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A B S T R A C T  

Reinforcement learning (RL) – algorithms for learning from rewards 

– has proved successful in the cognitive sciences for explaining both 

neuronal signals and behaviour in animals, and for producing 

impressive results in artificial intelligence. 

Essential to RL models are state representations. Based on what 

current state an animal or artificial agent is in, they learn optimal 

actions by maximizing future expected reward. But how are humans 

able to learn and create representations of states? 

This thesis approaches this question from two fronts. First, we 

thoroughly investigate methods for fitting behavioural models to 

human lab data. In contrast to recent proposals, we find that the best 

methods for model selection – determining what model most likely 

generated some data – are based on maximum likelihood estimation, 

rather than Bayesian inference. We also demonstrate the importance 

of considering individual differences in model fitting: the model 

which best fits the performance of one participant may not fit the 

behaviour of another participant. 

Second, we introduce Shapetask – a novel learning and decision-

making task where participants must find hidden structure in a 

sequence, without the task explicitly rewarding the appropriate 

actions. We show that some humans can find this pattern, while RL 

cannot, unless equipped with appropriate state representations. We 

then show how previously proposed models that integrate RL with 

complex state representations can account for individual human 

behaviour in the Shapetask. 

We argue our results add to the growing literature indicating a 

broader role for dopamine as one involving general sensory 

prediction errors, not just reward prediction errors. Further, we argue 

Shapetask holds promise for use in further research on the topic of 

state representation and task structure. Such research may illuminate 

the workings of animal brains, and contribute to artificial intelligence, 

where enhanced models of state representations could improve data 

efficiency and generalisability over current generation systems. 
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1  I N T R O DU C T I O N  

How do we find structure in the world around us? 

When we are born, the world is blurry mess. The only shapes we 

can see in the fog of light are faces [1]. We are helpless. But through 

the combination of nature and nurture, we learn to make sense of our 

senses and control our limbs. We walk, we talk, we learn to see the 

birds and the bees. 

As we grow, we also learn to look beyond the physical into the 

abstract. Like children learning how to count farther than the fingers 

on their hands. Somehow, we manage to find structure within 

ourselves, the world and the interaction in-between. We know what 

is important to recognise for the task at hand, but it may be irrelevant 

for another. We have to infer invisible truths, like reading someone’s 

feelings on their face. Get it right, and you are rewarded with a hug. 

This thesis interrogates these topics. More specifically, how do we 

learn and use structure – models of the world – to support reward-

based learning? 

In the last decade, reward-based learning algorithms in the form of 

reinforcement learning (RL) have demonstrated impressive feats such 

as playing video games at human level and beyond [4, 179, 202]. This 

is especially intriguing from a neurobiological perspective as we have 

quite strong evidence that these algorithms have neural correlates in 

the midbrain dopaminergic system of the mammalian brain [197]. 

This system projects, among other areas, to a large part of the basal 

ganglia, which is an evolutionarily old system of brain structures that 

exists in all vertebrates [106]. Reward-based learning can be found in 

very basic vertebrates [5], as well as invertebrates [17, 208]. Recent 

evidence suggests RL-like mechanisms exist even in insects [22]. 

Taken together, we thus have strong reasons to study RL more closely 

as one of the most basic forms of learning in humans and other 

animals. 

Although the discovery of the neurobiological correlates of RL, 

now often described as the reward prediction error hypothesis of 

dopamine [240], is a big success in the cognitive sciences, there are 

still many outstanding questions. There is disparate evidence for 

what specific algorithm(s) are used – can one algorithm explain all 

varieties of learning mechanisms or are there several? Are there 



2 2          I N T R O D U C T I O N  

 

hierarchical organizations in the brain that may explain these 

disparate results, and in what way would the higher order systems be 

involved? How may such interacting systems allow animals to create 

and use structure from and in complex real-world environments [116, 

139, 196, 235]? 

Investigating these questions is the main goal of this thesis. The 

underlying hypothesis we will work from is one where RL is a basic 

form of learning, which is supported by multiple higher-order, and 

probably evolutionary newer, systems. We assume these higher order 

systems create, use and manipulate “state representations” 

appropriate for the current task, and feed these to the RL system. We 

base these hypotheses partly on the above-mentioned strong 

evidence of RL as a basic form of learning in many animals. Partly, 

we are inspired by recent proposals that the dopaminergic system 

may indeed code for general prediction errors, not just rewards [47, 

91, 118, 227]. 

Our approach to studying these questions is to introduce a new 

decision-making task called the shape sequence task. We show how 

this task is appropriate to study the questions we are interested in. We 

will introduce models found in existing literature and test their 

accounts of how complex state representations may explain our 

results from experiments with human participants. 

However, in order to test scientific models of the world on theories 

of human brain models of the world, we need data modelling 

methods. We compare and contrast common methods for modelling 

behavioural data in existing human behavioural datasets and show 

the importance of fully testing such methods before applying them. 

We show the best performing methods are not those one may expect. 

Based on those results we also highlight the need to consider 

individual differences in task performance, which can be marked. 

These differences thus change what models may fit best to the data 

from an individual participant. 

1 . 1  C H A P T E R  O V E R V I E W  

Following this introductory chapter, in chapter two, we start 

investigating the question of state representations by connecting 

them to the concepts of model-free and model-based RL: learning 

action values directly from experience or learning/using a model of 
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the world, respectively. From there we will see how the picture is 

perhaps even more complex, involving many systems and 

hierarchies. Common to each idea is that animals such as human 

beings manage to create useful representations of incoming sensory 

information, representations then used for learning and decision 

making. 

In chapter three, we survey some of the methodological landscape 

of fitting models to data. We show how often this is a technically 

difficult process (for real lab data at least) and how important it is to 

fully test the algorithm- and task combination under consideration. 

This may sound like a well-studied subject, but we think there is 

surprisingly little published work addressing these questions. 

Published papers often use brief descriptions of their models and 

fitting methods because they use “standard methods”. However, in 

our experience, even using such standard methods reveal many 

difficulties that are under-emphasized in the existing literature. 

Adding to that, we further show, using a standard two-armed bandit 

task, with both simulated and human subjects, how modern methods 

that often are promoted as better, may not actually always work that 

well with real data. 

In chapter four, we introduce the concept of states by modelling 

data from two kinds of reversal learning tasks. We further investigate 

the methodological aspects found in chapter three and apply our 

findings to datasets with human participants. We show that it is 

possible individuals use different strategies approaching a task, that 

are all successful, highlighting the need for individual differences in 

model fitting. 

In chapter five, we introduce the novel shape sequence task – or 

Shapetask for short. We explain the process of developing the task 

and show how and why this task is appropriate for the research 

questions under investigation. We present results from experiments 

with human subjects playing various versions of Shapetask, showing 

how some participants are able to find the underlying pattern of the 

task surprisingly quickly. We then show how standard RL with 

manipulated state representations is needed to account for humans 

solving the task. Models from the literature proposing how such state 

representations may be connected with neurobiological correlated are 

introduced, and their behaviour in Shapetask simulated. Finally, we 
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introduce another numerical method for model fitting, required to fit 

one of the models under consideration. Using this method, and 

knowledge gained in previous chapters, we fit the collected models 

to our human data and discuss the results. We argue Shapetask holds 

great prospects for further research in the field. 

1 . 2  S U M M A R Y  

We aim to investigate how humans are able to find task structure and 

apply appropriate state representations to successfully solve tasks. 

Our most important contributions to this field are two-fold. 

First, we investigate and critique existing methods for fitting 

behavioural models to human lab data. We find that the best methods 

are not the ones that are usually promoted. We also highlight the 

importance of considering individual differences in model fitting: the 

model which best fits the performance of one participant may not be 

able to fit the behaviour of another participant. 

Second, as noted above, we introduce a novel decision-making task 

called Shapetask, and show how it can be useful for investigating 

state representations in humans. We test how well previously 

proposed models that integrate RL with complex state 

representations may account for human behaviour in the Shapetask. 

We argue our results adds to the growing literature indicating a 

broader role for dopamine as one involving general sensory 

prediction errors, not just reward prediction errors. Further, we argue 

Shapetask holds promise for use in further research on the topic of 

state representation and task structure. Such research is important, as 

it may not only elucidate the workings of the animal brain but also 

provide valuable contributions to artificial intelligence, where 

improved models of state representations could vastly improve data 

efficiency and generalisability over current generation systems. 

 

 



 

2  B A C K G R O U N D  

In this chapter we provide an overview of the theory of reinforcement 

learning (RL), and its relation to other areas of the cognitive sciences. 

We start with a brief history where we connect RL to its origins of 

animal learning and conditioning. We then look closer at the 

neurobiological connections, and how studies have shown conflicting 

evidence of potential multiple types of RL. We discuss how and if 

multiple systems are involved in reward-based learning, which will 

take us into contact with memory, hierarchies and artificial 

intelligence research. From there, we narrow our focus to state 

representations, present recent findings on this topic and identify 

areas of open questions. With all the pieces in place, we can then 

frame and ask our research question. 

We do not aim to be comprehensive, rather this chapter is meant as 

a tour to set the stage for later chapters. Most, if not all, of the topics 

we cover are active fields of research on their own. 

2 . 1  R E I N F O R C E M E N T  L E A R N I N G  A N D  C O N D I T I O N I N G  

2 . 1 .1  A  B R I E F  H I S T O R Y  O F  R E W A R D  L E A R N I N G  

Conditioning is the process of associating stimuli with other stimuli 

such as rewards, for example a bell with food, a case called classical 

or Pavlovian conditioning. The other main variation is instrumental 

or operant conditioning where reward is given only when a certain 

behaviour has been performed, for example pressing a lever. 

Conditioning was first studied more than a hundred years ago. 

Thorndike [272] was one of the pioneers, establishing the “law of 

effect” which states that behavioural responses that lead to pleasure 

in a certain situation are more likely to occur again in the same 

situation, and behavioural responses leading to displeasure are less 

likely to occur again in the same situation. This laid the groundwork 

for Pavlov, Watson and Skinner and the so-called behaviourist school 

of psychology that dominated much of the early to mid-20th century 

[191]. Behaviourists – especially radical ones – believed internal states 

of animals were not important, only basic association learning 

between stimulus and response were important. For example, Pavlov 

[204] trained dogs to learn that shortly after the sound of a bell, food 
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would arrive. After sufficient training, the bell alone was enough to 

make the dogs salivate. 

With time, other viewpoints came to light. Tolman [278] proposed, 

based on experiments with rats, the concept of “cognitive maps”. 

When trained to find food at one end of a T-maze, rats would at test 

be put in a T-maze turned 180 degrees without food. If it was indeed 

simple stimulus-response behaviour, the rats would turn to the same 

direction they turned when learning. Instead, they turned towards 

where the food would be spatially. By the late 1970s a more balanced 

view had emerged, where association learning was seen as important, 

but influenced by and interacting with internal processes. The 

seminal work of this more balanced view is the book by Mackintosh 

[167], where the importance of processes like attention to stimuli and 

generalisation were stated. As we shall see below, many of the 

questions raised by Mackintosh are ones we are still studying today. 

Also in the 1970s, a fundamental link between motivation and 

dopamine was found, mainly based on experiments with the effect of 

dopamine influenced drugs, Parkinson’s disease and dopamine-

lesioned rats [23]. Later in the 1980s, using direct neuron spike 

recordings in monkeys, dopamine cell firing gave insights into 

dopamine’s role in invigorating the animal’s current behaviour [23]. 

RL was first studied in the early 1980s as a formalization of 

conditioning [269] and built on rules of learning and prediction error 

formalised a decade earlier by Rescorla & Wagner [219]. In short (but 

see section below on algorithms), an unexpected reward or a reward 

bigger in value than expected, leads to a positive prediction error. An 

unexpected lack of reward or one lower in value than expected leads 

to a negative prediction error. These prediction errors are viewed as 

the main drivers of learning under reinforcement and learning stops 

when prediction errors are zero. Importantly, there are two main 

categories of RL algorithms: model-free (MF) and model-based (MB) 

[267]. MF algorithms directly update values of actions based on 

experience with the world, while MB algorithms have an internal 

model of the world that is updated from experience with the world, 

and then the model is used to predict the values of actions. 

In early-mid 1990s it was found that RL, specifically temporal 

difference RL (TDRL; a model-free algorithm able to take expected 

future rewards into account [268]), could explain midbrain 
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dopaminergic activity results from neuron recordings in animals [19, 

238, 241]. The neuronal activity did not just predict upcoming reward 

based on a stimulus (like the bell and food for Pavlov’s dogs 

mentioned above), but in the absence of expected reward, activity 

would decrease. In other words, dopamine activity reflected the 

reward prediction error of RL. 

Since then, many studies have confirmed the connection between 

dopaminergic cell responses and the prediction of rewards, leading 

to the reward prediction error (RPE) hypothesis of dopamine [119, 

240, 275]. These prediction errors are reflected in the phasic (see next 

section) increase or decrease in dopamine cell firing, respectively for 

positive and negative reward prediction errors. The RPE hypothesis 

entails that this very time-specific change in phasic dopamine cell 

firing serves as a reinforcement signal for learning. To connect back 

to the more general results on motivation from the 1970s and 1980s 

mentioned above, [23] explains that the lack of dopamine can be seen 

as a RPE that is constantly negative and causes values of actions to 

update towards zero. 

In the 2000s, evidence started appearing of model-based influences 

on dopamine function [66], and has since been further investigated 

and become part of the standard account [64, 71, 146, 151, 306]. This 

line of research also started to highlight overlap in the systems/brain 

areas used for model-free vs model-based reasoning [71, 253]. 

In the last few years, this picture of dopamine function has become 

increasingly complex, partly stemming from difficulties 

distinguishing between motivation and reward [23, 304] and partly 

because the functions of MF and MB learning seem to be intermixed 

in the dopaminergic system(s) [71]. This has thus caused calls for a 

new view of “multiplexing” (integrating) model-based and model-

free signalling [146], for example by using a variation of RL called 

successor representation [91] or adding local control of dopamine, 

switching between MF and MB by way of other neurotransmitters 

[23]. 

The latter point is important, and should be stressed, that 

dopamine alone is not the entire story about reward processing. There 

are many other neurotransmitters that either have indirect effects by 

regulating dopamine (including acetylcholine [273]; substance P [31]; 

glutamate [45]); while other neurotransmitters having separate but 
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complementary functions such as serotonin [246]. To further add to 

this complexity, prediction errors for rewards have been found in 

areas outside the “main” areas we describe below (basal 

ganglia/midbrain and frontal cortex), for example the cerebellum 

[292]. 

However, we will base the current work mainly on findings in the 

dopamine system as it is the most studied system with the clearest 

connections to RL. 

2 . 1 .2  R E W A R D S  A N D  D O P A M I N E  

Schultz [239] defines three main functions of rewards. First, they act 

as positive reinforcers to induce learning. Second, they elicit 

movements towards desired objects, meaning they act as factors for 

decision making. This function is sometimes defined as motivation 

[23], but can also be described as a subjective value formalized as 

economic utility [242]. Third, rewards have a role in emotions like 

pleasure and desire [239]. 

The processing of rewards is sequential and starts out with the 

sensory components of object detection and identification, followed 

by valuation of the objects which leads to decisions, actions and 

reinforcement [239]. The main brain areas involved are, as previously 

mentioned, the midbrain dopamine cells, in the substantia nigra and 

ventral tegmental area (VTA), and the structures to which these 

midbrain dopamine cells projects to such as striatum, orbitofrontal 

cortex, the amygdala [239, 240] and the anterior cingulate cortex [110]. 

The midbrain areas and striatum are part of the basal ganglia, long 

implicated in action selection [108, 217]. Neuronal signals in these 

different areas code for different aspects of reward such as amount, 

probability, uncertainty, subjective value, utility and risk [239]. 

The dopamine neuron response works in three main ways on three 

different time scales [239]. On the sub second timescale, phasic 

responses code for reward value in the form of reward prediction 

errors and this is the response described with RL algorithms. The slow 

or intermediate response acts on the timescale of seconds to minutes, 

and is related to behavioural activation, forced deactivation, stress, 

attention, reward-related behaviour, punishment and movement. On 

the longest timescale of minutes and more, the tonic response is 

related to the level or amount of dopamine transmitter and receptors 

available. The tonic response is involved in many varied and general 
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functions such as movement, cognition, attention and motivation and 

is the main factor in psychiatric illness such as Parkinson’s, ADHD 

and schizophrenia. Below, whenever we refer to dopamine response 

it is assumed we speak of the phasic responses. But as just described, 

we also see there is no clear distinction in mechanism between these 

timescales. Furthermore, as will also be discussed later, functions like 

attention plays an important role in RL related learning as well. 

As touched on above, the distinction between rewards, learning 

and motivation can also be unclear. Berke [23] defines motivation as 

a forward model that uses predictions of future rewards to energize 

current behaviour, whereas learning looks backwards to update 

values of states and actions leading to rewards. In order to 

differentiate between learning and motivation, [23] proposes a model 

where the value coding (learning) happens through synaptic 

plasticity (long term potentiation [27]). The use of those values is 

mediated through dopamine neuron firing. By relying on cholinergic 

interneurons to switch between learning and motivation process, 

dopamine can thus work as a modulator of resource allocation 

decisions, both in the sense of deciding if energy use is worth 

expending to work for a reward and also whether to engage model-

based decision making. In this sense, the argument is similar to [140] 

where it is argued for a mechanism of cost-benefit arbitration between 

model-free and model-based decision making. Unfortunately, the 

study [23] bases their argument on, [111], uses micro dialysis which 

can sample only as quickly as around a second or longer so it is 

difficult to relate the findings to the very precise sub second timescale 

that [239] counts as phasic. The implication of the model proposed by 

[23] is that one needs to look at local terminal receptor density. This 

is important because both pre- and postsynaptic dopamine can be 

affected by other neurotransmitters. This confusion of timescales is 

unfortunately common in the literature on dopamine, which often 

creates difficulties in comparing results to the underlying models. 

Another long-standing puzzle is the role of aversive reinforcers 

(punishments). [239] argues the dopamine response is only about the 

physical impact of aversive reinforcers, but there are also indications 

that dopamine response can explain the effects of punishments if the 

different kinds of dopamine receptors are taken into account [32]. 

Another line of research suggests that punishments may instead be 

mediated by partly different circuits than rewards, for example 
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involving the lateral habenula [171, 258]. As punishments are related 

to fear, the amygdala and endogenous opioids also appear to be 

involved [7, 308]. In short, the story for punishments is more unclear 

than that of positive reinforcers and we will thus mostly focus on the 

latter – rewards. 

2 . 1 .3  R L  A L G O R I T H M S  A N D  D O P A M I N E  F U N C T I O N  

Here we will briefly explain the mathematical concepts of RL, present 

details of three algorithms and then discuss these from the 

perspective of neurobiological plausibility. 

2.1.3.1  Short primer on Markov Decision Processes  

As we have discussed, the RPE hypothesis tells us that learning is 

mediated through errors in reward prediction. The basis of this was 

formalized by Rescorla & Wagner [219] in the following way, here 

adapted for simplicity (Q is used for easier comparison with 

algorithms presented below): 

 ∆𝑄 = 𝛼(𝑅 − 𝑄) 2.1 

where ΔQ is the change in associative strength (i.e., learning) between 

a stimulus and reward and is proportional to the prediction error (𝑅 −

𝑄). R is the actual value of the reward and Q is the predicted value. α 

is the so-called learning rate and modifies how much the error should 

influence learning at each learning opportunity, for example a trial in 

an experiment. A reward that is fully predicted does not contribute to 

learning, since the error would be zero and associative strength can 

also decrease if reward is withheld. This way of removing an 

association is called extinction in psychological literature [167]. 
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RL algorithms build on the concept of Markov Decision Processes 

(MDPs) [267], as seen in Figure 2.1. In the discrete case, an agent - 

artificial or animal - interacts with an environment by observing the 

world at time t, thus receiving two signals, the state S and the reward 

R. The reward value may be negative (interpreted as punishment), 

zero (no reward/absence of reward) or positive. The agent then takes 

a step (or action, A) in the environment. The action taken will cause 

the environment to transition to a new state according to some 

transition function 𝑃𝑎(𝑠, 𝑠𝑡+1), providing the agent with a new 

observation. Importantly, an MDP satisfies the Markov property, 

meaning that all information to predict the future is contained within 

the current state, regardless of what has happened in the past. As we 

will see below, this information can be summarised by for example 

storing values of each state visited. One consequence of MDPs is that 

the mathematical proofs of RL algorithms converging to optimal 

solutions depends on the agent visiting all states an infinite number 

of times [267]. However, the solution can often be approximated to a 

useful degree much earlier than infinity, which is encouraging. 

In RL, the goal is for the agent to maximize the total reward 

received. We thus want to find a behavioural policy, most often 

denoted π, for what action to take in each state to find said maximum. 

In order to do so we need a measure of the value of each state, the 

value function V(s). The value defines how good a given state is based 

on the expected return of this state, under a specific policy, i.e., what 

future sum of rewards is expected moving on from this state [267]: 

Figure 2.1 Markov Decision Process. On each timestep t, an agent interacts with the 

environment by observing state S and reward R, then taking an action A. The environment 

responds by transitioning into the next timestep, where a new state and reward are observed. 

Adapted from [268]. 
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𝑉𝜋(𝑠) = 𝐸𝜋{𝑅𝑡|𝑠𝑡 = 𝑠} = 𝐸𝜋 {∑ 𝛾𝑘𝑟𝑡+𝑘+1

∞

𝑘=0

|𝑠𝑡 = 𝑠} 2.2 

This means that the value of state s, given we follow the policy π, is 

the discounted sum of rewards of all states k following that policy. 

The γ here is the discount parameter, controlling how much influence 

rewards far into the future will have. The discount parameter can help 

solve the so called “credit assignment problem”, meaning the 

problem of assigning values to preceding states when rewards are 

many steps into the future.  In other words, as we have noted, the 

value V is the discounted sum of rewards. Equation 2.2 (and 

variations of it) is sometimes called “expected utility” and is also the 

basis for prospect theory, which aims to account for human biases 

[131]. Here we simply call it the state-value function. 

Later in this chapter, and in the following chapters, we often use 

state-action values. In each state, we can have multiple actions, where 

each state-action pair has a value which depends on future states and 

actions in similar fashion to the previous equation: 

𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋{𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎}

= 𝐸𝜋 {∑ 𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎

∞

𝑘=0

} 
2.3 

Above we mentioned the state transition function. If we know this 

function – what state follows given an action – we have a model of the 

world. Except for constrained experimental cases, it is unusual to 

have perfect knowledge of the world, but if we do, the state transition 

function can be used to calculate values for each state and action 

combination. By iterating over all different such combinations, 

following different policies, we can find the optimal policy, denoted 

π*. 

If there is no model of the world, as is most often the case in the RL 

problems we are discussing in this work, there are two options; 

model-based and model-free. Important to note here is that the kind 

of world model we just mentioned above is not the same as the model 

in model-based RL. Model-based RL means approximating the world 

model (state transition function) and using that approximation we 

can then apply the same methods to find V and π as if we knew the 

real model as per above. Model-free RL instead either approximates 
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V (value-based methods) and/or π (policy-based methods) directly 

without also approximating the world model. In both cases of RL, we 

thus learn values and policies through experience. The trade-off 

between MF and MB RL is that model-free methods are data-

inefficient (much experience is needed to approximate values well) 

and thus learn relatively slowly, while model-based methods can 

learn faster but require more computational power (because they 

have to calculate action values for each choice) [129]. However, these 

are only general guidelines and the full state of affairs will depend on 

specific algorithms and implementations. For example, it may require 

a lot of computational power to provide enough experience to a 

model-free agent to perform well. 

2.1.3.2  Three RL algorithms  

The above equations and concepts are quite general. So, when 

learning a task trial-by-trial, we need more specific implementations. 

There are, as one might imagine, many different ways to do this. So, 

in the name of brevity we shall here present three discrete examples 

of model-free algorithms. They are chosen partly because they are all 

fairly common in the literature, as well as demonstrating how their 

details may impact neurobiological interpretations. 

A C T O R - C R I T I C  is composed of an actor that selects actions based 

on a policy function π(s), while the critic handles state values and uses 

them to give feedback on the actor’s choices [267, 270]. The core part 

is the TD prediction error: 

 𝛿𝑡 = 𝑟(𝑠𝑡) + 𝛾𝑉(𝑠𝑡) − 𝑉(𝑠𝑡−1) 2.4 

Where 𝑟 is the reward of the next state, V is a value function for 

states and γ is the discount parameter controlling the influence of 

future state-values. Through experience, the critic can learn the true 

values of states (or at least an approximation) by minimising the 

prediction error and updating the value of the last visited state: 

 𝑉(𝑠𝑡−1)𝑛𝑒𝑤 = 𝑉(𝑠𝑡−1)𝑜𝑙𝑑 + 𝛼𝛿𝑡 2.5 

The actor’s policy function is then updated in the same way1: 

 

1 Different learning rates are sometimes used for the actor and critic, see for 

example [56] 
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 𝜋(𝑎|𝑠𝑡−1)𝑛𝑒𝑤 = 𝜋(𝑎|𝑠𝑡−1)𝑜𝑙𝑑 + 𝛼𝛿𝑡 2.6 

The consequence being that for positive prediction errors, δ > 0, the 

policy/actor increases its tendency to pick the chosen action in that 

state. For negative prediction errors, δ < 0, the actor will lower its 

tendency to pick that action in the future. 

