shapetask holds promise for use in further research on the topic of

state representation and task structure. Such research is important, as

it may not only elucidate the workings of the animal brain but also

provide valuable contributions to artificial intelligence, where

improved models of state representations could vastly improve data

efficiency and generalisability over current generation systems.

2 B A C K G R O U N D

In this chapter we provide an overview of the theory of reinforcement

learning (RL), and its relation to other areas of the cognitive sciences.

We start with a brief history where we connect RL to its origins of

animal learning and conditioning. We then look closer at the

neurobiological connections, and how studies have shown conflicting

evidence of potential multiple types of RL. We discuss how and if

multiple systems are involved in reward-based learning, which will

take us into contact with memory, hierarchies and artificial

intelligence research. From there, we narrow our focus to state

representations, present recent findings on this topic and identify

areas of open questions. With all the pieces in place, we can then

frame and ask our research question.

We do not aim to be comprehensive, rather this chapter is meant as

a tour to set the stage for later chapters. Most, if not all, of the topics

we cover are active fields of research on their own.

2 . 1 R E I N F O R C E M E N T L E A R N I N G A N D C O N D I T I O N I N G

2 . 1 .1 A B R I E F H I S T O R Y O F R E W A R D L E A R N I N G

Conditioning is the process of associating stimuli with other stimuli

such as rewards, for example a bell with food, a case called classical

or Pavlovian conditioning. The other main variation is instrumental

or operant conditioning where reward is given only when a certain

behaviour has been performed, for example pressing a lever.

Conditioning was first studied more than a hundred years ago.

Thorndike [272] was one of the pioneers, establishing the “law of

effect” which states that behavioural responses that lead to pleasure

in a certain situation are more likely to occur again in the same

situation, and behavioural responses leading to displeasure are less

likely to occur again in the same situation. This laid the groundwork

for Pavlov, Watson and Skinner and the so-called behaviourist school

of psychology that dominated much of the early to mid-20th century

[191]. Behaviourists – especially radical ones – believed internal states

of animals were not important, only basic association learning

between stimulus and response were important. For example, Pavlov

[204] trained dogs to learn that shortly after the sound of a bell, food

2 6 B A C K G R O U N D

would arrive. After sufficient training, the bell alone was enough to

make the dogs salivate.

With time, other viewpoints came to light. Tolman [278] proposed,

based on experiments with rats, the concept of “cognitive maps”.

When trained to find food at one end of a T-maze, rats would at test

be put in a T-maze turned 180 degrees without food. If it was indeed

simple stimulus-response behaviour, the rats would turn to the same

direction they turned when learning. Instead, they turned towards

where the food would be spatially. By the late 1970s a more balanced

view had emerged, where association learning was seen as important,

but influenced by and interacting with internal processes. The

seminal work of this more balanced view is the book by Mackintosh

[167], where the importance of processes like attention to stimuli and

generalisation were stated. As we shall see below, many of the

questions raised by Mackintosh are ones we are still studying today.

Also in the 1970s, a fundamental link between motivation and

dopamine was found, mainly based on experiments with the effect of

dopamine influenced drugs, Parkinson’s disease and dopamine-

lesioned rats [23]. Later in the 1980s, using direct neuron spike

recordings in monkeys, dopamine cell firing gave insights into

dopamine’s role in invigorating the animal’s current behaviour [23].

RL was first studied in the early 1980s as a formalization of

conditioning [269] and built on rules of learning and prediction error

formalised a decade earlier by Rescorla & Wagner [219]. In short (but

see section below on algorithms), an unexpected reward or a reward

bigger in value than expected, leads to a positive prediction error. An

unexpected lack of reward or one lower in value than expected leads

to a negative prediction error. These prediction errors are viewed as

the main drivers of learning under reinforcement and learning stops

when prediction errors are zero. Importantly, there are two main

categories of RL algorithms: model-free (MF) and model-based (MB)

[267]. MF algorithms directly update values of actions based on

experience with the world, while MB algorithms have an internal

model of the world that is updated from experience with the world,

and then the model is used to predict the values of actions.

In early-mid 1990s it was found that RL, specifically temporal

difference RL (TDRL; a model-free algorithm able to take expected

future rewards into account [268]), could explain midbrain

2 . 1 R E I N F O R C E M E N T L E A R N I N G A N D C O N D I T I O N I N G 2 7

dopaminergic activity results from neuron recordings in animals [19,

238, 241]. The neuronal activity did not just predict upcoming reward

based on a stimulus (like the bell and food for Pavlov’s dogs

mentioned above), but in the absence of expected reward, activity

would decrease. In other words, dopamine activity reflected the

reward prediction error of RL.

Since then, many studies have confirmed the connection between

dopaminergic cell responses and the prediction of rewards, leading

to the reward prediction error (RPE) hypothesis of dopamine [119,

240, 275]. These prediction errors are reflected in the phasic (see next

section) increase or decrease in dopamine cell firing, respectively for

positive and negative reward prediction errors. The RPE hypothesis

entails that this very time-specific change in phasic dopamine cell

firing serves as a reinforcement signal for learning. To connect back

to the more general results on motivation from the 1970s and 1980s

mentioned above, [23] explains that the lack of dopamine can be seen

as a RPE that is constantly negative and causes values of actions to

update towards zero.

In the 2000s, evidence started appearing of model-based influences

on dopamine function [66], and has since been further investigated

and become part of the standard account [64, 71, 146, 151, 306]. This

line of research also started to highlight overlap in the systems/brain

areas used for model-free vs model-based reasoning [71, 253].

In the last few years, this picture of dopamine function has become

increasingly complex, partly stemming from difficulties

distinguishing between motivation and reward [23, 304] and partly

because the functions of MF and MB learning seem to be intermixed

in the dopaminergic system(s) [71]. This has thus caused calls for a

new view of “multiplexing” (integrating) model-based and model-

free signalling [146], for example by using a variation of RL called

successor representation [91] or adding local control of dopamine,

switching between MF and MB by way of other neurotransmitters

[23].

The latter point is important, and should be stressed, that

dopamine alone is not the entire story about reward processing. There

are many other neurotransmitters that either have indirect effects by

regulating dopamine (including acetylcholine [273]; substance P [31];

glutamate [45]); while other neurotransmitters having separate but

2 8 B A C K G R O U N D

complementary functions such as serotonin [246]. To further add to

this complexity, prediction errors for rewards have been found in

areas outside the “main” areas we describe below (basal

ganglia/midbrain and frontal cortex), for example the cerebellum

[292].

However, we will base the current work mainly on findings in the

dopamine system as it is the most studied system with the clearest

connections to RL.

2 . 1 .2 R E W A R D S A N D D O P A M I N E

Schultz [239] defines three main functions of rewards. First, they act

as positive reinforcers to induce learning. Second, they elicit

movements towards desired objects, meaning they act as factors for

decision making. This function is sometimes defined as motivation

[23], but can also be described as a subjective value formalized as

economic utility [242]. Third, rewards have a role in emotions like

pleasure and desire [239].

The processing of rewards is sequential and starts out with the

sensory components of object detection and identification, followed

by valuation of the objects which leads to decisions, actions and

reinforcement [239]. The main brain areas involved are, as previously

mentioned, the midbrain dopamine cells, in the substantia nigra and

ventral tegmental area (VTA), and the structures to which these

midbrain dopamine cells projects to such as striatum, orbitofrontal

cortex, the amygdala [239, 240] and the anterior cingulate cortex [110].

The midbrain areas and striatum are part of the basal ganglia, long

implicated in action selection [108, 217]. Neuronal signals in these

different areas code for different aspects of reward such as amount,

probability, uncertainty, subjective value, utility and risk [239].

The dopamine neuron response works in three main ways on three

different time scales [239]. On the sub second timescale, phasic

responses code for reward value in the form of reward prediction

errors and this is the response described with RL algorithms. The slow

or intermediate response acts on the timescale of seconds to minutes,

and is related to behavioural activation, forced deactivation, stress,

attention, reward-related behaviour, punishment and movement. On

the longest timescale of minutes and more, the tonic response is

related to the level or amount of dopamine transmitter and receptors

available. The tonic response is involved in many varied and general

2 . 1 R E I N F O R C E M E N T L E A R N I N G A N D C O N D I T I O N I N G 2 9

functions such as movement, cognition, attention and motivation and

is the main factor in psychiatric illness such as Parkinson’s, ADHD

and schizophrenia. Below, whenever we refer to dopamine response

it is assumed we speak of the phasic responses. But as just described,

we also see there is no clear distinction in mechanism between these

timescales. Furthermore, as will also be discussed later, functions like

attention plays an important role in RL related learning as well.

As touched on above, the distinction between rewards, learning

and motivation can also be unclear. Berke [23] defines motivation as

a forward model that uses predictions of future rewards to energize

current behaviour, whereas learning looks backwards to update

values of states and actions leading to rewards. In order to

differentiate between learning and motivation, [23] proposes a model

where the value coding (learning) happens through synaptic

plasticity (long term potentiation [27]). The use of those values is

mediated through dopamine neuron firing. By relying on cholinergic

interneurons to switch between learning and motivation process,

dopamine can thus work as a modulator of resource allocation

decisions, both in the sense of deciding if energy use is worth

expending to work for a reward and also whether to engage model-

based decision making. In this sense, the argument is similar to [140]

where it is argued for a mechanism of cost-benefit arbitration between

model-free and model-based decision making. Unfortunately, the

study [23] bases their argument on, [111], uses micro dialysis which

can sample only as quickly as around a second or longer so it is

difficult to relate the findings to the very precise sub second timescale

that [239] counts as phasic. The implication of the model proposed by

[23] is that one needs to look at local terminal receptor density. This

is important because both pre- and postsynaptic dopamine can be

affected by other neurotransmitters. This confusion of timescales is

unfortunately common in the literature on dopamine, which often

creates difficulties in comparing results to the underlying models.

Another long-standing puzzle is the role of aversive reinforcers

(punishments). [239] argues the dopamine response is only about the

physical impact of aversive reinforcers, but there are also indications

that dopamine response can explain the effects of punishments if the

different kinds of dopamine receptors are taken into account [32].

Another line of research suggests that punishments may instead be

mediated by partly different circuits than rewards, for example

3 0 B A C K G R O U N D

involving the lateral habenula [171, 258]. As punishments are related

to fear, the amygdala and endogenous opioids also appear to be

involved [7, 308]. In short, the story for punishments is more unclear

than that of positive reinforcers and we will thus mostly focus on the

latter – rewards.

2 . 1 .3 R L A L G O R I T H M S A N D D O P A M I N E F U N C T I O N

Here we will briefly explain the mathematical concepts of RL, present

details of three algorithms and then discuss these from the

perspective of neurobiological plausibility.

2.1.3.1 Short primer on Markov Decision Processes

As we have discussed, the RPE hypothesis tells us that learning is

mediated through errors in reward prediction. The basis of this was

formalized by Rescorla & Wagner [219] in the following way, here

adapted for simplicity (Q is used for easier comparison with

algorithms presented below):

 ∆𝑄 = 𝛼(𝑅 − 𝑄) 2.1

where ΔQ is the change in associative strength (i.e., learning) between

a stimulus and reward and is proportional to the prediction error (𝑅 −

𝑄). R is the actual value of the reward and Q is the predicted value. α

is the so-called learning rate and modifies how much the error should

influence learning at each learning opportunity, for example a trial in

an experiment. A reward that is fully predicted does not contribute to

learning, since the error would be zero and associative strength can

also decrease if reward is withheld. This way of removing an

association is called extinction in psychological literature [167].

2 . 1 R E I N F O R C E M E N T L E A R N I N G A N D C O N D I T I O N I N G 3 1

RL algorithms build on the concept of Markov Decision Processes

(MDPs) [267], as seen in Figure 2.1. In the discrete case, an agent -

artificial or animal - interacts with an environment by observing the

world at time t, thus receiving two signals, the state S and the reward

R. The reward value may be negative (interpreted as punishment),

zero (no reward/absence of reward) or positive. The agent then takes

a step (or action, A) in the environment. The action taken will cause

the environment to transition to a new state according to some

transition function 𝑃𝑎(𝑠, 𝑠𝑡+1), providing the agent with a new

observation. Importantly, an MDP satisfies the Markov property,

meaning that all information to predict the future is contained within

the current state, regardless of what has happened in the past. As we

will see below, this information can be summarised by for example

storing values of each state visited. One consequence of MDPs is that

the mathematical proofs of RL algorithms converging to optimal

solutions depends on the agent visiting all states an infinite number

of times [267]. However, the solution can often be approximated to a

useful degree much earlier than infinity, which is encouraging.

In RL, the goal is for the agent to maximize the total reward

received. We thus want to find a behavioural policy, most often

denoted π, for what action to take in each state to find said maximum.

In order to do so we need a measure of the value of each state, the

value function V(s). The value defines how good a given state is based

on the expected return of this state, under a specific policy, i.e., what

future sum of rewards is expected moving on from this state [267]:

Figure 2.1 Markov Decision Process. On each timestep t, an agent interacts with the

environment by observing state S and reward R, then taking an action A. The environment

responds by transitioning into the next timestep, where a new state and reward are observed.

Adapted from [268].

3 2 B A C K G R O U N D

𝑉𝜋(𝑠) = 𝐸𝜋{𝑅𝑡|𝑠𝑡 = 𝑠} = 𝐸𝜋 {∑ 𝛾𝑘𝑟𝑡+𝑘+1

∞

𝑘=0

|𝑠𝑡 = 𝑠} 2.2

This means that the value of state s, given we follow the policy π, is

the discounted sum of rewards of all states k following that policy.

The γ here is the discount parameter, controlling how much influence

rewards far into the future will have. The discount parameter can help

solve the so called “credit assignment problem”, meaning the

problem of assigning values to preceding states when rewards are

many steps into the future. In other words, as we have noted, the

value V is the discounted sum of rewards. Equation 2.2 (and

variations of it) is sometimes called “expected utility” and is also the

basis for prospect theory, which aims to account for human biases

[131]. Here we simply call it the state-value function.

Later in this chapter, and in the following chapters, we often use

state-action values. In each state, we can have multiple actions, where

each state-action pair has a value which depends on future states and

actions in similar fashion to the previous equation:

𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋{𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎}

= 𝐸𝜋 {∑ 𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎

∞

𝑘=0

}
2.3

Above we mentioned the state transition function. If we know this

function – what state follows given an action – we have a model of the

world. Except for constrained experimental cases, it is unusual to

have perfect knowledge of the world, but if we do, the state transition

function can be used to calculate values for each state and action

combination. By iterating over all different such combinations,

following different policies, we can find the optimal policy, denoted

π*.

If there is no model of the world, as is most often the case in the RL

problems we are discussing in this work, there are two options;

model-based and model-free. Important to note here is that the kind

of world model we just mentioned above is not the same as the model

in model-based RL. Model-based RL means approximating the world

model (state transition function) and using that approximation we

can then apply the same methods to find V and π as if we knew the

real model as per above. Model-free RL instead either approximates

2 . 1 R E I N F O R C E M E N T L E A R N I N G A N D C O N D I T I O N I N G 3 3

V (value-based methods) and/or π (policy-based methods) directly

without also approximating the world model. In both cases of RL, we

thus learn values and policies through experience. The trade-off

between MF and MB RL is that model-free methods are data-

inefficient (much experience is needed to approximate values well)

and thus learn relatively slowly, while model-based methods can

learn faster but require more computational power (because they

have to calculate action values for each choice) [129]. However, these

are only general guidelines and the full state of affairs will depend on

specific algorithms and implementations. For example, it may require

a lot of computational power to provide enough experience to a

model-free agent to perform well.

2.1.3.2 Three RL algorithms

The above equations and concepts are quite general. So, when

learning a task trial-by-trial, we need more specific implementations.

There are, as one might imagine, many different ways to do this. So,

in the name of brevity we shall here present three discrete examples

of model-free algorithms. They are chosen partly because they are all

fairly common in the literature, as well as demonstrating how their

details may impact neurobiological interpretations.

A C T O R - C R I T I C is composed of an actor that selects actions based

on a policy function π(s), while the critic handles state values and uses

them to give feedback on the actor’s choices [267, 270]. The core part

is the TD prediction error:

 𝛿𝑡 = 𝑟(𝑠𝑡) + 𝛾𝑉(𝑠𝑡) − 𝑉(𝑠𝑡−1) 2.4

Where 𝑟 is the reward of the next state, V is a value function for

states and γ is the discount parameter controlling the influence of

future state-values. Through experience, the critic can learn the true

values of states (or at least an approximation) by minimising the

prediction error and updating the value of the last visited state:

 𝑉(𝑠𝑡−1)𝑛𝑒𝑤 = 𝑉(𝑠𝑡−1)𝑜𝑙𝑑 + 𝛼𝛿𝑡 2.5

The actor’s policy function is then updated in the same way1:

1 Different learning rates are sometimes used for the actor and critic, see for

example [56]

3 4 B A C K G R O U N D

 𝜋(𝑎|𝑠𝑡−1)𝑛𝑒𝑤 = 𝜋(𝑎|𝑠𝑡−1)𝑜𝑙𝑑 + 𝛼𝛿𝑡 2.6

The consequence being that for positive prediction errors, δ > 0, the

policy/actor increases its tendency to pick the chosen action in that

state. For negative prediction errors, δ < 0, the actor will lower its

tendency to pick that action in the future.

S A R S A combines state and action values into Q-values. It is called

SARSA because on every update it uses the quintuple

𝑠𝑡, 𝑎𝑡, 𝑟𝑡+1, 𝑠𝑡+1, 𝑎𝑡+1 to update the value for the state-action pair

chosen at each time step:

𝑄𝑡+1(𝑠𝑡, 𝑎𝑡) = 𝑄𝑡(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡 + 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄𝑡(𝑠𝑡, 𝑎𝑡)] 2.7

The γ parameter here controls how much impact the values of state-

action pairs in the next step will impact the new value on the current

step. If the next state, 𝑠𝑡+1, happens to be the last (terminal) step, then

𝑄(𝑠𝑡+1, 𝑎𝑡+1) is defined as zero, otherwise it is selected from the

currently stored Q-values based on the current policy. This makes

SARSA a so called “on-policy” algorithm. It has been shown that

SARSA converges to the optimal policy if all state-action pairs are

visited an infinite amount of times [267].

Q - L E A R N I N G is very similar to SARSA, but instead of choosing a

specific action 𝑎𝑡+1 in the γ multiplied term, the maximum value of

the available actions in state 𝑠𝑡+1 is used:

𝑄𝑡+1(𝑠𝑡, 𝑎𝑡) = 𝑄𝑡(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡 + 𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎) − 𝑄𝑡(𝑠𝑡, 𝑎𝑡)] 2.8

Because the maximum value is picked, regardless of the current

policy, this algorithm is an “off policy” TD algorithm [267]. Again,

with the assumption that all state-action pairs are visited an infinite

number of times, Q-learning also converges to the optimal policy.

Most of the algorithms we use in later chapters will be based on Q-

learning, so it is one we shall come back to. There we also discuss and

demonstrate in more detail how these algorithms work.

Readers may have noticed that for neither Q-learning nor SARSA,

we have specified how actions are selected. We come back to this

question of how to follow a policy in the section on action selection

below, as there are multiple options for how this is approached.

2 . 1 R E I N F O R C E M E N T L E A R N I N G A N D C O N D I T I O N I N G 3 5

2.1.3.3 Neurobiological plausibil ity

Because of the division between policy and values in actor-critic, it

can easier explain findings in imaging studies where multiple areas

are seen to be involved in RL [127, 158]. For example, [270] shows

actor-critic maps well onto ventral striatum (critic) and dorsolateral

striatum (actor). The reward prediction error is shared between the

actor and critic, and correlates with dopamine neuron response [29,

127, 158].

However, [197] comes to the conclusion that SARSA or Q-learning

may explain dopamine response results better than actor-critic. This

because the dopamine firing patterns recorded by [185] were better

explained with a Q-learning model, whereas the dopamine neuron

firings found by [225] fit better with SARSA. In other words, these

two studies differed in whether dopamine neuron firing patterns

showed evidence of “off-policy” [185] or “on-policy” [225] (Q-

learning and SARSA respectively, as described above) when

estimating future rewards from the current state.

Widening our perspective from specific neurobiological correlates

of model-free RL algorithms, there is the question of where and if we

can find evidence of model-based RL? It turns out such evidence is

claimed to be “ubiquitous” [71] and, thus, there has been an increased

focus among authors to study the interaction between and potential

separation of MB and MF RL [53, 74, 158, 227]. We return to the topic

of model-based and model-free in section 2.2 below.

2 . 1 .4 A C T I O N S E L E C T I O N

The basal ganglia has long been believed to have an important role in

action selection [84, 108, 217], a problem intimately tied to the coding

of reward values as those are used to select optimal actions. Above we

used the terminology of following policies for selecting actions. So,

how do we actually follow a policy? How does an animal select

between exploiting its current knowledge about state values and

exploring options that may in future be better than what the current

knowledge implies? This is known as the exploration/exploitation

problem and is relevant for both artificial systems [268] and human

learning [93].

When using RL algorithms to model behaviour, the methods of

action selection are not based on as solid ground as the RL theoretical

3 6 B A C K G R O U N D

framework/RPE hypothesis itself (but see [86]). The two most

commonly used algorithms for action selection are SoftMax and

epsilon greedy (ε-greedy) [268].

SoftMax creates a probability distribution over the available

actions based on action values and uses an inverse temperature

parameter to control the stochasticity of choice; lower values of this

parameter make the SoftMax distribution more random or in other

words decreases the chance of selecting the action with the highest

value. In the limit when the inverse temperature is at its minimum

(zero), then action selection is completely random: all actions have an

equal probability of selection irrespective of their expected value.

There is no theoretical framework (that we know of) for how to

select the temperature parameter value. In simulations it is therefore

chosen so as to increase performance and in modelling animal

behaviour it is fitted to best describe the data. Of course, one can rely

on previous research to select appropriate values for the temperature,

but as we shall see in later chapters, such values may not be reliable.

ε-greedy uses a fixed value between 0 and 1, say 0.2, and if a

randomly generated number is lower, then a random action is chosen.

Otherwise, the action with the highest value is chosen. ε can also be

tied to time or number of trials, so that over a simulation or

experiment the parameter value is lowered and thus less and less

exploration happens [153].

When fitting RL models to experimental data, the arbitrary nature

of these two methods can be seen as an issue. Goodness of fit

measures are of course reliant on not only estimating the SoftMax or

epsilon parameter themselves, but how can we be sure either of these

are appropriate in the first place? Furthermore, [93] points out that

neither SoftMax or epsilon takes uncertainty of the value estimate

itself into account. The author therefore investigates the so-called

Upper Confidence Bound algorithm (which favours exploration of

actions with high uncertainty in their value estimations) and

Thompson sampling (select action based on the probability that it is

optimal). [93] then suggests humans use a combination of directed

(bias towards information seeking) and random exploration

(exploration that is not informed in any form), which is also

supported by [301]. Another way to incorporate uncertainty would be

to tie epsilon directly to the prediction error [276, 277].

2 . 2 M U L T I P L E S Y S T E M S A N D H I E R A R C H I E S 3 7

The exploration/exploitation problem is an important one, and

thus an active research area. Without a theory of an integrated way of

tying exploration to the prediction error, as in [276], we will have to

keep testing action selection algorithms until one sticks. Contributing

to such testing is unfortunately out of scope for this thesis. Luckily,

SoftMax is as close as we get to something that has stuck with

researchers and it is therefore the method used in our investigations

below.

2 . 2 M U LT I P L E S Y S T E M S A N D H I E R A R C H I E S

In daily speech we often speak of habits or automatic behaviour

versus deliberate or intentional actions. This idea can be traced back

at least as far as Aristotle [188], but potentially is as old as human

thinking itself. Humans have always told stories of the duality

between the rational and irrational, “human” reason overcoming

animal instincts, the soul and the flesh.

In the modern western scientific tradition, the idea of two main

forms of thinking – dual process theory – is commonly seen as

introduced by William James in the late 19th century. James [125]

called the two forms associative and true reasoning where the first is

based on experience and the second a form of planning or reasoning

about the future. Similar thoughts can later be found in Freud’s

theories of the conscious and the unconscious, along with the Gestalt

psychologists who more appropriately for our purposes proposed

two distinct learning mechanisms [6]. According to Gestaltists,

associative learning occurs gradually through the repeated co-

occurrence of external stimuli or memories. Insight learning occurs

suddenly when people discover new relationships within their prior

knowledge as a result of reasoning or problem solving processes that

reorganize or restructure that knowledge [6]. Later contributions by

Evans [79] framed the two systems as System 1 and System 2, the

latter of which being unique to humans. The most famous version of

dual systems theory is probably that of Kahneman [130], framing

them as the fast but habitual System 1 and the slow but flexible

System 2. How these systems may interact and what neural

foundation they might have is a current topic of debate [107].

One way of viewing potential interactions was presented by

Lashley [147]. Lashley used a number of examples from language

3 8 B A C K G R O U N D

understanding and production, motor generation, rhythm and sense

of space to point out that there likely is some higher or more abstract

structure that is imposed on lower, more practical behaviours. He

emphasized that this higher structure is more than direct associative

connections between those practical behaviours. This fits well with

later findings in the visual system, where two main visual streams

[105] are also hierarchically integrated [285]. The matter of hierarchies

at play when performing a specific task is something we discuss later

in this chapter.

Instrumental learning (i.e., RL for our purposes) in humans and

other animals is likely to involve one or more higher level functions

like working memory and executive functioning, in addition to

learning incrementally from prediction errors [29, 55, 66, 71]. The

different theories of dual processing briefly presented here have

different levels of relevance for our work, but the point is to

demonstrate that the distinction between model-free (MF) and

model-based (MB) RL is related to other discussions within the

cognitive sciences. The advantage of framing the discussion as one of

MB and MF is, as we saw in previous sections, that we here have close

connections between mathematical models and neurobiological

findings. In other words, William James’ and Lashley’s ideas still have

merit [12, 66, 75] but it is still not clear how precisely they might apply

[91, 146].

In this section, we look more closely at different proposals of dual

systems processing in relation to learning. Starting from work on

distinguishing between MF and MB RL in behavioural and

neurobiological studies, we find they are perhaps more integrated

than separated. We then discuss examples of integration and/or

separation of MF and MB from both computer science artificial

intelligence research and from the cognitive sciences. We then

consider hierarchical proposals that may connect RL to more general

theories of cognition and ask what role memory and other

mechanisms play. This journey will lead us to consider how and why

we may want to investigate the nature of representations.

2 . 2 .1 M O D E L - F R E E A N D M OD E L - B A S E D S I G N A L S A N D B E H A V I O U R

In the RL literature, the MF and MB systems are sometimes also called

habitual and goal-directed, respectively [12, 13]. Interaction between

2 . 2 M U L T I P L E S Y S T E M S A N D H I E R A R C H I E S 3 9

two decision making systems for habits and goal directed planning

has long been theorized, as discussed above, but in terms of

conditioning and rewards, early work by [12] suggested habits and

goal-directed behaviour are underpinned by separate systems. The

formalization into model-free versus model-based learning was then

introduced by [66]. As briefly mentioned in the history section above,

others have since confirmed that both kinds of signals exist in the

dopamine system, once called the “ubiquity of model-based

reinforcement learning” [71].

Evidence of for separate systems has been found in neuron

recordings in monkeys performing bandit tasks [148], suggesting a

role for frontal cortex in model-based predictions and the basal

ganglia being primarily responsible for model-free RL. Likewise in

humans performing spatial navigation encouraging model-based

behaviour, fMRI results indicate the medial temporal lobe and frontal

cortex for model-based planning [253], and suggest striatum as the

location of values and action selection. Later research such as [282]

showed that prefrontal areas of cortex also can code values of reward

objects, leading the authors to suggest dorsolateral prefrontal cortex

might play a role in coding higher-order aspects of the task.

Other areas such as the hippocampus also has an important role;

[61] and [177] show that model-based planning behaviour is causally

dependent on the hippocampus (and see below section on memory

for more on the hippocampus). However, they found little evidence

for model-free RL in their experiment on rats, whereas in the same

task with humans, evidence for model-free RL had been found. This

led the authors to suggest that perhaps model-based control is a

default mode and model-free is engaged only when habits have

formed, a thought supported by [55, 66]. From a slightly different

viewpoint, it has been suggested that the two systems run in parallel,

operating in a segregated way and then integrated in prefrontal

cortex [306]. Others would argue they are more integrated than that

[64, 91, 97, 100, 146].

Assuming they are somewhat segregated, there would be required

some arbitration between them, as now classically shown by [66]. The

same point of arbitration is further argued by Kool and colleagues

[140]. They found that model-based control is engaged when greater

accuracy on a task is required in order to receive greater long-term

4 0 B A C K G R O U N D

rewards, because model-free learning is less expensive but also less

accurate because of decreased flexibility. In other words, MF learning

is less computationally taxing because action values are already

computed, so only a comparison is needed to find the best action,

while MB learning has to compute the values each time [66, 100]. An

important difference between these proposals is that [140] considers

a cost-benefit evaluation function to select between the systems, while

[66] base the evaluation on uncertainties. The latter approach is also

explored in [55] but they used direct value estimates instead of

uncertainty.

This confused state of affairs has led some to propose that we need

to rethink what model-based actually means [146], others to suggest

that dopamine may help encode more than just prediction error [103],

and yet others suggest alternate accounts of the MB/MF dichotomy

may explain results better [91, 180]. The rest of this chapter section

takes a closer look at these and other proposals for how to resolve the

dopamine and MB/MF conundrum.

2 . 2 .2 D U A L S Y S T E M S I N A R T I F I C I A L I N T E L L I G E N C E

In 2016, the company Deepmind held an exhibition match between

their Go2 playing system AlphaGo and multiple world champion Lee

Sedol [251]. AlphaGo won 4-1 and this event is already of historical

significance on par with Garry Kasparov’s loss at chess to Deep Blue

in 1997.

What is significant about AlphaGo is that it successfully combines

MF and MB in a way that can be applied to such a difficult problem

as Go. The MF part of this system is an RL algorithm and the MB a

tree based search algorithm called Monte Carlo Tree Search [251]. The

AlphaGo system was trained on a dataset of Go games played by

humans. It was improved upon a year later to learn only from self-

play and thus dubbed AlphaGo Zero [252]. Another year later and the

researchers managed to use the same principles to create AlphaZero

[250], a system with less pre-defined information specific to Go that

could therefore play not only Go, but also Chess and Shogi (Japanese

version of Chess).

2 Go is a board game commonly played on a 19x19 grid, where two players take

turns placing stones. The goal is to conquer as much territory as possible.

Depending on the rules, the number of possible positions may be as high as 10170

2 . 2 M U L T I P L E S Y S T E M S A N D H I E R A R C H I E S 4 1

Another interesting system is that of “world models” [109]. Here,

a recurrent neural network is trained to learn a model of the agent’s

world which is then used to teach a controller how to navigate that

world model. During play of a car racing game, the model’s

predictions of sensory inputs are used together with the actual

sensory inputs to inform the controller of the best action to take. This

implementation is not so completely a dual system as AlphaGo but

leans rather more towards model-based learning. What is really

interesting here though is that the trained world model can be used

to “dream” the learned environment and actually improve the policy

of the controller offline.

The combination of online and offline learning is also the idea

behind Dyna, an early combination of MB and MF [266]. Its policy

and value functions are updated both directly from experience in an

MF way, while the same experiences are used to update a model.

From this model simulated experiences are generated and used to

update the same behaviour policy as the MF system updates.

Variations of Dyna have been used successfully for example to play

Atari games [132] and in proposals for how separate MB and MF

systems can collaborate in simulations [227].

2 . 2 .3 I N T E G R A T I O N S O F M O D E L - B A S E D A N D M O D E L - F R E E

Langdon and colleagues [146] present multiple findings that indicate

dopamine neurons respond to other aspects than just scalar reward

value, for example reward identity (juice instead of a puff of air, say).

This suggests that dopamine neurons have access to richer

representations of states than traditionally thought, perhaps as some

sort of more general prediction error for states. The authors therefore

propose that model free predictions of scalar reward values are

multiplexed (integrated) with model-based vectors containing

information about multiple reward dimensions such as type and

timing, as well as other relevant aspects of the state, perhaps even

inferred information not directly observed.

This line of reasoning is similar to the “sensory prediction error”

hypothesis of dopamine introduced by Gardner and colleagues [91].

They adapt the “successor representation” (SR) algorithm – a middle

ground between MF and MB that will be discussed in detail in chapter

five (and also in the next section on state representations). SR may be

adapted to predict not just rewards but also states, and such an

4 2 B A C K G R O U N D

account they claim might explain many of the controversies of both

the model-based versus model-free debate, as well as details about

dopamine functioning itself. Though not arguing for sensory

prediction errors per se, multiple additional authors have proposed

SR as a way of unifying the debate on model-free and model-based

[92, 166, 180, 182, 227].

Other promising attempts have been made towards integrating

previous research, coming from the computer science “learning to

learn” or “meta learning” field which has origins going back to the

late 1940s with work by Harlow [113]. Briefly, Harlow showed how

monkeys trained on a two-object discrimination task (essentially a

two-armed bandit where one arm always is rewarded and the other

never, see chapter three) initially required multiple trials to

consistently pick the correct object. But after enough experience

(multiple blocks of different objects) they had learned they could find

the correct choice based on only the feedback in the first trial. They

had learned to form “learning sets” as Harlow put it.

Recently, recurrent neural networks have been used to model parts

of the brain known to be involved in learning – the basal ganglia and

frontal cortex – by using a reinforcement learning algorithm to train

new learning algorithms [28, 73, 293, 311]. In other words, a task-

specific RL system emerges from the dynamics of the recurrent

network.

Specifically, [293] model PFC, basal ganglia and thalamic nuclei as

a recurrent neural network. This is trained with DA phasic signals as

reward prediction errors and using state, reward and action as inputs,

on six different categories of tasks. Results indicate the recurrent

network exhibits an emergent RL system that can handle six different

experimental tasks in line with behavioural findings and neuronal

recordings from humans and animals in previous research.

Interestingly, although the system is trained separately for each type

of task, the emergent RL system learns to handle variations of the

same type of task. For example, if the task type is two-armed bandits,

the system will slowly learn this type of task when training starts. But

after a point it will “know” the task and when encountering a new

two-armed bandit, it will learn the optimal choice in just a few trials.

In other words, it has “learned to learn”, just like Harlow’s monkeys.

2 . 2 M U L T I P L E S Y S T E M S A N D H I E R A R C H I E S 4 3

 This combination of “fast and slow” reinforcement learning [28,

73] therefore provides a possible explanation of previous

inconsistencies in the model-based/free dual systems view, where a

hierarchy emerges dynamically through learning.

2 . 2 .4 H I E R A R C H I E S

Considering the curious findings on MB and MF RL, together with

the research presented above, it could be the case that what we are

seeing is the effects the brain organisation into a hierarchical system.

If we were to assume the simplest case of two hierarchical layers,

habits or model-free functionality would be on the lower level and

planning or higher order reasoning, as in model-based functionality

would be on the upper level. If we further suppose these levels as the

basal ganglia/dopaminergic midbrain projection system and frontal

cortex, respectively, then what we see in the “puzzling” model-based

responses in the basal ganglia might actually be traces of the signals

coming from the upper level.

A classic example of hierarchy is that of Brooks’ subsumption

architecture for robots [33]. Behavioural modules are stacked on top

of each other, from low-level behaviours like “avoid obstacles” and

“wander aimlessly” to top-level ones like “formulate and execute

plans” and “reason about objects in the world”. All modules run in

parallel and separately receive sensory input and output behaviour.

The core idea is that lower-level modules are unaware of higher

levels, but higher levels can control lower-level modules if needed.

The effect of this hierarchy is that if “avoid obstacles” is the lowest

level 0, and the “wander aimlessly” level 1 activates, then the robot

will indeed wander around aimlessly. It will do so, while

simultaneously avoiding obstacles, because level 0 activates as

needed – without level 1 having any need to be “aware” of this

functionality.

Hierarchical Reinforcement Learning (HRL) is an umbrella term

for organising the learning of actions [29, 265] and/or states [54, 75] in

hierarchies. One may frame these approaches as attempts to solve the

“curse of dimensionality” (or scaling problem) – i.e., that states and

actions can be very high dimensional and therefore exponentially

difficult to solve [29]. We come back to the question of high

dimensionality in the next section about state representations.

4 4 B A C K G R O U N D

For now, HRL for actions can be done by abstracting action

sequences over time into “options” [265]. In other words, the number

of decision points for an agent is decreased, since an option can take

the agent through many actions in one go. For example, “make

coffee” or “make tea” may be options, each choice consisting of

multiple actions to get your preferred beverage. Work by [29] shows

how such options can improve the performance of an agent

navigating a maze, as long as the options are chosen appropriately.

This highlights the problem of how to learn the options; should they

be built-in or learned dynamically? For a software system aimed at

solving a particular problem, building them in may suffice, but if

trying to understand and explain the brain’s learning system we

would be very likely to need a mechanism to learn them dynamically.

Recent work [166] has proposed the successor representation may be

used to learn action options more dynamically (and see below on

episodic RL for a possible mechanism, and further proposals in the

next section about state representations).

The scaling problem can also be solved by abstracting over states

instead of actions [157], a process that is likely supported by

(pre)frontal cortex [226]. One good example is work by Collins and

colleagues [50, 54, 75] where states are organised hierarchically as

task sets. We will come back to Collins’ HRL in the next section on

state representations and it will also be described in detail in chapter

five.

The two ways of abstracting over time - actions and states - may

seem disparate, but if we frame this in the terminology of model-

based RL, it is likely that task structure - the world model - contains

actions as well as states and the two are thus closely connected. This

idea is supported by [29] who state that temporal abstraction can be

incorporated in model-based algorithms if there is an option model

where “primitive” actions (the basic actions that are put into

sequences to create options) can be skipped. Furthermore, they also

state that execution of subtasks is highly context sensitive. For

example, if one picks up a pen with eraser on one end then depending

on the intent (i.e., context/task structure), the available actions are

different. Grab the pen as usual if the intent is to write or grab it closer

to the eraser end if the intent is to erase. In other words, task structure

and actions are closely interlinked.

2 . 2 M U L T I P L E S Y S T E M S A N D H I E R A R C H I E S 4 5

Huys et al. [123] build on this and show how subjects performing

a planning task reduce computational costs by “combining partial

searches with greedy local steps to solve subtasks”. In other words,

their subjects exploit the structure of the task to create subgoals that

allow them to improve performance. For example, in a task where

subjects had to choose actions in a certain sequence to receive the

highest reward (visualised as a search tree), it was found that subjects

had no problem with shorter sequences. But with longer sequences

subjects started to group sequences together, creating subgoals that

effectively left parts of the search tree unexplored and some optimal

paths were missed.

That task structure and actions are interlinked is quite obvious if

seen from the perspective of embodied cognition [46, 47, 209]. There

are many interpretations of what this term means [299], but common

for them all is that cognition does not simply happen exclusively in

the brain. Cognition is a process that happen through the interaction

of brain, body and environment – including other animals and

objects. For example, Kirsch & Maglio [137] showed how good Tetris

players do not rotate pieces in their mind to see where they will fit. It

is simply too slow. Instead, players rotate pieces in the game – using

their hands to press buttons – and use visual matching to identify

placement positions. The cognition happens in the linked system that

is body, brain and video game.

The principle of embodied cognition has been an active theory

within robotics for many years, in fact the system described above by

Brooks is now seen as a foundational example [163]. Embodied

cognition is also an important part of theories framing cognition as

one of “predictive processing”, where the principle of prediction

errors is seen as a core part of interacting with the world [10, 46, 87,

118]. Animals actively explore the world in order to minimise

prediction errors, a process formalised as the free energy principle

[87, 88, 163], from which RL itself may be derived [86, 88].

Through the lens of predictive processing, neural structure,

function and behaviour arise from a hierarchy of mechanisms where

incoming sensory information is compared to predictions on every

level [10, 118]. For example, if you pick up your cup to take a sip of

coffee and you taste tea, you are surprised, given you expected coffee.

Just like RL algorithms learn from reward prediction errors, your

4 6 B A C K G R O U N D

surprise was also a prediction error. If you both expected tea and

tasted tea, there is no prediction error, and you would go about your

business without need for explicit thoughts about your drink.

2 . 2 .5 M E M O R Y S Y S T E M S A N D B E Y O N D

In Minsky’s Society of Mind [178], it is argued that the brain is made

up of a vast number of small functional entities called agents.

Thinking and behaviour emerges from the interaction between these

agents and therefore does not rely on any single principle. This view

is directly opposed to the one taken by previously mentioned work

such as AlphaGo [251] and meta-RL [293]. Especially in the latter

work the working hypothesis is the idea that maximizing reward can

explain all behaviour. Sutton [271] calls it the “reward hypothesis”

and describes it thus: “That all of what we mean by goals and

purposes can be well thought of as maximization of the expected

value of the cumulative sum of a received scalar signal (reward).”

Since we are framing this work in terms of reinforcement learning, we

lean more towards the reward hypothesis than society of mind, but

there is value in, and perhaps necessity, in considering more systems

than just MB and MF.

We have briefly touched on this idea previously, mostly when

discussing brain areas such as the hippocampus being involved in RL.

The hippocampus (and closely connected structures in the medial

temporal lobes) since it is widely considered one of the main brain

areas subserving episodic and spatial memory [24, 38, 186]. We have

also discussed how the prefrontal cortex is involved in model based

learning, an area that is also important for working memory [15, 16].

The hippocampus has been suggested as a candidate for shaping

the world models that are needed for MB RL, partly due to the strong

evidence of hippocampal involvement in spatial navigation [186]. So-

called place cells code for an animal’s position within a spatial map

that corresponds to the current environment and there are some

indications that these place cells show predictive signalling by

simulating paths towards goals [210]. Place cells in the hippocampus

receive signals from grid cells found in entorhinal cortex, which are

thought to represent more general maps of the environment from

which the place cells can construct a map that is more task-specific

both in time and space [186, 281]. Intriguingly, recent studies on the

successor representation (SR) have found potential correlates

2 . 2 M U L T I P L E S Y S T E M S A N D H I E R A R C H I E S 4 7

between aspects of the SR and place and grid cells [180, 182, 257, 297].

We come back to SR in the below section on state representations, as

well as in chapter five.

Regardless of whether SR is the most appropriate model to account

for these findings, it seems likely the hippocampus is important for

the formation and/or storage of models. Adding to this idea of

hippocampus as a “model storage” region is the claim linking it to

more general prospective imaging of the future [231] and more

abstract relationships that seem similar to state transition functions

[100, 206]. It may thus be the case that hippocampus is not just storing

models but also involved in generating predictions based on them.

This may lead us to ask, what is the difference between models and

memory? In our view, perhaps the simplest way to differentiate them

is that a model is a summary of experience whereas (episodic)

memory consists of a record of the experiences themselves. Therefore,

it is likely the two are closely intertwined since some form of memory

is needed to store learned models, and models can in turn be an

efficient way to utilize limited storage capacity [310]. In fact, it seems

this is how human memory works; it does not generally have precise

recordings of past experiences but, rather, recalling events is made in

a generative or constructive way [60, 230, 231]. For example, this is

thought to be why eye-witness accounts are prone to influence by

interviewers [90]. Gershman & Daw [100] notes that the replay of

episodic memories may be influenced by a combination of

cooperation and competition in the interaction between striatum (a

main site for MF RL) and hippocampus, due to their functional

connectivity.

One important type of memory is working memory (WM), which

can briefly be described as a form of active short-term memory, able

to both store and manipulate information [310]. WM is associated

with activity in prefrontal cortex and multiple studies have shown

how there is a close connection between WM and RL, and in some

cases one can be mistaken for the other [52, 55, 58, 173, 310].

An example of the interaction between RL and WM is that of [55]

where the authors showed that an RL+WM model provided better fit

to participant behaviour than RL alone. The task presented

participants with trial blocks containing 2-6 different stimuli (pictures

from a certain category like fruits, places, sports, etc.) and in each trial

4 8 B A C K G R O U N D

one of these stimuli was presented. Participants had to learn which of

three possible responses (actions) led to reward. Assignment of the

correct response to each stimulus was random so the correct response

could, in the two stimuli case for example, be the same for both

stimuli. In this way, the load on WM was varied between blocks, since

remembering correct responses for two stimuli is easier than for six

stimuli, especially as in the latter case it may be many trials before

seeing the same stimuli again.

The behavioural results showed that learning was slower in

problems with greater load (blocks with more stimuli) but there were

minimal differences asymptotically, meaning that, as training

progressed, performance reached similar levels regardless of load.

Similarly, for delay since a stimulus was last presented, longer delay

initially degraded performance but this effect also disappeared over

learning. The authors interpreted this thus: with increasing

experience the RL system accumulates sufficient evidence and

eventually supersedes the WM system.

The RL+WM model used in [55] is fairly simple and does not

identify what specific events are stored in memory. But a more

elaborate proposal of memory integration with the RL system called

episodic RL [100] (see [28] for a machine learning perspective) does

keep track of specific events. This theory builds on a method called

episodic control, introduced by [154] and uses episodic memories to

construct nonparametric approximations of the state or state-action

value function [100]. More specifically, both MB and MF RL uses a

parametric approach; MF stores action values and MB stores model

parameters to generate trajectories, but once these parameters have

been estimated, the raw data - experiences - are discarded. Episodic

RL keeps the entire set of experiences in memory and can compare

the current situation to previous ones. Such comparisons thus depend

on how states are represented, in order to compute some similarity

measure. The comparisons can additionally enable episodic RL to

handle new situations by finding a previous experience that is a good

combination of similarity to the current situation and also is

associated with reward. In artificial intelligence research, episodic RL

has been successfully used to increase data efficiency for playing Atari

games [28].

2 . 2 M U L T I P L E S Y S T E M S A N D H I E R A R C H I E S 4 9

Saving experiences is in some way similar to experience replay

[161] which was an important component in the success of the Atari

playing system DQN [179]. But where experience replay usually takes

place offline between training sessions and it randomly samples

stored sequences of state-action-reward (while “sleeping” if you will),

episodic RL works online. So, when a familiar state is encountered,

an action is suggested by the episodic system based on previous

trajectories from that state. This is similar to the action options

hierarchical RL (HRL) [29] mentioned earlier and, indeed, [100]

suggested episodic RL could be a way to create the options or action

sequences proposed in HRL. Since memories of experienced state

trajectories would work similarly to MB planning, for some tasks it

may be the case that what has previously been classified as MB is

actually episodic influences. Furthermore, and as discussed earlier,

this would of course complicate the picture as episodic RL would also

have to solve the question of whether and when it communicates, or

integrates, with the MF and MB systems.

One way for episodic RL to do so could be based on findings that

hippocampal involvement commonly dominates early in training and

gradually gives way to striatal systems [100]. This fits with previously

mentioned results by [55], where WM dominated early and MF took

over after training. This also ties back to arbitration between these

systems as in [140]; thus, any meta controller would then also have to

include the episodic system in its arbitration. In fact, Ritter and

colleagues [223] introduce a system combining the above-mentioned

learning-to-learn (or meta-RL) principle with episodic memory. This

enabled the system to reactivate behaviour from memory, if the task

encountered was found similar to a previous experience.

This brings us to important questions. To compare the current

situation – the state – to previously encountered ones in memory, we

need to compute some form of similarity measure. The success of

artificial intelligence agents using episodic RL thus critically depends

on defining appropriate state representations [28, 223]. As mentioned

above, this works for “simple” problems like playing Atari games. But

how would this scale to high-dimensional, continuous, partially

observable state spaces where data are sparse, and observations have

dependencies over long temporal distances [28, 100]?

5 0 B A C K G R O U N D

In real world situations, observations are extremely rich in

informational content and thus suffer from the so-called curse of

dimensionality (high dimensional state spaces) – how do we focus on

what is important? Observations are also continuous, meaning

animals need some mechanism to partition the world into suitable

states – in both time and space. At the same time, these observations

do not contain enough information because some information is

hidden and needs to be inferred – like understanding someone’s

feelings. Further, some information is only partially observable,

requiring past information to be maintained in order to make correct

choices, which challenges the memory-less Markov property that RL

relies on – that all necessary information is contained in the current

state.

In the next section we shall see how this leads us to consider not

only memory but also attention and inference – beliefs about hidden

information.

2 . 2 .6 S U M M A R Y A N D C O N S O L I D A T I O N

Instrumental learning in humans and other animals have

traditionally been a story of model-based (MB) and model-free (MF)

learning and how these may interact. There are differences in

approach to this problem, with some integrating MF and MB [251,

266], some looking at how states can be more fully represented [91,

146] and others embracing the hierarchical organisation, leading to

model-based behaviour emerging from model-free interaction with

the world [293, 311].

There is also the matter of computational or cognitive cost

associated with arbitrating or switching between these systems [140].

The idea of using a less costly system (MF) for easier tasks and

deploying the costlier (MB) only when required for more difficult

tasks may make intuitive sense. However, several studies have shown

that MB (or memory-based processing) dominates early in training

and gradually gives way to MF [55, 66, 97], coinciding with

hippocampal involvement early and striatum getting more involved

later in training [100]. This is inverse of the approach taken by [293,

311] where the MF system is used to train the MB system. This latter

viewpoint is against the common folk understanding of habits, which

is that they need time to form. One way of looking at it is through the

hierarchical lens, where MB lies above MF in the hierarchy. MF would

2 . 2 M U L T I P L E S Y S T E M S A N D H I E R A R C H I E S 5 1

then be used to train MB, as in [293, 311] and as that model is

improved, the action values are made available for the MF system to

use directly, accounting for the potential discrepancy.

Dual systems make intuitive sense, exemplified above with

multiple examples of such dualities from different perspectives; but

maybe it is not so easy. Perhaps, it is the case that multiple systems

are interconnected through hierarchies that build more and more

complex structures and representations. We can see such structure in

the visual system, where low level features are encoded from sensory

information in the occipital cortex and higher level information builds

in hierarchical layers, splitting into two main visual streams [105,

285]. Hierarchical convolutional neural network models have proved

to predict signals of the (ventral) visual system both structurally in

the layout of layers, and in neuron population activity for each such

layer [220, 307]. Similar findings have been shown for auditory cortex

[135].

It would make sense, then, if models of the world work in a similar

fashion – low level features building into higher-order structure. This

line of reasoning naturally leads us to the predictive processing

hypothesis [47, 118], where top-down predictions from a world

model are compared with bottom-up incoming sensory information.

On each level of the hierarchy, prediction errors arise, informing the

generative model above how to adjust its predictions for the future.

This view would appear to fit with the established framework of

prediction errors driving learning in RL, and provides a way to

resolve the recent confusion of finding evidence of both model-free

and model-based predictions at multiple levels of the dopaminergic

projection system [57, 71]. There is also synergy with proposals that

add richer state representations to RL [146] and with the argument

for a generalized “sensory prediction error” hypothesis of dopamine

[91]. Adding to this is the claim that RL “naturally falls out of” the

free energy equations of statistical physics [86, 88].

Speculating further, for an animal undertaking a task, parallel

systems like working memory would enable active manipulation of

the current model under consideration, supported by episodic

memory to compare and retrieve models from previous experience.

For the specific task, generated predictions for the entire mental

model of the task structure would be tested against the consequences

5 2 B A C K G R O U N D

of actions. When the predictions fit, perhaps one can view the absence

of prediction errors, when one has found the right mental model, as

what is commonly called the aha experience [274].

In short, regardless of how these systems interact, it looks clear that

there is more to this story than just a tale of two systems. To us, it

seems more likely the story is one of hierarchies where the RL

principle of prediction errors is ubiquitous. Our viewpoint, going

forward, will be one where model-free RL is supported by higher-

order system(s) providing RL with useful state coding information.

So, the question then is, how do animals find and create states, to

combine into a representation of task structure and/or world models

from their chaotic sensory observations?

2 . 3 R E P R E S E N T I N G T H E W O R L D A S S TAT E S A N D TA S K S

Hoffman [116] describes how the Australian Jewel beetle almost went

extinct. The evolutionary process has made the males of the

Australian Jewel beetle very proficient in finding mates; big brown

objects with pimples on their butts. This worked great for millions of

years until members of the Homo species came along and dumped

beer bottles into the beetle habitats. These beer bottles happened to be

big, brown and have pimply bottoms – such perfect specimens of

beetle beauty that the male beetles found them preferable to the real

thing. Those males that would not die of starvation or exhaustion,

were eaten alive by opportunistic ants. In the end, the beetles were

saved when beer companies changed the design of their bottles,

removing the pimples from the bottoms. Apparently, this was a more

efficient solution than making Homo sapiens stop polluting the

environment.

This story is interesting for a number of reasons. First, it tells us

that vision – and other senses – are interfaces that do not necessarily

reflect the world objectively, because they are optimized for utility

[116, 117, 139]. Hoffman compares it to computer user interfaces, like

that of a mobile phone. We do not need to know how the hardware

works, and it would be inconvenient to manually shuffle electrons

around to show cat pictures. The icons, glyphs and text on the screen

comprise a useful interface.

Some would argue “perception as an interface” is a problem for

the cognitive sciences in general [82], as the research field(s) rely on

2 . 3 R E P R E S E N T I N G T H E W O R L D A S S T A T E S A N D T A S K S 5 3

the assumption of animal and human perception as a view of

objective reality. Instead, reality does not actually exist and is

continuously constructed by the senses interacting with brains and

bodies.

The question of whether objective reality exists is slightly out of

scope for this thesis. But similar questions arise from the view of

predictive processing, where top-down predictions receive feedback

from bottom-up sensing. Where in this hierarchy does our experience

lie? If it is anywhere near the “top” then whatever we experience is

mainly a prediction, not objective reality3.

The predictive nature of our minds is often exploited by magicians

[142] who also rely on phenomena like inattentional blindness [254].

Even more fitting for our investigations of state representations is

perhaps boundary extension [124], the tendency to recall information

that was not present in a previously seen photograph. The

reconstructive nature of memory [230] fills in the blanks of partly seen

objects.

The second reason for the beetle story being of interest is how it

nicely exemplifies the difficulty of categorisation. As touched upon in

the previous section, and will be discussed further shortly, animals

have to generalise between states that look different but are actually

similar. While at the same time they must differentiate between states

that look the same but are actually different. This leads to the third

reason the beetle story is interesting.

Obviously, the beetles have strong innate priors for the

generalisation/differentiation process, whereas humans are more

flexible. There is considerable debate as to how much of human

behaviour is innate [77, 169, 255, 256] and it is not our focus, but there

is no question today that behaviour is a construct of nature and

nurture. Framed as learning, one could see innate behaviour as

adaptation over evolutionary time.

Humans do have innate priors, like the ability to recognise faces at

birth [1] but we can also learn representations to perform activities

like dancing, climbing, rocket science, painting or playing games like

chess. In fact, expert chess players have learned to see the board in a

way that they essentially only see legal moves and positions, unlike

3 Of course, if we assume a materialistic world view, then our brains are part of

reality, and thus mental predictions are by definition also part of objective reality.

5 4 B A C K G R O U N D

beginners who have to exert effort to filter illegal ones [218]. Across

the animal kingdom we can see examples of different degrees of

innate abilities, for example mountain goats being able to climb steep

cliffs only hours after birth [169].

In artificial intelligence research, a focus has been on so called end-

to-end learning [144, 179], meaning systems that learn to, for example,

play games from scratch where the vision system is being trained

simultaneously as action selection. In a way, then, that approach is

more akin to training of a new-born rather than an adult. Yet, since

the same studies often have to pre-define what a basic state consists

of (for example a still frame of pixels), the approach is somewhat

similar to experiments with adults where states are often pre-defined

as single trials consisting of stimulus and action options. Artificial

intelligence research has, however, recently started to take innateness

into account, through an idea often termed inductive biases [8, 28,

101].

So, what does all this mean for our question of how animals create

states? There is an obvious difference between the evolved hard code

for male beetles’ perception of objects that look like female beetles and

the weaknesses in humans’ predictive inference perception, but it is

fascinating that we understand little of how they are different. We also

need to disentangle states and task structure, which compels us to

look into (1) what are states and how are they created; (2) how states

are informed by and combined into task structure; and (3) how task

structure is summarized into a model, and how that model interacts

with other processes like learning, attention, and memory.

2 . 3 .1 F R O M S I N G L E S T A T E S T O T A S K S E Q U E N C E S

States are one of the core parts of RL, as we saw above when

describing Markov Decision Processes (MDPs). In this mathematical

formulation, states are inputs received from – and observed in – the

environment. Traditionally, states, actions and reward functions have

been taken for granted in the RL literature [59, 195], meaning they are

commonly pre-defined as required by the experimental task.

In such experimental tasks, a state is thus the idealized world

participants see on the computer monitor and in machine learning the

state is most often a vector of pixels. But as we mentioned above, in

real world situations, observations are high-dimensional and

continuous. This means, as already noted, there is need to both

2 . 3 R E P R E S E N T I N G T H E W O R L D A S S T A T E S A N D T A S K S 5 5

generalize between states that look different but are actually similar

while at the same time differentiate between states that look the same

but are actually different. Perhaps it is counter-intuitive, but real-

world observations also do not have enough information to adhere to

the Markov property4 since many situations require memory of

previous events or inference of hidden causes. Furthermore, most RL

algorithms converge for certain only when all states and actions have

been visited an infinite number of times. Biological organisms cannot

possibly try every possible sequence of actions.

We will address the just mentioned points in turn, as much as is

possible, as they are inherently connected. It is understandable that

states have been taken for granted, given the incredible complexity

involved in how additional systems would interact. But in the past

few years, as the RL story has solidified, the field has started to move

towards investigating the matter of states and task structure, with

task structure standing in for models of the world [53, 59, 195].

Even disentangling the difference and relation between states and

task structure is not straightforward. For example, Wilson and

colleagues [302] define a state as “an abstract representation of the

current location in a task”. Unless speaking of a specific task, and

thereby coming back to the issue of pre-defining states, we can offer

no further clarity to their definition. State and task structure are

certainly intertwined, as what constitutes a single state may need

exploration of the environment before solidifying, meaning in

experimental terms being informed of states by the structure of the

task. This is perhaps similar to “chunking” [176] in order to remember

longer sequences. For example, remembering a nine-digit phone

number is easier if one memorizes them in groups of three. Indeed

there are such investigations related to learning, [104] provides

several examples such as Chess masters only remembering useful

board configurations, and the creation of subgoals by [123]

mentioned above in the section on hierarchies. Lashley [147] phrased

it as “all skilled acts seem to involve the same problems of serial

ordering”.

4 Future states depend only on the current state and action, not the past states.

See section 2.1.3.1

5 6 B A C K G R O U N D

2 . 3 .2 S T A T E R E P R E S E N T A T I O N I N M A C H I N E L E A R N I N G

The problem of serial ordering – task structure – is sometimes also

called representation learning [195]. Incidentally, the same term was

long used in the machine learning community5, for what is today

called deep learning. Although coming from different viewpoints, the

combination of RL and deep learning have proved to work

surprisingly well when scaled up, being able to play board games

[250] and video games [4, 202] at expert human level and beyond. But

such systems rely on massive amounts of data to learn useful policies

and therefore consume massive amounts of computing power [3].

It is not yet clear how informative such systems will prove to be

with regards to underlying mechanisms of animal brains [59]

(although deep learning shows promise predicting signals of the

visual system [307]). This is especially so seeing how the complexity

of deep learning systems may itself need interpretation [189, 229].

Furthermore, the above-mentioned systems also have problems

handling new tasks and/or new situations [195].

However, an interesting new kind of representational structure

called “transformer” [286] shows promise to perhaps handle new

situations better. Briefly, transformers are a method for modelling

sequential input combined with “self-attention” that provides

importance weights to each part of the sequence and outputs a new

sequence (a.k.a. sequence-to-sequence) [162]. The original paper [286]

applied transformers to language translation and the method is now

the standard in the natural language processing field, with recent

models like GPT-3 [34] being so powerful it can generate text which

is difficult to distinguish from that of humans. Even more intriguing

is that transformers can be used not only for language, but also vision

[136], music [120], chess [199], and mathematics [200]. Most relevant

for our purposes is the decision transformer [43], which applies the

method for RL problems by using state-action-reward sequences as

input and outputs a sequence of optimal actions. So far, this only

works off-line with an existing dataset of experiences, but research is

ongoing to adapt it for on-line use [215].

Although inspired by the cognitive concept of attention,

transformers are more like the psychological concept of priming

5 One of the most prestigious conferences in the machine learning field is ICLR

– the International Conference on Learning Representations.

2 . 3 R E P R E S E N T I N G T H E W O R L D A S S T A T E S A N D T A S K S 5 7

[162], influencing subsequent attention to stimuli. However, cognitive

attention is an important process in how humans create states from

high-dimensional input.

2 . 3 .3 A T T E N T I O N T O D E T A I L S

Attention in psychological terms is a complicated topic in itself [162],

but a good example of the kind of attention we describe below,

selective attention, is the “cocktail party effect”. Even in a crowded,

noisy room we are able to focus on a specific conversation (at least to

a certain point).

In a series of studies [155, 196, 303], Niv and colleagues show how

such attention guides (state) representation learning, by finding task

relevant features. They used the dimensions task, in which

participants are shown three different stimuli on screen and have to

pick one. The stimuli varied across three features (shape, colour, and

pattern) with three variations for each feature, for example one

stimulus could be a circle with red borders and dots inside of it. The

most rewarding feature was decided based on a single feature, and

thus subjects had to find this relevant feature by trial-and-error, while

simultaneously learning the reward values across all stimuli.

Computational models that included parameters for biasing state

values with attention proved a better fit for participant behaviour in

both the just described version of the task [196, 303] and one where

features were replaced by object categories (faces, tools, buildings)

[155]. In other words, attentional mechanisms influenced what

feature participants were focused on.

Intriguingly, the magnitude and focus of the attentional bias was

itself influenced by the learned values and their prediction errors

[155, 196]. This indicates that the state representation develops

dynamically during learning in collaboration with RL mechanisms,

concurring with results from other authors [40, 80].

Neuroimaging in the above studies showed correlations with

prefrontal cortex activations for the attentional parts of the model

when using the dimensions task. Based on these results, [213] propose

a model where hypotheses about task structure direct top-down

attention to task-relevant features. These features compose the state

space over which RL learns values, and those values are used in the

process of deciding which hypotheses to consider. It has been

suggested that working memory, due to its limited capacity, helps to

5 8 B A C K G R O U N D

focus attention and learning in this process [51]. Perhaps, under this

viewpoint, the role of working memory is that it further helps to

narrow down the number of hypotheses under active consideration.

So, humans can find states through the interaction of task structure

and attention. In other words, we overcome the “curse of

dimensionality” by iteratively finding the most relevant features for

the current task. But we need to be careful, so we do not

overgeneralise across features and run into the beetle problem. We

also have the need to differentiate. This functionality is tightly

coupled with hidden info, as we shall see.

2 . 3 .4 C L U S T E R I N G S T A T E S I N T O B E L I E F S

Both generalisation and differentiation between states rely on

mechanisms to compare the existing observation with memory traces

[51, 195], a process highly related to category learning [244]. In RL-

related studies this process also additionally involves inferring

hidden causes and potential relations between such causes, in order

to find appropriate states.

For example, [102] demonstrates how participants group stimuli

based on similarity. Participants were asked to provide an estimate of

how many circles they saw on the screen. The circles shown on a

specific trial were all either blue or green, but the colours varied

throughout the task. In one experimental condition, the number of

circles shown were drawn from two normal distributions with means

65 and 35, for blue and green circles respectively. In a second

condition, the distributions instead had means 65 and 55, for blue and

green circles respectively. The average estimate for each colour was

then calculated for each condition. The results showed that in the first

condition, participants’ estimate for the blue circles was close to 65,

the true mean. But in the second condition, participants’ estimate for

blue circles averaged closer to 60, which is the combined mean of the

blue (mean 65) and green (mean 55) distributions in the second

condition. The authors therefore draw the conclusion that in the first

conditions, participants were able to separate the two distributions

into separate states, because the difference in means was large

enough. But in the second condition, the means between the blue and

green circle distributions were so close that participants clustered

blue and green into a combined state.

2 . 3 R E P R E S E N T I N G T H E W O R L D A S S T A T E S A N D T A S K S 5 9

Another study, [96] shows how state inference can explain the

phenomena of spontaneous recovery in fear extinction. More

specifically, when rats are trained to receive shock after a bell sound

they will eventually display fear when hearing only the bell. To

extinguish the behaviour, the bell sound is followed by nothing for a

number of trials. In rats where behaviour is extinguished in that way,

the fear behaviour may in many cases reappear after some time has

passed. However, if using gradual extinction, meaning the shock

following the bell happens less and less often (rather than going from

continuous reinforcement to zero), then there is a much lower chance

of the behaviour reappearing.

This behaviour can also be explained by the concept of states,

where in the regular extinction, the rat will infer that bell-no shock is

a new type of state. Spontaneous recovery thus happens if the rat

believes it is back to the bell-shock state (which might occur after a

delay). But with gradual extinction, the rat infers only one state. In

other words, for both humans and rats in the extinction studies above,

there is a battle between learning and memory, where the first new

kind of trial can either be put in the same cluster (RL) or a new cluster

(structural learning).

This clustering process can more formally be described as latent

cause models [54, 94]. By associating multiple specific states, or trials,

to either the same latent cause or separate ones the animal is able to

generalise or differentiate. The state space can thus be built up

iteratively, often modelled with Bayesian non-parametric models

[94]. Despite the name, these models do have parameters, but they

allow for potentially infinite number of parameters added

dynamically through two generative processes6 called Chinese

restaurant (single cause for each observation) or Indian buffet

(multiple causes may generate an observation).

When the state space is built up, there is still the question of where

in the state space the animal might be. There is bound to be some

uncertainty involved in this process, so we can assign a probability

6 The processes have these names through analogy. In the Chinese restaurant,

tables are latent causes and states are guests arriving. Each guest is assigned a single

table probabilistically, as in a single cause for each state. In the Indian buffet, latent

causes are different dishes. Here each arriving guest can sample multiple dishes to

create a combined meal (state with multiple latent causes).

6 0 B A C K G R O U N D

distribution over the state space. This is commonly referred to as

belief states [9, 103] in the neuroscience literature and partially

observable MDPs (POMDPs) in computer science [128]. Sometimes

Hidden Markov Models (HMM), closely related to POMDPs, may

also be used. For example, if task representations are known in

advance, [112] show how action values are updated all at once when

the task structure changes, which is better explained by modelling

participants’ state beliefs as an HMM, rather than RL which updates

only the value for the action that was actually chosen.

We can now reconnect these theories on how states and state

spaces are formed with the attentional mechanisms noted earlier. It

may be the case that multiple sets of Bayesian belief states – each set

representing a task structure – are considered as hypotheses of task

structure [213]. This is similar to hierarchical theories on task set

selection [54, 75], where the task set selection process has

neurobiological correlates in prefrontal cortex [50, 72].

More specifically, work by [42] found that a full posterior

distribution over latent causes better explained orbitofrontal cortex

(OFC) activity than other models used. The authors drew on theories

of episodic memory implying that memories are organized according

to inferred schemas that specify situations and store previously

learned relationships. Schemas thus require inference about the

underlying situation or latent cause that generates observations,

similar to states in RL [42].

2 . 3 .5 C O G N I T I V E M A P S

OFC indeed seems to be critical to representation of state spaces [76,

235, 236, 302, 311], with Wilson and colleagues [302] calling OFC a

“cognitive map of task space”. They show how OFC, due to its

connections to multiple brain areas, is unique in its ability to

disambiguate task states that are perceptually similar but

conceptually different. OFC can do this, for example, by using

information from working memory.

By replicating behavioural results from four kinds of experiments

(reversal learning, delayed alternation, extinction and devaluation),

Wilson and colleagues [302] show that behavioural consequences of

OFC lesions can be explained by impairment in the state space

underlying performance on the task. By using reversal learning in a

two-armed bandit task (see chapter 4 for more information on

2 . 3 R E P R E S E N T I N G T H E W O R L D A S S T A T E S A N D T A S K S 6 1

reversal learning in two-armed bandits) as an example, their model

can be explained by lesioned animals always being in one state that

has two actions. When the reversal happens, the lesioned animal has

to update both action values step by step to their new values. Healthy

animals instead have two different states, each with two actions. So,

when the reversal happens, these healthy animals switch state and

can more quickly reach the correct action values (assuming action

values are initialized to zero for example). This model generalises to

probabilistic reversal learning tasks, and explains extinction and

delayed alternation where animals need to integrate outcomes from

multiple trials to infer what state or context they are in [302].

Furthermore, they show how spontaneous recovery, which we

discussed above, is also affected in OFC lesioned animals. With a one

state model, for example, the original association is actually erased

during the extinction phase; but with two states, only one of them is

affected. So, with passage of time the healthy animal becomes unsure

if it is in state one or two, allowing for spontaneous recovery.

Niv [195] proposes that OFC works as an abstract link to

representations in other areas, providing a route to the integration of

representations. Many of the mechanisms mentioned so far rely on

memory in some form, and the concept of cognitive maps especially,

are traditionally associated with hippocampus. Indeed, the

hippocampus has been suggested to play a role in the process of

clustering [195] mentioned above. Additionally, the hippocampus

looks to be important for cognitive maps of state space in both spatial

and non-spatial [237, 297, 312] tasks, as well as for state transitions

[180, 235]. In short, it seems that Tolman [278] was right; animals do

have internal models of the world – “cognitive maps”.

The hippocampus has long been implied in memory formation and

retrieval, as in the famous case of patient H.M. who due to epilepsy

had most of their hippocampi and surrounding areas removed

bilaterally. H.M. was subsequently unable to form new memories

[186]. Other evidence includes the observations that London taxi

drivers, who undergo extensive learning of all of London’s streets,

differ in hippocampal structure [168] from controls. Furthermore, the

hippocampus is important for imagining the future [114].

An important finding is that of place cells, which are hippocampal

neurons that fire when an animal is in specific locations; for example,

6 2 B A C K G R O U N D

within a maze [186]. Place cells not only represent the animal’s current

location, but also those locations it has visited in the past. Place cells

are supported by grid cells in the entorhinal cortex (EC) [187] as well

as a multitude of other function-specific cells whose activity correlate

with head direction, goal direction and reward vicinity [21].

More recently, it has been suggested this hippocampal-entorhinal

system is not only involved in spatial cognitive maps, but may play

an important role in structural abstraction for non-spatial relational

knowledge [297]. This would predict a role for the hippocampus-EC

system in the formation of latent states, as discussed above. This

proposal appears to fit neatly with other studies showing a role for

the hippocampal system in non-spatial tasks [14, 92, 194, 206, 237],

time integration [284] and insight [175].

Although some findings indicate OFC having a larger role for

future state representation than hippocampus [76], others suggest the

hippocampal complex is highly important as a predictive map for

long term reward prediction [257]. It seems that the more likely

answer that both are important. Work by [312] suggests OFC and

hippocampus play complementary roles, with the hippocampus

being engaged especially during high memory load. Work by [35]

builds on this and shows how future predictions work across

multiple scales, with: anterior prefrontal cortex planning furthest into

the future; orbitofrontal cortex and anterior hippocampus predicting

medium time horizons; and the posterior hippocampus having the

shortest future predictions.

2 . 3 .6 T H E S U C C E S S O R R E P R E S E N T A T I O N

One promising specific model for cognitive maps is the successor

representation (SR) [99, 180]. We have mentioned it a few times above,

and it will be described in detail in chapter five. Briefly, SR can be

seen as a combination of model-free and model-based RL, where both

future and past states can be encoded as rows and columns,

respectively, in a table (in a limited, discrete state space scenario). This

is intriguing because the SR can thus learn to approximate the state

transition function. This therefore allows for a combination, or

compromise, between MB and MF RL. SR-based algorithms has been

shown to display and explain behaviour that otherwise would need

either MF or MB RL [182, 227] as well as correlating with neuronal

2 . 3 R E P R E S E N T I N G T H E W O R L D A S S T A T E S A N D T A S K S 6 3

activity in neuroimaging studies on spatial and non-spatial tasks [21,

35, 92, 180, 183, 206, 257].

To go into further detail on some of those studies, work by

Stachenfeld and colleagues [257] show how SR simulations display

patterns that correlate with place and grid cell activity in rodent

studies. Furthermore, SR combined with offline replay better explains

human behaviour in revaluation tasks (where reward values and/or

state transitions are changed between training and test) than either

MF or MB RL [182]. In maze navigation simulations, using latent

learning (see chapter five), revaluation and detour tasks – where

previous paths to reward are blocked – can similarly be solved

flexibly by SR with offline learning [227]. Garvert and colleagues [92]

demonstrate SR equations are similar to graph theory and that SR

correlates with neural activity for abstract relationships between

objects. The same point is argued by Peer and colleagues [206] who

show the similarity between spatial cognitive maps and graphs for

structuring knowledge. Furthermore, Gardner and colleagues [91]

demonstrate that using SR, it may be possible to recast dopamine

prediction errors as more general sensory prediction errors, of which

reward is but one such prediction error.

2 . 3 .7 H I E R A R C H I C A L S T A T E - A C T I O N S T R U C T U R E

It was mentioned above how actions can be seen as part of the state.

The research on discovery and selection of actions is not as rich as that

of “states” but has focused on options – sets or sequences of actions –

and task sets [59]. The options framework was described above in the

section on hierarchies, and work by [184] show that the generation

and selection of such options seem to rely on partly different

processes. One way of discovering options is by using the successor

representation to find both states and action-options concurrently

[166].

As noted above, task sets have their origin with Harlow’s learning

sets [113]. In a two-choice bandit task, where the best option switches

between experimental blocks, monkeys, and children “learn to learn”,

meaning that after many blocks of the task they are quicker to adapt

to the change than they are in early blocks. In other words, when you

have experience of a task, as soon as you can identify the current task

and fit it onto the structure of a previously learned task, you already

know a lot about how to perform. Collins and colleagues [54, 72] show

6 4 B A C K G R O U N D

how such task sets can be created and selected between based on the

current context. These proposals are similar in mechanism to the

above mentioned attention based systems where frontal cortex

maintains and selects between hypotheses for task structure [213].

The nice aspect of such task set models is that they are naturally

hierarchical in nature (hence they can be called HRL, see chapter five).

They can define context, state, and actions together in different

configurations. Such HRL models were more recently used in [75],

where they show HRL better accounted for human behaviour than

either model-free RL or a hierarchical Bayesian model.

2 . 4 S U M M A R Y A N D D I S C U S S I O N

We started this chapter by looking at the history of RL and its

mathematical foundations. We then discussed the two main families

of RL algorithms, model-free and model-based, with the first seen as

quick and habitual behaviour and the second as slower but more

flexible planning behaviour. We contrasted this duality with that of

dualities in other fields of cognitive science and saw how it is more

likely a question of multiple systems, and not just two.

Based on what we found about RL and multiple systems, we could

then ask how animals create states. From that question we clarified

three more pointed questions: (1) what are states and how are they

created? (2) how are states informed by and combined into task

structure? and (3) how is task structure summarized into a model, and

how does that model interact with learning and memory? As we have

seen these three questions are inherently entangled and are not easy

or even possible to separate.

However, the current research points towards a view that attention

guides perception towards relevant features that can be used as states.

Memory and inferential processes then collaborate to find (probable)

causes of observations, and then categorize these observations into

task representations consisting of multiple states. Animals track their

current “location” in such task representations probabilistically,

holding beliefs about the current state. These beliefs are further

supported by predictive cognitive maps that help track state

transitions and locations based on previous experience. Through

feedback loops, attention and working memory can then utilise

(reward) prediction errors to adjust and evolve hypotheses about task

2 . 4 S U M M A R Y A N D D I S C U S S I O N 6 5

structure, potentially changing what environmental details are used

for the state representations.

Episodic7 memories would provide priors for categorization and

task structure hypotheses and these priors, combined with the current

observations, result in the posterior belief state distribution of task

structure. Creatures like the Australian Jewel beetle would have

extremely fixed priors (evolutionary memories) for belief states

whereas more flexible creatures like mammals have more flexible

priors, provided via both learning and memory. The idea of priors

being provided by evolution is something often taken for granted in

free energy formulations [10] but it would make sense that some of

these priors can be learned, especially in humans.

More general frameworks like predictive coding and free energy

fit well with the above research findings, where the processes

involved are continuously updated based on reward and sensory

prediction errors. These frameworks are obviously similar to the

sensory prediction hypothesis [91].

For our purposes, we are interested in investigating how humans

can quickly and flexibly adapt their representations of a task in order

to find structure. We will do so with a new type of task, presented in

chapter five. Thus, we are interested in computational cognitive

models that build on the principle of RL and extend this principle

with alternative state structures. Based on the existing research

presented above, we chose versions of SR and HRL to model

behaviour in our new task, details of which are also presented in

chapter five.

In order to fit computational models to behaviour, we need model

fitting and selection methods. There are many such methods, all with

different advantages and drawbacks. Neural network models, for

example, are powerful but computationally demanding and difficult

to interpret neurobiologically. We will instead generally focus on

analytically tractable models; despite this the fitting of such models

still has considerable complexities. We will demonstrate these

complexities in chapter three and four and use our findings to select

the specific methods to use for our investigations in chapter five.

7 Most likely other types of memory like procedural memory also play a role,

but the literature mainly focuses on episodic memory in this regard. Perhaps a

future research venue?

6 6 B A C K G R O U N D

3 M E T H O DO L O G I C A L I N T R O DU C T I O N B Y

A N A LY SI N G T H E B A N DI T TA SK

“With four parameters I can fit an elephant, and with

five I can make him wiggle his trunk.”

– John von Neumann [172]

In this chapter, we will introduce our methodology by demonstration,

using the so-called Bandit task. This task is simple enough to make

our analyses straight forward, yet able to highlight methodological

complexities that have not been exhaustively explored in the existing

literature. There is a recent trend however with authors making some

of the points we will highlight below [74, 190, 203, 300].

The Bandit task gets its name from being conceptually similar to

the "one armed bandits" - slot machines - often seen in casinos. In the

case of a bandit with one arm we can make a choice between two

actions; to pull or not to pull the arm. In the casino setting, one must

deposit a coin for each pull, meaning there is a cost associated with

that decision. But the potential reward can be many times more than

the cost. Of course, that hope in the mind of the player is what the

casino is betting on.

In human reinforcement learning research the option of "no pull"

or inaction is rarely considered8, and the same will be true for our

purposes. What that means is that we need at least two arms for our

bandit task to make the task interesting from an experimental

perspective. Personally, I imagine this as one machine with two arms,

but we could also see it as two machines with one arm each.

The two arms are each separately connected to a certain probability

of reward, usually with one arm having higher probability than the

other. That means some exploration is needed to find the best option,

demonstrating the exploration/exploitation problem mentioned in

chapter two. Do we exploit the option we have so far learned to be the

more rewarding or do we explore the other option for potentially

greater rewards should the reward contingencies change?

Furthermore, whether a cost is associated with a choice can differ

between experiments. Sometimes, before each choice one makes a bet

8 This would be an interesting research line in itself

6 8 M E T H O D O L O G I C A L I N T R O D U C T I O N B Y A N A LY S I N G T H E B A N D I T

T A S K

on the payoff, but commonly that is not the case in the Bandit task. A

more common variant when it comes to rewards is that wrong choices

are associated with punishments. As mentioned in chapter two, the

evidence for punishments being associated with the same circuitry as

rewards are conflicting. Thus, we do not use punishments in our

investigations, but rather see the absence of reward as being a simpler

place to start.

Importantly, the Bandit task does not have states. Or, from another

viewpoint, it has only one state. One state, and two actions. This

distinguishes it from the tasks we will investigate in later chapters,

where different states will come into play. This simplicity of the

Bandit task therefore makes it useful for us to explore first. We are

mainly using it here to set the ground rules of our methodology for

the subsequent studies and simulations.

We could of course add more arms to increase the complexity of

the task. This can be referred to as the n-bandit task or multi-armed

bandit process, where the number of arms is represented by 𝑛.

The bandit task can also be represented by playing cards, where,

for example, we have two or several decks of cards to draw from. This

version and its variants are often referred to as the Iowa Gambling

Task [20, 36, 305] and has been used to study many psychological

phenomena such as autism [309], depression [39] and schizophrenia

[41].

There are myriad examples of how such a seemingly simple task

can be useful as a model for real life events outside the lab. Just as

statistical textbooks often use coin flips to demonstrate a probability

distribution that can represent real situations such as whether

someone has a certain disease, or if a treatment works or not; the

Bandit task is the decision research equivalent. Any situation where

an animal must explore two options in order to discover which one

provides the bigger payoff can be modelled as a bandit task. The most

obvious one being trying different foods to find out the one which

provides the most sustenance or the nicest taste. For example,

bumblebees searching for food in a newly discovered flower patch

where flowers are of different colours [134]. Usually, however, there

are more factors at play like the look and smell of the options – states,

as we shall revisit in later chapters – but at a basic conceptual level

many choice tasks can be described as bandit tasks [262].

3 . 1 W H AT A R E M O D E L S ? 6 9

Here, we are not claiming any major new findings with regards to

the bandit task itself. As mentioned above this task has been explored

previously in many studies [70, 143, 185, 243]. However, as noted, it

is useful to establish baseline properties of RL and to present our

methodology. With regards to the methodology, there are some novel

features, and we are going to present different modelling approaches

and contrast their advantages and disadvantages. This has partly

been done in previous research [65, 211, 261, 262, 300] but to our

knowledge not as exhaustively as we attempt here. As mentioned

above, there is a recent trend showing some of the basics of model

fitting are not as simple as a reading of the literature would make you

believe [74, 192, 203], and our investigations below further adds to

this point.

Furthermore, the methods established in this chapter are going to

lay the foundation for investigations in subsequent chapters. Since

those subsequent chapters will use more complex tasks and models,

it's helpful to see how they work in a simpler case first.

3 . 1 W H AT A R E M O D E L S ?

Before getting into the details of our modelling methodology, we

should discuss what models are and what they can tell us. Webb [296]

discusses – in short – what robots can tell us about animal behaviour,

a discussion that is appropriate here as well. Though we do not

construct physical robots, our simulations can be seen as virtual

robots demonstrating (limited) behaviour change via some sort of

learning. What [296] says is we can see robots as models, but we

should keep in mind how and where in the investigative process these

fit, as per Figure 3.1.

7 0 M E T H O D O L O G I C A L I N T R O D U C T I O N B Y A N A LY S I N G T H E B A N D I T

T A S K

A complementary view comes from the “three levels of Marr”

[198], where we have the computational level (what is the problem),

the algorithmic level (what is the solution), and the implementational

level (what is the physical structure that runs the algorithm). In our

case – reinforcement learning – our problem is optimal decision

making (maximising reward and in some cases minimising

punishment), the algorithm is reinforcement learning and as we have

discussed previously the implementation is (mainly thought to be)

dependent upon the dopaminergic system projecting to the

mammalian basal ganglia. According to Marr, if we have support on

all the three levels then we can say with greater certainty that the

robot’s behaviour supports our hypothesis.

Luce [165] brings up how difficult it is to fit the formal language of

mathematics to something so inherently dynamic as human

behaviour and defines four distinctions when it comes to

(mathematical) modelling of behaviour. The first is that of

phenomenological versus process models, where behaviour is

explained by black box models (phenomenological) that are

sometimes “opened” to investigate information flow (process). In

both cases, these types of models are not explicitly linked to

neurobiology although process models may sometimes be mapped

onto a neural substrate. RL would here fall under the process

category, and as explained above guided by Marr, we do make

neurobiological connections.

Figure 3.1 Overview of simulations (robots) as models of animal behaviour in the world.

Our investigations draw from theories sitting on the middle row – source – and are

implemented by computers (technology, top row) as simulations. These simulations can

provide predictions of behaviour that we can compare to behaviour in the target system in

the world (bottom row). Adapted from [296]

3 . 1 W H AT A R E M O D E L S ? 7 1

The second distinction is that between normative and descriptive

models. Models are normative in the sense that humans should act

according to some defined logic, but an accurate description of

behaviour would include those decisions we make that are not fully

based on the facts at hand. RL models are mainly descriptive, since

decisions can be made before a full understanding of the task has been

reached, and different parameter values allow for different

behaviours. Our interest in whether there are marked individual

differences across participants (and see the next section for more on

individual differences) questions the extent to which these models

can be normative. Presumably, big differences across people arise

when they use differing underlying logic, or differing symbols (state

representations) that the logic is applied to. Normative decisions

could also be traded off in some people against the effort required to

achieve the normative decision, and so participants opt for a non-

normative decision which involves less effort.

The third distinction is about dynamic versus static models – both

individuals and their environments change so should models include

such aspects? This thesis is partly focussed on this dichotomy and the

space in-between the extremes of fully dynamic or fully static. How

static are states and what happens if we change their structure? We

explore this with some of the more advanced models discussed in

chapter five. The models discussed there can also handle – with

different degrees of success – changes in the environment such as

changing the location of a reward in a maze.

The fourth distinction is that of noise versus model structure. For

example, if one model fits our data better than another model, is that

due to the structural differences of these models or is it due to noise

in our data? In human psychological data, there will almost always

be noise. Such noise can either be explicitly modelled or not. If there

is differential fit between two models and neither includes

randomness then the difference in fit is probably related to the

structure of the model. If both models take random noise into

consideration, then one model might fit better because its random

component better matches the noise in the data. Alternatively, the

difference in fit might arise from the non-random structural part of

the model. In RL models, noise arises in the choices made by

participants, and these choices – or action selections – may be

modelled in different ways as described in section 2.1.4. We have thus

7 2 M E T H O D O L O G I C A L I N T R O D U C T I O N B Y A N A LY S I N G T H E B A N D I T

T A S K

used the same the same choice algorithm, SoftMax, for all models

under consideration in order to be more certain that any differences

in fit are due to model structure rather than a difference in ability to

model noise.

The boundaries between the last three distinctions of Luce [165] are

not necessarily very clear in themselves. Individual differences will

be discussed in more detail below, but the points raised by Luce are

important; how do we know if a difference in model fit is a matter of

individual differences, model differences, or noise in the individuals’

decision making?

It is often the case we have multiple hypothetical mechanisms

(Figure 3.1) for why humans behave the way they do, but which one

is the (most) correct one? By constructing a computational model of

each such hypothesis, we can simulate the behaviour (top right in the

figure) and produce predictions that can be compared to behavioural

data (mid-right and bottom-right in the figure). By comparing how

well the predictions of each model “fit” the behavioural data, we can

draw conclusions about which model we believe is the most plausible

one. This process would quickly become practically impossible to do

manually (for example by visualising the behaviours in graphs).

Thanks to computers, we can do these comparisons numerically, and

use statistical approaches to finding what hypothetical mechanism

best explains a certain target behaviour (Figure 3.1). This process of

comparing models is called model selection or simply model

comparison. Further details on model comparison will be given

below (section 3.10).

However, it’s appropriate to heed Webb’s warning that “a model

that behaves like its target is not necessarily an explanation of the

target’s behaviour.” [296].

3 . 1 .1 I N D I V I D U A L D I F F E R E N C E S

A common question in psychological research is to investigate how

model parameters may correlate with other characteristics, such as

personality as measured by a personality scale (e.g., Big5/OCEAN;

[224]) or the presence/absence/degree of symptoms in some clinical

population such as depression or schizophrenia [41]. Perhaps one

learns slower in rewarding contexts if one is depressed, but there is

no effect for learning in non-rewarding contexts? This could

3 . 1 W H AT A R E M O D E L S ? 7 3

potentially be reflected in a lower average learning rate in modelled

behaviour (e.g., the alpha parameter in Q-learning models, below) for

a group of patients with depression versus that of a healthy control

group.

This idea can be illustrated using Figure 3.2 and its top middle

frame (continuous differences). Perhaps we hypothesise that healthy

controls and patients both use the same model, but maybe they on

average lie in different positions along the continuum of processes in

the model. If so, we might expect that the controls are mainly the

white dots on the left-hand side and patients the white dots on the

right-hand side of an imagined line down the middle of the grey area.

On the other hand, patients and controls may use different models

altogether. This difference would then better be represented by the

bottom middle frame of Figure 3.2, discrete differences, where the

two groups are clearly separated.

Figure 3.2 Different scenarios of individual differences in some experimental task. The white

dots represent a specific parameterization common for one or several participants. The grey

areas show the range of inferences possible to make about the white dot, based on behavioural

data. Top left: There are no individual differences, and the true value is said to be the

population mean of the measure of interest. Top middle: Individuals vary continuously

around some common distribution, which is the case for hierarchical models discussed below.

Bottom left: Each individual is different and there is no common structure between them,

which is the case when we fit models individually below. Bottom middle: Individuals vary

in what strategy (model) they use, which we will also see examples of below when some

individuals are better explained by one model over another. Right: All the types of differences

are combined, and we have differences in strategy (model) used and within those strategies

people vary in how they are applied. Adapted from [18]

7 4 M E T H O D O L O G I C A L I N T R O D U C T I O N B Y A N A LY S I N G T H E B A N D I T

T A S K

These questions of relating parameter values to individuals have

in recent years become known collectively as computational

psychiatry [122], rising in popularity together with the increased

availability of computational power, and tools for fitting models

becoming easier to use and more widely available.

The common way to conduct experiments in the literature is to test

models at the group level. Either for different populations, as in

asking the question “is there a difference in learning rate between

individuals with ADHD and those without?”. Or other times it can be

about asking “in this experimental task do people use model free RL,

model-based RL, or a combination of the two?”.

An important aspect to keep in mind with many studies within the

cognitive sciences is they disproportionately rely on Western,

Educated, Industrialised, Rich, and Democratic (WEIRD)

experimental subjects [115, 212]. For example, it is most common to

recruit participants among university undergraduates, who receive

course credits for participation. What is problematic with this is not

only are these subjects a small subset of the world population, but

they have also been found to be quite different from the average

person [115].

In recent years, online recruitment of participants has become

more widely available with services such as Amazon Mechanical

Turk (www.mturk.com) and Prolific (www.prolific.co). These

services have been shown to provide both high quality data [37] and

increased diversity compared with the typical university student

samples [37, 205]. In other words, using online recruitment services

for gathering data may alleviate some of the diversity issues with

traditional experiment participants. However, the trade-off of using

online testing is we sacrifice control in being unable to check what

participants are doing and so may have to discard more data (see

examples of this in chapter five).

Issues with diversity do not necessarily invalidate existing results

or approaches, but they highlight the question of individual

differences. Perhaps it is the case that a majority of people use model-

based RL in some choice task, but other individuals actually use

model-free RL. Some published work [18] shows very nicely how

individuals might differ; see Figure 3.2. These group-based

3 . 1 W H AT A R E M O D E L S ? 7 5

approaches are not necessarily invalid, but they do gloss over the

question of individual differences.

“Fitting a model” is the process by which we can get a statistical

measure of how well a certain model fits some dataset. For example,

is it the case that a particular reinforcement learning model can

accurately describe the behaviour of a human performing the two-

armed bandit task? One should however keep in mind that even if we

contrast several models and one of them fits “best”, this is only the

best-fitting among the ones we have tested. There will always be, due

to practical constraints, a larger space of models not considered

relative to the small number of those actually considered.

Considering how difficult model fitting is to get to work well at all

[65, 74, 300] (also see below), it is perhaps no wonder that the question

of individual differences is not commonly brought up. But it is still an

important aspect to keep in mind and has important implications for

what we can infer from model fitting [74] and how generalisable the

findings are [190].

Exhaustive demonstrations of the model fitting methods we

present below have occasionally been done separately before [65, 150,

300], but to our knowledge have rarely (perhaps never) been

presented without making the case for one method over the other.

So, in this chapter, we focus more on contrasting them to prepare for

later investigations with more complex tasks.

Nevertheless, despite the difficulties of model fitting, it can still be

a useful tool, if one remains aware of the classic adage that “all models

are wrong, but some are useful” [30].

3 . 1 .2 O U R A P P R O A C H

Having introduced the concepts of models and model fitting, as well

as issues to consider, we now turn to explaining our approach.

It is often the case that we may have multiple hypothetical

explanations for why humans behave the way they do, even in a

simple task such as the Bandit task. Here is where model comparison

approaches are helpful in cases where it may be difficult to ascertain

from visual exploration of simulation data alone which of the model’s

possible behaviours look most similar to participant data. We show

below (for example section 5.2) how just increasing the number of

7 6 M E T H O D O L O G I C A L I N T R O D U C T I O N B Y A N A LY S I N G T H E B A N D I T

T A S K

parameters from two to three can make it difficult to get a visual sense

of a model’s possible behavioural space.

Then, if we are reasonably certain that a specific model is useful,

we may look at specifics of that model. As discussed above, maybe

we suspect that there are differences between healthy control

individuals and some patient group in their average value on a

particular model parameter. This could be very useful to understand

such patient groups better, and how to implement more appropriate

support for their wellbeing.

What this thesis will show, however, is that such inference about

differences in parameter values is very difficult to achieve. We will

show that the uncertainty of the recovered parameter value for a

single individual is often quite high, such that there is difficulty to

locate an individual’s value of a specific parameter with any

precision. We might be limited to an ability to separate groups of

individuals in terms of their average parameter values only. Going

back to Figure 3.2, we will argue that “continuous differences” (top

middle) can be very difficult to detect, and often results in only being

able to see multiple individuals as the top left frame (“no

differences”).

For that reason, this thesis’ main focus in later chapters will mainly

be on model comparison/selection (bottom left, “full differences” in

Figure 3.2), rather than parameter value inference. The goal, however,

is of course to be able to rely on our parameter values – we would like

to achieve what is shown in the big frame to the right in Figure 3.2.

We show the weaknesses of current methods in the hope they can be

improved in the future. This is also the reason we choose to work with

fairly simple models, rather than more complicated ones such as

neural networks. Those kinds of models have so many parameters

that it would be extremely difficult to relate behavioural differences

to any specific parameter, even at a group level. Finding out exactly

what parameters do what in neural networks is an active area of

research [85, 160].

Because of their size it is also non-trivial to fit neural network

models to behavioural data, both methodologically and because of

time. The aspect of time – that it can take many hours to fit a model

to data – will be discussed throughout this thesis. When it comes to

3 . 2 M O D E L S A N D T A S K P A R A M E T E R S 7 7

methods for fitting neural network models to behavioural data, there

is promising work done by Dezfouli and colleagues [69, 70].

3 . 2 M O D E L S A N D TA S K PA R A M E T E R S

We will now take a closer look at the details of the task and the

algorithms and models used with this task. As mentioned above, the

bandit task we will be using is a two-armed bandit task, henceforth

referred to as the Bandit task. This task has three task parameters: the

reward probabilities for each of the two arms and the number of trials

(the number of pulls on the arms). We will refer to these parameters

as 𝑝𝑎𝑟𝑚1 𝑟), 𝑝𝑎𝑟𝑚2(𝑟) and 𝑇 in equations when presented in text. In

code9 they are referred to as arm1, arm2 and trial_count.

For our first simulations, and later model fits, we are going to use

Q-learning [267, 295] and an algorithm making random choices,

which has a possible bias for picking one arm more often than the

other. We call the latter algorithm simply RandomBias.

Q-learning commonly has three model parameters: learning rate 𝛼,

discount parameter 𝛾 (which determines the influence of expected

future rewards) and, for choosing actions, uses either the SoftMax β

parameter or ε-greedy choices with the ε parameter. However, an

issue with ε-greedy is that likelihoods may become intractable and

therefore difficult to recover [63, 190], and we thus focus on SoftMax.

Here we will also leave out the discount parameter, because in a task

such as the bandit task we are looking at one-step rewards (i.e., the

action on each trial is followed by a reward or non-reward event). The

discount parameter is useful in tasks where there are multiple steps -

multiple action choices - needed before a reward is found. In the

computer science literature this may be called "sparse rewards" [268].

In a later chapter we are going to contrast Q-learning with two

parameters and Q-learning with three parameters to demonstrate this

difference (section 5.2).

In this chapter then, we use Q-learning with two parameters:

learning rate 𝛼 and the inverse temperature 𝛽. The latter is sometimes

called 𝜏 in the literature. Henceforth this version of Q-learning will be

called "QL2". QL2 is thus the equation:

9 https://github.com/fohria/phd_thesis

7 8 M E T H O D O L O G I C A L I N T R O D U C T I O N B Y A N A LY S I N G T H E B A N D I T

T A S K

 𝑄t+1
(𝑎t) = 𝑄t

(𝑎t) + 𝛼 (𝑟t − 𝑄t
(𝑎t)) 3.1

where 𝑎𝑡 ∈ (1,2) denotes the arm chosen (or action)10, 𝑟𝑡 is the reward

on trial t, and 𝑄𝑡 holds trial to trial values representing the values of

the different actions. Note that only the selected action’s value is

updated.

Because the Q values vary independently, we use SoftMax to create

a choice probability vector from the Q values:

𝑝t

(𝐚) =
𝑒𝑄t(𝐚)

∑ 𝑒𝑄t(𝐚)

3.2

where 𝒂 = {𝑎1, 𝑎2}.

Together, equations 3.1 and 3.2 can be combined into an algorithm

as seen in Code Snippet 3.1.

Q = np.array([0.5, 0.5]) # init with equal probabilities

for trial in range(trial_count):

 # compute choice probabilities using softmax

 q_soft = Q - np.max(Q)

 probabilities = np.exp(beta * q_soft) / np.sum(np.exp(beta * q_soft))

 # make choice based on choice probabilities

 actions[trial] = choose([0, 1], probabilities)

 # generate reward based on choice

 rewards[trial] = np.random.rand() < bandit[actions[trial]]

 # calculate prediction error and update action values

 delta = rewards[trial] - Q[actions[trial]]

 Q[actions[trial]] += alpha * delta

Technically, α may be larger than 1 but in practice this is rare and

will lead to instability. So, we assume a parameter value range of 0 <

𝛼 < 1. For β, its effect on the Q-values is that β values closer to zero

decreases the difference between the Q-values, thus increasing

explorative behaviour (or stated differently, increasing random

10 In Python code, index starts from 0, so there arms would be 0,1 instead

Code Snippet 3.1 Q-learning algorithm in Python. It uses two parameters: learning rate α

and SoftMax temperature β. The “np” is short for numpy, a standard mathematical library

for Python.

3 . 2 M O D E L S A N D T A S K P A R A M E T E R S 7 9

choice of actions). Higher values of β will accentuate any difference

between the Q-values and cause increasingly greedy behaviour, i.e.,

picking the action with the higher value. The possible parameter

value range is thus 𝛽 > 0, but in practice we will most often use 1 <

𝛽 < 20. Below we investigate how different values of α and β impact

performance.

The randomly playing agent, from here on called "RandomBias"

agent, picks a random action on each trial. But it may have a bias

towards picking one arm over the other, which is controlled by the

parameter 𝑏𝑖𝑎𝑠. The probability of the RandomBias agent to pick each

arm is thus expressed as:

𝑝𝑎𝑟𝑚1 = 𝑏𝑖𝑎𝑠, 𝑝arm1 + 𝑝𝑎𝑟𝑚2 = 1

The RandomBias agent therefore doesn't need to use a choice

function such as SoftMax as the model specifies action probabilities

directly. Thus, the parameter range for bias is 0 < 𝑏𝑖𝑎𝑠 < 1.

3 . 2 .1 N O T E O N T E R M I N O L O G Y

Here we also introduce certain terminology to more easily distinguish

between different parts of our investigations. In simulations, we will

refer to artificial agents as either agents or subjects. These agents or

subjects "play" a task, for example the bandit task. Often, we perform

multiple simulations for a specific parameter value combination for

an agent, where we refer to it as agent or subject repetitions. Later,

when including human participants in our investigations, we may

refer to them as subjects or participants depending on the context.

Importantly, when we "fit models" we use the term model - even

though technically an artificial Q-learning agent and a Q-learning

model are the same thing.

When investigating how well the models can be fit to data, we will

simulate data using known agents and parameter values. Then we fit

models to this data and see how close we get to true parameter values

(a process often referred to as testing “parameter recovery”), as well

as if we can identify what agent type generated the data. Often we

refer to the resulting datasets as “simfits”, short for simulations and

fits.

8 0 M E T H O D O L O G I C A L I N T R O D U C T I O N B Y A N A LY S I N G T H E B A N D I T

T A S K

3 . 3 S I M U L AT I N G P E R F O R M A N C E I N T H E B A N D I T TA S K

To explore the task performance of our agents in the bandit task we

will first stick to one specific variant of the Bandit task with task

parameters:

𝑝𝑎𝑟𝑚1(𝑟) = 0.2, 𝑝𝑎𝑟𝑚2(𝑟) = 0.8, 𝑇 = 1000

For both arms, 𝑟 = 1 if a randomly generated number is below

𝑝(𝑟), otherwise 𝑟 = 0 (see above Code Snippet 3.1). It is not important,

in this example, that we have arbitrarily chosen the task parameters

such that 𝑝𝑎𝑟𝑚1(𝑟) + 𝑝𝑎𝑟𝑚2(𝑟) = 1.0.

For each agent type (QL2 and RandomBias), we randomly generate

1000 combinations of its agent parameter values. These values were

generated individually for each agent in the following way:

𝛼𝑄𝐿2~𝑈(0, 1), 𝛽𝑄𝐿2~𝑈(1, 20), 𝑏𝑖𝑎𝑠𝑅𝑎𝑛𝑑𝑜𝑚𝐵𝑖𝑎𝑠~𝑈(0, 1)

We also repeat simulations with each such agent parameter

combination 100 times to get an average performance for that model

parameter combination. This is due to the inherent random variation

across runs for the same parameter combination11. We also calculate a

score - on each trial - which is based on whether the agent picked the

correct arm or not. Correct here means choosing the arm with higher

reward probability.

11 If we run one agent with a specific parameter value combination, say 𝛼 = 0.3 and

𝛽 = 5, 100 times, we will get an average sum of correct choices of 940.5 (SD 14.6).

3 . 3 S I M U L AT I N G P E R F O R M A N C E I N T H E B A N D I T T A S K 8 1

As seen in Figure 3.3, the score is the total sum of all correct choices,

where a correct choice is picking the arm with the highest reward

probability. In the plot we can see that the QL2 agent learns this well

enough to get an average score of 920 (SD 83), while the RandomBias

agent nicely has an average of around the middle possible, 493 (SD

294).

3 . 3 .1 E X P L O R I N G E F F E C T S O F V A R Y I N G M O D E L P A R A M E T E R S

Overall performance across the two agent types regardless of

parameter values, as done above, is useful to make sure our agents

perform in the way we expect. In this case it so happens that we see

an overall pattern between the two agents, but it could have been the

case that QL2 performance was only good for specific parameter

combinations. For simpler models this can be easier to predict, such

as for the RandomBias agent where there will be a good correlation

between agent parameter value and score. Depending on our goals

we may also be interested in what parameter combinations – if any –

are better than some others.

For those reasons just stated, we should also investigate

performance across different parameter combinations. We call this a

"parameter sweep", where we define a range of values for each

parameter. For the QL2 agent, which has multiple parameter values,

we combine the ranges across all permutations. As before, we

Figure 3.3 Performance summary for agents QL2 and RandomBias playing the Bandit task

for 1000 trials. Score is calculated as the sum of correct choices, where correct choice is the

arm with higher reward probability.

8 2 M E T H O D O L O G I C A L I N T R O D U C T I O N B Y A N A LY S I N G T H E B A N D I T

T A S K

simulate each parameter combination 100 times to get an average for

that specific parameter combination. The values used for these

permutations for the QL2 β parameter was 1, 2, 5, 10, 20. The

remaining two parameters are as below, where the first number is the

start, the second number is the end, and the third number is the step

size.

𝛼𝑄𝐿2: 0.01 → 1.0; 0.02 𝑏𝑖𝑎𝑠𝑅𝑎𝑛𝑑𝑜𝑚𝐵𝑖𝑎𝑠: 0.01 → 1.0; 0.01

For clarity, this means 50 α values and 100 bias values. As an

example, one QL2 parameter combination is α=0.03, β=5. For this

parameter combination, 100 subjects are simulated, and their scores

averaged. Since we have 5 β values and 50 α values, we have 5 ∗ 50 =

250 parameter value combinations.

In Figure 3.4 we have our QL2 agent to the left and our RandomBias

agent to the right. Note here we use 𝑝(𝑐𝑜𝑟𝑟𝑒𝑐𝑡) - probability of

picking the correct arm - as our measure on the y axis instead of the

total sum of correct choices as we did above.

Figure 3.4 Probability of picking the correct arm – the arm with highest reward probability

– for parameter sweeps with QL2 (left) and RandomBias (right). Left: QL2 agent

performance. X-axis represents the α parameter space and the differently coloured lines are

different values of β. Right: RandomBias performance. Note that y-axis differs between the

left and right plot. Shaded areas around lines represent 95% confidence interval.

3 . 4 E X P L O R I N G T A S K P A R A M E T E R S 8 3

In the left part of Figure 3.4, we can see how the probability of

correct choice (y-axis) depends on 𝛼 (x-axis) and 𝛽 (coloured lines).

What can be gathered is that for high performance (high probability

of correct), we would like 𝛼 < 0.4 and 𝛽 > 5. At higher 𝛼, performance

decreases because with a high learning rate, what Q-value is currently

biggest will be more likely to oscillate depending on the reward

received on the last trial (as implied by Equation 3.1 above). Since

higher 𝛽 means greedier (i.e., exploitative) behaviour, the

combination of high 𝛼, 𝛽 together means behaviour becomes slightly

more oscillatory and thus performance suffers overall.

In the right part of Figure 3.4, we see that our RandomBias agent

behaves precisely as expected. If it has 𝑏𝑖𝑎𝑠 = 0 (left side of x-axis) for

picking arm1, that means conversely that it will always pick arm2,

which is the correct arm. As we follow the x-axis, we get higher bias

for arm1 and thus the probability of picking the correct choice

becomes lower.

3 . 4 E X P L O R I N G TA S K PA R A M E T E R S

Another aspect to look at is how variations of the task itself can impact

performance. Following on from the performance we just looked at

above, we can easily look at how agent parameter combinations differ

between different trial counts for the Bandit task. Since every trial is

the same, we can use the same data as above and look at the first n

trials and compare performance. Here we will only do this for the QL2

agent, since we have already established that the RandomBias agent

works as we expect, and it is not very interesting to look at this agent

further here.

8 4 M E T H O D O L O G I C A L I N T R O D U C T I O N B Y A N A LY S I N G T H E B A N D I T

T A S K

In the left part of Figure 3.5, we see performance for the first ten

trials. With β > 10, the agent is quite greedy and so finds and sticks

with the correct arm. It can thus reach eight or nine correct choices

within these first ten trials, across a wide range of alpha values.

Specifically, α needs to be somewhere between 0.2 and 0.6 in order to

reach those eight or nine correct choices. Meanwhile in the right side

of Figure 3.5, we see that within the first 100 trials the overall

behaviour is already quite like that for the 1000 trials plotted in the

left side of Figure 3.4. But here we have slightly wider confidence

interval shadings, since we only have a tenth of the trials to average

over.

3 . 4 .1 V A R Y I N G B A N D I T A R M R E W A R D P R O B A B I L I T I E S

Finally, we can also investigate the effect of varying the arm reward

probabilities for the bandit. We do this in two different ways. First,

we assume 𝑝𝑎𝑟𝑚1(𝑟) + 𝑝𝑎𝑟𝑚2(𝑟) = 1. In other words, we vary the arm

reward probabilities in a dependent manner. The range of values used

are 0.1 ≤ 𝑝𝑎𝑟𝑚1 ≤ 0.9 in steps of 0.1, totalling 9 values for 𝑝𝑎𝑟𝑚1.

Second, we let both arms vary independently in the range between 0

and 1; 𝑝𝑎𝑟𝑚1,𝑎𝑟𝑚2(𝑟) ∈ (0, 1). We use the same range as just mentioned

above, but now use this for both arms and create all permutations of

these resulting in a total of 81 value combinations. In both cases we

use a QL2 agent with somewhat arbitrarily chosen (but guided by the

results in the previous section) parameter values 𝛼 = 0.3, 𝛽 = 5 to

emphasise that in this part of the demonstration we keep the agent

stable while varying the task parameters. As earlier, for each arm

Figure 3.5 QL2 performance across different number of task trials. Left; 10 trial long Bandit

task. Right; 100 trial long Bandit task. Coloured lines in both plots represent different values

for β parameter. Shaded areas around each line represents 95% confidence interval.

3 . 4 E X P L O R I N G T A S K P A R A M E T E R S 8 5

reward combination, we simulate 100 agents to get an average across

runs.

In Figure 3.6, left, we have plotted the reward probability for arm1

on the x-axis. Since the arm reward probabilities are dependent on

each other, the reward probability for arm2 is 1-arm1 for each point

on the x-axis. We can see that this produces a nicely symmetrical

performance plot, where the probability of picking the correct arm is

50/50 when 𝑝𝑎𝑟𝑚1(𝑟) = 𝑝𝑎𝑟𝑚2(𝑟) = 0.5. Probability of correct choice

then goes up towards the left or right as one arm gets higher

probability of reward than the other. More interestingly, we can see

how the blue line for 10 trials is much lower than the others, and how

already at 20 trials, the difference to 50 or more trials is not huge, less

than 0.1.

In the right plot of Figure 3.6, the arm reward probabilities vary

independently. The x-axis shows the difference in arm reward

probability, regardless of the absolute probability value. Here we see

a similar pattern in that after around 20 trials, the difference in

average performance is fairly small when increasing the number of

trials in the task.

Figure 3.6 Impact of arm reward probability differences for the Bandit task. Left: Arms vary

dependent on each other, so their individual reward probabilities sum to one. X-axis show

probability for one of the arms. Right: Arms vary independently of each other between zero

and one. X-axis shows the difference in reward probability between the arms. Both; shaded

areas around each line represents 95% confidence interval.

8 6 M E T H O D O L O G I C A L I N T R O D U C T I O N B Y A N A LY S I N G T H E B A N D I T

T A S K

One overall conclusion we can draw here is that already around

100 trials, average aggregated behaviour for the QL2 agent is quite

like that for 1000 trials. This can be an important insight when

planning experiments involving humans, as they are easily bored by

such a simple task as our two-armed Bandit task. Putting a human

through 100 trials is much more reasonable than having them do 1000.

At the same time, 100 trials may not yield enough data for more

involved statistical analyses. In order to inform such subsequent

analyses, it’s important to understand the task variations and their

interactions with agent types and parameters. We shall presently see

how in the next sections.

3 . 5 R E C O V E R I N G PA R A M E T E R S W I T H M A X I M U M

L I K E L I H O O D E S T I M AT I O N

The standard and straightforward method of fitting a model to data

is maximum likelihood estimation (MLE). For a model m, we wish to

find parameters 𝜽𝒎 such that that they maximize the likelihood of our

data D. This can be written as:

𝑝(𝐷|𝜽𝒎, 𝑚)

What we would like to find then, is the probability of 𝜽𝒎, in order

to maximize it, i.e.,

𝑝(𝜽𝒎|𝐷, 𝑚)

According to Bayes’ Rule, we can write this as:

 𝑝(𝜽𝒎|𝐷, 𝑚) ∝ 𝑝(𝐷|𝜽𝒎, 𝑚) ⋅ 𝑝(𝜽𝒎|𝑚) 3.3

where 𝑝(𝜽𝒎|𝑚) is the prior probability of the parameters. The

above can be described as that the posterior probability of 𝜽𝒎, given

data D, model m is proportional to the likelihood (first term on the

right-hand side) of the data D, given parameters 𝜽𝒎, model m

multiplied by the prior probability of the parameters 𝜽𝒎, given the

model m. We will come back to discussing probability distributions

below when we look at Bayesian parameter estimation methods, but

for now we will be satisfied with point value estimates of 𝜽𝒎, since

that is what MLE provides.

3 . 5 R E C O V E R I N G P A R A M E T E R S W I T H M A X I M U M L I K E L I H O O D

E S T I M AT I O N 8 7

Because the left- and right-hand sides in Equation 3.3 are

proportional to each other, the relationship still holds if we treat the

prior probability of 𝜽𝒎 as flat (e.g., ignore it). Therefore, for the

purposes of MLE, we are left with:

 𝑝(𝜽𝒎|𝐷, 𝑚) ∝ 𝑝(𝐷|𝜽𝒎, 𝑚) 3.4

If we define 𝜽̂𝒎 as the parameter values that maximize the

likelihood (right-hand side of Equation 3.4), then that is our

maximum likelihood estimate (MLE).

In our simulations and experiments, our data D consists of

observed choices c at each trial or timestep, together with an observed

or implied reward r. If 𝐷 = (𝑐𝑡, 𝑟𝑡), then our likelihood looks like:

𝑝(𝑐𝑡|𝐷, 𝜽𝒎, 𝑚)

And thus, the probability of some sequence of choices and rewards

is the product across all trials T:

∏ 𝑝(𝑐𝑡|𝐷, 𝜽𝒎, 𝑚)

𝑇

Furthermore, since the probabilities at each time step are small

values less than 1, the above product will quickly become too small

and close to 0 to be computationally tractable even for small numbers

of T. Therefore, what is almost always maximized is not the above

product but instead the log-likelihood sum, which is mathematically

equivalent. If we define the maximized log-likelihood sum as 𝐿𝐿̂ we

then get the final form of the expression that we seek:

 𝐿𝐿̂ = ∑ log 𝑝(𝑐𝑡|𝐷, 𝜽𝒎, 𝑚)

𝑇

𝑡=1

3.5

To evaluate and find the maximum 𝐿𝐿̂, we have two alternatives.

One is the brute force approach – evaluate the likelihood function for

as many parameter combinations as we can and pick out the one with

the highest 𝐿𝐿̂. This may work okay for simpler models like QL2

where we only have two parameters but will quickly become

infeasible as we increase the parameter count and number of trials.

The more efficient approach is to use optimization algorithms

implemented in existing software packages, such as the minimize

8 8 M E T H O D O L O G I C A L I N T R O D U C T I O N B Y A N A LY S I N G T H E B A N D I T

T A S K

function in Python’s SciPy [289]. The careful reader will notice that

the function is meant to minimize a function, but this is easily

overcome as we can simply have our log-likelihood function return a

negative log-likelihood. With all our tools in place, we shall now see

how they can be applied.

3 . 6 S I M U L AT E A N D F I T Q L 2

We start with an overall recovery analysis of our QL2 model. We

simulate 1000 artificial QL2 subjects, where each subject receives

random parameter values for α and β drawn from uniform

distributions:

𝛼 ∼ 𝑈(0,1) 𝛽 ∼ 𝑈(1, 20)

Our subjects will play the Bandit task for 1000 trials, where the arm

probabilities are:

𝑝𝑎𝑟𝑚1(𝑟) = 0.2 𝑝𝑎𝑟𝑚2(𝑟) = 0.8

For each subject, we record the actions and rewards received and

feed those into SciPy’s minimize function. The function requires us to

specify maximum bounds for the parameter values to be tested.

Technically, there are unbounded optimization algorithms to pick

from in the same SciPy package, but these can often lead to unstable

computations, leading to numerical errors or even program crashes.

We have chosen to bound α between zero and one, and β between one

and 40. Note that the range of possible fitted β values is twice as large

than the actual values used for simulations. We do this to investigate

the scenario where we want to assume as little as possible about our

data yet have reasonable boundaries for stable computations.

Although it would be possible to imagine α being more than one, such

large step sizes are uncommon and can also lead to huge Q-values for

each action, in turn causing high chance of overflows [65]. We set a

fairly high upper boundary for β for two reasons. One reason is to

demonstrate that for real data, we do not know the real parameter

values that were used to generate the data, even if we knew the exact

model used to generate that data. Second, this large upper bound can

be useful to identify cases where the likelihood surface (see Figure

3 . 6 S I M U L AT E A N D F I T Q L 2 8 9

3.8) is such that precise parameter value estimations are incredibly

difficult.

These 1000 simulations and model fits can be done very fast, less

than 30 seconds on a modern laptop and less than four minutes on a

laptop from 2015. This is thanks to three points. First, the SciPy library

optimize function as mentioned above. Second, we have optimized

our simulation and likelihood functions using Numba [145], which

compiles Python code into C code on the fly. Third, by using the

Python built in library multiprocessing for easy use of multicore

processors12.

For each simulate-and-fit (simfit) pair, we save the

(𝛼, 𝛽)𝑠𝑖𝑚 , (𝛼, 𝛽)𝑓𝑖𝑡 point values and calculate the absolute distance

between the values like so |𝛼𝑠𝑖𝑚 − 𝛼𝑓𝑖𝑡|, and equivalently for β. We call

these “α distance” and “β distance”, respectively. Note that due to

inherent randomness in action choices, even when using a fixed

random seed for generating the parameter values used for

simulations, we will still get variation in fitted parameter values as

the observed actions can still vary, as exemplified earlier when we ran

100 subjects with the same parameter values (see footnote 11).

Because of this variation, we do not get the same values each time we

run the code. However, the general trends and types of outliers etc.,

still occur between each run, so the precise values reported below can

be considered as representative examples.

12 See the code repository for details, https://github.com/fohria/phd_thesis

9 0 M E T H O D O L O G I C A L I N T R O D U C T I O N B Y A N A LY S I N G T H E B A N D I T

T A S K

In Figure 3.7, the results from our simfits are plotted. For α, the

correlation is quite good with 𝑅2 = 0.98. But for β the story is slightly

worse. We have 𝑅2 = 0.70 which may sound all right, but as we can

see in Figure 3.7, there are an additional two main patterns that

complicate the picture. It is striking that these complications arise

even when we have 1000 trials in each simulation. As already noted,

this number of trials will far exceed the number of trials used in most

human learning experiments. With fewer trials one would expect the

quality of the parameter recovery to be poorer. We explore this issue

more fully below.

First, by following the y-axis for β upwards, we see that below

simulated β of around 6, the correlation is quite strong. Above that we

start getting overestimations for fitted β values to a larger and larger

degree as the simulated β increases. This is because, as seen in Figure

3.4, as we increase β, behaviour increasingly becomes greedier,

always selecting the action with the higher Q-value. So, for larger β

the difference in behaviour between agents is hard to distinguish,

since random variation can cause an agent with 𝛽 = 10 to pick actions

in a way indistinguishable from one with 𝛽 = 20.

Figure 3.7 Correlation plots between parameter values used in simulations (y-axis) and

recovered parameter values found by fitting the QL2 model (x-axis). Colour and size of dots

indicate the absolute distance between simulated and fit value as per legends. Left: α

parameter (learning rate). Right: β parameter (inverse temperature). Note that x-axis for β

plot has double the range as its y-axis. Also note there are sizes smaller than the legends

show but not bigger.

3 . 6 S I M U L AT E A N D F I T Q L 2 9 1

Second, for β more than around 6 we have increasing number of

cases where estimates “hit the wall” of our boundary of our fitted beta

values (max=40). Sometimes, this might indicate implementational

errors or that our model doesn’t explain the data [65] but, in this case,

we know what model we used to generate the data. When we hit the

wall here, it is due to the same issues mentioned in the previous

paragraph, and MLE is simply not equipped to handle these cases.

Since we know that we have simulated with β at a maximum of 20,

and say we accept fitted values within a very generous error range of

10, we can check how many cases have a fitted 𝛽 > 30. For the 1000

simfits we did, 98 of them meet this criterion.

Another way to view this issue is to look more directly at the

likelihood surface, created by using a specific sequence of data and

calculating the likelihood across a wide range of parameter values.

This is essentially the brute force way of calculating the likelihood,

mentioned above as impractical. But it is useful to demonstrate how

the just mentioned issues arise.

We thus select values for a QL2 agent that are informed by the

above results to allow for the possibility of fits that hit the wall. The

QL2 agent thus uses 𝛼 = 0.5, 𝛽 = 12 and we simfit it for the Bandit

task 200 times. We save all actions and rewards, and then select one

of the best fitting value pairs (𝛼 = 0.51, 𝛽 = 11.97) and one of the

worst (𝛼 = 0.77, 𝛽 = 40.0). The resulting likelihood surfaces for the

two cases are plotted in Figure 3.8.

9 2 M E T H O D O L O G I C A L I N T R O D U C T I O N B Y A N A LY S I N G T H E B A N D I T

T A S K

As seen in the figure, the choice and consequent reward sequences

result in likelihood surfaces that look quite different. In one case, the

maximum likelihood sits along a ridge far from the value we are

looking for (Figure 3.8, left), and in the other case the maximum

likelihood is right where x marks the spot (Figure 3.8, right).

Remember, these sequences are generated by the same agent, and we

can here clearly see how this method can be problematic, at least for

some models. For Q-learning the issue is that β and α are not

independent in their influence on performance (as seen in Figure 3.4).

This characteristic can create the problematic likelihood surface that

is illustrated above.

3 . 7 R E C O V E R Y Q U A L I T Y W I T H VA R Y I N G N U M B E R O F

T R I A L S

As mentioned above, it is unlikely we would get humans to do 1000

trials of any task, especially such a boring task as the two-armed

bandit. Then again, we would perhaps find that casinos hold

enormous data stores on humans doing exactly that. Unfortunately,

we do not have access to such data.

Figure 3.8 Likelihood surfaces for two separate choice sequences, both generated by the same

QL2 agent. Red cross is the parameter combination for the agent. Purple star is the MLE

fitted parameters. Black dot is the best likelihood found by brute force. Left: Likelihood

surface where the best likelihoods form a long ridge, making it hard to find the right

combination. Right: Likelihood surface where the best likelihoods are concentrated to a

smaller area. Note here the star covers the other two symbols as they are all in essentially

the same position.

3 . 7 R E C O V E R Y Q U A L I T Y W I T H VA R Y I N G N U M B E R O F T R I A L S 9 3

In experiments in the cognitive sciences, we do not have the

monetary resources of casinos to encourage subjects to keep playing.

Instead, we must make do with fewer trials in experiments. A very

important question when recovering parameters then, is how many

trials are needed to still get reasonably good estimates? This question

is unfortunately one rarely mentioned in the literature [65, 300],

where instead trial counts are raised to compensate, or the topic left

open.

To investigate how the number of trials impact how well we can

recover parameters, we repeat what we did above; we simulate and

fit 1000 times. But this time we vary the number of trials for the task

across 1000, 500, 250 and 100 trials. All these task variations use the

same reward probabilities for each arm as stated above, and the same

for agent parameter values:

𝑝𝑎𝑟𝑚1(𝑟) = 0.2, 𝑝𝑎𝑟𝑚2(𝑟) = 0.8

𝛼 ∼ 𝑈(0,1), 𝛽 ∼ 𝑈(1, 20)

9 4 M E T H O D O L O G I C A L I N T R O D U C T I O N B Y A N A LY S I N G T H E B A N D I T

T A S K

For α, 𝑅2 values for 1000, 500, 250, 100 trials are, respectively: .98,

.97, .94 and .87. Although we get a lower correlation coefficient for 100

trials, this number doesn't tell the whole story. As we can see in Figure

3.9, 100 trials clearly show a wider spread. Thus, perhaps a better

visualisation of this is violin plots for the distance between 𝛼𝑠𝑖𝑚 and

𝛼𝑓𝑖𝑡, shown in Figure 3.10.

Figure 3.9 Correlation plots of α values, where simulation values are on the y-axis and fitted

values on the x-axis. Colour and size of dots represent distance between fitted and simulation

value. Top-left: 100 trials. Top-right: 250 trials. Bottom-left: 500 trials. Bottom-right: 1000

trials.

3 . 7 R E C O V E R Y Q U A L I T Y W I T H VA R Y I N G N U M B E R O F T R I A L S 9 5

In Figure 3.10, it becomes clear that depending on our purpose, 500

trials may still be acceptable if we are okay with a risk of alpha

estimates being up to 0.5 away from the target. For 250 trials, we risk

being 0.6 away from the target, which is obviously quite a lot when

alpha can only vary between 0 and 1. For 100 trials it is almost useless;

with the risk of alpha being 0.8 away from its target value we are

basically guessing.