S A R S A  combines state and action values into Q-values. It is called 

SARSA because on every update it uses the quintuple 

𝑠𝑡, 𝑎𝑡, 𝑟𝑡+1, 𝑠𝑡+1, 𝑎𝑡+1 to update the value for the state-action pair 

chosen at each time step: 

𝑄𝑡+1(𝑠𝑡, 𝑎𝑡) = 𝑄𝑡(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡 + 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄𝑡(𝑠𝑡, 𝑎𝑡)] 2.7 

The γ parameter here controls how much impact the values of state-

action pairs in the next step will impact the new value on the current 

step. If the next state, 𝑠𝑡+1, happens to be the last (terminal) step, then 

𝑄(𝑠𝑡+1, 𝑎𝑡+1) is defined as zero, otherwise it is selected from the 

currently stored Q-values based on the current policy. This makes 

SARSA a so called “on-policy” algorithm. It has been shown that 

SARSA converges to the optimal policy if all state-action pairs are 

visited an infinite amount of times [267]. 

Q - L E A R N I N G  is very similar to SARSA, but instead of choosing a 

specific action 𝑎𝑡+1 in the γ multiplied term, the maximum value of 

the available actions in state 𝑠𝑡+1 is used: 

𝑄𝑡+1(𝑠𝑡, 𝑎𝑡) = 𝑄𝑡(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡 + 𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎) − 𝑄𝑡(𝑠𝑡, 𝑎𝑡)] 2.8 

Because the maximum value is picked, regardless of the current 

policy, this algorithm is an “off policy” TD algorithm [267]. Again, 

with the assumption that all state-action pairs are visited an infinite 

number of times, Q-learning also converges to the optimal policy. 

Most of the algorithms we use in later chapters will be based on Q-

learning, so it is one we shall come back to. There we also discuss and 

demonstrate in more detail how these algorithms work. 

Readers may have noticed that for neither Q-learning nor SARSA, 

we have specified how actions are selected. We come back to this 

question of how to follow a policy in the section on action selection 

below, as there are multiple options for how this is approached. 
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2.1.3.3  Neurobiological  plausibil ity  

Because of the division between policy and values in actor-critic, it 

can easier explain findings in imaging studies where multiple areas 

are seen to be involved in RL [127, 158]. For example, [270] shows 

actor-critic maps well onto ventral striatum (critic) and dorsolateral 

striatum (actor). The reward prediction error is shared between the 

actor and critic, and correlates with dopamine neuron response [29, 

127, 158]. 

However, [197] comes to the conclusion that SARSA or Q-learning 

may explain dopamine response results better than actor-critic. This 

because the dopamine firing patterns recorded by [185] were better 

explained with a Q-learning model, whereas the dopamine neuron 

firings found by [225] fit better with SARSA. In other words, these 

two studies differed in whether dopamine neuron firing patterns 

showed evidence of “off-policy” [185] or “on-policy” [225] (Q-

learning and SARSA respectively, as described above) when 

estimating future rewards from the current state. 

Widening our perspective from specific neurobiological correlates 

of model-free RL algorithms, there is the question of where and if we 

can find evidence of model-based RL? It turns out such evidence is 

claimed to be “ubiquitous” [71] and, thus, there has been an increased 

focus among authors to study the interaction between and potential 

separation of MB and MF RL [53, 74, 158, 227]. We return to the topic 

of model-based and model-free in section 2.2 below. 

2 . 1 .4  A C T I O N  S E L E C T I O N  

The basal ganglia has long been believed to have an important role in 

action selection [84, 108, 217], a problem intimately tied to the coding 

of reward values as those are used to select optimal actions. Above we 

used the terminology of following policies for selecting actions. So, 

how do we actually follow a policy? How does an animal select 

between exploiting its current knowledge about state values and 

exploring options that may in future be better than what the current 

knowledge implies? This is known as the exploration/exploitation 

problem and is relevant for both artificial systems [268] and human 

learning [93]. 

When using RL algorithms to model behaviour, the methods of 

action selection are not based on as solid ground as the RL theoretical 
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framework/RPE hypothesis itself (but see [86]). The two most 

commonly used algorithms for action selection are SoftMax and 

epsilon greedy (ε-greedy) [268]. 

SoftMax creates a probability distribution over the available 

actions based on action values and uses an inverse temperature 

parameter to control the stochasticity of choice; lower values of this 

parameter make the SoftMax distribution more random or in other 

words decreases the chance of selecting the action with the highest 

value. In the limit when the inverse temperature is at its minimum 

(zero), then action selection is completely random: all actions have an 

equal probability of selection irrespective of their expected value. 

There is no theoretical framework (that we know of) for how to 

select the temperature parameter value. In simulations it is therefore 

chosen so as to increase performance and in modelling animal 

behaviour it is fitted to best describe the data. Of course, one can rely 

on previous research to select appropriate values for the temperature, 

but as we shall see in later chapters, such values may not be reliable. 

ε-greedy uses a fixed value between 0 and 1, say 0.2, and if a 

randomly generated number is lower, then a random action is chosen. 

Otherwise, the action with the highest value is chosen. ε can also be 

tied to time or number of trials, so that over a simulation or 

experiment the parameter value is lowered and thus less and less 

exploration happens [153]. 

When fitting RL models to experimental data, the arbitrary nature 

of these two methods can be seen as an issue. Goodness of fit 

measures are of course reliant on not only estimating the SoftMax or 

epsilon parameter themselves, but how can we be sure either of these 

are appropriate in the first place? Furthermore, [93] points out that 

neither SoftMax or epsilon takes uncertainty of the value estimate 

itself into account. The author therefore investigates the so-called 

Upper Confidence Bound algorithm (which favours exploration of 

actions with high uncertainty in their value estimations) and 

Thompson sampling (select action based on the probability that it is 

optimal). [93] then suggests humans use a combination of directed 

(bias towards information seeking) and random exploration 

(exploration that is not informed in any form), which is also 

supported by [301]. Another way to incorporate uncertainty would be 

to tie epsilon directly to the prediction error [276, 277]. 
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The exploration/exploitation problem is an important one, and 

thus an active research area. Without a theory of an integrated way of 

tying exploration to the prediction error, as in [276], we will have to 

keep testing action selection algorithms until one sticks. Contributing 

to such testing is unfortunately out of scope for this thesis. Luckily, 

SoftMax is as close as we get to something that has stuck with 

researchers and it is therefore the method used in our investigations 

below. 

2 . 2  M U LT I P L E  S Y S T E M S  A N D  H I E R A R C H I E S  

In daily speech we often speak of habits or automatic behaviour 

versus deliberate or intentional actions. This idea can be traced back 

at least as far as Aristotle [188], but potentially is as old as human 

thinking itself. Humans have always told stories of the duality 

between the rational and irrational, “human” reason overcoming 

animal instincts, the soul and the flesh. 

In the modern western scientific tradition, the idea of two main 

forms of thinking – dual process theory – is commonly seen as 

introduced by William James in the late 19th century. James [125] 

called the two forms associative and true reasoning where the first is 

based on experience and the second a form of planning or reasoning 

about the future. Similar thoughts can later be found in Freud’s 

theories of the conscious and the unconscious, along with the Gestalt 

psychologists who more appropriately for our purposes proposed 

two distinct learning mechanisms [6]. According to Gestaltists, 

associative learning occurs gradually through the repeated co-

occurrence of external stimuli or memories. Insight learning occurs 

suddenly when people discover new relationships within their prior 

knowledge as a result of reasoning or problem solving processes that 

reorganize or restructure that knowledge [6]. Later contributions by 

Evans [79] framed the two systems as System 1 and System 2, the 

latter of which being unique to humans. The most famous version of 

dual systems theory is probably that of Kahneman [130], framing 

them as the fast but habitual System 1 and the slow but flexible 

System 2. How these systems may interact and what neural 

foundation they might have is a current topic of debate [107].  

One way of viewing potential interactions was presented by 

Lashley [147]. Lashley used a number of examples from language 
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understanding and production, motor generation, rhythm and sense 

of space to point out that there likely is some higher or more abstract 

structure that is imposed on lower, more practical behaviours. He 

emphasized that this higher structure is more than direct associative 

connections between those practical behaviours. This fits well with 

later findings in the visual system, where two main visual streams 

[105] are also hierarchically integrated [285]. The matter of hierarchies 

at play when performing a specific task is something we discuss later 

in this chapter. 

Instrumental learning (i.e., RL for our purposes) in humans and 

other animals is likely to involve one or more higher level functions 

like working memory and executive functioning, in addition to 

learning incrementally from prediction errors [29, 55, 66, 71]. The 

different theories of dual processing briefly presented here have 

different levels of relevance for our work, but the point is to 

demonstrate that the distinction between model-free (MF) and 

model-based (MB) RL is related to other discussions within the 

cognitive sciences. The advantage of framing the discussion as one of 

MB and MF is, as we saw in previous sections, that we here have close 

connections between mathematical models and neurobiological 

findings. In other words, William James’ and Lashley’s ideas still have 

merit [12, 66, 75] but it is still not clear how precisely they might apply 

[91, 146]. 

In this section, we look more closely at different proposals of dual 

systems processing in relation to learning. Starting from work on 

distinguishing between MF and MB RL in behavioural and 

neurobiological studies, we find they are perhaps more integrated 

than separated. We then discuss examples of integration and/or 

separation of MF and MB from both computer science artificial 

intelligence research and from the cognitive sciences. We then 

consider hierarchical proposals that may connect RL to more general 

theories of cognition and ask what role memory and other 

mechanisms play. This journey will lead us to consider how and why 

we may want to investigate the nature of representations. 

 

2 . 2 .1  M O D E L - F R E E  A N D  M OD E L - B A S E D  S I G N A L S  A N D  B E H A V I O U R  

In the RL literature, the MF and MB systems are sometimes also called 

habitual and goal-directed, respectively [12, 13]. Interaction between 



2 . 2   M U L T I P L E  S Y S T E M S  A N D  H I E R A R C H I E S        3 9  

two decision making systems for habits and goal directed planning 

has long been theorized, as discussed above, but in terms of 

conditioning and rewards, early work by [12] suggested habits and 

goal-directed behaviour are underpinned by separate systems. The 

formalization into model-free versus model-based learning was then 

introduced by [66]. As briefly mentioned in the history section above, 

others have since confirmed that both kinds of signals exist in the 

dopamine system, once called the “ubiquity of model-based 

reinforcement learning” [71]. 

Evidence of for separate systems has been found in neuron 

recordings in monkeys performing bandit tasks [148], suggesting a 

role for frontal cortex in model-based predictions and the basal 

ganglia being primarily responsible for model-free RL. Likewise in 

humans performing spatial navigation encouraging model-based 

behaviour, fMRI results indicate the medial temporal lobe and frontal 

cortex for model-based planning [253], and suggest striatum as the 

location of values and action selection. Later research such as [282] 

showed that prefrontal areas of cortex also can code values of reward 

objects, leading the authors to suggest dorsolateral prefrontal cortex 

might play a role in coding higher-order aspects of the task. 

Other areas such as the hippocampus also has an important role; 

[61] and [177] show that model-based planning behaviour is causally 

dependent on the hippocampus (and see below section on memory 

for more on the hippocampus). However, they found little evidence 

for model-free RL in their experiment on rats, whereas in the same 

task with humans, evidence for model-free RL had been found. This 

led the authors to suggest that perhaps model-based control is a 

default mode and model-free is engaged only when habits have 

formed, a thought supported by [55, 66]. From a slightly different 

viewpoint, it has been suggested that the two systems run in parallel, 

operating in a segregated way and then integrated in prefrontal 

cortex [306]. Others would argue they are more integrated than that 

[64, 91, 97, 100, 146]. 

Assuming they are somewhat segregated, there would be required 

some arbitration between them, as now classically shown by [66]. The 

same point of arbitration is further argued by Kool and colleagues 

[140]. They found that model-based control is engaged when greater 

accuracy on a task is required in order to receive greater long-term 
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rewards, because model-free learning is less expensive but also less 

accurate because of decreased flexibility. In other words, MF learning 

is less computationally taxing because action values are already 

computed, so only a comparison is needed to find the best action, 

while MB learning has to compute the values each time [66, 100]. An 

important difference between these proposals is that [140] considers 

a cost-benefit evaluation function to select between the systems, while 

[66] base the evaluation on uncertainties. The latter approach is also 

explored in [55] but they used direct value estimates instead of 

uncertainty. 

This confused state of affairs has led some to propose that we need 

to rethink what model-based actually means [146], others to suggest 

that dopamine may help encode more than just prediction error [103], 

and yet others suggest alternate accounts of the MB/MF dichotomy 

may explain results better [91, 180]. The rest of this chapter section 

takes a closer look at these and other proposals for how to resolve the 

dopamine and MB/MF conundrum.   

2 . 2 .2  D U A L  S Y S T E M S  I N  A R T I F I C I A L  I N T E L L I G E N C E  

In 2016, the company Deepmind held an exhibition match between 

their Go2 playing system AlphaGo and multiple world champion Lee 

Sedol [251]. AlphaGo won 4-1 and this event is already of historical 

significance on par with Garry Kasparov’s loss at chess to Deep Blue 

in 1997. 

What is significant about AlphaGo is that it successfully combines 

MF and MB in a way that can be applied to such a difficult problem 

as Go. The MF part of this system is an RL algorithm and the MB a 

tree based search algorithm called Monte Carlo Tree Search [251]. The 

AlphaGo system was trained on a dataset of Go games played by 

humans. It was improved upon a year later to learn only from self-

play and thus dubbed AlphaGo Zero [252]. Another year later and the 

researchers managed to use the same principles to create AlphaZero 

[250], a system with less pre-defined information specific to Go that 

could therefore play not only Go, but also Chess and Shogi (Japanese 

version of Chess). 

 

2 Go is a board game commonly played on a 19x19 grid, where two players take 

turns placing stones. The goal is to conquer as much territory as possible. 

Depending on the rules, the number of possible positions may be as high as 10170 
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Another interesting system is that of “world models” [109]. Here, 

a recurrent neural network is trained to learn a model of the agent’s 

world which is then used to teach a controller how to navigate that 

world model. During play of a car racing game, the model’s 

predictions of sensory inputs are used together with the actual 

sensory inputs to inform the controller of the best action to take. This 

implementation is not so completely a dual system as AlphaGo but 

leans rather more towards model-based learning. What is really 

interesting here though is that the trained world model can be used 

to “dream” the learned environment and actually improve the policy 

of the controller offline. 

The combination of online and offline learning is also the idea 

behind Dyna, an early combination of MB and MF [266]. Its policy 

and value functions are updated both directly from experience in an 

MF way, while the same experiences are used to update a model. 

From this model simulated experiences are generated and used to 

update the same behaviour policy as the MF system updates. 

Variations of Dyna have been used successfully for example to play 

Atari games [132] and in proposals for how separate MB and MF 

systems can collaborate in simulations [227]. 

2 . 2 .3  I N T E G R A T I O N S  O F  M O D E L - B A S E D  A N D  M O D E L - F R E E  

Langdon and colleagues [146] present multiple findings that indicate 

dopamine neurons respond to other aspects than just scalar reward 

value, for example reward identity (juice instead of a puff of air, say). 

This suggests that dopamine neurons have access to richer 

representations of states than traditionally thought, perhaps as some 

sort of more general prediction error for states. The authors therefore 

propose that model free predictions of scalar reward values are 

multiplexed (integrated) with model-based vectors containing 

information about multiple reward dimensions such as type and 

timing, as well as other relevant aspects of the state, perhaps even 

inferred information not directly observed. 

This line of reasoning is similar to the “sensory prediction error” 

hypothesis of dopamine introduced by Gardner and colleagues [91]. 

They adapt the “successor representation” (SR) algorithm – a middle 

ground between MF and MB that will be discussed in detail in chapter 

five (and also in the next section on state representations). SR may be 

adapted to predict not just rewards but also states, and such an 
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account they claim might explain many of the controversies of both 

the model-based versus model-free debate, as well as details about 

dopamine functioning itself. Though not arguing for sensory 

prediction errors per se, multiple additional authors have proposed 

SR as a way of unifying the debate on model-free and model-based 

[92, 166, 180, 182, 227]. 

Other promising attempts have been made towards integrating 

previous research, coming from the computer science “learning to 

learn” or “meta learning” field which has origins going back to the 

late 1940s with work by Harlow [113]. Briefly, Harlow showed how 

monkeys trained on a two-object discrimination task (essentially a 

two-armed bandit where one arm always is rewarded and the other 

never, see chapter three) initially required multiple trials to 

consistently pick the correct object. But after enough experience 

(multiple blocks of different objects) they had learned they could find 

the correct choice based on only the feedback in the first trial. They 

had learned to form “learning sets” as Harlow put it. 

Recently, recurrent neural networks have been used to model parts 

of the brain known to be involved in learning – the basal ganglia and 

frontal cortex – by using a reinforcement learning algorithm to train 

new learning algorithms [28, 73, 293, 311]. In other words, a task-

specific RL system emerges from the dynamics of the recurrent 

network. 

Specifically, [293] model PFC, basal ganglia and thalamic nuclei as 

a recurrent neural network. This is trained with DA phasic signals as 

reward prediction errors and using state, reward and action as inputs, 

on six different categories of tasks. Results indicate the recurrent 

network exhibits an emergent RL system that can handle six different 

experimental tasks in line with behavioural findings and neuronal 

recordings from humans and animals in previous research. 

Interestingly, although the system is trained separately for each type 

of task, the emergent RL system learns to handle variations of the 

same type of task. For example, if the task type is two-armed bandits, 

the system will slowly learn this type of task when training starts. But 

after a point it will “know” the task and when encountering a new 

two-armed bandit, it will learn the optimal choice in just a few trials. 

In other words, it has “learned to learn”, just like Harlow’s monkeys. 
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 This combination of “fast and slow” reinforcement learning [28, 

73] therefore provides a possible explanation of previous 

inconsistencies in the model-based/free dual systems view, where a 

hierarchy emerges dynamically through learning. 

2 . 2 .4  H I E R A R C H I E S  

Considering the curious findings on MB and MF RL, together with 

the research presented above, it could be the case that what we are 

seeing is the effects the brain organisation into a hierarchical system. 

If we were to assume the simplest case of two hierarchical layers, 

habits or model-free functionality would be on the lower level and 

planning or higher order reasoning, as in model-based functionality 

would be on the upper level. If we further suppose these levels as the 

basal ganglia/dopaminergic midbrain projection system and frontal 

cortex, respectively, then what we see in the “puzzling” model-based 

responses in the basal ganglia might actually be traces of the signals 

coming from the upper level. 

A classic example of hierarchy is that of Brooks’ subsumption 

architecture for robots [33]. Behavioural modules are stacked on top 

of each other, from low-level behaviours like “avoid obstacles” and 

“wander aimlessly” to top-level ones like “formulate and execute 

plans” and “reason about objects in the world”. All modules run in 

parallel and separately receive sensory input and output behaviour. 

The core idea is that lower-level modules are unaware of higher 

levels, but higher levels can control lower-level modules if needed. 

The effect of this hierarchy is that if “avoid obstacles” is the lowest 

level 0, and the “wander aimlessly” level 1 activates, then the robot 

will indeed wander around aimlessly. It will do so, while 

simultaneously avoiding obstacles, because level 0 activates as 

needed – without level 1 having any need to be “aware” of this 

functionality.  

Hierarchical Reinforcement Learning (HRL) is an umbrella term 

for organising the learning of actions [29, 265] and/or states [54, 75] in 

hierarchies. One may frame these approaches as attempts to solve the 

“curse of dimensionality” (or scaling problem) – i.e., that states and 

actions can be very high dimensional and therefore exponentially 

difficult to solve [29]. We come back to the question of high 

dimensionality in the next section about state representations. 
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For now, HRL for actions can be done by abstracting action 

sequences over time into “options” [265].  In other words, the number 

of decision points for an agent is decreased, since an option can take 

the agent through many actions in one go. For example, “make 

coffee” or “make tea” may be options, each choice consisting of 

multiple actions to get your preferred beverage. Work by [29] shows 

how such options can improve the performance of an agent 

navigating a maze, as long as the options are chosen appropriately. 

This highlights the problem of how to learn the options; should they 

be built-in or learned dynamically? For a software system aimed at 

solving a particular problem, building them in may suffice, but if 

trying to understand and explain the brain’s learning system we 

would be very likely to need a mechanism to learn them dynamically. 

Recent work [166] has proposed the successor representation may be 

used to learn action options more dynamically (and see below on 

episodic RL for a possible mechanism, and further proposals in the 

next section about state representations). 

The scaling problem can also be solved by abstracting over states 

instead of actions [157], a process that is likely supported by 

(pre)frontal cortex [226]. One good example is work by Collins and 

colleagues [50, 54, 75] where states are organised hierarchically as 

task sets. We will come back to Collins’ HRL in the next section on 

state representations and it will also be described in detail in chapter 

five. 

The two ways of abstracting over time - actions and states - may 

seem disparate, but if we frame this in the terminology of model-

based RL, it is likely that task structure - the world model - contains 

actions as well as states and the two are thus closely connected. This 

idea is supported by [29] who state that temporal abstraction can be 

incorporated in model-based algorithms if there is an option model 

where “primitive” actions (the basic actions that are put into 

sequences to create options) can be skipped. Furthermore, they also 

state that execution of subtasks is highly context sensitive. For 

example, if one picks up a pen with eraser on one end then depending 

on the intent (i.e., context/task structure), the available actions are 

different. Grab the pen as usual if the intent is to write or grab it closer 

to the eraser end if the intent is to erase. In other words, task structure 

and actions are closely interlinked. 
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Huys et al. [123] build on this and show how subjects performing 

a planning task reduce computational costs by “combining partial 

searches with greedy local steps to solve subtasks”. In other words, 

their subjects exploit the structure of the task to create subgoals that 

allow them to improve performance. For example, in a task where 

subjects had to choose actions in a certain sequence to receive the 

highest reward (visualised as a search tree), it was found that subjects 

had no problem with shorter sequences. But with longer sequences 

subjects started to group sequences together, creating subgoals that 

effectively left parts of the search tree unexplored and some optimal 

paths were missed. 

That task structure and actions are interlinked is quite obvious if 

seen from the perspective of embodied cognition [46, 47, 209]. There 

are many interpretations of what this term means [299], but common 

for them all is that cognition does not simply happen exclusively in 

the brain. Cognition is a process that happen through the interaction 

of brain, body and environment – including other animals and 

objects. For example, Kirsch & Maglio [137] showed how good Tetris 

players do not rotate pieces in their mind to see where they will fit. It 

is simply too slow. Instead, players rotate pieces in the game – using 

their hands to press buttons – and use visual matching to identify 

placement positions. The cognition happens in the linked system that 

is body, brain and video game. 

The principle of embodied cognition has been an active theory 

within robotics for many years, in fact the system described above by 

Brooks is now seen as a foundational example [163]. Embodied 

cognition is also an important part of theories framing cognition as 

one of “predictive processing”, where the principle of prediction 

errors is seen as a core part of interacting with the world [10, 46, 87, 

118]. Animals actively explore the world in order to minimise 

prediction errors, a process formalised as the free energy principle 

[87, 88, 163], from which RL itself may be derived [86, 88].  

Through the lens of predictive processing, neural structure, 

function and behaviour arise from a hierarchy of mechanisms where 

incoming sensory information is compared to predictions on every 

level [10, 118]. For example, if you pick up your cup to take a sip of 

coffee and you taste tea, you are surprised, given you expected coffee. 

Just like RL algorithms learn from reward prediction errors, your 
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surprise was also a prediction error. If you both expected tea and 

tasted tea, there is no prediction error, and you would go about your 

business without need for explicit thoughts about your drink. 

2 . 2 .5  M E M O R Y  S Y S T E M S  A N D  B E Y O N D  

In Minsky’s Society of Mind [178], it is argued that the brain is made 

up of a vast number of small functional entities called agents. 

Thinking and behaviour emerges from the interaction between these 

agents and therefore does not rely on any single principle. This view 

is directly opposed to the one taken by previously mentioned work 

such as AlphaGo [251] and meta-RL [293]. Especially in the latter 

work the working hypothesis is the idea that maximizing reward can 

explain all behaviour. Sutton [271] calls it the “reward hypothesis” 

and describes it thus: “That all of what we mean by goals and 

purposes can be well thought of as maximization of the expected 

value of the cumulative sum of a received scalar signal (reward).” 

Since we are framing this work in terms of reinforcement learning, we 

lean more towards the reward hypothesis than society of mind, but 

there is value in, and perhaps necessity, in considering more systems 

than just MB and MF. 

We have briefly touched on this idea previously, mostly when 

discussing brain areas such as the hippocampus being involved in RL. 

The hippocampus (and closely connected structures in the medial 

temporal lobes) since it is widely considered one of the main brain 

areas subserving episodic and spatial memory [24, 38, 186]. We have 

also discussed how the prefrontal cortex is involved in model based 

learning, an area that is also important for working memory [15, 16]. 