Moving onto β parameter, we have 𝑅2 values for 1000, 500, 250, 100

trials as .71, .68, .66 and .59, respectively. These correlation coefficients

indicate there isn't that huge of a difference between 1000 and 250

trials, but it drops more when we get down to 100 trials. But again,

we can see in Figure 3.11 how visualising the results is much more

informative than looking at numbers. There, if we look at the large

circles hitting the wall at the right bound, we can see that even at 250

trials, we can still be relatively certain of fit values that are below 5 or

so. But at 100 trials this has broken down, and we risk hitting the wall

at any value for the β used when simulating.

Figure 3.10 Violin plots showing distance between simulated α parameter and fitted α on y-

axis and on the x-axis our categories for different number of trials is shown.

9 6 M E T H O D O L O G I C A L I N T R O D U C T I O N B Y A N A LY S I N G T H E B A N D I T

T A S K

Figure 3.11 Correlation plots for β parameter where fitted values are on the x-axis and

simulation values on the y-axis. Colour and size represent distance between simulated and

fitted value. Note that x-axis is double the range than the y-axis. Top-left: 100 trials. Top-

right: 250 trials. Bottom-left: 500 trials. Bottom-right: 1000 trials.

Figure 3.12 Violin plot showing distance between simulated and fitted β on y-axis and

number of trials as categories on the x-axis.

3 . 7 R E C O V E R Y Q U A L I T Y W I T H VA R Y I N G N U M B E R O F T R I A L S 9 7

This pattern is further emphasised by looking at the violin plot in

Figure 3.12 where a big part of estimated β distances for 100 trials are

20 away from the target, which is the entire range of values used for

simulations. Just as for α, 100 trials are simply not enough.

We should not forget that our parameters α and β are not isolated,

they are used in combination. There are multiple ways we could

visualise this, but difficult to include distances in reasonable ways

since the two parameters are on such different scales. We could

normalise β to be between 0 and 1 but this tends to distort the

differences in our experience and makes it more difficult to

distinguish results between different number of trials. One way,

inspired by [300], is to select a certain criterion for α, and categorise

results based on that. For example, we can say that all 𝛼𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 > 0.2

are ”bad” and mark them as such when plotting β.

Figure 3.13 Correlation plots for β parameter with fitted values on x-axis and simulation

values on y-axis. Orange X marks cases where the distance between fitted α and simulated

α is more than 0.2. Top-left: 100 trials. Top-right: 250 trials. Bottom-left: 500 trials.

Bottom-right: 1000 trials.

9 8 M E T H O D O L O G I C A L I N T R O D U C T I O N B Y A N A LY S I N G T H E B A N D I T

T A S K

Looking at Figure 3.13, we can see that estimates for both

parameters get increasingly worse as we lower the number of trials,

not just the two parameters individually.

Drawing some conclusions from the results just presented, we can

nicely see how fewer trials make it more and more difficult to recover

parameter values. This is perhaps not a surprise, and completely

obvious, and therefore rarely mentioned in the literature.

But even with 1000 trials, β recovery can still "hit the wall" when

we have 𝛽𝑠𝑖𝑚 > 6 or so. This is because, as mentioned earlier, with

higher β, SoftMax will assign higher probability of picking the action

with slightly higher Q-value, causing the agent to act more

monotonously. So, after a certain point of increasing β value, there's

not much difference between, say, 𝛽 = 7 and 𝛽 = 40, because in both

cases the agent acts similarly – always picking the action with slightly

higher Q-value. And with fewer trials, we can see that we risk hitting

the wall for pretty much any β value.

Furthermore, it looks like 250 trials is at the lower end of where we

can still be reasonably certain of our result, if we get 𝛽𝑓𝑖𝑡 < 5. Then

again, we can see in Figure 3.13 that already at 500 trials we get some

bad αs among the low and well fitted βs.

3 . 7 .1 C O N F I D E N C E F O R I N D I V I D U A L L Y F I T T E D P A R A M E T E R

V A L U E S

We have already touched upon this in the above investigations, but

another important question here is: given a fit result for an individual

simulation, how certain can we be of the results?

To answer this question, we will use the same data as in the

previous section. Here we add a distance calculation that is not the

absolute value, in order to see a fuller picture of how our estimates

are distributed. In other words, we are subtracting the real parameter

value from the estimated one, to allow our histograms to have

overestimated values on the right and underestimated values to the

left. We will first present results for α followed by those for β.

3 . 7 R E C O V E R Y Q U A L I T Y W I T H VA R Y I N G N U M B E R O F T R I A L S 9 9

For α we find 95% confidence intervals for 1000, 500, 250 and 100

trials to be (-0.11, 0.12), (-0.15, 0.17), (-0.20, 0.21) and (-0.29, 0.31)

respectively. The distributions for α are shown in Figure 3.14.

For β, the 95% confidence intervals for 1000, 500, 250, and 100 trials

are (-11.5, 16.3), (-13.1, 20.8), (-14.2, 23.8), and (-14.8, 31.9) respectively.

The distributions for β are shown in Figure 3.15.

Figure 3.14 Histograms showing the distribution of distance between fitted α values and the

α values used for simulations. Vertical lines show the 95% confidence interval. Top-left: 100

trials. Top-right: 250 trials. Bottom-left: 500 trials. Bottom-right: 1000 trials.

1 0 0 M E T H O D O L O G I C A L I N T R O D U C T I O N B Y A N A LY S I N G T H E B A N D I T

T A S K

For α the story is straightforward; we generally get decent fits for

this parameter even at lower trial counts. For β however, the story is

more complicated. Overall, it's common that β is overestimated, and

at lower trial counts this becomes very apparent. However, we could

also see in Figure 3.11 that below certain fitted values for β, there's a

much better correlation with the real value. What if we filter our

results based on this knowledge? We could for example only look at

cases where we have 𝛽𝑓𝑖𝑡 < 10.

Doing so gives us 95% confidence intervals for 1000, 500, 250 and

100 trials that are (-2.6, 2.2), (-2.6, 2.1), (-3.6, 3.0), and (-5.0, 4.1). These

look much better, but the downside is that we have now thrown away

more than 50% of our data, even in the 1000 trial case. This ratio is

somewhat misleading as it simply looks at how many cases we have

of
𝛽𝑓𝑖𝑡<10

1000
 for each trial count category. It could be less in the case of a

real data set. But it could also be more. We have no idea when it comes

Figure 3.15 Histograms showing the distribution of distance between fitted β values and the

β values used for simulation. Vertical lines show 95% confidence intervals. Top-left: 100

trials. Top-right: 250 trials. Bottom-left: 500 trials. Bottom-right: 1000 trials.

3 . 8 R E C O V E R Y Q U A L I T Y F O R VA R I O U S A R M R E WA R D P R O B A B I L I T I E S

1 0 1

to real data, and that is assuming we can be completely certain the

model we are using is correct in the first place!

3 . 7 .2 S T A N D A R D E R R O R S W I T H T H E H E S S I A N

There is another possible way to get a measure of uncertainty around

our parameter estimates by utilizing the Hessian [65]. This is a square

matrix with a row and column for each parameter representing the

second order derivative of the likelihood function with respect to the

(here, two) parameters. In other words, it’s a measure of how steep

the hill or valley of our likelihood function is around the parameter

coordinates, as seen in Figure 3.8. The square roots of the Hessian’s

diagonal terms are the standard errors for the parameter estimates,

𝛼𝑠𝑒 , 𝛽𝑠𝑒 in the case of QL2.

Unfortunately, this seemingly excellent tool doesn’t work well in

practice. One issue is that since the Hessian measures the slope, this

slope gets truncated for parameter estimates at the bounds of our

search. Without those bounds, we run the risk of getting

computational errors.

For the data shown in Figure 3.7, we get 𝑅2 values for the

correlation between 𝛽𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 , 𝛽𝑠𝑒 as 0.099 and for α we get 0.12. For β

we also get many values for the standard error that are over 100 and

one that is 3622. One would imagine the last example is an estimate

that displays the issue mentioned above, where the Hessian gets

truncated at the boundaries, but it’s in fact a case where the estimate

is very good, with 𝛼𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 0.0002, 𝛽𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 1.47.

3 . 8 R E C O V E R Y Q U A L I T Y F O R VA R I O U S A R M R E WA R D

P R O B A B I L I T I E S

How does reward probability differences between the two arms

impact MLE's ability to recover the parameters? We will investigate

this similarly to how we did above for different trial counts; we

simulate 1000 agents each for a set of "arm reward differences". For

convenience, we assume 𝑝𝑎𝑟𝑚1(𝑟) + 𝑝𝑎𝑟𝑚2(𝑟) = 1. We will

investigate four arm differences, starting with the one of .6 we have

been using above, and decreasing to 0.4, 0.2 and 0.

For α, 𝑅2 for 0.6, 0.4, 0.2 and 0.0 difference in arm reward

probability is .98, .99, 0.99, and 0.99, respectively. Equivalently for β

we have 0.71, .75, .74, and 0.70. However, as seen in Figure 3.16 to

1 0 2 M E T H O D O L O G I C A L I N T R O D U C T I O N B Y A N A LY S I N G T H E B A N D I T

T A S K

Figure 3.19, scatterplot variance decreases together with arm reward

probability difference. In other words, smaller arm difference leads to

better recovery.

Figure 3.16 Correlation plots for fitted α on x-axis and simulation α on y-axis. Colour and

size represent the distance between fitted and simulated value. Top-left: Arm difference 0.

Top-right: Arm difference 0.2. Bottom-left: Arm difference 0.4. Bottom-right: Arm difference

0.6.

3 . 8 R E C O V E R Y Q U A L I T Y F O R VA R I O U S A R M R E WA R D P R O B A B I L I T I E S

1 0 3

Figure 3.17 Violin plots showing distance between fitted and simulated α on y-axis for each

arm reward probability difference on the x-axis.

Figure 3.18 Correlation plots for simulated β on y-axis and fit β on x-axis. Note x-axis is

double the range of y-axis. Colour and size represent distance between fitted and simulated

value. Top-left: Arm difference 0. Top-right: Arm difference 0.2. Bottom-left: Arm difference

0.4. Bottom-right: Arm difference 0.6.

1 0 4 M E T H O D O L O G I C A L I N T R O D U C T I O N B Y A N A LY S I N G T H E B A N D I T

T A S K

These results may seem counterintuitive, how can recovery be

better with less difference between the arms? As mentioned in the

previous section, as β increases, the agent behaviour becomes

greedier; always picking the action with higher Q-value even if the Q-

value difference is small. If, additionally, one arm is clearly rewarded

more often than the other, the combination leads to one-sided

behaviour where almost all actions are the same throughout all trials.

When the reward probability of the arms are both 50/50, the Q-

values also become more equal, and we can have higher values of β

before behaviour becomes one-sided. In other words, the more varied

the actions are, the more granularity exists in the data, and more

information can be extracted - thus leading to better parameter

estimates overall.

3 . 9 C O M PA R I N G M L E T O B AY E S I A N I N F E R E N C E

As we have seen, MLE is very fast and often good enough, depending

on what our goal is for parameter recovery and the details of our task

such as number of trials. Unfortunately, our likelihood functions are

often not well behaved, as demonstrated by visualising likelihood

surfaces for different data in Figure 3.8.

Bayesian inference is often seen as better suited for this type of

problem [2, 211, 234, 288, 298]. The main reason for this can be

Figure 3.19 Violin plots showing distance between simulated and fit β on y-axis and arm

difference categories on x-axis.

3 . 9 C O M P A R I N G M L E T O B AY E S I A N I N F E R E N C E 1 0 5

explained by going back to Equation 3.3, where we explained how

MLE assumes we ignore the prior probability of the parameter values.

In Bayesian Inference (BI), the prior is explicitly used to impose a

structural boundary for the posterior distribution of the estimated

parameter values. In a way the prior is similar to how we use hard

boundaries in MLE, but by using non-uniform continuous

distributions for the prior these boundaries are less like walls and

more like outskirts of probability in an actual statistical distribution.

However, the more data we have, the more that data influences the

shape of the posterior distribution and thus the less influence the

prior has.

Mathematically, we should here provide the full form of Bayes’

Rule, with m for model and d for data:

𝑝(𝑚|𝑑) =

𝑝(𝑑|𝑚) 𝑝(𝑚)

𝑝(𝑑)

3.6

Above, the left-hand side is called the posterior distribution, the

first term in the numerator on the right-hand side is called the

likelihood, the second term is the prior and the denominator is called

the marginal likelihood or evidence. All these are distributions, and

this is the advantage of Bayesian inference – since we work with

distributions, we automatically get a measure of the uncertainty of

our calculations. In addition to the common measures of such

uncertainty such as the distribution mean and standard deviation, a

common measure is the highest density interval (HDI). It can be

applied to any distribution and specifies an interval that spans a

certain percentage of the values of the distribution, say 95%. For a

regular normal distribution with mean 0, the 95% HDI would thus

stretch across the 95/2% values to the left of the mean up and

including the 95/2% to the right of the mean.

The formula in Equation 3.6 can be analytically calculated only for

relatively simple distributions. The main reason being that the

marginal likelihood will, for continuous distributions, become

intractable. And even with modern computers, calculating it

numerically also becomes infeasible for larger models with many

parameters. There are two main approaches to overcoming this issue,

Markov Chain Monte Carlo (MCMC) and variational inference (VI).

We will not go into much detail on these methods here, as that is not

1 0 6 M E T H O D O L O G I C A L I N T R O D U C T I O N B Y A N A LY S I N G T H E B A N D I T

T A S K

our focus and these methods, especially VI, are actively researched.

For more in-depth explanations see [141] (MCMC) and [26] (VI).

MCMC exploits that the marginal distribution has a normalising

effect and is thus not strictly needed to find the posterior distribution.

Instead, a large number of random numbers are generated from the

posterior distribution, i.e., sampled. These are then evaluated with the

likelihood and prior and kept if they pass a test for acceptance,

otherwise not. There are multiple algorithms for how the posterior is

sampled and what test is made for accepting or rejecting the samples.

Among the most used ones is the Metropolis-Hastings algorithm,

where a new sample is generated based on the current sample (thus

fulfilling the Markov property mentioned in a previous chapter).

Samples are then accepted based on an acceptance ratio calculated

from the likelihood and prior. Regardless of the specific MCMC

algorithm, thanks to the magic of randomness, with a large enough

sample we get a decent approximation of the posterior distribution.

 The alternative, VI, involves selecting candidate distributions for

the posterior and then minimising the distance between the candidate

and the true posterior. This approach turns the problem into an

optimisation problem, allowing the use of existing optimisation

techniques to find the posterior.

Generally, MCMC is slower but more accurate while VI is less

accurate but faster [26].

Another advantage of Bayesian methods is that we can create so

called hierarchical models. In a regular Bayesian model we have, say,

one parameter θ in our model and some prior pr on what that

parameter value might be. In a hierarchical model, the values defining

the pr distributions are themselves drawn from a distribution, at a

“higher level” so to speak.

To provide a more practical example, consider our Q-learning

model with two parameters α and β. We have conducted an

experiment with several participants all doing the two-armed bandit

task and we now have some data to analyse. We may have some

priors for what the values of α and β may be for individual

participants, but would it not also be reasonable to believe that all the

participants share some similarity? Well, not necessarily, as explained

above with regards to individual differences and strategies. But for

the sake of argument, maybe it is the case that all our participants’ α

3 . 9 C O M P A R I N G M L E T O B AY E S I A N I N F E R E N C E 1 0 7

value are distributed normally around some mean? We can include

that belief in our model, by having all participants share a common

hierarchical prior for the normal distribution of α. Every single

participant’s α is then drawn from the common distribution.

The advantage this grants us is not only the ability to test the

hypothesis that participants do share some commonality, but in a

way, we also gain access to much more data for each single

participant. The hierarchical model uses the data from all participants

to find the common α prior, which can then inform the estimates for

individual subjects. This is a huge advantage when we are dealing

with experiments where we often have limited data sets.

A potential downside of all participants sharing information is so

called “shrinkage” [141]. Because the α of our individual participants

are drawn from a common distribution, this means their individual

estimates will be “pulled” closer together. This is not necessarily a

problem but depends on how specific or narrow our prior

distribution is and how much data is available. With few datapoints

the prior will have larger impact on the posterior and final parameter

value estimates may be misleading. We will see examples of this

below.

3 . 9 .1 B A Y E S I A N M O D E L L I N G T O O L S

There are many tools available for different programming languages

to make it easier to construct and analyse Bayesian models. One such

tool is Stan [259], which allows for defining models in .stan files that

can either be run directly from the command line or used in

conjunction with interfaces from several different languages such as

Python (CmdStanPy13) and R (RStan14). On top of these tools, more

fully featured toolboxes have been built, one of which is hBayesDM

[2], an R package that comes with several models and tasks for

decision making built in. The models in hBayesDM are written in

Stan. In our investigations below, we will specify when we have used

models from hBayesDM, otherwise we have made our own using

Stan and CmdStanPy.

A methodological note here is that when sampling using MCMC,

we can sample using several “chains”. This is, simply stated, doing

13 https://github.com/stan-dev/cmdstanpy
14 https://github.com/stan-dev/rstan

1 0 8 M E T H O D O L O G I C A L I N T R O D U C T I O N B Y A N A LY S I N G T H E B A N D I T

T A S K

the sampling process multiple times separately. We could run one

sampling process for a very long time and be somewhat certain we

reach a good approximation. But by using several chains that are

separately initiated with random starting points, we can use fewer

samples for each and afterwards check if all our chains have

converged to approximately the same answer.

3 . 9 .2 F I T T I N G B A Y E S I A N M O D E L S

The downside of MCMC, especially for hierarchical models, is that

for larger sets of data, computation can be time consuming. In the

dataset we will use for comparisons below, we have 50 artificial

subjects playing the two-armed bandit task, each doing 1000 trials.

Ideally, we would use 10-20 times more subjects for an

investigation such as this, like we did for the MLE investigations. But

this dataset takes our hierarchical MCMC model around two hours to

complete the fitting process. Technically, Stan allows for splitting up

data “inside” a model so that one chain can be run across multiple

CPU cores, but that requires fiddly, and thus error-prone, re-coding

of the Stan models themselves. Thus, since four chains are generally

enough to identify divergences and more chains do not decrease

computation time nor increase accuracy, there is unfortunately no

direct way to improve computational time other than having faster

single core CPU performance. Besides, in many older psychological

experiments, or neuro-imaging studies, 50 subjects or fewer are not

unusual so it's not an unreasonable number. Having 50 humans do

1000 trials in a two-armed bandit task is arguably less reasonable.

Our dataset thus consists of 50 artificial subjects all using the QL2

algorithm to play the two-armed bandit task. Each subject's

parameters were drawn randomly:

𝛼 ∼ 𝑈(0, 1), 𝛽 ∼ 𝑈(1, 20)

The task used 1000 trials and had arm reward probabilities:

𝑝𝑎𝑟𝑚1(𝑟) = 0.2, 𝑝𝑎𝑟𝑚2(𝑟) = 0.8

3 . 9 C O M P A R I N G M L E T O B AY E S I A N I N F E R E N C E 1 0 9

In Figure 3.20 we have plotted the parameter value distributions

for the simulated participants of our dataset. We reran the 50

simulations a few times to get somewhat even distributions across

parameter values15.

In the following analyses, different trial counts use the same

dataset. Instead of doing new simulations for each trial count, we use

the first x trials of the data for each of 1000, 500, 250 and 100 trials. The

three methods compared are:

• MLE (same likelihood as used above) fitted to individual

subjects (called MLE below). This model uses boundaries

for fitted parameters as 0 < 𝛼 < 1 and 1 < 𝛽 < 40.

• Bayesian MCMC model fitted to individual subjects (called

IND-BI below, adapted from the hBayesDM hierarchical

model below). This model uses priors for fitted parameters

as 𝛼~𝑈(0, 1) and 𝛽~𝑈(0, 50).

• Bayesian MCMC hierarchical model fitted to entire dataset

(called HIER-BI below, model from hBayesDM, modified

for wider β). This model uses normal priors for fitted

parameters 𝑁(0, 1) that are then transformed to the ranges

0 < 𝛼 < 1 and 0 < 𝛽 < 20.

The observant reader will notice there are inconsistencies in our

use of priors and boundaries for the three methods. This is done to

15 This particular dataset can be found in CSV format in the thesis code

repository

Figure 3.20 Histograms showing the parameter value distributions for the 50 subjects in

our dataset. Left: α parameter. Right: β parameter.

1 1 0 M E T H O D O L O G I C A L I N T R O D U C T I O N B Y A N A LY S I N G T H E B A N D I T

T A S K

emphasize the differences in the model fitting results and discuss the

strengths and weaknesses of each method.

The HIER-BI model is included in the hBayesDM package and

called “2 arm bandit delta”. As mentioned above, we have done a

slight adjustment to their model, which is to increase the maximum

possible β (called τ in the hBayesDM model) to 20 from an initial value

of 5. This low limit has most likely been set due to the reasons we saw

in previous sections, where increasing βs are increasingly difficult to

fit. But it is our opinion this is not ideal. We do not know what

distribution underlies our data, and it is one thing to assume a normal

distribution but quite another to assume bounds for that distribution.

The data should guide our posteriors, not the bounds of our priors.

Nevertheless, the hBayesDM model is equivalent to our QL2 model,

except for the former’s hierarchical nature. IND-BI is partly adapted

from this hierarchical model into one suitable for individual fits. The

code for these investigations can be found in the thesis repository16.

16 https://github.com/fohria/phd_thesis

3 . 9 C O M P A R I N G M L E T O B AY E S I A N I N F E R E N C E 1 1 1

Figure 3.21 Correlation plots for fitted β on x-axis and simulation β on y-axis. Bad α are

marked with orange crosses and such αs have a distance of more than 0.2 between fitted and

simulated α. Rows are, from top to bottom, 100 trials, 250 trials, 500 trials, and 1000 trials.

Columns show different methods, where left column is IND-BI, middle column is HIER-BI

and right column is MLE. See text for further explanation.

1 1 2 M E T H O D O L O G I C A L I N T R O D U C T I O N B Y A N A LY S I N G T H E B A N D I T

T A S K

Results are shown in Figure 3.21 to Figure 3.23. What may be

surprising here is how well MLE holds up, until we get to 100 trials

where MLE cannot keep up with the average β distance in Figure 3.23.

This is not surprising in the case of HIER-BI as its prior is set to a

maximum of 20 for β, but IND-BI has a wider range of possible range

values than MLE yet is able to maintain a lower average distance.

Also, and as is further discussed below, HIER-BI has lower values in

Figure 3.22 Boxplots showing distance between simulated α and fitted α on y-axis, with

number of trials on x-axis. Colours indicate method, as seen in legend.

Figure 3.23 Boxplots showing distance between simulated β and fitted β on y-axis, with

number of trials on x-axis. Colours indicate method, as seen in legend.

3 . 9 C O M P A R I N G M L E T O B AY E S I A N I N F E R E N C E 1 1 3

general due to shrinkage. However, had we used a boundary of 20 for

the MLE, its results would look much better in comparison. This

could be reasonable, if we have some knowledge about possible

ranges for the data we are fitting. Values for β higher than 20 also have

diminishing returns, as we saw in the behavioural studies above,

where even between β=10 and β=20, behaviour was close.

Looking further, again we find that our summary boxplots

(statistics) are not showing the bigger picture. If we look at the middle

column of Figure 3.21, we notice how fitted values for β seem to get

stuck at an upper limit for HIER-BI. This is because the model

assumes a normal distribution for the group-wise distribution from

which individual β values are drawn. We mentioned this shrinkage

phenomenon above; the advantage of hierarchical models is that we

essentially combine the data from all subjects, but the downside is

that if the group of subjects is heterogenous, our results may be

misleading.

In the same figure and column, we can also see how increasing

amounts of datapoints (going from a low number of trials to large),

extends the limit for fitted β values towards 15 for 1000 trials and

towards around 10 for 100 trials. This exemplifies how priors are

much more impactful with little data. At higher trial counts, we get a

wider spread of values, which happens because the more data we

have the less impactful is the prior we have set.

Importantly, the constriction of individual parameter values

towards the group mean is – as alluded to above –what is behind the

seemingly low distances for β estimates for HIER-BI seen in Figure

3.23. The estimated mean for the group level normal distribution was

around 8.2, so estimates automatically become decent (compared to

the other two methods). This is not necessarily a problem, and quite

a reasonable assumption when looking at data occurring in nature,

which is often normally distributed. Ideally the mean would have

been around 10 instead, to allow for more values towards 20.

But crucially, this assumes that all subjects we include when fitting

hierarchically used the same model for making decisions. If not, the

hierarchical model may not be very useful at all, and potentially be

more difficult to interpret. We will come back to that topic in a later

section.

1 1 4 M E T H O D O L O G I C A L I N T R O D U C T I O N B Y A N A LY S I N G T H E B A N D I T

T A S K

3 . 9 .3 H I E R A R C H I C A L M C M C C O M P A R E D T O V B I

As mentioned above, VBI is faster than MCMC but generally seen as

less accurate [26]. Using the same data and methods as in the previous

section we here compare MCMC and VBI. Again, as mentioned

above, MCMC with all 1000 trials takes around two hours on a

modern laptop, whereas VBI takes just a few minutes. In both cases

we use the same modified 2-armed bandit Stan model in hBayesDM

as described in the previous section.

For both α, β estimates, the two methods are overall comparable,

with value estimates correlating between the methods with an 𝑅2 of

.99 for all trial count categories. T-tests show no significant difference

between the methods for any trial count category. In Figure 3.24 we

can see that, especially for β, MCMC has slightly better estimates

overall, but if we take worst case scenarios into account (top T part of

the box plots) then there is indeed not much of a difference between

the methods.

Figure 3.24 Box plots showing the distance between simulated parameter and fitted

parameter on y-axis with each trial count category on the x-axis. Colours indicate method

as per legend. Left: α parameter. Right: β parameter.

3 . 9 C O M P A R I N G M L E T O B AY E S I A N I N F E R E N C E 1 1 5

Looking into further detail at β estimates – since we know from our

earlier investigations these are more problematic than those for α –

we can see in Figure 3.25 that the two methods also show similar

patterns for increasing simulation β versus distance to fitted value.

Here there is somewhat more noticeable differences between trial

count categories for MCMC method, whereas VBI holds up well even

at 250 trials. Another way to look at it is that it looks like MCMC is

better helped with increasing number of trials than VBI.

Both Bayesian methods include standard deviations of the

parameter estimates in their results. This comes naturally from

calculating distributions instead of point estimates as for MLE. Do the

standard deviations provide useful information?

Figure 3.25 Line plots showing distance between simulated and fit β value on the y-axis and

simulated β value on the x-axis. Different coloured lines indicate trial count categories, as

per legend. Left: MCMC. Right: VBI

1 1 6 M E T H O D O L O G I C A L I N T R O D U C T I O N B Y A N A LY S I N G T H E B A N D I T

T A S K

In Figure 3.26 we have plotted β SD values (x-axes) against distance

between fitted and simulated β values (y-axes). Unfortunately, SD

estimates for either method are somewhat unreliable. For both

methods, and across all trial counts, we see that if SD < 1, there is –

except for a few outliers – a decent chance the distance is below four

or so. But for SD > 1, there is no longer any connection between SD

size and distance.

Finally, we can also check how wide the HDI’s are and what the

probability is that the real β value falls within this interval, which can

be seen in Figure 3.27. There we can see that VBI generally has shorter

HDI (left part of the figure), but this is coupled with lower probability

of the simulated value being inside the interval. MCMC method

generally has higher probability of the real value being inside the

HDI, but even at 1000 trials we don’t reach even 80%. At 100 trials,

both methods are below chance level on whether the HDI captures

the real parameter value.

Figure 3.26 Scatterplots of distance between fitted and simulated β on y-axis and SD

estimate on x-axis. Top-left: 100 trials. Top-right: 250 trials. Bottom-left: 500 trials. Bottom-

right: 1000 trials.

3 . 1 0 M O D E L C O M P A R I S O N S 1 1 7

What conclusions can be drawn regarding MCMC and VBI?

Overall, it looks like the methods are quite comparable. Since MCMC

takes roughly 60 times as long to compute than VBI there’s little

reason to use MCMC. Perhaps MCMC is preferable as a final analysis

if correctness of parameter estimates is central to one’s goal, as there’s

a higher chance the parameter value is inside the HDI.

3 . 1 0 M O D E L C O M PA R I S O N S

Until now we have focused on recovering parameters for a specific

model. But we rarely know what model best fits our data. The more

common scenario – at least for our purposes – is the case where we

have several possible models to explain a set of data. Which model

best fits our data?

One standard way of comparing models is using the Bayes Factor

[133, 150], which compares the evidence for a model 𝑚1 relative to

that of a model 𝑚2, given data d:

𝐵𝐹12 =

𝑝(𝑚1|𝑑)/𝑝(𝑚2|𝑑)

𝑝(𝑚1)/𝑝(𝑚2)

3.7

, where 𝑃(𝑚1), 𝑃(𝑚2) are the priors. If the priors are uniform the

expression simplifies to:

Figure 3.27 HDI check for β estimates for MCMC and VBI methods. Left: HDI length on

y-axis and number of trial categories on x-axis. Right: Probability of simulated β being

within HDI for each method and trial count category.

1 1 8 M E T H O D O L O G I C A L I N T R O D U C T I O N B Y A N A LY S I N G T H E B A N D I T

T A S K

𝐵𝐹12 =

𝑝(𝑚1|𝑑)

𝑝(𝑚2|𝑑)

3.8

Values of 𝐵𝐹12 > 1 provides evidence for 𝑚1 whereas values < 1

provides evidence for 𝑚2. To decide what BF is “good” evidence,

different authors propose varying limits. For example, [150] consider

values > 10 or < 1/10, respectively, as strong evidence. In cases where

we use BF (mainly in later chapters), we follow [133] as per Table 3.1.

𝟐 ∗ 𝒍𝒐𝒈𝒆 𝑩𝑭 BF Evidence

0-2 1-3 Not worth more than a bare mention

2-6 3-20 Positive

6-10 20-150 Strong

> 10 > 150 Very Strong

Important when speaking of BF, is that in the above equations, the

entire parameter space is taken into consideration. If we instead use

estimated maximum likelihood estimates, we get a special case of the

Bayes factor called the likelihood ratio.

An additional factor to take into consideration is the number of

parameters of our models. The more parameters, the more we risk

overfitting [65, 300], meaning that with enough parameters we can fit

any kind of data perfectly, but it will not say much about the world

in general. Compare the statement “everybody likes ice cream” (a

gross generalisation) to asking every single person in the world if they

like ice cream or not. The latter “model” will fit the world perfectly,

but it may not be very useful to describe groups in general.

There are several proposed techniques to get around this, like the

BIC, AIC, WAIC and LOO [65, 133, 287, 294]. What most of these

measures have in common is that they penalise models based on the

number of parameters. We will use the Bayesian Information

Criterion (BIC) here to demonstrate how this can work in practice.

The BIC is calculated as:

Table 3.1 Bayes Factor interpretation for values on log scale (left most column), raw ratio

(middle column). Adapted from [133].

3 . 1 0 M O D E L C O M P A R I S O N S 1 1 9

 𝐵𝐼𝐶 = 𝑘 ln(𝑛) − 2 ln(𝐿)̂ 3.9

Where k is the number of parameters in the model, n is the number

of trials (datapoints) and 𝐿̂ is the maximised likelihood. Lower BIC

indicates better fit.

3 . 1 0 . 1 C O M P A R I N G M O D E L S W I T H B I C

We will now test and demonstrate model comparisons using the BIC

with the two models from above, QL2 and RandomBias. We generate

and simulate 10000 random agents with QL2 playing Bandit task,

then fit the resulting data with both QL2 and RandomBias models.

Then we simulate 10000 RandomBias agents playing the same Bandit

task and fit both of our models to that data. For each such simfit case,

we calculate the BIC and record which of the models had the best fit

according to this information criterion. When they are all done, we

summarise the “scores” in a confusion matrix. What we would like to

see here, then, is that in the vast majority of cases, the best fitting

model is also the model that generated the data.

We are here using MLE for this demonstration, as we will

investigate more methods below.

As we can see in Figure 3.28, left, the RandomBias model “fits

itself” around 80% of the time and in the other 20% of cases the QL2

model fits the RandomBias data. This is not as curious as it may seem

on first appearance, as it is quite likely that a randomly playing agent

Figure 3.28 Left: Confusion matrix. Row names are the agent used for simulation. Column

names are the model fitted. Numbers inside squares are the ratios of the model fits to each

simulated model. Right: Inverse confusion matrix. Row names are the agent names used for

simulations, while column names are the model names used for fitting. Numbers inside each

square indicate the probability that the model fitted generated the data

1 2 0 M E T H O D O L O G I C A L I N T R O D U C T I O N B Y A N A LY S I N G T H E B A N D I T

T A S K

that happens to have a certain bias towards one arm fits the behaviour

of a greedy QL2 agent. When it comes to QL2, it fits itself in 98% of

the cases. This is quite good and promising for future investigations.

When fitting “real” data, i.e., data we do not know how it was

generated, we are interested in the question of how likely it is that the

best fitting model is the correct one. We can answer this by

“inverting” the confusion matrix (Figure 3.28, right). In other words,

the confusion matrix shows us 𝑝(𝑓𝑖𝑡 𝑚𝑜𝑑𝑒𝑙|𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑚𝑜𝑑𝑒𝑙 and the

inverted confusion matrix shows us 𝑝(𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑚𝑜𝑑𝑒𝑙|𝑓𝑖𝑡 𝑚𝑜𝑑𝑒𝑙)

[300].

3 . 1 0 . 2 M O R E A D V A N C E D M O D E L C O M P A R I S O N M E T H O D S

As we saw previously, MLE runs the risk of hitting the parameter

value boundaries when fitting. Does this impact the accuracy of BIC

calculations and model comparison/selection?

According to [211] it does, and they propose using Bayesian

hierarchical modelling to alleviate the situation. Similar arguments

are made by [221, 261]. Common for these methods are that the

hierarchical thinking is extended to more levels, including a

distribution at the top for what model is most likely for the entire

population. On the next level down is what model is most likely for

each subject, and then for each model what parameter values are most

likely for that subject. These levels include shared distributions

between subjects for parameter values. The resulting “meta models”

are thus quite big, especially if there are many models under

consideration. MCMC sampling is thus infeasible and instead VI is

used.

This type of model comparison is quite powerful, as we can include

Bayesian uncertainty at every level of our investigations.

Methodology wise these methods also become quite complex.

Technically, these types of hierarchical models can be implemented in

Stan, but it would be time consuming and error prone as one would

have to code the entire model structure manually. Also, Stan’s VI

algorithm is still labelled “experimental”.

Luckily [211] provides a toolbox called Cognitive Bayesian

Modelling (CBM) where one only needs to provide the likelihood

function for any custom models and then compose the comparison

together with few lines of code. Building on the theories of [221, 261],

3 . 1 0 M O D E L C O M P A R I S O N S 1 2 1

[62] provides the Variational Bayesian Analysis toolbox (VBAT), a

huge collection of tools for designing, performing and analysing

experiments. But here it’s possible to input measures like the BIC and

the toolbox performs the “upper” part of the hierarchical analysis,

providing results comparable to those of CBM. Worth noting is that

CBM uses a maximum a priori (MAP, essentially MLE with a prior)

method called Laplace fitting and uses estimated parameter values

from there to initialise its fully hierarchical Bayesian inference (HBI).

Both toolboxes are available exclusively for MATLAB.

What these tools can tell us is two main measures. One is the so-

called model frequency, measured with Probability Exceedance

Probability (PXP), which is a measure of how likely it is that one

model is more common among the participants investigated than

other models. And second, we get probability measures for each

individual subject, how likely it is that each model is the best fit.

This is very important for our purposes, especially in later

chapters. Earlier we mentioned heterogeneity of data and how it can

be the case that different subjects use different strategies (see Figure

3.2). These toolboxes allow us to investigate such individual

differences. The model frequency is also interesting but can be seen

as a symptom of how experiments in the cognitive sciences are

usually conducted. There are two or more groups in different

conditions, and there is an interest to investigate if a certain group

exhibits a certain type of behaviour (a certain model is the better fit).

If the majority of subjects in a group exhibit this behaviour, the

experiment is a success. But what about the subjects of that group that

did not behave as the model would predict?

3 . 1 0 . 3 C O L L E C T E D M E T H O D S F O R M O D E L C O M P A RI S O N S

Armed with these toolboxes, we now have a collection of fitting and

model comparison/selection methods. Below we list the methods

under consideration and in parentheses after their description

indicate what they will be called when reporting results later.

1. BIC value for model fits to individual subjects using MLE (mle)

2. BIC value for model fits to individual subjects using variational

Bayesian inference (vbstan)

3. VBAT comparison using BIC value from 1, mle (vbat_mle)

4. VBAT comparison using BIC value from 2, vbstan

(vbat_vbstan)

1 2 2 M E T H O D O L O G I C A L I N T R O D U C T I O N B Y A N A LY S I N G T H E B A N D I T

T A S K

5. BIC value for each subject for model fits with hBayesDM

hierarchical models using VI (hbayes)

6. VBAT comparison using BIC value from 5, hbayes

(vbat_hbayes)

7. CBM toolbox hierarchical comparison (cbm-hbi)

8. VBAT comparison using log evidence from CBM Laplace fits

from 7, cbm-hbi (vbat_laplace)

Because MCMC is time consuming and our investigations above

showed that VI provides competitive results, we have dropped the

MCMC method from consideration.

3 . 1 0 . 4 C O M P A R I N G M O D E L C O M P A R I S O N M E T H O D S

We shall now compare the performance of the above-described

methods for model comparison and selection. We continue the use of

our two models QL2 and RandomBias and create the following

datasets we will then fit and contrast using the different methods. All

use the Bandit task, with arm reward probabilities as 0.2 and 0.8

respectively.

- 1000 subjects, 1000 trials. 50/50 QL2/RandomBias (A)

- 1000 subjects, 100 trials. 50/50 QL2/RandomBias (B)

- 1000 subjects, 1000 trials. 25/75 QL2/RandomBias (C)

- 1000 subjects, 100 trials. 25/75 QL2/RandomBias (D)

In all cases, we draw parameter values for QL2 as per these

distributions:

𝛼~𝑈(0, 1), 𝛽~𝑈(0, 20)

 and for RandomBias as per:

𝑏𝑖𝑎𝑠~𝑈(0, 1)

Also note that in the below plots for parameter value distances, the

methods shown differ from the methods shown in the model

selection plots. This is because the VBAT method, as explained above,

does not estimate parameters, it uses the BIC value calculated from

another method to select models. Thus, only the non-VBAT methods

are shown in the parameter value distance plots.

We have now also adjusted MLE boundaries and priors for the

Stan-based models (vbstan and hbayes) to be more comparable. For

MLE, boundaries are 0 < 𝛼 < 1 and 0 < 𝛽 < 50. For vbstan 𝛼~𝑈(0, 1)

3 . 1 0 M O D E L C O M P A R I S O N S 1 2 3

and 𝛽~𝑈(0, 50). For hbayes the transformation for β now allows

values up to 50. For CBM, we use the recommended settings where

all parameters have the same value for the prior variance (6.25).

3.10.4.1 Dataset A

In Figure 3.29 we can see that no method can correctly identify all

cases (left plot in figure). This is due to cases of RandomBias with high

bias for one arm can behaviourally look very similar to a greedy QL2

agent, as has been discussed above. What is surprising here is that the

MLE method is numerically better than other methods. This despite

the fact that individual parameter estimations, as seen below, are

commonly less accurate for MLE.

Figure 3.29 Plots showing what model was selected (left) and whether the model selected

was correct (right). Each individual bar represents a specific method as per the legend. Left:

The black dotted lines show the true number of cases for each model. The closer to the line

the better. Right: Higher value for “True” is better. Note this is a ratio measure and not

absolute case count.

Figure 3.30 Parameter value distances for each method and agent/model. Left: QL2 α

parameter. Middle: QL2 β parameter. Right: RandomBias bias parameter. Note each plot

has different scales on y-axis.

1 2 4 M E T H O D O L O G I C A L I N T R O D U C T I O N B Y A N A LY S I N G T H E B A N D I T

T A S K

In Figure 3.30 we can see that the different methods are comparable

for the QL2 α parameter and the RandomBias parameter. But for the

QL2 β parameter we have the two hierarchical methods CBM-HBI and

hBayesDM having lower value outliers than the other three methods

that are fitted individually to subjects.

3.10.4.2 Dataset B

At 100 trials we see that all methods are closer to the correct

number of cases for each category in the left plot of Figure 3.31,

compared to the 1000 trials in dataset A. This may seem counter

intuitive as we have fewer data points here in dataset B. But it is likely

due to that here there are not enough trials to have long sequences of

a greedy choice of one arm, making it less easy for the models to

Figure 3.31 Plots showing model selection results for dataset B across different model

selection methods. Note that y-axis scale differs between the two plots. Left: Number of cases

identified as QL2 or RandomBias. The dotted black line indicates the true number of cases

for each model. Right: Ratio of correct model selections for each method.

Figure 3.32 Parameter value distances between simulated parameter value and fitted

parameter value for each method considered. Note that the scale on y-axis differs between

the plots. Left: QL2 α parameter. Middle: QL2 β parameter. Right: RandomBias bias

parameter.

3 . 1 0 M O D E L C O M P A R I S O N S 1 2 5

confuse a RandomBias case for a QL2 case. Interestingly, here we see

in Figure 3.32 that for the QL2 β parameter (middle plot), MLE

performs badly compared to the other methods. And yet, MLE and

VBAT MLE are again the best performers when it comes to model

selection. There seems to be no direct correlation between parameter

value distance and model selection performance, as claimed by e.g.

[211].

3.10.4.3 Dataset C

With only 25% cases of QL2 agent simulations, we can see in Figure

3.33 that all methods overestimate the number of QL2 cases (left). This

is likely to be due to the same reasons – greedy behaviour – as

discussed above. We also see in the same figure that MLE and MLE

Figure 3.33 Model selection plots comparing different model selection methods for dataset

C. Note the different scales on y-axis in the two plots. Left: Number of cases selected as either

QL2 or RandomBias. Black dotted lines indicate true number of cases. Right: Ratio of correct

model selections for each method type.

Figure 3.34 Parameter value distances between simulated and fitted values for QL2 (left,

middle) and RandomBias (right). Left: QL2 α parameter distance for each method. Middle:

QL2 β parameter distance. Right: RandomBias bias parameter distance.

1 2 6 M E T H O D O L O G I C A L I N T R O D U C T I O N B Y A N A LY S I N G T H E B A N D I T

T A S K

VBAT are both closer to the correct number of cases (left) and the only

methods reaching more than 80% correctly identified model cases.

In the parameter distance plots in Figure 3.34 we see similar

patterns as in previous datasets. The methods are reasonably similar

for QL2 α and RandomBias bias parameters, and for QL2 β the two

hierarchical methods hBayesDM and CBM-HBI have much lower

incidence of outliers than the individually fitted methods.

3.10.4.4 Dataset D

Model selection performance (Figure 3.35) is slightly improved

across all the methods for the 100 trials here in dataset D as compared

with the 1000 trials of dataset C. Again, the MLE based methods have

noticeably better performance.

Figure 3.35 Model selection performance for the different methods. Note the difference in

scale on y-axis. Left: Number of cases classified as either QL2 or RandomBias model. Black

dotted lines indicate the true number of cases. Right: Ratio of correctly identified model

cases.

Figure 3.36 Parameter value distances between simulated parameter value and fitted value.

Note the plots have different scales on y-axis. Left: QL2 α parameter distances. Middle: QL2

β parameter distances. Right: RandomBias bias parameter distances.

3 . 1 0 M O D E L C O M P A R I S O N S 1 2 7

For the parameter value distances in Figure 3.36, we also see a

familiar pattern, namely that estimates for QL2 α and β (left, middle)

are quite bad in general. Remember, since α only ranges between 0,1

and β between 0,20, these distances that reach close to 1 and 20

respectively are more or less uninformative. The story is better for the

bias parameter (right). Despite this issue, we still have decent model

selection performance as just mentioned.

3 . 1 0 . 5 M E T H O D O L O G I C A L C O N S I D E R A T I O N S A N D C O N C L U S I O N S

These results are somewhat surprising. Theoretically, the HBI method

of CBM should perform much better according to [211], where a point

is made that better parameter estimations should provide better

model selections. This does not seem to be the case. There is also in

recent years a growing literature proposing Bayesian methods and

Bayesian model selection as the superior option [18, 149, 211, 221, 234,

291]. Our results here show that is indeed true if the goal is decent

parameter value estimates. One should however keep in mind that

even then, that is only true when we have enough trials. With few

trials, around 100 or less, even fully hierarchical Bayesian models

provide completely unreliable results for the QL2 learning rate, α.

Furthermore, if the goal is to estimate parameter values, it may be

worth the time investment to use MCMC, at least as a final way to get

results. During model development and testing, sticking to VI should

provide a much quicker and more efficient feedback loop.

Unfortunately, in practice it is not always so easy. VI can fail in

strange ways where one needs considerable experience to know if it

fails because the model is mis-specified or because there is not enough

data. Or that the model does not fit that data well. To be fair, VI is as

mentioned above not as mature as MCMC. In Stan (RStan,

hBayesDM), there’s an explicit warning on start-up of the fitting

process that the algorithm is experimental.

When it comes to model selection, our results show that MLE alone

is almost always numerically the best performer, even without

adding VBAT analysis on top. But it could be the case this is only

thanks to our relatively simple models and task. Perhaps CBM-HBI

will show its strengths when we have more models in the running

and/or if those models are more complex. Combined with more

complex tasks, it could be that is when MLE falls apart and becomes

more unreliable in comparison. A nice finding here, when it comes to

1 2 8 M E T H O D O L O G I C A L I N T R O D U C T I O N B Y A N A LY S I N G T H E B A N D I T

T A S K

model selection, is that toolboxes such as VBAT and CBM provides

individual uncertainty measures that are very useful when

investigating potentially heterogenous data.

As mentioned above, many papers and frameworks (like

hBayesDM, CBM) argue for the use of Bayesian inference over other

methods, but it seems from our investigations that, in order to use

them as done in this chapter, there are always details left out or that

have not been considered. Frameworks like hBayesDM, for example,

only has one available model for the two-armed bandit task, and it is

hard bounded at 5 for its temperature (β) parameter. It’s difficult to

see any reason for choosing this setting other than to (artificially)

reduce the number of errors one gets when fitting datasets with it.

Furthermore, the authors do not include a random bias guessing

model to sanity test their own models against generated data.

Although they do seem to have different models for other tasks, it

seems they do not have “control” models like for example the

RandomBias model in the case of the two-armed Bandit task. As

shown above, we thus added our RandomBias model to hBayesDM

by customising the existing “delta” (QL2) model.

Another consideration, coming back to computational time, is that

for larger datasets, for example with more complex tasks than the

two-armed bandit, Bayesian inference methods would become

intractable. For example, if we have a maze task with a 10x10 grid, a

Q-learning agent may require (tens of) thousands of steps to learn to

find a reward. If MCMC takes 2h for 50 subjects and 1000 trials, one

can imagine the time it would take for just a few agents and tens of

thousands of steps. We would have to use VI if we absolutely wanted

to use Bayesian inference. Meanwhile, MLE fitting is extremely fast.

The 20000 (10000 for each agent) simfits used to produce Figure 3.28

took 170 seconds on a modern laptop.

For the purposes of this thesis, we can conclude that MLE in

conjunction with BIC and VBAT will be our preferred method for its

speed and ease of use. Additionally, we shall keep using CBM when

possible, as it is simple to add models to it and, as mentioned

previously, it may prove better for more complex scenarios. It will

also be good to have a sanity check around so as to not blindly trust

the results from a single method.

3 . 1 1 A P P LY I N G M E T H O D O L O G Y T O H U M A N S U B J E C T S 1 2 9

3 . 1 1 A P P LY I N G M E T H O D O L O G Y T O H U M A N S U B J E C T S

We have access to a small unpublished dataset where human

participants perform the Bandit task, and we shall here apply what

we have learned above. The dataset is from Stolz, Pickering, &

Meuller (submitted), and consists of 23 subjects. The task the subjects

performed was a so-called Reversal Bandit (which will be further

discussed in the next chapter), where the arm reward probabilities

switch at certain points during the experiment run. Here we will thus

only use the trials up until the trial before the first switch point.

Let us call this dataset the Reversal Bandit dataset or “RB dataset”

for short. In this chapter, since we are only investigating a regular

Bandit task and thus only use the first 80 trials, we call this subset of

the data “Bandit dataset”.

Before analysing this data, it’s important that we get an

understanding of how our model recovery performs for this

particular task configuration. As we saw above, arm reward

probability differences as well as the number of trials impact these

measures. Furthermore, so far, we have mainly been using QL2 when

looking at parameter recovery so we should also investigate

RandomBias parameter recovery with our two methods we will be

using: MLE and CBM.

3 . 1 1 . 1 M O D E L R E C O V E R Y C H E C K

We will simulate 1000 subjects performing 80 trials on this task, half

with QL2 and half with RandomBias. In the Bandit dataset, arm1 is the

“best” arm with arm reward probability of 0.7, and arm2 has reward

probability of 0.3. So, these 1000 subjects play a Bandit task with the

same reward contingencies. Parameter values for the agents are

randomly drawn individually for each agent as follows:

𝛼𝑄𝐿2~𝑈(0, 1), 𝛽𝑄𝐿2~𝑈(0, 20), 𝑏𝑖𝑎𝑠𝑅𝑎𝑛𝑑𝑜𝑚𝐵𝑖𝑎𝑠~𝑈(0, 1)

1 3 0 M E T H O D O L O G I C A L I N T R O D U C T I O N B Y A N A LY S I N G T H E B A N D I T

T A S K

The pattern seen in Figure 3.37 is similar to the earlier method

comparisons where MLE and VBAT MLE show overall numerically

better performance. Here we can also see the importance of checking

the ratio of correct model selections (right), since in the left plot it

looks like VBAT Laplace method is comparably good, being close to

the black dotted lines, but in the right plot we see it mislabels subjects

to a larger degree.

We can further see in Figure 3.38 that CBM-HBI method tends to

misidentify RandomBias cases as QL2 which again is the same pattern

as we have seen previously. Nonetheless, it is important that we have

confirmed that this is the case also in this task configuration.

3 . 1 1 . 2 P A R A M E T E R R E C O V E R Y C H E C K

Let us also look at the parameter value recoveries for our methods in

this task configuration. Note that for each parameter mentioned

Figure 3.37 Model selection plots for 1000 simulated subjects where half were QL2 agents

and half were RandomBias. Left: Count of cases selected as being RandomBias or QL2. Black

dotted lines indicate true number of cases. Right: Proportion of correctly identified models.

Figure 3.38 Barplots showing details on how many of the misidentified cases were

RandomBias misidentified as QL2 (left), or QL2 identified as RandomBias (right)

3 . 1 1 A P P LY I N G M E T H O D O L O G Y T O H U M A N S U B J E C T S 1 3 1

below we are looking at the subset of either the QL2 or RandomBias

simulations. This is because we only have simulated parameter values

for those subsets to compare with the fitted values.

Not surprisingly, CBM-HBI is the better performer overall as seen

in Figure 3.39. With so few trials, QL2 α recovery is not good with

either method (left), but thanks to shrinkage in the hierarchical CBM-

HBI we get decent fits for QL2 β (middle). MLE performs the worst

for the RandomBias parameter (right).

Figure 3.39 Boxplots showing average distance between simulated parameter and fitted

parameter across the methods. Left: QL2 α parameter distance. Middle: QL2 β parameter

distance. Right: RandomBias bias parameter distance.

Figure 3.40 Plots for QL2 α parameter for each method. The simulated parameter value on

y-axis and the fitted parameter value on x-axis. Size and colour indicate the distance between

simulated and fitted value. Left: CBM-HBI method. Middle: CBM-Laplace method. Right:

MLE method

1 3 2 M E T H O D O L O G I C A L I N T R O D U C T I O N B Y A N A LY S I N G T H E B A N D I T

T A S K

In Figure 3.40, Figure 3.41, Figure 3.42 we have plotted the

simulated and fitted parameter values in scatterplots, with colour and

size of the markers to indicate distances. Overall, there is a similar

pattern as we have seen in previous investigations with such plots,

for example that with so few trials, the MLE method is highly

unreliable for QL2 β and can hit the boundary wall for any simulation

β value (Figure 3.41, right). Also noteworthy is in the same figure (left)

how CBM-HBI method underfits the higher QL2 β values due to

shrinkage.

Interestingly, in Figure 3.42, we see that all three methods tend to

fit extreme values for the bias parameter when the simulated value is

below 0.2 or above 0.8. The CBM methods are smoother, whereas

MLE tends to look more discrete.

Figure 3.41 Plots for QL2 β parameter for each method. The simulated parameter value is

on y-axis and the fitted value is on the x-axis. Size and colour indicate the distance between

simulated and fitted value. Note that each plot varies in their distance scales. Left: CBM-

HBI method. Middle: CBM-Laplace method. Right: MLE method.

Figure 3.42 Plots for RandomBias bias parameter for each method. The simulated parameter

value is on y-axis and the fitted value is on the x-axis. Size and colour indicate the distance

between simulated and fitted value. Left: CBM-HBI method. Middle: CBM-Laplace method.

Right: MLE method

3 . 1 1 A P P LY I N G M E T H O D O L O G Y T O H U M A N S U B J E C T S 1 3 3

3 . 1 1 . 3 M O D E L S E L E C T I O N S F O R B A N D I T D A T A S E T

With the above sanity checks we can now analyse the actual human

Bandit dataset.

As seen in Figure 3.43, there appears to be some subjects better

explained by random behaviour than reinforcement learning. Or

rather, some subjects are better explained by RandomBias than QL2.

We know from our checks above that CBM-HBI generally overfits

QL2 cases and that VBAT-MLE is correct to a larger degree. We can

understand better how this happens by looking at the raw data

(Figure 3.44) where we see that there looks to be a difference between

the subjects who are doing this task for the first time (group 1, 11

subjects) and those who have already done a similar task before

(group 2, 12 subjects; previously they had done a punishment only

version of the task). Group 1 has M=0.28 (SD=0.45) for what arm was

chosen (where 0 is arm1 and 1 is arm2), while group2 has M=0.19

(SD=0.39). We can confirm that there is in fact a difference between

the groups with an independent T-test; t(22)=4.59, p=4.7E-6. The fact

that the task they have done before uses punishment/no punishment

instead of reward/no reward is probably irrelevant, as the structure

of the task is otherwise identical to all intents and purposes.

Figure 3.43 Model selection counts for the Bandit dataset. Number of cases on y-axis and

on x-axis we have what model was selected, contrasted by method.

1 3 4 M E T H O D O L O G I C A L I N T R O D U C T I O N B Y A N A LY S I N G T H E B A N D I T

T A S K

Since greedy behaviour can be explained well by a RandomBias

model with a strong bias for one arm, it could be the case here that

the subjects of group2 – since they show greedier behaviour – more

commonly are classified as RandomBias. In Figure 3.45, where we have

only used VBAT-MLE, we can confirm that is indeed the case.

As mentioned above, the hierarchical methods of CBM and VBAT

also provide subject-level model probabilities. We can thus also look

at the probabilities for each subject being explained by one model

Figure 3.44 Plot showing what action was selected on the y-axis - arm1 (0) or arm2(1) –

across all 80 trials shown on the x-axis. Differently coloured lines indicate if participants

did this task first (task order 1) or if they had done a similar task earlier (task order 2)

Figure 3.45 VBAT-MLE model selections contrasted by task order. Subjects with task order

1 did the task for the first time while subjects with task order 2 did the task following prior

experience with a very similar task.

3 . 1 1 A P P LY I N G M E T H O D O L O G Y T O H U M A N S U B J E C T S 1 3 5

over the other across the methods as seen in Figure 3.46. There we can

see how there are a few subjects where the methods agree on their

behaviour being better explained by RandomBias.

3 . 1 1 . 4 P A R A M E T E R V A L U E P L O T S F O R B A N D I T D A T A S E T

As an additional check we can also look at how the methods agree on

parameter value estimates. This is not going to be our focus going

forward, as we are more interested in model selections overall, but it

is good practice to do this check in order to find potential

discrepancies17.

17 Anecdote: thanks to doing this check we found an error in our code that did

not impact model selections but did effect parameter value estimates for the MLE

method.

Figure 3.46 Probability of model being QL2 across all subjects. Because we are only

comparing two models, this also shows probability of being RandomBias (towards 0 on y-

axis).

1 3 6 M E T H O D O L O G I C A L I N T R O D U C T I O N B Y A N A LY S I N G T H E B A N D I T

T A S K

Figure 3.47 Plot showing fitted RandomBias parameter value for bias on y-axis, across all

subjects (x-axis). Colours indicate method used.

Figure 3.48 Plot showing fitted QL2 α parameter value on y-axis for each subject on x-axis.

Colours indicate what method was used.

Figure 3.49 Plot showing fitted QL2 β parameter value on y-axis for each subject on x-axis.

Colours indicate what method was used.

3 . 1 2 C H A P T E R S U M M A R Y 1 3 7

Overall, we can see in Figure 3.47, Figure 3.48, Figure 3.49 that the

methods largely agree but MLE hits its bounds more often than the

others. This is especially noticeable in Figure 3.49 showing β

parameter for QL2 model. This could indicate that we will have issues

with model selection, but as we have seen in our exhaustive testing of

these methods, this does not impair MLE to correctly identify models,

especially when combined with VBAT.

3 . 1 2 C H A P T E R S U M M A R Y

In this chapter, we have investigated methods for parameter

estimation and model selection. We did so using a simple decision-

making task in the form of a two-armed bandit task. We simulated

behaviour in this task using the basic RL algorithm Q-learning and a

control algorithm that picks choices at random with a certain bias

towards one option. Behavioural data from the simulations was then

fitted using these two models to recover parameter values and select

what model most likely generated the data.

What we show, in short, is that recovering parameter values is

difficult. The main reason for it being difficult, is because to get better

estimates we need large numbers of data points. But when our goal is

to fit data from human subjects, we often do not have enough data

points since it is not easy to get humans to perform in such long

experiments that would ideally be needed.

We also show that this problem remains even when using modern

approaches in the form of Bayesian inference, methods that are

commonly considered much more performant. Bayesian methods are

indeed better at estimating parameter values – and provide value

uncertainty measures of these estimates – but they are much slower

than the classic MLE method and the uncertainty measures do not

necessarily provide valuable information.

The most interesting finding here, however, is when it comes to

model selection. One would expect that better parameter estimates

leads to improved model selection accuracy. But we show that MLE

fitting – especially when combined with a tool like VBAT – often has

superior accuracy when selecting the model most likely to have

generated the data.

4 ST E PPI N G I N T O STAT E S W I T H R E V E R SA L

L E A R N I N G

In the previous chapter, we investigated how learning may happen in

the simple case of a two-armed bandit task. We will now extend that

task by allowing the arm reward probabilities to change during the

experiment.

We will first investigate how our agents from the previous chapter

handle this extension of the task and show how they do not always

explain animal behaviour well. We then discuss how the agent

algorithms themselves can be extended by adding the concept of

states, along with alternate agent algorithms from the literature. As in

the previous chapter, we then contrast and compare these

behavioural models considering parameter recovery and model

selection. Using the knowledge thus gained, we apply the models on

two sets of data with human participants and discuss the outcome.

As mentioned in the previous chapter, we can allow the arm

reward probabilities in the bandit task to change throughout the

experiment, either once or several times. Most common, and simplest,

is the case when we have a two-arm bandit, and the good and bad

arms are switched at some point. Hence, the name “reversal” bandit,

or reversal learning. This type of task has been used in different forms

for decades, for example to investigate learning in monkeys [174, 302],

in bumblebees [44, 216], and humans [112, 170].

Moving beyond simple reversals, the task can be made more

complex for example by increasing the number of options [20, 36] or

using a range of reward values for each option so that the ranges for

each overlap slightly and thus several trials are needed to find the best

[75, 305]. The more variation in the reward schedule, the more

difficult it will be to discern that a reversal switch has occurred.

Another way to complicate the task is to have not a switch per se,

but to make rewards depend on how many times a specific option has

been picked. For example, in [305], there are two decks of cards, each

with 80 cards. Participants are told to maximize their points over a

total of 80 card draws, where each card gave a point between 1 and

10. One deck – the advantageous one – had an average of 3 points per

card over the first 20 cards drawn, an average of 7 points over the next

50 cards drawn, and an average of 3 points over the last 10 cards

1 4 0 S T E P P I N G I N T O S T AT E S W I T H R E V E R S A L L E A R N I N G

drawn. The other deck – the disadvantageous one – gave an average

of 8 points per card for the first 30 cards drawn, an average of 5 points

for the next 20 cards drawn and an average of 2 points per card for

the final 30 cards drawn.

Such a task, however, is not strictly about reward learning as it is

also or perhaps more, probing the exploration/exploitation question.

But as mentioned in the background chapter, it is very difficult to

separate these questions as they are so intimately tied.

Another example of a reversal task, is one where we also have two

options and which one is the best switches multiple times during the

experiment as in [112]. We have options A and B, where A starts out

having a 70% probability of reward and B has 40%. After the

participant has selected the correct option A consecutively four times,

there is a 25% probability on each following trial that the reward

probabilities switch. After such a switch, the participant again must

pick the correct option – which is now B – four consecutive times to

allow another switch to occur.

One may think that such a “simple” extension of the bandit task –

arm reward reversals – does not impact the complexity of the task

very much. But as we shall see, it is sufficient to require additions to

our existing algorithms, perhaps even quite different algorithms.