The hippocampus has been suggested as a candidate for shaping 

the world models that are needed for MB RL, partly due to the strong 

evidence of hippocampal involvement in spatial navigation [186]. So-

called place cells code for an animal’s position within a spatial map 

that corresponds to the current environment and there are some 

indications that these place cells show predictive signalling by 

simulating paths towards goals [210]. Place cells in the hippocampus 

receive signals from grid cells found in entorhinal cortex, which are 

thought to represent more general maps of the environment from 

which the place cells can construct a map that is more task-specific 

both in time and space [186, 281]. Intriguingly, recent studies on the 

successor representation (SR) have found potential correlates 
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between aspects of the SR and place and grid cells [180, 182, 257, 297]. 

We come back to SR in the below section on state representations, as 

well as in chapter five. 

Regardless of whether SR is the most appropriate model to account 

for these findings, it seems likely the hippocampus is important for 

the formation and/or storage of models. Adding to this idea of 

hippocampus as a “model storage” region is the claim linking it to 

more general prospective imaging of the future [231] and more 

abstract relationships that seem similar to state transition functions 

[100, 206]. It may thus be the case that hippocampus is not just storing 

models but also involved in generating predictions based on them. 

This may lead us to ask, what is the difference between models and 

memory? In our view, perhaps the simplest way to differentiate them 

is that a model is a summary of experience whereas (episodic) 

memory consists of a record of the experiences themselves. Therefore, 

it is likely the two are closely intertwined since some form of memory 

is needed to store learned models, and models can in turn be an 

efficient way to utilize limited storage capacity [310]. In fact, it seems 

this is how human memory works; it does not generally have precise 

recordings of past experiences but, rather, recalling events is made in 

a generative or constructive way [60, 230, 231]. For example, this is 

thought to be why eye-witness accounts are prone to influence by 

interviewers [90]. Gershman & Daw [100] notes that the replay of 

episodic memories may be influenced by a combination of 

cooperation and competition in the interaction between striatum (a 

main site for MF RL) and hippocampus, due to their functional 

connectivity. 

One important type of memory is working memory (WM), which 

can briefly be described as a form of active short-term memory, able 

to both store and manipulate information [310]. WM is associated 

with activity in prefrontal cortex and multiple studies have shown 

how there is a close connection between WM and RL, and in some 

cases one can be mistaken for the other [52, 55, 58, 173, 310].  

An example of the interaction between RL and WM is that of [55] 

where the authors showed that an RL+WM model provided better fit 

to participant behaviour than RL alone. The task presented 

participants with trial blocks containing 2-6 different stimuli (pictures 

from a certain category like fruits, places, sports, etc.) and in each trial 
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one of these stimuli was presented. Participants had to learn which of 

three possible responses (actions) led to reward. Assignment of the 

correct response to each stimulus was random so the correct response 

could, in the two stimuli case for example, be the same for both 

stimuli. In this way, the load on WM was varied between blocks, since 

remembering correct responses for two stimuli is easier than for six 

stimuli, especially as in the latter case it may be many trials before 

seeing the same stimuli again. 

The behavioural results showed that learning was slower in 

problems with greater load (blocks with more stimuli) but there were 

minimal differences asymptotically, meaning that, as training 

progressed, performance reached similar levels regardless of load. 

Similarly, for delay since a stimulus was last presented, longer delay 

initially degraded performance but this effect also disappeared over 

learning. The authors interpreted this thus: with increasing 

experience the RL system accumulates sufficient evidence and 

eventually supersedes the WM system. 

The RL+WM model used in [55] is fairly simple and does not 

identify what specific events are stored in memory. But a more 

elaborate proposal of memory integration with the RL system called 

episodic RL [100] (see [28] for a machine learning perspective) does 

keep track of specific events. This theory builds on a method called 

episodic control, introduced by [154] and uses episodic memories to 

construct nonparametric approximations of the state or state-action 

value function [100]. More specifically, both MB and MF RL uses a 

parametric approach; MF stores action values and MB stores model 

parameters to generate trajectories, but once these parameters have 

been estimated, the raw data - experiences - are discarded. Episodic 

RL keeps the entire set of experiences in memory and can compare 

the current situation to previous ones. Such comparisons thus depend 

on how states are represented, in order to compute some similarity 

measure. The comparisons can additionally enable episodic RL to 

handle new situations by finding a previous experience that is a good 

combination of similarity to the current situation and also is 

associated with reward. In artificial intelligence research, episodic RL 

has been successfully used to increase data efficiency for playing Atari 

games [28]. 
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Saving experiences is in some way similar to experience replay 

[161] which was an important component in the success of the Atari 

playing system DQN [179]. But where experience replay usually takes 

place offline between training sessions and it randomly samples 

stored sequences of state-action-reward (while “sleeping” if you will), 

episodic RL works online. So, when a familiar state is encountered, 

an action is suggested by the episodic system based on previous 

trajectories from that state. This is similar to the action options 

hierarchical RL (HRL) [29] mentioned earlier and, indeed, [100] 

suggested episodic RL could be a way to create the options or action 

sequences proposed in HRL. Since memories of experienced state 

trajectories would work similarly to MB planning, for some tasks it 

may be the case that what has previously been classified as MB is 

actually episodic influences. Furthermore, and as discussed earlier, 

this would of course complicate the picture as episodic RL would also 

have to solve the question of whether and when it communicates, or 

integrates, with the MF and MB systems. 

One way for episodic RL to do so could be based on findings that 

hippocampal involvement commonly dominates early in training and 

gradually gives way to striatal systems [100]. This fits with previously 

mentioned results by [55], where WM dominated early and MF took 

over after training. This also ties back to arbitration between these 

systems as in [140]; thus, any meta controller would then also have to 

include the episodic system in its arbitration. In fact, Ritter and 

colleagues [223] introduce a system combining the above-mentioned 

learning-to-learn (or meta-RL) principle with episodic memory. This 

enabled the system to reactivate behaviour from memory, if the task 

encountered was found similar to a previous experience.  

This brings us to important questions. To compare the current 

situation – the state – to previously encountered ones in memory, we 

need to compute some form of similarity measure. The success of 

artificial intelligence agents using episodic RL thus critically depends 

on defining appropriate state representations [28, 223]. As mentioned 

above, this works for “simple” problems like playing Atari games. But 

how would this scale to high-dimensional, continuous, partially 

observable state spaces where data are sparse, and observations have 

dependencies over long temporal distances [28, 100]? 
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In real world situations, observations are extremely rich in 

informational content and thus suffer from the so-called curse of 

dimensionality (high dimensional state spaces) – how do we focus on 

what is important? Observations are also continuous, meaning 

animals need some mechanism to partition the world into suitable 

states – in both time and space. At the same time, these observations 

do not contain enough information because some information is 

hidden and needs to be inferred – like understanding someone’s 

feelings. Further, some information is only partially observable, 

requiring past information to be maintained in order to make correct 

choices, which challenges the memory-less Markov property that RL 

relies on – that all necessary information is contained in the current 

state. 

In the next section we shall see how this leads us to consider not 

only memory but also attention and inference – beliefs about hidden 

information. 

2 . 2 .6  S U M M A R Y  A N D  C O N S O L I D A T I O N  

Instrumental learning in humans and other animals have 

traditionally been a story of model-based (MB) and model-free (MF) 

learning and how these may interact. There are differences in 

approach to this problem, with some integrating MF and MB [251, 

266], some looking at how states can be more fully represented [91, 

146] and others embracing the hierarchical organisation, leading to 

model-based behaviour emerging from model-free interaction with 

the world [293, 311]. 

There is also the matter of computational or cognitive cost 

associated with arbitrating or switching between these systems [140]. 

The idea of using a less costly system (MF) for easier tasks and 

deploying the costlier (MB) only when required for more difficult 

tasks may make intuitive sense. However, several studies have shown 

that MB (or memory-based processing) dominates early in training 

and gradually gives way to MF [55, 66, 97], coinciding with 

hippocampal involvement early and striatum getting more involved 

later in training [100]. This is inverse of the approach taken by [293, 

311] where the MF system is used to train the MB system. This latter 

viewpoint is against the common folk understanding of habits, which 

is that they need time to form. One way of looking at it is through the 

hierarchical lens, where MB lies above MF in the hierarchy. MF would 
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then be used to train MB, as in [293, 311] and as that model is 

improved, the action values are made available for the MF system to 

use directly, accounting for the potential discrepancy.  

Dual systems make intuitive sense, exemplified above with 

multiple examples of such dualities from different perspectives; but 

maybe it is not so easy. Perhaps, it is the case that multiple systems 

are interconnected through hierarchies that build more and more 

complex structures and representations. We can see such structure in 

the visual system, where low level features are encoded from sensory 

information in the occipital cortex and higher level information builds 

in hierarchical layers, splitting into two main visual streams [105, 

285]. Hierarchical convolutional neural network models have proved 

to predict signals of the (ventral) visual system both structurally in 

the layout of layers, and in neuron population activity for each such 

layer [220, 307]. Similar findings have been shown for auditory cortex 

[135]. 

It would make sense, then, if models of the world work in a similar 

fashion – low level features building into higher-order structure. This 

line of reasoning naturally leads us to the predictive processing 

hypothesis [47, 118], where top-down predictions from a world 

model are compared with bottom-up incoming sensory information. 

On each level of the hierarchy, prediction errors arise, informing the 

generative model above how to adjust its predictions for the future.  

This view would appear to fit with the established framework of 

prediction errors driving learning in RL, and provides a way to 

resolve the recent confusion of finding evidence of both model-free 

and model-based predictions at multiple levels of the dopaminergic 

projection system [57, 71]. There is also synergy with proposals that 

add richer state representations to RL [146] and with the argument 

for a generalized “sensory prediction error” hypothesis of dopamine 

[91]. Adding to this is the claim that RL “naturally falls out of” the 

free energy equations of statistical physics [86, 88]. 

Speculating further, for an animal undertaking a task, parallel 

systems like working memory would enable active manipulation of 

the current model under consideration, supported by episodic 

memory to compare and retrieve models from previous experience. 

For the specific task, generated predictions for the entire mental 

model of the task structure would be tested against the consequences 
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of actions. When the predictions fit, perhaps one can view the absence 

of prediction errors, when one has found the right mental model, as 

what is commonly called the aha experience [274]. 

In short, regardless of how these systems interact, it looks clear that 

there is more to this story than just a tale of two systems. To us, it 

seems more likely the story is one of hierarchies where the RL 

principle of prediction errors is ubiquitous. Our viewpoint, going 

forward, will be one where model-free RL is supported by higher-

order system(s) providing RL with useful state coding information. 

So, the question then is, how do animals find and create states, to 

combine into a representation of task structure and/or world models 

from their chaotic sensory observations?  

2 . 3  R E P R E S E N T I N G  T H E  W O R L D  A S  S TAT E S  A N D  TA S K S  

Hoffman [116] describes how the Australian Jewel beetle almost went 

extinct. The evolutionary process has made the males of the 

Australian Jewel beetle very proficient in finding mates; big brown 

objects with pimples on their butts. This worked great for millions of 

years until members of the Homo species came along and dumped 

beer bottles into the beetle habitats. These beer bottles happened to be 

big, brown and have pimply bottoms – such perfect specimens of 

beetle beauty that the male beetles found them preferable to the real 

thing. Those males that would not die of starvation or exhaustion, 

were eaten alive by opportunistic ants. In the end, the beetles were 

saved when beer companies changed the design of their bottles, 

removing the pimples from the bottoms. Apparently, this was a more 

efficient solution than making Homo sapiens stop polluting the 

environment. 

This story is interesting for a number of reasons. First, it tells us 

that vision – and other senses – are interfaces that do not necessarily 

reflect the world objectively, because they are optimized for utility 

[116, 117, 139]. Hoffman compares it to computer user interfaces, like 

that of a mobile phone. We do not need to know how the hardware 

works, and it would be inconvenient to manually shuffle electrons 

around to show cat pictures. The icons, glyphs and text on the screen 

comprise a useful interface. 

Some would argue “perception as an interface” is a problem for 

the cognitive sciences in general [82], as the research field(s) rely on 
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the assumption of animal and human perception as a view of 

objective reality. Instead, reality does not actually exist and is 

continuously constructed by the senses interacting with brains and 

bodies. 

The question of whether objective reality exists is slightly out of 

scope for this thesis. But similar questions arise from the view of 

predictive processing, where top-down predictions receive feedback 

from bottom-up sensing. Where in this hierarchy does our experience 

lie? If it is anywhere near the “top” then whatever we experience is 

mainly a prediction, not objective reality3.  

The predictive nature of our minds is often exploited by magicians 

[142] who also rely on phenomena like inattentional blindness [254]. 

Even more fitting for our investigations of state representations is 

perhaps boundary extension [124], the tendency to recall information 

that was not present in a previously seen photograph. The 

reconstructive nature of memory [230] fills in the blanks of partly seen 

objects. 

The second reason for the beetle story being of interest is how it 

nicely exemplifies the difficulty of categorisation. As touched upon in 

the previous section, and will be discussed further shortly, animals 

have to generalise between states that look different but are actually 

similar. While at the same time they must differentiate between states 

that look the same but are actually different. This leads to the third 

reason the beetle story is interesting. 

Obviously, the beetles have strong innate priors for the 

generalisation/differentiation process, whereas humans are more 

flexible. There is considerable debate as to how much of human 

behaviour is innate [77, 169, 255, 256] and it is not our focus, but there 

is no question today that behaviour is a construct of nature and 

nurture. Framed as learning, one could see innate behaviour as 

adaptation over evolutionary time. 

Humans do have innate priors, like the ability to recognise faces at 

birth [1] but we can also learn representations to perform activities 

like dancing, climbing, rocket science, painting or playing games like 

chess. In fact, expert chess players have learned to see the board in a 

way that they essentially only see legal moves and positions, unlike 

 

3 Of course, if we assume a materialistic world view, then our brains are part of 

reality, and thus mental predictions are by definition also part of objective reality.  
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beginners who have to exert effort to filter illegal ones [218]. Across 

the animal kingdom we can see examples of different degrees of 

innate abilities, for example mountain goats being able to climb steep 

cliffs only hours after birth [169]. 

In artificial intelligence research, a focus has been on so called end-

to-end learning [144, 179], meaning systems that learn to, for example, 

play games from scratch where the vision system is being trained 

simultaneously as action selection. In a way, then, that approach is 

more akin to training of a new-born rather than an adult. Yet, since 

the same studies often have to pre-define what a basic state consists 

of (for example a still frame of pixels), the approach is somewhat 

similar to experiments with adults where states are often pre-defined 

as single trials consisting of stimulus and action options. Artificial 

intelligence research has, however, recently started to take innateness 

into account, through an idea often termed inductive biases [8, 28, 

101]. 

So, what does all this mean for our question of how animals create 

states? There is an obvious difference between the evolved hard code 

for male beetles’ perception of objects that look like female beetles and 

the weaknesses in humans’ predictive inference perception, but it is 

fascinating that we understand little of how they are different. We also 

need to disentangle states and task structure, which compels us to 

look into (1) what are states and how are they created; (2) how states 

are informed by and combined into task structure; and (3) how task 

structure is summarized into a model, and how that model interacts 

with other processes like learning, attention, and memory. 

2 . 3 .1  F R O M  S I N G L E  S T A T E S  T O  T A S K  S E Q U E N C E S  

States are one of the core parts of RL, as we saw above when 

describing Markov Decision Processes (MDPs). In this mathematical 

formulation, states are inputs received from – and observed in – the 

environment. Traditionally, states, actions and reward functions have 

been taken for granted in the RL literature [59, 195], meaning they are 

commonly pre-defined as required by the experimental task. 

In such experimental tasks, a state is thus the idealized world 

participants see on the computer monitor and in machine learning the 

state is most often a vector of pixels. But as we mentioned above, in 

real world situations, observations are high-dimensional and 

continuous. This means, as already noted, there is need to both 
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generalize between states that look different but are actually similar 

while at the same time differentiate between states that look the same 

but are actually different. Perhaps it is counter-intuitive, but real-

world observations also do not have enough information to adhere to 

the Markov property4 since many situations require memory of 

previous events or inference of hidden causes. Furthermore, most RL 

algorithms converge for certain only when all states and actions have 

been visited an infinite number of times. Biological organisms cannot 

possibly try every possible sequence of actions. 

We will address the just mentioned points in turn, as much as is 

possible, as they are inherently connected. It is understandable that 

states have been taken for granted, given the incredible complexity 

involved in how additional systems would interact. But in the past 

few years, as the RL story has solidified, the field has started to move 

towards investigating the matter of states and task structure, with 

task structure standing in for models of the world [53, 59, 195]. 

Even disentangling the difference and relation between states and 

task structure is not straightforward. For example, Wilson and 

colleagues [302] define a state as “an abstract representation of the 

current location in a task”. Unless speaking of a specific task, and 

thereby coming back to the issue of pre-defining states, we can offer 

no further clarity to their definition. State and task structure are 

certainly intertwined, as what constitutes a single state may need 

exploration of the environment before solidifying, meaning in 

experimental terms being informed of states by the structure of the 

task. This is perhaps similar to “chunking” [176] in order to remember 

longer sequences. For example, remembering a nine-digit phone 

number is easier if one memorizes them in groups of three. Indeed 

there are such investigations related to learning, [104] provides 

several examples such as Chess masters only remembering useful 

board configurations, and the creation of subgoals by [123] 

mentioned above in the section on hierarchies. Lashley [147] phrased 

it as “all skilled acts seem to involve the same problems of serial 

ordering”. 

 

4 Future states depend only on the current state and action, not the past states. 

See section 2.1.3.1 
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2 . 3 .2  S T A T E  R E P R E S E N T A T I O N  I N  M A C H I N E  L E A R N I N G  

The problem of serial ordering – task structure – is sometimes also 

called representation learning [195]. Incidentally, the same term was 

long used in the machine learning community5, for what is today 

called deep learning. Although coming from different viewpoints, the 

combination of RL and deep learning have proved to work 

surprisingly well when scaled up, being able to play board games 

[250] and video games [4, 202] at expert human level and beyond. But 

such systems rely on massive amounts of data to learn useful policies 

and therefore consume massive amounts of computing power [3].  

It is not yet clear how informative such systems will prove to be 

with regards to underlying mechanisms of animal brains [59] 

(although deep learning shows promise predicting signals of the 

visual system [307]). This is especially so seeing how the complexity 

of deep learning systems may itself need interpretation [189, 229]. 

Furthermore, the above-mentioned systems also have problems 

handling new tasks and/or new situations [195]. 

However, an interesting new kind of representational structure 

called “transformer” [286] shows promise to perhaps handle new 

situations better. Briefly, transformers are a method for modelling 

sequential input combined with “self-attention” that provides 

importance weights to each part of the sequence and outputs a new 

sequence (a.k.a. sequence-to-sequence) [162]. The original paper [286] 

applied transformers to language translation and the method is now 

the standard in the natural language processing field, with recent 

models like GPT-3 [34] being so powerful it can generate text which 

is difficult to distinguish from that of humans. Even more intriguing 

is that transformers can be used not only for language, but also vision 

[136], music [120], chess [199], and mathematics [200]. Most relevant 

for our purposes is the decision transformer [43], which applies the 

method for RL problems by using state-action-reward sequences as 

input and outputs a sequence of optimal actions. So far, this only 

works off-line with an existing dataset of experiences, but research is 

ongoing to adapt it for on-line use [215]. 

Although inspired by the cognitive concept of attention, 

transformers are more like the psychological concept of priming 

 

5 One of the most prestigious conferences in the machine learning field is ICLR 

– the International Conference on Learning Representations. 
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[162], influencing subsequent attention to stimuli. However, cognitive 

attention is an important process in how humans create states from 

high-dimensional input. 

2 . 3 .3  A T T E N T I O N  T O  D E T A I L S  

Attention in psychological terms is a complicated topic in itself [162], 

but a good example of the kind of attention we describe below, 

selective attention, is the “cocktail party effect”. Even in a crowded, 

noisy room we are able to focus on a specific conversation (at least to 

a certain point). 

In a series of studies [155, 196, 303], Niv and colleagues show how 

such attention guides (state) representation learning, by finding task 

relevant features. They used the dimensions task, in which 

participants are shown three different stimuli on screen and have to 

pick one. The stimuli varied across three features (shape, colour, and 

pattern) with three variations for each feature, for example one 

stimulus could be a circle with red borders and dots inside of it. The 

most rewarding feature was decided based on a single feature, and 

thus subjects had to find this relevant feature by trial-and-error, while 

simultaneously learning the reward values across all stimuli. 

Computational models that included parameters for biasing state 

values with attention proved a better fit for participant behaviour in 

both the just described version of the task [196, 303] and one where 

features were replaced by object categories (faces, tools, buildings) 

[155]. In other words, attentional mechanisms influenced what 

feature participants were focused on. 

Intriguingly, the magnitude and focus of the attentional bias was 

itself influenced by the learned values and their prediction errors 

[155, 196]. This indicates that the state representation develops 

dynamically during learning in collaboration with RL mechanisms, 

concurring with results from other authors [40, 80]. 

Neuroimaging in the above studies showed correlations with 

prefrontal cortex activations for the attentional parts of the model 

when using the dimensions task. Based on these results, [213] propose 

a model where hypotheses about task structure direct top-down 

attention to task-relevant features. These features compose the state 

space over which RL learns values, and those values are used in the 

process of deciding which hypotheses to consider. It has been 

suggested that working memory, due to its limited capacity, helps to 
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focus attention and learning in this process [51]. Perhaps, under this 

viewpoint, the role of working memory is that it further helps to 

narrow down the number of hypotheses under active consideration.  

So, humans can find states through the interaction of task structure 

and attention. In other words, we overcome the “curse of 

dimensionality” by iteratively finding the most relevant features for 

the current task. But we need to be careful, so we do not 

overgeneralise across features and run into the beetle problem. We 

also have the need to differentiate. This functionality is tightly 

coupled with hidden info, as we shall see. 

2 . 3 .4  C L U S T E R I N G  S T A T E S  I N T O  B E L I E F S  

Both generalisation and differentiation between states rely on 

mechanisms to compare the existing observation with memory traces 

[51, 195], a process highly related to category learning [244]. In RL-

related studies this process also additionally involves inferring 

hidden causes and potential relations between such causes, in order 

to find appropriate states. 

For example, [102] demonstrates how participants group stimuli 

based on similarity. Participants were asked to provide an estimate of 

how many circles they saw on the screen. The circles shown on a 

specific trial were all either blue or green, but the colours varied 

throughout the task. In one experimental condition, the number of 

circles shown were drawn from two normal distributions with means 

65 and 35, for blue and green circles respectively. In a second 

condition, the distributions instead had means 65 and 55, for blue and 

green circles respectively. The average estimate for each colour was 

then calculated for each condition. The results showed that in the first 

condition, participants’ estimate for the blue circles was close to 65, 

the true mean. But in the second condition, participants’ estimate for 

blue circles averaged closer to 60, which is the combined mean of the 

blue (mean 65) and green (mean 55) distributions in the second 

condition. The authors therefore draw the conclusion that in the first 

conditions, participants were able to separate the two distributions 

into separate states, because the difference in means was large 

enough. But in the second condition, the means between the blue and 

green circle distributions were so close that participants clustered 

blue and green into a combined state. 
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Another study, [96] shows how state inference can explain the 

phenomena of spontaneous recovery in fear extinction. More 

specifically, when rats are trained to receive shock after a bell sound 

they will eventually display fear when hearing only the bell. To 

extinguish the behaviour, the bell sound is followed by nothing for a 

number of trials. In rats where behaviour is extinguished in that way, 

the fear behaviour may in many cases reappear after some time has 

passed. However, if using gradual extinction, meaning the shock 

following the bell happens less and less often (rather than going from 

continuous reinforcement to zero), then there is a much lower chance 

of the behaviour reappearing. 

This behaviour can also be explained by the concept of states, 

where in the regular extinction, the rat will infer that bell-no shock is 

a new type of state. Spontaneous recovery thus happens if the rat 

believes it is back to the bell-shock state (which might occur after a 

delay). But with gradual extinction, the rat infers only one state. In 

other words, for both humans and rats in the extinction studies above, 

there is a battle between learning and memory, where the first new 

kind of trial can either be put in the same cluster (RL) or a new cluster 

(structural learning). 

This clustering process can more formally be described as latent 

cause models [54, 94]. By associating multiple specific states, or trials, 

to either the same latent cause or separate ones the animal is able to 

generalise or differentiate. The state space can thus be built up 

iteratively, often modelled with Bayesian non-parametric models 

[94]. Despite the name, these models do have parameters, but they 

allow for potentially infinite number of parameters added 

dynamically through two generative processes6 called Chinese 

restaurant (single cause for each observation) or Indian buffet 

(multiple causes may generate an observation). 

When the state space is built up, there is still the question of where 

in the state space the animal might be. There is bound to be some 

uncertainty involved in this process, so we can assign a probability 

 

6 The processes have these names through analogy. In the Chinese restaurant, 

tables are latent causes and states are guests arriving. Each guest is assigned a single 

table probabilistically, as in a single cause for each state. In the Indian buffet, latent 

causes are different dishes. Here each arriving guest can sample multiple dishes to 

create a combined meal (state with multiple latent causes).   
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distribution over the state space. This is commonly referred to as 

belief states [9, 103] in the neuroscience literature and partially 

observable MDPs (POMDPs) in computer science [128]. Sometimes 

Hidden Markov Models (HMM), closely related to POMDPs, may 

also be used. For example, if task representations are known in 

advance, [112] show how action values are updated all at once when 

the task structure changes, which is better explained by modelling 

participants’ state beliefs as an HMM, rather than RL which updates 

only the value for the action that was actually chosen. 