4 . 1 S I M U L AT I N G P E R F O R M A N C E I N T H E R E V E R S A L

B A N D I T TA S K

We start out by investigating a straight-forward reversal task, where

we have 280 trials in total and what arm is best switches three times

throughout the experiment. The switch points are on trials 83, 151 and

226. The arm reward probabilities are 70% for the good arm and 30%

for the bad arm, with arm1 starting out as good. This task version has

been chosen as it is the same as the full version of the human dataset

introduced at the end of the previous chapter. There, we only used

the first 80 trials of this dataset but below we use the full dataset.

It should be mentioned here that in the human data, there are two

groups which differ slightly in the switch points. The other group

used 87, 161, 224. This was done to counterbalance the unlikely yet

possible case of subjects doing the experiment their second time

would be counting trials. For our purposes and convenience, this

detail is not replicated in our simulations.

4 . 1 S I M U L AT I N G P E R F O R M A N C E I N T H E R E V E R S A L B A N D I T T A S K 1 4 1

Initially, we only use the QL2 agent from the previous chapter to

explore this task. We investigate the performance of QL2 by first

exploring the parameter space. 1000 agents are simulated, each with

randomly drawn parameter values as per:

𝛼~𝑈(0, 1), 𝛽~𝑈(0, 20)

As seen in Figure 4.1, the QL2 agent can manage the Reversal

Bandit. The results are, as mentioned above, the average across 1000

agents with individually randomly generated parameter values so

what we learn here is that most parameter value combinations can

handle the task. What is noticeable is that the QL2 agent requires

many trials after a switch (most easily seen after trial 150) to learn the

new best action and performance is still improving almost up until

the next switch point.

We also conduct a “parameter sweep” where we investigate

performance for all permutations of parameter value ranges for the

QL2 agent. Performance is measures as proportion of actions picking

the correct best arm and the parameter value ranges are:

𝛼 ∈ (0.01, 1), 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 = 0.02; 𝛽 ∈ (1, 2, 5, 10, 20)

In total this gives us 50 α values, and thus 250 parameter value

combinations. Each parameter value combination is simulated 100

Figure 4.1 Performance averaged across QL2 agents using parameter values from the entire

parameter space. On y-axis we have the selected action and x-axis shows each individual

trial. The shaded area indicates 95% confidence interval.

1 4 2 S T E P P I N G I N T O S T AT E S W I T H R E V E R S A L L E A R N I N G

times to account for random variation in the performance of single

simulation runs. The results are presented in Figure 4.2.

As seen in Figure 4.2, higher β is generally correlated with higher

performance. One may think that higher α would be good to quickly

learn when a switch occurs, but that would also mean “accidental”

rewards from the bad arm would influence behaviour too much.

Interestingly, there is no discernible difference between 𝛽 = 10 and

𝛽 = 20 except for higher α values. We can see why, if we look at

individual action choices for each trial. Based on the results in Figure

4.2, we select 𝛼 = 0.4 and then run 1000 simulations for each of the β

values seen in the plot and mentioned above. There is no other

significance to doing 1000 simulations here instead of 100 as before,

other than the plots being easier to read. These simulations are shown

in Figure 4.3. There we can see how the greediest agent (β=20) reaches

higher average on correct arm selection, but the agent with β=10 is

slightly faster at switching, due to not being “stuck” selecting the

action with higher value. This pattern repeats for the lower β values,

where the lower it is, the faster the agent can switch. But higher β is

needed to reach higher performance between each switch point. We

can also see here that even for our best performing parameter

Figure 4.2 Performance for parameter value combinations of QL2 α (x-axis) and β (coloured

lines). Probability of choosing the correct arm is shown on y-axis. Shaded areas indicate

95% confidence interval.

4 . 1 S I M U L AT I N G P E R F O R M A N C E I N T H E R E V E R S A L B A N D I T T A S K 1 4 3

combinations, more than 50 trials are needed after a switch to get

almost exclusive selection of the best arm.

We can further illustrate this in the form of Figure 4.4, where we

have plotted the average proportion of best arm choices after a certain

number of trials following each switch. The overall pattern is that

performance still has an upwards trend at 50 trials after a switch

point.

Figure 4.3 Action selections for QL2 agents using α =0.4 and β as per the plot legend. The

selected action is shown on the y-axis for each individual trial (x-axis). Each line is the

average for 1000 simulations.

Figure 4.4 Proportion of correct choices (y-axis) for QL2 agents using α=0.4 and β as per

the plot legend. The x-axis shows number of trials after each of the three switch points. Left:

The first switch point at trial 82. Middle: The second switch point at trial 150. Right: Third

switch point at trial 225.

1 4 4 S T E P P I N G I N T O S T AT E S W I T H R E V E R S A L L E A R N I N G

4 . 2 C O N T R A S T I N G Q L 2 B E H AV I O U R W I T H H U M A N

B E H AV I O U R

We now turn our attention to the dataset with human data from the

same task. As mentioned in the previous chapter (and see there for

more details), this dataset consists of 23 subjects. We are again only

looking at the case with reward/no reward, and around half of the

subjects had, when performing this task, already done the same task

with punishment/no punishment. In Figure 4.5, we can see how this

reflects in the performance of the subjects who did the task for the

second time. They are much quicker at switching, especially at switch

point two (middle). Strangely both groups perform worse after the

third switch which may be a sign of subjects getting tired and/or

bored. Note that the two groups’ switch points were slightly different,

but the plot shows number of trials after switch.

Figure 4.5 Average proportion of correct arm choices (y-axis) for human subjects performing

the reversal bandit task. Colours indicate if subjects did the task for the first time (task order

1) or if it was their second time (task order 2). X-axis indicates number of trials after a switch

in arm reward contingencies. Shaded areas indicate 95% confidence interval. Left: First

switch point. Middle: Second switch point. Right: Third switch point.

4 . 3 A L T E R N AT I V E A L G O R I T H M S W I T H O U T S T AT E S 1 4 5

We can also look at the action choices across all the trials, as plotted

in Figure 4.6. Because of the low number of participants, the

confidence intervals are quite big, but the overall patterns are still

distinguishable. Although it is difficult to say for sure, we can for

example see that it looks like many subjects in group one believed

there was a switch around trial 180-190 (blue line, Figure 4.6). It may

also be the case that many subjects in group two remembered there

was a switch after approximately 150 trials the first time they played,

hence the dip and rebound on and following trial 150 (gold line,

Figure 4.6). This could also indicate that all subjects in a group saw

the same sequence and thus the noticeable average changes in

behaviour.

More important than such details is that the human switch

behaviour is quite different from that of QL2. It is clear by contrasting

Figure 4.3 and Figure 4.6 that humans seem to switch faster. How

come?

As discussed in the background chapter, humans and other

animals can internally reason about states of the world. Subjects in

the reversal task dataset were told there would be reversals of the arm

rewards. Thus, they were primed for such state switches which could

account for the faster switch behaviour compared to QL2.

4 . 3 A LT E R N AT I V E A L G O R I T H M S W I T H O U T S TAT E S

Before we discuss states further, we should consider if there are

alternative RL algorithms that may work better than our existing QL2.

Figure 4.6 Average arm (action) selection across subjects (y-axis) for each individual trial

(x-axis). Coloured lines indicate subject group as shown in legend and described in the text.

Shaded areas indicate 95% confidence interval.

1 4 6 S T E P P I N G I N T O S T AT E S W I T H R E V E R S A L L E A R N I N G

There are myriad ways to modify Q-learning, and even more

algorithms if we consider other types of RL, as mentioned in the

background chapter. Here we have chosen two that are commonly

used in the field of decision making in the cognitive sciences.

4 . 3 .1 D U A L Α Q L

One way to increase the complexity of QL is to distinguish between

positive and negative reward prediction errors. We can do this by

adding another learning rate parameter, so we have 𝛼𝑝𝑜𝑠 and 𝛼𝑛𝑒𝑔. In

mathematical terms this means:

𝑅𝑃𝐸 = 𝑟𝑡 − 𝑄(𝑎𝑡)

𝑄𝑡+1(𝑎𝑡) = 𝑄𝑡(𝑎𝑡) + 𝛼 ∗ 𝑅𝑃𝐸 {
𝛼 = 𝛼𝑝𝑜𝑠 𝑖𝑓 𝑅𝑃𝐸 ≥ 0

𝛼 = 𝛼𝑛𝑒𝑔 𝑖𝑓 𝑅𝑃𝐸 < 0

Note that it is somewhat arbitrary if we choose 𝑅𝑃𝐸 ≥ 0, 𝑅𝑃𝐸 < 0

or 𝑅𝑃𝐸 > 0, 𝑅𝑃𝐸 ≤ 0. The reasoning behind this separation is that it’s

plausible that positive and negative prediction errors differ in how

impactful they are on learning [95, 211]. Important to note is that our

regular QL2 model is a special case of Dual-α QL, where 𝛼𝑝𝑜𝑠 = 𝛼𝑛𝑒𝑔.

Thus, QL2 is a nested case of Dual-α QL.

Figure 4.7 Proportion correct arm choices (y-axis) for Dual-α QL agents. Each line is the

average of 100 agents with the same parameter combination. X-axis is the value for positive

α, and each line is for a different value of negative α as per the legend. Upper left: β=1 Upper

middle: β=2 Upper right: β=5 Lower left: β=10 Lower middle: β=20

4 . 3 A L T E R N AT I V E A L G O R I T H M S W I T H O U T S T AT E S 1 4 7

In Figure 4.7 we can see the proportion of correct choices for a

parameter sweep with Dual-α QL agent. The task is the same

ReversalBandit as described above (280 trials and three switch

points). The ranges used for parameter combinations were the same

for both α and with values as seen in the legend. Ranges for β were

also as per the figure. These ranges resulted in 605 parameter

combinations in total. Overall, we can see that larger β leads to higher

performance. For positive α the optimum is somewhere between 0.2

and 0.5, together with a negative α between 0.3 and 0.7. This

illustrates that the more parameters an agent/model has, the more

difficult it is to get a good overview of its performance across the

parameter space. Compare Figure 4.7 with Figure 4.2.

4 . 3 .2 D U A L U P D A T E Q L

Another way to adapt QL is to not only update the action value for

the chosen action but also update the value for the non-chosen action.

This takes the structure of the task into account and may be a way of

representing human participants’ knowledge of that general

structure, without introducing states in a more explicit way [233]. If

we denote the non-chosen action as 𝑎̃, on each trial t we perform the

following two updates:

𝑄𝑡+1(𝑎𝑡) = 𝑄𝑡(𝑎𝑡) + 𝛼(𝑟𝑡 − 𝑄𝑡(𝑎𝑡))

𝑄𝑡+1(𝑎𝑡̃) = 𝑄𝑡(𝑎𝑡̃) + 𝛼(−𝑟𝑡 − 𝑄𝑡(𝑎𝑡̃)

1 4 8 S T E P P I N G I N T O S T AT E S W I T H R E V E R S A L L E A R N I N G

In Figure 4.8 we have plotted performance for the Dual Update QL

agent as proportion of correct choices across the parameter space. The

range for α was the same as that seen for negative α in Figure 4.7.

Interestingly, compared to other QL agent types we here see that best

performance is reached with high values of α, and it additionally

looks like there’s a slight correlation here between the higher the β,

the higher is the optimal α.

4 . 4 A D D I N G S TAT E S T O Q - L E A R N I N G

The simplest way to add state information would be to adapt our

existing QL2 algorithm, enhancing it with states. This is easy, since Q-

learning in its original form already has states. The version we have

been using is a simplification. However, the states meant in standard

Q-learning are observable states. For example, if you are a law-

abiding citizen and the crosswalk light is red, you stay. When the light

turns green, you walk. Expressed differently, when the light is red

there’s a high risk of punishment (being hit by a car or charged for

jaywalking if that crime exists where you live) if you walk. When the

light is green, there’s a low risk of punishment for walking, perhaps

even a high chance of reward for walking because you’re en route to

Figure 4.8 Proportion of correct choices (y-axis) for parameter combinations of Dual Update

QL agent. Agent α value is on x-axis. Each line represents different values of β as per the

legend. Shaded areas indicate 95% confidence interval across the 100 simulations for each

parameter combination.

4 . 4 A D D I N G S T AT E S T O Q - L E A R N I N G 1 4 9

your favourite coffee shop. For a Q-learning agent in this situation,

we would have two states – red and green.

In the case of our ReversalBandit task, there are no such observable

states. As we mentioned above, this task and especially its non-

reversal version the regular bandit task, are often seen as stateless.

Another viewpoint is that there is only a single state of the world.

We could also view the ordinary Bandit task as one where there are

two hidden states. Either arm1 is the best choice, or arm2 is. But since

the state never changes, it never becomes relevant to consider. In the

Reversal bandit however, these hidden states do become relevant

because what arm is the good one switches.

Since we know the task contingencies, we can create a QL2 version

with perfect information about these hidden states. When arm1 is

best, we are in state 1 and when arm2 is best we are in state2. In our

algorithm we already switch what arm is best at certain switch points,

so we can set the new state for the QL2 agent as well. This is of course

not very realistic for investigating our human data, but it can serve as

a decent baseline complement to our existing baseline agent

RandomBias. If this model proves to fit data better than others, it may

indicate there is something amiss in our data. For reasons that will

become clear in later chapters, we call this version State Enhanced Q-

learning or SEQL2 for short.

In mathematical form18, SEQL2 updates state-action values on each

timestep t like:

 𝑄𝑡+1(𝑠𝑡, 𝑎𝑡) = 𝑄𝑡(𝑠𝑡, 𝑎𝑡) + 𝛼(𝑟𝑡 − 𝑄𝑡(𝑠𝑡, 𝑎𝑡)) 4.1

18 For algorithmic version, see https://github.com/fohria/phd_thesis

1 5 0 S T E P P I N G I N T O S T AT E S W I T H R E V E R S A L L E A R N I N G

To demonstrate the behaviour of our SEQL2 agent, we run 100

simulations of the same ReversalBandit task described above for the

human subjects. All 100 simulations used the same agent parameter

values, where α = 0.3 and β = 7. In Figure 4.9 we have summarised the

behaviour as what arm was picked across all the trials. We can see

that before and after the first switch, the behaviour is similar to the

standard QL2 agent (Figure 4.1), but after the second and third

switches we immediately go back to the previous value. This is

because before the first switch, we are in state 1 and the agent must

learn what arm is best, just as the regular QL2 agent does. After the

switch, we are now in state 2, which has its own Q-values, and the

agent must learn these Q-values from scratch. But after the next

switch – the second switch – we are back to state 1 and the agent thus

uses its already learnt Q-values.

4 . 5 A L G O R I T H M S T H AT A R E M O R E S TAT E F U L T O B E G I N

W I T H

As discussed in the background chapter, there is evidence that

animals such as rats and humans can infer hidden states of the

environment based on non-hidden observations. In the cognitive

sciences literature this is commonly called belief states19 and the

models use Bayes’ rule to update a prior belief of what state the

19 In the computer science literature these are commonly referred to as Partially

Hidden Markov Decision Processes, POMDPs.

Figure 4.9 Action selections (y-axis, arm1 or arm2, 0 or 1 respectively) on each trial (x-axis)

averaged across 100 SEQL2 agents, all using the parameter values α=0.3 and β=7. Shaded

areas indicate 95% confidence interval.

4 . 5 A L G O R I T H M S T H A T A R E M O R E S T A T E F U L T O B E G I N W I T H 1 5 1

animal is in, based on observations of their own actions and their

consequences – rewards in our case.

The common way to model such belief states is using Hidden

Markov Models (HMM) [112, 233]. These allow us to rely on the

Markov property, i.e., that all the information needed to make a

choice on the current timestep is included in the prior that we have

with us. In other words, the prior used in the current trial is the

posterior from the last trial.

The specific implementation we are using here is based on [233].

We start out with a prior belief over the two states, 𝑝𝑟𝑖𝑜𝑟(𝑠𝑡), where

𝑝𝑟𝑖𝑜𝑟(𝑠𝑡 = 1) + 𝑝𝑟𝑖𝑜𝑟(𝑠𝑡 = 2) = 1. This belief state indicates if we

think arm1 is currently the best choice (𝑠𝑡 = 1) or if arm2 is the best

choice (𝑠𝑡 = 2). Based on this prior, we select an action using the prior

as the probability of selecting each action. In other words, if we

strongly believe that arm1 is the best choice (𝑝(𝑠𝑡 = 1) ≫ 𝑝(𝑠𝑡 = 2))

then it is more likely we pick arm1.

When the action is performed, we receive a reward value, and

together they make an observation 𝑜𝑡 = {𝑎𝑡, 𝑟𝑡}. The posterior belief

over the two states is then:

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟(𝑠𝑡+1|𝑜𝑡) = ∑ 𝑝(𝑠𝑡+1|𝑠𝑡

𝑖)
𝑝(𝑜𝑡|𝑠𝑡

𝑖)𝑝𝑟𝑖𝑜𝑟(𝑠𝑡
𝑖)

∑ 𝑝(𝑜𝑡|𝑠𝑡
𝑗
)2

𝑗=1 𝑝𝑟𝑖𝑜𝑟(𝑠𝑡
𝑗
)

2

𝑖=1

4.2

where:

𝑝(𝑜𝑡|𝑠𝑡) = 0.5 + 0.5 ∗ {

𝑐 𝑖𝑓 𝑎𝑡 = 𝑠𝑡 𝑎𝑛𝑑 𝑟𝑡 = 1
−𝑐 𝑖𝑓 𝑎𝑡 ≠ 𝑠𝑡 𝑎𝑛𝑑 𝑟𝑡 = 1
𝑑 𝑖𝑓 𝑎𝑡 = 𝑠𝑡 𝑎𝑛𝑑 𝑟𝑡 = 0
−𝑑 𝑖𝑓 𝑎𝑡 ≠ 𝑠𝑡 𝑎𝑛𝑑 𝑟𝑡 = 0

4.3

and:

 𝑝(𝑠𝑡+1|𝑠𝑡) = {
𝛾 𝑖𝑓 𝑠𝑡+1 = 𝑠𝑡

1 − 𝛾 𝑖𝑓 𝑠𝑡+1 ≠ 𝑠𝑡
 4.4

In Equation 4.3, c and d allow for differentiation between rewards

and non-rewards, which we do not exploit here so in practice 𝑐 = 𝑑

for our purposes. The γ parameter in Equation 4.4 is interpreted as

the probability of staying in the current state. We have also extended

the functionality of γ with an additional parameter δ so that the

probability of staying in the current state decreases in probability for

1 5 2 S T E P P I N G I N T O S T AT E S W I T H R E V E R S A L L E A R N I N G

each timestep. In order to not have γ go below zero, we change γ on

each timestep like so:

 𝛾𝑡+1 = max (𝛾𝑡 − 𝛿, 0) 4.5

When a switch in state happens – when the prior and posterior

differ in what state has the highest probability – then γ is reset to its

initial value. We will use two versions of the HMM agent. The

original, named HMM, and the extended one named HMM-δ. As

usual, the code implementation can be found in the thesis code

repository20.

In Figure 4.10 we have plotted the performance for the two HMM

agents in our ReversalBandit task across their parameter spaces. The

ranges used were the same for all parameters and are those seen in

the right-hand figure legend. Each parameter combination has been

simulated 100 times and the figure shows the average of these 100

runs. The HMM agent reaches its best performance at γ=0.99 with

almost 90% proportion of correct choices. For HMM-δ we can see that

the pattern is similar, the best combination is high γ, preferably

combined with low δ. To study the behaviour in more detail, we select

only the simulations of the best cases for each agent, which for both

are γ=0.99 and for HMM-δ we have δ=0.01. We plot these simsets in

Figure 4.11, where we can see that the agents nicely follow the switch

points through the experiment, but here the transitions are smoother

20 https://github.com/fohria/phd_thesis

 Figure 4.10 Proportion of correct choices (y-axis) in the ReversalBandit task for the HMM

agent (left) and HMM-δ agent (right). Parameter γ is shown on the x-axis and each line in

the right-hand plot is a different δ parameter value as per the legend.

4 . 6 B E H AV I O U R A L C O M P A R I S O N O F A G E N T S 1 5 3

than in our “cheating” SEQL agent above. We also see that HMM-δ

switches faster, thanks to the δ parameter influencing the probability

to stay or switch action. The HMM agent is slightly slower to switch

but reaches higher performance.

4 . 6 B E H AV I O U R A L C O M PA R I S O N O F A G E N T S

Before we simulate and fit all the models to see how well our model

selection methods work, it would be good to compare the behaviour

of our models. For each agent we select a “good” parameter

combination – one that is among the best performing parameter

combinations for that agent. Performance here means proportion of

correct choices across the experiment. Then we compare agent

performance in two ways. First, the average performance, based on

proportion of correct choices during the task. Second, we compare

switch behaviour after each switch as that seen for the human subjects

in Figure 4.5. We also add the human subject data in these plots.

The parameter values chosen, guided by the above results, for each

agent, were as follows.

QL2: 𝛼 = 0.4, 𝛽 = 10

SEQL2: 𝛼 = 0.4, 𝛽 = 10

Dual-α: 𝛼𝑝𝑜𝑠 = 0.4, 𝛼𝑛𝑒𝑔 = 0.6, 𝛽 = 20

Dual-Update: 𝛼 = 0.8, 𝛽 = 20

HMM: 𝛾 = 0.99

HMM-δ: 𝛾 = 0.99, 𝛿 = 0.01

Figure 4.11 Proportion of action choices (y-axis; arm1=0, arm2=1) on each trial (x-axis) for

100 HMM agents all with parameter values γ=0.99 and δ=0.01. Shaded areas indicate 95%

confidence interval.

1 5 4 S T E P P I N G I N T O S T AT E S W I T H R E V E R S A L L E A R N I N G

RandomBias: 𝑏𝑖𝑎𝑠 = 0.5. The reasoning for this value for

RandomBias is because trial lengths are roughly the same for switch

intervals. The best performance for the RandomBias agent would thus

be to have equal probability for both arms.

For all the agents, we run each 100 times and average the results.

In Figure 4.12 we can see that most of the agents perform similarly

across the experiment. As a reminder, the Human1 group are those

who did the task for the first time and the Human2 group did the task

their second time. Unsurprisingly the SEQL2 agent performs best

since it has access to information that the other agents or humans do

not. But the HMM agent is very close. The other noticeable outlier is

the Human1 group, with slightly lower performance, but still higher

than the RandomBias agent. It is quite understandable that humans

learning the task for the first time will vary more in their behaviour.

Figure 4.12 Proportion of correct choices (y-axis) in the ReversalBandit task for our agents

and two human groups (x-axis). Error bars indicate 95% confidence interval.

4 . 7 P A R A M E T E R R E C O V E R Y P E R F O R M A N C E 1 5 5

In Figure 4.13 we have plotted the proportion of correct choices

after each switch point for all our agents and the two human groups.

As we saw earlier, the Human2 group performs very well at the

second switch point, almost as well as our cheating SEQL2 agent. For

switch points one and three we can see that the human groups are

closer to the other agents. It will be quite interesting to see what our

model selection algorithms determine is the better fit for these

humans across the entire task.

4 . 7 PA R A M E T E R R E C O V E R Y P E R F O R M A N C E

As discussed in the previous chapter, simulating behaviour

algorithmically is slightly different from fitting models. The latter

involves creating likelihood functions, and these may not always be

well behaved. In the case of our ReversalBandit, we can use the same

likelihood functions as in the previous chapter, since the QL

likelihoods only use actions and rewards as the behavioural

observations. SEQL2 being the exception, as it needs to be fed the

stimuli as well. Overall, the QL agents are well-behaved and similar

in parameter recovery to what was explored in the previous chapter

so they will not be presented here21.

We will however look closer at the two HMM agents, as we are not

yet familiar with the recovery performance of them. We perform the

parameter recovery check as in the previous chapter. That is, for each

21 But see code repository at https://github.com/fohria/phd_thesis

Figure 4.13 Proportion correct choices (y-axis) at different number of trials after each switch

point (x-axis). Each line represents a different agent as per the legend. Human “agents” are

differentiated by dashed lines and our baseline the RandomBias agent is dotted. Left: First

switch point. Middle: Second switch point. Right: Third switch point.

1 5 6 S T E P P I N G I N T O S T AT E S W I T H R E V E R S A L L E A R N I N G

agent we simulate 1000 agents, each with a randomly selected

parameter combination. For each agent we then fit its corresponding

likelihood function to itself to see if parameter values can be

recovered. Parameter values for the agents were generated as:

𝛾𝐻𝑀𝑀~𝑈(0, 1), 𝛾𝐻𝑀𝑀𝛿~𝑈(0, 1), 𝛿𝐻𝑀𝑀𝛿~𝑈(0, 1)

In Figure 4.14 we see the recovery results. We see that for the HMM

agent, parameter recovery is good. Only a few of the thousand cases

are off, and not by extreme amounts. But for the HMM-δ agent the

story is not quite as good. We have a similar pattern for the γ

parameter, but it is worse looking for HMM-δ. The δ parameter itself

is okay in many cases, but the wide spread indicates that any single

fitted value has high uncertainty.

Why this happens is because our introduction of δ becomes

problematic in the likelihood function. We reset γ after internal switch

points, where – as described above – the posterior and prior beliefs

differ in what state is more likely. We also “bottom out” γ (Equation

4.5) to make sure that γ cannot become negative. This causes the

likelihood surface to have sharp drops or at least become less

continuous. We saw an example of this in Figure 3.8. This may

perhaps be accommodated by using more complex HMM models, as

demonstrated by for example [170], further discussed below in future

work.

The good news is that as we saw in the previous chapter,

parameter recovery quality is not directly correlated with model

selection performance. The less good news is that hierarchical

Figure 4.14 Simulated parameter value (y-axis) plotted against fitted parameter value (x-

axis). Left: HMM agent γ parameter. Middle: HMM-δ agent, γ parameter. Right: HMM-

δ agent, δ parameter. Colour shading indicate the absolute distance between the simulated

and fitted value, where lighter green is low distance and darker blue is large distance.

4 . 8 M O D E L S E L E C T I O N P E R F O R M A N C E 1 5 7

methods like the CBM toolkit will struggle to fit models with badly

behaving likelihoods and require much longer computation time,

making it disruptive to do larger scale model selection investigations.

Simulating and fitting 1000 HMM-δ agents using MLE can be counted

in seconds. CBM HBI requires around 10 minutes to fit 100 subjects,

but around 2 hours to fit 200 subjects. Even then, results are not

noticeably better – perhaps even worse – than MLE fitting, as seen in

where CBM-HBI simfits for 200 subjects are shown.

The huge increase in computation time between 100 and 200

subjects is partly due to CBM HBI (like other Bayesian hierarchical

models) by its nature uses data from all subjects instead of fitting

them individually. And partly due to more subjects increases the risk

of “troublesome” subjects, meaning data sequences that are difficult

to fit. These issues arise when fitting the HMM-δ model to subjects

simulated with the same algorithm. When fitting the model to

subjects simulated with other algorithms, the problem is exacerbated,

and even more time is required. In such troublesome cases, even the

Laplace fitting part can fail and falls back to using estimates based

directly on the priors. Meanwhile, the HMM agent with CBM for the

same 100 cases takes less than a minute.

4 . 8 M O D E L S E L E C T I O N P E R F O R M A N C E

The final investigation we need to do before fitting models to our

human data is to check how well our model selection methods can

identify and differentiate different models. It is to be expected that

Figure 4.15 Simulated parameter value (y-axis) plotted against CBM-HBI fitted parameter

value (x-axis) for subjects simulated with and fitted with HMM-δ. Left: γ parameter. Right:

δ parameter. Colour shading indicate the absolute distance between the simulated and fitted

value, where lighter green is low distance and darker blue is large distance.

1 5 8 S T E P P I N G I N T O S T AT E S W I T H R E V E R S A L L E A R N I N G

some cases of QL2 may be identified as Dual-α QL and vice versa,

since the former is a subset of the latter. On such occasions it should

be the case that QL2 is preferred, since we use BICs and thus prefer

models with fewer parameters. The same reasoning is likely to hold

for the HMM and HMM-δ agents as well.

To recap, we have seven models in total that we are going to

simulate, fit and then identify based on the fits. These models are QL2,

RandomBias, SEQL2, Dual-α QL, Dual-Update QL, HMM and HMM-δ.

We simulate 200 subjects for each model, each simulation with

separately randomly generated parameter value combinations. We

thus get a dataset with 1400 subjects. All seven models are then fitted

to all 1400 subjects using MLE, from which we get a likelihood that is

converted to BIC values. These BIC values are then fed into VBAT for

final model comparison and selection.

We also use CBM, but there we exclude HMM-δ from the fitting

process, since the likelihood as described above is not well-behaved22.

This is unfortunate as we would have ideally liked to test the CBM

paper [211] claim that it is better than MLE at identifying nested

models. We could however test this claim with the QL2 and Dual-α

models, which are the same two models tested in their paper and

these are also included by default in CBM. We used 1000 simulated

agents (paper uses 40), with the same ratio of 25% QL2 and 75% Dual-

α. Their results showed an almost perfect identification of 25/75, but

we failed to replicate this finding and CBM reported a 54/46 split of

cases23.

To be fair, [211] uses a different reward structure for their two-

armed bandit task called a binarized Gaussian random-walk. The

precise details of their task are unfortunately not well described in the

paper, or the accompanying code, and we thus chose to use the same

ReversalBandit task described above. It is of course likely we could

replicate their results if we used the same task. However, the relevant

conclusion from this replication failure is that, as was thoroughly

discussed in the previous chapter, model selection is notoriously

difficult and it’s imperative that multiple task and agent scenarios are

22 If we assume that fitting HMM-δ to data generated by other models takes the

same amount of time as fitting 200 HMM-δ subjects, that would be 14h for 1400

subjects. More likely it would take longer for reasons stated in previous section.
23 Code for results can be found in thesis code repository

4 . 8 M O D E L S E L E C T I O N P E R F O R M A N C E 1 5 9

explored when making any claims that one method is better than

another.

Furthermore, even without HMM-δ in the mix, CBM is slower to

compute results compared to MLE. All the 1400 subjects take a minute

or so to simulate, fit and analyse with BIC and VBAT. For CBM, which

fits 1200 cases as we removed HMM-δ, the Laplace phase of CBM

fitting takes around three minutes and is done using multiple

processes with MATLAB’s parallel pool functionality. The

hierarchical fitting phase of CBM is not possible to do in parallel and

takes around 16 minutes, so CBM fitting is roughly 19 times slower

than MLE/VBAT. This is not terribly slow, but it’s worth noting as

these tests have been done on a relatively recent and powerful

laptop24, so with weaker hardware and depending on the

performance of CBM compared to BIC/VBAT, it is something worth

taking into consideration when selecting one’s method both timewise

and energy efficiency/sustainability-wise.

In Figure 4.16 we have plotted the model selection results for

MLE/BIC, VBAT (using BIC from MLE fits) and CBM. For the MLE-

based methods, most of the agents can correctly be identified more

than 80% of the time, often upwards of 90%, which is a decent and

promising result for fitting the human data. CBM generally performs

worse and is at best on par with the other methods. More generally,

we can see that Dual-α QL is difficult to identify, most likely due to

24 CPU in laptop is a Ryzen 7 5800H, 45W

Figure 4.16 Proportion of correctly identified cases (y-axis) for each method (colours as per

legend). X-axis labels represent the simulated agent name. Error bars are based on 95%

confidence interval.

1 6 0 S T E P P I N G I N T O S T AT E S W I T H R E V E R S A L L E A R N I N G

QL2 model being in the mix as discussed above. Similar reasons are

likely behind the poor identification for the HMM-δ agent, as the

HMM agent is nested within HMM-δ agent, in addition to the issue

with the troublesome likelihood function for the HMM-δ agent.

Looking further at the comparatively low identification performance

for RandomBias, it’s likely due to some random cases can look like

greedy QL agents. We can see these theories are true by looking more

specifically at what model each subject has been identified as. This is

shown in Figure 4.17, where we exclude the pure MLE method for

readability.

In Figure 4.17, we see that as we suspected, most of the Dual-α cases

are identified as QL2. We can further drill down into this to confirm

that many of these cases are such that the difference between the

positive and negative α in Dual-α QL is < 0.5 on average25. Due to the

inherent randomness of action choices in these tasks it is

25 Result not shown but plot available in code repository

Figure 4.17 Proportion of cases (y-axis) for each simulated agent (x-axis) identified as what

model (differently coloured bars as per legend). Shaded sections separate each x-axis category

for readability. Top: CBM method. Bottom: VBAT method.

4 . 9 F I T T I N G H U M A N D AT A I N T H E R E V E R S A L B A N D I T T A S K 1 6 1

understandable these misidentifications happen. Similarly, for the

HMM-δ agent, we see that almost all cases not correctly identified as

HMM-δ are instead identified as HMM.

For the comparison of VBAT and CBM methods, the biggest

deviation is how simulated RandomBias agents are almost exclusively

misidentified as Dual-α for CBM, but spread across Dual-α, Dual-

Update and HMM for VBAT. The other deviation – and arguably more

important – is that CBM misidentifies HMM as QL2 for roughly 10%

of the cases. Because what we are interested here is investigating

whether participants use the concept of states or rely on “simpler”

action-values, the VBAT result here is much more in line with what

we would like to see and therefore will be more reliable for our

human data with regards to this question.

Overall, these results are encouraging for fitting our human

subjects. We can be reasonably sure that the model fitted describes the

human behaviour well. It is especially encouraging that the two

HMM models – which have the concept of states – can be reliably

distinguished from the stateless models (QL family).

4 . 9 F I T T I N G H U M A N D ATA I N T H E R E V E R S A L B A N D I T

TA S K

We now have enough information to fit these six models to our

human data and be able to interpret the results. To reiterate, the

human data consists of 23 subjects playing the ReversalBandit task.

Half the subjects had done a very similar task once before and half

had not, which we indicate by referring to them as groups 2 and 1

respectively. The exact timesteps when switches occurred differed

slightly between the two groups, as mentioned above.

1 6 2 S T E P P I N G I N T O S T AT E S W I T H R E V E R S A L L E A R N I N G

In Figure 4.18 we can see that – somewhat surprising – most

subjects appear to perform in line with the Dual-Update QL model. For

the participants that did the task their first time (left hand side of the

figure), their behaviour is more scattered and thus in a few cases

better fit by other models. Moving on, we see that the CBM results,

although somewhat more unreliable as we saw in our simfit model

selection investigations, largely agree with the BIC/VBAT results,

except for the one subject identified as Dual-α by CBM. This adds to

the picture that the humans in group1 are more variable in their

behaviour, but largely use the same strategy as the humans in group2.

As we have seen earlier, an advantage of VBAT and CBM is that

we also get probability measures of each model’s fit to each

individual subject. This has been plotted per subject and method in

Figure 4.19, where we see that overall, the methods agree on

individual subject level what model fits best. An interesting case is

subject 3 where CBM is convinced it’s Dual-α QL, and VBAT is not

fully certain this subject is Dual-Update QL but gives some chance to

it being QL2. Subject 8 is a more clear-cut disagreement. But the most

interesting case here is subject 5 where all three methods (MLE result

not shown in figure) agree that HMM fits best. As we saw in Figure

4.16 and Figure 4.17, our methods are very good at identifying HMM

cases. So, it could very well be that this particular subject thinks about

the task in terms of states.

Figure 4.18 Number of subjects (y-axis) that were best fit with each model (x-axis). Coloured

bars indicate method type as per legend. Left: Human group that did the task the first time.

Right: Human group that did the task their second time.

4 . 9 F I T T I N G H U M A N D AT A I N T H E R E V E R S A L B A N D I T T A S K 1 6 3

What our investigations here show is that for this particular dataset

and the particular models we have chosen to fit, there is overall no

need for the concept of states to be introduced. Here, it seems more

likely that most subjects keep track of the value of both arms at once.

This is perhaps because they know that one arm is always better than

the other, so if one arm is rewarded that automatically means the

other one is bad. Hence, updating the values for both arms

simultaneously make sense. Most published papers would stop there

and conclude that Dual-Update QL is how humans approach this task.

But humans are not all the same, individual differences do exist. So,

if we are to believe our data, at least one individual could very well

be approaching the task in terms of conceptualising it as states

(subject 5 in the figures above). And for similar reasons it seems

reasonable that when first encountering a task, humans attempt

different strategies, which could explain how the fit results are more

scattered for the subjects in group1.

Figure 4.19 Model probability (y-axis) for each subject (x-axis). Separate lines and colours

indicate model identity as per legend. Top: VBAT method. Bottom: CBM method.

1 6 4 S T E P P I N G I N T O S T AT E S W I T H R E V E R S A L L E A R N I N G

4 . 1 0 I N V E S T I G AT I N G T H E W O R T H Y B A N D I T

As mentioned in this chapter’s introduction, there are many

variations of the reversal bandit task. One such variation is one where

reward magnitudes are varied together with what action option is the

best one. The specific one we will focus on here is one we call

WorthyBandit after the main author of the paper the task is taken

from [305]. Subjects have two decks of cards to choose from, a Good

Deck (GD) and a Bad Deck (BD). The BD provides high points for

early cards drawn but then goes down-hill, while the GD starts out

providing low points and then progressively get better. Subjects start

out at zero points and the goal is to maximize their score. In most

versions of the task, there is a goal criterion of 450 points to receive

some additional reward like taking part in a raffle to win a prize. In

order to reach this criterion, the subjects must resist exploiting what

initially looks like a good deck and keep exploring the deceptively

worse option. Note that the concept of card decks here is merely

superficially different from the Bandit and ReversalBandit tasks

above. They are all the same kind of tasks; two options for actions that

each provide a reward.

In more detail, the points awarded for each card are between 1 and

10 and after being drawn, that card is discarded. Each subject draws

a total of 80 cards (i.e., the task has 80 trials) and each deck has 80

cards (thus 160 cards in total across the two decks). The GD gives an

average value of 3 points over the first 20 cards drawn, an average of

7 points over the next 50 cards drawn and an average of 3 points over

the last 10 cards drawn from it. The BD provides an average value of

8 points for the first 30 cards drawn from it, an average of 5 points

over the next 20 cards drawn and an average of 2 points over the last

30 cards drawn from it.

We have gained access to a dataset consisting of 166 human

participants performing this task. Details of participants can be found

in [121]. All participants had the same specific point sequence for the

drawn cards. Thus, for consistency, we use the same sequence for all

simulations below. The sequence has been plotted in Figure 4.20.

4 . 1 0 I N V E S T I G AT I N G T H E W O R T H Y B A N D I T 1 6 5

To better understand how deck choice impacts score in the task,

we can plot the number of cards picked from each deck and the

resulting score, as seen in Figure 4.21. There we can see that to

maximise the points the participant needs to pick roughly an equal

number of cards from each deck. Because we can only pick 80 cards

in total, the two card counts are directly correlated, as seen in the

figure’s symmetry. The maximum score is 514 and the minimum

score is 392. A minimum of 25 cards drawn from the good deck are

needed to reach the goal criterion of 450 points. If more than 78 cards

are drawn from the good deck, the final score drops below the goal.

4 . 1 0 . 1 A G E N T P E R F O R M A N C E I N T H E W O R T H Y B A N D I T

As mentioned above, there is a goal of having at least 450 points when

the task ends. So, measuring performance in this task is quite natural

– we measure the total points achieved. The other thing we would like

to see is how the choice behaviour develops during the task run,

Figure 4.20 Reward magnitude (y-axis) for each card in the decks (x-axis). Colours

differentiate decks as per legend. Horizontal lines represent mean reward for that card

position range.

Figure 4.21 Total score in the task (y-axis) depending on how many cards are picked (x-

axis) from each deck (coloured lines as per legend). The green dashed line indicates the goal

criterion of 450 points.

1 6 6 S T E P P I N G I N T O S T AT E S W I T H R E V E R S A L L E A R N I N G

which we do by plotting action choices per trial averaged over

subjects. For an additional measure, we also calculate the proportion

of deck1 choices from the current trial to the end of the experiment.

In other words, on the first trial, this measure is the proportion of

deck1 choices across all the 80 trials. On the second trial, it’s the

proportion across the last 79 trials, and so on. On the last trial this

measure can thus only be one or zero since it is only based on the final

trial of the task. This measure allows us to see on an individual level

how the choices change throughout the experiment.

We start out by looking at the behaviour of our QL2 agent. We

perform a parameter sweep, with 100 subjects for each parameter

combination. The parameter ranges used are:

𝛼 ∈ (0.01, 0.1, 0.2 … 0.8, 0.9, 0.99)

𝛽 ∈ (0.5, 1, 2, 5, 10, 20)

Furthermore, we will also contrast three different reward functions

for the agent. When rewards are between 1 and 10, this can lead to Q-

values quickly inflating – especially if α is large – so that the action

that received a reward of 10 will keep being the highest valued one

until the other action has received a reward of 10 itself or enough

lower rewards to compensate. But the latter may not happen with a

greedy agent. Of course, one may argue that the β parameter then can

be lower and exploration can still happen. However, with the

inherent randomness of these algorithms it is very difficult to predict

how they will perform, especially for a task like the WorthyBandit

that has a quite complex reward schedule. Thus, our three reward

schedules are standard, normalised and scaled, where standard are

rewards between 1 and 10 as for the humans. The latter two are

calculated as follows:

𝑟𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 =
𝑟 − 𝑟𝑚𝑖𝑛

𝑟max − 𝑟min
, 𝑟𝑠𝑐𝑎𝑙𝑒𝑑 =

𝑟

10

The difference between these two are that for normalised, the

lowest reward value – 1 – will become 0, whereas for the scaled

function the lowest reward value will be 0.1. This may seem strange,

as 0 is usually considered as “no reward”, but since participants know

the reward range it is possible that a reward of 1 is evaluated as being

practically 0.

4 . 1 0 I N V E S T I G AT I N G T H E W O R T H Y B A N D I T 1 6 7

In Figure 4.22 we have plotted the number of cards drawn from the

good deck for all the parameter combinations and the three reward

value variants. The normalised and scaled variants (left, middle,

respectively) perform very similarly, and in both cases the pattern is

that lower β and very low α leads to more cards picked from the good

deck. Meanwhile, for the standard variant (right plot of Figure 4.22)

we seem to have the inverse relationship for β.

Moving onto Figure 4.23, the standard variant (right plot) again

stands out. How come almost no cases reach the goal criterion, when

in the previous figure there were many cases reaching around 40

good draws? We can see why in the histogram in Figure 4.24, where

we have selected the specific case of the simset (100 simulations with

the same parameter values) with α=0.4, β=10 for the standard reward

scale. Practically all cases pick one deck, and then greedily pick the

same deck throughout the entire experiment. This rarely happens

with human participants (see below).

Figure 4.22 Number of cards drawn (y-axis) from the good deck for each α (x-axis) and β

(coloured lines as per legend) parameter value combination. Left: Normalised rewards.

Middle: Scaled rewards. Right: Standard rewards. Shaded areas indicate 95% confidence

interval.

Figure 4.23 Total reward score (y-axis) for each α (x-axis) and β (coloured lines as per

legend) parameter value combination. Left: Normalised rewards. Middle: Scaled rewards.

Right: Standard rewards. Shaded areas indicate 95% confidence interval. Green dashed

horizontal line indicates goal criterion.

1 6 8 S T E P P I N G I N T O S T AT E S W I T H R E V E R S A L L E A R N I N G

Recall that β regulates exploration versus exploitation – higher β

results in more greedy behaviour, always selecting the action with the

highest Q-value. With lower β, exploratory actions are made more

often which is an advantage in this task as mentioned above. A certain

number of cards must be picked from the good deck before it becomes

good. So, what happens here when using standard reward values, is

that the QL2 agents with high β immediately get such a high Q-value

for one deck compared to the other that it sticks to it throughout the

entire experiment. Hence why the greedy agents average to around

40 draws from the good deck in Figure 4.22, because they either pick

80 from that deck, or 0. In other words, we must conclude that either

normalised or scaled variant should be used here26.

26 We could theoretically introduce a reward scaling parameter into the

algorithm, as demonstrated by e.g. [233]. That is not really the focus for us however,

so we leave this for other authors.

Figure 4.24 Closer look at the parameter combination α=0.4, β=10 with standard rewards.

Left: Histogram showing probability (y-axis) of picking a certain number of cards (x-axis)

for all 100 subjects averaged. Right: Action selected (y-axis) across all trials (x-axis) for

individual agents (separate lines). GD=good deck, BD=bad deck. Note there are 100 subjects,

but since they all pick either BD or GD entire task length, the lines overlap.

4 . 1 0 I N V E S T I G AT I N G T H E W O R T H Y B A N D I T 1 6 9

In Figure 4.25 we divided all the simsets (one simset is 100

simulations of the same parameter value combination) into two

groups – those that reached at least 450 points (winners) and those

that did not (losers). In the left part of the figure, we see the

probability of picking the good deck – deck1 – in proportion to all the

successive choices, as explained earlier. In both plots in the figure, we

see how winners have a more balanced approach, while the losers

aggressively pick the BD early on and then drastically switch to the

GD as the BD runs out of big rewards. Note that the two plots in

principle shows the same information, only presented from different

viewpoints. For later plots of agent simulation performance, we thus

stick to one of these, but see below for the human participants.

We now move onto performance for the RandomBias agent and do

a parameter sweep. The parameter range used for this parameter

sweep are as follows:

𝑏𝑖𝑎𝑠 ∈ (0.01, 0.1, 0.2, … , 0.8, 0.9, 0.99)

100 subjects were simulated for each parameter combination, and

results are seen in Figure 4.26.

Figure 4.25 Behavioural differences between winners and losers. Left: Probability of

selecting a card from deck1 (good deck, y-axis) relative to choices on successive trials (x-

axis). Right: Proportion of choices being bad deck (BD) or good deck (GD) on y-axis across

all trials on x-axis. Strictly it is the proportion of BD i.e., the line at BD is 1 and the line at

GD is 0. Dashed line indicates the midline, i.e., equal probability of each option.

1 7 0 S T E P P I N G I N T O S T AT E S W I T H R E V E R S A L L E A R N I N G

In the figure, we have combined results for all three types of

reward scales as they show virtually identical results. We here see that

a wide range of values for the bias parameter result in scores above

the goal criterion. For bias 0.5 to 0.8, 100% of the simulations are above

the criterion, as seen in the boxplots to the right in the figure. In total,

57% of all random cases are above the criterion. This is unfortunate,

as it shows that although the task is complicated there is no clear

measure for us to know if humans are learning anything in the task

or picking actions at random. It is still possible that, depending on the

behaviour of humans, some models we fit can better explain their

behaviour than a random model. For example, if many humans

struggle to get enough points, this may indicate that they are learning,

not picking at random, but learning the wrong thing. However, if we

rely on fitting models to know if humans have learned anything at all,

that makes our investigations much more challenging, since as we

have seen many times above that fitting models at all is not reliable.

If we compare this to the ReversalBandit from earlier, there it’s

easier to see that humans are doing something slightly different from

strict Q-learning as they often switch much quicker than QL2 can.

When it comes to SEQL2, things get very tricky. How, if at all, do

we define states in this task? The most straightforward way would be

to use Figure 4.20 as a guide, and then define that state o is when GD

is best and state 1 is when BD is best, based on how many cards have

been picked from each deck:

𝑠𝑡𝑎𝑡𝑒 = {

1 𝑖𝑓 𝑐𝑜𝑢𝑛𝑡𝐵𝐷 < 30
0 𝑖𝑓 𝑐𝑜𝑢𝑛𝑡𝐵𝐷 > 50
1 𝑖𝑓 𝑐𝑜𝑢𝑛𝑑𝐵𝐷 < 50 𝑎𝑛𝑑 𝑐𝑜𝑢𝑛𝑡𝐺𝐷 < 20

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Figure 4.26 Performance for RandomBias agent (y-axis, total points scored) across the

parameter value space (x-axis). Green dotted line indicates the goal criterion. Left: Average

score for each parameter value. Right: Boxplots for each parameter value.

4 . 1 0 I N V E S T I G AT I N G T H E W O R T H Y B A N D I T 1 7 1

The simulation results for SEQL2 are virtually identical to QL2

results, as seen in Figure 4.27. Note this figure only shows the

normalised and scaled reward variants. The other QL models, Dual-α

QL and DualUpdate QL also show the same patterns and are thus not

shown here but are available in the code repository.

The HMM and HMM-δ models have been altered slightly in order

to accommodate the WorthyBandit. Instead of Equation 4.3, we are

instead using a cumulative distribution function like so:

𝑝(𝑜𝑡|𝑠𝑡) = {

𝑟~Φ(𝜇 = 5.5, 𝜎 = 2) 𝑖𝑓 𝑎𝑡 = 𝑠𝑡

1 − 𝑟~Φ(𝜇 = 5.5, 𝜎 = 2) 𝑖𝑓 𝑎𝑡 ≠ 𝑠𝑡

4.6

Where the mean and standard deviations reflect the standard task

reward variant. Since these parameters for the normal distribution are

scaled accordingly with the scaled reward values, there is no

difference between the task variants. Results for the parameter sweep

for HMM can be seen in Figure 4.28. In the left part of this figure, we

can see that similar to how optimal β for the QL agents switched

between ReversalBandit and WorthyBandit, the γ parameter

(probability of staying in the current state) is now optimal towards

the lower end but can still be fairly high at 0.8 and still reach the goal

criterion. On the right-hand side of the figure, we can see a similar

pattern as for the other agents with regards to what deck winners and

losers pick cards from. That is, losers greedily pick from the bad deck

until around halfway into the task and only then gradually explore

Figure 4.27 Simulations for SEQL2 agent across the parameter space. Left: Total score

received (y-axis) for different α (x-axis) and β (coloured lines as per legend). Green dashed

line indicates goal score. Right: Proportion of cards picked (y-axis) from good deck (GD) and

bad deck (BD) across trials (x-axis) averaged across all subjects but divided into groups as

seen in legend.

1 7 2 S T E P P I N G I N T O S T AT E S W I T H R E V E R S A L L E A R N I N G

the good deck, but fail to do this exploration enough before it’s too

late. While the winners have a more balanced approach throughout.

For the HMM-δ agent, results are seen in Figure 4.29. To the left,

we see that with a very low γ, all combinations reach more than 510

score on average. Following those lines, we see that after γ=0.5 the

variants start to diverge, where the line for δ=0.01 has a similar

trajectory to the regular HMM agent, which is also the only

combination to ever go below the goal criterion. Only a few of these

combinations reach the heights in score of the lower γ values,

however. On the right-hand side of the figure, we again see the same

pattern as we have seen for the previous agents, namely that winners

have a balanced approach, whereas losers aggressively pick the bad

deck for too long.

Figure 4.28 Performance and behaviour of the HMM agent in the WorthyBandit task. Left:

Total score (y-axis) against γ value (x-axis). The green dashed line indicates the goal score.

Right: Proportion of cards picked (y-axis) from the good deck (GD) or bad deck (BD) across

trials (x-axis). The coloured lines indicate if the subjects averaged were winners or losers.

4 . 1 0 I N V E S T I G AT I N G T H E W O R T H Y B A N D I T 1 7 3

4 . 1 0 . 2 H U M A N B E H A V I O U R I N T H E W O R T H Y B A N D I T

For the human subjects we are presenting their scores and behaviour

in similar ways as for the agents above. But here, since we have a low

number of participants, we can plot their individual scores as separate

points, as well as have a closer look at their behaviour on a subject

level.

Figure 4.29 Performance and behaviour of the HMM-δ agent in the WorthyBandit task.

Left: Total score (y-axis) against the γ value (x-axis) and δ value (coloured lines as per

legend). The dashed green line indicates goal score. Right: Proportion of cards picked (y-

axis) from the good deck (GD) or bad deck (BD) across trials (x-axis). The coloured lines

indicate if the subjects averaged were winners or losers.

1 7 4 S T E P P I N G I N T O S T AT E S W I T H R E V E R S A L L E A R N I N G

In Figure 4.30 we have plotted the performance and behaviour of

the human participants. In the top left we can see that overall, the

winners tend to exhibit more exploratory behaviour than the losers.

The winners also seem to react stronger to the shift to bigger

difference between the decks after trial 50 (compare Figure 4.20). In

the top right we see that only around half of the participants reach the

goal criterion (47.6%, to be exact). In the bottom figure, which may

look overwhelmingly busy at first, we can see the same overall

pattern as in the top-left plot, namely that participants increase their

picks of deck1 throughout the experiment overall, but here we also

see that some participants notice the switch in the last 10 trials (lines

slope downwards after a point) and some participants don’t (lines

continue upwards entire task). The observant reader can also spot that

it looks like at least two participants pick the same deck throughout

the entire task (one horizontal line at 1.0 and one line at 0.0). To

doublecheck if there are any overlapping lines, we can check in the

data, and indeed two participants pick the same deck the entire task.

These subjects will most likely be best fitted by the RandomBias

agent, or perhaps a very greedy QL agent.

Figure 4.30 Human behaviour in the WorthyBandit task. Top-left: Average action choice (y-

axis) for each trial (x-axis). Shaded area indicates 95% confidence interval. Top-right: Score

(y-axis) for each participant. Each dot is a single participant. Green dashed line indicates

goal criterion. Bottom: Proportion of choices that are deck1 (y-axis) for each participant

(coloured lines) across all trials (x-axis).

4 . 1 0 I N V E S T I G AT I N G T H E W O R T H Y B A N D I T 1 7 5

Finally, to get an overview of all our agents together with the

humans, we plot the total score for all agents (using the parameter

sweeps described above) and the humans in Figure 4.31. We have not

chosen specific, well performing, agent parameter combinations here.

We also used a single reward type, normalised. Since there is a wide

spread in performance for the human data, it is more appropriate to

look at the spread for the agents to understand if there are parameter

combinations that can account for all or some humans.

In Figure 4.31, we see that the human scores are spread in a

uniform fashion across the possible scores. The HMM agents are

better on average, with the HMM-δ agent performing very well. For

the QL family of agents, QL2 has the best average and smallest

spread, but all those agents vary across the entire score spectrum, the

same as the RandomBias and humans. What models may fit the human

data best? Here it is possible that we may see a wider spread in model

selection, for example that HMM-δ fits well performing humans well

and DualUpdateQL fits the low-performing better.

4 . 1 0 . 3 M O D E L S E L E C T I O N P ER F O R M A N C E I N T H E W O R T H Y B A N D I T

T A S K

With only 80 trials, fitting will be challenging. Parameter recovery

will not be great, but luckily our focus here is model selection, which

as we saw previously does not necessarily require good parameter

recovery. Even this may prove challenging with so few trials.

Additionally, the details of this task may impact how well model fits

and selections work. This is the eternal challenge in experiments with

humans in the cognitive sciences. Tasks that don’t bore humans rarely

Figure 4.31 Score in the WorthyBandit task (y-axis) for each agent type (x-axis).

1 7 6 S T E P P I N G I N T O S T AT E S W I T H R E V E R S A L L E A R N I N G

get us enough data, but if we extend the task, the data will be

unreliable because humans are bored!

Nevertheless, like for the ReversalBandit above, we now simulate

and fit 200 randomly generated agents of each type and see how well

we can identify them. Because the QL agents do not work well with

the standard reward scale, and the other agent types work well with

any reward scale, we here only use the scaled reward scale (i.e.,

rewards are 0.1-1 instead of 1-10). We use this scale instead of the

normalised one (which is 0-1) to have better correspondence with the

reward values used in the human data. Except for the SEQL2 agent,

we can again use the same likelihoods as before, because the only data

we have are rewards and actions. For fitting the SEQL2 model to non-

SEQL2 simulations, we manually add states based on the card count,

in the matter described above.

We unfortunately ran into issues and bugs with CBM when fitting

this task. First, as with the ReversalBandit task, fitting the HMM-δ

model is prohibitively slow so it is left out of this analysis. Second, the

Dual-α QL model (which happens to be included by default in CBM)

fits the data for some subjects so badly that the fitting algorithm

reverts to using the prior value. This case of very bad fits seems to

have some bug(s) in its implementation, causing cascading errors in

the fitting process. The authors have been contacted but as of this

writing there is no fix for this error, so Dual-α QL has also been left

out of the analysis. Results for CBM model selections for the

remaining models are still presented, but keep in mind the ratios

cannot necessarily be directly compared to VBAT since the latter

compares likelihoods across all the models.

4 . 1 0 I N V E S T I G AT I N G T H E W O R T H Y B A N D I T 1 7 7

In Figure 4.32 we have plotted the model selection results. What

stands out is that HMM and DualUpdate QL are identified well by all

methods, that MLE is multiple times better at identifying SEQL2 than

the other two and Dual-α QL is quite bad for all methods. CBM is, as

has been seen before, not notably better than the other methods,

except for the RandomBias subjects. It’s possible that if CBM had been

able to fit the additional two models its result would be closer to that

of VBAT. To better understand what is going on here we need to move

onto Figure 4.33.

Figure 4.32 Model selection plots for the two methods (coloured bars as per legend), where

the proportion of correctly identified cases is on y-axis, and the simulated agent type on x-

axis.

1 7 8 S T E P P I N G I N T O S T AT E S W I T H R E V E R S A L L E A R N I N G

In Figure 4.33 we see the full model selection results, not just

accuracy as in the previous figure. The most important finding here

is that there is a clear separation between the HMM models and the

QL family of models – practically no HMM cases are identified as QL

and vice versa. Most HMM-δ cases that are misidentified are

identified as HMM, which makes sense as they are nested.

Unfortunately, it looks like between 20-40% of RandomBias cases can

be identified as HMM, depending on the method. That means we

cannot be fully certain a human best fitted with HMM actually uses

Figure 4.33 Proportion of cases (y-axis) for each agent type (x-axis) identified as what model

type (different coloured bars as per legend). Shaded areas are simply for readability. Top:

MLE method. Middle: VBAT-MLE method. Bottom: CBM method.

4 . 1 0 I N V E S T I G AT I N G T H E W O R T H Y B A N D I T 1 7 9

this strategy. For the QL family, we see that except for DualUpdateQL,

which has high accuracy overall, VBAT tends to classify Dual-α and

SEQL2 as the standard QL2. QL2 is nested in Dual-α so that part can

be partly explained, and perhaps it is the case that the addition of

states in SEQL2 does not help or differentiate very much in the

WorthyBandit for there to be much difference in their behaviour.

Because of the difference in results for MLE and VBAT, for example

that MLE is better at identifying SEQL2 than VBAT, it looks like we

can use both together to tease out the most likely model for individual

subjects in the human data that is to be fitted. CBM unfortunately

does not provide much additional information here.

One additional measure to check is the VBAT probabilities for each

model, as seen in Figure 4.34. For QL2 and Dual-α QL, VBAT is overall

quite certain the best fit is QL2. For RandomBias there is some overlap

between itself and DualUpdateQL and HMM. For SEQL2 there is not

much overlap between the correct model and the overall most fitted,

QL2. For HMM and DualUpdateQL, the probabilities are all very close

to 1 in the vast majority of cases, although it is not easy to see.

To summarise, if we fit DualUpdateQL or HMM to a subject, we can

be fairly confident that is the strategy used, but the participant could

also be using a random approach in the latter case. Dual-α is unlikely

to be the best fit for any participant (and would thus be a surprise if

that was the case for the human data). If we fit QL2, then we can be

confident it is in the QL-family, at least. Somewhat surprisingly, it

Figure 4.34 Probability (y-axis) for the model (coloured boxes as per legend) being the best

fit for the group of simulated subjects of each agent type (x-axis). Shaded areas are simply

for readability.

1 8 0 S T E P P I N G I N T O S T AT E S W I T H R E V E R S A L L E A R N I N G

also looks like MLE overall performs very well and in theory we

would not really need to use the more advanced Bayesian methods.

4 . 1 0 . 4 F I T T I N G H U M A N D A T A I N T H E W O R T H Y B A N D I T T A S K

With exhaustive investigations into the behaviour of our agents and

performance of model selection, we can now fit the human data. Since

we found CBM did not provide much useful additional information

we exclude this method from the presentation here.

We have plotted the model selection results for the human data in

Figure 4.35. Only the MLE method found SEQL2 (11 subjects),

RandomBias (8 subjects) and Dual-α QL (6 subjects) to be the best fit

for any of the subjects. They may look like an insignificant count in

comparison, but we saw above that the MLE method is much better

at fitting SEQL2 than VBAT. We also see that VBAT has fitted more

QL2 subjects than MLE, which is also to be expected from the above

investigation, as VBAT tended to fit most QL family models as QL2.

The most interesting findings here are the two models at the left,

DualUpdateQL and HMM. Both were found to be reliable in model

selection performance above. Are there any correlations between the

model selections and score for the participants? To investigate this,

we first focus on the subset of subjects where the two methods agree,

as any conclusions we draw from that subset we can be more

confident in. This turns out to be 136 of the 166 subjects.

Figure 4.35 Count of model selections (y-axis) for each model (x-axis) for each method

(coloured bars as per the legend)

4 . 1 1 C H A P T E R S U M M A R Y A N D D I S C U S S I O N 1 8 1

In Figure 4.36 we have the money shot. QL2 and DualUpdateQL fit

scores across the spectrum but falls off as we reach the very high

scores towards the maximum possible. This while HMM increases in

likelihood to be the best fit above 450, and after 470 or so, it is equally

roughly equally likely for the rest of the range of possible scores.

Perhaps it is the case that high-scoring individuals do use state

inference to a larger degree than non-high scoring individuals?

We should, however, recall that in the agent performance

investigations we saw that very few parameter value combinations

for HMM go below 450 points (Figure 4.28). So, this result may simply

be due to the inherent dynamics of the models, and not have anything

to do with participants using state inference, per se. Additionally,

there are several DualUpdateQL subjects in the right most bin as well.

Then again, the idea that one model supposedly fits all individuals

is one we do not agree with, which has hopefully been clear since

earlier in this thesis. It is entirely possible that DualUpdateQL, QL2 and

HMM are all possible and successful strategies in this task.

4 . 1 1 C H A P T E R S U M M A R Y A N D D I S C U S S I O N

In this chapter, we further explored the limits and capabilities of the

model fitting and selection methods under consideration – MLE,

VBAT and CBM. We did so using variations of the two-armed bandit

task where reward contingencies change throughout the experiment,

so called reversal bandits. This allowed us to introduce the concept of

states, both hidden and observable, and investigate how RL models

Figure 4.36 Histogram with number of subjects (y-axis) across the total score (x-axis)

received in the experiment. Colours indicate model fitted as per the legend, and lines are

calculated using kernel density estimate.

1 8 2 S T E P P I N G I N T O S T AT E S W I T H R E V E R S A L L E A R N I N G

and HMM models may explain human behaviour in two datasets

using different types of reversal bandits.

For the first task, ReversalBandit, we showed that most subjects did

not need the concept of states to be successful. Instead, it was

sufficient to keep track of action values for both arms simultaneously.

The second task, WorthyBandit, is much more complex and

requires careful balance of exploitation and exploration. Here, many

subjects found the approach of tracking hidden states more useful

than that of simply tracking action values. However, most subjects

managed fine with the same strategy used in ReversalBandit.

To summarise the results of both datasets, we show it is indeed

likely that individual participants do use different strategies and

adapt those to the task at hand.

For the regular reversal task, we can see in Figure 4.5 and Figure

4.6 that the group with previous experience of a similar task is, at least

for the first two switch points, faster at making the switch than the

other group. This ties back to the concept of “learning to learn” or

“meta learning” [113, 293] introduced in chapter two, which describes

how previous experience of a task such as reversal learning can be

utilised to improve performance in similar tasks.

Neftci & Aberbeck [193] explain how there may be two main model

types that can explain this faster learning; Bayesian models using

priors over the probability of reversal, or state inference models. In

our case we have focussed on the latter type of model and as

discussed above, these types of models usually assume involvement

of prefrontal areas, especially OFC [235, 302].

But as seen in the fitting results of our human data (section 4.9), a

large number of participants without experience of the task and all

participants with experience of a similar task are fit best by

DualUpdateQL model. This is quite interesting, as DualUpdateQL

does not have an explicit concept of multiple states, but it does

inherently take the task structure into account. The construction of the

DualUpdateQL model means that the participant learns about both

choice options after making a particular choice and receiving

feedback about it. Specifically, if recent evidence points to option A

being the better one then it follows that option B is the worse option

and both option values should be altered accordingly.

4 . 1 1 C H A P T E R S U M M A R Y A N D D I S C U S S I O N 1 8 3

Perhaps this indicates that prefrontal areas are not necessary to

engage for this task (but see below for an alternate interpretation).

However, seeing as some participants in one group were actually

better fitted with the HMM model, it is possible that such individuals

are motivated enough to engage complex reasoning to find a useful

task representation (when first encountering the task) which is then

re-engaged when a similar task is encountered (as for the group with

previous experience of the task). Alternatively, participants might not

simply re-engage HMM on later encounters but might adopt a

DualUpdateQL model if we see the latter as a “summary” (see section

2.2.5, p. 47) or simpler version of the former model, HMM.

Related to these speculations are the findings of Schlagenhauf et al.

[233], where a reversal task was used to compare behaviour between

healthy controls and patients diagnosed with schizophrenia. Like us,

they use a standard QL model, a dual update QL model and an HMM

model (our HMM implementation is in fact based on theirs). What

they find is that most healthy controls and some patients are best fit

with the HMM, and those patients that are not, are best fit with the

standard QL model. We cannot say with any degree of confidence

without further investigation, but it could be that even the fairly basic

assumption of task structure built into DualUpdateQL would require

similar prefrontal systems to those used by more explicit state

inference models such as HMM.

Through this lens of both HMM and DualUpdateQL using some

form of knowledge of task structure, we can make sense of the results

from fitting our models to the data in the Worthy task. There were

many subjects best fitted with QL2 here, and those subjects did not

reach the highest score levels possible, which participants best fitted

with HMM and DualUpdateQL were able to reach. Building on our

speculations above, this could mean that those subjects best fitted

with QL2 did not engage additional systems able to hypothesise

about possible task structures.

To be clear, we do not imply that our Worthy task participants,

who were best fitted by QL2, had any schizophrenia like behaviours

or thoughts. Rather, these participants perhaps were not motivated

enough – or unwilling – to exert the effort to think more deeply about

the task structure. Whatever the reason, this would result in

differences in model fits between certain individuals that were similar

1 8 4 S T E P P I N G I N T O S T AT E S W I T H R E V E R S A L L E A R N I N G

to the group differences observed in [233]. It is not possible for us to

evaluate these speculations here as we do not have any data on

participants’ motivation, but we think this line of thought adds to our

point made throughout this thesis that investigating the how and why

of individual model fits is valuable to consider in future research, for

example in order to tease out ideas for neurobiological models.

Regarding the methodology, we found that MLE – supported by

VBAT – was the better performer. CBM was at best on par, and at

worst did not work at all for some models. This is unfortunate

because the comparison of the methods is left incomplete. More

serious is the kind of bugs and issues with long computation times

we ran into. The latter was an issue for methods used in the previous

chapter as well. What these problems tell us is that – regrettably –

authors do not fully test their tools before publishing papers telling

the world how useful these methods are.

On that point, we show how important it is to cover as much of the

parameter space as possible when testing methods, preferably with

thousands of parameter combinations. Additional to this, it is equally

important to consider how a single unique parameter value

combination can vary across multiple simulation runs due to the

inherent randomness of action selection methods such as SoftMax.

To conclude, the best performing method here is the non-Bayesian

MLE. Granted, it is efficiently supported with VBAT which is a

Bayesian based method. As with so many things in life, we thus show

that a balanced combination of both worlds leads to the best result.

Even better, this method is the most computationally efficient which

is very good indeed for the environment.

5 T H E SH A P E SE Q U E N C E TA SK

We have so far seen how RL can often describe the behaviour of

humans in simple bandit tasks. Even in these simple and apparently

stateless tasks, the concept of states can be useful. It is thus time to

introduce tasks with observable stimuli, on which states may be based

directly or used to guide inference.

There are multitudes of such tasks, and as we saw with the reversal

bandit in the previous chapter, just introducing the simple

adjustment of varying what arm or deck is the best allows for greatly

increased complexity of the task structure. Thus, adding observable

stimuli allow for even more complex ways of constructing a task. The

common base structure for typical state-based tasks however is that a

stimulus such as a picture of an object is shown, and the participant

has two or more action options to pick from. The simplest case would

be a so called go-no go task where a picture is shown, and the

participant decides if they push a button (go) or not (no-go).

The most common task variant (although we have not counted this

formally) is likely to be one where there are a small number of

different stimuli, and two response options of which one must be

selected. Only one of the options is correct for each stimulus. For

example, you may see pictures of different types of food and for each

you must learn if I like or dislike it. Another alternative would be that

of a bumblebee searching for nectar in a new-found flower patch.

Perhaps there are several different kinds of flowers, each with a

distinct colour (and most likely shape but let us keep it simple) – the

flower stimulus defines the state. Through trial-and-error, flying from

flower to flower, the bumblebee learns that overall, purple flowers

yield more nectar than flowers of other colours (more formally we can

say the purple flowers have the highest state-action value).

Another type of task that is quite different at surface, but the same

concept, would be navigating through a house or a labyrinth of

rooms. Each room has one or more doors that lead to other rooms,

and you must learn the value of each action (passing through the

door) in each state (room) to find a terminal reward such as the exit

of the labyrinth or where the dog has hidden your slippers. In the

latter case, if it is the millionth time the dog has stolen your slippers,

you most likely already have a set of state-action values you can

1 8 6 T H E S H A P E S E Q U E N C E T A S K

follow for each room and door to get to your goal and hope that, this

time, the slippers are not soaking wet from drool.

As set out in the introduction chapter, our aim is to investigate the

intricate relationship between states, their representation and task

structure. In the descriptions above, the state is easily defined as an

image on a screen or a flower in a field but in the real world all

observations are high-dimensional and continuous. Humans and

other animals need to be able to generalise over states that look

different but are functionally the same, while also differentiating

between states that look the same but are functionally different.

Furthermore, the information to make such generalisations and

differentiations is not always directly observable, meaning additional

information needs to be inferred.

Therefore, to study how humans discover task structure and make

generalisations and differentiations, we came up with a new decision

making task that we call the shape sequence task [249].

In this chapter, we will first describe the process of creating the

shape sequence task (Shapetask for short). The process involved

several iterations informed by experiments with human participants.

Results from the final version of Shapetask show that some humans –

but not all – are able to successfully solve the task.

We then investigate RL behaviour in Shapetask and show how

manipulation of state representations can account for the different

types of human behaviour. To improve the biological plausibility of

these manipulations, we present models from the literature which

have a degree of neurobiological support and that combine RL with

complex state representations.

As one of these new models proves infeasible to fit using the

methods presented so far, we then introduce a new model fitting

method. We characterise model selection performance in Shapetask

using the new method and can then finally fit the human data and

discuss the results.

5 . 1 C R E AT I N G T H E S H A P E S E Q U E N C E TA S K

Developing a new task is a process of iteration over many months. We

will thus present here first the general idea of the task and how it is

supposed to help us investigate the questions we are interested in, as

5 . 1 C R E AT I N G T H E S H A P E S E Q U E N C E T A S K 1 8 7

stated above. Then we describe our task development and testing

chronologically, ending up with the final version and variations that

will later be the focus of our subsequent investigations.

As seen in Figure 5.1, in each trial, participants see a large, coloured

shape on the screen, together with three options on the right for what

shape they think will appear on the next trial. The possible shapes are

here blue circle, orange triangle, and purple square and the response

option buttons are small versions of the same shapes. The options are

always presented in the same spatial layout and participants indicate

their choice by clicking one of the buttons, and the next shape in the

sequence appears. Importantly, there is no explicit indication given to

the participant if their choice was correct other than them seeing the

next shape.

The sequence can be conceptualised by imagining three bags,

where each bag has three shapes of the same kind inside. All the

shapes in one bag are drawn before shapes from another bag are

drawn. Thus, the underlying basic pattern is that each shape will be

presented three times in a row. Of course, participants are only told

their task is to find the pattern, the idea of bags is only used here in

order to understand the task sequence better. There is a shortened

Figure 5.1 The basic structure of the shape sequence task. Each rectangular panel represents

a single trial in the task. The participant sees a large shape on the left, and to the right they

are asked what they think the next shape will be. In this example, the first shape they see is

a blue circle. Then they see two more blue circles, followed by a purple square.

1 8 8 T H E S H A P E S E Q U E N C E T A S K

version of the task available online27, to see the task in action as a

participant would.

This simple task is not as easy as it looks. Participants may very

well think that colour provides different information than the shape

(especially if they are used to psychological experiments), which in

this case is not true, but it may throw them off. In order to identify the

complete pattern in the task, participants must identify that the last

shape of the three presented requires a different response than the

first two. They must also identify that there is similarity between the

last presented shape for all three shapes. In other words, we can

theoretically investigate how humans combine generalisation,

differentiation, and inference to find task structure which, as

mentioned above, is exactly our aim. To use the concept of bags, the

task can investigate the influence of higher-order hidden state

properties – what bag are we currently in – as well as the process of

going from states as single trials (one shape) to states as a set of

several trials (bag).

The shape sequence task is similar to other tasks in the literature,

for example the n-back task [48] which is supposed to measure

working memory (WM). It is therefore possible that shape sequence

task partly or wholly measures WM and does not necessarily induce

RL. But, even if that were the case, participants would still have to use

some form of the generalisation and differentiation and inference

mentioned above in order to find the task structure and apply

working memory to that structure. Additionally – and as mentioned

in background – RL is by necessity intertwined with memory28, both

episodic memory [100] and working memory [55, 310].

Another similar task – and more related – is the “dimensions” task

[303]. The stimuli used differed on three dimensions: shape (square,

triangle, circle); colour (green, red, yellow); and pattern (dots, grid,

waves). For example, one stimulus could be a circle with red borders

and dots inside, another a square with green borders and a grid

pattern inside. Participants were shown three different stimuli

simultaneously on screen and had to pick one of them. Rewards were

27 https://gamescapad.es/balltask
28 And most likely most other brain processes, as the idea that any brain function

exists in isolation from others is only useful for humans doing research intended to

illuminate such isolated processes

5 . 1 C R E AT I N G T H E S H A P E S E Q U E N C E T A S K 1 8 9

explicit and probabilistic, with one of the stimuli having 75% of

reward and the others 25%. Which stimulus was the most rewarding

was decided based on only one of the three dimensions (shape,

colour, pattern), and the dimension-based contingencies changed

every 15-25 trials. Participants thus had to find the relevant dimension

among the multiple available.

The dimensions task is very similar to Shapetask both in

appearance and aim – studying how humans find structure in the

world. The difference lies in that in Shapetask, subjects have to find

that sequential position is a feature of interest. This feature is not only

across trials, but it also has to be constructed as a feature by the

subjects since we do not signal sequential position explicitly.

Another similar line of research is that of implicit learning

paradigms such as artificial grammar learning (AGL) and implicit

sequence learning (ISL). Both involve learning sequences of stimuli,

which involves learning to represent the task in some fashion, but

they also differ substantially from Shapetask, as shall be discussed

below.

In AGL, experimental tasks commonly include a learning phase

and a test phase [207]. During the learning phase, multiple short

sequences are shown – for example strings of letters – and

participants are instructed to memorise these. In the test phase,

participants are told the sequences they learned are based on certain

rules and are then shown new sequences and instructed to decide if

these new sequences follow or do not follow the rules. Performance

is then measured as the ratio of correctly categorised exemplars in the

test phase. Shapetask has only one phase, where participants are

explicitly encouraged to look for a pattern, whereas the pattern is

covert in phase one of the AGL task just described.

Experiments in ISL usually measures performance by reaction time

[247]. For example, on each trial of such an experiment, stimuli targets

are shown in one of four locations on a screen. Each stimulus is

associated with a specific corresponding key, and participants are

instructed to press the appropriate key as fast as possible. The targets

either appear according to a specific sequence that is not

communicated to participants, or in a random fashion for controls.

Interestingly, response times decrease significantly when these

sequences are fixed, but not in random conditions, implying that

1 9 0 T H E S H A P E S E Q U E N C E T A S K

participants implicitly learn these sequences. ISL therefore differs

from Shapetask in two ways. First, ISL involves covert presentation

of a sequence and second, that performance is assessed via reaction

time changes.

Both AGL and ISL touch upon how sequences are learned, which

from the perspective of this thesis means they investigate the topic of

task representation. Especially AGL is concerned with chunking [207]

– how individual letters (for example) are combined into “words”. As

mentioned in the background chapter of this thesis (section 2.3.1)

chunking is likely to play a role in how animals cut the world into

states that interact with task structure to solidify.

However, as mentioned above, both AGL and ISL are mainly

investigating implicit learning where participants are usually

unaware there is a pattern to learn. Further, both AGL and ISL tasks

are commonly presented in such a way that participants believe the

task is about something else than finding a pattern. Shapetask, in

contrast, uses explicit instructions that there is a pattern to learn,

which most likely engages higher-order processes like attention in a

different way than for (typical) AGL and ISL tasks.

On the other hand, Shanks [247] argues that it may be difficult to

differentiate between implicit and explicit learning, and presents

multiple findings showing that higher-order processes like

awareness, attention and memory are involved in both AGL and ISL.

The dimensions task described above suggests an important role for

attention in finding what features constitute a state, and Perruchet &

Pacton [207] notes that attention may indeed play a role in chunking.

We would thus agree with Shanks [247] that implicit and explicit

learning most likely overlap in what processes are involved, and the

story is most likely one where they are sides of the same coin and

interact with each other. This was discussed above in chapter two,

and also see the section below on latent learning (section 5.4.1).

Common for all varieties of our task, but dissimilar from most

other tasks in the RL literature, is that we did not use explicit rewards.

In chapter two we noted contradictory findings between model-based

and model-free RL. We then suggested that these findings might arise

because there is a more general kind of prediction error function

delivered by dopaminergic projection systems in the brain. From this

it is easy to imagine that a sensory (or stimulus event) prediction error

5 . 1 C R E AT I N G T H E S H A P E S E Q U E N C E T A S K 1 9 1

would work as a sort of implicit reward prediction error and can be

captured through algorithms similar to those used with explicit

rewards and their associated prediction errors. Such ubiquity of

prediction errors is, as mentioned in the background, the basis of

theories of free energy [87] and the predictive brain [47, 118].

From a general view, we would argue that in most psychological

tasks where there is a right answer, implicit rewards are a core

function for most people. Most subjects are motivated to try to

perform well – for in-person experiments, it is most likely due to the

social interaction with the experimenter and in online experiments

the motivational incentive is being paid for participation (see chapter

3.1 for more discussion of online recruiting). Indeed, most tasks

emphasize trying to achieve one’s best performance. It is therefore

likely that successful outcomes on trials of a task are intrinsically

rewarding, while failure on trials is intrinsically non-rewarding,

perhaps sometimes even punishing.

Further, in the perspective of RL, learning requires prediction

errors. If the task is being learned via RL mechanisms then we would

not see any learning if there were no reward prediction errors. There

can only be reward prediction errors if there is some form of reward

being gained and predicted. If participants do not learn then we

would have to add explicit rewards. Of course, participants could

show learning via another, reward independent, mechanism. In that

case, adding explicit rewards would perhaps show a different

learning behaviour which could be contrasted with the implicit

reward scenario.

Another argument for why we did not add explicit rewards to

Shapetask is one of designing the experimental flow. If explicit

rewards were to be added, this could prove distracting to subjects and

perhaps even make them focus on single trials rather than the pattern

across trials that we are interested in.

We have so far described one version of the task, but it is easy to

imagine how the task can be varied in many ways. For example, we

can vary the number of shapes in each bag or vary the number of

shapes. The task could be simplified by removing colours. Different

kinds of explicit feedback could be introduced, and so on. We chose

to stick to three different shapes and three shapes in each bag. Even

with these constraints, the task can be varied in multiple ways, as we

1 9 2 T H E S H A P E S E Q U E N C E T A S K

will see presently. For all versions, we used jsPsych [152] to create the

experiment as a web site.

5 . 1 .1 S C O R I N G T H E S H A P E T A S K

Common for all task versions, we calculate four different scores on a

per subject basis. For each trial, we calculate:

1. Correct – if the choice correctly predicts the next stimulus

2. Shift predict – if the choice for the next stimulus is different

from the current stimulus

3. Win-stay – if the prediction on the previous trial was correct,

and the same prediction is chosen again on the current trial

4. Lose-shift – if the prediction on the previous trial was incorrect,

and a different prediction is chosen on the current trial

The first two, Correct and Shift predict, look at the current

prediction in relation to the next stimulus. The latter two, Win-stay

and Lose-shift, look at the current prediction in relation to that made

on the previous trial. This means we can get trial-by-trial measures

for each participant.

We can also sum up these scores to get summary scores for each

participant. For each trial t, stimuli s and action29 a, and where p is

probability, we then get:

𝑝𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 𝑝(𝑠𝑡+1 = 𝑎𝑡)

𝑝𝑠ℎ𝑖𝑓𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 𝑝(𝑎𝑡 ≠ 𝑠𝑡)

𝑝𝑤𝑖𝑛𝑠𝑡𝑎𝑦 = 𝑝(𝑎𝑡 = 𝑎𝑡−1|𝑠𝑡 = 𝑎𝑡−1)

𝑝𝑙𝑜𝑠𝑒𝑠ℎ𝑖𝑓𝑡 = 𝑝(𝑎𝑡 ≠ 𝑎𝑡−1|𝑠𝑡 ≠ 𝑎𝑡−1)

5 . 1 .2 P I L O T V E R S I O N

In the first version of our task, we used only circle shapes

differentiated by colour and was thus called “Balltask”. We were also

interested in getting an estimate of participants’ uncertainty about

their choices and so included a question after each ball prediction

how certain the participant felt about their choice, indicated on a five

option Likert scale. This Likert scale question showed only after the

participant had made a prediction about the next ball colour. In

Figure 5.2, we see how this would look for a single trial. On the right-

29 In keeping with the general descriptions used in the RL literature we will refer

to the stimulus predictions made on each trial as actions. Note that the action on

trial t is the prediction for the stimulus on trial t+1.

5 . 1 C R E AT I N G T H E S H A P E S E Q U E N C E T A S K 1 9 3

hand side of this figure, we can see the Likert scale going from very

unsure to very sure.

The base pattern was, as described above, that there would always

be three balls of the same colour in a row. In other words, we had

three bags – one for each colour – and in each bag there were three

balls. A bag was picked at random, and then all the balls in a bag were

used up (i.e., without replacement) and shown one by one to the

participant before (metaphorically) putting the balls back into the

bag. Then a new bag was picked at random again. This meant that

there was a chance that the same colour would be shown 6, 9 or 12

times in a row. Longer sequences were obviously theoretically

possible, but they did not occur in the randomly generated sequences

used for this task.

In this pilot version, the same sequence was used for each

participant. In that sequence, there were a total of 270 trials, consisting

of 45 cases of 3 identical balls in a row, 16 cases of 6 in a row, 3 of 9 in

a row and 1 case of 12 in a row. We then recruited 27 people via

Amazon Mechanical Turk, who were paid approximately £10/h for

Figure 5.2 Shapetask version 1, a.k.a. Balltask. On each trial, the participant saw a big,

coloured circle (green, red or blue) and three text buttons with the possible choices (left side

of figure). After clicking one of the buttons, the question and scale showed up below (right

side of figure).

1 9 4 T H E S H A P E S E Q U E N C E T A S K

participating. In order to be reasonably certain that the participants

would take the task seriously, we set a condition that participants had

to have at least 100 previously approved submissions to Amazon

Mechanical Turk to participate. Additionally, after accepting the task,

all participants were given a standard consent form and were free to

decline if they so wished. After giving consent, they were given the

following instruction:

Welcome to the experiment!

You will be presented with a series of pictures. Each

picture is a coloured ball, either red, green or blue.

Your task is to predict what colour the next ball will be.

Good luck!

What we hoped to see in this pilot was that at least some of the

participants would spot the pattern, and therefore on every third

choice (the last ball of a bag) pick another colour than the one shown

on the screen at that time. The second expectation was that we could

correlate their uncertainty indication with the choice behaviour.

5.1.2.1 Pilot results

To understand the results, recall that one “bag” consists of three balls

of the same colour, and these balls are presented to the subject one at

a time. Again, participants are unaware of the notion of the “bags”,

but they make it easier to explain the procedure.

Because we are interested in seeing if there is a difference in how

subjects respond to the first two balls of a bag, compared to the last

(third) ball in a bag, we will show scores averaged across all balls in

the same position within the sequence of draws from the hypothetical

bag. That is, for example, the proportion of correct predictions across

all balls in position one in a bag. This allows us to see if and how

participants respond and change their behaviour during the

experiment.

5 . 1 C R E AT I N G T H E S H A P E S E Q U E N C E T A S K 1 9 5

In Figure 5.3 we can see that overall, participants have adapted a

WinStay-LoseShift (WSLS) behaviour. That is, on positions one and

two they predict that the next ball colour will be the same as the one

they see (high correct score in left and middle plots in the figure), and

they make the same prediction on position 3 (chance level for correct

responses in righthand plot in the figure, together with high Win-stay

proportion).

However, on average, we can also see a small increase in Shift

predict on position 3 compared to positions 1 and 2. If we combine

the positions 1 and 2 and compare them to position 3, this difference

is significant on the group level (paired t-test, 𝑡(26) = −2.53, 𝑝 =

0.018). It may be the case that a few subjects have been able to spot

the pattern and this increase in Shift predict on position 3 is driven by

these subjects. In Figure 5.4, we have used the last half of the

experiment trials30. On the right-hand side, we can see that it is indeed

the case that a subset of our participants increases their proportion of

shift predict choices in position 3 compared to positions 1 and 2.

30 The pattern is similar when including all trials, but clearer with the last half.

The rationalization here is that participants are still learning in the first half.

Figure 5.3 Summary scores for all subjects in the pilot version of Shapetask. Proportion of

choices on y-axis and different coloured bars on x-axis are the different score types (see text

for descriptions). Left: Ball position 1. Middle: Ball position 2. Right: Ball position 2.

1 9 6 T H E S H A P E S E Q U E N C E T A S K

Also in Figure 5.4, on the left-hand side, we have plotted the Likert

choices. There we see that some participants have answered the same

throughout the experiment (straight horizontal lines), possibly

indicating low effort. But we also see some participants going from

high certainty in positions 1 and 2 to low confidence for position 3.

This is the pattern we expected to see, but is it necessarily the case that

the same participants have this pattern for both the Likert choice and

the Shift predict score?

For several subjects, yes, that is the case, but for at least one subject

it is not, as seen in Figure 5.5. It is possible this participant is confident

in their choice because they have spotted the pattern (recall that these

data are for the second half of the trials). In which case the Likert

choices may not provide much additional information.

Figure 5.4 Averaged Likert choice (left) and Shift Predict score (right) for each pilot

participant (coloured lines) and for each shape position (x-axis). Here only the last half of

the experiment trials are included. Left: Likert choice, five-point scale from 1-5 (y-axis), with

1 being very unsure and 5 being very sure. Right: Shift predict proportion (y-axis).

Figure 5.5 Likert choice (left) and proportion of shift predict choices (right) for subject two

in the pilot data.

5 . 1 C R E AT I N G T H E S H A P E S E Q U E N C E T A S K 1 9 7

5 . 1 .3 P I L O T V E R S I O N 2

The task in its pilot form seemed too difficult for many participants,

and we also wanted to know how much – if any – of the results

depended on the fact that we were using anonymous online

participants. Did some participants fail to find the pattern because

they did not understand the task? To find out the latter, we recruited

150 participants from a psychology undergraduate course at

Goldsmiths, University of London, who did the task for course credit.

We also introduced a new version of the task, to reduce the number

of possible repeated sequences.

In the new version of the task, each colour had to appear before the

same colour could repeat again. In other words, using the concept of

bags containing balls again, we imagine there is a bigger bag

containing the three bags of balls. We randomly pick the first bag out

of the three (red, green and blue) in the big bag and empty that bag

of its balls. Next, we pick one of the remaining two bags and finally

there is only the last bag to pick from the large bag. When all bags and

their balls have been shown, we refill the small bags and put all three

back into the big bag and again start picking a random bag out of the

three. This version is therefore called “bag of bags”. In this way, the

maximum times a ball colour can repeat is six, which happens if the

last bag picked in a big bag is the same colour as the first bag picked

from the next big bag, when all small bags are full.

The 150 participants were randomly assigned to receive either

version 1 of the experiment, or version 2. Version 1 was identical to

the previous pilot, where bags are selected in random order and thus

allows for longer sequences of the same colour than six. The only

difference in this second pilot is that each subject received a uniquely

randomized sequence. Version 2 is the just mentioned “bag of bags”

alternative version. For easier identification we refer to version 1 and

2 as “random bags” and “bag of bags”, respectively. Both versions

had 270 trials in total. Other than the sequences used in these two

versions, the task was otherwise unchanged and so has the same look

and functionality as described above for the first pilot.

5.1.3.1 Pilot version 2 results

Due to unfortunate bugs in the experiment code, Likert scale data was

not recorded properly and is thus left out of analysis. Additionally,

some subjects clicked “agree” on the consent form, closed the browser

1 9 8 T H E S H A P E S E Q U E N C E T A S K

window, then came back. These participants could not complete the

task, since a cookie was set as soon as the participant agrees, to not

allow duplicate entries. This left 106 subjects, of which we excluded

additional subjects that left the experiment window for more than

twenty seconds at some point during the experiment. This left 73

subjects, of which 34 were in the “random bags” version group and

39 in the “bag of bags” group.

In Figure 5.6 we have plotted summary scores averaged across all

the participants but separated by task version (rows) and ball position

(columns). Overall, the results are similar to the first pilot, but looking

at the rightmost column – shape position 3 – we see that those

participants doing version 2, bag of bags, have much higher shift

predict proportion than the group doing random bags. This is

confirmed by a mixed between-within 2-way ANOVA which reveals

a significant interaction between position (position 3 vs other) and

version [𝐹(1, 71) = 29.2, 𝑝 < 0.001].

We can further investigate this pattern by looking at the line plots

of Figure 5.7. There we can more clearly see this stronger pattern of

higher shift predict for position 3, which for some subjects in the bag

of bags version is very strong. This effect was significant in the group

performing the bag of bags version: the shift predict probability for

Figure 5.6 Proportions (y-axis) across all subjects and trials for each score type (x-axis),

separated by experiment version (rows) and ball position (columns).

Top: version1/random bags. Bottom: version2/bag of bags.

5 . 1 C R E AT I N G T H E S H A P E S E Q U E N C E T A S K 1 9 9

shape position one and two combined was lower compared to

position three (𝑡(38) = −8.4, 𝑝 < 0.001). Even for the random bags

group, there was a significant effect for shape position one and two

combined compared to position three (𝑡(33) = −3.2, 𝑝 = 0.003).

However, we should keep in mind that since we do not have a static

sequence for the random (version 1) version, the difficulty can vary

between individuals as a function of their specific random task

sequence.

The pattern seen in the previous two figures arises already within

the first 99 trials, something not shown here but can be confirmed in

the code repository. We bore this observation in mind when

developing the task further below. These results are overall

promising, as it seems we have succeeded in making the task simpler.

One could perhaps object here that we are constructing the task in

order to get to the results we would like to see, biasing the results.

However, there is a difference between biasing a task to get the results

you would like and balancing a task’s difficulty so that you can

investigate the issue at hand. We believe it’s the latter that is being

done here.

It is unfortunate the Likert scale results did not register properly,

but it is not critical. As we saw in the previous pilot, the Likert scale

was not adding much information. Additionally, thanks to informal

feedback given by some participants in person, we realised the Likert

scale makes the task very tedious, and feedback (the next stimulus

Figure 5.7 Proportion of choices being “shift predict” (y-axis) for each ball position (x-axis).

Coloured lines separate each subject. Left: Version1/random bags. Right: Version2/bag of

bags.

2 0 0 T H E S H A P E S E Q U E N C E T A S K

appearing) is delayed. The main feedback was that the task was

generally boring and too long. Subjects took between 10-20 minutes

to complete this task, and it is understandable it is experienced as

boring since there is not much variety in what is happening.

5 . 1 .4 B A L L T A S K B E C O M E S S H A P E T A S K

Based on the results and feedback from the two pilot tests, we made

adjustments to the task, and added an additional task version. The

main change was that the Likert scale asking about the participant’s

(un)certainty was removed. As explained above, it disrupted the flow

of the experiment and as seen in Figure 5.5 did not necessarily

provide useful additional information. It was thus decided that the

Likert scale did not provide any real value.

The adjustments were mainly of a look-and-feel nature, where

instead of coloured balls we differentiated the “bag contents” also by

shape: circle, triangle and square. Each shape also has its own distinct

colourblind-safe colour with the circle being blue, the triangle orange

and the square purple. This may slightly increase the task difficulty

as noted earlier, because participants could perhaps believe there was

a difference in importance between the shapes and colours, when in

fact there was not. The task appearance in Figure 5.1, presented

earlier, is representative of this new look.

We also added animations and delays. When a new shape

appeared on the screen, it bounced up and down before settling. The

buttons (actions) were now the shapes themselves instead of text

buttons, and these buttons did not appear until 1 second after the

main shape had appeared. These additions were made for two main

reasons; one to try and guide the participant’s focus in a flow from

stimulus to action option and the second in order to avoid

participants clicking buttons without thought.

The two previous task versions, random bags and bag of bags

remain but the number of trials was reduced to 99. The specific

number 99 instead of, say, 100 is because we want a full set of bags of

bags, and since each bag of bags contain 3*3=9 shapes, we need to

increase trial count in steps of 9.

5 . 1 C R E AT I N G T H E S H A P E S E Q U E N C E T A S K 2 0 1

An additional task version was introduced here, “bag of bags no

repeat”31, abbreviated BOB-NR. This version works the same as the

bag of bags (BOB) version, with the exception that the first small

selected from the large bag cannot contain the same shape as the last

small bag drawn from the previous bag of bags. In other words, in

this version there will only ever be a maximum of three shapes in a

row, never six shapes in a row which can happen occasionally in the

bag of bags version.

Finally, we simplified the instruction text (after consent form but

before the first shape was shown), putting the main instruction in

bold:

Can you spot the pattern?

Your task is to predict the next shape.

Good luck!

We also included a text box at the end of the task, where the

participant could freely type a response to what was asked:

Did you notice any pattern to the sequence of shapes

which allowed you to predict the next one accurately?

5.1.4.1 Shapetask results

For testing our revamped task and the three versions, we recruited

participants online through Prolific (www.prolific.co). As mentioned

in chapter three, Prolific is an online platform for academic research.

It has been shown to provide good data quality and diverse

participants [205]. Demographic information is available for all

subjects, without us (the experimenters) having to ask for it. The

platform allows to filter participants on, for example, fluency in

English.

Recruitment was done in two phases. We first recruited 10-15

subjects for each version, partly to test our website and database

setup, partly to test the Prolific platform. Confident in our setup and

the platform, we then recruited an additional 25-30 subjects for each

version. Participants were from across the world, with a few from

31 Note this version was called “bag of bags without repeat” in [249], but we

decided that name in its shortened form “bob-wr” is too easily confused with “bag

of bags with repeat”.

2 0 2 T H E S H A P E S E Q U E N C E T A S K

every continent (except Antarctica) and ages ranging from 18 to 74,

with a mean of 28.7 (SD 9.8).

In these results, we excluded participants based on two criteria. If

they had an average response time that was less than one second,

and/or if they left the experiment window for more than 30 seconds

in total during the task. This left 32 subjects in the bag of bags no

repeat version (bob-nr), 39 subjects in the bag of bags version (bob)

and 39 subjects in the random version (random) for a total of 110

subjects.

In Figure 5.8 we have the summarised results for all subjects and

task versions. If we start by looking at random (first row) and bob

(middle row), we can see that compared to the previous pilot, the

proportion of shift predict responses for shape position 3 is at least 0.2

more for the BOB condition. This is most likely thanks to our updated

Figure 5.8 Proportion of choices (y-axis) for each score type (x-axis) averaged across all

subjects and trials, separated by shape position (columns) and task version (rows).

5 . 1 C R E AT I N G T H E S H A P E S E Q U E N C E T A S K 2 0 3

and more streamlined version of the task making it easier for

participants to understand the task and focus on the predictions

without being distracted by the Likert scale answers. It could, of

course, also be due to random variation, which is especially true for

the random version, since difficulty there can vary as sequences may

contain different amounts of six, nine or twelve of the same shapes in

a row.

Furthermore, we can see on the bottom row of Figure 5.8 that in

the BOB-NR version of the task, shift predict scores are now almost

0.8 across all subjects. This means most of the subjects have found the

pattern, which to a lesser extent is the case in the BOB version (where

there is an average of 0.6 shift predict responses in position three). In

fact, it may be the case that the BOB version has advantages if the goal

is to investigate potential differences in state representations for

subjects that find or do not find the pattern.

Though the patterns just described in Figure 5.8 are quite clear, we

can confirm there is indeed a significant interaction between task

version and shift predict scores (positions one and two combined

compared to position three). A mixed between-within two-way

ANOVA gives a significant interaction effect 𝐹(2, 107) = 26.2, 𝑝 <

 0.001. For the individual versions, we also compare the group levels

means for shift predict in positions one and two combined compared

with position three. This difference is significant for all three versions

(random: 𝑡(38) = −3.6, 𝑝 = 0.001, BOB: 𝑡(38) = −8.2, 𝑝 < 0.001, BOB-

NR: 𝑡(31) = −9.8, 𝑝 < 0.001).

2 0 4 T H E S H A P E S E Q U E N C E T A S K

Another way to look at the data is by groups of trials, in order to

see when behavioural change was occurring across the experiment

task. This is shown in Figure 5.9. Note that instead of trial number on

x-axis we have grouped trials via a bag of bags (bob) number,

meaning each tick on x-axis is averaged for a group of nine

consecutive trials. These groups make the plots less busy and thus

easier to read, while trends remain visible. We can see some rough

patterns here, such as in the random version (top row) and shape

position two (middle column), that correctness and shift predict

continuously increase and decrease, respectively, throughout the

experiment. In the other two versions, subjects catch on fairly quickly.

We also see there is perhaps also a difference in shift predict for

position 3, between bob and bob-nr, in that the latter version is around

its height already at the second big bag (18 trials), while in the former

– bob version – subjects require another big bag (27 trials) before the

same can be said.

Figure 5.9 Proportion of choices (y-axis) for each score type (coloured lines as per legend)

averaged across all subjects, separated by task version (rows) and shape position (columns).

On x-axis we have task trials grouped as bag-of-bags, that is nine stimuli/trials per tick on

x-axis.

5 . 1 C R E AT I N G T H E S H A P E S E Q U E N C E T A S K 2 0 5

Thanks to the included free text response at the end of the

experiment, we could in most cases confirm directly with the

participant that they had found the underlying pattern in the

sequence and understood the task. But not all participants did, and

there is some variation in the results, especially in the random

version.

In Figure 5.10 we have plotted all subjects individually, for each

score type averaged across the experiment for each subject. We can

there see, especially for shift predict (right most column, pink colour)

that a few subjects seem to always think there will be a shift

(horizontal-looking lines towards the top of the plots). We also see for

win-stay (second column from the left, green colour) that for the BOB

and BOB-NR tasks, many more subjects have a downward slope from

position 2 to position 3, compared with the random task version

where more subjects stay with their choice for the third position

choice (horizontal line or less slope from position 2 to 3).

To summarise, as we progressively reduce the randomness in the

position of the shift (from 3, 6, 9 or 12 trials in the random version) to

Figure 5.10 Proportion of choices (y-axes) for each score type (columns) and each individual

subject (separate lines) across the three shape positions in each bag (x-axes). From left to

right: Correct, Win-stay, Lose-shift, Shift Predict. Top to bottom: Random version, BOB

version, BOB-NR version. Colours are here used as in Figure 5.9 for ease of comparison.

2 0 6 T H E S H A P E S E Q U E N C E T A S K

mostly 3 and some 6 trial sequences (BOB version) to always after 3

trials (BOB-NR), subjects were able to shift their prediction on

position three with increasing frequency. But not all subjects do this

even in the BOB-NR task, at least not in the number of trials allowed.

5 . 1 .5 D E F I N I N G B E H A V I O U R A L G R O U P S I N S H A P E T A S K

Before looking into how RL algorithms perform, we would like to

find a useful definition of whether the task is solved or not. From the

figures above, especially Figure 5.10, we can see that “winners” have

a good combination of high correct score in positions one and two,

high win-stay score in position two and high shift predict in position

three. Similarly, we have another subset of subjects that seem to fall

into WSLS behaviour if they cannot spot the pattern, something

especially noticeable in the more difficult random version. These

subjects generally have high correct score in positions one and two –

like the winners – but instead have high win-stay score in positions

two and three. We thus specify these groups using the following cut-

offs:

𝑤𝑖𝑛𝑛𝑒𝑟 = {
 𝑝𝑐𝑜𝑟𝑟𝑒𝑐𝑡 > 0.5 𝑖𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 1 𝑎𝑛𝑑 2

𝑝𝑠ℎ𝑖𝑓𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 > 0.5 𝑖𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 3

𝑤𝑠𝑙𝑠 = {
𝑝𝑐𝑜𝑟𝑟𝑒𝑐𝑡 > 0.5 𝑖𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 1 𝑎𝑛𝑑 2
𝑝𝑤𝑖𝑛𝑠𝑡𝑎𝑦 > 0.5 𝑖𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 2 𝑎𝑛𝑑 3

Subjects not matching these groups will be set as “other”. The best

representatives of each group will have much higher scores than the

above, but keeping limits lower hopefully allows slower learners to

be included.

 Note that these conditions are somewhat arbitrary, but they are

relatively easy and can be used as a general guide both for human and

algorithmic behaviour. It would have been preferable with a more

straightforward way of classifying behaviour, but due to the inherent

complexity of Shapetask we do need to look at patterns across the

shape positions.

To test and demonstrate that these conditions give us decent

groups, we plot the averages of these groups separated by score type

for each shape position as in Figure 5.11.

5 . 1 C R E AT I N G T H E S H A P E S E Q U E N C E T A S K 2 0 7

In Figure 5.11, we can see how across the three versions, these

groupings provide similar shapes. This is to be expected since we

have used the same conditions to group participants in each task. For

the random version, there is only one subject in the win group (which

is why there is no variance shading). This is not necessarily entirely

due to differences in subject capability but could also be (partly) due

to a consequence of randomness. In the random version of the task,

some participants get a higher proportion of short sequences (3 or 6

in a row) like in BOB and BOB-NR. Other participants get a higher

number of very long sequences of the same shape (9 or more in a row).

If there are many bags of the same shape in a row, then WSLS

behaviour becomes the overall best strategy. Hence these groups as

they are presented here are not wholly applicable to the random task

version, as will be further discussed below.

To get a better sense of how these groups relate to individual

performance, we have plotted individual subjects in Figure 5.12.

There are a few cases that are either miscategorised or have been slow

to learn, but overall, these groups look to work well. We could

potentially adjust our criteria to get more clearly defined groups, but

how would we define these stricter conditions? Should we add that

Figure 5.11 Shapetask groups. Proportion of choices (y-axes) for each score type (columns)

across the three shape positions within a bag (x-axis). Groups as per legend. Top row:

Random task. Middle row: BOB task. Bottom row: BOB-NR task. Left to right: Correct,

Win-stay, Lose-shift, Shift Predict. Shaded areas indicate 95% confidence interval.

2 0 8 T H E S H A P E S E Q U E N C E T A S K

winners must also have low scores for shift predict in positions one

and two? What about lose-shift scores?

These conditional groupings are indeed somewhat arbitrary, but

they work well enough to use as a guidance for our investigations of

the algorithms’ behaviour. There will be cases that fall outside these

strict groupings that we may manually classify as WSLS/winner

when looking at that case specifically.

To summarise our grouping results, for the random version there

are 29 WSLS subjects, 1 win and 9 other. BOB has 10 WSLS, 22 win

and 7 other, and BOB-NR has 25 win, 2 WSLS and 5 other. These

changing proportions nicely match the increasing tendency (from

random to BOB to BOB-NR) to learn the task better via appreciating

the tendency to shift in position three.

We cannot say yet which algorithms will be able to handle the task,

or if there are algorithms that can explain both winners and WSLS

behaviour (but using different parameter values), for example. In the

latter case, during model selection, we could find that the same model

fits both subjects we believe understood the task and found the

Figure 5.12 Shapetask groups for individual subjects. Proportion of choices (y-axes) for each

score type (columns) across the three shape positions within a bag (x-axis). Each line

represents a subject and colours represent groups as in Figure 5.11. Top: Random task.

Middle: BOB task. Bottom: BOB-NR task. Left to right: Correct, Win-stay, Lose-shift, Shift

Predict. Shaded areas indicate 95% confidence interval.

5 . 1 C R E AT I N G T H E S H A P E S E Q U E N C E T A S K 2 0 9

pattern as well as subjects that did not understand the task and/or did

not find the pattern.

5 . 1 .6 S U M M A R Y O F S H A P E T A S K R E S U L T S

What is impressive here is the fact some humans can spot the pattern

within the limit of 99 trials, and often much quicker. Some are even

able to do so when there is randomness in when the shift will occur

(as in the random and BOB conditions). How is it that humans are

capable of finding task structure so quickly and efficiently? That is the

question the rest of this chapter will focus on.

From these investigations, it looks like we have succeeded in

creating a task with its difficulty so that at least around half of the

subjects spot the pattern. The results are clear enough that we can

confidently say the task works as intended, and by using the human

results as a guide, we can now look at algorithmic behaviour in the

same task to find potential candidates for explaining the human

behaviour.

We should note here that due to inherent randomness in the

random version of the task, it is difficult to compare behaviour

between participants. We could use a static sequence like in the first

pilot, but then we would have to do further tests to find a sequence

that is easy enough that some participants can find the pattern. Since

we have used alternative versions in BOB and BOB-NR that are quasi-

random (random but with some constraints), the obvious route is to

use one of these versions instead.

For subsequent investigations, it would streamline our process and

presentation if we could focus on one of the two remaining versions.

BOB-NR would be the more straight-forward option, as most of the

humans successfully found the task structure in this task version.

However, there is also a case to be made for BOB, because this version

is more balanced in the proportions of winners vs the rest (as defined

above). The majority of subjects were able to find the task structure,

but also a fair many cases of WSLS and other. The reason behind the

amount of WSLS cases in BOB compared to BOB-NR is probably due

to some subjects being thrown off by the occasional six-shapes-in-a-

2 1 0 T H E S H A P E S E Q U E N C E T A S K

row but that was not exclusively the case32. Furthermore, since we

have stressed in previous chapters the importance of individual

behaviour in RL tasks, it seems appropriate to select the task version

with a more balanced distribution of behaviours across the whole

group. Going forward, we will therefore focus on BOB unless

otherwise stated.

5 . 2 R L B E H AV I O U R I N S H A P E TA S K

Starting off our investigations of RL behaviour in Shapetask is the

standard QL algorithm. Previously we have used its two-parameter

version with learning rate α and SoftMax temperature β, where the

latter is not technically part of the QL algorithm itself but used for

action selection. Here we will extend QL to its full temporal difference

(TD) form, with a future discount parameter 0 < 𝛾 < 1:

𝑄𝑡+1(𝑠𝑡, 𝑎𝑡) = 𝑄𝑡(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡 + 𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎) − 𝑄𝑡(𝑠𝑡, 𝑎𝑡)] 5.1

where max
𝑎

𝑄(𝑠𝑡+1, 𝑎) means the maximum Q-value in the next state.

This may be somewhat unintuitive, to look into the future before we

get there. The straightforward reason is that Q-values represent the

approximate value of state-action pairs, so in order to take the future

into account, we use our current knowledge of that future, which are

the Q-values. The more subtle answer is that the value update

happens during a transition to the next state. We have picked an

action in our current state and observe its consequences and update

our knowledge based on this information. For that reason, we could

also write the above equation with 𝑟𝑡+1, depending on if we

conceptualise the task as the reward being received based on the

action taken (𝑟𝑡), or if the reward is what we find in the next state

(𝑟𝑡+1). Regardless of these nuances, we call this TD form of QL simply

QL3.

Many common RL tasks in the literature are so called one-step

reward tasks, where a stimulus is presented, an action is selected and

then a reward is received. Hence, it is uncommon (and unnecessary)

32 Counting the number of six-in-a-rows for each group, the maximum was five

six-in-a-rows and the minimum one. Four win-subjects and three WSLS-subjects

encountered this maximum. Six winners and one WSLS subjects encountered the

minimum. See bar plot in code repository.

5 . 2 R L B E H AV I O U R I N S H A P E T A S K 2 1 1

to see anything more than QL2 being used in the literature. In more

complex tasks, there may be multiple stimulus-action (state-action)

steps before a reward is received, and these tasks is where QL3 is

useful. In the computer science literature, these more complex tasks

are commonly called tasks with sparse rewards [267].

To demonstrate, consider a simple 3x3 maze. Each square in this

maze is a state, and thus has a value attached to it. Our agent can

move horizontally or vertically and picks their action by getting the

values of squares next to it. Note this means we are using state-values

to represent the maze instead of using state-action-values [267], but

the state-action-values are constructed each step by using the state

values from neighbouring squares, enabling us to use Equation 5.1.

If an action is picked that moves outside the maze, the agent

remains in the same square. The agent will start in the top left corner

and the reward is in the bottom right, as seen in Figure 5.13.

If we simulate both QL2 and QL3 in this simple task, we can see the

difference between their mechanisms. In the following simulations,

we define steps as one square to square transition and one episode is

the total sum of steps used to reach the goal square with the reward.

The maximum steps allowed in total were set to 1000, resetting the

agent to start position at the end of each episode. Both agents used

𝛼 = 0.3, 𝛽 = 5 and QL3 also used 𝛾 = 0.9. The results are shown in

Figure 5.14. What this shows is how the QL2 agent can update only

the value for the state where the reward is found. Which means it will

Figure 5.13 Simple maze task. The agent is the reddish square in the top left and the reward

is placed in the bottom right, marked by creamy white.

2 1 2 T H E S H A P E S E Q U E N C E T A S K

forever be doomed to blindly take actions until it arrives in a square

next to the reward. It will learn something only if it moves on to the

reward square. But the QL3 agent can successively update all state

values back to the starting position and through experience create a

lit path.

To illustrate clearly what happens for the QL3 agent, see Figure

5.15. The first time it encounters the reward, the value for that state is

updated (left part of figure) and the episode ends. The next episode,

when the agent arrives at a square next to the reward it will now,

thanks to the future discount, update the value of that state, before

continuing onto the state where the reward is33.

33 Unless it picks an exploratory action and goes up or left, but in this example it

went right.

Figure 5.14 Comparison of QL2 (top) and QL3 (bottom) agents. The line plots show the

number of steps needed for each episode and the heatmaps on the right show the final state

values when experiment is over. Note these state values are the agents’ internal state values

representing the maze, not the maze itself.

5 . 2 R L B E H AV I O U R I N S H A P E T A S K 2 1 3

Coming back to Shapetask, we can see it as a mix of one-step

rewards and sparse rewards, as there are both immediate rewards (we

have suggested that correctly predicting next shape equates to a

reward) and longer-term rewards (correctly identifying the task

structure). It is not straight forward to calculate if the addition of

future discounted rewards would help in Shapetask, because our

agents’ behaviour is a combination of the three parameter values as

well as inherent randomness in the action selections. But since there

is structure across multiple steps, it’s reasonable to use QL3 here, and

simulate behaviour in order to know what to expect.

5 . 2 .1 Q L 3 B E H A V I O U R I N S H A P E T A S K

Having QL3 play Shapetask, we define the state as the stimulus being

shown to the participant i.e., the shape34. So, there are three possible

states in the task. As explained above, we use the BOB version of the

task with 99 trials. We then generate 1000 random parameter

combinations and run 100 simulations (each of these also used the

same task sequence) for each combination. The results presented

below is the average over the 100 simulations, called a simulation set,

or simset for short. We use these averages to overcome the inherent

randomness of each individual run. Parameter values are generated

as:

𝛼~𝑈(0, 1), 𝛽~𝑈(0, 20), 𝛾 ~𝑈(0, 1)

34 We could also have used colour as the two are perfectly correlated stimulus

features across this task. Human subjects may focus on colour/shape or the

combination. We use shape as a shorthand for this more complex set of possibilities.

Figure 5.15 Q-Learning with future discount in simple maze example. The state values after

first (left) and second (right) episodes compared.

2 1 4 T H E S H A P E S E Q U E N C E T A S K

In Figure 5.16 we have plotted the behaviour of each simset during

the experiment task. Despite its busy appearance, the figure gives us

an overview and a sense of the behavioural limits of QL3. It seems

behaviour stabilises around bob number five, and from the trends in

shift predict (right-most column) no simset appears to increase in shift

predict as the task proceeds. No simsets reach higher than 80% correct

or win-stay. To get a better sense of these behaviours for each shape

position we have plotted the simsets again in Figure 5.17 but now

using shape position on x-axis. As one could suspect from the

previous figure, we can now say with more certainty that there are

simsets which will exhibit WSLS behaviour (high win-stay in

positions two and three, second column from the left), but few – if any

– simsets that will solve the task (no lines with an upward trend for

shift predict between positions two and three in right-most column).

To confirm our suspicions about the possible behaviours of QL3 in

Shapetask, we classify each simset according to the criteria in Section

5.1.5.

Figure 5.16 Overview of behaviour for all simsets. Proportion of choices on y-axis for each

bag-of-bags (nine trials) on x-axis. Each line is one simset, and columns are score types.

From left to right: Correct, Win-stay, Lose-shift, Shift-predict.

Figure 5.17 Average score (y-axis) for each simset (coloured lines) and shape position (x-

axis), separated by score type (columns). From left to right: Correct, Win-stay, Lose-shift,

Shift-predict.

5 . 2 R L B E H AV I O U R I N S H A P E T A S K 2 1 5

The next step is looking at parameter values, and how they

correlate with behaviour. This gets tricky with increasing number of

parameters for the algorithm together with the complexity of

Shapetask scoring, with multiple score types and the need for looking

at shape positions. We could try to do something similar to Figure 3.4,

but that would now require multiple rows and columns, combined

with colour, style and size of the plot markers. It is simply not feasible.

Luckily, we can use our groups to get a decent overview of how

parameter values relate to performance. In Figure 5.19 each

parameter value is plotted against itself (diagonal distribution plots)

and against the other parameters (row, column combination). The

overall patterns we see there is that for WSLS behaviour to occur, α

should not be at the extreme ends of its range and β should be at least

around >5 and above. For γ it is difficult to see a particular trend as

both groups cover most of its parameter space.

Figure 5.18 QL3 behaviour groups as per legend. Proportion of choices (y-axis) for each

shape position (x-axis) and score type (columns). Top: All simsets plotted separately.

Bottom: Average of all simsets for each group. Left to right: Correct, Win-stay, Lose-shift,

Shift-predict.

2 1 6 T H E S H A P E S E Q U E N C E T A S K

This visualisation is not ideal as we do not get the combination of

all three parameters together in one plot. Technically we could plot

them together here since there are three parameters, but that method

would not work for algorithms with higher number of parameters.

Instead, what we can do is use the knowledge from Figure 5.18 that

there are simsets with much higher correct and win-stay scores than

the 0.5 we use as condition to be grouped as WSLS. Adding a new

group of “high WSLS” cases, where correct in shape position one and

2, as well as win-stay in position two and three, are all >0.8, we get

Figure 5.20, where KDE (Kernel Density Estimation) plots replace the

scatterplots to increase clarity. With the additional reference point of

the strong WSLS cases, we can now see trends in parameter values

more easily. High β, low to medium α and γ is preferable somewhere

between 0.5 and 0.9 or so. These are still not definitive answers to

what parameter value combinations perform the best and illustrates

Figure 5.19 QL3 parameter values separated by behavioural group. For the scatterplots,

rows and columns are parameter value type (α, β, γ), with the combination of row, column

being used as y-axis and x-axis, respectively, for that specific parameter combination. For

the diagonal distribution plots, they refer to the parameter in that column. Note that the

information on the top right of the diagonal is equivalent to that of the lower left but inverted.

5 . 2 R L B E H AV I O U R I N S H A P E T A S K 2 1 7

what was mentioned above that we do not know the exact behaviour

of the algorithm before we have tested it.

Nevertheless, we do now have an idea of what to expect from QL3,

namely that it cannot possibly explain the behaviour of those humans

who find structure in Shapetask, namely those subjects who learn to

predict a shift every third shape. But QL3 may be able to explain

behaviour of those humans applying a WSLS strategy, and we now

have an idea of where in the parameter space of QL3 such humans

may fall.

5 . 2 .2 M A N I P U L A T I N G S T A T E S T O C R E A T E S E Q L 3

This is the point where, usually, alternate RL algorithms like for

example model-based RL or other families of algorithms like HMMs

would be considered. But we are working from the hypothesis stated

in the chapter two that the basic RL system in the mammalian brain

is supported by other areas, like for example pre-frontal cortex, by

being fed state representations that are appropriate for the current

Figure 5.20 QL3 parameter value plots for each group. The diagonal shows value

distribution for each parameter value indicated on column bottom. Combination of

parameter values for each group are shown in the three lower left plots, where darker shades

indicate higher concentration.

2 1 8 T H E S H A P E S E Q U E N C E T A S K

task. Working from that hypothesis, in what way can we manipulate

the states used in QL3 to make it solve Shapetask?

One way would be to use shape position (within a small bag) as

the state instead of the shape itself. Another would be to have only

two states: last shape of a bag (position three) or not (positions one

and two). As researchers knowing the task structure, either of the just

mentioned would make sense if we were trying to design a system to

solve the task. But participants do not know this. What they see is a

stimulus in the form of a coloured shape, that is their “base” state.

Shape (and/or colour as noted earlier) should therefore be the basic

form of the states we use in the algorithm. Alternately, we could have

two separate QL3 models, one with shape as states and one with

shape positions. We then find a switch point where subjects switch

from one representation to the other, where some subjects would

never switch, and some would do so early. But how would this work

if shapes had different bag sizes?

The most straightforward state representation would therefore be

to use both shape and position. For our standard version of Shapetask

with three shapes, each coming in bags of three, that is 3*3=9 states.

Contrast this with QL3 which only has three states and therefore has

a less complex representation. We previously used the term SEQL –

State Enhanced Q-learning – in an earlier chapter, and seeing this one

is based on QL3, we dub it SEQL3.

The state representation of SEQL3 is more complex than QL3 and

can be modified further to allow for alternate versions with more

shape types and/or different number of shapes in each bag. From the

perspective of participants in the BOB task this may indeed be the

case. Subjects do not know the underlying structure and observe

sequences of 3 or 6 same shapes in a row. Even if we only consider

position, these subjects may be using 18 states (3 shapes x 6 sequential

positions). In BOB-NR there are only ever three same shapes in a row,

so it may be the case this state enhancement is more appropriate for

the BOB-NR task, than the BOB version.

5 . 2 .3 S I M U L A T I N G S E Q L 3 B E H A V I O U R I N S H A P E T A S K

The simulation of simsets for SEQL3 is done with the same procedure

and parameter value ranges as described above for QL3 in Section

5.2.1. The only difference with SEQL3 is the state representation,

where, if the shapes circle, triangle and square are represented by 1,

5 . 2 R L B E H AV I O U R I N S H A P E T A S K 2 1 9

2, and 3 respectively35, the stimulus sequence for a given BOB task is

converted to include position information as:

[1, 1, 1] → [1, 2, 3]
[2, 2, 2] → [4, 5, 6]

[3, 3, 3] → [7, 8, 9]

For each SEQL state 1-9, there are three actions, meaning in total

we have 27 state-action values. Note we have condensed the

presentation below to the most relevant plots, compared to what was

presented for QL3. Additional plots are available in the code

repository.

The results for all simsets are plotted in Figure 5.21, where a

general pattern stands out. It seems few, if any, simsets exhibit WSLS

behaviour, indicated by no lines with increasing trend from position

two to three in the win-stay column, second from left. Rather, the win-

stay scores, together with the trend for shift prediction (rightmost

column) going upwards from position two to three, tells us that many

SEQL3 simsets can “win” the task.

Grouping the simsets according to the conditions defined in

Section 5.1.5, we can see in Figure 5.22 that our suspicions are correct.

In fact, SEQL3 does not exhibit WSLS behaviour at all, at least not as

defined by the criteria.

35 Assuming 1-based indexing. The values would be 0, 1, 2 in Python code.

Figure 5.21 SEQL3 performance in Shapetask for each simset (separate lines), averaged

across all trials. Proportion of choices (y-axis) for each shape position (x-axis) and score type

(columns). From left to right: Correct, Win-stay, Lose-shift, Shift-predict.

2 2 0 T H E S H A P E S E Q U E N C E T A S K

To investigate parameter value combinations, we add a “high win”

group for SEQL3, in the same way that an additional high

performance WSLS group was added for the QL3 agent. The

conditions for the high win group use the same score type and

positions as the win group, but the average scores are raised to being

more than 0.8 instead of more than 0.5.

Figure 5.22 Behavioural groups for SEQL3 in Shapetask. Proportion of choices (y-axis) for

each shape position (x-axis) and score type (columns). Top: All simsets represented by

individual lines, coloured by group as per legend. Bottom: Average of each group. From left

to right: Correct, Win-stay, Lose-shift, Shift-predict.

5 . 2 R L B E H AV I O U R I N S H A P E T A S K 2 2 1

In Figure 5.23, we can see that similar to QL3, SEQL3 can win across

most of the parameter space, except for combinations of low α and β

(green win surface compared to orange other group surface and

distributions). It should be noted that the large overlap between win

and high win groups is due to the random variation for each

parameter combination. Even though we run 100 simulations on the

same task sequence for each such parameter combination,

performance can vary across the selected limit for win high cases. As

we have discussed above, our grouping criteria are chosen arbitrarily

and meant as guidance for our investigations. From that standpoint,

the important parameter value group differences to look at are

between the high win group and the other group36. For the high win

group, we see that higher β is preferred compared with the “other”

36 Independent T-tests between the two groups; 𝛼: 𝑡(325) = 7.6, 𝑝 <

 0.001. 𝛽: 𝑡(325) = 21.1, 𝑝 < 0.001. 𝛾: 𝑡(325) = −8.5, 𝑝 < 0.001.

Figure 5.23 Parameter value correlations for SEQL3 separated by groups (colours per

legend). Diagonal distribution plots refer to the parameter indicated along bottom. KDE

calculated surfaces are shown for parameter value combinations in the lower left, where

darker shades indicate higher concentration.

2 2 2 T H E S H A P E S E Q U E N C E T A S K

group, combined with 0 < γ < 0.5. The other group additionally has a

higher degree of low α than the high win group.

Importantly, and as already mentioned above, we now know that

SEQL3 can account for the well performing subjects in the human

dataset. But like QL3, it cannot account for all types of participants.

5 . 2 .4 G E N E R A L D I S C U S S I O N O F R L B E H A V I O U R

What does it mean that QL3 cannot solve Shapetask, but SEQL3 can?

In essence, it means that our results – at least in this specific task and

algorithm niche – are in favour of the hypothesis that state

representation is critical, at least for some human participants. This is

an important insight, because it tells us that perhaps low-level

mechanisms like RL are indeed very similar across mammal species,

and that what differentiates complex from less complex behaviour is

how other brain areas are able to create, transform and provide

suitable state representations to the RL system.

The fact that QL3 and SEQL3 exhibit WSLS and win group

behaviour, respectively, across most of their respective parameter

spaces adds to this line of reasoning that it is the state representation

that makes the difference, not specific parameter value combinations.

These results agree then with other research discussed in the

background chapter, that perhaps it is the case that the dopaminergic

RL system works in tandem with (mainly) pre-frontal cortex and/or

hippocampus, where state and task representations are

manipulated/constructed in order to support learning.