We can now reconnect these theories on how states and state 

spaces are formed with the attentional mechanisms noted earlier. It 

may be the case that multiple sets of Bayesian belief states – each set 

representing a task structure – are considered as hypotheses of task 

structure [213]. This is similar to hierarchical theories on task set 

selection [54, 75], where the task set selection process has 

neurobiological correlates in prefrontal cortex [50, 72]. 

More specifically, work by [42] found that a full posterior 

distribution over latent causes better explained orbitofrontal cortex 

(OFC) activity than other models used. The authors drew on theories 

of episodic memory implying that memories are organized according 

to inferred schemas that specify situations and store previously 

learned relationships. Schemas thus require inference about the 

underlying situation or latent cause that generates observations, 

similar to states in RL [42]. 

2 . 3 .5  C O G N I T I V E  M A P S  

OFC indeed seems to be critical to representation of state spaces [76, 

235, 236, 302, 311], with Wilson and colleagues [302] calling OFC a 

“cognitive map of task space”. They show how OFC, due to its 

connections to multiple brain areas, is unique in its ability to 

disambiguate task states that are perceptually similar but 

conceptually different. OFC can do this, for example, by using 

information from working memory. 

By replicating behavioural results from four kinds of experiments 

(reversal learning, delayed alternation, extinction and devaluation), 

Wilson and colleagues [302] show that behavioural consequences of 

OFC lesions can be explained by impairment in the state space 

underlying performance on the task. By using reversal learning in a 

two-armed bandit task (see chapter 4 for more information on 
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reversal learning in two-armed bandits) as an example, their model 

can be explained by lesioned animals always being in one state that 

has two actions. When the reversal happens, the lesioned animal has 

to update both action values step by step to their new values. Healthy 

animals instead have two different states, each with two actions. So, 

when the reversal happens, these healthy animals switch state and 

can more quickly reach the correct action values (assuming action 

values are initialized to zero for example). This model generalises to 

probabilistic reversal learning tasks, and explains extinction and 

delayed alternation where animals need to integrate outcomes from 

multiple trials to infer what state or context they are in [302]. 

Furthermore, they show how spontaneous recovery, which we 

discussed above, is also affected in OFC lesioned animals. With a one 

state model, for example, the original association is actually erased 

during the extinction phase; but with two states, only one of them is 

affected. So, with passage of time the healthy animal becomes unsure 

if it is in state one or two, allowing for spontaneous recovery. 

Niv [195] proposes that OFC works as an abstract link to 

representations in other areas, providing a route to the integration of 

representations. Many of the mechanisms mentioned so far rely on 

memory in some form, and the concept of cognitive maps especially, 

are traditionally associated with hippocampus. Indeed, the 

hippocampus has been suggested to play a role in the process of 

clustering [195] mentioned above. Additionally, the hippocampus 

looks to be important for cognitive maps of state space in both spatial 

and non-spatial [237, 297, 312] tasks, as well as for state transitions 

[180, 235]. In short, it seems that Tolman [278] was right; animals do 

have internal models of the world – “cognitive maps”. 

The hippocampus has long been implied in memory formation and 

retrieval, as in the famous case of patient H.M. who due to epilepsy 

had most of their hippocampi and surrounding areas removed 

bilaterally. H.M. was subsequently unable to form new memories 

[186]. Other evidence includes the observations that London taxi 

drivers, who undergo extensive learning of all of London’s streets, 

differ in hippocampal structure [168] from controls. Furthermore, the 

hippocampus is important for imagining the future [114]. 

An important finding is that of place cells, which are hippocampal 

neurons that fire when an animal is in specific locations; for example, 
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within a maze [186]. Place cells not only represent the animal’s current 

location, but also those locations it has visited in the past. Place cells 

are supported by grid cells in the entorhinal cortex (EC) [187] as well 

as a multitude of other function-specific cells whose activity correlate 

with head direction, goal direction and reward vicinity [21]. 

More recently, it has been suggested this hippocampal-entorhinal 

system is not only involved in spatial cognitive maps, but may play 

an important role in structural abstraction for non-spatial relational 

knowledge [297]. This would predict a role for the hippocampus-EC 

system in the formation of latent states, as discussed above. This 

proposal appears to fit neatly with other studies showing a role for 

the hippocampal system in non-spatial tasks [14, 92, 194, 206, 237], 

time integration [284] and insight [175]. 

Although some findings indicate OFC having a larger role for 

future state representation than hippocampus [76], others suggest the 

hippocampal complex is highly important as a predictive map for 

long term reward prediction [257]. It seems that the more likely 

answer that both are important. Work by [312] suggests OFC and 

hippocampus play complementary roles, with the hippocampus 

being engaged especially during high memory load. Work by [35] 

builds on this and shows how future predictions work across 

multiple scales, with: anterior prefrontal cortex planning furthest into 

the future; orbitofrontal cortex and anterior hippocampus predicting 

medium time horizons; and the posterior hippocampus having the 

shortest future predictions. 

2 . 3 .6  T H E  S U C C E S S O R  R E P R E S E N T A T I O N  

One promising specific model for cognitive maps is the successor 

representation (SR) [99, 180]. We have mentioned it a few times above, 

and it will be described in detail in chapter five. Briefly, SR can be 

seen as a combination of model-free and model-based RL, where both 

future and past states can be encoded as rows and columns, 

respectively, in a table (in a limited, discrete state space scenario). This 

is intriguing because the SR can thus learn to approximate the state 

transition function. This therefore allows for a combination, or 

compromise, between MB and MF RL. SR-based algorithms has been 

shown to display and explain behaviour that otherwise would need 

either MF or MB RL [182, 227] as well as correlating with neuronal 
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activity in neuroimaging studies on spatial and non-spatial tasks [21, 

35, 92, 180, 183, 206, 257]. 

To go into further detail on some of those studies, work by 

Stachenfeld and colleagues [257] show how SR simulations display 

patterns that correlate with place and grid cell activity in rodent 

studies. Furthermore, SR combined with offline replay better explains 

human behaviour in revaluation tasks (where reward values and/or 

state transitions are changed between training and test) than either 

MF or MB RL [182]. In maze navigation simulations, using latent 

learning (see chapter five), revaluation and detour tasks – where 

previous paths to reward are blocked – can similarly be solved 

flexibly by SR with offline learning [227]. Garvert and colleagues [92] 

demonstrate SR equations are similar to graph theory and that SR 

correlates with neural activity for abstract relationships between 

objects. The same point is argued by Peer and colleagues [206] who 

show the similarity between spatial cognitive maps and graphs for 

structuring knowledge. Furthermore, Gardner and colleagues [91] 

demonstrate that using SR, it may be possible to recast dopamine 

prediction errors as more general sensory prediction errors, of which 

reward is but one such prediction error. 

2 . 3 .7  H I E R A R C H I C A L  S T A T E - A C T I O N  S T R U C T U R E  

It was mentioned above how actions can be seen as part of the state. 

The research on discovery and selection of actions is not as rich as that 

of “states” but has focused on options – sets or sequences of actions – 

and task sets [59]. The options framework was described above in the 

section on hierarchies, and work by [184] show that the generation 

and selection of such options seem to rely on partly different 

processes. One way of discovering options is by using the successor 

representation to find both states and action-options concurrently 

[166]. 

As noted above, task sets have their origin with Harlow’s learning 

sets [113]. In a two-choice bandit task, where the best option switches 

between experimental blocks, monkeys, and children “learn to learn”, 

meaning that after many blocks of the task they are quicker to adapt 

to the change than they are in early blocks. In other words, when you 

have experience of a task, as soon as you can identify the current task 

and fit it onto the structure of a previously learned task, you already 

know a lot about how to perform. Collins and colleagues [54, 72] show 



6 4          B A C K G R O U N D  

 

how such task sets can be created and selected between based on the 

current context. These proposals are similar in mechanism to the 

above mentioned attention based systems where frontal cortex 

maintains and selects between hypotheses for task structure [213]. 

The nice aspect of such task set models is that they are naturally 

hierarchical in nature (hence they can be called HRL, see chapter five). 

They can define context, state, and actions together in different 

configurations. Such HRL models were more recently used in [75], 

where they show HRL better accounted for human behaviour than 

either model-free RL or a hierarchical Bayesian model.  

2 . 4  S U M M A R Y  A N D  D I S C U S S I O N  

We started this chapter by looking at the history of RL and its 

mathematical foundations. We then discussed the two main families 

of RL algorithms, model-free and model-based, with the first seen as 

quick and habitual behaviour and the second as slower but more 

flexible planning behaviour. We contrasted this duality with that of 

dualities in other fields of cognitive science and saw how it is more 

likely a question of multiple systems, and not just two. 

Based on what we found about RL and multiple systems, we could 

then ask how animals create states. From that question we clarified 

three more pointed questions: (1) what are states and how are they 

created? (2) how are states informed by and combined into task 

structure? and (3) how is task structure summarized into a model, and 

how does that model interact with learning and memory? As we have 

seen these three questions are inherently entangled and are not easy 

or even possible to separate. 

However, the current research points towards a view that attention 

guides perception towards relevant features that can be used as states. 

Memory and inferential processes then collaborate to find (probable) 

causes of observations, and then categorize these observations into 

task representations consisting of multiple states. Animals track their 

current “location” in such task representations probabilistically, 

holding beliefs about the current state. These beliefs are further 

supported by predictive cognitive maps that help track state 

transitions and locations based on previous experience. Through 

feedback loops, attention and working memory can then utilise 

(reward) prediction errors to adjust and evolve hypotheses about task 
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structure, potentially changing what environmental details are used 

for the state representations. 

Episodic7 memories would provide priors for categorization and 

task structure hypotheses and these priors, combined with the current 

observations, result in the posterior belief state distribution of task 

structure. Creatures like the Australian Jewel beetle would have 

extremely fixed priors (evolutionary memories) for belief states 

whereas more flexible creatures like mammals have more flexible 

priors, provided via both learning and memory. The idea of priors 

being provided by evolution is something often taken for granted in 

free energy formulations [10] but it would make sense that some of 

these priors can be learned, especially in humans. 

More general frameworks like predictive coding and free energy 

fit well with the above research findings, where the processes 

involved are continuously updated based on reward and sensory 

prediction errors. These frameworks are obviously similar to the 

sensory prediction hypothesis [91]. 

For our purposes, we are interested in investigating how humans 

can quickly and flexibly adapt their representations of a task in order 

to find structure. We will do so with a new type of task, presented in 

chapter five. Thus, we are interested in computational cognitive 

models that build on the principle of RL and extend this principle 

with alternative state structures. Based on the existing research 

presented above, we chose versions of SR and HRL to model 

behaviour in our new task, details of which are also presented in 

chapter five. 

In order to fit computational models to behaviour, we need model 

fitting and selection methods. There are many such methods, all with 

different advantages and drawbacks. Neural network models, for 

example, are powerful but computationally demanding and difficult 

to interpret neurobiologically. We will instead generally focus on 

analytically tractable models; despite this the fitting of such models 

still has considerable complexities. We will demonstrate these 

complexities in chapter three and four and use our findings to select 

the specific methods to use for our investigations in chapter five. 

 

7 Most likely other types of memory like procedural memory also play a role, 

but the literature mainly focuses on episodic memory in this regard. Perhaps a 

future research venue? 
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3  M E T H O DO L O G I C A L  I N T R O DU C T I O N  B Y  

A N A LY SI N G  T H E  B A N DI T  TA SK  

“With four parameters I can fit an elephant, and with 

five I can make him wiggle his trunk.” 

– John von Neumann [172] 

In this chapter, we will introduce our methodology by demonstration, 

using the so-called Bandit task. This task is simple enough to make 

our analyses straight forward, yet able to highlight methodological 

complexities that have not been exhaustively explored in the existing 

literature. There is a recent trend however with authors making some 

of the points we will highlight below [74, 190, 203, 300]. 

The Bandit task gets its name from being conceptually similar to 

the "one armed bandits" - slot machines - often seen in casinos. In the 

case of a bandit with one arm we can make a choice between two 

actions; to pull or not to pull the arm. In the casino setting, one must 

deposit a coin for each pull, meaning there is a cost associated with 

that decision. But the potential reward can be many times more than 

the cost. Of course, that hope in the mind of the player is what the 

casino is betting on. 

In human reinforcement learning research the option of "no pull" 

or inaction is rarely considered8, and the same will be true for our 

purposes. What that means is that we need at least two arms for our 

bandit task to make the task interesting from an experimental 

perspective. Personally, I imagine this as one machine with two arms, 

but we could also see it as two machines with one arm each. 

The two arms are each separately connected to a certain probability 

of reward, usually with one arm having higher probability than the 

other. That means some exploration is needed to find the best option, 

demonstrating the exploration/exploitation problem mentioned in 

chapter two. Do we exploit the option we have so far learned to be the 

more rewarding or do we explore the other option for potentially 

greater rewards should the reward contingencies change? 

Furthermore, whether a cost is associated with a choice can differ 

between experiments. Sometimes, before each choice one makes a bet 

 

8 This would be an interesting research line in itself 
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on the payoff, but commonly that is not the case in the Bandit task. A 

more common variant when it comes to rewards is that wrong choices 

are associated with punishments. As mentioned in chapter two, the 

evidence for punishments being associated with the same circuitry as 

rewards are conflicting. Thus, we do not use punishments in our 

investigations, but rather see the absence of reward as being a simpler 

place to start. 

Importantly, the Bandit task does not have states. Or, from another 

viewpoint, it has only one state. One state, and two actions. This 

distinguishes it from the tasks we will investigate in later chapters, 

where different states will come into play. This simplicity of the 

Bandit task therefore makes it useful for us to explore first. We are 

mainly using it here to set the ground rules of our methodology for 

the subsequent studies and simulations. 

We could of course add more arms to increase the complexity of 

the task. This can be referred to as the n-bandit task or multi-armed 

bandit process, where the number of arms is represented by 𝑛. 

The bandit task can also be represented by playing cards, where, 

for example, we have two or several decks of cards to draw from. This 

version and its variants are often referred to as the Iowa Gambling 

Task [20, 36, 305] and has been used to study many psychological 

phenomena such as autism [309], depression [39] and schizophrenia 

[41]. 

There are myriad examples of how such a seemingly simple task 

can be useful as a model for real life events outside the lab. Just as 

statistical textbooks often use coin flips to demonstrate a probability 

distribution that can represent real situations such as whether 

someone has a certain disease, or if a treatment works or not; the 

Bandit task is the decision research equivalent. Any situation where 

an animal must explore two options in order to discover which one 

provides the bigger payoff can be modelled as a bandit task. The most 

obvious one being trying different foods to find out the one which 

provides the most sustenance or the nicest taste. For example, 

bumblebees searching for food in a newly discovered flower patch 

where flowers are of different colours [134]. Usually, however, there 

are more factors at play like the look and smell of the options – states, 

as we shall revisit in later chapters – but at a basic conceptual level 

many choice tasks can be described as bandit tasks [262]. 
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Here, we are not claiming any major new findings with regards to 

the bandit task itself. As mentioned above this task has been explored 

previously in many studies [70, 143, 185, 243]. However, as noted, it 

is useful to establish baseline properties of RL and to present our 

methodology. With regards to the methodology, there are some novel 

features, and we are going to present different modelling approaches 

and contrast their advantages and disadvantages. This has partly 

been done in previous research [65, 211, 261, 262, 300] but to our 

knowledge not as exhaustively as we attempt here. As mentioned 

above, there is a recent trend showing some of the basics of model 

fitting are not as simple as a reading of the literature would make you 

believe [74, 192, 203], and our investigations below further adds to 

this point. 

Furthermore, the methods established in this chapter are going to 

lay the foundation for investigations in subsequent chapters. Since 

those subsequent chapters will use more complex tasks and models, 

it's helpful to see how they work in a simpler case first. 

3 . 1  W H AT  A R E  M O D E L S ?  

Before getting into the details of our modelling methodology, we 

should discuss what models are and what they can tell us. Webb [296] 

discusses – in short – what robots can tell us about animal behaviour, 

a discussion that is appropriate here as well. Though we do not 

construct physical robots, our simulations can be seen as virtual 

robots demonstrating (limited) behaviour change via some sort of 

learning. What [296] says is we can see robots as models, but we 

should keep in mind how and where in the investigative process these 

fit, as per Figure 3.1. 
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A complementary view comes from the “three levels of Marr” 

[198], where we have the computational level (what is the problem), 

the algorithmic level (what is the solution), and the implementational 

level (what is the physical structure that runs the algorithm). In our 

case – reinforcement learning – our problem is optimal decision 

making (maximising reward and in some cases minimising 

punishment), the algorithm is reinforcement learning and as we have 

discussed previously the implementation is (mainly thought to be) 

dependent upon the dopaminergic system projecting to the 

mammalian basal ganglia. According to Marr, if we have support on 

all the three levels then we can say with greater certainty that the 

robot’s behaviour supports our hypothesis. 

Luce [165] brings up how difficult it is to fit the formal language of 

mathematics to something so inherently dynamic as human 

behaviour and defines four distinctions when it comes to 

(mathematical) modelling of behaviour. The first is that of 

phenomenological versus process models, where behaviour is 

explained by black box models (phenomenological) that are 

sometimes “opened” to investigate information flow (process). In 

both cases, these types of models are not explicitly linked to 

neurobiology although process models may sometimes be mapped 

onto a neural substrate. RL would here fall under the process 

category, and as explained above guided by Marr, we do make 

neurobiological connections. 

Figure 3.1 Overview of simulations (robots) as models of animal behaviour in the world. 

Our investigations draw from theories sitting on the middle row – source – and are 

implemented by computers (technology, top row) as simulations. These simulations can 

provide predictions of behaviour that we can compare to behaviour in the target system in 

the world (bottom row). Adapted from [296] 
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The second distinction is that between normative and descriptive 

models. Models are normative in the sense that humans should act 

according to some defined logic, but an accurate description of 

behaviour would include those decisions we make that are not fully 

based on the facts at hand. RL models are mainly descriptive, since 

decisions can be made before a full understanding of the task has been 

reached, and different parameter values allow for different 

behaviours. Our interest in whether there are marked individual 

differences across participants (and see the next section for more on 

individual differences) questions the extent to which these models 

can be normative. Presumably, big differences across people arise 

when they use differing underlying logic, or differing symbols (state 

representations) that the logic is applied to. Normative decisions 

could also be traded off in some people against the effort required to 

achieve the normative decision, and so participants opt for a non-

normative decision which involves less effort. 

The third distinction is about dynamic versus static models – both 

individuals and their environments change so should models include 

such aspects? This thesis is partly focussed on this dichotomy and the 

space in-between the extremes of fully dynamic or fully static. How 

static are states and what happens if we change their structure? We 

explore this with some of the more advanced models discussed in 

chapter five. The models discussed there can also handle – with 

different degrees of success – changes in the environment such as 

changing the location of a reward in a maze. 

The fourth distinction is that of noise versus model structure. For 

example, if one model fits our data better than another model, is that 

due to the structural differences of these models or is it due to noise 

in our data? In human psychological data, there will almost always 

be noise. Such noise can either be explicitly modelled or not. If there 

is differential fit between two models and neither includes 

randomness then the difference in fit is probably related to the 

structure of the model. If both models take random noise into 

consideration, then one model might fit better because its random 

component better matches the noise in the data. Alternatively, the 

difference in fit might arise from the non-random structural part of 

the model. In RL models, noise arises in the choices made by 

participants, and these choices – or action selections – may be 

modelled in different ways as described in section 2.1.4. We have thus 
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used the same the same choice algorithm, SoftMax, for all models 

under consideration in order to be more certain that any differences 

in fit are due to model structure rather than a difference in ability to 

model noise. 

The boundaries between the last three distinctions of Luce [165] are 

not necessarily very clear in themselves. Individual differences will 

be discussed in more detail below, but the points raised by Luce are 

important; how do we know if a difference in model fit is a matter of 

individual differences, model differences, or noise in the individuals’ 

decision making? 

It is often the case we have multiple hypothetical mechanisms 

(Figure 3.1) for why humans behave the way they do, but which one 

is the (most) correct one? By constructing a computational model of 

each such hypothesis, we can simulate the behaviour (top right in the 

figure) and produce predictions that can be compared to behavioural 

data (mid-right and bottom-right in the figure). By comparing how 

well the predictions of each model “fit” the behavioural data, we can 

draw conclusions about which model we believe is the most plausible 

one. This process would quickly become practically impossible to do 

manually (for example by visualising the behaviours in graphs). 

Thanks to computers, we can do these comparisons numerically, and 

use statistical approaches to finding what hypothetical mechanism 

best explains a certain target behaviour (Figure 3.1). This process of 

comparing models is called model selection or simply model 

comparison. Further details on model comparison will be given 

below (section 3.10). 

However, it’s appropriate to heed Webb’s warning that “a model 

that behaves like its target is not necessarily an explanation of the 

target’s behaviour.” [296]. 

3 . 1 .1  I N D I V I D U A L  D I F F E R E N C E S  

A common question in psychological research is to investigate how 

model parameters may correlate with other characteristics, such as 

personality as measured by a personality scale (e.g., Big5/OCEAN; 

[224]) or the presence/absence/degree of symptoms in some clinical 

population such as depression or schizophrenia [41]. Perhaps one 

learns slower in rewarding contexts if one is depressed, but there is 

no effect for learning in non-rewarding contexts? This could 
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potentially be reflected in a lower average learning rate in modelled 

behaviour (e.g., the alpha parameter in Q-learning models, below) for 

a group of patients with depression versus that of a healthy control 

group. 

This idea can be illustrated using Figure 3.2 and its top middle 

frame (continuous differences). Perhaps we hypothesise that healthy 

controls and patients both use the same model, but maybe they on 

average lie in different positions along the continuum of processes in 

the model. If so, we might expect that the controls are mainly the 

white dots on the left-hand side and patients the white dots on the 

right-hand side of an imagined line down the middle of the grey area. 

On the other hand, patients and controls may use different models 

altogether. This difference would then better be represented by the 

bottom middle frame of Figure 3.2, discrete differences, where the 

two groups are clearly separated. 

 
Figure 3.2 Different scenarios of individual differences in some experimental task. The white 

dots represent a specific parameterization common for one or several participants. The grey 

areas show the range of inferences possible to make about the white dot, based on behavioural 

data. Top left: There are no individual differences, and the true value is said to be the 

population mean of the measure of interest. Top middle: Individuals vary continuously 

around some common distribution, which is the case for hierarchical models discussed below. 

Bottom left: Each individual is different and there is no common structure between them, 

which is the case when we fit models individually below. Bottom middle: Individuals vary 

in what strategy (model) they use, which we will also see examples of below when some 

individuals are better explained by one model over another. Right: All the types of differences 

are combined, and we have differences in strategy (model) used and within those strategies 

people vary in how they are applied. Adapted from [18] 
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These questions of relating parameter values to individuals have 

in recent years become known collectively as computational 

psychiatry [122], rising in popularity together with the increased 

availability of computational power, and tools for fitting models 

becoming easier to use and more widely available. 

The common way to conduct experiments in the literature is to test 

models at the group level. Either for different populations, as in 

asking the question “is there a difference in learning rate between 

individuals with ADHD and those without?”. Or other times it can be 

about asking “in this experimental task do people use model free RL, 

model-based RL, or a combination of the two?”. 

An important aspect to keep in mind with many studies within the 

cognitive sciences is they disproportionately rely on Western, 

Educated, Industrialised, Rich, and Democratic (WEIRD) 

experimental subjects [115, 212].  For example, it is most common to 

recruit participants among university undergraduates, who receive 

course credits for participation. What is problematic with this is not 

only are these subjects a small subset of the world population, but 

they have also been found to be quite different from the average 

person [115].  

In recent years, online recruitment of participants has become 

more widely available with services such as Amazon Mechanical 

Turk (www.mturk.com) and Prolific (www.prolific.co). These 

services have been shown to provide both high quality data [37] and 

increased diversity compared with the typical university student 

samples [37, 205]. In other words, using online recruitment services 

for gathering data may alleviate some of the diversity issues with 

traditional experiment participants. However, the trade-off of using 

online testing is we sacrifice control in being unable to check what 

participants are doing and so may have to discard more data (see 

examples of this in chapter five). 

Issues with diversity do not necessarily invalidate existing results 

or approaches, but they highlight the question of individual 

differences. Perhaps it is the case that a majority of people use model-

based RL in some choice task, but other individuals actually use 

model-free RL. Some published work [18] shows very nicely how 

individuals might differ; see Figure 3.2. These group-based 
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approaches are not necessarily invalid, but they do gloss over the 

question of individual differences. 

“Fitting a model” is the process by which we can get a statistical 

measure of how well a certain model fits some dataset. For example, 

is it the case that a particular reinforcement learning model can 

accurately describe the behaviour of a human performing the two-

armed bandit task? One should however keep in mind that even if we 

contrast several models and one of them fits “best”, this is only the 

best-fitting among the ones we have tested. There will always be, due 

to practical constraints, a larger space of models not considered 

relative to the small number of those actually considered. 

Considering how difficult model fitting is to get to work well at all 

[65, 74, 300] (also see below), it is perhaps no wonder that the question 

of individual differences is not commonly brought up. But it is still an 

important aspect to keep in mind and has important implications for 

what we can infer from model fitting [74] and how generalisable the 

findings are [190]. 

Exhaustive demonstrations of the model fitting methods we 

present below have occasionally been done separately before [65, 150, 

300], but to our knowledge have rarely (perhaps never) been 

presented without making the case for  one method over the other. 

So, in this chapter, we focus more on contrasting them to prepare for 

later investigations with more complex tasks. 

Nevertheless, despite the difficulties of model fitting, it can still be 

a useful tool, if one remains aware of the classic adage that “all models 

are wrong, but some are useful” [30]. 

3 . 1 .2  O U R  A P P R O A C H  

Having introduced the concepts of models and model fitting, as well 

as issues to consider, we now turn to explaining our approach. 

It is often the case that we may have multiple hypothetical 

explanations for why humans behave the way they do, even in a 

simple task such as the Bandit task. Here is where model comparison 

approaches are helpful in cases where it may be difficult to ascertain 

from visual exploration of simulation data alone which of the model’s 

possible behaviours look most similar to participant data. We show 

below (for example section 5.2) how just increasing the number of 
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parameters from two to three can make it difficult to get a visual sense 

of a model’s possible behavioural space. 

Then, if we are reasonably certain that a specific model is useful, 

we may look at specifics of that model. As discussed above, maybe 

we suspect that there are differences between healthy control 

individuals and some patient group in their average value on a 

particular model parameter. This could be very useful to understand 

such patient groups better, and how to implement more appropriate 

support for their wellbeing. 

What this thesis will show, however, is that such inference about 

differences in parameter values is very difficult to achieve. We will 

show that the uncertainty of the recovered parameter value for a 

single individual is often quite high, such that there is difficulty to 

locate an individual’s value of a specific parameter with any 

precision. We might be limited to an ability to separate groups of 

individuals in terms of their average parameter values only. Going 

back to Figure 3.2, we will argue that “continuous differences” (top 

middle) can be very difficult to detect, and often results in only being 

able to see multiple individuals as the top left frame (“no 

differences”). 

For that reason, this thesis’ main focus in later chapters will mainly 

be on model comparison/selection (bottom left, “full differences” in 

Figure 3.2), rather than parameter value inference. The goal, however, 

is of course to be able to rely on our parameter values – we would like 

to achieve what is shown in the big frame to the right in Figure 3.2. 

We show the weaknesses of current methods in the hope they can be 

improved in the future. This is also the reason we choose to work with 

fairly simple models, rather than more complicated ones such as 

neural networks. Those kinds of models have so many parameters 

that it would be extremely difficult to relate behavioural differences 

to any specific parameter, even at a group level. Finding out exactly 

what parameters do what in neural networks is an active area of 

research [85, 160]. 

Because of their size it is also non-trivial to fit neural network 

models to behavioural data, both methodologically and because of 

time. The aspect of time – that it can take many hours to fit a model 

to data – will be discussed throughout this thesis. When it comes to 
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methods for fitting neural network models to behavioural data, there 

is promising work done by Dezfouli and colleagues [69, 70]. 

3 . 2  M O D E L S  A N D  TA S K  PA R A M E T E R S  

We will now take a closer look at the details of the task and the 

algorithms and models used with this task. As mentioned above, the 

bandit task we will be using is a two-armed bandit task, henceforth 

referred to as the Bandit task. This task has three task parameters: the 

reward probabilities for each of the two arms and the number of trials 

(the number of pulls on the arms). We will refer to these parameters 

as 𝑝𝑎𝑟𝑚1 𝑟), 𝑝𝑎𝑟𝑚2(𝑟) and 𝑇 in equations when presented in text. In 

code9 they are referred to as arm1, arm2 and trial_count. 

For our first simulations, and later model fits, we are going to use 

Q-learning [267, 295] and an algorithm making random choices, 

which has a possible bias for picking one arm more often than the 

other. We call the latter algorithm simply RandomBias. 

Q-learning commonly has three model parameters: learning rate 𝛼, 

discount parameter 𝛾 (which determines the influence of expected 

future rewards) and, for choosing actions, uses either the SoftMax β 

parameter or ε-greedy choices with the ε parameter. However, an 

issue with ε-greedy is that likelihoods may become intractable and 

therefore difficult to recover [63, 190], and we thus focus on SoftMax. 

Here we will also leave out the discount parameter, because in a task 

such as the bandit task we are looking at one-step rewards (i.e., the 

action on each trial is followed by a reward or non-reward event). The 

discount parameter is useful in tasks where there are multiple steps - 

multiple action choices - needed before a reward is found. In the 

computer science literature this may be called "sparse rewards" [268]. 

In a later chapter we are going to contrast Q-learning with two 

parameters and Q-learning with three parameters to demonstrate this 

difference (section 5.2). 

In this chapter then, we use Q-learning with two parameters: 

learning rate 𝛼 and the inverse temperature 𝛽. The latter is sometimes 

called 𝜏 in the literature. Henceforth this version of Q-learning will be 

called "QL2". QL2 is thus the equation: 

 

9 https://github.com/fohria/phd_thesis 
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 𝑄t+1
(𝑎t) = 𝑄t

(𝑎t) + 𝛼 (𝑟t − 𝑄t
(𝑎t)) 3.1 

where 𝑎𝑡 ∈ (1,2) denotes the arm chosen (or action)10, 𝑟𝑡 is the reward 

on trial t, and 𝑄𝑡 holds trial to trial values representing the values of 

the different actions. Note that only the selected action’s value is 

updated. 

Because the Q values vary independently, we use SoftMax to create 

a choice probability vector from the Q values: 

 
𝑝t

(𝐚) =
𝑒𝑄t(𝐚)

∑ 𝑒𝑄t(𝐚)
 

3.2 

where 𝒂 = {𝑎1, 𝑎2}. 

Together, equations 3.1 and 3.2 can be combined into an algorithm 

as seen in Code Snippet 3.1. 

Q = np.array([0.5, 0.5])  # init with equal probabilities 

 

for trial in range(trial_count): 

 

    # compute choice probabilities using softmax 

    q_soft = Q - np.max(Q) 

    probabilities = np.exp(beta * q_soft) / np.sum(np.exp(beta * q_soft)) 

 

    # make choice based on choice probabilities 

    actions[trial] = choose([0, 1], probabilities) 

 

    # generate reward based on choice 

    rewards[trial] = np.random.rand() < bandit[actions[trial]] 

 

    # calculate prediction error and update action values 

    delta = rewards[trial] - Q[actions[trial]] 

    Q[actions[trial]] += alpha * delta  

Technically, α may be larger than 1 but in practice this is rare and 

will lead to instability. So, we assume a parameter value range of 0 <

𝛼 < 1. For β, its effect on the Q-values is that β values closer to zero 

decreases the difference between the Q-values, thus increasing 

explorative behaviour (or stated differently, increasing random 

 

10 In Python code, index starts from 0, so there arms would be 0,1 instead 

Code Snippet 3.1 Q-learning algorithm in Python. It uses two parameters: learning rate α 

and SoftMax temperature β. The “np” is short for numpy, a standard mathematical library 

for Python. 
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choice of actions). Higher values of β will accentuate any difference 

between the Q-values and cause increasingly greedy behaviour, i.e., 

picking the action with the higher value. The possible parameter 

value range is thus 𝛽 > 0, but in practice we will most often use 1 <

𝛽 < 20. Below we investigate how different values of α and β impact 

performance. 

The randomly playing agent, from here on called "RandomBias" 

agent, picks a random action on each trial. But it may have a bias 

towards picking one arm over the other, which is controlled by the 

parameter 𝑏𝑖𝑎𝑠. The probability of the RandomBias agent to pick each 

arm is thus expressed as: 

𝑝𝑎𝑟𝑚1 = 𝑏𝑖𝑎𝑠, 𝑝arm1 + 𝑝𝑎𝑟𝑚2 = 1 

The RandomBias agent therefore doesn't need to use a choice 

function such as SoftMax as the model specifies action probabilities 

directly. Thus, the parameter range for bias is 0 < 𝑏𝑖𝑎𝑠 < 1. 

3 . 2 .1  N O T E  O N  T E R M I N O L O G Y  

Here we also introduce certain terminology to more easily distinguish 

between different parts of our investigations. In simulations, we will 

refer to artificial agents as either agents or subjects. These agents or 

subjects "play" a task, for example the bandit task. Often, we perform 

multiple simulations for a specific parameter value combination for 

an agent, where we refer to it as agent or subject repetitions. Later, 

when including human participants in our investigations, we may 

refer to them as subjects or participants depending on the context. 

Importantly, when we "fit models" we use the term model - even 

though technically an artificial Q-learning agent and a Q-learning 

model are the same thing. 

When investigating how well the models can be fit to data, we will 

simulate data using known agents and parameter values. Then we fit 

models to this data and see how close we get to true parameter values 

(a process often referred to as testing “parameter recovery”), as well 

as if we can identify what agent type generated the data. Often we 

refer to the resulting datasets as “simfits”, short for simulations and 

fits. 
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3 . 3  S I M U L AT I N G  P E R F O R M A N C E  I N  T H E  B A N D I T  TA S K  

To explore the task performance of our agents in the bandit task we 

will first stick to one specific variant of the Bandit task with task 

parameters: 

𝑝𝑎𝑟𝑚1(𝑟) = 0.2, 𝑝𝑎𝑟𝑚2(𝑟) = 0.8, 𝑇 = 1000 

For both arms, 𝑟 = 1 if a randomly generated number is below 

𝑝(𝑟), otherwise 𝑟 = 0 (see above Code Snippet 3.1). It is not important, 

in this example, that we have arbitrarily chosen the task parameters 

such that 𝑝𝑎𝑟𝑚1(𝑟) + 𝑝𝑎𝑟𝑚2(𝑟) = 1.0. 

For each agent type (QL2 and RandomBias), we randomly generate 

1000 combinations of its agent parameter values. These values were 

generated individually for each agent in the following way: 

𝛼𝑄𝐿2~𝑈(0, 1), 𝛽𝑄𝐿2~𝑈(1, 20), 𝑏𝑖𝑎𝑠𝑅𝑎𝑛𝑑𝑜𝑚𝐵𝑖𝑎𝑠~𝑈(0, 1) 

We also repeat simulations with each such agent parameter 

combination 100 times to get an average performance for that model 

parameter combination. This is due to the inherent random variation 

across runs for the same parameter combination11. We also calculate a 

score - on each trial - which is based on whether the agent picked the 

correct arm or not. Correct here means choosing the arm with higher 

reward probability. 

 

11 If we run one agent with a specific parameter value combination, say 𝛼 = 0.3 and 

𝛽 = 5, 100 times, we will get an average sum of correct choices of 940.5 (SD 14.6). 
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As seen in Figure 3.3, the score is the total sum of all correct choices, 

where a correct choice is picking the arm with the highest reward 

probability. In the plot we can see that the QL2 agent learns this well 

enough to get an average score of 920 (SD 83), while the RandomBias 

agent nicely has an average of around the middle possible, 493 (SD 

294). 

3 . 3 .1  E X P L O R I N G  E F F E C T S  O F  V A R Y I N G  M O D E L  P A R A M E T E R S  

Overall performance across the two agent types regardless of 

parameter values, as done above, is useful to make sure our agents 

perform in the way we expect. In this case it so happens that we see 

an overall pattern between the two agents, but it could have been the 

case that QL2 performance was only good for specific parameter 

combinations. For simpler models this can be easier to predict, such 

as for the RandomBias agent where there will be a good correlation 

between agent parameter value and score. Depending on our goals 

we may also be interested in what parameter combinations – if any – 

are better than some others.  

For those reasons just stated, we should also investigate 

performance across different parameter combinations. We call this a 

"parameter sweep", where we define a range of values for each 

parameter. For the QL2 agent, which has multiple parameter values, 

we combine the ranges across all permutations. As before, we 

Figure 3.3 Performance summary for agents QL2 and RandomBias playing the Bandit task 

for 1000 trials. Score is calculated as the sum of correct choices, where correct choice is the 

arm with higher reward probability. 
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simulate each parameter combination 100 times to get an average for 

that specific parameter combination. The values used for these 

permutations for the QL2 β parameter was 1, 2, 5, 10, 20. The 

remaining two parameters are as below, where the first number is the 

start, the second number is the end, and the third number is the step 

size. 

𝛼𝑄𝐿2: 0.01 → 1.0;  0.02                    𝑏𝑖𝑎𝑠𝑅𝑎𝑛𝑑𝑜𝑚𝐵𝑖𝑎𝑠: 0.01 → 1.0; 0.01 

For clarity, this means 50 α values and 100 bias values. As an 

example, one QL2 parameter combination is α=0.03, β=5. For this 

parameter combination, 100 subjects are simulated, and their scores 

averaged. Since we have 5 β values and 50 α values, we have 5 ∗ 50 =

250 parameter value combinations. 

In Figure 3.4 we have our QL2 agent to the left and our RandomBias 

agent to the right. Note here we use 𝑝(𝑐𝑜𝑟𝑟𝑒𝑐𝑡) - probability of 

picking the correct arm - as our measure on the y axis instead of the 

total sum of correct choices as we did above. 

 
Figure 3.4 Probability of picking the correct arm – the arm with highest reward probability 

– for parameter sweeps with QL2 (left) and RandomBias (right). Left: QL2 agent 

performance. X-axis represents the α parameter space and the differently coloured lines are 

different values of β. Right: RandomBias performance. Note that y-axis differs between the 

left and right plot. Shaded areas around lines represent 95% confidence interval. 
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In the left part of Figure 3.4, we can see how the probability of 

correct choice (y-axis) depends on 𝛼 (x-axis) and 𝛽 (coloured lines). 

What can be gathered is that for high performance (high probability 

of correct), we would like 𝛼 < 0.4 and 𝛽 > 5. At higher 𝛼, performance 

decreases because with a high learning rate, what Q-value is currently 

biggest will be more likely to oscillate depending on the reward 

received on the last trial (as implied by Equation 3.1 above). Since 

higher 𝛽 means greedier (i.e., exploitative) behaviour, the 

combination of high 𝛼, 𝛽 together means behaviour becomes slightly 

more oscillatory and thus performance suffers overall. 

In the right part of Figure 3.4, we see that our RandomBias agent 

behaves precisely as expected. If it has 𝑏𝑖𝑎𝑠 = 0 (left side of x-axis) for 

picking arm1, that means conversely that it will always pick arm2, 

which is the correct arm. As we follow the x-axis, we get higher bias 

for arm1 and thus the probability of picking the correct choice 

becomes lower. 

3 . 4  E X P L O R I N G  TA S K  PA R A M E T E R S  

Another aspect to look at is how variations of the task itself can impact 

performance. Following on from the performance we just looked at 

above, we can easily look at how agent parameter combinations differ 

between different trial counts for the Bandit task. Since every trial is 

the same, we can use the same data as above and look at the first n 

trials and compare performance. Here we will only do this for the QL2 

agent, since we have already established that the RandomBias agent 

works as we expect, and it is not very interesting to look at this agent 

further here. 
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In the left part of Figure 3.5, we see performance for the first ten 

trials. With β > 10, the agent is quite greedy and so finds and sticks 

with the correct arm. It can thus reach eight or nine correct choices 

within these first ten trials, across a wide range of alpha values. 

Specifically, α needs to be somewhere between 0.2 and 0.6 in order to 

reach those eight or nine correct choices. Meanwhile in the right side 

of Figure 3.5, we see that within the first 100 trials the overall 

behaviour is already quite like that for the 1000 trials plotted in the 

left side of Figure 3.4. But here we have slightly wider confidence 

interval shadings, since we only have a tenth of the trials to average 

over. 

3 . 4 .1  V A R Y I N G  B A N D I T  A R M  R E W A R D  P R O B A B I L I T I E S  

Finally, we can also investigate the effect of varying the arm reward 

probabilities for the bandit. We do this in two different ways. First, 

we assume 𝑝𝑎𝑟𝑚1(𝑟) + 𝑝𝑎𝑟𝑚2(𝑟) = 1. In other words, we vary the arm 

reward probabilities in a dependent manner. The range of values used 

are 0.1 ≤ 𝑝𝑎𝑟𝑚1 ≤ 0.9 in steps of 0.1, totalling 9 values for 𝑝𝑎𝑟𝑚1. 

Second, we let both arms vary independently in the range between 0 

and 1; 𝑝𝑎𝑟𝑚1,𝑎𝑟𝑚2(𝑟) ∈ (0, 1). We use the same range as just mentioned 

above, but now use this for both arms and create all permutations of 

these resulting in a total of 81 value combinations. In both cases we 

use a QL2 agent with somewhat arbitrarily chosen (but guided by the 

results in the previous section) parameter values 𝛼 = 0.3, 𝛽 = 5 to 

emphasise that in this part of the demonstration we keep the agent 

stable while varying the task parameters. As earlier, for each arm 

Figure 3.5 QL2 performance across different number of task trials. Left; 10 trial long Bandit 

task. Right; 100 trial long Bandit task. Coloured lines in both plots represent different values 

for β parameter. Shaded areas around each line represents 95% confidence interval. 
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reward combination, we simulate 100 agents to get an average across 

runs. 

 

In Figure 3.6, left, we have plotted the reward probability for arm1 

on the x-axis. Since the arm reward probabilities are dependent on 

each other, the reward probability for arm2 is 1-arm1 for each point 

on the x-axis. We can see that this produces a nicely symmetrical 

performance plot, where the probability of picking the correct arm is 

50/50 when 𝑝𝑎𝑟𝑚1(𝑟) = 𝑝𝑎𝑟𝑚2(𝑟) = 0.5. Probability of correct choice 

then goes up towards the left or right as one arm gets higher 

probability of reward than the other. More interestingly, we can see 

how the blue line for 10 trials is much lower than the others, and how 

already at 20 trials, the difference to 50 or more trials is not huge, less 

than 0.1. 

In the right plot of Figure 3.6, the arm reward probabilities vary 

independently. The x-axis shows the difference in arm reward 

probability, regardless of the absolute probability value. Here we see 

a similar pattern in that after around 20 trials, the difference in 

average performance is fairly small when increasing the number of 

trials in the task. 

Figure 3.6 Impact of arm reward probability differences for the Bandit task. Left: Arms vary 

dependent on each other, so their individual reward probabilities sum to one. X-axis show 

probability for one of the arms. Right: Arms vary independently of each other between zero 

and one. X-axis shows the difference in reward probability between the arms. Both; shaded 

areas around each line represents 95% confidence interval. 
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One overall conclusion we can draw here is that already around 

100 trials, average aggregated behaviour for the QL2 agent is quite 

like that for 1000 trials. This can be an important insight when 

planning experiments involving humans, as they are easily bored by 

such a simple task as our two-armed Bandit task. Putting a human 

through 100 trials is much more reasonable than having them do 1000.  

At the same time, 100 trials may not yield enough data for more 

involved statistical analyses. In order to inform such subsequent 

analyses, it’s important to understand the task variations and their 

interactions with agent types and parameters. We shall presently see 

how in the next sections. 

3 . 5  R E C O V E R I N G  PA R A M E T E R S  W I T H  M A X I M U M  

L I K E L I H O O D  E S T I M AT I O N  

The standard and straightforward method of fitting a model to data 

is maximum likelihood estimation (MLE). For a model m, we wish to 

find parameters 𝜽𝒎 such that that they maximize the likelihood of our 

data D. This can be written as: 

𝑝(𝐷|𝜽𝒎, 𝑚) 

What we would like to find then, is the probability of 𝜽𝒎, in order 

to maximize it, i.e., 

𝑝(𝜽𝒎|𝐷, 𝑚) 

According to Bayes’ Rule, we can write this as: 

 𝑝(𝜽𝒎|𝐷, 𝑚) ∝ 𝑝(𝐷|𝜽𝒎, 𝑚) ⋅ 𝑝(𝜽𝒎|𝑚) 3.3 

where 𝑝(𝜽𝒎|𝑚) is the prior probability of the parameters. The 

above can be described as that the posterior probability of 𝜽𝒎, given 

data D, model m is proportional to the likelihood (first term on the 

right-hand side) of the data D, given parameters 𝜽𝒎, model m 

multiplied by the prior probability of the parameters 𝜽𝒎, given the 

model m. We will come back to discussing probability distributions 

below when we look at Bayesian parameter estimation methods, but 

for now we will be satisfied with point value estimates of 𝜽𝒎, since 

that is what MLE provides. 



3 . 5   R E C O V E R I N G  P A R A M E T E R S  W I T H  M A X I M U M  L I K E L I H O O D  

E S T I M AT I O N        8 7  

Because the left- and right-hand sides in Equation 3.3 are 

proportional to each other, the relationship still holds if we treat the 

prior probability of 𝜽𝒎 as flat (e.g., ignore it). Therefore, for the 

purposes of MLE, we are left with: 

 𝑝(𝜽𝒎|𝐷, 𝑚) ∝ 𝑝(𝐷|𝜽𝒎, 𝑚) 3.4 

If we define �̂�𝒎 as the parameter values that maximize the 

likelihood (right-hand side of Equation 3.4), then that is our 

maximum likelihood estimate (MLE). 

In our simulations and experiments, our data D consists of 

observed choices c at each trial or timestep, together with an observed 

or implied reward r. If 𝐷 = (𝑐𝑡, 𝑟𝑡), then our likelihood looks like: 

𝑝(𝑐𝑡|𝐷, 𝜽𝒎, 𝑚) 

And thus, the probability of some sequence of choices and rewards 

is the product across all trials T: 

∏ 𝑝(𝑐𝑡|𝐷, 𝜽𝒎, 𝑚)

𝑇

 

Furthermore, since the probabilities at each time step are small 

values less than 1, the above product will quickly become too small 

and close to 0 to be computationally tractable even for small numbers 

of T. Therefore, what is almost always maximized is not the above 

product but instead the log-likelihood sum, which is mathematically 

equivalent. If we define the maximized log-likelihood sum as 𝐿�̂� we 

then get the final form of the expression that we seek: 

 𝐿�̂� = ∑ log 𝑝(𝑐𝑡|𝐷, 𝜽𝒎, 𝑚)

𝑇

𝑡=1

 
3.5 

To evaluate and find the maximum 𝐿�̂�, we have two alternatives. 

One is the brute force approach – evaluate the likelihood function for 

as many parameter combinations as we can and pick out the one with 

the highest 𝐿�̂�. This may work okay for simpler models like QL2 

where we only have two parameters but will quickly become 

infeasible as we increase the parameter count and number of trials. 

The more efficient approach is to use optimization algorithms 

implemented in existing software packages, such as the minimize 
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function in Python’s SciPy [289]. The careful reader will notice that 

the function is meant to minimize a function, but this is easily 

overcome as we can simply have our log-likelihood function return a 

negative log-likelihood. With all our tools in place, we shall now see 

how they can be applied. 

3 . 6  S I M U L AT E  A N D  F I T  Q L 2  

We start with an overall recovery analysis of our QL2 model. We 

simulate 1000 artificial QL2 subjects, where each subject receives 

random parameter values for α and β drawn from uniform 

distributions: 

𝛼 ∼ 𝑈(0,1)        𝛽 ∼ 𝑈(1, 20) 

Our subjects will play the Bandit task for 1000 trials, where the arm 

probabilities are: 

𝑝𝑎𝑟𝑚1(𝑟) = 0.2          𝑝𝑎𝑟𝑚2(𝑟) = 0.8 

For each subject, we record the actions and rewards received and 

feed those into SciPy’s minimize function. The function requires us to 

specify maximum bounds for the parameter values to be tested. 

Technically, there are unbounded optimization algorithms to pick 

from in the same SciPy package, but these can often lead to unstable 

computations, leading to numerical errors or even program crashes. 

We have chosen to bound α between zero and one, and β between one 

and 40. Note that the range of possible fitted β values is twice as large 

than the actual values used for simulations. We do this to investigate 

the scenario where we want to assume as little as possible about our 

data yet have reasonable boundaries for stable computations. 

Although it would be possible to imagine α being more than one, such 

large step sizes are uncommon and can also lead to huge Q-values for 

each action, in turn causing high chance of overflows [65]. We set a 

fairly high upper boundary for β for two reasons. One reason is to 

demonstrate that for real data, we do not know the real parameter 

values that were used to generate the data, even if we knew the exact 

model used to generate that data. Second, this large upper bound can 

be useful to identify cases where the likelihood surface (see Figure 
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3.8) is such that precise parameter value estimations are incredibly 

difficult. 

These 1000 simulations and model fits can be done very fast, less 

than 30 seconds on a modern laptop and less than four minutes on a 

laptop from 2015. This is thanks to three points. First, the SciPy library 

optimize function as mentioned above. Second, we have optimized 

our simulation and likelihood functions using Numba [145], which 

compiles Python code into C code on the fly. Third, by using the 

Python built in library multiprocessing for easy use of multicore 

processors12. 