However, we do not have any firm evidence to connect SEQL3 with

biological phenomena. We have selected the state representations

used in SEQL3 based on what makes logical sense, but we have not

presented any mechanism or proof that SEQL3 is how humans solve

the task.

What we would like is a more principled way of reaching results

like those of SEQL3, based on algorithms and/or state representations

that other research has shown has possible biological correlates. In

other words, there are more models to consider before fitting our

human data.

5 . 3 H I E R A R C H I C A L R L 2 2 3

5 . 3 H I E R A R C H I C A L R L

Hierarchical RL (HRL) is a broad term involving the concept that

animals, in particular humans, can find and use environmental

structure to guide and inform behaviour. This broad concept has

multiple interpretations and implementations, each focussing on

various aspects of algorithmic details. For example, [29, 265] frames

the hierarchical notion as one about actions, where multiple

“primitive” actions (heat water, put teabag into cup, pour water) are

chunked together into “action options” (make tea). Since we are more

interested in the state representation aspect37, here we will focus on

hierarchical RL as collections of strategies, or task sets [50, 54, 72, 75,

228].

The basic idea of task sets (TS) is that humans and other animals

have different behavioural contexts, where the same stimulus can

cause different (re)actions depending on the current context. New

task sets can be created in new situations, selected between and

reused across different contexts, allowing them to deal with

generalisation, differentiation and hidden information [54, 75].

The implementation of HRL we focus on here is based on [75] and

is essentially two QL algorithms stacked in hierarchical fashion, see

Figure 5.24. Based on the context, which works as a higher-level

stimulus, one of several task sets is selected using SoftMax, based on

the Q-values of each task set. Every task set consists of its own set of

stimulus-action values like the regular QL/QL3 agents. Based on the

reward received, separate prediction errors are calculated for the

stimulus-action values and the context-task set values which are then

used to update the values on the respective levels. Mathematically,

we thus have, for each timestep t, context c:

 𝑄𝑡+1(𝑐, 𝑇𝑆) = 𝑄𝑡(𝑐, 𝑇𝑆) + 𝛼ℎ𝑖𝑔ℎ[𝑟𝑡 − 𝑄𝑡(𝑐, 𝑇𝑆)]

𝑄𝑡+1(𝑇𝑆, 𝑠, 𝑎) = 𝑄𝑡(𝑇𝑆, 𝑠, 𝑎) + 𝛼𝑙𝑜𝑤[𝑟𝑡 − 𝑄𝑡(𝑇𝑆, 𝑠, 𝑎)]

5.2

where high and low indicate hierarchy level. As mentioned above,

both levels use SoftMax to select task set and actions but use separate

parameters 𝛽ℎ𝑖𝑔ℎ, 𝛽𝑙𝑜𝑤. When simulating and fitting their “alien task”,

37 We should note that states and actions are sides of the same coin; both are part

of the state representation. What actions are available are shaped by how one sees

the world, and vice versa.

2 2 4 T H E S H A P E S E Q U E N C E T A S K

[75] used an additional forget parameter, used to reduce values on

each trial to account for participants forgetting over time. We do not

use that in our implementation (see below), as Shapetask with its 99

trials is relatively short in comparison to the hundreds of trials in the

alien task.

The HRL algorithm is used in [75] to model human behaviour in a

task where four different aliens (stimuli) are given different objects

like an umbrella (actions) which they appreciate differently

depending on what season it is (context), for example winter or

summer. The participant is then rewarded between 1-10 points,

indicated by a measurement tape on screen. The reward size is based

on if the context-stimulus-action was correct or not, with Gaussian

noise added. The experiment was conducted with a practice training

session of 40 trials – where one trial is one context-stimulus

presentation – followed by a learning phase with 468 trials (3 blocks

per context and 52 trials in each context). Four test phases followed;

the first was similar to the learning phase but had the context hidden,

Figure 5.24 Overview of HRL. Context and task sets (TS) are at the top of the hierarchy and

marked in green. Based on the context, here TS2 is selected. Based on the stimulus, an action

is selected based on the action values of TS2, marked in blue. The selected action leads to

feedback (reward) which is then used to update the values for the action and task set. Adapted

from [75].

5 . 3 H I E R A R C H I C A L R L 2 2 5

indicated by grey clouds, second a comparison phase where

participants either saw two contexts or two stimuli and selected the

one they preferred, third a novel context phase, and fourth and finally

a mixed phase where context and stimuli were not blocked but

changed trial-to-trial. Between each test phase there was a refresher

of the learning phase, but in a shorter 120-trial version. The test

phases, including the refreshers, added up to 1197 trials and thus 1705

trials in total when including the training and initial learning phase.

[75] shows nicely how HRL fits the human behaviour better in this

task, across the learning phase and test phases, than both a “flat” RL

model (with separate states for each context-stimulus combination,

like our SEQL3 above) and a hierarchical Bayesian inference model.

Most importantly, participants successfully reactivated learned task

sets in the hidden context phase and generalised knowledge of

existing task sets to the novel context phase.

We can see how HRL can handle for example the hidden context

phase, in that participants are informed about context switches but

not about their identity. By manually equalising the context-TS values

when the phase starts, [75] showed that HRL can relearn these values

while the stimulus-action values in each TS remain intact.

In addition to these promising results, there is previous evidence

of HRL being biologically plausible [49, 50, 54, 72], and as discussed

in the background chapter there is ample evidence of hierarchical

levels in brain function in general and for (reward) prediction errors

in particular. In other words, HRL is a strong candidate for Shapetask,

though it remains to be seen if it works with the low number of trials

we used.

5 . 3 .1 A P P L Y I N G H R L T O S H A P E T A S K

The key to applying HRL to Shapetask is to decide what the context

would be and how many task sets there are. In the Alien task

described above, the context and task sets are more obvious, as the

experiment task has been developed with HRL in mind. In Shapetask

it is not as straightforward, as only the shape types (and the sequence)

are directly observable. One way to frame it would be to have the

shapes (or colours) as stimuli and impose structure on top with

positions as context/task sets. However, what if the participant frames

it the other way around, with shape type as context and shape

sequential position as stimulus (or, rather, what is on top and bottom

2 2 6 T H E S H A P E S E Q U E N C E T A S K

in the hierarchy)? Theoretically, the hierarchical order should not

matter here as the number of combinations between shapes and

positions remain the same. Furthermore, one might ask whether there

should always be one task set per context? The latter question is

discussed in [54], where it is shown that clustering of contexts to use

the same task set is precisely how HRL allows for generalisation of

knowledge across contexts. This would allow for an alternate

interpretation of having two contexts/task sets, consisting of position

being last in the bag or not. Work by [55, 72] discusses task sets in

relation to working memory capacity and HRL, and suggest a

maximum human capacity of 3-4 concurrent task sets but 2-3 are

optimal.

These considerations highlight both the difficulty of applying

algorithms to new tasks (i.e., ones that the tasks were not specifically

designed for) as well as the importance of doing so, as questions arise

that may not otherwise have been posed and investigated.

Nevertheless, following the fact that the shape types are directly

observable and that contexts can be clustered across task sets, it

would make the most sense to use shape position as context, with one

task set per position, and each task set consisting of shapes as stimuli

as well as actions.

5 . 3 .2 H R L R E S U L T S I N S H A P E T A S K

Our HRL implementation is based upon Equation 5.2, and uses shape

position (1, 2, 3) as context. For each context, there is one task set (TS1,

TS2, TS3) and each TS corresponds to 3x3 state-action values like for

the QL/QL3 agents. We generate 1000 parameter value combinations

and simulate 100 subjects for each such combination (simset) and the

BOB version, with parameter values drawn as:

𝛼ℎ𝑖𝑔ℎ, 𝛼𝑙𝑜𝑤~𝑈(0, 1), 𝛽ℎ𝑖𝑔ℎ, 𝛽𝑙𝑜𝑤~𝑈(0, 20)

Results will first be presented in an overview fashion as for the

regular RL agents above. Because we have an additional and novel

aspect here compared to those previous algorithms – the contexts and

task set selections – we will additionally investigate task set selection

with regards to performance group (wsls and win).

5 . 3 H I E R A R C H I C A L R L 2 2 7

In Figure 5.25 we have the overall performance of all simsets. We

can glean that there are patterns of WSLS in that some lines have flat

or increasing trend from position two to position three for win-stay

(second column from left). There are also patterns of win in that there

are increasing trends from position 2 to position three for shift predict

(rightmost column). We confirm this in Figure 5.26 where simsets are

divided into groups as per conditions defined above38.

There are two main findings of interest in Figure 5.26. The first is

that it appears HRL is capable of exhibiting both WSLS and win

behaviour. This is potentially exciting, because an algorithm that can

explain a wider range of behaviours is preferable to those that only

explain a few. However, the second interesting find here is that these

behaviours are not as distinctive as those of the strongest human

examples of WSLS and winner subjects where the corresponding

38 The proportions of groups were 69% other, 21% win and 10% wsls.

Figure 5.25 Overview of HRL performance in Shapetask. Proportion of choices on y-axis for

each shape position on x-axis, across each score type in columns. Each line is a separate

simset. From left to right: Correct, Win-stay, Lose-shift, Shift-predict.

Figure 5.26 HRL performance in Shapetask by group. Proportion of choices on y-axis for

each shape position on x-axis and score type (columns). Groups coloured as per legend. Top:

All individual simsets as separate lines. Bottom: Group averages across simsets.

2 2 8 T H E S H A P E S E Q U E N C E T A S K

score proportions for win-stay and shift predict are much higher

(compare middle row Figure 5.11). We will come back to this

observation when investigating task set selection below. Overall, the

win score levels are comparable to human BOB levels. The downside

of these results is that most simsets are categorised as other, but

perhaps this will prove a decent fit to some humans struggling to find

a pattern in the task.

In Figure 5.27 we have plotted parameter value spaces for each

parameter and group. To better see overlap, we here use “unfilled”

KDE plots on the off-diagonals. Interestingly, the “other” group

behaviour is possible across the entire parameter space. To win, what

looks most important are the high-level parameters for selecting task

set, with high value 𝛽ℎ𝑖𝑔ℎ, but values on the lower level do not seem

to matter as much. For WSLS, the reverse is true, where a low value

Figure 5.27 Parameter value pair plot for HRL in Shapetask. On diagonal, parameter value

distributions as per labels at the bottom. The bottom left triangle of plots show join

distributions for each parameter value combination as per row and column labels combined.

Colours indicate group as per label.

5 . 3 H I E R A R C H I C A L R L 2 2 9

𝛽ℎ𝑖𝑔ℎ is preferred, and on the lower level a high 𝛽𝑙𝑜𝑤 plus 𝛼𝑙𝑜𝑤

between around 0.1 and 0.7.

Of the best performing simsets in the winner group, only a few

reach above 0.6 for shift predict in position three. Similarly, only a few

simsets reach above 0.6 for win-stay in position three in the WSLS

group. We are interested to see if these simsets have plateaued in

performance or if there is still an upwards trend towards the end of

the experiment.

To investigate this, we chose to use the two last bag-of-bags of the

task, meaning the last 18 trials, and averaged each score type across

only those trials. From these scores we then classify “win high” as

those cases that are >0.8 for correct in positions one and two, as well

as >0.8 for shift predict in position three. Similarly, “WSLS high” are

those that are >0.8 correct for positions one and two and >0.8 win-stay

for positions two and three. This gives us Figure 5.28 where we see

line shapes more similar to the levels humans achieved over the

whole task (light blue and pink for high winner and high WSLS,

respectively). Note that the figure shows behaviour for all trials, not

just the last 18 trials used for grouping.

This is encouraging, as it seems HRL is indeed able to qualitatively

produce behaviour like humans. However, very few cases reach these

criteria. Fewer than five (depending on random variation for

parameter value combinations) out of the thousand simsets are “win

high” or “wsls high”.

5.3.2.1 Taskset selection

We now turn our attention to the process of selecting task sets in the

HRL algorithm for Shapetask. Since task set selection values have to be

learned, there is stochasticity involved in whether good context-TS

Figure 5.28 Proportion of choices (y-axis) for each shape position (x-axis) and score type

(columns) for each group (coloured lines as per legend). From left to right: Correct, Win-

stay, Lose-shift, Shift-predict.

2 3 0 T H E S H A P E S E Q U E N C E T A S K

values are learned. Overall, as seen in Figure 5.27, greedy values for

𝛽ℎ𝑖𝑔ℎ are thus preferred in order to win Shapetask.

However, because of the just mentioned stochasticity in selecting

task sets, it is possible to see completely different behaviour types for

different runs of the same parameter values. In other words, if we run

HRL two times – both times with the same parameter values – we can

get WSLS behaviour one time and winner behaviour the other.

To highlight the dynamics involved, we repeat the same process as

in the previous section of simulating 1000 simsets. We then find a

candidate simset that has the highest value for Shift-predict in

position three, averaged over the last 18 trials. The example simset

shown below thus have 100 subjects, all using the same parameter

values 𝛼𝑙𝑜𝑤 = 0.79, 𝛼ℎ𝑖𝑔ℎ = 0.51, 𝛽𝑙𝑜𝑤 = 14.85, 𝛽ℎ𝑖𝑔ℎ = 19.92.

In Figure 5.29, the subjects within the example simset have been

plotted, showing only the Shift-predict score across all trials for each

shape position. The variance for position three is quite large,

spreading across almost the entire value range. To investigate further,

we find the best and worst subjects within this simset, defined by

comparing the mean of Correct score for positions one and two

together with the Shift-predict score for position three. The best

subject is thus the one with the highest such combined score, and the

worst subject that with the lowest. Because we store what task set is

being selected on teach trial, we can see what task set was selected on

each trial.

Figure 5.29 Proportion of Shift-predict (y-axis) for each shape position (x-axis) for example

simset found as explained in text. Boxplots show the variance across subjects within the

simset.

5 . 3 H I E R A R C H I C A L R L 2 3 1

In Figure 5.30, task set selections for every trial have been plotted

for both the best (top row) and worst (bottom row) subjects. The best

subject has early on successfully generalised across shape positions

one and two and use the same task set for both positions (task set 3 in

green circles, left and middle columns), while using a separate task

set for shape position three (task set 2, yellow circles, right column).

This allows these two task sets to be optimized for the task.

Meanwhile, the worst subject is more varied in the first half of the

task. Around halfway, it settles on task set 3 in green circles for

position one (left column) and task set 2 in yellow circles for position

two (middle column). For shape position 3 (right-most column), the

subject has in the last half of the task picked mostly task set 2 in yellow

circles (right column).

What different kinds of score behaviour might our best and worst

subject examples show?

In Figure 5.31 we can see the consequences of the different task set

selections of the two subjects. The best subject (solid line) shows the

same pattern as human winners, namely high correct score in the two

first shape positions and high Shift-predict for position three. The

Figure 5.30 Taskset selections (y-axis) for each trial (x-axis) and subject type (rows). Colours

refer to the same value as y-axis to make figure easier to read. Columns show the trials in

that shape position. From left to right: Shape position 1, Shape position 2, Shape position 3.

Figure 5.31 Behaviour of two example subjects from the same simset. Proportion of choices

(y-axis) for each shape position (x-axis) and subject type (line styles as per legend). From

left to right: Correct, Win-stay, Lose-shift, Shift-Predict.

2 3 2 T H E S H A P E S E Q U E N C E T A S K

worst subject (dashed line) instead shows a pattern similar to human

WSLS subjects, where Win-stay increases from shape position two to

three.

In other words, two subjects that use the same parameter values

exhibit qualitatively different behaviours. We should note that we can

also find examples that will behave similarly to the best subject above,

but that select different task sets for each position. What is crucial,

then, is that the agent selects a unique task set for position three. This

is what the worst subject struggles with as seen above.

This issue of large variance in task set selection can also explain

why the “other” group in for example Figure 5.26 has a trend towards

the behaviour of winners but does not quite get there39.

5 . 3 .3 C O N S T R A I N I N G S T R U C T U R E

As discussed above in Section 5.3.1, there are more constrained

variants of the context-task set structure. We could keep the three

positions as context and reduce the number of tasksets to two. Further

reduction can be made by using two contexts: last shape in the bag,

or not, together with two task sets. The latter mentioned is the

smallest possible setup, and thus what the following results will be

based upon. For convenience, this version of HRL is called HRL-2240.

Unfortunately, as seen in Figure 5.32, the same issue remains even

when constraining the context-TS structure to a minimum. If we

increase the number of trials in the BOB Shapetask to 270, however,

39 See plot in code repository, https://github.com/fohria/phd_thesis
40 In code we call this “lastinbag”

Figure 5.32 Taskset selections for best and worst subjects in best performing simset using

HRL-22. Taskset selected is y-axis, across all trials (x-axis) for each shape position

(columns). Top: Best subject. Bottom: Worst subject.

5 . 3 H I E R A R C H I C A L R L 2 3 3

then as seen in Figure 5.33, after around 160 trials even the worst

performing subject (bottom row) can separate the task sets properly.

That this switch in taskset usage translates to “winning” behaviour

can be confirmed in Figure 5.34.

Can we find that the same pattern holds for the original HRL

implementation when extending the task to 270 trials? Theoretically,

it should require more trials than for HRL-22, since HRL has one more

context and task set hence there are more ways the stochasticity can

play tricks.

Figure 5.33 Taskset selections for best and worst subjects in best performing simset using

HRL-22 and 270 trials in Shapetask. Taskset selected is y-axis, across all trials (x-axis) for

each shape position (columns). Top: Best subject. Bottom: Worst subject.

Figure 5.34 Behaviour of the worst and best subjects in the best performing simset using

HRL-22 and 270 trials in Shapetask. Proportion of choices (y-axis) for each shape position

(x-axis) and subject type (line styles as per legend). From left to right: Correct, Win-stay,

Lose-shift, Shift-Predict.

2 3 4 T H E S H A P E S E Q U E N C E T A S K

As seen in Figure 5.35, 270 trials do not appear to be enough for the

original HRL implementation to optimize the taskset selections. This

is further evidenced by the behavioural plot of Figure 5.36.

5 . 3 .4 O V E R A L L B E H A V I O U R O F H R L - 2 2

In the previous section we found that our alternate implementation

called HRL-22 may provide better results when it comes to finding

winners. However, a positive aspect of the original HRL results were

that both WSLS and winner behaviour was possible, which is a good

thing when it comes to fitting human data, if the goal is to explain

something about the human behaviour. If one type of algorithm or

state representation can explain more types of behaviour, that is

preferable as it explains a larger number of observations.

Therefore, we run 1000 simset simulations for HRL-22, as we did

for HRL above, group them as per our existing conditions and check

potential parameter value correlations between these groups. We will

use 99 trials for Shapetask BOB variant, since our human data uses 99

trials.

Figure 5.35 Taskset selections for the best and worst subjects in best performing simset using

HRL and 270 trials for Shapetask. Taskset selected is y-axis, across all trials (x-axis) for each

shape position (columns). Top: Best subject. Bottom: Worst subject.

Figure 5.36 Behaviour of the best and worst subjects in best performing simset using HRL

and 270 trials for Shapetask. Proportion of choices (y-axis) for each shape position (x-axis)

and subject type (line styles as per legend). From left to right: Correct, Win-stay, Lose-shift,

Shift-Predict.

5 . 3 H I E R A R C H I C A L R L 2 3 5

Interestingly, the constrained state representation of HRL-22 does

not noticeably increase general performance compared with HRL.

This is perhaps not surprising, following our previous finding that

HRL-22 requires more than 150 trials to stabilise and separate task

sets. What is positive, is that even the constrained context-TS

representation of HRL-22 can still produce WSLS cases. Furthermore,

the group proportions are now more balanced. For HRL-22 we get

53% other, 30% WSLS and 17% winners.

Figure 5.37 HRL-22 performance in Shapetask, separated by groups as per legend.

Proportion of choices (y-axis) for each shape position (x-axis) and score type (columns). Top:

Individual simsets separated by lines. Bottom: Average for each group. From left to right:

Correct, Win-stay, Lose-shift, Shift-predict.

2 3 6 T H E S H A P E S E Q U E N C E T A S K

In Figure 5.38 we have plotted the parameter space of HRL-22. The

“other” group has been excluded for clarity, as it still covers the

majority of the combined parameter space. Two groups have been

added in addition to the regular Win and WSLS groups, indicating

cases with >0.7 shift predict in position 3 (Win-high group) or >0.7

Win-stay score in positions two and three (WSLS-high group). We

chose 0.7 here instead of 0.8 as above in order to have more cases in

the “high” groups to easier distinguish parameter space distributions.

With regards to the parameter space itself, it is clear that for

𝛼𝑙𝑜𝑤, 𝛼ℎ𝑖𝑔ℎ, 𝛽𝑙𝑜𝑤 there is much overlap between the groups. The main

difference is found by comparing the Win-high and WSLS-high

groups, in that the latter prefers low 𝛽ℎ𝑖𝑔ℎ while the former prefers

high 𝛽ℎ𝑖𝑔ℎ. This makes sense from what we saw above when

investigating taskset selections. With low 𝛽ℎ𝑖𝑔ℎ, the WSLS-high group

takes many more explorative selections – random behaviour if you

prefer – and there is less chance that distinct task sets for shape

position three will appear and continue to be chosen. Without any

Figure 5.38 Pair plot comparing parameter value spaces for each group. Diagonal shows

distribution for the parameter labelled at the bottom. Scatterplots show combination of

parameter values as per row, column combination. Colours indicate group as per legend.

5 . 3 H I E R A R C H I C A L R L 2 3 7

proper discrimination between task sets, the agent becomes

essentially context-less and thus falls back on the WSLS behaviour we

saw for the regular QL3 agent.

But with high values for 𝛽ℎ𝑖𝑔ℎ, the agent is equipped to

distinctively create and select separate task sets for the appropriate

context. In the best cases, as we saw above, the agent will select

separate task sets for position three and positions one and two,

enabling it to learn how to win at Shapetask.

5 . 3 .5 H R L D I S C U S S I O N

HRL is capable of exhibiting both WSLS and Winner behaviour,

which makes it a fitting candidate to explain a majority of human

behaviour in Shapetask. Unfortunately, due to inherent randomness

in selection of task sets, even for a single combination of parameter

values, HRL can exhibit this duality of behaviour. This issue is

alleviated by increasing the number of trials, and is likely the reason

why [75], which the HRL implementation is based on, uses around

four times as many trials in its learning phase for both humans and

algorithm, as we do in Shapetask.

In the human results for Shapetask, however, we show that some

humans can find the task structure within 99 trials, and often in the

early parts of the task. HRL is therefore not as good a model as SEQL3,

at least in the case of explaining those well-performing humans.

To be fair, humans do come into a task with a great deal of pre-

existing knowledge. We can account for that in two ways. The first

way would be to pre-train our model in some fashion, an approach

common in the deep learning approach to cognitive science. The crux

there is figuring out how much training accounts for evolution, how

much for life experience, and how much is training/learning in the

task at hand?

The other approach is the one used here, to manipulate the state

representation in ways that may account for how humans may come

into a task with pre-existing knowledge. SEQL3 provides a better

account for well-performing humans, but HRL can explain a broader

spectrum of behaviours. Furthermore, in the BOB task, some human

winners do have performance scores on similar levels as the average

best HRL simsets.

2 3 8 T H E S H A P E S E Q U E N C E T A S K

The interesting part of HRL is how to decide and construct the

context and task sets. [54, 72] show how this can be done in a more

dynamic way, using non-parametric methods to add new contexts

and task sets. It is not immediately clear how this would be applied

to Shapetask, as one would still need to define what aspects of the

task are used as building blocks.

To summarise, HRL may be able to explain a wide section of the

human data. The above behavioural demonstrations have also shown

how the application of alternate algorithms on Shapetask illuminates

aspects of those algorithms that may not be apparent in their original

task environments.

5 . 4 T H E S U C C E S S O R R E P R E S E N TAT I O N

The Successor Representation (SR) was introduced by [67] and can be

seen as a middle ground between model-free (MF) and model-based

(MB) RL [180, 227]. SR does not learn the full state transition function,

like MB RL. Instead, SR approximates it through experience, storing

how often future states will be visited from the current state. The

resulting so called “future state occupancy” values can then be

combined with separately stored reward values for each state in order

to support action selection at decision time. In other words, although

SR requires more memory than regular MF RL algorithms like QL, SR

does not need to compute future state values anew at every step,

which MB RL does.

There are several lines of research supporting biological correlates

for SR. It can represent activation patterns in prefrontal and

hippocampal areas such as those measured by fMRI [180] – some of

which correlate with place and grid cells [257] – which bridges the

roles of OFC and hippocampus for task structure and state

representations [297, 302, 312]. Together with support for SR in

human behavioural tasks [182] and computational studies showing

that SR (depending on its specific implementation) can explain both

MF and MB RL phenomena [227], some authors have even suggested

SR can help frame the RL dopaminergic system as one about

prediction errors in general and not just reward prediction errors [91].

The specific implementation of SR we will focus on here is based

on [227] and combines SR with temporal difference learning (TD) and

is thus called SRTD. However, we will first introduce the SR in more

5 . 4 T H E S U C C E S S O R R E P R E S E N T AT I O N 2 3 9

general mathematical terms, based on [91, 98, 182], to then focus on

the specific version from [227].

Mathematically, SR has two main components in the matrix M and

vector R, where M holds the state transition approximation (future

state occupancy values), and R stores the immediate reward expected

upon encountering state s. Thus, R is a vector with the same length as

the number of states.

More formally, [67] shows that state values in the SR can be

calculated as the sum of rewards for all states s’ following the current

state s:

 𝑉(𝑠𝑡) = ∑ 𝑀(𝑠𝑡, 𝑠′)𝑅(𝑠′)

𝑠′

 5.3

where it should be noted that s’ includes the current state, as it is

possible (depending on the task) to stay in the current state, and M is

the SR, the expected discounted future state occupancy [91]:

𝑀(𝑠𝑡, 𝑠′) = 𝔼 [∑ 𝛾𝑘𝕀(𝑠𝑡+𝑘 = 𝑠′)

∞

𝑘=0

]
5.4

where 𝔼 is expected value, γ a future discount parameter and 𝕀(∙) = 1

if its argument is true, and 0 otherwise. The 𝕀 is sometimes called the

Kronecker delta [98], but also has other names like “one-hot

encoding” depending on the field41.

Based on Equation 5.4 and the Bellman equation, a temporal

difference error for M can then be derived [91, 99, 227]:

 Δ𝑀(𝑠𝑡, 𝑠′) ∝ 𝛿𝑡
𝑀(𝑠′) = 𝕀(𝑠𝑡 = 𝑠′) + 𝛾𝑀̂(𝑠𝑡+1, 𝑠′) − 𝑀̂(𝑠𝑡, 𝑠′) 5.5

where 𝑀̂ denotes the approximation of M. We can now see that the

right-hand side of Equation 5.5 is indeed very similar to the reward

prediction error in, for example, Equation 5.1. In other words,

through experience, an SR-based agent can learn to approximate the

state transition function, just like a QL3 agent can learn to

approximate state-action reward values.

As noted, the matrix M is the SR itself and represents the state

space of size S with S rows and S columns. Each row represents the

41 https://stats.stackexchange.com/q/308916

2 4 0 T H E S H A P E S E Q U E N C E T A S K

state r and each column value 𝑴𝑟𝑐 is the probability42 of being in that

state in the future – how many times we can expect to be in the state

c, starting from state r. Conversely, each column represents the state

c and each row value 𝑴𝑟𝑐 is the probability of that state having been

visited in the past. In other words, rows represent the future and

columns represent the past.

As an example, imagine a small gridworld maze of size 3x3 rows

and columns, which thus have 9 states. M would then be of size 9x9,

as seen in Table 5.1. It is possible to initialise M as an identity matrix

as done here, meaning there is some initial belief that the agent can

transition into the same state. For example, in a gridworld maze

where the agent comes back to the same state if it walks into a wall.

But the diagonal can also be initialised to zero and this transition then

also needs to be learned [181].

1 4 7

2 5 8

3 6 9

 1 2 3 4 5 6 7 8 9

1 1 0 0 0 0 0 0 0 0

2 0 1 0 0 0 0 0 0 0

3 0 0 1 0 0 0 0 0 0

4 0 0 0 1 0 0 0 0 0

5 0 0 0 0 1 0 0 0 0

6 0 0 0 0 0 1 0 0 0

7 0 0 0 0 0 0 1 0 0

8 0 0 0 0 0 0 0 1 0

9 0 0 0 0 0 0 0 0 1

We now turn to the specific implementation by [227], which we call

SRTD. We still have the matrix M, but the vector R has been replaced

with a weights vector w, which like R has the same length as the

42 It is technically not a probability but a value for expected future state

occupancy – how many times we can expect to be in the future state c when starting

in state r. But we will use probability and likelihood as shorthand to make the text

easier to read.

Table 5.1 SR example using a gridworld maze. Left: 3x3 gridworld where each state is

numbered 1-9. Right: Corresponding SR representation before starting to explore the maze.

Rows and columns are numbered as per their state in the maze. Each row represents the

future state occupancy values, if one is currently in state=row. Similarly, columns represent

the past.

5 . 4 T H E S U C C E S S O R R E P R E S E N T AT I O N 2 4 1

number of states. In principle this SRTD version works the same as

SR described above, meaning if we replace R with w in Equation 5.3

we get the values for each state. By extension, we can get the values

for all states through matrix multiplication:

 𝑉 = 𝑀 × 𝑤 5.6

Indeed, [227] state that the above equation will be correct when the

items of w correspond to each state’s one-step reward. The difference

to R then, is that w here works as a linear function approximation and

[227] show (in supplementary materials) that this approach yields

improved performance early in training, before M has enough

experience to have converged.

More specifically, M and w are learned in parallel, where on each

transition from state s to s’, as indicated by the colon statement, every

element of row s in M is updated as:

 𝑀𝑡+1(𝑠, ∶) = 𝑀𝑡(𝑠, ∶) + 𝛼𝑆𝑅[𝟏𝑠 + 𝛾𝑀𝑡(𝑠′, ∶) − 𝑀𝑡(𝑠, ∶)] 5.7

where 𝟏𝑠 is a vector of all zeros except in position s where it is 1, 𝛼𝑆𝑅

is the learning rate, γ the future discount and s’ is the next state.

The second component w is then updated using the new M,

together with the reward prediction error. All items i of w are updated

according to:

 𝑤𝑡+1(𝑖) = 𝑤𝑡(𝑖) + 𝛼𝑤 ∗ 𝑅𝑃𝐸 ∗ 𝑀𝑡(𝑠, 𝑖) 5.8

where RPE is the reward prediction error as in regular QL:

 𝑅𝑃𝐸 = 𝑅(𝑠, 𝑎) + 𝛾𝑉𝑡(𝑠′) − 𝑉𝑡(𝑠) 5.9

where 𝑅(𝑠, 𝑎) is the reward for taking action a in state s. Note that M

and w share discount parameter γ but have separate learning rates α.

Thanks to M, SR(TD) has some of the features of MB algorithms in

that there is information about state transition probabilities. The

multiplication of M and w (Equation 5.6) is one operation, which is

cheap computationally, and thus by influencing V grants aspects of

MF algorithms. We do not have to calculate all future state values

based on the state transition function, as we must with MB RL

algorithms.

2 4 2 T H E S H A P E S E Q U E N C E T A S K

5 . 4 .1 L A T E N T E X P L O R A T I O N O F G R I D W O R L D M A Z E S

In their recent paper [227] demonstrates how SR can be implemented

to exhibit aspects of MB and MF behaviour. We shall here focus on

their SRTD implementation, and the task used (based on [278]), latent

learning in a gridworld maze as seen in Figure 5.39. The maze consists

of 10x10 squares, where some are walls (black squares in figure) and

some are corridors (grey squares in figure). Additionally, and further

described below, it has an additional state “outside” the maze.

During the latent learning phase of the experiment, no reward is

present, and the agent is allowed 25000 random exploration steps43 in

the maze as seen to the left in Figure 5.39. The agent starts this

exploration phase in the square marked S and whenever square R is

reached, the agent only has the option to enter a separate

43 Of course, in a real-world task with actual rats, this number of steps may or

may not reflect reality. Even if we divide a rat labyrinth into discrete squares, it is

questionable if the rat would require so many steps. Lowering the number of steps

in the code for the exploration phase decreases stability of results. But this is a

general problem when relating RL to animal behaviour, as discussed in the

background chapter.

Figure 5.39 Gridworld maze. Left: Grey areas are traversable, and the black squares are

walls. In the latent exploration phase, the agent is put in start position S and gets to explore

the maze until it reaches reward position R. When square R is reached, the agent enters a

consummation state and is then “picked up” and put back in start position S. In the reward

phase, the agent is placed twenty times directly on R, which allows it to enter the

consummatory state and receive a reward. Right: Test phase, where the M learned during

exploration phase and w learned during reward phase are combined into state values. Red

arrows point towards the state with highest value. Adapted from [227]

5 . 4 T H E S U C C E S S O R R E P R E S E N T AT I O N 2 4 3

consummation state44 (not shown in the figure as it is technically

outside of the maze, but see Figure 5.40) before it is then “picked up”

and put back in start position S. The agent may thus journey from S

to R multiple times until the maximum 25000 steps have been used

up and the exploration phase ends. Only M (Equation 5.7) will change

in value during this phase, since w (Equation 5.8) requires a reward

to be present for the RPE (Equation 5.9) to differ from zero.

In the next phase, a reward is introduced to the consummation

state. The agent is now placed directly on the square marked R in

Figure 5.39, from which it moves into the consummatory state where

it consumes the reward. In other words, the reward is not directly

associated with the square R inside the maze. When the agent is

placed at square/state R, there are no other actions available in this

state than to go into the consummatory state, and so the agent steps

from R to the consummation state and receives a reward. This is

repeated twenty times, and since a reward is now present, w can now

change when updated.

The test phase consists of placing the agent in the starting state S

(corresponding to the square inside the maze to the right of the mouse

in right-hand illustration of Figure 5.39) and calculating the values for

each state in the maze (Equation 5.6). In other words, neither M nor

w are updated here, instead [227] demonstrates the resulting

behavioural policy with drawing arrows on each state. The arrows

are pointing towards the neighbouring state with the highest value,

(V, Equation 5.6) as seen in the right-hand side of Figure 5.39. Thus,

the arrows show the path that a fully greedy agent would take. In

other words, the agent can navigate to the reward location R through

the combination of its state transition approximation M, learned

during the exploration phase, and its experience of rewards stored in

w from the reward phase.

This contrasts with a regular MF model like QL3, which would

require to explore the maze from the start multiple times with the

reward present. This because QL3 only has state-values, and they can

be updated only if there is a reward present. We saw this in Figure

5.15, where the rewarded state was updated the first time the agent

44 It is not technically a consummation state in the exploration phase, as there is

nothing to consume. But we call it consummation state in both phases for

consistency.

2 4 4 T H E S H A P E S E Q U E N C E T A S K

encountered it, then the states next to the reward state could be

updated the second episode, and so on.

5.4.1.1 The Hotel Cali fornia problem

As described above, during the latent exploration phase, the agent is

put back into the starting state S after it has reached the maze position

R. More specifically, in state R there is only one action allowed for the

agent, which is to move into the consummation state, which is the

state where the reward is later placed during the reward phase. Just

like in the old song Hotel California, where you can check-out but

never leave, the agent cannot escape R when it has arrived there. It

can only “check-out” the consummation state.

In Figure 5.40, right-hand side, the original task illustration from

Figure 5.39 has been altered to illustrate that the consummatory state

is outside of the maze and only reached from the Hotel California

(HC) state. In other words, there are in fact additional states in this

maze than the 10x10 grid (also matching better how [227] simulated).

The Hotel California effect is crucial, as it causes the state values V to

cleanly end up pointing towards R. Without check-in, the simulation

doesn’t work the same.

To demonstrate the importance of the specifics of the

implementation used by [227], we modified their provided code and

tested the case of letting the SRTD agent explore for 25000 steps

Figure 5.40 Illustration of the Hotel California problem. Left: Resulting policy after reward

phase in modified latent learning task where agent is free to leave the Reward state during

exploration phase. Right: Original version where agent is picked up from Reward state

(marked HC) and put back to starting state (right of mouse) during exploration phase.

Adapted from [227]

5 . 4 T H E S U C C E S S O R R E P R E S E N T AT I O N 2 4 5

without picking the agent up when it reaches R and return it to S.

Instead, we let the agent move into and out of R just like all other

states. We call this “free” latent exploration. Then we did the same

reward phase procedure as in the original experiment, where we

added the reward in R (or, rather, the consummatory state) and put

the agent down into R twenty times. To be clear, in this phase the

agent can only move to the consummatory state, like the original

version. When we then calculate the policy by multiplying M and w

we get the result seen on the left-hand side of Figure 5.40.

As can be seen, the SRTD algorithm can no longer solve this task

as well as the original version with pickups during exploration45.

Why? What happens is that since we multiply M with w, and M now

has quite high probability of moving from state R (the dark grey

square without arrow, to the left of the cheese) to the neighbouring

states, we get the curious case of those neighbouring states having a

higher average return than the actual goal state. Note that state R does

have value, it is dark grey and not black, but it has lower value than

its neighbours.

We can understand this through Equations 5.6-5.9. In the HC

(original) versions exploration phase, when the agent reaches state R,

it can move only into the state outside the maze, state CS

(consummation state). That means 𝑀(𝑅, ¬𝐶𝑆) = 0, so in the reward

phase when w is updated, 𝑤(¬𝑅) = 0, 𝑤(𝑅) ≠ 0. The consequence is

that when V is calculated by combining M and w, we do get values

for all states because 𝑀(¬𝑅, ∶) ≠ 0, and they all point towards state R

since that is the only state with a w value that is not zero.

In the free exploration version, because the agent is free to move in

any direction from state R, 𝑀(𝑅, ∶) ≠ 0, so all w values are updated in

the reward phase. Since the entire matrix M contributes to the state

values V, the states surrounding state R also contribute. Notice that

values in w cannot decrease, so with the repeated reward trials, the

neighbours of R increase in value and can get higher values than state

R itself.

45 It will, of course, come very close to the reward so will still be able to learn

how to find the reward quicker than a naïve agent

2 4 6 T H E S H A P E S E Q U E N C E T A S K

5.4.1.2 Tolman approves

The paper [227] cites Tolman’s classic paper [278] for their latent

exploration task. Experiments mentioned there were run similarly to

the HC version of latent exploration, namely that rats were picked up

when they reach the goal box, even when there was no reward. We

will disregard that Toman’s mazes were much simpler than the

gridworld presented above and say only there is an argument to be

made that [227] is simulating only a specific type of experiments; they

do not claim to have done anything else. However, there have been a

few experiments done since 1948, and even without looking at those

in detail, it is not far-fetched to imagine that a rat may be able to

explore a maze in such a way as the one used above, the free

exploration version, and yet be able to quickly find its way to the goal

box after having been exposed to rewards there. It seems curious to

not have fully explored this case.

Furthermore, we do not have to move past the 1940s to find just

such an experiment. Seward [245] let rats freely explore a maze for 30

minutes, including the goal box which had an empty food bowl, and

they were free to go back from the goal box through the maze during

this time. Seward then introduced a reward into the goal box and

presented this to rats by lowering them down into the goal box

through the roof. At this point the goal box was closed to the rest of

the maze, to give the rats some secluded feeding time. Worth

mentioning is that there were two goal boxes in each maze, and they

differentiated from each other as well as the rest of the maze by

different floor colours and/or materials. When later tested from the

start of the maze, 87.5% of the rats that got to freely explore the maze

went directly for the food. Directly meaning they did not go down

blind alleys or alleys leading to another goal box.

The experiment just described is thus similar to our free

exploration, shown in the left part of Figure 5.40. In this version of the

task, the rat would quickly arrive at squares neighbouring the reward,

from where finding the reward is easy. Perhaps this “fuzzy”

recollection of the reward location describes animal navigation and

cognitive maps better than the more exact HC version. Speculations

aside, and more importantly, the free exploration version and

subsequent test still proves the point that SRTD can account for latent

learning in mazes. This because an SRTD agent without exploration,

5 . 4 T H E S U C C E S S O R R E P R E S E N T AT I O N 2 4 7

and only exposed to the reward phase of the task (where the rat is

placed directly in the reward square), would only have resulting state

values V for the state R and its two neighbours. The rest of the maze

has not been visited, so M is zero for most squares. This also makes

sense, as a rat that has only seen a reward box and is then tested from

start, will have no idea there is a connection between the reward

square and the maze it suddenly finds itself in.

It is unfortunate these scenarios are not fully explored by [227], but

to be fair, this does not take away from their grander points about

what type of tasks SRTD is capable of. It is understandable that tricks

like these are needed to get algorithms to work nicely, and sometimes

to work at all, and those implementation details do not necessarily

matter. We would have liked to see this issue at least mentioned

however, preferably discussed, since SRTD works in our free

exploration, although not as cleanly.

5 . 4 .2 S H A P E T A S K A S A M A Z E

Our interest in SR lies in applying it to Shapetask, in order to

investigate how well SR might explain human behaviour in this task,

if at all. Studies on SR, like the one described above, often focus on

spatial knowledge [182, 227] but other research points to cognitive

maps being applicable to more abstract knowledge, with links to SR

[14, 21, 92, 257]. Therefore, Shapetask may prove useful in adding to

this literature.

We approached the application of SRTD to Shapetask by extending

the code from [227] to add Shapetask to the repertoire of tasks

simulated with variants of their code. This posed the interesting and

illuminating question of how to transform Shapetask into a maze

problem?

No matter what kind of maze we construct – in our heads or in the

code we will use for simulations of this task – we impose and assume

structure that don’t necessarily match what experiment participants

do. What we do know is that our human participants were instructed

to “find the pattern” which grants us some assumptions for the

implementation. Therefore, translating Shapetask into maze form is

an excellent example of the overarching problem we are trying to

investigate; state creation and task structure and how these are closely

intertwined.

2 4 8 T H E S H A P E S E Q U E N C E T A S K

Shapetask is not fully deterministic in its state transitions, in any of

its versions (rather as if the maze had a non-zero chance of being

changed between trials). We also have the situation that regardless of

chosen action, the next state will follow the predetermined sequence

and not rely on what action was chosen. This should not pose a

problem directly, since there is nothing inherently stopping the

matrix M in SRTD from having multiple states being possible to

follow a certain previous state. But it may be the case that more

experience (more trials) is needed for M to handle a non-deterministic

task compared with a deterministic one.

The most straightforward approach to create a maze requires at

least nine states for each shape and position, as seen in Table 5.2 (left).

If the first shape in a bag-of-bags is square, then we have a sequence

of states for that bag as 2, 5, 8. In the BOB version of Shapetask, we

then go to either state 1 or 3. An example sequence for one bag-of-

bags can thus be 2, 5, 8, 1, 4, 7, 3, 6, 9. The maze is somewhat magical,

in the sense that if we imagine it as a physical maze with rooms

connected by doors – the last door for each shape (7, 8 or 9) will

teleport to either 1, 2 or 3.

 1 2 3

 1 4 7

 2 5 8

 3 6 9

1 1 2 3

2 4 5 6

3 7 8 9

4 10 11 12

5 13 14 15

6 16 17 18

7 19 20 21

8 22 23 24

9 25 26 27

In a regular maze like that described in the previous section

introducing SRTD, we use state values and get action-values by

looking at the values of neighbouring states. Through the Bellman

Table 5.2 Overview of Shapetask as a maze. Left: Each shape and position combination

creates a uniquely numbered combined state. Right: Numbered rows corresponds to the

numbered state in the table to the left. Values 1-27 are the numbered compound states

interpreted as being in state=row, having selected shape=column on the previous trial.

5 . 4 T H E S U C C E S S O R R E P R E S E N T AT I O N 2 4 9

equation we can convert state-action values 𝑄(𝑠, 𝑎) to state values

𝑉(𝑠) [267], but in order to understand how to create structures that

work with the M, w and V of SRTD we have to realise the integrated

nature of states and actions.

Recall our SEQL3 model, which uses nine states like in Table 5.2

(left), and for each state there are three action values and thus 27

values in total. In SEQL3, those action values mean “the value of

selecting action a, in state s”. By reframing the same value structure

as “the value of being in state s, having chosen action a”, it means we

can get action values by checking the neighbours of the current state,

and select actions based on this context.

For example, consider Table 5.2 (right). Each row corresponds to

the state number in the maze in Table 5.2 (left). If the current state is

position two in the square bag – state 5 in the maze – then depending

on what action was picked in the last trial – triangle, square, or circle

– we are in “compound states” 13, 14 or 15, respectively, as seen on

row 5 of Table 5.2 (right). Here, being in compound state 13 means

seeing the second square of the bag (i.e., sequential position 2), having

picked triangle as the prediction on the previous trial. Compound

states 14 and 15 also mean we are seeing the second square of the bag,

but we picked square or circle, respectively, on the previous trial. In

other words, the stimulus is the same for all three compound states,

but the context is different.

This state structure as described allows us to reason about state

transitions in Shapetask and use it as our M matrix, which becomes

27x27 in size, with weights w of size 27. The resulting 𝑽 = 𝑴 × 𝒘 thus

also becomes 27 values and is very similar – in fact identical – to the

structure of SEQL3.

5 . 4 .3 P L A Y I N G S H A P E T A S K W I T H S R T D

To simulate SRTD behaviour in the BOB version with 99 trials of

Shapetask, we started by adding Shapetask as a playable task with

minimal changes to the model code from [227]. This step was taken to

make it easier to confirm our approach worked correctly. We then

reimplemented the SRTD algorithm in Python (and confirmed it

produced identical behavioural profile), which is the code used in the

presented results below. It is worth noting that in both the original

code and our implementation, M is updated in a different form than

2 5 0 T H E S H A P E S E Q U E N C E T A S K

Equation 5.7 (allowing cleaner separation of s and s’). The form used

in code can be derived from the just mentioned equation thus:

𝑀𝑡+1(𝑠, ∶) = 𝑀𝑡(𝑠, ∶) + 𝛼𝑆𝑅[𝟏′ + 𝛾𝑀𝑡(𝑠′, ∶) − 𝑀𝑡(𝑠, ∶)]

= 𝑀𝑡(𝑠, ∶) + 𝛼𝑆𝑅𝟏′ + 𝛼𝑆𝑅𝛾𝑀𝑡(𝑠′, ∶) − 𝛼𝑆𝑅𝑀𝑡(𝑠, ∶)

= (1 − 𝛼𝑆𝑅)𝑀𝑡(𝑠, ∶) + 𝛼𝑆𝑅𝟏′ + 𝛼𝑆𝑅𝛾𝑀𝑡(𝑠′, ∶)

= (1 − 𝛼𝑆𝑅)𝑀𝑡(𝑠, ∶) + 𝛼𝑆𝑅[𝟏′ + 𝛾𝑀𝑡(𝑠′, ∶)]

For the Python implementation, we additionally changed to

SoftMax from the original code’s use of ε-greedy for action selection.

This was done so action selection is consistent across all our

algorithms. As with previous algorithms, we generate 1000 random

combinations of parameter values and for each such combination we

simulate 100 subjects. Parameter values were drawn as:

𝛼𝑆𝑅~𝑈(0, 1), 𝛼𝑤~𝑈(0, 1), 𝛽~𝑈(0, 20), 𝛾~𝑈(0, 1)

In Figure 5.41 the averaged results for each simset are shown, and

it looks like we have a general pattern of winners without WSLS cases.

We confirm this by grouping the simsets as we have done above for

previous algorithms (defined in section 5.1.5) and we do indeed have

only the winners and others groups here, as seen in Figure 5.42.

Figure 5.41 Overall SRTD behaviour in Shapetask. Proportion of choices (y-axis) averaged

for each simset (separated by lines) and shape position (x-axis) and score type (columns).

From left to right: Correct, Win-stay, Lose-shift, Shift-predict.

5 . 4 T H E S U C C E S S O R R E P R E S E N T AT I O N 2 5 1

What can also be gleaned from Figure 5.42 is that there is some

variation in the winners group. Therefore, before looking at

parameter value correlations for the groups, we find the higher

performing winners, using conditions as high being >0.8 Correct score

for shape positions one and two, and >0.8 Shift-predict score in shape

position three. To allow for potential slower learning in some cases,

we use thed last 18 trials for these groupings. In the specific

simulation run shown in these figures there were 783 winner simsets,

of which 231 met the criteria of “high winners”.

In Figure 5.43 we can see that the high winner’s group indeed show

a more distinct pattern across the score types and shape positions.

Thanks to this subgroup, we can see in the parameter space plot in

Figure 5.44 that both winners and others share most of the parameter

space, but the high winners distinguish themselves by having low γ

values. Because SRTD has information about shape position it is likely

Figure 5.42 SRTD behaviour grouped by winners and others. Proportion of choices (y-axis)

for each shape position (x-axis) and score type (columns). Group colours as per legend. Top:

All simsets shown as individual lines. Bottom: Averages for each group. From left to right:

Correct, Win-stay, Lose-shift, Shift-predict.

Figure 5.43 SRTD behaviour grouped by high winners, winners and others. Proportion of

choices (y-axis) for each shape position (x-axis) and score type (columns). Group colours as

per legend. From left to right: Correct, Win-stay, Lose-shift, Shift-predict.

2 5 2 T H E S H A P E S E Q U E N C E T A S K

not hugely beneficial with a high γ value, i.e., looking farther into the

future. Instead, one-step rewards for each shape position are

sufficient and often – as seen – better for performance.

5 . 4 .4 D I S C U S S I O N O F S R T D

SRTD can solve the Shapetask well, and this within the 99 trials. The

range of results seen look promising for potentially fitting human

winners. This performance is perhaps not surprising, seeing as the

state representation structure is in principle identical to that of

SEQL3. This similarity is interesting in that it confirms the utility of

SRTD for state representation and task structure, but also that

perhaps some humans are able to chunk and generalise into more

efficient structures like SEQL3.

Figure 5.44 SRTD parameter values for each group. Diagonal distribution plots refer to the

parameter value labelled at the bottom of each column. Group colours as per the legend. The

scatter plots show the combined parameter space for the two parameters labelled on the row

and column.

5 . 5 C O N T R O L G R O U P M O D E L S 2 5 3

The alternate framing of Shapetask as a maze together with the

state transition matrix M, provides the convenient side effect in that

it quite naturally allows us to speak of contexts. If we are on, say,

position 1 of the circle bag, then no matter what action we pick – what

shape we predict will appear next – the state we arrive in is the same,

but the context will depend on our choice. This is similar to

arguments made for episodic RL [98, 100], suggested to account for

cases where the Markov property may not be enough, where not only

the values themselves matter but also the recent history of steps.

The downside of SRTD is that it is unlikely to fit the human

subjects using WSLS behaviour. For this reason, HRL looks like the

overall more promising approach, if one is looking for a model that

can account for as many human subjects as possible.

To summarise, the results shown for SRTD adds to the growing

literature showing how the concept of cognitive maps is applicable to

more abstract reasoning and knowledge, and not only explicitly

spatial (navigation) problems.

5 . 5 C O N T R O L G R O U P M O D E L S

In addition to the already mentioned models, we would also like

models we can use as baseline control. One such is a model making

random choices, allowing for some bias for one or more actions. We

call this model RandomBias, and it has two parameters, bias1 and

bias2. The probability this model picks any of the three actions can be

described as:

 𝑝𝑡(𝑎1) = 𝑏𝑖𝑎𝑠1, 𝑝𝑡(𝑎2) = 𝑏𝑖𝑎𝑠2, 𝑝𝑡(𝑎3)

= 1 − (𝑏𝑖𝑎𝑠1 + 𝑏𝑖𝑎𝑠2)

5.10

We generate 1000 random parameter combinations with 100

subjects for each combination, with parameter values drawn as:

𝑏𝑖𝑎𝑠1~𝑈(0, 1), 𝑏𝑖𝑎𝑠2~𝑈(0, 1 − 𝑏𝑖𝑎𝑠1)

In Figure 5.45 we visualise the results as the average score for each

shape position and simset. Because we pick actions at random and

have three actions and stimuli, we see that overall, there is roughly

1/3 correct score throughout the experiment for each shape position.

Similarly for Shift-predict score we see that roughly 2/3 of the time a

2 5 4 T H E S H A P E S E Q U E N C E T A S K

shift is predicted for each shape position. None of these simsets are

grouped as WSLS or winners and thus group plots are not shown.

5 . 6 M O D E L S E L E C T I O N F O R S H A P E TA S K

Having introduced the models of interest for Shapetask, we now turn

to fitting those models to data. Of the five models – QL3, SEQL3, HRL,

SRTD and RandomBias – we already know that only one of them can

possibly explain the full variety of human behaviour at group level

(at least for the wide range of parameter combinations that we used

in our simulations). That model is HRL, because it can show both

WSLS and winner behaviour.

Unfortunately, HRL cannot be fitted using likelihood-based

methods. The main reason is that we do not have access to the taskset

selections in our observed behavioural data. All we have are the

observed actions, rewards and stimuli. Even in the HRL-22 version

this means the only way to select tasksets in the likelihood function is

using SoftMax for taskset selection. But this causes the likelihood to

become non-deterministic and MLE fitting mostly returns the same

values used to initialise the fitting function (random guesses within

the boundaries). Another possibility would be to generate all possible

taskset selections, and find the best fit based on the data we do have.

However, even for HRL-22 with two tasksets, that would be 299

possible combinations for 99 trials of Shapetask and thus

computationally intractable.

Because of this issue with HRL, we will first exclude it from

analysis to investigate how well our existing methods for model

Figure 5.45 RandomBias behaviour in Shapetask. Proportion of choices (y-axis) for each

shape position (x-axis) and score type (columns). Individual lines are the averages for each

simset (parameter value combination). From left to right: Correct, Win-stay, Lose-shift,

Shift-predict.

5 . 6 M O D E L S E L E C T I O N F O R S H A P E T A S K 2 5 5

fitting work for Shapetask. We then present an alternate method with

which HRL can be included and show model recovery performance.

5 . 6 .1 M O D E L S E L E C T I O N P E R F O R M A N C E W I T H M L E F I T T I N G

We use the same simulation functions and parameter ranges as

described above (for each separate algorithm) to generate 200 agents

for each of the five algorithms, resulting in 1000 simulated subjects in

total. In this step we do include HRL, more specifically HRL-22. We

then fit all models except HRL to all 1000 subjects. Even though HRL

is excluded in the fitting step, we will get an idea of what other

algorithms are the common best fits for the HRL subjects and use this

information in subsequent analyses.

In Figure 5.46 we have plotted the overall results for the simulation

and fitting process. First off, HRL cannot be correctly identified since

we do not fit using that model which is why there is no result for this

agent. It is included in the plot anyway, for easier comparison with

subsequent plots. Further, we can see that for QL3, RandomBias and

SEQL3 the performance is quite good, with >80% correctly identified

cases. For the SRTD subjects the result does not look as good, it does

not reach even half correctly identified subjects. However, this result

makes sense by looking at Figure 5.47 where we have plotted all

model selections. There we see that in the majority of cases, the model

selected instead of SRTD is SEQL3. As we noted above in the

behavioural studies, SEQL3 is very similar in behaviour and structure

to SRTD. Because the BIC measure penalises models with more

Figure 5.46 Overall model selection performance for Shapetask. Proportion of correctly

identified subjects on y-axis for each simulated model on x-axis. Coloured bars indicate

fitting method as per legend.

2 5 6 T H E S H A P E S E Q U E N C E T A S K

parameters, SEQL3 is often selected instead. It should be noted that

due to randomness, the exact proportions of SRTD subjects identified

as SEQL3/SRTD may vary.

For the HRL subjects in Figure 5.47, results are in line with

expectations, given that the HRL model could not be selected. That is,

the two main models being selected are QL3 and SEQL3. As we saw

above in the behavioural studies, QL3 is capable only of WSLS

behaviour, while SEQL3 is capable only of Winner behaviour. Since

HRL is capable of both these behaviours it makes sense these two

models are the most selected ones.

5 . 6 .2 M O D E L S E L E C T I O N W I T H A P P R O X I M A T E B A Y E S I A N

C O M P U T A T I O N

In order to fit models with intractable likelihoods such as HRL, we

can use an alternate family of methods called Approximate Bayesian

Computation (ABC) [264, 279]. ABC methods are fairly common in

Figure 5.47 Model selection performance in Shapetask. Proportion of identified cases (y-

axis) for each simulated algorithm (x-axis). The fitted model used as per colours in legend.

Shaded/non-shaded areas are only for readability. Top: MLE/BIC method. Bottom: VBAT

method.

5 . 6 M O D E L S E L E C T I O N F O R S H A P E T A S K 2 5 7

fields such as systems biology [159] and astronomy [126] but not

widely used in research on learning and decision making (but see

[260, 283] for related work). ABC can also be called “likelihood free”

or “simulation based”. The latter term is closest to how ABC works,

as in essence it entails simulating the model and comparing the

results with observations.

The simplest form of ABC is rejection sampling [279, 283]. We have

some observed data D, and we would like to find the model M

parameters M(θ) that most likely produced D. We draw a random

value 𝜽∗ from a suitable probability distribution, simulate 𝑀(𝜽∗) and

get some data 𝐷∗. The observed and simulated data are then

compared using a distance function d, and tolerance 𝜀 ≥ 0. If

𝑑(𝐷, 𝐷∗) < 𝜀 we accept the drawn 𝜽∗, otherwise we reject it.

In other words, the principle of ABC is in statistical terms a Monte

Carlo approach – simulate random cases enough times and the

approximation will be close to the true value or distribution. Of

course, this builds on carefully selecting the distance function and

tolerance. Additionally, if the prior distribution we use to draw

samples of θ from is very different from the true posterior, we may

have to simulate millions of times before approaching decent

convergence. This makes ABC rejection sampling – and ABC methods

in general – very computationally inefficient. We will come back to a

brief comparison between MLE and ABC below.

Because of this computational inefficiency there are more

advanced methods such as Markov Chain Monte Carlo (MCMC, also

used in Bayesian inference with likelihoods as described in chapter

three) and Sequential Monte Carlo (SMC) [279, 283]. We will here

focus on the latter, ABC-SMC, as it is the one used in the Python

package pyABC [138, 232] which we use for our analyses.

The advantage of ABC-SMC is that instead of sampling values of θ

one at a time, it generates many values at once, called a particle

population. Through importance sampling [279], new particle

populations are generated from accepted particles in the previous

generation. This allows the algorithm to gradually reduce the

tolerance ε for each generation while still accepting a sufficient

number of particles (parameter values) for the resulting posterior

distribution [138, 279, 283].

2 5 8 T H E S H A P E S E Q U E N C E T A S K

Several Python packages exist that implement ABC-SMC, such as

astroABC [126], ABC-SysBio [159] and ELFI [164]. We settled on

pyABC [138, 232] as it has a straight-forward interface we could

integrate with our existing simulation functions, as well as automatic

tolerance tuning and built-in support for model selection.

Model selection in ABC works by comparing the marginal

likelihoods of the posterior distributions [279]. In other words, if we

generate a distribution O of all possible data outcomes for model

M(θ), we can get the probability of a specific outcome o as 𝑝(𝑜|𝑀).

This aspect is used by ABC-SMC to approximate the marginal

posterior distributions 𝑃(𝑀𝑖|𝐷) where D is some observed data and i

the model index. Given these posterior distributions for models we

can compare models with the Bayes Factor (BF), which was

introduced in an earlier chapter. Below we refer to BF evidence

intervals as presented in Table 3.1.

An important note is that the way model selection works in pyABC

(based on [279]) means that models with higher number of

parameters are penalised, because the more parameter dimensions,

the smaller the chance that parameters are accepted.

Knowing the basics of ABC, we should mention that in [75] – which

our HRL implementation is based on – the authors used a variation

of simulation based model fitting. They mention ABC methods were

unsuitable for their use case, though what they did could be called a

group-based ABC approach. They simulated the entire group of

subjects thousands of times and selected those simulations that best

described the entire group, based on means and standard deviations

for their chosen distance metric.

We have chosen not to apply this approach here because we

already know, as discussed above, that HRL is the only model that

could possibly describe all or most humans in Shapetask. The task in

[75] apparently did not result in behaviour as heterogenous as that in

Shapetask, where we have multiple distinct kinds of behaviour.

Furthermore, as also discussed in previous chapters, we are interested

in potential individual differences in what model best describes

behaviour.

5 . 6 M O D E L S E L E C T I O N F O R S H A P E T A S K 2 5 9

5 . 6 .3 I M P L E M E N T I N G A B C F O R S H A P E T A S K

As mentioned above, ABC requires a distance function to compare

observed data with simulated proposals. Since our data consists of

sequences of actions, rewards and stimuli, where subsequent entries

depend on former data points, it is infeasible to compare the

outcomes directly. Instead, we can use summary statistics for the

distance function [279, 283]. Luckily, we already have suitable

summary statistics we know well from our behavioural studies

above, namely the four score types Correct, Win-stay, Lose-shift and

Shift predict. For a simulated outcome of actions, rewards and stimuli

we calculate the mean of the four score types for each shape

sequential position and thus get 4 ∗ 3 = 12 summary statistic values.

If we treat these values as coordinates in a 12-dimensional space, we

can calculate the Euclidean distance between the observed data from

a subject and the simulated data from models.

The downside of using summary statistics is that we lose trial-to-

trial dynamics of the data such as learning rates. For example, if one

algorithm reaches stable performance on trial 80 and another at trial

40 yet may have the same mean summary statistic across all trials. The

consequence is that it will be more difficult to distinguish between,

for example, SEQL3, SRTD and HRL as they are all capable of

producing winners. This could in theory be alleviated by adding

complexity to the distance function, like also calculating learning

curves for each score type. But the more complex the distance

function, the more computationally heavy the fitting process

becomes, so again our decision not to do this is a trade-off.

5 . 6 .4 A B C M O D E L S E L E C T I O N P E R F O R M A N C E

To investigate model selection performance with ABC-SMC, we

simulate and fit in two steps. First, we do simulate and fit like we did

for MLE above. That is, we simulate all five models but exclude HRL

from the fitting process. Second, we simulate and fit using all five

models. This approach allows us to compare our results with MLE in

the first step and thus get an apples-to-apples contrast of

performance. The insights thus gained can then be used to make

better interpretations of the second step.

 We simulate 20 subjects per model (see below for why such a low

number) and fit all models to each subject. As we have five models to

simulate in both steps, this gives us 5*20=100 subjects in total. Because

2 6 0 T H E S H A P E S E Q U E N C E T A S K

SoftMax β parameter values close to zero causes the algorithms that

use it to behave more randomly, we here made a slight adjustment to

parameter ranges used, compared to MLE. All β for simulations and

fits were drawn from 𝛽~𝑈(1, 20). This still provides a wide range of

behaviours, and is the same range for β values used in e.g. [75].

As mentioned above, ABC-SMC evolves particle generations with

each generation being a better approximation of the true posterior.

For this performance check, we use five generations as the maximum.

With these settings, fitting for all 100 subjects takes around 2 hours 40

minutes, meaning 1.6 minutes per subject. pyABC takes full

advantage of multicore systems, and the simulation and fitting

process was done on a laptop46 released in 2021. In comparison, on

the same laptop, the above MLE simulation and fitting of 1000

subjects took less than one minute. This is why a relatively small

number of simulated subjects was used here.

It is possible the above-mentioned alternatives to pyABC are faster

for this method, but none would be as fast as MLE. As was discussed

in previous chapters, then with regards to Bayesian MCMC and

Variational Bayesian Inference, such long computation times is a

hindrance to iteratively finding good solutions. In the case of ABC-

SMC one would like to be able to experiment with, for example,

different distance functions of varying complexity. But such long

computation times for confirming results understandably becomes

restrictive.

46 Laptop CPU: AMD Ryzen 7 5800H, 45W TDP

Figure 5.48 Model selection performance when HRL is excluded from models fitted.

Proportion of subjects (y-axis) for each simulated model (x-axis) that was best fitted with

what model (coloured bars as per legend). Shaded areas are only for readability.

5 . 6 M O D E L S E L E C T I O N F O R S H A P E T A S K 2 6 1

In Figure 5.48 the results have been plotted for fitting four models

(excluding HRL) using ABC to 100 subjects, 20 for each algorithm.

Keeping in mind this dataset is small, the results are nonetheless quite

encouraging. If we compare to Figure 5.47, we see the results largely

concur. We have very good performance for QL3 and RandomBias, in

the latter case performance is better than for MLE, where some

RandomBias cases are selected as QL3. For SEQL3, MLE is clearly

better, but ABC only selects SRTD instead of SEQL3 which as has been

discussed above can be explained in that their performance overlaps.

We can see the same phenomena for the simulated SRTD cases where

again SRTD and SEQL3 are the two most selected models for these

subjects. In contrast to MLE fitting, here ABC fits some SRTD subjects

as QL3 which tells us that the summary statistics used in the distance

function mean that some SRTD subjects on a performance level are

similar to QL3 cases. For the HRL subjects, ABC fitting concurs with

MLE fitting on a qualitative sense, in that we get a large amount of

QL3 and SEQL3 fitted subjects, with QL3 being the most common

one.

To summarise, ABC fitting largely agrees with MLE fitting and we

can now include HRL in the fitting process and with some more

confidence be able to analyse the results.

For the second step of simulation and fitting of all five models, we

generated a larger dataset with more subjects for better statistical

certainty. We got 400 simulated and fitted subjects, 80 subjects per

simulated agent/algorithm type. Because we now had an additional

Figure 5.49 Model selection performance in Shapetask for ABC method. Proportion of

subjects (y-axis) for each simulated model (x-axis) that was best fitted with what model

(coloured bars as per legend). Shaded areas are only for readability.

2 6 2 T H E S H A P E S E Q U E N C E T A S K

model to fit on each iteration, the entire process took around 15h in

total, so around 2.25 minutes per subject.

In Figure 5.49 we have plotted the results for the simfit process

when HRL is included as one of the models fitted. We have very good,

>75%, performance for the QL3, RandomBias and HRL models. It is

somewhat surprising that HRL performs so well, as the expectation

would be that HRL was more mixed like SEQL3 and SRTD. Again, we

should remember that we only have 80 subjects for each model. But

seeing how HRL is also the best fit for a decent amount of QL3, SEQL3

and SRTD subjects, another way to look at these results is they show

the flexibility of HRL. Because HRL can display a wider variety of

behaviours than the other models, and since the ABC method only

samples part of the parameter space for each model, it’s overall more

likely HRL samples will have a low enough distance to be accepted

by the ABC-SMC algorithm. In other words, the non-HRL cases fitted

as HRL are most likely subjects with less distinct behaviour than what

QL3, SEQL3 and SRTD are capable of. We will get back to such

behavioural connections below.

We also see that SRTD and SEQL3 cases overlap quite a bit, again

due to their similarity as we saw in the behavioural studies and

discussed above with both MLE and ABC fitting of four models

(when HRL was excluded). The better performance for SEQL3 here is

likely due to it being able to produce stronger winners than SRTD or

HRL. Again, see below for these speculations on behavioural

connections.

5 . 6 M O D E L S E L E C T I O N F O R S H A P E T A S K 2 6 3

We can summarise the results differently, in the form of confusion

matrices as seen in Figure 5.50. The regular confusion matrix (left)

shows the same information as in Figure 5.49, only in a more succinct

format. The inverse confusion matrix (right), however, sheds a

different light on the data. Values along the diagonal in the inverse

confusion matrix indicate how likely it is that the model with the best

fit was in fact the model that generated the data. For example,

RandomBias seemed to have perfect behaviour in the previous figure

(and the regular confusion matrix). But since RandomBias is also the

best fit for some subjects simulated with other models, then if we

assume these results are somewhat reliable, and RandomBias is the

best fit for a human subject, we will only be correct in 75% of cases.

That is, of course, also under the assumption that one of these models

must be the true model of human behaviour.

The inverse confusion matrix provides a slightly rosier view of the

performance when fitting SEQL3 and SRTD, with around 60%

probability for both. That is still not very high, but certainly better

than what the regular confusion matrix provides. More importantly,

if either SEQL3 or SRTD are found to be the best fit, there is very little

chance of any other models than those two being the correct one. As

previously discussed, these two models are similar in structure and

behaviour and that connection is kept even when only using

summary statistics in ABC fitting.

Figure 5.50 Confusion matrices for model fitting of Shapetask. Left: Regular confusion

matrix, where rows sum to one, with name of simulated model on y-axis and name of fitted

model on x-axis. For a given simulated agent row, each number on the row represents the

proportion of cases where the best fitted model was the model with name as per x-axis. Right:

Inverted confusion matrix, where columns sum to one, with name of simulated model on y-

axis and name of fitted model on x-axis. For a given fitted model column, the numbers in

that column represent the likelihood that the best fitted model generated the data.

2 6 4 T H E S H A P E S E Q U E N C E T A S K

Also as previously discussed, if HRL is found to be the best fit,

there is around 1/3 chance of either QL3, SEQL3 or SRTD being the

true model. This also reinforces the previously made points that HRL

is more flexible in the kinds of behaviours it is capable of.

Another way to analyse the results is with the Bayes Factor (BF), as

shown in Figure 5.51. The BF shown is using the natural log scale

transformation described above in Table 3.1, and is here calculated

between the winning model and the model with the next highest

probability. Note that for two categories – QL3 fitted to QL3

simulations and the RandomBias simulations – are not shown in full.

Their upper quartiles (75%) are 72.3 and 18.5, respectively. In cases

where the next highest probability was 0, we calculated the BF as

1/10−50.

Recall from Table 3.1 that 𝑙𝑜𝑔(𝐵𝐹) between 2 and 6 are considered

“positive” evidence and 6-10 are “strong”. What we can understand

from the BF plot above is that for QL3, RandomBias and HRL

simulated cases, BF values above 2 are common. For correctly fitted

QL3 cases, the majority are above BF 6 and many even above 10. We

have a similar pattern for correctly fitted RandomBias cases, but if we

look at QL3 cases identified as RandomBias, these can stretch up to

BF 9. This means that some fits suggest the evidence for the

RandomBias model would conventionally be regarded as strong,

even when the data were actually generated by QL3. Thus, we

preferably need a BF of more than around 9 to be certain of a true

Figure 5.51 Bayes Factor (y-axis) for the best (colours as per legend) and second best fitted

models for each simulated model (x-axis). Dashed horizontal lines indicate Bayes Factor

evidence categories as per Table 3.1. Note that the y-axis has been cut so two categories are

not shown in full, in order to better view the other categories. Shaded areas are for

readability.

5 . 6 M O D E L S E L E C T I O N F O R S H A P E T A S K 2 6 5

RandomBias case. For HRL fitted cases, there are those with values

above 6, but we can also see that many cases of HRL wrongly fitted

to SEQL3 have BF values between 2 and 5, so to be certain an HRL

case is truly HRL we would prefer BF values more than 5.

For SEQL3 fitted wrongly to SRTD, we can see that the top whisker

is around 4, which is fairly close to the top whisker of correctly fitted

SEQL3 cases. Similarly, for SRTD fitted cases, they rarely get BF above

2 even for correctly fitted cases. Thus, it seems BF will be unreliable

to correctly determine whether a subject, who was best fitted with

SEQL3 or SRTD, gave data that were actually generated by either of

these models.

To summarise, Figure 5.51 tells us that BF will probably only be

useful to confirm QL3, RandomBias and HRL cases. For those, we can

only be certain with BF values above 6 for QL3 and HRL, and above

9 for RandomBias.

2 6 6 T H E S H A P E S E Q U E N C E T A S K

It may also be informative to look at behavioural plots of each

simulated subject, based on what the best fitted model was. In Figure

5.52 we plot each simulated agent type on separate rows, with

coloured lines in each subplot indicating what model was best fit to

that group of subjects.

The most outstanding case here are the RandomBias simulations

(second row from the top), with almost entirely flat lines for each

score type. This is also reflected in the subjects simulated with other

agent types where RandomBias was the best fit – they are the group

of cases with score lines closer to flat lines than for all the other cases.

Figure 5.52 Behavioural curves for each simulated agent type (rows) showing proportion of

choices (y-axis) for each shape position (x-axis) and score type (columns). Colours indicate

what model was the best fit as per legend. Transparent areas around each line indicate 95%

confidence interval. Simulated agent types, top to bottom: QL3, RandomBias, SEQL3,

SRTD, HRL.

5 . 6 M O D E L S E L E C T I O N F O R S H A P E T A S K 2 6 7

We also see that subjects best fit with QL3 has a distinct WSLS type

behaviour, although in the simulated SRTD cases best fit with QL3

show a weaker pattern of WSLS behaviour. This latter category is new

to us – from the above behavioural investigations we did not catch

this “weak” form of WSLS cases, as the mean for win-stay in shape

position 2 is not above 0.5. But the same cases have a slight increase

in shift predict on shape position 3, which the QL3 fitted cases for

HRL and QL3 simulations do not have.

When it comes to SEQL3, as expected from the behavioural

investigations, this is the best fitting model for very strong winners.

It additionally has only three parameters, whereas both SRTD and

HRL have four, thus giving it an edge in the model selection process.

We can also see that when SRTD is the best fit, it often has high shift

predict in position 3, often as high as SEQL3, while HRL fitted cases

have lower shift predict in position 3. Simultaneously, HRL has

higher overall correct in positions one and two, and higher win-stay

in positions 2 and 3, compared to SRTD, in most of the fitted cases.

In short, there are clear behavioural categories depending on what

model is found to be the best fit. This should not come as a surprise,

given we use these scores as our distance function in ABC fitting. Yet

it is good to confirm our methods make sense.

5 . 6 .5 S U M M A R I S I N G M O D E L S E L E C T I O N P E R F O R M A N C E

As expected from the behavioural studies, ABC model selection

shows that HRL is the only model capable of being the best fit for all

the models under consideration (except RandomBias). It is also the

only model among the three models with alternate state

representations – SEQL3, SRTD and HRL – that has good recovery

performance, as shown in Figure 5.49.

As we have discussed, the state representation structure for SEQL3

and SRTD are close. That SEQL3 has better recovery performance

than SRTD can partly be seen as an effect of SEQL3 having fewer

parameters, and our model selection methods are favour models with

few parameters. Because of their shared state representation

structure, if we see SEQL3 and SRTD as a group, then their recovery

is in fact quite good, as demonstrated by the inverse confusion matrix

in Figure 5.50.

2 6 8 T H E S H A P E S E Q U E N C E T A S K

It is also encouraging that RandomBias and QL3 show distinct and

good performance, despite HRL being able to display behaviour like

that of QL3. This means if we do find QL3 or RandomBias being the

best fit to human subjects, we can accept the result with good

confidence, and especially so if the Bayes Factor in favour of these

models is large.

However, it remains something of an issue that HRL, SRTD and

SEQL3 can overlap. The Bayes Factor plots in Figure 5.51 showed us

that common values for accepting one model over another (𝑙𝑜𝑔(𝐵𝐹)

in the range 2-6; Table 3.1) are not strong enough to tease the

considered models apart. Of these three models, HRL was the only

one showing the possibility of BF values more than 6.

Despite the restricted usefulness of BF values, the behavioural

plots of Figure 5.52 show why HRL, SRTD and SEQL3 are difficult to

tease apart. The best example being the SRTD simulations (third row

from the top), where the three models’ behaviours can be described

as nested. SEQL3 being the best fit for strong winners, SRTD the best

fit for some winners and HRL being the best fit for behaviour that falls

between winners and RandomBias behaviour. Thanks to our

extensive behavioural studies before model fitting and selection, we

can use these behavioural plots to help confirm the model selection

results.

5 . 7 F I T T I N G M O D E L S T O H U M A N B E H AV I O U R I N

S H A P E TA S K

Armed with knowledge of how well the fitting process can be

expected to work, we can now fit our human data. We have fitted the

five models (HRL, QL3, RandomBias, SEQL3 and SRTD) using

pyABC and the same settings as described above for the simfit

process. We will present overall results for all three Shapetask

versions – BOB, BOB-NR and Random – and then dig deeper into the

results for BOB since that is the version we focus on as discussed

earlier in this chapter. We have results for 110 human subjects, of

which 39 are BOB, 32 are BOB-NR and 39 are for the Random version.

5 . 7 F I T T I N G M O D E L S T O H U M A N B E H AV I O U R I N S H A P E T A S K 2 6 9

The results from fitting and model selection can be seen in Figure

5.53. Starting with the result for the Random version of Shapetask,

HRL is the best fitting model for most subjects, followed by

RandomBias and QL3. As mentioned earlier, it is difficult to draw

general conclusions from this version of the task, as the shape

sequence varies a lot between subjects. It is nevertheless interesting

that HRL can account for behaviour for so many subjects, as this

implies the subjects tried to learn something about the task, and again

drives home the point that the HRL model is quite flexible.

For the BOB and BOB-NR versions of Shapetask, there is an

interesting contrast in the amount of SEQL3 fitted subjects. Recall that

SEQL3 can reach higher overall performance than the other models.

Because BOB-NR is less variable in the maximum length of shape

repeats (3 vs 3 or 6) than BOB, a larger proportion of subjects had very

good performance in the BOB-NR task. As seen in the behavioural

studies of the human data above, strong winner subjects figured out

the task quickly and thus reached high performance best explained

by SEQL3.

We have also speculated that perhaps SEQL3 and SRTD are close

enough in state representation structure that we can group them. One

way to check if this speculation holds is to consider only those

subjects that were best fit with SEQL3, and see what model was the

next best fit. For BOB-NR, 20 cases were best fit by SEQL3 and of these

12/20 had SRTD as the runner-up, and 8/20 subjects had HRL as

runner-up. For BOB, 15 cases were best fit by SEQL3 and of these

there were 5/15 cases with SRTD as the runner-up and 10/15 had HRL

as runner-up. Keeping in mind that sample sizes are small, these

Figure 5.53 Model selections for human subjects in Shapetask. Proportion of subjects (y-

axis) that were best fit with the model indicated by coloured legend, for each Shapetask

version (x-axis).

2 7 0 T H E S H A P E S E Q U E N C E T A S K

numbers are somewhat consistent with our speculation. SRTD

generally is the better fit in cases where shift predict on shape position

is as high as SEQL3 but where correct score is not as high, as seen in

for example Figure 5.52.

In Figure 5.54 we show the distribution of Bayes Factors (BF) for

each task version. As previously, the BF is calculated between the best

fitted model and the next best fitted model. The figure has been cut

off on the y-axis as a few categories have very high values. For QL3

fits in BOB version, the mean 𝑙𝑜𝑔(𝐵𝐹) is 138 (SD 126) and for BOB-

NR mean QL3 𝑙𝑜𝑔(𝐵𝐹) is 120 (SD 156). QL3, and some RandomBias

cases, are the only two models where the 𝑙𝑜𝑔(𝐵𝐹) is high enough to

be certain it is the best fit. Even though many cases have 𝑙𝑜𝑔(𝐵𝐹)

between 2-6 (positive evidence; Table 3.1), we found in Figure 5.51

that values should preferably be above 6 to confidently discern

between the five models under consideration.

Figure 5.54 Boxplot showing Bayes Factor (y-axis) for each fitted model (colours as per

legend) and Shapetask version (x-axis). Note y-axis has been cut off and does not show full

range of a few categories (see text). Dashed horizontal lines indicate Bayes Factor evidence

levels as shown in Table 3.1.

5 . 7 F I T T I N G M O D E L S T O H U M A N B E H AV I O U R I N S H A P E T A S K 2 7 1

In the behavioural plots of Figure 5.55, we can mostly confirm our

previous speculations. SEQL3 is the best fit for strong winners, QL3

is the best fit for strong WSLS subjects and HRL the best fit for weaker

winners or mixes of WSLS and winner behaviour (Random version,

bottom row). The RandomBias model covers a larger spectrum of

scores, as seen by the large CI, but common for all the cases best fit by

the RandomBias model is the relative non-varying behaviour across

the shape positions, indicating that subjects did not pick up on any

sequential patterns. SRTD is capable of strong winners like SEQL3,

but except for a single BOB-NR case, it is absent in the results. This is

most likely due to the parameter count being larger for SRTD than

SEQL3, so the model selection method prefers the latter model. In the

one SRTD case the shift predict score for positions one and two are

almost 0.5. See below for a closer look at this subject.

Focusing on the BOB version, there are comparable proportions of

HRL and SEQL3 cases – 12 and 15 cases, respectively. Before drawing

conclusions about SEQL3 being the subjects with best performance,

we should stop and ask if there is any correlation between number of

6-in-a-row shape runs and being best fit by HRL or SEQL3 models.

Figure 5.55 Behavioural plots for human subjects in Shapetask, grouped by fitted model as

per colours in legend, with score type in columns and task version on rows. Each individual

plot shows proportion of choices on y-axis across each shape position on x-axis. Transparent

areas around lines indicate 95% CI. From left to right: Correct, Win-stay, Lose-shift, Shift

predict. From top to bottom: BOB, BOB-NR, Random.

2 7 2 T H E S H A P E S E Q U E N C E T A S K

Perhaps it is simply the case that subjects who got more 6-in-a-row in

BOB are the ones best fit with HRL? We can answer this question with

an independent T-test between the number of 6-in-a-row for the two

groups. It shows no significance, 𝑡(25) = 0.33, 𝑝 = 0.75 so that is most

likely not the reason for the difference in fits. This comparison is not

significant between SEQL3 and QL3 either: 𝑡(25) = −0.88, 𝑝 = 0.39.

What may give us a hint about the reason for the difference

between HRL and SEQL3 cases in the BOB version of the task are the

Figure 5.56 Learning curves for human subjects in BOB task. Proportion of choices (y-axis)

for each bag-of-bags (x-axis, one bag-of-bags is 9 trials). Coloured lines indicate score type

as per the legend, with transparent areas representing 95% CI. From left to right: Shape

position 1, 2 and 3. From top to bottom: Cases best fit by QL3, SEQL3, RandomBias, HRL,

respectively.

5 . 7 F I T T I N G M O D E L S T O H U M A N B E H AV I O U R I N S H A P E T A S K 2 7 3

learning curves plotted in Figure 5.56. Note that the x-axis

corresponds not to individual trials but bag-of-bags (i.e., each tick on

x-axis is the average for 9 trials), to get smoother curves (less noise)

with patterns that are more distinguishable.

Starting with QL3 on the top row, we see very distinct WSLS

behaviour. This is expected since it is what we also saw from QL3 in

behavioural investigations. What is interesting to note here though is

that the behaviour starts very early in the experiment, meaning that

the curves start out at around the same levels which they end up at.

This makes it difficult to say if subjects are indeed learning, or if they

are just selecting the same shape as whatever the current stimulus

happens to be.

This is in contrast with the SEQL3 subjects (second row from the

top), where we do see an increasing trend for the first 3 bag-of-bags

(27 trials), after which behaviour stabilises. This pattern is especially

apparent in the Shift predict score line for shape position three (right

most column).

The RandomBias subjects (third row from the top) are quite

interesting, because we can see that the average scores shown

previously in Figure 5.55 do not tell the whole story. Towards the

second half of the experiment, subjects’ Correct score increases for

shape positions one and two, while Shift predict decreases. Win-stay

also has an increasing trend for the first two shape positions, even

slightly in the third shape position. This tells us it may be the case

these subjects (or at least a subset) are slower at picking up the pattern

and could perhaps have figured it out with more trials.

For the HRL subjects, we can see that for shape positions one and

two they look like a mix between QL3 and SEQL3 behaviour. As for

SEQL3, we do see that for the first 3 to 4 bag-of-bags their curves

increase/decrease, so there is some learning going on. In the third

shape position the Shift predict oscillates throughout the experiment,

indicating that perhaps these subjects have spotted separate patterns

for different shapes, and get confused whenever a particular shape

suddenly appears in a set of six or three when before it was in

three/six, respectively. Or perhaps they think the pattern changes

throughout the experiment. In a way one could perhaps say these

subjects do not see the forest for the trees – they focus on the details

and fail to see the grander pattern.

2 7 4 T H E S H A P E S E Q U E N C E T A S K

We should also take a look at individual subjects, in case there are

any outliers we cannot catch in the group plots. This has been done in

Figure 5.57. First, in the upper right plot, there are two RandomBias

subjects that have shift predicted on almost every trial. It seems likely

they did not make much effort in this task.

More interestingly, we can here see more clearly that there is a

continuum in summary scores for subjects best fitted with QL3 to

HRL to SEQL3. QL3 subjects show quite clear WSLS behaviour, with

one of these subjects having sloping to lower win-stay (lower left) in

position 3 from 2. Staying in the win-stay plot, HRL subjects pick up

where the just mentioned QL3 subject left off. As we increase the slope

between positions 2 and 3 we get to the SEQL3 fitted subjects.

Figure 5.57 Individual summary scores for subjects playing Shapetask BOB. Proportion of

choices (y-axis) for each shape position (x-axis) and score type (columns). Colours indicate

best fitted model as per legend.

5 . 7 F I T T I N G M O D E L S T O H U M A N B E H AV I O U R I N S H A P E T A S K 2 7 5

We can also connect back to the behavioural groups we defined in

section 5.1.5. In Figure 5.58 we have separated our BOB subjects by

those behavioural groups on rows, and coloured subjects by the

model that was the best fit. Again, the behavioural groups are

arbitrarily chosen (but of course based on logic), but they nicely

highlight the same patterns just mentioned above with regard to the

previous figure. Namely, that HRL straddles winners and WSLS

subjects. Also noticeable is how the RandomBias model captures all

the “other” cases exclusively. This is also the case for the BOB-NR

subjects (see code repository for these plots), as well as for the subjects

doing the random version of the task – except for one HRL fit.

Figure 5.58 Shapetask BOB subjects, coloured by fitted model (see legend) and separated by

behavioural groups (rows). Proportion of choices on y-axis for each score type (columns) and

shape position (x-axis). From top to bottom: WSLS, Win, Other. From left to right: Correct,

Win-stay, Lose-shift, Shift predict.

2 7 6 T H E S H A P E S E Q U E N C E T A S K

Finally, we highlight the one individual fitted with SRTD. This

subject – 38 – did the BOB-NR version of the task and as noted above,

they had a peculiar score summary of 0.5 shift predict for the first two

shape positions. In Figure 5.59 we can see that on early trials, subject

38 predicted a shift (pink line) on almost every trial, regardless of

shape position. Then around halfway through – bob number 6 on x-

axis - there is quite a dramatic shift in behaviour. Now subject 38

starts to win-stay/lose-shift on shape position 1, win-stay on position

2 and shift predict on position 3. In other words, subject 38 did almost

solve the task, and found the pattern around halfway through the

experiment. Perhaps some of the RandomBias fitted subjects

mentioned above had a similar approach, and therefore showed a

large proportion of shift predict choices for all shape positions. But

for those subjects, the pattern never clicked.

5 . 8 C H A P T E R S U M M A R Y A N D D I S C U S S I O N

In this chapter we introduced a novel decision-making task we call

the shape sequence task – or Shapetask for short. Participants are

shown a pre-determined sequence of shapes one at a time and need

to predict what shape comes next. Participants are instructed to “find

the pattern” but get no explicit feedback on their choices. We show

that in versions of the task with reduced randomness in the sequence

generation (i.e., with fewer sequences of the same shape that were

longer than three), a majority of human subjects can find the

underlying pattern within just 99 trials, often quite early on in the

training sequence.

Figure 5.59 Learning curves for individual subject 38 in BOB-NR task, fitted best with

SRTD model. Proportion of choices (y-axis) across bag-of-bags (x-axis; 9 trials averaged) for

each score type (coloured lines as per legend) and shape position (columns). From left to

right: Shape position 1, Shape position 2, Shape position 3.

5 . 8 C H A P T E R S U M M A R Y A N D D I S C U S S I O N 2 7 7

We then showed how standard Q-learning (QL3) can account for

those human subjects in Shapetask who show win-stay lose-shift

(WSLS) behaviour, but not those subjects that solve the task by

learning to shift their prediction every third trial in the sequence.

Equipping Q-learning with a different state representation, however,

the resulting SEQL3 algorithm can show similar behaviour to those

humans who find the key sequential pattern.

We argue these results show how Shapetask 1) can theoretically

investigate how humans combine generalisation, differentiation, and

inference to find task structure; and 2) reveals that standard RL,

equipped with appropriate states, can account for human behaviour.

By not using explicit rewards we also argue the results 3) support

theories proposing that RL may account for a more general “sensory”

prediction error rather than one that is just reward based.

To improve support for these arguments, we introduced two

models from the literature with plausible neurobiological

connections. Hierarchical RL (HRL) imposes structure by essentially

stacking two QL algorithms with the upper level selecting task sets –

contexts – and the lower level selecting actions. We show this model

can account for multiple types of behaviour in Shapetask, both

“winners” (those who learn the sequential pattern) and subjects

showing WSLS behaviour.

SRTD (Successor Representation, Temporal Difference) combines

aspects of model-free and model-based RL by approximating the state

transition function through experience. We show this model can

better account for strong human winners in Shapetask than HRL but

does not explain the behaviour of WSLS subjects. Furthermore, we

demonstrate how SRTD is structurally equivalent to SEQL3.

Finally, we demonstrate model selection in Shapetask using the

ABC (Approximate Bayesian Computation) method. The four models

QL3, SEQL3, HRL, SRTD and a baseline RandomBias model were

then fitted to the human data. The results of this model fitting and

selection shows that strong WSLS subjects are indeed best fit with

QL3, strong winners are best with SEQL3, and those subjects showing

weaker WSLS or winner behaviour are best fitted with HRL.

2 7 8 T H E S H A P E S E Q U E N C E T A S K

5 . 8 .1 T E C H N I C A L D I S C U S S I O N

It is unfortunate that HRL has an intractable likelihood, forcing us to

use more crude methods for model fitting and selection. Using ABC

we lose the dynamics of the task, meaning the changing behaviour

across trials. Likelihood based methods naturally include this aspect.

We could compensate by selecting only the last x trials and perform

ABC fitting on those data. But at what point does that become cherry

picking our data, and/or how do we choose those last x trials? Perhaps

a better option would be to include more aspects in the distance

function. For example, one could find the slope of scores across all

trials or even fit curves and use the found parameter values for

distance.

But as discussed earlier, this would increase computation time

enormously, as it takes many hours already. Calculating the slope or,

even worse, fitting a curve, are much more complex calculations than

just summing up the scores. However, if one were to attempt this, it

would be appropriate to investigate if there is a faster Python library

than pyABC (if one indeed exists). Another option would be to look

beyond Python and find a fast ABC library in another programming

language, for example C++ or Julia. Also, since each simulation is

separate, the process is easily able to take advantage of parallelisation.

Thus, it would most likely gain huge speed improvements to

implement ABC with support for using GPUs (Graphics Processing

Unit).

5 . 8 .2 G E N E R A L D I S C U S S I O N

No matter what specific model from HRL, SRTD or SEQL3 is the best

fit for individual subjects, we have shown that state representations

do indeed matter for successfully solving Shapetask. These models

update behavioural values based on implicit rewards in the same way

as QL3 does, but they differ in the composition of the structure these

updates are applied to. We have thus showed that some manipulation

of state representation change is needed, even if it would be neither

of the specific models tested here.

Because subjects show such distinct behavioural types in

Shapetask, it is unlikely that one single model would explain all

5 . 8 C H A P T E R S U M M A R Y A N D D I S C U S S I O N 2 7 9

subjects. Instead, we would argue that one size does not fit all47, and

humans as a group are capable of multiple strategies. Our results

would then also indicate that even among winner subjects, some

humans use a strategy like SEQL3, and some a strategy like HRL.

Trying to tease HRL apart, it is possible that some subjects indeed

represented the task as HRL would predict. This allowed these

subjects to flexibly select an appropriate task set depending on the

position and shape/colour. But this representation came at the cost of

not showing strong distinct behavioural patterns: either WSLS or

solving the task. This might have been because subjects had to expend

effort exploring how to calibrate task set selection. This is suggested

because of our observation that a larger number of trials was likely to

be needed to be certain that HRL stabilises.

Similarly, those subjects best fit with SEQL3 successfully found a

very efficient state representation, often fairly quickly. One could

perhaps object here and say maybe subjects simply counted the

number of shapes in a row and selected actions like “one-two-shift”.

But without an appropriate representation of the states and task

structure, how would subjects form the notion about what to count?

What is more important to consider, is how far we can take the

equivalency between SEQL3 and SRTD. We showed above that

structurally, they are in practice equivalent. We also showed in model

selection performance that when SEQL3 or SRTD had generated the

data, especially so if SRTD had generated the data, then the likelihood

was very small that any other model than these two would be the best

fit. Since SEQL3 additionally has fewer parameters than SRTD, and

assuming the two models are nested, it would then make sense we

only found a single case where SRTD was the best fit, rather than

SEQL3.

Assuming then this equivalency between SEQL3 and SRTD hold,

most winning human subjects were best fit with SRTD rather than

HRL. Perhaps, and this is highly speculative, it is the case that SRTD

is the fuzzy start of humans representing a task and as they gain

information, this representation solidifies and solidifies into either

QL3 or SEQL3 like representations. For most subjects, this happens

quickly, but for subject 38 the solidification took longer. For some

47 If one is so inclined to claim one size should fit all, then at best our results are

inconclusive as to what size (model) that would be.

2 8 0 T H E S H A P E S E Q U E N C E T A S K

subjects – the ones best fit by a RandomBias model – this solidification

does not happen until late in the task or perhaps never at all.

However, this is not quite the whole story, as our results show that

those subjects using a QL3 (WSLS) strategy, did so from the very start

and showed little if any exploration. Then again this may be a

question of effort and motivation, as there was no extra payment for

solving the task. So QL3/WSLS participants made their prediction by

clicking the same shape that they saw on the screen and thus were

able to get the task over with quickly. Additionally, as there was no

explicit feedback on participants’ choices, this behaviour was not

“punished”. Perhaps they expected a message to appear if they did

the wrong thing and so carried on unchanged when such a message

did not appear. It is also possible QL3/WSLS subjects settled on the

immediately found strategy and genuinely thought they had found

the correct pattern, or at least a “good enough” pattern.

The obvious next step to develop this task further would be to add

explicit rewards. As discussed above, part of our goal was to

investigate how and if implicit rewards, in the form of sensory

prediction of shapes (and/or colours), could be captured by standard

RL algorithms that commonly assume explicit rewards. We

successfully show this is indeed the case, adding to previous theories

[91] on a more general prediction error story for midbrain dopamine

than that of just rewards. But adding explicit rewards would

complement our findings and would possibly enable us to answer

some questions that are not clear from our current results.

On that point, using explicit rewards could allow for discerning

between cases of low effort and those believing they found the correct

pattern. The same can be said for RandomBias cases, where we do not

know if subjects genuinely were confused or did not care. It is also

possible that using explicit rewards would allow more subjects to

successfully solve the task, which could, if desirable, be compensated

in difficulty level by varying the number of shapes in each bag.

In short, we show Shapetask is viable for investigating the topic of

state representation and task structure. With the possibilities for new

variations of Shapetask, we believe it shows great promise for use in

future work investigating these topics.

6 DI SC U S SI O N A N D F U T U R E W O R K

We started our journey by asking how humans and other animals find

and create structure in the world. We approached this question from

the perspective of reinforcement learning (RL) – learning from

rewards. Our hypothesis was that RL is supported by other brain

areas, where appropriate state representations for the task at hand are

created, manipulated and/or retrieved. These state representations

are provided to the RL system, where they are used as fundamental

units for the learning process.

We based this hypothesis on two pillars, as detailed in chapter two.

The first pillar is the reward prediction error hypothesis of dopamine,

which is well established on a neurobiological level [197, 240]. The

second pillar is derived from previous contradictory findings

concerning what type of RL may occur in brains [53, 71, 201]. This

contradiction may be explained by taking a more integrated view of

dopamine as a more general stimulus prediction error [91, 180, 227]

supported by (orbito-)frontal cortex and hippocampus providing

state representations [14, 54, 235, 302].

6 . 1 S U M M A R Y O F K E Y F I N D I N G S

6 . 1 .1 C H A P T E R T H R E E

In order to study how humans find task structure, we wanted to test

models found in the literature on existing and new data gathered

from human experiments. Testing such mathematical models of brain

function, we need methods for parameter estimation and model

selection. In chapter three, we introduced and investigated two main

classes of methods for fitting models to data: maximum likelihood

estimation (MLE) and Bayesian inference. Both methods use

likelihoods – in essence inverted simulation functions – to find the

most probable parameters used to generate the data being fitted.

Bayesian methods have traditionally been difficult to use due to their

computational requirements but have gained popularity in recent

years in part due to increased availability of fast computers and partly

thanks to improved algorithms for Bayesian inference. Most

importantly they have gained popularity due to claims they are better

2 8 2 D I S C U S S I O N A N D F U T U R E W O R K

able to both estimate parameter values and find the best fitting

models [2, 211, 234, 298].

We used a standard learning and decision-making task – the two-

armed bandit – and simulated artificial datasets with an RL based

algorithm playing this task (section 3.3), as well as an agent playing

randomly (with potential for bias towards one option). We then

compared (in sections 3.9-3.10) both parameter recovery and model

selection performance with MLE and several kinds of Bayesian

inference-based methods, some of which used toolkits published by

other authors.

Among these toolkits, we found the Computational and

Brain/Behaviour Modelling (CBM) [211] to be the easiest to use with

a straight-forward approach to adding new models. It uses Bayesian

hierarchical model fitting and selection, and thus naturally provides

uncertainty measures for fits on both subject and group level.

Unfortunately, CBM does not seem to be actively maintained and is

only available in MATLAB (both issues will be further discussed

below).

As for results, we found that some of the Bayesian based methods

were indeed generally slightly better at parameter recovery than

MLE. However, there was no direct correlation between parameter

recovery performance and that of model selection. In fact, MLE was

often noticeably better at selecting the correct model than Bayes’

based methods (section 3.10.4). This was true even with few data

points (100 trials per subject), which is supposedly where Bayesian

inference shines [68, 234].

We found this surprising, and very important for two main

reasons. One is that in experiments with human subjects, we often

have to make do with relatively few datapoints because humans very

easily get bored and so tasks are often kept quite short. The second is

that MLE is multiple times faster – on the scale of minutes versus

hours in worst case scenarios – than the Bayesian methods. This is

important because if MLE is just as good or even better for model

selection, there is little point in wasting energy on a more

computationally demanding method.

It is also important because constructing likelihood functions is

complicated. It is very easy to make mistakes, and so one should

always test one’s likelihood functions work by simulating data and

6 . 1 S U M M A R Y O F K E Y F I N D I N G S 2 8 3

then see if the parameters used for generating said data can be

recovered [203, 300]. This is often an iterative process – especially for

mathematical non-natives. Hence, if each time you test a change to

your likelihood function you have to wait hours to see the results, you

will be satisfied when it seems to work. However, you might be

deterred from a fuller exploration by the lengthy time commitment

involved, and so may miss something that makes it not work so well

for datasets other than your own.

The above findings conflict with some published studies that show

Bayesian methods to be superior [2, 211, 298]. We suggest this may be

due to that authors often use few artificial subjects, on the level of tens

of simulated subjects, instead of thousands. Larger numbers are

needed in our experience in order to cover most of the parameter

space, which is important as recovery ability can vary across said

parameter space. As just mentioned above, this is most likely due to

the authors simply not having (or taking) the time for the entire fitting

process for thousands of simulated subjects. Such pressure of time is

unfortunately – in this author’s opinion – likely to be a direct

consequence of the publish or perish culture in today’s academic

world [89].

However, we should perhaps hold this judgment before testing the

methods on more agents and task types. Our results may not

necessarily be representative for more complex types of models and

tasks. Therefore, we addressed this in chapter 4.

6 . 1 .2 C H A P T E R F O U R

In chapter four, we kept the best performing methods from the

previous chapter – MLE and CBM – to investigate further. We now

introduced more complexity to the task in the form of two types of

reversal bandits. We also added a wider array of models into the mix,

some of the RL family and two from the family of Hidden Markov

models (HMM), models which have hidden – or belief – states that

are inferred based on observations.

For each task and model, we simulated subjects and fitted all

models. This confirmed our results from the previous chapter that

MLE was the most reliable method for selecting the model that most

likely generated the data (section 4.8). Furthermore, despite being

easy to use in general, we found the CBM toolkit exhibited bugs that

caused us having to leave this method out of a few of the

2 8 4 D I S C U S S I O N A N D F U T U R E W O R K

comparisons. This unfortunately made the comparison incomplete

but would unlikely have changed the picture on what model selection

method was best, considering the previous results from chapter three.

The specific issue encountered was one where fitting a model to

data that was very different from what the model expected would

cause the CBM program to crash. We reported the bug and have yet

to receive a reply. From what we understand of the crash, it is caused

by the fitting process being unable to find a good fit and thus it is then

supposed to fall back on the priors. We bring this up here, because it

further illustrates our point made about the results in the previous

chapter, where authors do not fully test their methods. Because we

ran into this error, not just with one of the models we added, but also

one of the models that was included in the CBM toolkit. Again, we do

not judge the authors. Oversights are easily made under pressure to

publish.

We also fitted two human datasets with the two types of reversal

bandit. In the first task, called simply ReversalBandit, all subjects

except one were best fit by some form of RL based model without

states. The one other subject was best fit with an HMM (section 4.9).

The second task, known as WorthyBandit, was more complex, in that

rewards varied in value rather than just being present or absent. Once

again most subjects still were best fit by RL based models but here

more subjects were best fit with the HMM (section 4.10.4).

We would argue, based on the assumption most of the best fits

were indeed correct, that the result from the human data shows the

value of considering individual behaviour within the sample. In

many studies found in the literature, authors describe what the best

fitting model is, but only at the group level [75, 78, 81, 158, 263, 280,

290]. We believe this approach can be misguided, depending on the

kind of models one is fitting. If the model describes what happens on

a biological level – how neurons activate for example – then this might

be appropriate at group level as we all share the same underlying

neurobiological principles. But the kind of models we are studying

here describes learning and decision-making at the behavioural level.

Considering variations in life experience and the creativity of

humans, a group of them can deploy a multitude of strategies and

solutions to one and the same problem. For example, for the free

response question at the end of Shapetask (see section 5.1.4),

6 . 1 S U M M A R Y O F K E Y F I N D I N G S 2 8 5

participants presented several alternate theories on what pattern they

believed they found. So why would one – and only one – learning

model describe all individuals’ performance on a task?

As previously noted, even though Bayesian MCMC (Markov

Chain Monte Carlo, see section 3.9) indeed has better overall

parameter recovery performance than MLE, it is not fully reliable.

Additionally, one should keep in mind that one reason for

hierarchical Bayesian models overall having less noisy parameter

estimates is due to shrinkage – individual values being drawn closer

together as they all share a group level distribution. This is often cited

as a major advantage [2], but only will be of value if all participants

use the same strategy, i.e., can be described by the same model. If

participants cannot be described by the same model – which we have

argued is often the case – then shrinkage could actually lead to

misleading results.

The above issues on heterogenous groups and shrinkage are taken

into account in the Variational Bayesian Analysis Toolbox [62] (VBAT,

part of which we used in conjunction with MLE fitting as described

in section 3.10.2) and CBM [211], where model selection and fitting

are done concurrently. That means subjects that are not well fit with

a specific model should also contribute little, if anything, to the group

level parameter distribution(s) for that specific model. However, as

discussed above, our results indicate MLE is still the better choice for

model selection. Hopefully, Bayesian methods can improve here so

we can get the good model selection performance of MLE as well as

uncertainty measures of Bayesian inference.

For the reasons discussed, we would therefore recommend caution

about studies claiming correlations between model parameter values

and other measures such as personality, intelligence scales or mental

health, unless the study includes proof their method can reliably

recover parameters of simulations with known parameter values.

Even then, it is important to consider how such results can be

interpreted in relation to other tasks and populations [74, 190].

6 . 1 .3 C H A P T E R F I V E

In chapter five, we introduced the Shapetask, a novel learning and

decision-making task. Participants are shown a sequence of coloured

shapes and must predict what the next coloured shape will be. There

are three different shapes, and the sequence of trials is generated so

2 8 6 D I S C U S S I O N A N D F U T U R E W O R K

that the same shape will always be presented at least three times in a

row (although variation in number of repeats – sometimes six repeats,

or even nine and twelve repeats in the hardest version of the task –

occurred to differing extents across versions). Participants were not

explicitly rewarded or punished for their choices. We argued that

when a participant’s prediction for the next shape is correct, this acts

pretty much like an explicit reward and likewise when their

prediction is wrong this acts like a non-reward outcome. Subjects thus

have to figure out that sequential position (how many times a shape

has occurred in a row) is important, and that the context when the

third repetition of a shape occurs is different from the first two

repetitions, thus potentially requiring different choices. We showed

that in easier versions of the task, with a lower chance of getting

repeating sequences longer than three, a majority of the participants

are able to correctly find the underlying pattern. Not only do they find

the pattern, but most do so within 100 trials, often earlier (section

5.1.4.1).

We then showed how standard RL in the form of Q-learning (called

QL3) can account for the behaviour of participants choosing a win-

stay, lose-shift (WSLS) strategy (section 5.2.1). But in order to account

for the participants that solve the task by correctly identifying the

pattern, we had to modify the state representation of the task used by

the same Q-learning algorithm (creating a novel version we called

State Enhanced QL3, SEQL3; section 5.2.3).

We believe this shows support for our initial broad hypothesis that

RL is supported by appropriate state representations. In chapter two

(section 2.2) we noted how there are conflicting accounts in the

literature as to whether model-free or model-based RL – or both – can

explain signals in the dopaminergic system. We also described recent

proposals that what has been viewed as model-based may perhaps be

better explained by model-free systems being fed state

representations from frontal cortex areas and/or hippocampus [213,

248, 297, 302]. If Q-learning can display different behaviours

depending on the state representations on which computations are

made – then perhaps the view of model-free versus model-based RL

is misguided. Perhaps, what has been interpreted as model-based RL

reflects the influences of the state representations being fed in from

other brain areas.

6 . 1 S U M M A R Y O F K E Y F I N D I N G S 2 8 7

These speculations are, as discussed in chapter two (section 2.3), in

line with recent research. But in our case, it was mere speculation, as

we manipulated the state representations into a form that was

suitable for the task; and, at this point, we had shown only qualitative

results with simulations. So, to establish a connection more firmly

with other research, we fitted models proposed and developed in that

research. These models (see next paragraphs) take an integrated view

of RL and state and task structure.

We selected two of the most promising models from the literature.

First, SRTD (Successor Representation, Temporal Difference) which

combines aspects of model-free and model-based RL by

approximating the state transition function through experience

(section 5.4). We demonstrated how Shapetask can be construed as a

spatial maze-like task fitting for the SRTD implementation we used

(which had been developed to simulate performance in complex

spatial mazes). We also demonstrated how SRTD is structurally

equivalent to SEQL3, and thus will have a similar behavioural profile

in simulated behaviour. That is, like SEQL3, SRTD can account for

human participants who learn the sequential aspects of Shapetask (in

chapter five we referred to these subjects as “winners”). We also

showed that SRTD does not account for subjects who display a

persistent WSLS strategy. This result adds to existing literature [194,

206] suggesting that cognitive maps for spatial and abstract

knowledge may share mechanisms.

The second model, Hierarchical RL (HRL), imposes structure by

essentially stacking two QL algorithms one above the other (section

5.3). The upper level is used to select task sets – or contexts – and the

lower level selecting the actions deployed in each context. We showed

that this model could account for multiple types of behaviour in

Shapetask, both winners and subjects showing WSLS behaviour.

One notable detail found in our behavioural investigation of HRL

was that two simulated subjects that use the same parameter values

can exhibit qualitatively different behaviours (section 5.3.2.1). We

showed this was due to randomness in task set selection, and that

with a larger number of trials the issue could be alleviated. This effect

appeared even with only two task sets. The consequences of this are

that HRL may be highly dependent on task contingencies such as, for

example, number of trials and reward magnitudes. For example, if

2 8 8 D I S C U S S I O N A N D F U T U R E W O R K

high reward magnitudes are possible, it may require a larger number

of trials before task set values appropriate for the task are found. This

effect seems to be additionally exacerbated with more than two task

sets, as we showed in the same section. Additional study of this effect

would be needed, but if researchers would attempt to, for example,

correlate HRL parameters with other measures, this effect should be

kept in mind.

Although HRL has shown promising results in previous research,

it unfortunately has an intractable likelihood function disallowing the

use of likelihood-based methods, such as MLE, for model fitting. We

therefore used a simulation-based model fitting method –

Approximate Bayesian Computation (ABC) – to fit our selected

models to the Shapetask human data (section 5.6.2). We showed this

method had a similar model selection profile to MLE when fitting the

models with tractable likelihoods, which made us more comfortable

with interpreting the ABC fitting results.

The model fitting and selection results for our human data (section

5.7) showed that strong WSLS subjects were best fit with QL3, strong

winners best fit with SEQL3, and subjects showing weaker WSLS or

winner behaviour are best fitted with HRL. Some subjects were best

fit with a randomly acting agent that had specific probabilistic biases

for picking each of the three actions.

These results are interesting, because regardless of whether HRL,

SRTD or SEQL3 is the best fit for individual subjects, each of them

updates behavioural values based on implicit rewards in the same

way as QL3 does. The difference between them lies in the composition

of the structure these updates are applied to. We have thus showed

that some manipulation of state representation change is needed to

capture performance in Shapetask, even if none of the specific models

tested here do a perfect job of capturing the full range of observed

human performance.

Because subjects show such distinct behavioural types in

Shapetask performance, it is unlikely that one single model would

explain the behaviour of all subjects. Instead, we would argue against

a one size fits all viewpoint, and stress that humans are capable of

multiple strategies. If one were to argue for one size fits all, perhaps

in pursuit of scientific parsimony, then it is very unclear, based on our

results, what sort of model could capture all the diverse behaviours

6 . 2 L I M I T AT I O N S 2 8 9

that humans show in Shapetask. Our results in the model fitting and

selection of Shapetask (section 5.7) would then indicate that even

among winner subjects, some humans use a strategy like SEQL3, and

some a strategy like HRL.

The above arguments make intuitive sense. If it is the case that state

representations matter – that the neural systems of humans and

potentially other animals form mental structures that are useful for

learning – then why would it be the case that everyone uses the same

sort of representation? In other words, we are suggesting that

although the basic physiology of the underlying neural system(s) may

be the same, through the combination of life experience and genes,

some individuals may use one strategy instead of another when faced

with the same task. Since we do not really investigate how HRL/SRTD

arises – only that these are cognitive structures that may have been

used by participants – it is entirely plausible that some subjects used

what looks like HRL and others used SRTD/SEQL3.

An additional finding here to note is that as we did not use explicit

rewards in Shapetask and ran our simulations treating outcomes that

met participants’ predictions as implicitly rewarding. The success of

our simulations, using this assumption, therefore adds to the existing

literature suggesting a larger role for dopamine than that of reward

prediction errors [91]. This literature argues that dopamine accounts

not only for reward prediction errors, but sensory prediction errors

more generally. This would appear to fit with more general theories

proposing that prediction errors of both the world, our body and our

thoughts is how the mind is made up [46, 87, 118].

Overall, we believe the results just summarised show that

Shapetask is a valid tool for investigating how humans find structure

in the world. Our results are preliminary and thus naturally

incomplete, and some aspects of our findings may be explained by

lack of effort, confusion, or both, in our human participants. In order

to test the ideas further, we would need, among other things, to

compare learning using explicit rewards in the same task.

6 . 2 L I M I TAT I O N S

The first limitation relates to Shapetask, and the assumptions we

make about what “solving” the task means. We define solving it as

changing one’s prediction (with high probability) every third trial in

2 9 0 D I S C U S S I O N A N D F U T U R E W O R K

the sequence. We did find that those participants who solved the task

by our definition were often able to report on this strategy in their

debriefing comments, as well as informal feedback from pilot

participants. So, we believe our assumption holds, but adding more

variations of the task such as explicit rewards (further discussed

below), would further ground this assumption. Furthermore, in the

development of the task itself, we should perhaps have started

Shapetask from a single shape with multiple colours, or a single

colour and multiple shapes as a baseline and work up from there.

Another limitation is that we did not include any measure of

working memory capacity, or used a model with aspects of working

memory built in. This could be appropriate since not only is it

sometimes argued that working memory is tightly integrated with

(reinforcement) learning [55] – as discussed in chapter two – but there

may also be correlations between working memory capacity and

success in Shapetask. It is possible that there is no difference per se in

the state representations a group of participants apply, but rather they

vary in the level of difficulty they have remembering how many

shapes in a row they have seen previously.

On the topic of additional models, we also could have tested more

types of RL agents without manipulating the state structure. For

example, we could have tested Dual-α and Dual-Update chapter four

on Shapetask. Since these models use state representations like those

of QL3, they would not be able to differentiate between the last

stimulus of a bag and the preceding ones, and thus are likely to have

similar behavioural profiles to that of QL3. In the case of Dual-α, it

may also be the case that perseverance effects should be taken into

account [263].

We also could have run studies in which participants performed

both Shapetask and another task. This would have allowed us to

“cross compare” algorithms on these multiple tasks. For example, if

we had run these further studies, we could have compared the fits of

the Alien task from [75] and Shapetask using SRTD, and similarly

tested the fit of HRL on the maze task from [227] as well as Shapetask.

It is not immediately clear how either implementation combination

would work, so this would require additional tinkering with the

models and/or tasks in order to do this.

6 . 2 L I M I T AT I O N S 2 9 1

There was not sufficient time during this PhD to fit additional

models and run further studies with task combinations. This is always

an issue with PhDs, but the issue was exacerbated here because much

of the model fitting turned out to be unexpectedly time consuming.

There were two aspects to this.

First, the time taken to simulate and fit successfully implemented

models was often considerable. We noted earlier how important it is

to ensure broad parameter coverage in model testing. So, in this

thesis, we used sets of 1000 randomly selected parameter

combinations where each such combination was run 100 times to

average across stochastic variations of the tasks and agents (see for

example section 3.3). Furthermore, we saw with ABC fitting for

Shapetask, that it was roughly comparable (in terms of results) to

MLE fitting. But it took around two minutes per subject with the five

models included. Adding further models would naturally increase

the time taken, and thus the time needed to test performance, for two

reasons. The first is quite simply that more models mean more time.

The second is that more models will inevitably lead to similar

performance profiles. For example, adding more RL variants would

very likely mean more models would show WSLS behaviour like

QL3. In this case, our distance function may prove insufficient to

properly distinguish between them. This would need to be alleviated

by incorporating more nuances in the distance function used for ABC

fitting; such additional nuances add further to the run times of the

code.

We proposed a few more options on how to deal with ABC fitting

due to intractable likelihoods in the chapter five discussion. Yet

another option would be to simply exclude models with intractable

likelihoods. But that would of course not be ideal. We have not

encountered many papers using HRL, and its intractable likelihood

may be partly responsible for this. However, see [83] for an interesting

approach of using neural networks to approximate likelihoods.

A further reason for the unexpected time taken to test and fit the

models was that, based on the literature, we did not expect Bayesian

inference to be so little better than MLE. We therefore assumed our

implementations of Bayesian inference were wrong because we

expected Bayesian inference – MCMC in particular – to be much more

accurate in parameter recovery and model selection. We switched

2 9 2 D I S C U S S I O N A N D F U T U R E W O R K

from the Python specific library pyMC3 to Stan as the latter has a

larger community when it comes to the kind of models we are

interested in, with existing packages like hBayesDM. This was overall

a good move, as Stan has a clean separation of models from other

code, interfaces for multiple programming languages, and built-in

support for regular loops. Whereas in pyMC3, specific operators are

needed to loop through data where the next trial depends on the

previous one as in our models48.

Despite eventually finding the best packages to deploy, as

discussed previously, it gradually became clear that many of these

libraries (and associated papers) have undergone relatively limited

testing. In hindsight this is not entirely unexpected as discussed

above. Some packages have arbitrarily chosen boundaries for

parameter values, some do not include more basic control models,

and some appear to have tried their method on data from a relatively

limited range of tasks. We encountered a case where the paper claims

they have both code and data available, and the code was indeed

available openly. But it would not run without the data. And the data

was, in practice, not open. It was required to register at a government

data repository and fill in a large number of forms to even be

considered for access. Another case we encountered was one where

the code repository linked from the published paper was empty,

except for a message saying, “code available soon”. The paper was

five years old.

We mention these examples, not to criticise anyone specifically, but

rather to point to a problem within the entire field, and academia in

general. Publish or perish is a known cultural issue within academia

[89], and it causes authors to not be able to take the time needed to

produce thoroughly tested work. This is especially a problem when it

comes to work like that of this thesis, where code is as much a part of

the thesis (or paper) as the text itself. In recent years, it has become

more common for journals to ask, or even require, that code be

published together with the paper. That is a step in the right direction,

but it is extremely rare for anyone to (be required to) peer review the

code in the same way that they do the text. We suggest that this – peer

48 As of this writing in July 2022, pyMC was released with some major changes.

It is possible the interface is easier to use now (it would be called 4, but they

dropped the numbering)

6 . 3 F U T U R E W O R K 2 9 3

review of code – would be a highly desirable change to the

publication process in this field. Similar calls have been made by

[222].

This issue is not only important in terms of the time required. It is

also important because it can lead to misleading results. Papers may

get published where authors have used existing tools and claim their

model fitting implies that participants used a certain model with

certain parameter value ranges. If the tool they used has not been

thoroughly tested, the results may be inaccurate, as discussed above.

Creating tools that makes it easier for others is obviously a very good

thing for the scientific community. But it is important to provide users

with the information they need to make informed decisions about the

tool which has been provided.

Nevertheless, as we have shown, MLE is as good as, if not better,

than Bayesian inference in terms of model selection for the models

and tasks used in this thesis (as demonstrated in chapters three and

four). We hope that future publications of this work may allow other

researchers a more informed choice regarding the modelling and

fitting tools they use.

In this section, we have addressed limitations, some of which

naturally suggest further work that might remedy said limitations.

Next we turn to suggestions for future work more generally.

6 . 3 F U T U R E W O R K

The most straight-forward future work here will be releasing the

Python framework we developed for the thesis. It would involve

some additional work in documentation, packaging and testing but

would perhaps be valuable for other researchers to use. We may call

it “simfitRLy”. Given our comments above we would naturally try to

ensure this package has as few bugs as possible, good documentation

and is easy to use and understand.

On that note, it would also be beneficial to port the part of VBAT

we used into Python. Currently, VBAT is only available for MATLAB,

which is prohibitively expensive for many researchers and interested

individuals around the world. There is a free and open-source variant

of MATLAB called Octave, but it is not as fully featured and does not

run VBAT. Many of the optimization functions, for example, that are

2 9 4 D I S C U S S I O N A N D F U T U R E W O R K

used by VBAT and other model fitting programs, do not exist for

Octave. We believe science should be as open as possible, and for that

reason, journals might consider avoiding accepting code written in

MATLAB that will not run in Octave. The code itself may be openly

published, but it is in practice not fully open if one has to purchase

the MATLAB program. We are quite privileged to have been able to

access MATLAB through our university. We realise this is quite the

radical suggestion, seeing as much of neuroscience and neuroimaging

research uses MATLAB.

As mentioned above, there are two main avenues for future work.

Task variations of Shapetask and adding more models.

6 . 3 .1 T A S K V A R I A T I O N S

The downside of our assumption that implicit rewards are at play in

Shapetask is that it is possible some subjects do believe they found the

correct pattern when behaving in WSLS fashion. This would be

possible if a participant felt they were gaining the maximum level of

successful predictions possible from the task. With explicit rewards

(and/or instructions that make it clear that almost 100% successful

prediction can be attained) we would be able to more easily

distinguish between such participants, and those who were simply

expending low levels of effort. However, it is likely that general

performance will then increase, since subjects can calibrate their

beliefs based on the feedback received. If desirable, one could

possibly offset this improvement in average success levels by, for

example, varying the number of shapes in each bag (e.g., 4 triangles,

3 squares, 2 circles).

Explicit rewards are not without their downsides, however. With

implicit rewards we can partly investigate theories of sensory

prediction error. This would not be as easy, or even possible, with

explicit rewards. The existing implicit rewards version of the task

could be used in imaging studies to investigate what overlap between

brain areas there might be between explicit and implicit rewards,

interrogating our speculations about sensory prediction.

On the note of imaging studies and task variations, as mentioned

in chapter five, there are similarities between Shapetask and the

“dimensions” task presented in [303]. In their task, participants had

to find what aspect of the stimuli was relevant for receiving rewards,

and imaging results [196] showed that attentional mechanisms were

6 . 3 F U T U R E W O R K 2 9 5

involved with reducing the complexity down to the relevant features.

The dimensions task thus requires representation learning, like

Shapetask, but the difference between them is that in Shapetask the

feature of interest is found across trials. There is bound to be overlap

between relevant brain areas and networks used in both tasks, as they

both involve representation learning, but we imagine Shapetask

could activate working memory areas to a larger degree. If so, seeing

as Shapetask and the dimensions task are similar, one could also

imagine a spectrum of task versions between them, to test potential

similarities and differences in attention versus working memory for

representation learning.

We can also imagine a middle-ground between explicit and

implicit feedback. Instead of providing feedback after each trial, there

could be a checkpoint around half-way through the experiment

(seeing as most subjects settled in their behavioural patterns early on

in the task) where, if the subject were doing WSLS choices we can

gently nudge them with feedback stating there may be another way.

This would retain the important explorative aspect of Shapetask, as

well as providing an opportunity to combine with imaging methods

to see if attentional areas would be engaged to find an alternative

representation after this feedback.

Another, more intriguing, idea for improving motivation and

effort when adding explicit rewards would be to make the task more

interesting. As it is, the task is quite boring. One possible way of doing

so would be to make the task into Rock-Paper-Scissors. Most people

(at least in the western world, to our knowledge) are familiar with this

game, and since it is a game, it may more naturally engage

participants’ motivation. It can be the same principle as Shapetask, if

we imagine a computer opponent on screen, that has been coded to

select Rock/Paper/Scissors in specific sequences. If participants can

find the pattern that the opponent, for example, always picks three

rocks and then either paper or scissors, then they can win most of the

time. This would, of course, be more of explicit reward than implicit,

as there is a clear win/lose condition. It would also potentially involve

more social cognition than Shapetask, depending on how the

opponent would be presented.

2 9 6 D I S C U S S I O N A N D F U T U R E W O R K

6 . 3 .2 M O D E L S

When it comes to model fitting, there is research showing that the

inclusion of response time data may improve parameter recovery

[11], which would be interesting to contrast with our results. Results

from the sequential learning literature [247] indicating that response

times decrease as participants learn sequences, may explain such

improvements in parameter recovery. It would thus be interesting to

include reaction times in future variations of Shapetask experiments,

not only to improve parameter recovery but also to cross-check

results with the sequential learning literature. The participants tested

in this thesis were almost all tested remotely which means that

reaction times are likely to be noisy and unreliable. Including reaction

times would be easier with in person testing.

Additionally, response times may also help distinguishing

between the contributions of RL and working memory (WM) [173].

We have briefly mentioned WM above but have not included models

in our analysis that incorporate WM directly. This would be an

important addition, as they are closely connected [156, 310] and some

processes which researchers think of as RL may in fact be WM [55,

310].

There are multiple aspects we could have added like variable

learning rate, noise parameters, more action selection types (UCB,

Thompson sampling) etc. They would all be valid and interesting to

investigate but would of course be time consuming and not directly

relevant to our interest in state representations. However, as

discussed in chapter two, neural processes of state representation and

action selection are interconnected and some studies indicate

alternatives to SoftMax might be preferable [93].

More specific to that point of interest would be to include HMM

models for Shapetask. Especially interesting would be more

advanced HMM models, for example one such as [170], that more

naturally include dynamic beliefs on switch points in reversal tasks.