For each simulate-and-fit (simfit) pair, we save the 

(𝛼, 𝛽)𝑠𝑖𝑚 , (𝛼, 𝛽)𝑓𝑖𝑡 point values and calculate the absolute distance 

between the values like so |𝛼𝑠𝑖𝑚 − 𝛼𝑓𝑖𝑡|, and equivalently for β. We call 

these “α distance” and “β distance”, respectively. Note that due to 

inherent randomness in action choices, even when using a fixed 

random seed for generating the parameter values used for 

simulations, we will still get variation in fitted parameter values as 

the observed actions can still vary, as exemplified earlier when we ran 

100 subjects with the same parameter values (see footnote 11). 

Because of this variation, we do not get the same values each time we 

run the code. However, the general trends and types of outliers etc., 

still occur between each run, so the precise values reported below can 

be considered as representative examples. 

 

12 See the code repository for details, https://github.com/fohria/phd_thesis 
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In Figure 3.7, the results from our simfits are plotted. For α, the 

correlation is quite good with 𝑅2 = 0.98. But for β the story is slightly 

worse. We have 𝑅2 = 0.70 which may sound all right, but as we can 

see in Figure 3.7, there are an additional two main patterns that 

complicate the picture. It is striking that these complications arise 

even when we have 1000 trials in each simulation. As already noted, 

this number of trials will far exceed the number of trials used in most 

human learning experiments. With fewer trials one would expect the 

quality of the parameter recovery to be poorer. We explore this issue 

more fully below. 

First, by following the y-axis for β upwards, we see that below 

simulated β of around 6, the correlation is quite strong. Above that we 

start getting overestimations for fitted β values to a larger and larger 

degree as the simulated β increases. This is because, as seen in Figure 

3.4, as we increase β, behaviour increasingly becomes greedier, 

always selecting the action with the higher Q-value. So, for larger β 

the difference in behaviour between agents is hard to distinguish, 

since random variation can cause an agent with 𝛽 = 10 to pick actions 

in a way indistinguishable from one with 𝛽 = 20. 

Figure 3.7 Correlation plots between parameter values used in simulations (y-axis) and 

recovered parameter values found by fitting the QL2 model (x-axis). Colour and size of dots 

indicate the absolute distance between simulated and fit value as per legends. Left: α 

parameter (learning rate). Right: β parameter (inverse temperature). Note that x-axis for β 

plot has double the range as its y-axis. Also note there are sizes smaller than the legends 

show but not bigger. 
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Second, for β more than around 6 we have increasing number of 

cases where estimates “hit the wall” of our boundary of our fitted beta 

values (max=40). Sometimes, this might indicate implementational 

errors or that our model doesn’t explain the data [65] but, in this case, 

we know what model we used to generate the data. When we hit the 

wall here, it is due to the same issues mentioned in the previous 

paragraph, and MLE is simply not equipped to handle these cases. 

Since we know that we have simulated with β at a maximum of 20, 

and say we accept fitted values within a very generous error range of 

10, we can check how many cases have a fitted 𝛽 > 30. For the 1000 

simfits we did, 98 of them meet this criterion.  

Another way to view this issue is to look more directly at the 

likelihood surface, created by using a specific sequence of data and 

calculating the likelihood across a wide range of parameter values. 

This is essentially the brute force way of calculating the likelihood, 

mentioned above as impractical. But it is useful to demonstrate how 

the just mentioned issues arise. 

We thus select values for a QL2 agent that are informed by the 

above results to allow for the possibility of fits that hit the wall. The 

QL2 agent thus uses 𝛼 = 0.5, 𝛽 = 12 and we simfit it for the Bandit 

task 200 times. We save all actions and rewards, and then select one 

of the best fitting value pairs (𝛼 = 0.51, 𝛽 = 11.97) and one of the 

worst (𝛼 = 0.77, 𝛽 = 40.0). The resulting likelihood surfaces for the 

two cases are plotted in Figure 3.8. 
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As seen in the figure, the choice and consequent reward sequences 

result in likelihood surfaces that look quite different. In one case, the 

maximum likelihood sits along a ridge far from the value we are 

looking for (Figure 3.8, left), and in the other case the maximum 

likelihood is right where x marks the spot (Figure 3.8, right). 

Remember, these sequences are generated by the same agent, and we 

can here clearly see how this method can be problematic, at least for 

some models. For Q-learning the issue is that β and α are not 

independent in their influence on performance (as seen in Figure 3.4). 

This characteristic can create the problematic likelihood surface that 

is illustrated above. 

3 . 7  R E C O V E R Y  Q U A L I T Y  W I T H  VA R Y I N G  N U M B E R  O F  

T R I A L S  

As mentioned above, it is unlikely we would get humans to do 1000 

trials of any task, especially such a boring task as the two-armed 

bandit. Then again, we would perhaps find that casinos hold 

enormous data stores on humans doing exactly that. Unfortunately, 

we do not have access to such data. 

Figure 3.8 Likelihood surfaces for two separate choice sequences, both generated by the same 

QL2 agent. Red cross is the parameter combination for the agent. Purple star is the MLE 

fitted parameters. Black dot is the best likelihood found by brute force. Left: Likelihood 

surface where the best likelihoods form a long ridge, making it hard to find the right 

combination. Right: Likelihood surface where the best likelihoods are concentrated to a 

smaller area. Note here the star covers the other two symbols as they are all in essentially 

the same position. 
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In experiments in the cognitive sciences, we do not have the 

monetary resources of casinos to encourage subjects to keep playing. 

Instead, we must make do with fewer trials in experiments. A very 

important question when recovering parameters then, is how many 

trials are needed to still get reasonably good estimates? This question 

is unfortunately one rarely mentioned in the literature [65, 300], 

where instead trial counts are raised to compensate, or the topic left 

open. 

To investigate how the number of trials impact how well we can 

recover parameters, we repeat what we did above; we simulate and 

fit 1000 times. But this time we vary the number of trials for the task 

across 1000, 500, 250 and 100 trials. All these task variations use the 

same reward probabilities for each arm as stated above, and the same 

for agent parameter values: 

𝑝𝑎𝑟𝑚1(𝑟)  =  0.2,   𝑝𝑎𝑟𝑚2(𝑟) = 0.8 

𝛼 ∼ 𝑈(0,1),   𝛽 ∼ 𝑈(1, 20) 
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For α, 𝑅2 values for 1000, 500, 250, 100 trials are, respectively: .98, 

.97, .94 and .87. Although we get a lower correlation coefficient for 100 

trials, this number doesn't tell the whole story. As we can see in Figure 

3.9, 100 trials clearly show a wider spread. Thus, perhaps a better 

visualisation of this is violin plots for the distance between 𝛼𝑠𝑖𝑚 and 

𝛼𝑓𝑖𝑡, shown in Figure 3.10. 

Figure 3.9 Correlation plots of α values, where simulation values are on the y-axis and fitted 

values on the x-axis. Colour and size of dots represent distance between fitted and simulation 

value. Top-left: 100 trials. Top-right: 250 trials. Bottom-left: 500 trials. Bottom-right: 1000 

trials.  
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In Figure 3.10, it becomes clear that depending on our purpose, 500 

trials may still be acceptable if we are okay with a risk of alpha 

estimates being up to 0.5 away from the target. For 250 trials, we risk 

being 0.6 away from the target, which is obviously quite a lot when 

alpha can only vary between 0 and 1. For 100 trials it is almost useless; 

with the risk of alpha being 0.8 away from its target value we are 

basically guessing. 

Moving onto β parameter, we have 𝑅2 values for 1000, 500, 250, 100 

trials as .71, .68, .66 and .59, respectively. These correlation coefficients 

indicate there isn't that huge of a difference between 1000 and 250 

trials, but it drops more when we get down to 100 trials. But again, 

we can see in Figure 3.11 how visualising the results is much more 

informative than looking at numbers. There, if we look at the large 

circles hitting the wall at the right bound, we can see that even at 250 

trials, we can still be relatively certain of fit values that are below 5 or 

so. But at 100 trials this has broken down, and we risk hitting the wall 

at any value for the β used when simulating. 

Figure 3.10 Violin plots showing distance between simulated α parameter and fitted α on y-

axis and on the x-axis our categories for different number of trials is shown.  
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Figure 3.11 Correlation plots for β parameter where fitted values are on the x-axis and 

simulation values on the y-axis. Colour and size represent distance between simulated and 

fitted value. Note that x-axis is double the range than the y-axis. Top-left: 100 trials. Top-

right: 250 trials. Bottom-left: 500 trials. Bottom-right: 1000 trials. 

Figure 3.12 Violin plot showing distance between simulated and fitted β on y-axis and 

number of trials as categories on the x-axis. 
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This pattern is further emphasised by looking at the violin plot in 

Figure 3.12 where a big part of estimated β distances for 100 trials are 

20 away from the target, which is the entire range of values used for 

simulations. Just as for α, 100 trials are simply not enough. 

We should not forget that our parameters α and β are not isolated, 

they are used in combination. There are multiple ways we could 

visualise this, but difficult to include distances in reasonable ways 

since the two parameters are on such different scales. We could 

normalise β to be between 0 and 1 but this tends to distort the 

differences in our experience and makes it more difficult to 

distinguish results between different number of trials. One way, 

inspired by [300], is to select a certain criterion for α, and categorise 

results based on that. For example, we can say that all 𝛼𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 > 0.2 

are ”bad” and mark them as such when plotting β.  

 
Figure 3.13 Correlation plots for β parameter with fitted values on x-axis and simulation 

values on y-axis. Orange X marks cases where the distance between fitted α and simulated 

α is more than 0.2.  Top-left: 100 trials. Top-right: 250 trials. Bottom-left: 500 trials. 

Bottom-right: 1000 trials. 
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Looking at Figure 3.13, we can see that estimates for both 

parameters get increasingly worse as we lower the number of trials, 

not just the two parameters individually. 

Drawing some conclusions from the results just presented, we can 

nicely see how fewer trials make it more and more difficult to recover 

parameter values. This is perhaps not a surprise, and completely 

obvious, and therefore rarely mentioned in the literature.  

But even with 1000 trials, β recovery can still "hit the wall" when 

we have 𝛽𝑠𝑖𝑚 > 6 or so. This is because, as mentioned earlier, with 

higher β, SoftMax will assign higher probability of picking the action 

with slightly higher Q-value, causing the agent to act more 

monotonously. So, after a certain point of increasing β value, there's 

not much difference between, say, 𝛽 = 7 and 𝛽 = 40, because in both 

cases the agent acts similarly – always picking the action with slightly 

higher Q-value. And with fewer trials, we can see that we risk hitting 

the wall for pretty much any β value. 

Furthermore, it looks like 250 trials is at the lower end of where we 

can still be reasonably certain of our result, if we get 𝛽𝑓𝑖𝑡 < 5. Then 

again, we can see in Figure 3.13 that already at 500 trials we get some 

bad αs among the low and well fitted βs. 

3 . 7 .1  C O N F I D E N C E  F O R  I N D I V I D U A L L Y  F I T T E D  P A R A M E T E R  

V A L U E S  

We have already touched upon this in the above investigations, but 

another important question here is: given a fit result for an individual 

simulation, how certain can we be of the results? 

To answer this question, we will use the same data as in the 

previous section. Here we add a distance calculation that is not the 

absolute value, in order to see a fuller picture of how our estimates 

are distributed. In other words, we are subtracting the real parameter 

value from the estimated one, to allow our histograms to have 

overestimated values on the right and underestimated values to the 

left. We will first present results for α followed by those for β.  
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For α we find 95% confidence intervals for 1000, 500, 250 and 100 

trials to be (-0.11, 0.12), (-0.15, 0.17), (-0.20, 0.21) and (-0.29, 0.31) 

respectively. The distributions for α are shown in Figure 3.14. 

For β, the 95% confidence intervals for 1000, 500, 250, and 100 trials 

are (-11.5, 16.3), (-13.1, 20.8), (-14.2, 23.8), and (-14.8, 31.9) respectively. 

The distributions for β are shown in Figure 3.15. 

Figure 3.14 Histograms showing the distribution of distance between fitted α values and the 

α values used for simulations. Vertical lines show the 95% confidence interval. Top-left: 100 

trials. Top-right: 250 trials. Bottom-left: 500 trials. Bottom-right: 1000 trials. 
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For α the story is straightforward; we generally get decent fits for 

this parameter even at lower trial counts. For β however, the story is 

more complicated. Overall, it's common that β is overestimated, and 

at lower trial counts this becomes very apparent. However, we could 

also see in Figure 3.11 that below certain fitted values for β, there's a 

much better correlation with the real value. What if we filter our 

results based on this knowledge? We could for example only look at 

cases where we have 𝛽𝑓𝑖𝑡 < 10. 

Doing so gives us 95% confidence intervals for 1000, 500, 250 and 

100 trials that are (-2.6, 2.2), (-2.6, 2.1), (-3.6, 3.0), and (-5.0, 4.1). These 

look much better, but the downside is that we have now thrown away 

more than 50% of our data, even in the 1000 trial case. This ratio is 

somewhat misleading as it simply looks at how many cases we have 

of 
𝛽𝑓𝑖𝑡<10

1000
 for each trial count category. It could be less in the case of a 

real data set. But it could also be more. We have no idea when it comes 

Figure 3.15 Histograms showing the distribution of distance between fitted β values and the 

β values used for simulation. Vertical lines show 95% confidence intervals. Top-left: 100 

trials. Top-right: 250 trials. Bottom-left: 500 trials. Bottom-right: 1000 trials. 
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to real data, and that is assuming we can be completely certain the 

model we are using is correct in the first place! 

3 . 7 .2  S T A N D A R D  E R R O R S  W I T H  T H E  H E S S I A N  

There is another possible way to get a measure of uncertainty around 

our parameter estimates by utilizing the Hessian [65]. This is a square 

matrix with a row and column for each parameter representing the 

second order derivative of the likelihood function with respect to the 

(here, two) parameters. In other words, it’s a measure of how steep 

the hill or valley of our likelihood function is around the parameter 

coordinates, as seen in Figure 3.8. The square roots of the Hessian’s 

diagonal terms are the standard errors for the parameter estimates, 

𝛼𝑠𝑒 , 𝛽𝑠𝑒 in the case of QL2.  

Unfortunately, this seemingly excellent tool doesn’t work well in 

practice. One issue is that since the Hessian measures the slope, this 

slope gets truncated for parameter estimates at the bounds of our 

search. Without those bounds, we run the risk of getting 

computational errors. 

For the data shown in Figure 3.7, we get 𝑅2 values for the 

correlation between 𝛽𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 , 𝛽𝑠𝑒 as 0.099 and for α we get 0.12. For β 

we also get many values for the standard error that are over 100 and 

one that is 3622. One would imagine the last example is an estimate 

that displays the issue mentioned above, where the Hessian gets 

truncated at the boundaries, but it’s in fact a case where the estimate 

is very good, with 𝛼𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 0.0002, 𝛽𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 1.47.  

3 . 8  R E C O V E R Y  Q U A L I T Y  F O R  VA R I O U S  A R M  R E WA R D  

P R O B A B I L I T I E S  

How does reward probability differences between the two arms 

impact MLE's ability to recover the parameters? We will investigate 

this similarly to how we did above for different trial counts; we 

simulate 1000 agents each for a set of "arm reward differences". For 

convenience, we assume 𝑝𝑎𝑟𝑚1(𝑟)  + 𝑝𝑎𝑟𝑚2(𝑟)  =  1. We will 

investigate four arm differences, starting with the one of .6 we have 

been using above, and decreasing to 0.4, 0.2 and 0. 

For α, 𝑅2 for 0.6, 0.4, 0.2 and 0.0 difference in arm reward 

probability is .98, .99, 0.99, and 0.99, respectively. Equivalently for β 

we have 0.71, .75, .74, and 0.70. However, as seen in Figure 3.16 to 
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Figure 3.19, scatterplot variance decreases together with arm reward 

probability difference. In other words, smaller arm difference leads to 

better recovery. 

 
Figure 3.16 Correlation plots for fitted α on x-axis and simulation α on y-axis. Colour and 

size represent the distance between fitted and simulated value. Top-left: Arm difference 0. 

Top-right: Arm difference 0.2. Bottom-left: Arm difference 0.4. Bottom-right: Arm difference 

0.6. 



3 . 8   R E C O V E R Y  Q U A L I T Y  F O R  VA R I O U S  A R M  R E WA R D  P R O B A B I L I T I E S        

1 0 3  

 

 

Figure 3.17 Violin plots showing distance between fitted and simulated α on y-axis for each 

arm reward probability difference on the x-axis. 

Figure 3.18 Correlation plots for simulated β on y-axis and fit β on x-axis. Note x-axis is 

double the range of y-axis. Colour and size represent distance between fitted and simulated 

value. Top-left: Arm difference 0. Top-right: Arm difference 0.2. Bottom-left: Arm difference 

0.4. Bottom-right: Arm difference 0.6. 
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These results may seem counterintuitive, how can recovery be 

better with less difference between the arms? As mentioned in the 

previous section, as β increases, the agent behaviour becomes 

greedier; always picking the action with higher Q-value even if the Q-

value difference is small. If, additionally, one arm is clearly rewarded 

more often than the other, the combination leads to one-sided 

behaviour where almost all actions are the same throughout all trials. 

When the reward probability of the arms are both 50/50, the Q-

values also become more equal, and we can have higher values of β 

before behaviour becomes one-sided. In other words, the more varied 

the actions are, the more granularity exists in the data, and more 

information can be extracted - thus leading to better parameter 

estimates overall. 

3 . 9  C O M PA R I N G  M L E  T O  B AY E S I A N  I N F E R E N C E  

As we have seen, MLE is very fast and often good enough, depending 

on what our goal is for parameter recovery and the details of our task 

such as number of trials. Unfortunately, our likelihood functions are 

often not well behaved, as demonstrated by visualising likelihood 

surfaces for different data in Figure 3.8. 

Bayesian inference is often seen as better suited for this type of 

problem [2, 211, 234, 288, 298]. The main reason for this can be 

Figure 3.19 Violin plots showing distance between simulated and fit β on y-axis and arm 

difference categories on x-axis. 
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explained by going back to Equation 3.3, where we explained how 

MLE assumes we ignore the prior probability of the parameter values. 

In Bayesian Inference (BI), the prior is explicitly used to impose a 

structural boundary for the posterior distribution of the estimated 

parameter values. In a way the prior is similar to how we use hard 

boundaries in MLE, but by using non-uniform continuous 

distributions for the prior these boundaries are less like walls and 

more like outskirts of probability in an actual statistical distribution. 

However, the more data we have, the more that data influences the 

shape of the posterior distribution and thus the less influence the 

prior has. 

Mathematically, we should here provide the full form of Bayes’ 

Rule, with m for model and d for data: 

 
𝑝(𝑚|𝑑) =

𝑝(𝑑|𝑚) 𝑝(𝑚)

𝑝(𝑑)
 

3.6 

Above, the left-hand side is called the posterior distribution, the 

first term in the numerator on the right-hand side is called the 

likelihood, the second term is the prior and the denominator is called 

the marginal likelihood or evidence. All these are distributions, and 

this is the advantage of Bayesian inference – since we work with 

distributions, we automatically get a measure of the uncertainty of 

our calculations. In addition to the common measures of such 

uncertainty such as the distribution mean and standard deviation, a 

common measure is the highest density interval (HDI). It can be 

applied to any distribution and specifies an interval that spans a 

certain percentage of the values of the distribution, say 95%. For a 

regular normal distribution with mean 0, the 95% HDI would thus 

stretch across the 95/2% values to the left of the mean up and 

including the 95/2% to the right of the mean. 

The formula in Equation 3.6 can be analytically calculated only for 

relatively simple distributions. The main reason being that the 

marginal likelihood will, for continuous distributions, become 

intractable. And even with modern computers, calculating it 

numerically also becomes infeasible for larger models with many 

parameters. There are two main approaches to overcoming this issue, 

Markov Chain Monte Carlo (MCMC) and variational inference (VI). 

We will not go into much detail on these methods here, as that is not 
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our focus and these methods, especially VI, are actively researched. 

For more in-depth explanations see [141] (MCMC) and [26] (VI). 

MCMC exploits that the marginal distribution has a normalising 

effect and is thus not strictly needed to find the posterior distribution. 

Instead, a large number of random numbers are generated from the 

posterior distribution, i.e., sampled. These are then evaluated with the 

likelihood and prior and kept if they pass a test for acceptance, 

otherwise not. There are multiple algorithms for how the posterior is 

sampled and what test is made for accepting or rejecting the samples. 

Among the most used ones is the Metropolis-Hastings algorithm, 

where a new sample is generated based on the current sample (thus 

fulfilling the Markov property mentioned in a previous chapter). 

Samples are then accepted based on an acceptance ratio calculated 

from the likelihood and prior. Regardless of the specific MCMC 

algorithm, thanks to the magic of randomness, with a large enough 

sample we get a decent approximation of the posterior distribution. 

 The alternative, VI, involves selecting candidate distributions for 

the posterior and then minimising the distance between the candidate 

and the true posterior. This approach turns the problem into an 

optimisation problem, allowing the use of existing optimisation 

techniques to find the posterior. 

Generally, MCMC is slower but more accurate while VI is less 

accurate but faster [26]. 

Another advantage of Bayesian methods is that we can create so 

called hierarchical models. In a regular Bayesian model we have, say, 

one parameter θ in our model and some prior pr on what that 

parameter value might be. In a hierarchical model, the values defining 

the pr distributions are themselves drawn from a distribution, at a 

“higher level” so to speak. 

To provide a more practical example, consider our Q-learning 

model with two parameters α and β. We have conducted an 

experiment with several participants all doing the two-armed bandit 

task and we now have some data to analyse. We may have some 

priors for what the values of α and β may be for individual 

participants, but would it not also be reasonable to believe that all the 

participants share some similarity? Well, not necessarily, as explained 

above with regards to individual differences and strategies. But for 

the sake of argument, maybe it is the case that all our participants’ α 
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value are distributed normally around some mean? We can include 

that belief in our model, by having all participants share a common 

hierarchical prior for the normal distribution of α. Every single 

participant’s α is then drawn from the common distribution. 

The advantage this grants us is not only the ability to test the 

hypothesis that participants do share some commonality, but in a 

way, we also gain access to much more data for each single 

participant. The hierarchical model uses the data from all participants 

to find the common α prior, which can then inform the estimates for 

individual subjects. This is a huge advantage when we are dealing 

with experiments where we often have limited data sets. 

A potential downside of all participants sharing information is so 

called “shrinkage” [141]. Because the α of our individual participants 

are drawn from a common distribution, this means their individual 

estimates will be “pulled” closer together. This is not necessarily a 

problem but depends on how specific or narrow our prior 

distribution is and how much data is available. With few datapoints 

the prior will have larger impact on the posterior and final parameter 

value estimates may be misleading. We will see examples of this 

below. 

3 . 9 .1  B A Y E S I A N  M O D E L L I N G  T O O L S  

There are many tools available for different programming languages 

to make it easier to construct and analyse Bayesian models. One such 

tool is Stan [259], which allows for defining models in .stan files that 

can either be run directly from the command line or used in 

conjunction with interfaces from several different languages such as 

Python (CmdStanPy13) and R (RStan14). On top of these tools, more 

fully featured toolboxes have been built, one of which is hBayesDM 

[2], an R package that comes with several models and tasks for 

decision making built in. The models in hBayesDM are written in 

Stan. In our investigations below, we will specify when we have used 

models from hBayesDM, otherwise we have made our own using 

Stan and CmdStanPy. 

A methodological note here is that when sampling using MCMC, 

we can sample using several “chains”. This is, simply stated, doing 

 

13 https://github.com/stan-dev/cmdstanpy 
14 https://github.com/stan-dev/rstan 
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the sampling process multiple times separately. We could run one 

sampling process for a very long time and be somewhat certain we 

reach a good approximation. But by using several chains that are 

separately initiated with random starting points, we can use fewer 

samples for each and afterwards check if all our chains have 

converged to approximately the same answer. 

3 . 9 .2  F I T T I N G  B A Y E S I A N  M O D E L S  

The downside of MCMC, especially for hierarchical models, is that 

for larger sets of data, computation can be time consuming. In the 

dataset we will use for comparisons below, we have 50 artificial 

subjects playing the two-armed bandit task, each doing 1000 trials. 

Ideally, we would use 10-20 times more subjects for an 

investigation such as this, like we did for the MLE investigations. But 

this dataset takes our hierarchical MCMC model around two hours to 

complete the fitting process. Technically, Stan allows for splitting up 

data “inside” a model so that one chain can be run across multiple 

CPU cores, but that requires fiddly, and thus error-prone, re-coding 

of the Stan models themselves. Thus, since four chains are generally 

enough to identify divergences and more chains do not decrease 

computation time nor increase accuracy, there is unfortunately no 

direct way to improve computational time other than having faster 

single core CPU performance. Besides, in many older psychological 

experiments, or neuro-imaging studies, 50 subjects or fewer are not 

unusual so it's not an unreasonable number. Having 50 humans do 

1000 trials in a two-armed bandit task is arguably less reasonable. 

Our dataset thus consists of 50 artificial subjects all using the QL2 

algorithm to play the two-armed bandit task. Each subject's 

parameters were drawn randomly: 

𝛼 ∼ 𝑈(0, 1),   𝛽 ∼ 𝑈(1, 20) 

The task used 1000 trials and had arm reward probabilities: 

𝑝𝑎𝑟𝑚1(𝑟) = 0.2,   𝑝𝑎𝑟𝑚2(𝑟) = 0.8 
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In Figure 3.20 we have plotted the parameter value distributions 

for the simulated participants of our dataset. We reran the 50 

simulations a few times to get somewhat even distributions across 

parameter values15. 

In the following analyses, different trial counts use the same 

dataset. Instead of doing new simulations for each trial count, we use 

the first x trials of the data for each of 1000, 500, 250 and 100 trials. The 

three methods compared are: 

• MLE (same likelihood as used above) fitted to individual 

subjects (called MLE below). This model uses boundaries 

for fitted parameters as 0 < 𝛼 < 1 and 1 < 𝛽 < 40. 

• Bayesian MCMC model fitted to individual subjects (called 

IND-BI below, adapted from the hBayesDM hierarchical 

model below). This model uses priors for fitted parameters 

as 𝛼~𝑈(0, 1) and 𝛽~𝑈(0, 50). 

• Bayesian MCMC hierarchical model fitted to entire dataset 

(called HIER-BI below, model from hBayesDM, modified 

for wider β). This model uses normal priors for fitted 

parameters 𝑁(0, 1) that are then transformed to the ranges 

0 < 𝛼 < 1 and 0 < 𝛽 < 20. 

The observant reader will notice there are inconsistencies in our 

use of priors and boundaries for the three methods. This is done to 

 

15 This particular dataset can be found in CSV format in the thesis code 

repository 

Figure 3.20 Histograms showing the parameter value distributions for the 50 subjects in 

our dataset. Left: α parameter. Right: β parameter. 
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emphasize the differences in the model fitting results and discuss the 

strengths and weaknesses of each method. 

The HIER-BI model is included in the hBayesDM package and 

called “2 arm bandit delta”. As mentioned above, we have done a 

slight adjustment to their model, which is to increase the maximum 

possible β (called τ in the hBayesDM model) to 20 from an initial value 

of 5. This low limit has most likely been set due to the reasons we saw 

in previous sections, where increasing βs are increasingly difficult to 

fit. But it is our opinion this is not ideal. We do not know what 

distribution underlies our data, and it is one thing to assume a normal 

distribution but quite another to assume bounds for that distribution. 

The data should guide our posteriors, not the bounds of our priors. 

Nevertheless, the hBayesDM model is equivalent to our QL2 model, 

except for the former’s hierarchical nature. IND-BI is partly adapted 

from this hierarchical model into one suitable for individual fits. The 

code for these investigations can be found in the thesis repository16. 

 

 

16 https://github.com/fohria/phd_thesis 
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Figure 3.21 Correlation plots for fitted β on x-axis and simulation β on y-axis. Bad α are 

marked with orange crosses and such αs have a distance of more than 0.2 between fitted and 

simulated α. Rows are, from top to bottom, 100 trials, 250 trials, 500 trials, and 1000 trials. 

Columns show different methods, where left column is IND-BI, middle column is HIER-BI 

and right column is MLE. See text for further explanation.  
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Results are shown in Figure 3.21 to Figure 3.23. What may be 

surprising here is how well MLE holds up, until we get to 100 trials 

where MLE cannot keep up with the average β distance in Figure 3.23. 

This is not surprising in the case of HIER-BI as its prior is set to a 

maximum of 20 for β, but IND-BI has a wider range of possible range 

values than MLE yet is able to maintain a lower average distance. 

Also, and as is further discussed below, HIER-BI has lower values in 

Figure 3.22 Boxplots showing distance between simulated α and fitted α on y-axis, with 

number of trials on x-axis. Colours indicate method, as seen in legend. 

Figure 3.23 Boxplots showing distance between simulated β and fitted β on y-axis, with 

number of trials on x-axis. Colours indicate method, as seen in legend. 
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general due to shrinkage. However, had we used a boundary of 20 for 

the MLE, its results would look much better in comparison. This 

could be reasonable, if we have some knowledge about possible 

ranges for the data we are fitting. Values for β higher than 20 also have 

diminishing returns, as we saw in the behavioural studies above, 

where even between β=10 and β=20, behaviour was close. 

Looking further, again we find that our summary boxplots 

(statistics) are not showing the bigger picture. If we look at the middle 

column of Figure 3.21, we notice how fitted values for β seem to get 

stuck at an upper limit for HIER-BI. This is because the model 

assumes a normal distribution for the group-wise distribution from 

which individual β values are drawn. We mentioned this shrinkage 

phenomenon above; the advantage of hierarchical models is that we 

essentially combine the data from all subjects, but the downside is 

that if the group of subjects is heterogenous, our results may be 

misleading. 

In the same figure and column, we can also see how increasing 

amounts of datapoints (going from a low number of trials to large), 

extends the limit for fitted β values towards 15 for 1000 trials and 

towards around 10 for 100 trials. This exemplifies how priors are 

much more impactful with little data. At higher trial counts, we get a 

wider spread of values, which happens because the more data we 

have the less impactful is the prior we have set. 

Importantly, the constriction of individual parameter values 

towards the group mean is – as alluded to above –what is behind the 

seemingly low distances for β estimates for HIER-BI seen in Figure 

3.23. The estimated mean for the group level normal distribution was 

around 8.2, so estimates automatically become decent (compared to 

the other two methods). This is not necessarily a problem, and quite 

a reasonable assumption when looking at data occurring in nature, 

which is often normally distributed. Ideally the mean would have 

been around 10 instead, to allow for more values towards 20. 

But crucially, this assumes that all subjects we include when fitting 

hierarchically used the same model for making decisions. If not, the 

hierarchical model may not be very useful at all, and potentially be 

more difficult to interpret. We will come back to that topic in a later 

section. 
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3 . 9 .3  H I E R A R C H I C A L  M C M C  C O M P A R E D  T O  V B I  

As mentioned above, VBI is faster than MCMC but generally seen as 

less accurate [26]. Using the same data and methods as in the previous 

section we here compare MCMC and VBI. Again, as mentioned 

above, MCMC with all 1000 trials takes around two hours on a 

modern laptop, whereas VBI takes just a few minutes. In both cases 

we use the same modified 2-armed bandit Stan model in hBayesDM 

as described in the previous section. 

For both α, β estimates, the two methods are overall comparable, 

with value estimates correlating between the methods with an 𝑅2 of 

.99 for all trial count categories. T-tests show no significant difference 

between the methods for any trial count category. In Figure 3.24 we 

can see that, especially for β, MCMC has slightly better estimates 

overall, but if we take worst case scenarios into account (top T part of 

the box plots) then there is indeed not much of a difference between 

the methods. 

 

 
Figure 3.24 Box plots showing the distance between simulated parameter and fitted 

parameter on y-axis with each trial count category on the x-axis. Colours indicate method 

as per legend. Left: α parameter. Right: β parameter. 
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Looking into further detail at β estimates – since we know from our 

earlier investigations these are more problematic than those for α – 

we can see in Figure 3.25 that the two methods also show similar 

patterns for increasing simulation β versus distance to fitted value.  

Here there is somewhat more noticeable differences between trial 

count categories for MCMC method, whereas VBI holds up well even 

at 250 trials. Another way to look at it is that it looks like MCMC is 

better helped with increasing number of trials than VBI. 

Both Bayesian methods include standard deviations of the 

parameter estimates in their results. This comes naturally from 

calculating distributions instead of point estimates as for MLE. Do the 

standard deviations provide useful information? 

Figure 3.25 Line plots showing distance between simulated and fit β value on the y-axis and 

simulated β value on the x-axis. Different coloured lines indicate trial count categories, as 

per legend. Left: MCMC. Right: VBI 
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In Figure 3.26 we have plotted β SD values (x-axes) against distance 

between fitted and simulated β values (y-axes). Unfortunately, SD 

estimates for either method are somewhat unreliable. For both 

methods, and across all trial counts, we see that if SD < 1, there is – 

except for a few outliers – a decent chance the distance is below four 

or so. But for SD > 1, there is no longer any connection between SD 

size and distance. 

Finally, we can also check how wide the HDI’s are and what the 

probability is that the real β value falls within this interval, which can 

be seen in Figure 3.27. There we can see that VBI generally has shorter 

HDI (left part of the figure), but this is coupled with lower probability 

of the simulated value being inside the interval. MCMC method 

generally has higher probability of the real value being inside the 

HDI, but even at 1000 trials we don’t reach even 80%. At 100 trials, 

both methods are below chance level on whether the HDI captures 

the real parameter value. 

Figure 3.26 Scatterplots of distance between fitted and simulated β on y-axis and SD 

estimate on x-axis. Top-left: 100 trials. Top-right: 250 trials. Bottom-left: 500 trials. Bottom-

right: 1000 trials. 
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What conclusions can be drawn regarding MCMC and VBI? 

Overall, it looks like the methods are quite comparable. Since MCMC 

takes roughly 60 times as long to compute than VBI there’s little 

reason to use MCMC. Perhaps MCMC is preferable as a final analysis 

if correctness of parameter estimates is central to one’s goal, as there’s 

a higher chance the parameter value is inside the HDI. 

3 . 1 0  M O D E L  C O M PA R I S O N S  

Until now we have focused on recovering parameters for a specific 

model. But we rarely know what model best fits our data. The more 

common scenario – at least for our purposes – is the case where we 

have several possible models to explain a set of data. Which model 

best fits our data? 

One standard way of comparing models is using the Bayes Factor 

[133, 150], which compares the evidence for a model 𝑚1 relative to 

that of a model 𝑚2, given data d: 

 
𝐵𝐹12 =

𝑝(𝑚1|𝑑)/𝑝(𝑚2|𝑑)

𝑝(𝑚1)/𝑝(𝑚2)
 

3.7 

, where 𝑃(𝑚1), 𝑃(𝑚2) are the priors. If the priors are uniform the 

expression simplifies to: 

Figure 3.27 HDI check for β estimates for MCMC and VBI methods. Left: HDI length on 

y-axis and number of trial categories on x-axis. Right: Probability of simulated β being 

within HDI for each method and trial count category.  
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𝐵𝐹12 =

𝑝(𝑚1|𝑑)

𝑝(𝑚2|𝑑)
 

3.8 

Values of 𝐵𝐹12 > 1 provides evidence for 𝑚1 whereas values < 1 

provides evidence for 𝑚2. To decide what BF is “good” evidence, 

different authors propose varying limits. For example, [150] consider 

values > 10 or < 1/10, respectively, as strong evidence. In cases where 

we use BF (mainly in later chapters), we follow [133] as per Table 3.1. 

𝟐 ∗ 𝒍𝒐𝒈𝒆 𝑩𝑭 BF Evidence 

0-2 1-3 Not worth more than a bare mention 

2-6 3-20 Positive 

6-10 20-150 Strong 

> 10 > 150 Very Strong 

Important when speaking of BF, is that in the above equations, the 

entire parameter space is taken into consideration. If we instead use 

estimated maximum likelihood estimates, we get a special case of the 

Bayes factor called the likelihood ratio. 

An additional factor to take into consideration is the number of 

parameters of our models. The more parameters, the more we risk 

overfitting [65, 300], meaning that with enough parameters we can fit 

any kind of data perfectly, but it will not say much about the world 

in general. Compare the statement “everybody likes ice cream” (a 

gross generalisation) to asking every single person in the world if they 

like ice cream or not. The latter “model” will fit the world perfectly, 

but it may not be very useful to describe groups in general. 

There are several proposed techniques to get around this, like the 

BIC, AIC, WAIC and LOO [65, 133, 287, 294]. What most of these 

measures have in common is that they penalise models based on the 

number of parameters. We will use the Bayesian Information 

Criterion (BIC) here to demonstrate how this can work in practice. 

The BIC is calculated as: 

Table 3.1 Bayes Factor interpretation for values on log scale (left most column), raw ratio 

(middle column). Adapted from [133]. 
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 𝐵𝐼𝐶 = 𝑘 ln(𝑛) − 2 ln(𝐿)̂ 3.9 

Where k is the number of parameters in the model, n is the number 

of trials (datapoints) and �̂� is the maximised likelihood. Lower BIC 

indicates better fit. 

3 . 1 0 . 1  C O M P A R I N G  M O D E L S  W I T H  B I C  

We will now test and demonstrate model comparisons using the BIC 

with the two models from above, QL2 and RandomBias. We generate 

and simulate 10000 random agents with QL2 playing Bandit task, 

then fit the resulting data with both QL2 and RandomBias models. 

Then we simulate 10000 RandomBias agents playing the same Bandit 

task and fit both of our models to that data. For each such simfit case, 

we calculate the BIC and record which of the models had the best fit 

according to this information criterion. When they are all done, we 

summarise the “scores” in a confusion matrix. What we would like to 

see here, then, is that in the vast majority of cases, the best fitting 

model is also the model that generated the data. 

We are here using MLE for this demonstration, as we will 

investigate more methods below. 

 

As we can see in Figure 3.28, left, the RandomBias model “fits 

itself” around 80% of the time and in the other 20% of cases the QL2 

model fits the RandomBias data. This is not as curious as it may seem 

on first appearance, as it is quite likely that a randomly playing agent 

Figure 3.28 Left: Confusion matrix. Row names are the agent used for simulation. Column 

names are the model fitted. Numbers inside squares are the ratios of the model fits to each 

simulated model. Right: Inverse confusion matrix. Row names are the agent names used for 

simulations, while column names are the model names used for fitting. Numbers inside each 

square indicate the probability that the model fitted generated the data 
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that happens to have a certain bias towards one arm fits the behaviour 

of a greedy QL2 agent. When it comes to QL2, it fits itself in 98% of 

the cases. This is quite good and promising for future investigations. 

When fitting “real” data, i.e., data we do not know how it was 

generated, we are interested in the question of how likely it is that the 

best fitting model is the correct one. We can answer this by 

“inverting” the confusion matrix (Figure 3.28, right). In other words, 

the confusion matrix shows us 𝑝(𝑓𝑖𝑡 𝑚𝑜𝑑𝑒𝑙|𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑚𝑜𝑑𝑒𝑙 and the 

inverted confusion matrix shows us 𝑝(𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑚𝑜𝑑𝑒𝑙|𝑓𝑖𝑡 𝑚𝑜𝑑𝑒𝑙) 

[300]. 

3 . 1 0 . 2  M O R E  A D V A N C E D  M O D E L  C O M P A R I S O N  M E T H O D S  

As we saw previously, MLE runs the risk of hitting the parameter 

value boundaries when fitting. Does this impact the accuracy of BIC 

calculations and model comparison/selection? 

According to [211] it does, and they propose using Bayesian 

hierarchical modelling to alleviate the situation. Similar arguments 

are made by [221, 261]. Common for these methods are that the 

hierarchical thinking is extended to more levels, including a 

distribution at the top for what model is most likely for the entire 

population. On the next level down is what model is most likely for 

each subject, and then for each model what parameter values are most 

likely for that subject. These levels include shared distributions 

between subjects for parameter values. The resulting “meta models” 

are thus quite big, especially if there are many models under 

consideration. MCMC sampling is thus infeasible and instead VI is 

used. 

This type of model comparison is quite powerful, as we can include 

Bayesian uncertainty at every level of our investigations. 

Methodology wise these methods also become quite complex. 

Technically, these types of hierarchical models can be implemented in 

Stan, but it would be time consuming and error prone as one would 

have to code the entire model structure manually. Also, Stan’s VI 

algorithm is still labelled “experimental”. 

Luckily [211] provides a toolbox called Cognitive Bayesian 

Modelling (CBM) where one only needs to provide the likelihood 

function for any custom models and then compose the comparison 

together with few lines of code. Building on the theories of [221, 261], 
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[62] provides the Variational Bayesian Analysis toolbox (VBAT), a 

huge collection of tools for designing, performing and analysing 

experiments. But here it’s possible to input measures like the BIC and 

the toolbox performs the “upper” part of the hierarchical analysis, 

providing results comparable to those of CBM. Worth noting is that 

CBM uses a maximum a priori (MAP, essentially MLE with a prior) 

method called Laplace fitting and uses estimated parameter values 

from there to initialise its fully hierarchical Bayesian inference (HBI). 

Both toolboxes are available exclusively for MATLAB. 

What these tools can tell us is two main measures. One is the so-

called model frequency, measured with Probability Exceedance 

Probability (PXP), which is a measure of how likely it is that one 

model is more common among the participants investigated than 

other models. And second, we get probability measures for each 

individual subject, how likely it is that each model is the best fit. 

This is very important for our purposes, especially in later 

chapters. Earlier we mentioned heterogeneity of data and how it can 

be the case that different subjects use different strategies (see Figure 

3.2). These toolboxes allow us to investigate such individual 

differences. The model frequency is also interesting but can be seen 

as a symptom of how experiments in the cognitive sciences are 

usually conducted. There are two or more groups in different 

conditions, and there is an interest to investigate if a certain group 

exhibits a certain type of behaviour (a certain model is the better fit). 

If the majority of subjects in a group exhibit this behaviour, the 

experiment is a success. But what about the subjects of that group that 

did not behave as the model would predict? 

3 . 1 0 . 3  C O L L E C T E D  M E T H O D S  F O R  M O D E L  C O M P A RI S O N S  

Armed with these toolboxes, we now have a collection of fitting and 

model comparison/selection methods. Below we list the methods 

under consideration and in parentheses after their description 

indicate what they will be called when reporting results later. 

1. BIC value for model fits to individual subjects using MLE (mle) 

2. BIC value for model fits to individual subjects using variational 

Bayesian inference (vbstan) 

3. VBAT comparison using BIC value from 1, mle (vbat_mle) 

4. VBAT comparison using BIC value from 2, vbstan 

(vbat_vbstan) 
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5. BIC value for each subject for model fits with hBayesDM 

hierarchical models using VI (hbayes) 

6. VBAT comparison using BIC value from 5, hbayes 

(vbat_hbayes) 

7. CBM toolbox hierarchical comparison (cbm-hbi) 

8. VBAT comparison using log evidence from CBM Laplace fits 

from 7, cbm-hbi (vbat_laplace) 

Because MCMC is time consuming and our investigations above 

showed that VI provides competitive results, we have dropped the 

MCMC method from consideration. 

3 . 1 0 . 4  C O M P A R I N G  M O D E L  C O M P A R I S O N  M E T H O D S  

We shall now compare the performance of the above-described 

methods for model comparison and selection. We continue the use of 

our two models QL2 and RandomBias and create the following 

datasets we will then fit and contrast using the different methods. All 

use the Bandit task, with arm reward probabilities as 0.2 and 0.8 

respectively. 

- 1000 subjects, 1000 trials. 50/50 QL2/RandomBias (A) 

- 1000 subjects, 100 trials. 50/50 QL2/RandomBias (B) 

- 1000 subjects, 1000 trials. 25/75 QL2/RandomBias (C) 

- 1000 subjects, 100 trials. 25/75 QL2/RandomBias (D) 

In all cases, we draw parameter values for QL2 as per these 

distributions: 

𝛼~𝑈(0, 1), 𝛽~𝑈(0, 20) 

 and for RandomBias as per: 

𝑏𝑖𝑎𝑠~𝑈(0, 1) 

Also note that in the below plots for parameter value distances, the 

methods shown differ from the methods shown in the model 

selection plots. This is because the VBAT method, as explained above, 

does not estimate parameters, it uses the BIC value calculated from 

another method to select models. Thus, only the non-VBAT methods 

are shown in the parameter value distance plots. 

We have now also adjusted MLE boundaries and priors for the 

Stan-based models (vbstan and hbayes) to be more comparable. For 

MLE, boundaries are 0 < 𝛼 < 1 and 0 < 𝛽 < 50. For vbstan 𝛼~𝑈(0, 1) 
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and 𝛽~𝑈(0, 50). For hbayes the transformation for β now allows 

values up to 50. For CBM, we use the recommended settings where 

all parameters have the same value for the prior variance (6.25). 

3.10.4.1  Dataset A  

 

In Figure 3.29 we can see that no method can correctly identify all 

cases (left plot in figure). This is due to cases of RandomBias with high 

bias for one arm can behaviourally look very similar to a greedy QL2 

agent, as has been discussed above. What is surprising here is that the 

MLE method is numerically better than other methods. This despite 

the fact that individual parameter estimations, as seen below, are 

commonly less accurate for MLE. 

 

Figure 3.29 Plots showing what model was selected (left) and whether the model selected 

was correct (right). Each individual bar represents a specific method as per the legend. Left: 

The black dotted lines show the true number of cases for each model. The closer to the line 

the better. Right: Higher value for “True” is better. Note this is a ratio measure and not 

absolute case count. 

Figure 3.30 Parameter value distances for each method and agent/model. Left: QL2 α 

parameter. Middle: QL2 β parameter. Right: RandomBias bias parameter. Note each plot 

has different scales on y-axis. 
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In Figure 3.30 we can see that the different methods are comparable 

for the QL2 α parameter and the RandomBias parameter. But for the 

QL2 β parameter we have the two hierarchical methods CBM-HBI and 

hBayesDM having lower value outliers than the other three methods 

that are fitted individually to subjects. 

3.10.4.2  Dataset B  

 

 

At 100 trials we see that all methods are closer to the correct 

number of cases for each category in the left plot of Figure 3.31, 

compared to the 1000 trials in dataset A. This may seem counter 

intuitive as we have fewer data points here in dataset B. But it is likely 

due to that here there are not enough trials to have long sequences of 

a greedy choice of one arm, making it less easy for the models to 

Figure 3.31 Plots showing model selection results for dataset B across different model 

selection methods. Note that y-axis scale differs between the two plots. Left: Number of cases 

identified as QL2 or RandomBias. The dotted black line indicates the true number of cases 

for each model. Right: Ratio of correct model selections for each method. 

Figure 3.32 Parameter value distances between simulated parameter value and fitted 

parameter value for each method considered. Note that the scale on y-axis differs between 

the plots. Left: QL2 α parameter. Middle: QL2 β parameter. Right: RandomBias bias 

parameter. 
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confuse a RandomBias case for a QL2 case. Interestingly, here we see 

in Figure 3.32 that for the QL2 β parameter (middle plot), MLE 

performs badly compared to the other methods. And yet, MLE and 

VBAT MLE are again the best performers when it comes to model 

selection. There seems to be no direct correlation between parameter 

value distance and model selection performance, as claimed by e.g. 

[211]. 

3.10.4.3  Dataset C  

 

 

With only 25% cases of QL2 agent simulations, we can see in Figure 

3.33 that all methods overestimate the number of QL2 cases (left). This 

is likely to be due to the same reasons – greedy behaviour – as 

discussed above. We also see in the same figure that MLE and MLE 

Figure 3.33 Model selection plots comparing different model selection methods for dataset 

C. Note the different scales on y-axis in the two plots. Left: Number of cases selected as either 

QL2 or RandomBias. Black dotted lines indicate true number of cases. Right: Ratio of correct 

model selections for each method type.  

Figure 3.34 Parameter value distances between simulated and fitted values for QL2 (left, 

middle) and RandomBias (right). Left: QL2 α parameter distance for each method. Middle: 

QL2 β parameter distance. Right: RandomBias bias parameter distance. 
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VBAT are both closer to the correct number of cases (left) and the only 

methods reaching more than 80% correctly identified model cases. 

In the parameter distance plots in Figure 3.34 we see similar 

patterns as in previous datasets. The methods are reasonably similar 

for QL2 α and RandomBias bias parameters, and for QL2 β the two 

hierarchical methods hBayesDM and CBM-HBI have much lower 

incidence of outliers than the individually fitted methods. 

3.10.4.4  Dataset D  

 

 

Model selection performance (Figure 3.35) is slightly improved 

across all the methods for the 100 trials here in dataset D as compared 

with the 1000 trials of dataset C. Again, the MLE based methods have 

noticeably better performance. 

Figure 3.35 Model selection performance for the different methods. Note the difference in 

scale on y-axis. Left: Number of cases classified as either QL2 or RandomBias model. Black 

dotted lines indicate the true number of cases. Right: Ratio of correctly identified model 

cases. 

Figure 3.36 Parameter value distances between simulated parameter value and fitted value. 

Note the plots have different scales on y-axis. Left: QL2 α parameter distances. Middle: QL2 

β parameter distances. Right: RandomBias bias parameter distances. 
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For the parameter value distances in Figure 3.36, we also see a 

familiar pattern, namely that estimates for QL2 α and β (left, middle) 

are quite bad in general. Remember, since α only ranges between 0,1 

and β between 0,20, these distances that reach close to 1 and 20 

respectively are more or less uninformative. The story is better for the 

bias parameter (right). Despite this issue, we still have decent model 

selection performance as just mentioned. 

3 . 1 0 . 5  M E T H O D O L O G I C A L  C O N S I D E R A T I O N S  A N D  C O N C L U S I O N S  

These results are somewhat surprising. Theoretically, the HBI method 

of CBM should perform much better according to [211], where a point 

is made that better parameter estimations should provide better 

model selections. This does not seem to be the case. There is also in 

recent years a growing literature proposing Bayesian methods and 

Bayesian model selection as the superior option [18, 149, 211, 221, 234, 

291]. Our results here show that is indeed true if the goal is decent 

parameter value estimates. One should however keep in mind that 

even then, that is only true when we have enough trials. With few 

trials, around 100 or less, even fully hierarchical Bayesian models 

provide completely unreliable results for the QL2 learning rate, α. 