However, it is not immediately apparent how to apply hidden state

models on Shapetask. This because the states that participants need

to find in Shapetask – positions – are not hidden, per se. They are

rather meta patterns across trials. One approach would be to adapt

HRL taskset selection to use HMMs, which could potentially also

allow a useful likelihood function to be created for HRL.

6 . 4 F I N A L R E M A R K S 2 9 7

It would perhaps also be possible to combine SRTD with HRL, or

at least the hierarchical concept, as shown with multi-scale SR [183].

SR also has multiple other implementation variations that would be

valuable to add for comparison, such as SR-Dyna [182, 227]. However,

SR-Dyna uses offline replay, which has been implemented in

behavioural tasks as inter-trial delays. In Shapetask such delays

would perhaps put larger load on potential WM influences.

So far we have mainly discussed “static” state representation

models, meaning the representational structures are pre-defined. But

how do animals create new and change our existing structures? There

is research on non-parametric models [54, 94, 102, 195], in our context

meaning models that can add categories based on data. So, instead of

pre-defining for Shapetask that we have three shapes and three

positions, the model would be able to dynamically add the shapes

and positions as they are experienced through the task. This is, of

course, not very straight-forward to implement, rather incredibly

complex. Because the model would also need to be able to, if needed,

reduce the number of states if such generalisation would be

beneficial. In Shapetask, that would entail generalising that the first

two positions are in principle the same state, but different from the

last position, where a different response is required. Of course, the

model would need to be able to detect other patterns of repetition

(over two, four, five trials etc.), subject to working memory capacity

constraints [55] in particular for larger repeating sequences.

6 . 4 F I N A L R E M A R K S

Throughout this thesis we have discussed state representations; how

animals represent the world. These states are often seen as snapshots

in time and are therefore deeply entangled with structure – how states

are linked together to represent tasks and environmental events

spanning across time. We have in this thesis been able to shed some

light on what type of existing models may be suitable to explain this

complicated relationship.

But what is a state representation, and what makes one better than

another? Hoffman [116] and Niv [195] would both say in different

ways and from different viewpoints, that what is important is

whether a state is useful. The only way to find out whether a certain

2 9 8 D I S C U S S I O N A N D F U T U R E W O R K

state representation is useful, is through feedback on one’s actions

from the environment.

As exemplified by the beetles in chapter two (section 2.3), a state

may be sufficiently useful until it is not. The beetles have strong

innate priors for their state representations – interfaces to the world –

and may thus fail when confronted with a reality they cannot see for

what it truly is. Humans are more flexible than the beetles and can

adapt their state representations to be more “useful” interfaces if they

notice their predictions of the world are no longer and/or not entirely

correct.

This adaptive process of representations of single states, tasks and

models of the world involves (as explained in more detail in chapter

two) multiple processes like learning, memory, and attention. Briefly,

these processes interact in a holistic [213] manner, where attention to

different features of the environment modifies the state being used in

the current learning task or situation. Based on the feedback received

– rewards in the case of RL – attention itself can then be adjusted to

modify what features compose the state.

Because of computational limitations, humans cannot afford to

proceed with this process exhaustively [214] and will thus often settle

on representations that are “good enough”. In our experimental

results on the Shapetask, we could see this for subjects using WSLS

behaviour; these subjects most likely used a representation that did

not take the sequential overarching structure into account. But they

were still mostly correct (at least 66% depending on the task version)

and would get paid in money or course credits regardless of their

performance. So the representation was “good enough”. As always

with humans (and probably some other animals many other animals)

though, some personalities are not satisfied with good enough and

find the better representation, exemplified by those subjects who did

find the structure.

 Earlier in this chapter, we discussed multiple ways to extend or

alternate Shapetask to investigate how subjects may change attention

during a task to improve their representations. For example, feedback

could be provided halfway through the experiment to subjects

performing WSLS behaviour, and if combined with imaging

methods, it could be investigated if and how attentional processes are

then engaged to modify the existing state representation. How such

6 . 4 F I N A L R E M A R K S 2 9 9

attentional processes then interact with learning and memory to

shape state representations is an important future direction for RL

and representations [195, 213, 214] and may also be key to improving

artificial systems [25].

6 . 4 .1 W R A P P I N G U P

It is quite interesting to see how the bottom-up theories of RL and the

top-down theories of the predictive mind [46, 87, 118] share the

concept of prediction errors and are starting to converge in the

research of recent years. We suspect that phenomena like the aha

experience [274] will prove to be symptoms of internal (implicit)

reward mechanisms that trigger when the predictions of our internal

model – the state representation – matches what happens in the

world.

Our thesis is just a small piece in this puzzle of unknown size, and

we hope our findings will prove fitting for future pieces.

7 R E F E R E N C E S

[1] Addyman, C. 2020. The Laughing Baby: The extraordinary science

behind what makes babies happy. Unbound Publishing.

[2] Ahn, W.-Y. et al. 2017. Revealing Neurocomputational

Mechanisms of Reinforcement Learning and Decision-Making

With the hBayesDM Package. Computational psychiatry

(Cambridge, Mass.). 1, (Oct. 2017), 24–57.

[3] AI and Compute: 2018. https://blog.openai.com/ai-and-compute/.

Accessed: 2018-10-18.

[4] AlphaStar: Mastering the Real-Time Strategy Game StarCraft II:

2019. https://deepmind.com/blog/alphastar-mastering-real-time-

strategy-game-starcraft-ii/.

[5] Armus, H.L. et al. 2006. Discrimination learning and extinction

in paramecia (P. caudatum). Psychological reports. 98, 3 (Jun.

2006), 705–711.

[6] Ash, I.K. et al. 2012. Investigating Insight as Sudden Learning.

The Journal of Problem Solving. 4, 2 (2012), 2.

[7] Atlas, Lauren Y 2019. How instructions shape aversive learning:

higher order knowledge, reversal learning, and the role of the

amygdala. Current Opinion in Behavioral Sciences. 26, (Apr. 2019),

121–129.

[8] Austerweil, J.L. et al. 2019. Learning How to Generalize. Cognitive

science. 43, 8 (Aug. 2019), e12777.

[9] Babayan, B.M. et al. 2018. Belief state representation in the

dopamine system. Nature communications. 9, 1 (May 2018), 1891.

[10] Badcock, P.B. et al. 2019. The hierarchically mechanistic mind: A

free-energy formulation of the human psyche. Physics of life

reviews. 31, (Dec. 2019), 104–121.

[11] Ballard, I.C. and McClure, S.M. 2019. Joint modeling of reaction

times and choice improves parameter identifiability in

reinforcement learning models. Journal of neuroscience methods.

317, (Apr. 2019), 37–44.

[12] Balleine, B.W. and Dickinson, A. 1998. Goal-directed

instrumental action: contingency and incentive learning and

their cortical substrates. Neuropharmacology. 37, 4–5 (Apr. 1998),

407–419.

[13] Balleine, B.W. and O’Doherty, J.P. 2010. Human and rodent

homologies in action control: corticostriatal determinants of

goal-directed and habitual action. Neuropsychopharmacology:

official publication of the American College of

3 0 2 R E F E R E N C E S

Neuropsychopharmacology. 35, 1 (Jan. 2010), 48–69.

[14] Baram, A.B. et al. 2021. Entorhinal and ventromedial prefrontal

cortices abstract and generalize the structure of reinforcement

learning problems. Neuron. 109, 4 (Feb. 2021), 713-723.e7.

[15] Barbey, A.K. et al. 2013. Dorsolateral prefrontal contributions to

human working memory. Cortex; a journal devoted to the study of

the nervous system and behavior. 49, 5 (May 2013), 1195–1205.

[16] Barbey, A.K. et al. 2011. Orbitofrontal contributions to human

working memory. Cerebral cortex . 21, 4 (Apr. 2011), 789–795.

[17] Barron, A.B. et al. 2010. The roles of dopamine and related

compounds in reward-seeking behavior across animal phyla.

Frontiers in behavioral neuroscience. 4, (Oct. 2010), 163.

[18] Bartlema, A. et al. 2014. A Bayesian hierarchical mixture

approach to individual differences: Case studies in selective

attention and representation in category learning. Journal of

mathematical psychology. 59, (Apr. 2014), 132–150.

[19] Barto, A.G. 1995. Adaptive critics and the basal ganglia. Models of

information processing in the basal ganglia. (1995), 215.

[20] Bechara, A. et al. 1994. Insensitivity to future consequences

following damage to human prefrontal cortex. Cognition. 50, 1–3

(Apr. 1994), 7–15.

[21] Behrens, T.E.J. et al. 2018. What Is a Cognitive Map? Organizing

Knowledge for Flexible Behavior. Neuron. 100, 2 (Oct. 2018), 490–

509.

[22] Bennett, J.E.M. et al. 2021. Learning with reinforcement

prediction errors in a model of the Drosophila mushroom body.

Nature communications. 12, 1 (May 2021), 2569.

[23] Berke, J.D. 2018. What does dopamine mean? Nature neuroscience.

21, 6 (May 2018), 787–793.

[24] Bird, C.M. and Burgess, N. 2008. The hippocampus and memory:

insights from spatial processing. Nature reviews. Neuroscience. 9, 3

(Mar. 2008), 182–194.

[25] Blakeman, S. and Mareschal, D. 2022. Selective particle attention:

Rapidly and flexibly selecting features for deep reinforcement

learning. Neural networks: the official journal of the International

Neural Network Society. 150, (Jun. 2022), 408–421.

[26] Blei, D.M. et al. 2016. Variational Inference: A Review for

Statisticians. arXiv [stat.CO].

[27] Bliss, T.V. and Collingridge, G.L. 1993. A synaptic model of

memory: long-term potentiation in the hippocampus. Nature.

361, 6407 (Jan. 1993), 31–39.

[28] Botvinick, M. et al. 2019. Reinforcement Learning, Fast and Slow.

Trends in cognitive sciences. 23, 5 (May 2019), 408–422.

6 . 4 F I N A L R E M A R K S 3 0 3

[29] Botvinick, M.M. et al. 2009. Hierarchically organized behavior

and its neural foundations: a reinforcement learning perspective.

Cognition. 113, 3 (Dec. 2009), 262–280.

[30] Box, G.E.P. 1979. Robustness in the Strategy of Scientific Model

Building. Robustness in Statistics. R.L. Launer and G.N.

Wilkinson, eds. Academic Press. 201–236.

[31] Brimblecombe, K.R. and Cragg, S.J. 2015. Substance P Weights

Striatal Dopamine Transmission Differently within the

Striosome-Matrix Axis. The Journal of neuroscience: the official

journal of the Society for Neuroscience. 35, 24 (Jun. 2015), 9017–9023.

[32] Bromberg-Martin, E.S. et al. 2010. Dopamine in motivational

control: rewarding, aversive, and alerting. Neuron. 68, 5 (Dec.

2010), 815–834.

[33] Brooks, R. 1986. A robust layered control system for a mobile

robot. IEEE Journal on Robotics and Automation. 2, 1 (Mar. 1986),

14–23.

[34] Brown, T.B. et al. 2020. Language Models are Few-Shot Learners.

arXiv [cs.CL].

[35] Brunec, I.K. and Momennejad, I. 2022. Predictive

Representations in Hippocampal and Prefrontal Hierarchies. The

Journal of neuroscience: the official journal of the Society for

Neuroscience. 42, 2 (Jan. 2022), 299–312.

[36] Buelow, M.T. and Suhr, J.A. 2009. Construct validity of the Iowa

Gambling Task. Neuropsychology review. 19, 1 (Mar. 2009), 102–

114.

[37] Buhrmester, M. et al. 2011. Amazon’s Mechanical Turk: A New

Source of Inexpensive, Yet High-Quality, Data? Perspectives on

psychological science: a journal of the Association for Psychological

Science. 6, 1 (Jan. 2011), 3–5.

[38] Burgess, N. et al. 2002. The human hippocampus and spatial and

episodic memory. Neuron. 35, 4 (Aug. 2002), 625–641.

[39] Byrne, K.A. et al. 2016. Dopamine, depressive symptoms, and

decision-making: the relationship between spontaneous eye

blink rate and depressive symptoms predicts Iowa Gambling

Task performance. Cognitive, affective & behavioral neuroscience. 16,

1 (Feb. 2016), 23–36.

[40] Canas and Jones 2010. Attention and reinforcement learning:

constructing representations from indirect feedback. AIB ...

proceedings. (2010).

[41] Cella, M. et al. 2009. Impairment in flexible emotion-based

learning in hallucination- and delusion-prone individuals.

Psychiatry research. 170, 1 (Nov. 2009), 70–74.

[42] Chan, S.C.Y. et al. 2016. A Probability Distribution over Latent

3 0 4 R E F E R E N C E S

Causes, in the Orbitofrontal Cortex. The Journal of neuroscience: the

official journal of the Society for Neuroscience. 36, 30 (Jul. 2016),

7817–7828.

[43] Chen, L. et al. 2021. Decision Transformer: Reinforcement

Learning via sequence modeling. arXiv [cs.LG].

[44] Chittka, B. 1998. Sensorimotor learning in bumblebees: long-term

retention and reversal training. The Journal of experimental biology.

201, 4 (Feb. 1998), 515–524.

[45] Chuhma, N. et al. 2014. Dopamine neurons control striatal

cholinergic neurons via regionally heterogeneous dopamine and

glutamate signaling. Neuron. 81, 4 (Feb. 2014), 901–912.

[46] Clark, A. 2015. Surfing Uncertainty: Prediction, Action, and the

Embodied Mind. Oxford University Press.

[47] Clark, A. 2013. Whatever next? Predictive brains, situated agents,

and the future of cognitive science. The Behavioral and brain

sciences. 36, 3 (Jun. 2013), 181–204.

[48] Cohen, J.D. et al. 1994. Activation of the prefrontal cortex in a

nonspatial working memory task with functional MRI. Human

brain mapping. 1, 4 (1994), 293–304.

[49] Collins, A. and Koechlin, E. 2012. Reasoning, learning, and

creativity: frontal lobe function and human decision-making.

PLoS biology. 10, 3 (Mar. 2012), e1001293.

[50] Collins, A.G.E. et al. 2014. Human EEG uncovers latent

generalizable rule structure during learning. The Journal of

neuroscience: the official journal of the Society for Neuroscience. 34, 13

(Mar. 2014), 4677–4685.

[51] Collins, A.G.E. 2019. Reinforcement learning: bringing together

computation and cognition. Current Opinion in Behavioral

Sciences. 29, (Oct. 2019), 63–68.

[52] Collins, A.G.E. et al. 2014. Working memory contributions to

reinforcement learning impairments in schizophrenia. The

Journal of neuroscience: the official journal of the Society for

Neuroscience. 34, 41 (Oct. 2014), 13747–13756.

[53] Collins, A.G.E. and Cockburn, J. 2020. Beyond dichotomies in

reinforcement learning. Nature reviews. Neuroscience. 21, 10 (Oct.

2020), 576–586.

[54] Collins, A.G.E. and Frank, M.J. 2013. Cognitive control over

learning: creating, clustering, and generalizing task-set structure.

Psychological review. 120, 1 (Jan. 2013), 190–229.

[55] Collins, A.G.E. and Frank, M.J. 2012. How much of reinforcement

learning is working memory, not reinforcement learning? A

behavioral, computational, and neurogenetic analysis: Working

memory in reinforcement learning. The European journal of

6 . 4 F I N A L R E M A R K S 3 0 5

neuroscience. 35, 7 (Apr. 2012), 1024–1035.

[56] Collins, A.G.E. and Frank, M.J. 2014. Opponent actor learning

(OpAL): modeling interactive effects of striatal dopamine on

reinforcement learning and choice incentive. Psychological review.

121, 3 (Jul. 2014), 337–366.

[57] Collins, A.G.E. and Frank, M.J. 2016. Surprise! Dopamine signals

mix action, value and error. Nature neuroscience. 19, 1 (Jan. 2016),

3–5.

[58] Collins, A.G.E. and Frank, M.J. 2018. Within- and across-trial

dynamics of human EEG reveal cooperative interplay between

reinforcement learning and working memory. Proceedings of the

National Academy of Sciences of the United States of America. 115, 10

(Mar. 2018), 2502–2507.

[59] Collins, A.G.E. and Shenhav, A. 2021. Advances in modeling

learning and decision-making in neuroscience.

Neuropsychopharmacology: official publication of the American College

of Neuropsychopharmacology. (Aug. 2021).

DOI:https://doi.org/10.1038/s41386-021-01126-y.

[60] Conway, M.A. and Pleydell-Pearce, C.W. 2000. The construction

of autobiographical memories in the self-memory system.

Psychological review. 107, 2 (Apr. 2000), 261–288.

[61] Corbit, L.H. and Balleine, B.W. 2000. The role of the

hippocampus in instrumental conditioning. The Journal of

neuroscience: the official journal of the Society for Neuroscience. 20, 11

(Jun. 2000), 4233–4239.

[62] Daunizeau, J. et al. 2014. VBA: a probabilistic treatment of

nonlinear models for neurobiological and behavioural data. PLoS

computational biology. 10, 1 (Jan. 2014), e1003441.

[63] Daw, N.D. et al. 2006. Cortical substrates for exploratory

decisions in humans. Nature. 441, 7095 (Jun. 2006), 876–879.

[64] Daw, N.D. et al. 2011. Model-based influences on humans’

choices and striatal prediction errors. Neuron. 69, 6 (Mar. 2011),

1204–1215.

[65] Daw, N.D. 2011. Trial-by-trial data analysis using computational

models. Decision making, affect, and learning: Attention and

performance XXIII. 23, (2011), 3–38.

[66] Daw, N.D. et al. 2005. Uncertainty-based competition between

prefrontal and dorsolateral striatal systems for behavioral

control. Nature neuroscience. 8, 12 (Dec. 2005), 1704–1711.

[67] Dayan, P. 1993. Improving Generalization for Temporal

Difference Learning: The Successor Representation. Neural

computation. 5, 4 (Jul. 1993), 613–624.

[68] Depaoli, S. et al. 2017. An introduction to Bayesian statistics in

3 0 6 R E F E R E N C E S

health psychology. Health psychology review. 11, 3 (Sep. 2017),

248–264.

[69] Dezfouli, A. et al. 2020. Disentangled behavioral representations.

Cold Spring Harbor Laboratory.

[70] Dezfouli, A. et al. 2019. Models that learn how humans learn: The

case of decision-making and its disorders. PLoS computational

biology. 15, 6 (Jun. 2019), e1006903.

[71] Doll, B.B. et al. 2012. The ubiquity of model-based reinforcement

learning. Current opinion in neurobiology. 22, 6 (Dec. 2012), 1075–

1081.

[72] Donoso, M. et al. 2014. Human cognition. Foundations of human

reasoning in the prefrontal cortex. Science. 344, 6191 (Jun. 2014),

1481–1486.

[73] Duan, Y. et al. 2016. RL2: Fast Reinforcement Learning via Slow

Reinforcement Learning. arXiv [cs.AI].

[74] Eckstein, M.K. et al. 2021. What do reinforcement learning

models measure? Interpreting model parameters in cognition

and neuroscience. Current Opinion in Behavioral Sciences. 41, (Oct.

2021), 128–137.

[75] Eckstein, M.K. and Collins, A.G.E. 2020. Computational evidence

for hierarchically structured reinforcement learning in humans.

Proceedings of the National Academy of Sciences of the United States

of America. 117, 47 (Nov. 2020), 29381–29389.

[76] Elliott Wimmer, G. and Büchel, C. 2019. Learning of distant state

predictions by the orbitofrontal cortex in humans. Nature

communications. 10, 1 (Jun. 2019), 2554.

[77] Elman, J.L. et al. 1996. Rethinking Innateness: A Connectionist

Perspective on Development. MIT Press.

[78] Eppinger, B. et al. 2013. Of goals and habits: age-related and

individual differences in goal-directed decision-making.

Frontiers in neuroscience. 7, (Dec. 2013), 253.

[79] Evans, J.S.B.T. 2003. In two minds: dual-process accounts of

reasoning. Trends in cognitive sciences. 7, 10 (Oct. 2003), 454–459.

[80] Farashahi, S. et al. 2020. Learning arbitrary stimulus-reward

associations for naturalistic stimuli involves transition from

learning about features to learning about objects. Cognition. 205,

(Dec. 2020), 104425.

[81] Feher da Silva, C. and Hare, T.A. 2020. Humans primarily use

model-based inference in the two-stage task. Nature human

behaviour. 4, 10 (Oct. 2020), 1053–1066.

[82] Felin, T. et al. 2017. Rationality, perception, and the all-seeing

eye. Psychonomic bulletin & review. 24, 4 (Aug. 2017), 1040–1059.

[83] Fengler, A. et al. 2021. Likelihood approximation networks

6 . 4 F I N A L R E M A R K S 3 0 7

(LANs) for fast inference of simulation models in cognitive

neuroscience. eLife. 10, (Apr. 2021).

DOI:https://doi.org/10.7554/eLife.65074.

[84] Frank, M.J. 2011. Computational models of motivated action

selection in corticostriatal circuits. Current opinion in neurobiology.

21, 3 (Jun. 2011), 381–386.

[85] Frankle, J. et al. 13--18 Jul 2020. Linear Mode Connectivity and

the Lottery Ticket Hypothesis. Proceedings of the 37th International

Conference on Machine Learning (13--18 Jul 2020), 3259–3269.

[86] Friston, K. et al. 2014. The anatomy of choice: dopamine and

decision-making. Philosophical transactions of the Royal Society of

London. Series B, Biological sciences. 369, 1655 (Nov. 2014).

DOI:https://doi.org/10.1098/rstb.2013.0481.

[87] Friston, K. 2010. The free-energy principle: a unified brain

theory? Nature reviews. Neuroscience. 11, 2 (Feb. 2010), 127–138.

[88] Friston, K.J. et al. 2009. Reinforcement learning or active

inference? PloS one. 4, 7 (Jul. 2009), e6421.

[89] Frith, U. 2020. Fast Lane to Slow Science. Trends in cognitive

sciences. 24, 1 (Jan. 2020), 1–2.

[90] Gabbert, F. et al. 2003. Memory conformity: can eyewitnesses

influence each other’s memories for an event? Applied cognitive

psychology. 17, 5 (Jul. 2003), 533–543.

[91] Gardner, M.P.H. et al. 2018. Rethinking dopamine as generalized

prediction error. Proceedings. Biological sciences / The Royal Society.

285, 1891 (Nov. 2018).

DOI:https://doi.org/10.1098/rspb.2018.1645.

[92] Garvert, M.M. et al. 2017. A map of abstract relational knowledge

in the human hippocampal–entorhinal cortex. eLife. 6, (Apr.

2017), e17086.

[93] Gershman, S.J. 2018. Deconstructing the human algorithms for

exploration. Cognition. 173, (Apr. 2018), 34–42.

[94] Gershman, S.J. et al. 2015. Discovering latent causes in

reinforcement learning. Current Opinion in Behavioral Sciences. 5,

(Oct. 2015), 43–50.

[95] Gershman, S.J. 2016. Empirical priors for reinforcement learning

models. Journal of mathematical psychology. 71, (Apr. 2016), 1–6.

[96] Gershman, S.J. et al. 2013. Gradual extinction prevents the return

of fear: implications for the discovery of state. Frontiers in

behavioral neuroscience. 7, (Nov. 2013), 164.

[97] Gershman, S.J. et al. 2014. Retrospective revaluation in sequential

decision making: a tale of two systems. Journal of experimental

psychology. General. 143, 1 (Feb. 2014), 182–194.

[98] Gershman, S.J. et al. 2012. The successor representation and

3 0 8 R E F E R E N C E S

temporal context. Neural computation. 24, 6 (Jun. 2012), 1553–1568.

[99] Gershman, S.J. 2018. The Successor Representation: Its

Computational Logic and Neural Substrates. The Journal of

neuroscience: the official journal of the Society for Neuroscience. 38, 33

(Aug. 2018), 7193–7200.

[100] Gershman, S.J. and Daw, N.D. 2017. Reinforcement Learning

and Episodic Memory in Humans and Animals: An Integrative

Framework. Annual review of psychology. 68, (Jan. 2017), 101–128.

[101] Gershman, S.J. and Niv, Y. 2015. Novelty and Inductive

Generalization in Human Reinforcement Learning. Topics in

cognitive science. 7, 3 (Jul. 2015), 391–415.

[102] Gershman, S.J. and Niv, Y. 2013. Perceptual estimation obeys

Occam’s razor. Frontiers in psychology. 4, (Sep. 2013), 623.

[103] Gershman, S.J. and Uchida, N. 2019. Believing in dopamine.

Nature reviews. Neuroscience. 20, 11 (Nov. 2019), 703–714.

[104] Gobet, F. et al. 2001. Chunking mechanisms in human learning.

Trends in cognitive sciences. 5, 6 (Jun. 2001), 236–243.

[105] Goodale, M.A. and Milner, A.D. 1992. Separate visual

pathways for perception and action. Trends in neurosciences. 15, 1

(Jan. 1992), 20–25.

[106] Grillner, S. and Robertson, B. 2016. The Basal Ganglia Over 500

Million Years. Current biology: CB. 26, 20 (Oct. 2016), R1088–

R1100.

[107] Gronchi, G. and Giovannelli, F. 2018. Dual Process Theory of

Thought and Default Mode Network: A Possible Neural

Foundation of Fast Thinking. Frontiers in psychology. 9, (Jul. 2018),

1237.

[108] Gurney, K. et al. 2001. A computational model of action

selection in the basal ganglia. I. A new functional anatomy.

Biological cybernetics. 84, 6 (Jun. 2001), 401–410.

[109] Ha, D. and Schmidhuber, J. 2018. World Models. arXiv [cs.LG].

[110] Haber, S.N. and Knutson, B. 2010. The reward circuit: linking

primate anatomy and human imaging. Neuropsychopharmacology:

official publication of the American College of

Neuropsychopharmacology. 35, 1 (Jan. 2010), 4–26.

[111] Hamid, A.A. et al. 2016. Mesolimbic dopamine signals the

value of work. Nature neuroscience. 19, 1 (Jan. 2016), 117–126.

[112] Hampton, A.N. et al. 2006. The role of the ventromedial

prefrontal cortex in abstract state-based inference during

decision making in humans. The Journal of neuroscience: the official

journal of the Society for Neuroscience. 26, 32 (Aug. 2006), 8360–

8367.

[113] Harlow, H.F. 1949. The formation of learning sets. Psychological

6 . 4 F I N A L R E M A R K S 3 0 9

review. 56, 1 (Jan. 1949), 51–65.

[114] Hassabis, D. et al. 2007. Patients with hippocampal amnesia

cannot imagine new experiences. Proceedings of the National

Academy of Sciences of the United States of America. 104, 5 (Jan.

2007), 1726–1731.

[115] Henrich, J. et al. 2010. The weirdest people in the world? The

Behavioral and brain sciences. 33, 2–3 (Jun. 2010), 61–83; discussion

83-135.

[116] Hoffman, D.D. 2009. The Interface Theory of Perception. Object

Categorization: Computer and Human Vision Perspectives. Sven

Dickinson, Michael Tarr, Ales Leonardis, Bernt Schiele, ed.

Oxford University Press. 148–265.

[117] Hoffman, D.D. et al. 2015. The Interface Theory of Perception.

Psychonomic bulletin & review. 22, 6 (Dec. 2015), 1480–1506.

[118] Hohwy, J. 2013. The Predictive Mind. Oxford University Press.

[119] Hollerman, J.R. and Schultz, W. 1998. Dopamine neurons

report an error in the temporal prediction of reward during

learning. Nature neuroscience. 1, 4 (Aug. 1998), 304–309.

[120] Huang, C.-Z.A. et al. 2018. Music Transformer. arXiv [cs.LG].

[121] Hunt, D. 2020. Modelling variations in human learning in

probabilistic decision-making tasks. Goldsmiths, University of

London.

[122] Huys, Q.J.M. et al. 2016. Computational psychiatry as a bridge

from neuroscience to clinical applications. Nature neuroscience. 19,

3 (Mar. 2016), 404–413.

[123] Huys, Q.J.M. et al. 2015. Interplay of approximate planning

strategies. Proceedings of the National Academy of Sciences of the

United States of America. 112, 10 (Mar. 2015), 3098–3103.

[124] Intraub, H. and Richardson, M. 1989. Wide-angle memories of

close-up scenes. Journal of experimental psychology. Learning,

memory, and cognition. 15, 2 (Mar. 1989), 179–187.

[125] James, W. 1890. The Principles of Psychology -. Henry Holt and

Company.

[126] Jennings, E. and Madigan, M. 2016. astroABC: An

Approximate Bayesian Computation Sequential Monte Carlo

sampler for cosmological parameter estimation. arXiv [astro-

ph.IM].

[127] Joel, D. et al. 2002. Actor–critic models of the basal ganglia:

new anatomical and computational perspectives. Neural

networks: the official journal of the International Neural Network

Society. 15, 4 (Jun. 2002), 535–547.

[128] Kaelbling, L.P. et al. 1998. Planning and acting in partially

observable stochastic domains. Artificial intelligence. 101, 1 (May

3 1 0 R E F E R E N C E S

1998), 99–134.

[129] Kaelbling, L.P. et al. 1996. Reinforcement Learning: A Survey.

Journal of Artificial Intelligence Research. 4, (May 1996), 237–285.

[130] Kahneman, D. 2011. Thinking, fast and slow. Macmillan.

[131] Kahneman, D. and Tversky, A. 1979. Prospect theory: An

analysis of decision under risk. Econometrica: journal of the

Econometric Society. 47, 2 (Mar. 1979), 263.

[132] Kaiser, L. et al. 2019. Model-Based Reinforcement Learning for

Atari. arXiv [cs.LG].

[133] Kass, R.E. and Raftery, A.E. 1995. Bayes Factors. Journal of the

American Statistical Association. 90, 430 (Jun. 1995), 773–795.

[134] Keasar, T. et al. 2002. Bees in two-armed bandit situations:

foraging choices and possible decision mechanisms. Behavioral

ecology: official journal of the International Society for Behavioral

Ecology. 13, 6 (Nov. 2002), 757–765.

[135] Kell, A.J.E. et al. 2018. A Task-Optimized Neural Network

Replicates Human Auditory Behavior, Predicts Brain Responses,

and Reveals a Cortical Processing Hierarchy. Neuron. 98, 3 (May

2018), 630-644.e16.

[136] Khan, S. et al. 2021. Transformers in Vision: A Survey. arXiv

[cs.CV].

[137] Kirsh, D. and Maglio, P. 1994. On distinguishing epistemic

from pragmatic action. Cognitive science. 18, 4 (Oct. 1994), 513–

549.

[138] Klinger, E. et al. 2018. pyABC: distributed, likelihood-free

inference. Bioinformatics . 34, 20 (Oct. 2018), 3591–3593.

[139] Koenderink, J. 2011. Vision as a user interface. Human Vision

and Electronic Imaging XVI (Feb. 2011), 786504.

[140] Kool, W. et al. 2017. Cost-Benefit Arbitration Between Multiple

Reinforcement-Learning Systems. Psychological science. 28, 9 (Sep.

2017), 1321–1333.

[141] Kruschke, J. 2014. Doing Bayesian Data Analysis: A Tutorial with

R, JAGS, and Stan. Academic Press.

[142] Kuhn, G. and Rensink, R.A. 2016. The Vanishing Ball Illusion:

A new perspective on the perception of dynamic events.

Cognition. 148, (Mar. 2016), 64–70.

[143] Kuleshov, V. and Precup, D. 2000. Algorithms for the multi-

armed bandit problem. Journal of machine learning research: JMLR.

1, (2000), 1–48.

[144] Lake, B.M. et al. 2017. Building machines that learn and think

like people. The Behavioral and brain sciences. 40, (Jan. 2017), e253.

[145] Lam, S.K. et al. 2015. Numba: a LLVM-based Python JIT

compiler. Proceedings of the Second Workshop on the LLVM Compiler

6 . 4 F I N A L R E M A R K S 3 1 1

Infrastructure in HPC (New York, NY, USA, Nov. 2015), 1–6.

[146] Langdon, A.J. et al. 2018. Model-based predictions for

dopamine. Current opinion in neurobiology. 49, (Apr. 2018), 1–7.

[147] Lashley, K.S. 1951. The problem of serial order in behavior. Bobbs-

Merrill.

[148] Lau, B. and Glimcher, P.W. 2005. Dynamic response-by-

response models of matching behavior in rhesus monkeys.

Journal of the experimental analysis of behavior. 84, 3 (Nov. 2005),

555–579.

[149] Lee, M.D. 2011. How cognitive modeling can benefit from

hierarchical Bayesian models. Journal of mathematical psychology.

55, 1 (Feb. 2011), 1–7.

[150] Lee, M.D. and Wagenmakers, E.-J. 2014. Bayesian Cognitive

Modeling: A Practical Course. Cambridge University Press.

[151] Lee, S.W. et al. 2014. Neural computations underlying

arbitration between model-based and model-free learning.

Neuron. 81, 3 (Feb. 2014), 687–699.

[152] de Leeuw, J.R. 2015. jsPsych: a JavaScript library for creating

behavioral experiments in a Web browser. Behavior research

methods. 47, 1 (Mar. 2015), 1–12.

[153] Leibo, J.Z. et al. 2017. Multi-agent Reinforcement Learning in

Sequential Social Dilemmas. arXiv [cs.MA].

[154] Lengyel, M. and Dayan, P. 2008. Hippocampal Contributions

to Control: The Third Way. Advances in Neural Information

Processing Systems 20. J.C. Platt et al., eds. Curran Associates, Inc.

889–896.

[155] Leong, Y.C. et al. 2017. Dynamic Interaction between

Reinforcement Learning and Attention in Multidimensional

Environments. Neuron. 93, 2 (Jan. 2017), 451–463.

[156] Li, H.-H. et al. 2021. Joint representation of working memory

and uncertainty in human cortex. bioRxiv.

[157] Li, L. et al. 2006. Towards a unified theory of state abstraction

for MDPs. ISAIM (2006).

[158] Liakoni, V. et al. 2022. Brain signals of a Surprise-Actor-Critic

model: Evidence for multiple learning modules in human

decision making. NeuroImage. 246, (Feb. 2022), 118780.

[159] Liepe, J. et al. 2014. A framework for parameter estimation and

model selection from experimental data in systems biology using

approximate Bayesian computation. Nature protocols. 9, 2 (Feb.

2014), 439–456.

[160] Lillicrap, T.P. and Kording, K.P. 2019. What does it mean to

understand a neural network? arXiv [cs.LG].

[161] Lin, L.-J. 1992. Self-improving reactive agents based on

3 1 2 R E F E R E N C E S

reinforcement learning, planning and teaching. Machine learning.

8, 3 (May 1992), 293–321.

[162] Lindsay, G.W. 2020. Attention in Psychology, Neuroscience,

and Machine Learning. Frontiers in computational neuroscience. 14,

(Apr. 2020), 29.

[163] Linson, A. et al. 2018. The Active Inference Approach to

Ecological Perception: General Information Dynamics for

Natural and Artificial Embodied Cognition. Frontiers in robotics

and AI. 5, (Mar. 2018), 21.

[164] Lintusaari, J. et al. 2018. ELFI: Engine for Likelihood-Free

Inference. Journal of machine learning research: JMLR. 19, 16 (2018),

1–7.

[165] Luce, R.D. 1995. Four tensions concerning mathematical

modeling in psychology. Annual review of psychology. 46, (1995),

1–26.

[166] Machado, M.C. et al. 2021. Temporal Abstraction in

Reinforcement Learning with the Successor Representation.

arXiv [cs.LG].

[167] Mackintosh, N.J. 1974. The psychology of animal learning. 730,

(1974).

[168] Maguire, E.A. et al. 2000. Navigation-related structural change

in the hippocampi of taxi drivers. Proceedings of the National

Academy of Sciences of the United States of America. 97, 8 (Apr. 2000),

4398–4403.

[169] Marcus, G. 2018. Innateness, AlphaZero, and Artificial

Intelligence. arXiv [cs.AI].

[170] Marković, D. et al. 2019. Predicting change: Approximate

inference under explicit representation of temporal structure in

changing environments. PLoS computational biology. 15, 1 (Jan.

2019), e1006707.

[171] Matsumoto, M. and Hikosaka, O. 2007. Lateral habenula as a

source of negative reward signals in dopamine neurons. Nature.

447, 7148 (Jun. 2007), 1111–1115.

[172] Mayer, J. et al. 2010. Drawing an elephant with four complex

parameters. American journal of physics. 78, 6 (Jun. 2010), 648–649.

[173] McDougle, S.D. and Collins, A.G.E. 2021. Modeling the

influence of working memory, reinforcement, and action

uncertainty on reaction time and choice during instrumental

learning. Psychonomic bulletin & review. 28, 1 (Feb. 2021), 20–39.

[174] Meyer, D.R. 1951. Food deprivation and discrimination

reversal learning by monkeys. Journal of experimental psychology.

41, 1 (Jan. 1951), 10–16.

[175] Milivojevic, B. et al. 2015. Insight reconfigures hippocampal-

6 . 4 F I N A L R E M A R K S 3 1 3

prefrontal memories. Current biology: CB. 25, 7 (Mar. 2015), 821–

830.

[176] Miller, G.A. 1956. The magical number seven plus or minus

two: some limits on our capacity for processing information.

Psychological review. 63, 2 (Mar. 1956), 81–97.

[177] Miller, K.J. et al. 2017. Dorsal hippocampus contributes to

model-based planning. Nature neuroscience. 20, 9 (Sep. 2017),

1269–1276.

[178] Minsky, M. 1988. Society Of Mind. Simon and Schuster.

[179] Mnih, V. et al. 2015. Human-level control through deep

reinforcement learning. Nature. 518, 7540 (Feb. 2015), 529–533.

[180] Momennejad, I. 2020. Learning Structures: Predictive

Representations, Replay, and Generalization. Current Opinion in

Behavioral Sciences. 32, (Apr. 2020), 155–166.

[181] Momennejad, I. 2021. Multi-scale Predictive Representations &

Human-like RL. Bernstein Conference (2021).

[182] Momennejad, I. et al. 2017. The successor representation in

human reinforcement learning. Nature human behaviour. 1, 9 (Sep.

2017), 680–692.

[183] Momennejad, I. and Howard, M.W. 2018. Predicting the Future

with Multi-scale Successor Representations. bioRxiv.

[184] Morris, A. et al. 2021. Generating Options and Choosing

Between Them Depend on Distinct Forms of Value

Representation. Psychological science. 32, 11 (Nov. 2021), 1731–

1746.

[185] Morris, G. et al. 2006. Midbrain dopamine neurons encode

decisions for future action. Nature neuroscience. 9, 8 (Aug. 2006),

1057–1063.

[186] Moser, E.I. et al. 2008. Place cells, grid cells, and the brain’s

spatial representation system. Annual review of neuroscience. 31,

(2008), 69–89.

[187] Moser, M.-B. et al. 2015. Place cells, grid cells, and memory.

Cold Spring Harbor perspectives in biology. 7, 2 (Feb. 2015), a021808.

[188] Moss 2022. Thought and Imagination. Aristotle’s On the Soul: A

Critical Guide. (2022).

[189] Murdoch, W.J. et al. 2019. Definitions, methods, and

applications in interpretable machine learning. Proceedings of the

National Academy of Sciences of the United States of America. 116, 44

(Oct. 2019), 22071–22080.

[190] Nassar, M.R. and Frank, M.J. 2016. Taming the beast: extracting

generalizable knowledge from computational models of

cognition. Current opinion in behavioral sciences. 11, (Oct. 2016), 49–

54.

3 1 4 R E F E R E N C E S

[191] Natural intelligence in artificial creatures: 1995.

ftp://ftp.dca.fee.unicamp.br/pub/docs/gudwin/ia009/Balkenius.1995.T

hesis.pdf. Accessed: 2022-07-17.

[192] Navarro, D.J. 2019. Between the Devil and the Deep Blue Sea:

Tensions Between Scientific Judgement and Statistical Model

Selection. Computational Brain & Behavior. 2, 1 (Mar. 2019), 28–34.

[193] Neftci, E.O. and Averbeck, B.B. 2019. Reinforcement learning

in artificial and biological systems. Nature Machine Intelligence. 1,

3 (Mar. 2019), 133–143.

[194] Nieh, E.H. et al. 2021. Geometry of abstract learned knowledge

in the hippocampus. Nature. 595, 7865 (Jul. 2021), 80–84.

[195] Niv, Y. 2019. Learning task-state representations. Nature

neuroscience. 22, 10 (Oct. 2019), 1544–1553.

[196] Niv, Y. et al. 2015. Reinforcement learning in multidimensional

environments relies on attention mechanisms. The Journal of

neuroscience: the official journal of the Society for Neuroscience. 35, 21

(May 2015), 8145–8157.

[197] Niv, Y. 2009. Reinforcement learning in the brain. Journal of

mathematical psychology. 53, 3 (Jun. 2009), 139–154.

[198] Niv, Y. and Langdon, A. 2016. Reinforcement learning with

Marr. Current opinion in behavioral sciences. 11, (Oct. 2016), 67–73.

[199] Noever, D. et al. 2020. The Chess Transformer: Mastering Play

using Generative Language Models. arXiv [cs.AI].

[200] Noorbakhsh, K. et al. 2021. Pretrained Language Models are

Symbolic Mathematics Solvers too! arXiv [stat.ML].

[201] O’Doherty, J.P. et al. 2017. Learning, Reward, and Decision

Making. Annual review of psychology. 68, (Jan. 2017), 73–100.

[202] OpenAI et al. 2019. Dota 2 with Large Scale Deep

Reinforcement Learning. arXiv [cs.LG].

[203] Palminteri, S. et al. 2017. The Importance of Falsification in

Computational Cognitive Modeling. Trends in cognitive sciences.

21, 6 (Jun. 2017), 425–433.

[204] Pavlov, I.P. 1927. Conditional reflexes: an investigation of the

physiological activity of the cerebral cortex. Oxford Univ. Press.

[205] Peer, E. et al. 2017. Beyond the Turk: Alternative platforms for

crowdsourcing behavioral research. Journal of experimental social

psychology. 70, (May 2017), 153–163.

[206] Peer, M. et al. 2021. Structuring Knowledge with Cognitive

Maps and Cognitive Graphs. Trends in cognitive sciences. 25, 1

(Jan. 2021), 37–54.

[207] Perruchet, P. and Pacton, S. 2006. Implicit learning and

statistical learning: one phenomenon, two approaches. Trends in

cognitive sciences. 10, 5 (May 2006), 233–238.

6 . 4 F I N A L R E M A R K S 3 1 5

[208] Perry, C.J. et al. 2016. Unexpected rewards induce dopamine-

dependent positive emotion–like state changes in bumblebees.

Science. 353, 6307 (Sep. 2016), 1529–1531.

[209] Pfeifer, R. and Bongard, J. 2006. How the Body Shapes the Way

We Think: A New View of Intelligence. MIT Press.

[210] Pfeiffer, B.E. and Foster, D.J. 2013. Hippocampal place-cell

sequences depict future paths to remembered goals. Nature. 497,

7447 (May 2013), 74–79.

[211] Piray, P. et al. 2019. Hierarchical Bayesian inference for

concurrent model fitting and comparison for group studies. PLoS

computational biology. 15, 6 (Jun. 2019), e1007043.

[212] Rad, M.S. et al. 2018. Toward a psychology of Homo sapiens:

Making psychological science more representative of the human

population. Proceedings of the National Academy of Sciences of the

United States of America. 115, 45 (Nov. 2018), 11401–11405.

[213] Radulescu, A. et al. 2019. Holistic Reinforcement Learning: The

Role of Structure and Attention. Trends in cognitive sciences. 23, 4

(Apr. 2019), 278–292.

[214] Radulescu, A. et al. 2021. Human Representation Learning.

Annual review of neuroscience. 44, (Jul. 2021), 253–273.

[215] Rafiee, B. et al. 2022. From eye-blinks to state construction:

Diagnostic benchmarks for online representation learning.

Adaptive behavior. (Apr. 2022), 10597123221085040.

[216] Raine, N.E. and Chittka, L. 2012. No trade-off between learning

speed and associative flexibility in bumblebees: a reversal

learning test with multiple colonies. PloS one. 7, 9 (Sep. 2012),

e45096.

[217] Redgrave, P. et al. 1999. The basal ganglia: a vertebrate solution

to the selection problem? Neuroscience. 89, 4 (1999), 1009–1023.

[218] Reingold, E.M. et al. 2001. Visual span in expert chess players:

evidence from eye movements. Psychological science. 12, 1 (Jan.

2001), 48–55.

[219] Rescorla, R.A. and Wagner, A.R. 1972. A theory of Pavlovian

conditioning: Variations in the effectiveness of reinforcement and

nonreinforcement. Classical conditioning II: Current research and

theory. 2, (1972), 64–99.

[220] Richards, B.A. et al. 2019. A deep learning framework for

neuroscience. Nature neuroscience. 22, 11 (Nov. 2019), 1761–1770.

[221] Rigoux, L. et al. 2014. Bayesian model selection for group

studies - revisited. NeuroImage. 84, (Jan. 2014), 971–985.

[222] Riquelme, J.L. and Gjorgjieva, J. 2021. Towards readable code

in neuroscience. Nature reviews. Neuroscience. 22, 5 (May 2021),

257–258.

3 1 6 R E F E R E N C E S

[223] Ritter, S. et al. 2018. Been There, Done That: Meta-Learning

with Episodic Recall. arXiv [stat.ML].

[224] Roccas, S. et al. 2002. The Big Five Personality Factors and

Personal Values. Personality & social psychology bulletin. 28, 6 (Jun.

2002), 789–801.

[225] Roesch, M.R. et al. 2007. Dopamine neurons encode the better

option in rats deciding between differently delayed or sized

rewards. Nature neuroscience. 10, 12 (Dec. 2007), 1615–1624.

[226] Rougier, N.P. et al. 2005. Prefrontal cortex and flexible

cognitive control: rules without symbols. Proceedings of the

National Academy of Sciences of the United States of America. 102, 20

(May 2005), 7338–7343.

[227] Russek, E.M. et al. 2017. Predictive representations can link

model-based reinforcement learning to model-free mechanisms.

PLoS computational biology. 13, 9 (Sep. 2017), e1005768.

[228] Sakai, K. 2008. Task set and prefrontal cortex. Annual review of

neuroscience. 31, (2008), 219–245.

[229] Saxe, A. et al. 2021. If deep learning is the answer, what is the

question? Nature reviews. Neuroscience. 22, 1 (Jan. 2021), 55–67.

[230] Schacter Daniel L and Addis Donna Rose 2007. The cognitive

neuroscience of constructive memory: remembering the past and

imagining the future. Philosophical transactions of the Royal Society

of London. Series B, Biological sciences. 362, 1481 (May 2007), 773–

786.

[231] Schacter, D.L. et al. 2012. The future of memory: remembering,

imagining, and the brain. Neuron. 76, 4 (Nov. 2012), 677–694.

[232] Schälte, Y. et al. 2022. pyABC: Efficient and robust easy-to-use

approximate Bayesian computation. arXiv [q-bio.QM].

[233] Schlagenhauf, F. et al. 2014. Striatal dysfunction during

reversal learning in unmedicated schizophrenia patients.

NeuroImage. 89, (Apr. 2014), 171–180.

[234] van de Schoot, R. et al. 2021. Bayesian statistics and modelling.

Nature Reviews Methods Primers. 1, 1 (Jan. 2021), 1–26.

[235] Schuck, N.W. et al. 2018. Chapter 12 - A State Representation

for Reinforcement Learning and Decision-Making in the

Orbitofrontal Cortex. Goal-Directed Decision Making. R. Morris et

al., eds. Academic Press. 259–278.

[236] Schuck, N.W. et al. 2016. Human Orbitofrontal Cortex

Represents a Cognitive Map of State Space. Neuron. 91, 6 (Sep.

2016), 1402–1412.

[237] Schuck, N.W. and Niv, Y. 2019. Sequential replay of nonspatial

task states in the human hippocampus. Science. 364, 6447 (Jun.

2019), 315978.

6 . 4 F I N A L R E M A R K S 3 1 7

[238] Schultz, W. et al. 1997. A neural substrate of prediction and

reward. Science. 275, 5306 (Mar. 1997), 1593–1599.

[239] Schultz, W. 2016. Dopamine reward prediction-error

signalling: a two-component response. Nature reviews.

Neuroscience. 17, 3 (Mar. 2016), 183–195.

[240] Schultz, W. 2015. Neuronal Reward and Decision Signals:

From Theories to Data. Physiological reviews. 95, 3 (Jul. 2015), 853–

951.

[241] Schultz, W. et al. 1993. Responses of monkey dopamine

neurons to reward and conditioned stimuli during successive

steps of learning a delayed response task. The Journal of

neuroscience: the official journal of the Society for Neuroscience. 13, 3

(Mar. 1993), 900–913.

[242] Schultz, W. et al. 2017. The phasic dopamine signal maturing:

from reward via behavioural activation to formal economic

utility. Current opinion in neurobiology. 43, (Apr. 2017), 139–148.

[243] Schulz, E. et al. 2020. Finding structure in multi-armed bandits.

Cognitive psychology. 119, (Feb. 2020), 101261.

[244] Seger, C.A. and Miller, E.K. 2010. Category learning in the

brain. Annual review of neuroscience. 33, (2010), 203–219.

[245] Seward, J.P. 1949. An experimental analysis of latent learning.

Journal of experimental psychology. 39, 2 (Apr. 1949), 177–186.

[246] Seymour, B. et al. 2012. Serotonin selectively modulates

reward value in human decision-making. The Journal of

neuroscience: the official journal of the Society for Neuroscience. 32, 17

(Apr. 2012), 5833–5842.

[247] Shanks, D.R. 2010. Learning: from association to cognition.

Annual review of psychology. 61, (2010), 273–301.

[248] Sharpe, M.J. et al. 2019. An Integrated Model of Action

Selection: Distinct Modes of Cortical Control of Striatal Decision

Making. Annual review of psychology. 70, (Jan. 2019), 53–76.

[249] Siljebråt, H. and Pickering, A. 2020. The Effect of State

Representations in Sequential Sensory Prediction: Introducing

the Shape Sequence Task. CogSci (2020).

[250] Silver, D. et al. 2018. A general reinforcement learning

algorithm that masters chess, shogi, and Go through self-play.

Science. 362, 6419 (Dec. 2018), 1140–1144.

[251] Silver, D. et al. 2016. Mastering the game of Go with deep

neural networks and tree search. Nature. 529, 7587 (Jan. 2016),

484–489.

[252] Silver, D. et al. 2017. Mastering the game of Go without human

knowledge. Nature. 550, 7676 (Oct. 2017), 354–359.

[253] Simon, D.A. and Daw, N.D. 2011. Neural correlates of forward

3 1 8 R E F E R E N C E S

planning in a spatial decision task in humans. The Journal of

neuroscience: the official journal of the Society for Neuroscience. 31, 14

(Apr. 2011), 5526–5539.

[254] Simons, D.J. and Chabris, C.F. 1999. Gorillas in our midst:

sustained inattentional blindness for dynamic events. Perception.

28, 9 (1999), 1059–1074.

[255] Sirois, S. et al. 2008. Précis of neuroconstructivism: how the

brain constructs cognition. The Behavioral and brain sciences. 31, 3

(Jun. 2008), 321–31; discussion 331-56.

[256] Spelke, E.S. and Kinzler, K.D. 2007. Core knowledge.

Developmental science. 10, 1 (Jan. 2007), 89–96.

[257] Stachenfeld, K.L. et al. 2017. The hippocampus as a predictive

map. Nature neuroscience. 20, 11 (Nov. 2017), 1643–1653.

[258] Stamatakis, A.M. and Stuber, G.D. 2012. Activation of lateral

habenula inputs to the ventral midbrain promotes behavioral

avoidance. Nature neuroscience. 15, 8 (Jun. 2012), 1105–1107.

[259] Stan Development Team 2022. Stan Modeling Language.

[260] Steingroever, H. et al. 2016. Bayes factors for reinforcement-

learning models of the Iowa gambling task. Decisions. 3, 2 (Apr.

2016), 115–131.

[261] Stephan, K.E. et al. 2009. Bayesian model selection for group

studies. NeuroImage. 46, 4 (Jul. 2009), 1004–1017.

[262] Steyvers, M. et al. 2009. A Bayesian analysis of human

decision-making on bandit problems. Journal of mathematical

psychology. 53, 3 (Jun. 2009), 168–179.

[263] Sugawara, M. and Katahira, K. 2021. Dissociation between

asymmetric value updating and perseverance in human

reinforcement learning. Scientific reports. 11, 1 (Feb. 2021), 3574.

[264] Sunnåker, M. et al. 2013. Approximate Bayesian computation.

PLoS computational biology. 9, 1 (Jan. 2013), e1002803.

[265] Sutton, R.S. et al. 1999. Between MDPs and semi-MDPs: A

framework for temporal abstraction in reinforcement learning.

Artificial intelligence. 112, 1 (Aug. 1999), 181–211.

[266] Sutton, R.S. 1991. Dyna, an Integrated Architecture for

Learning, Planning, and Reacting. SIGART Bull. 2, 4 (Jul. 1991),

160–163.

[267] Sutton, R.S. and Barto, A.G. 1998. Reinforcement learning: An

introduction. MIT press Cambridge.

[268] Sutton, R.S. and Barto, A.G. 2018. Reinforcement Learning: An

Introduction 2nd edition. MIT Press, Cambridge, MA.

[269] Sutton, R.S. and Barto, A.G. 1981. Toward a modern theory of

adaptive networks: expectation and prediction. Psychological

review. 88, 2 (Mar. 1981), 135–170.

6 . 4 F I N A L R E M A R K S 3 1 9

[270] Takahashi, Y. et al. 2008. Silencing the critics: understanding

the effects of cocaine sensitization on dorsolateral and ventral

striatum in the context of an actor/critic model. Frontiers in

neuroscience. 2, 1 (Jul. 2008), 86–99.

[271] The reward hypothesis:

http://incompleteideas.net/rlai.cs.ualberta.ca/RLAI/rewardhypothesis.h

tml. Accessed: 2019-02-23.

[272] Thorndike, E.L. 1898. Animal intelligence: an experimental

study of the associative processes in animals. The Psychological

Review: Monograph Supplements. 2, 4 (1898), i.

[273] Threlfell, S. et al. 2012. Striatal dopamine release is triggered

by synchronized activity in cholinergic interneurons. Neuron. 75,

1 (Jul. 2012), 58–64.

[274] Tik, M. et al. 2018. Ultra-high-field fMRI insights on insight:

Neural correlates of the Aha!-moment. Human brain mapping.

(Apr. 2018). DOI:https://doi.org/10.1002/hbm.24073.

[275] Tobler, P.N. et al. 2003. Coding of predicted reward omission

by dopamine neurons in a conditioned inhibition paradigm. The

Journal of neuroscience: the official journal of the Society for

Neuroscience. 23, 32 (Nov. 2003), 10402–10410.

[276] Tokic, M. 2010. Adaptive ε-greedy Exploration in

Reinforcement Learning Based on Value Differences. KI 2010:

Advances in Artificial Intelligence (2010).

[277] Tokic, M. and Palm, G. 2011. Value-Difference Based

Exploration: Adaptive Control between Epsilon-Greedy and

Softmax. KI 2011: Advances in Artificial Intelligence. J. Bach and S.

Edelkamp, eds. Springer Berlin Heidelberg. 335–346.

[278] Tolman, E.C. 1948. Cognitive maps in rats and men.

Psychological review. 55, 4 (Jul. 1948), 189–208.

[279] Toni, T. et al. 2009. Approximate Bayesian computation

scheme for parameter inference and model selection in

dynamical systems. Journal of the Royal Society, Interface / the Royal

Society. 6, 31 (Feb. 2009), 187–202.

[280] Trudel, N. et al. 2020. Polarity of uncertainty representation

during exploration and exploitation in ventromedial prefrontal

cortex. Nature human behaviour. (Aug. 2020).

DOI:https://doi.org/10.1038/s41562-020-0929-3.

[281] Tsao, A. et al. 2018. Integrating time from experience in the

lateral entorhinal cortex. Nature. (Aug. 2018).

DOI:https://doi.org/10.1038/s41586-018-0459-6.

[282] Tsutsui, K.-I. et al. 2016. A dynamic code for economic object

valuation in prefrontal cortex neurons. Nature communications. 7,

(Sep. 2016), 12554.

3 2 0 R E F E R E N C E S

[283] Turner, B.M. and Van Zandt, T. 2012. A tutorial on approximate

Bayesian computation. Journal of mathematical psychology. 56, 2

(Apr. 2012), 69–85.

[284] Umbach, G. et al. 2020. Time cells in the human hippocampus

and entorhinal cortex support episodic memory. Proceedings of

the National Academy of Sciences of the United States of America. (Oct.

2020). DOI:https://doi.org/10.1073/pnas.2013250117.

[285] Van Essen, D.C. et al. 1992. Information processing in the

primate visual system: an integrated systems perspective.

Science. 255, 5043 (Jan. 1992), 419–423.

[286] Vaswani et al. 2017. Attention is all you need. Advances in neural

information processing systems. (2017).

[287] Vehtari, A. et al. 2015. Practical Bayesian model evaluation

using leave-one-out cross-validation and WAIC. arXiv [stat.CO].

[288] Vincent, B.T. 2016. Hierarchical Bayesian estimation and

hypothesis testing for delay discounting tasks. Behavior research

methods. 48, 4 (Dec. 2016), 1608–1620.

[289] Virtanen, P. et al. 2020. SciPy 1.0: fundamental algorithms for

scientific computing in Python. Nature methods. 17, 3 (Mar. 2020),

261–272.

[290] Voon, V. et al. 2015. Disorders of compulsivity: a common bias

towards learning habits. Molecular psychiatry. 20, 3 (Mar. 2015),

345–352.

[291] Wagenmakers, E.-J. et al. 2018. Bayesian inference for

psychology. Part I: Theoretical advantages and practical

ramifications. Psychonomic bulletin & review. 25, 1 (Feb. 2018), 35–

57.

[292] Wagner, M.J. et al. 2017. Cerebellar granule cells encode the

expectation of reward. Nature. 544, 7648 (Apr. 2017), 96–100.

[293] Wang, J.X. et al. 2018. Prefrontal cortex as a meta-reinforcement

learning system. Nature neuroscience. (May 2018).

DOI:https://doi.org/10.1038/s41593-018-0147-8.

[294] Watanabe, S. 2013. A widely applicable Bayesian information

criterion. Journal of machine learning research: JMLR. (2013).

[295] Watkins, C.J.C.H. and Dayan, P. 1992. Q-learning. Machine

learning. 8, 3 (May 1992), 279–292.

[296] Webb, B. 2001. Can robots make good models of biological

behaviour? The Behavioral and brain sciences. 24, 6 (Dec. 2001),

1033–50; discussion 1050-94.

[297] Whittington, J.C.R. et al. 2020. The Tolman-Eichenbaum

Machine: Unifying Space and Relational Memory through

Generalization in the Hippocampal Formation. Cell. 183, 5 (Nov.

2020), 1249-1263.e23.

6 . 4 F I N A L R E M A R K S 3 2 1

[298] Wiecki, T.V. et al. 2013. HDDM: Hierarchical Bayesian

estimation of the Drift-Diffusion Model in Python. Frontiers in

neuroinformatics. 7, (Aug. 2013), 14.

[299] Wilson, M. 2002. Six views of embodied cognition. Psychonomic

bulletin & review. 9, 4 (Dec. 2002), 625–636.

[300] Wilson, R. and Collins, A. 2019. Ten simple rules for the

computational modeling of behavioral data. PsyArxiv. (2019).

[301] Wilson, R.C. et al. 2014. Humans use directed and random

exploration to solve the explore-exploit dilemma. Journal of

experimental psychology. General. 143, 6 (Dec. 2014), 2074–2081.

[302] Wilson, R.C. et al. 2014. Orbitofrontal cortex as a cognitive map

of task space. Neuron. 81, 2 (Jan. 2014), 267–279.

[303] Wilson, R.C. and Niv, Y. 2011. Inferring relevance in a

changing world. Frontiers in human neuroscience. 5, (2011), 189.

[304] Wise, R.A. 2004. Dopamine, learning and motivation. Nature

reviews. Neuroscience. 5, 6 (Jun. 2004), 483–494.

[305] Worthy, D.A. et al. 2007. Regulatory fit effects in a choice task.

Psychonomic bulletin & review. 14, 6 (Dec. 2007), 1125–1132.

[306] Wunderlich, K. et al. 2012. Mapping value based planning and

extensively trained choice in the human brain. Nature

neuroscience. 15, 5 (Mar. 2012), 786–791.

[307] Yamins, D.L.K. and DiCarlo, J.J. 2016. Using goal-driven deep

learning models to understand sensory cortex. Nature

neuroscience. 19, 3 (Mar. 2016), 356–365.

[308] Yau, J.O.-Y. and McNally, G.P. 2019. Rules for aversive

learning and decision-making. Current Opinion in Behavioral

Sciences. 26, (Apr. 2019), 1–8.

[309] Yechiam, E. et al. 2010. Adapted to explore: reinforcement

learning in Autistic Spectrum Conditions. Brain and cognition. 72,

2 (Mar. 2010), 317–324.

[310] Yoo, A.H. and Collins, A.G.E. 2022. How Working Memory

and Reinforcement Learning Are Intertwined: A Cognitive,

Neural, and Computational Perspective. Journal of cognitive

neuroscience. 34, 4 (Mar. 2022), 551–568.

[311] Zhang, Z. et al. 2018. A neural network model for the

orbitofrontal cortex and task space acquisition during

reinforcement learning. PLoS computational biology. 14, 1 (Jan.

2018), e1005925.

[312] Zhou, J. et al. 2019. Complementary Task Structure

Representations in Hippocampus and Orbitofrontal Cortex

during an Odor Sequence Task. Current biology: CB. (Sep. 2019).

DOI:https://doi.org/10.1016/j.cub.2019.08.040.

3 2 2 R E F E R E N C E S