Furthermore, if the goal is to estimate parameter values, it may be 

worth the time investment to use MCMC, at least as a final way to get 

results. During model development and testing, sticking to VI should 

provide a much quicker and more efficient feedback loop. 

Unfortunately, in practice it is not always so easy. VI can fail in 

strange ways where one needs considerable experience to know if it 

fails because the model is mis-specified or because there is not enough 

data. Or that the model does not fit that data well. To be fair, VI is as 

mentioned above not as mature as MCMC. In Stan (RStan, 

hBayesDM), there’s an explicit warning on start-up of the fitting 

process that the algorithm is experimental. 

When it comes to model selection, our results show that MLE alone 

is almost always numerically the best performer, even without 

adding VBAT analysis on top. But it could be the case this is only 

thanks to our relatively simple models and task. Perhaps CBM-HBI 

will show its strengths when we have more models in the running 

and/or if those models are more complex. Combined with more 

complex tasks, it could be that is when MLE falls apart and becomes 

more unreliable in comparison. A nice finding here, when it comes to 
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model selection, is that toolboxes such as VBAT and CBM provides 

individual uncertainty measures that are very useful when 

investigating potentially heterogenous data. 

As mentioned above, many papers and frameworks (like 

hBayesDM, CBM) argue for the use of Bayesian inference over other 

methods, but it seems from our investigations that, in order to use 

them as done in this chapter, there are always details left out or that 

have not been considered. Frameworks like hBayesDM, for example, 

only has one available model for the two-armed bandit task, and it is 

hard bounded at 5 for its temperature (β) parameter. It’s difficult to 

see any reason for choosing this setting other than to (artificially) 

reduce the number of errors one gets when fitting datasets with it. 

Furthermore, the authors do not include a random bias guessing 

model to sanity test their own models against generated data. 

Although they do seem to have different models for other tasks, it 

seems they do not have “control” models like for example the 

RandomBias model in the case of the two-armed Bandit task. As 

shown above, we thus added our RandomBias model to hBayesDM 

by customising the existing “delta” (QL2) model.  

Another consideration, coming back to computational time, is that 

for larger datasets, for example with more complex tasks than the 

two-armed bandit, Bayesian inference methods would become 

intractable. For example, if we have a maze task with a 10x10 grid, a 

Q-learning agent may require (tens of) thousands of steps to learn to 

find a reward. If MCMC takes 2h for 50 subjects and 1000 trials, one 

can imagine the time it would take for just a few agents and tens of 

thousands of steps. We would have to use VI if we absolutely wanted 

to use Bayesian inference. Meanwhile, MLE fitting is extremely fast. 

The 20000 (10000 for each agent) simfits used to produce Figure 3.28 

took 170 seconds on a modern laptop. 

For the purposes of this thesis, we can conclude that MLE in 

conjunction with BIC and VBAT will be our preferred method for its 

speed and ease of use. Additionally, we shall keep using CBM when 

possible, as it is simple to add models to it and, as mentioned 

previously, it may prove better for more complex scenarios. It will 

also be good to have a sanity check around so as to not blindly trust 

the results from a single method. 
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3 . 1 1  A P P LY I N G  M E T H O D O L O G Y  T O  H U M A N  S U B J E C T S  

We have access to a small unpublished dataset where human 

participants perform the Bandit task, and we shall here apply what 

we have learned above. The dataset is from Stolz, Pickering, & 

Meuller (submitted), and consists of 23 subjects. The task the subjects 

performed was a so-called Reversal Bandit (which will be further 

discussed in the next chapter), where the arm reward probabilities 

switch at certain points during the experiment run. Here we will thus 

only use the trials up until the trial before the first switch point. 

Let us call this dataset the Reversal Bandit dataset or “RB dataset” 

for short. In this chapter, since we are only investigating a regular 

Bandit task and thus only use the first 80 trials, we call this subset of 

the data “Bandit dataset”. 

Before analysing this data, it’s important that we get an 

understanding of how our model recovery performs for this 

particular task configuration. As we saw above, arm reward 

probability differences as well as the number of trials impact these 

measures. Furthermore, so far, we have mainly been using QL2 when 

looking at parameter recovery so we should also investigate 

RandomBias parameter recovery with our two methods we will be 

using: MLE and CBM. 

3 . 1 1 . 1  M O D E L  R E C O V E R Y  C H E C K  

We will simulate 1000 subjects performing 80 trials on this task, half 

with QL2 and half with RandomBias. In the Bandit dataset, arm1 is the 

“best” arm with arm reward probability of 0.7, and arm2 has reward 

probability of 0.3. So, these 1000 subjects play a Bandit task with the 

same reward contingencies. Parameter values for the agents are 

randomly drawn individually for each agent as follows: 

𝛼𝑄𝐿2~𝑈(0, 1), 𝛽𝑄𝐿2~𝑈(0, 20), 𝑏𝑖𝑎𝑠𝑅𝑎𝑛𝑑𝑜𝑚𝐵𝑖𝑎𝑠~𝑈(0, 1) 
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The pattern seen in Figure 3.37 is similar to the earlier method 

comparisons where MLE and VBAT MLE show overall numerically 

better performance. Here we can also see the importance of checking 

the ratio of correct model selections (right), since in the left plot it 

looks like VBAT Laplace method is comparably good, being close to 

the black dotted lines, but in the right plot we see it mislabels subjects 

to a larger degree. 

 

We can further see in Figure 3.38 that CBM-HBI method tends to 

misidentify RandomBias cases as QL2 which again is the same pattern 

as we have seen previously. Nonetheless, it is important that we have 

confirmed that this is the case also in this task configuration. 

3 . 1 1 . 2  P A R A M E T E R  R E C O V E R Y  C H E C K  

Let us also look at the parameter value recoveries for our methods in 

this task configuration. Note that for each parameter mentioned 

Figure 3.37 Model selection plots for 1000 simulated subjects where half were QL2 agents 

and half were RandomBias. Left: Count of cases selected as being RandomBias or QL2. Black 

dotted lines indicate true number of cases. Right: Proportion of correctly identified models.  

Figure 3.38 Barplots showing details on how many of the misidentified cases were 

RandomBias misidentified as QL2 (left), or QL2 identified as RandomBias (right) 
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below we are looking at the subset of either the QL2 or RandomBias 

simulations. This is because we only have simulated parameter values 

for those subsets to compare with the fitted values. 

 

Not surprisingly, CBM-HBI is the better performer overall as seen 

in Figure 3.39. With so few trials, QL2 α recovery is not good with 

either method (left), but thanks to shrinkage in the hierarchical CBM-

HBI we get decent fits for QL2 β (middle). MLE performs the worst 

for the RandomBias parameter (right). 

 

Figure 3.39 Boxplots showing average distance between simulated parameter and fitted 

parameter across the methods. Left: QL2 α parameter distance. Middle: QL2 β parameter 

distance. Right: RandomBias bias parameter distance. 

Figure 3.40 Plots for QL2 α parameter for each method. The simulated parameter value on 

y-axis and the fitted parameter value on x-axis. Size and colour indicate the distance between 

simulated and fitted value. Left: CBM-HBI method. Middle: CBM-Laplace method. Right: 

MLE method 
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In Figure 3.40, Figure 3.41, Figure 3.42 we have plotted the 

simulated and fitted parameter values in scatterplots, with colour and 

size of the markers to indicate distances. Overall, there is a similar 

pattern as we have seen in previous investigations with such plots, 

for example that with so few trials, the MLE method is highly 

unreliable for QL2 β and can hit the boundary wall for any simulation 

β value (Figure 3.41, right). Also noteworthy is in the same figure (left) 

how CBM-HBI method underfits the higher QL2 β values due to 

shrinkage. 

Interestingly, in Figure 3.42, we see that all three methods tend to 

fit extreme values for the bias parameter when the simulated value is 

below 0.2 or above 0.8. The CBM methods are smoother, whereas 

MLE tends to look more discrete.  

Figure 3.41 Plots for QL2 β parameter for each method. The simulated parameter value is 

on y-axis and the fitted value is on the x-axis. Size and colour indicate the distance between 

simulated and fitted value. Note that each plot varies in their distance scales. Left: CBM-

HBI method. Middle: CBM-Laplace method. Right: MLE method. 

Figure 3.42 Plots for RandomBias bias parameter for each method. The simulated parameter 

value is on y-axis and the fitted value is on the x-axis. Size and colour indicate the distance 

between simulated and fitted value. Left: CBM-HBI method. Middle: CBM-Laplace method. 

Right: MLE method 
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3 . 1 1 . 3  M O D E L  S E L E C T I O N S  F O R  B A N D I T  D A T A S E T  

With the above sanity checks we can now analyse the actual human 

Bandit dataset. 

 

As seen in Figure 3.43, there appears to be some subjects better 

explained by random behaviour than reinforcement learning. Or 

rather, some subjects are better explained by RandomBias than QL2. 

We know from our checks above that CBM-HBI generally overfits 

QL2 cases and that VBAT-MLE is correct to a larger degree. We can 

understand better how this happens by looking at the raw data 

(Figure 3.44) where we see that there looks to be a difference between 

the subjects who are doing this task for the first time (group 1, 11 

subjects) and those who have already done a similar task before 

(group 2, 12 subjects; previously they had done a punishment only 

version of the task). Group 1 has M=0.28 (SD=0.45) for what arm was 

chosen (where 0 is arm1 and 1 is arm2), while group2 has M=0.19 

(SD=0.39). We can confirm that there is in fact a difference between 

the groups with an independent T-test; t(22)=4.59, p=4.7E-6. The fact 

that the task they have done before uses punishment/no punishment 

instead of reward/no reward is probably irrelevant, as the structure 

of the task is otherwise identical to all intents and purposes.  

Figure 3.43 Model selection counts for the Bandit dataset. Number of cases on y-axis and 

on x-axis we have what model was selected, contrasted by method. 
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Since greedy behaviour can be explained well by a RandomBias 

model with a strong bias for one arm, it could be the case here that 

the subjects of group2 – since they show greedier behaviour – more 

commonly are classified as RandomBias. In Figure 3.45, where we have 

only used VBAT-MLE, we can confirm that is indeed the case. 

 

As mentioned above, the hierarchical methods of CBM and VBAT 

also provide subject-level model probabilities. We can thus also look 

at the probabilities for each subject being explained by one model 

Figure 3.44 Plot showing what action was selected on the y-axis - arm1 (0) or arm2(1) – 

across all 80 trials shown on the x-axis. Differently coloured lines indicate if participants 

did this task first (task order 1) or if they had done a similar task earlier (task order 2) 

Figure 3.45 VBAT-MLE model selections contrasted by task order. Subjects with task order 

1 did the task for the first time while subjects with task order 2 did the task following prior 

experience with a very similar task. 
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over the other across the methods as seen in Figure 3.46. There we can 

see how there are a few subjects where the methods agree on their 

behaviour being better explained by RandomBias. 

 

3 . 1 1 . 4  P A R A M E T E R  V A L U E  P L O T S  F O R  B A N D I T  D A T A S E T  

As an additional check we can also look at how the methods agree on 

parameter value estimates. This is not going to be our focus going 

forward, as we are more interested in model selections overall, but it 

is good practice to do this check in order to find potential 

discrepancies17.  

 

17 Anecdote: thanks to doing this check we found an error in our code that did 

not impact model selections but did effect parameter value estimates for the MLE 

method. 

Figure 3.46 Probability of model being QL2 across all subjects. Because we are only 

comparing two models, this also shows probability of being RandomBias (towards 0 on y-

axis). 
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Figure 3.47 Plot showing fitted RandomBias parameter value for bias on y-axis, across all 

subjects (x-axis). Colours indicate method used. 

Figure 3.48 Plot showing fitted QL2 α parameter value on y-axis for each subject on x-axis. 

Colours indicate what method was used. 

Figure 3.49 Plot showing fitted QL2 β parameter value on y-axis for each subject on x-axis. 

Colours indicate what method was used. 
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Overall, we can see in Figure 3.47, Figure 3.48, Figure 3.49 that the 

methods largely agree but MLE hits its bounds more often than the 

others. This is especially noticeable in Figure 3.49 showing β 

parameter for QL2 model. This could indicate that we will have issues 

with model selection, but as we have seen in our exhaustive testing of 

these methods, this does not impair MLE to correctly identify models, 

especially when combined with VBAT. 

3 . 1 2  C H A P T E R  S U M M A R Y  

In this chapter, we have investigated methods for parameter 

estimation and model selection. We did so using a simple decision-

making task in the form of a two-armed bandit task. We simulated 

behaviour in this task using the basic RL algorithm Q-learning and a 

control algorithm that picks choices at random with a certain bias 

towards one option. Behavioural data from the simulations was then 

fitted using these two models to recover parameter values and select 

what model most likely generated the data. 

What we show, in short, is that recovering parameter values is 

difficult. The main reason for it being difficult, is because to get better 

estimates we need large numbers of data points. But when our goal is 

to fit data from human subjects, we often do not have enough data 

points since it is not easy to get humans to perform in such long 

experiments that would ideally be needed. 

We also show that this problem remains even when using modern 

approaches in the form of Bayesian inference, methods that are 

commonly considered much more performant. Bayesian methods are 

indeed better at estimating parameter values – and provide value 

uncertainty measures of these estimates – but they are much slower 

than the classic MLE method and the uncertainty measures do not 

necessarily provide valuable information. 

The most interesting finding here, however, is when it comes to 

model selection. One would expect that better parameter estimates 

leads to improved model selection accuracy. But we show that MLE 

fitting – especially when combined with a tool like VBAT – often has 

superior accuracy when selecting the model most likely to have 

generated the data. 

 





 

4  ST E PPI N G  I N T O  STAT E S  W I T H  R E V E R SA L  

L E A R N I N G  

In the previous chapter, we investigated how learning may happen in 

the simple case of a two-armed bandit task. We will now extend that 

task by allowing the arm reward probabilities to change during the 

experiment. 

We will first investigate how our agents from the previous chapter 

handle this extension of the task and show how they do not always 

explain animal behaviour well. We then discuss how the agent 

algorithms themselves can be extended by adding the concept of 

states, along with alternate agent algorithms from the literature. As in 

the previous chapter, we then contrast and compare these 

behavioural models considering parameter recovery and model 

selection. Using the knowledge thus gained, we apply the models on 

two sets of data with human participants and discuss the outcome. 

As mentioned in the previous chapter, we can allow the arm 

reward probabilities in the bandit task to change throughout the 

experiment, either once or several times. Most common, and simplest, 

is the case when we have a two-arm bandit, and the good and bad 

arms are switched at some point. Hence, the name “reversal” bandit, 

or reversal learning. This type of task has been used in different forms 

for decades, for example to investigate learning in monkeys [174, 302], 

in bumblebees [44, 216], and humans [112, 170].  

Moving beyond simple reversals, the task can be made more 

complex for example by increasing the number of options [20, 36] or 

using a range of reward values for each option so that the ranges for 

each overlap slightly and thus several trials are needed to find the best 

[75, 305]. The more variation in the reward schedule, the more 

difficult it will be to discern that a reversal switch has occurred. 

Another way to complicate the task is to have not a switch per se, 

but to make rewards depend on how many times a specific option has 

been picked. For example, in [305], there are two decks of cards, each 

with 80 cards. Participants are told to maximize their points over a 

total of 80 card draws, where each card gave a point between 1 and 

10. One deck – the advantageous one – had an average of 3 points per 

card over the first 20 cards drawn, an average of 7 points over the next 

50 cards drawn, and an average of 3 points over the last 10 cards 
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drawn. The other deck – the disadvantageous one – gave an average 

of 8 points per card for the first 30 cards drawn, an average of 5 points 

for the next 20 cards drawn and an average of 2 points per card for 

the final 30 cards drawn.  

Such a task, however, is not strictly about reward learning as it is 

also or perhaps more, probing the exploration/exploitation question. 

But as mentioned in the background chapter, it is very difficult to 

separate these questions as they are so intimately tied. 

Another example of a reversal task, is one where we also have two 

options and which one is the best switches multiple times during the 

experiment as in [112]. We have options A and B, where A starts out 

having a 70% probability of reward and B has 40%. After the 

participant has selected the correct option A consecutively four times, 

there is a 25% probability on each following trial that the reward 

probabilities switch. After such a switch, the participant again must 

pick the correct option – which is now B – four consecutive times to 

allow another switch to occur.  

One may think that such a “simple” extension of the bandit task – 

arm reward reversals – does not impact the complexity of the task 

very much. But as we shall see, it is sufficient to require additions to 

our existing algorithms, perhaps even quite different algorithms. 

4 . 1  S I M U L AT I N G  P E R F O R M A N C E  I N  T H E  R E V E R S A L  

B A N D I T  TA S K  

We start out by investigating a straight-forward reversal task, where 

we have 280 trials in total and what arm is best switches three times 

throughout the experiment. The switch points are on trials 83, 151 and 

226. The arm reward probabilities are 70% for the good arm and 30% 

for the bad arm, with arm1 starting out as good. This task version has 

been chosen as it is the same as the full version of the human dataset 

introduced at the end of the previous chapter. There, we only used 

the first 80 trials of this dataset but below we use the full dataset. 

It should be mentioned here that in the human data, there are two 

groups which differ slightly in the switch points. The other group 

used 87, 161, 224. This was done to counterbalance the unlikely yet 

possible case of subjects doing the experiment their second time 

would be counting trials. For our purposes and convenience, this 

detail is not replicated in our simulations.  
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Initially, we only use the QL2 agent from the previous chapter to 

explore this task. We investigate the performance of QL2 by first 

exploring the parameter space. 1000 agents are simulated, each with 

randomly drawn parameter values as per: 

𝛼~𝑈(0, 1), 𝛽~𝑈(0, 20) 

 

As seen in Figure 4.1, the QL2 agent can manage the Reversal 

Bandit. The results are, as mentioned above, the average across 1000 

agents with individually randomly generated parameter values so 

what we learn here is that most parameter value combinations can 

handle the task. What is noticeable is that the QL2 agent requires 

many trials after a switch (most easily seen after trial 150) to learn the 

new best action and performance is still improving almost up until 

the next switch point. 

We also conduct a “parameter sweep” where we investigate 

performance for all permutations of parameter value ranges for the 

QL2 agent. Performance is measures as proportion of actions picking 

the correct best arm and the parameter value ranges are: 

𝛼 ∈ (0.01, 1), 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 = 0.02;           𝛽 ∈ (1, 2, 5, 10, 20) 

In total this gives us 50 α values, and thus 250 parameter value 

combinations. Each parameter value combination is simulated 100 

Figure 4.1 Performance averaged across QL2 agents using parameter values from the entire 

parameter space. On y-axis we have the selected action and x-axis shows each individual 

trial. The shaded area indicates 95% confidence interval.  
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times to account for random variation in the performance of single 

simulation runs. The results are presented in Figure 4.2.  

 

As seen in Figure 4.2, higher β is generally correlated with higher 

performance. One may think that higher α would be good to quickly 

learn when a switch occurs, but that would also mean “accidental” 

rewards from the bad arm would influence behaviour too much. 

Interestingly, there is no discernible difference between 𝛽 = 10 and 

𝛽 = 20 except for higher α values. We can see why, if we look at 

individual action choices for each trial. Based on the results in Figure 

4.2, we select 𝛼 = 0.4 and then run 1000 simulations for each of the β 

values seen in the plot and mentioned above. There is no other 

significance to doing 1000 simulations here instead of 100 as before, 

other than the plots being easier to read. These simulations are shown 

in Figure 4.3. There we can see how the greediest agent (β=20) reaches 

higher average on correct arm selection, but the agent with β=10 is 

slightly faster at switching, due to not being “stuck” selecting the 

action with higher value. This pattern repeats for the lower β values, 

where the lower it is, the faster the agent can switch. But higher β is 

needed to reach higher performance between each switch point. We 

can also see here that even for our best performing parameter 

Figure 4.2 Performance for parameter value combinations of QL2 α (x-axis) and β (coloured 

lines). Probability of choosing the correct arm is shown on y-axis. Shaded areas indicate 

95% confidence interval. 
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combinations, more than 50 trials are needed after a switch to get 

almost exclusive selection of the best arm. 

 

We can further illustrate this in the form of Figure 4.4, where we 

have plotted the average proportion of best arm choices after a certain 

number of trials following each switch. The overall pattern is that 

performance still has an upwards trend at 50 trials after a switch 

point. 

 

Figure 4.3 Action selections for QL2 agents using α =0.4 and β as per the plot legend. The 

selected action is shown on the y-axis for each individual trial (x-axis). Each line is the 

average for 1000 simulations. 

Figure 4.4 Proportion of correct choices (y-axis) for QL2 agents using α=0.4 and β as per 

the plot legend. The x-axis shows number of trials after each of the three switch points. Left: 

The first switch point at trial 82. Middle: The second switch point at trial 150. Right: Third 

switch point at trial 225. 
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4 . 2  C O N T R A S T I N G  Q L 2  B E H AV I O U R  W I T H  H U M A N  

B E H AV I O U R  

We now turn our attention to the dataset with human data from the 

same task. As mentioned in the previous chapter (and see there for 

more details), this dataset consists of 23 subjects. We are again only 

looking at the case with reward/no reward, and around half of the 

subjects had, when performing this task, already done the same task 

with punishment/no punishment. In Figure 4.5, we can see how this 

reflects in the performance of the subjects who did the task for the 

second time. They are much quicker at switching, especially at switch 

point two (middle). Strangely both groups perform worse after the 

third switch which may be a sign of subjects getting tired and/or 

bored. Note that the two groups’ switch points were slightly different, 

but the plot shows number of trials after switch. 

 
Figure 4.5 Average proportion of correct arm choices (y-axis) for human subjects performing 

the reversal bandit task. Colours indicate if subjects did the task for the first time (task order 

1) or if it was their second time (task order 2). X-axis indicates number of trials after a switch 

in arm reward contingencies. Shaded areas indicate 95% confidence interval. Left: First 

switch point. Middle: Second switch point. Right: Third switch point. 
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We can also look at the action choices across all the trials, as plotted 

in Figure 4.6. Because of the low number of participants, the 

confidence intervals are quite big, but the overall patterns are still 

distinguishable. Although it is difficult to say for sure, we can for 

example see that it looks like many subjects in group one believed 

there was a switch around trial 180-190 (blue line, Figure 4.6). It may 

also be the case that many subjects in group two remembered there 

was a switch after approximately 150 trials the first time they played, 

hence the dip and rebound on and following trial 150 (gold line, 

Figure 4.6). This could also indicate that all subjects in a group saw 

the same sequence and thus the noticeable average changes in 

behaviour. 

More important than such details is that the human switch 

behaviour is quite different from that of QL2. It is clear by contrasting 

Figure 4.3 and Figure 4.6 that humans seem to switch faster. How 

come? 

As discussed in the background chapter, humans and other 

animals can internally reason about states of the world. Subjects in 

the reversal task dataset were told there would be reversals of the arm 

rewards. Thus, they were primed for such state switches which could 

account for the faster switch behaviour compared to QL2. 

4 . 3  A LT E R N AT I V E  A L G O R I T H M S  W I T H O U T  S TAT E S  

Before we discuss states further, we should consider if there are 

alternative RL algorithms that may work better than our existing QL2. 

Figure 4.6 Average arm (action) selection across subjects (y-axis) for each individual trial 

(x-axis). Coloured lines indicate subject group as shown in legend and described in the text. 

Shaded areas indicate 95% confidence interval. 
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There are myriad ways to modify Q-learning, and even more 

algorithms if we consider other types of RL, as mentioned in the 

background chapter. Here we have chosen two that are commonly 

used in the field of decision making in the cognitive sciences. 

4 . 3 .1  D U A L  Α  Q L  

One way to increase the complexity of QL is to distinguish between 

positive and negative reward prediction errors. We can do this by 

adding another learning rate parameter, so we have 𝛼𝑝𝑜𝑠 and 𝛼𝑛𝑒𝑔. In 

mathematical terms this means: 

𝑅𝑃𝐸 = 𝑟𝑡 − 𝑄(𝑎𝑡) 

𝑄𝑡+1(𝑎𝑡) = 𝑄𝑡(𝑎𝑡) + 𝛼 ∗ 𝑅𝑃𝐸 {
𝛼 = 𝛼𝑝𝑜𝑠 𝑖𝑓 𝑅𝑃𝐸 ≥ 0

𝛼 = 𝛼𝑛𝑒𝑔 𝑖𝑓 𝑅𝑃𝐸 < 0
 

Note that it is somewhat arbitrary if we choose 𝑅𝑃𝐸 ≥ 0, 𝑅𝑃𝐸 < 0 

or 𝑅𝑃𝐸 > 0, 𝑅𝑃𝐸 ≤ 0. The reasoning behind this separation is that it’s 

plausible that positive and negative prediction errors differ in how 

impactful they are on learning [95, 211]. Important to note is that our 

regular QL2 model is a special case of Dual-α QL, where 𝛼𝑝𝑜𝑠 = 𝛼𝑛𝑒𝑔. 

Thus, QL2 is a nested case of Dual-α QL. 

 
Figure 4.7 Proportion correct arm choices (y-axis) for Dual-α QL agents. Each line is the 

average of 100 agents with the same parameter combination. X-axis is the value for positive 

α, and each line is for a different value of negative α as per the legend. Upper left: β=1 Upper 

middle: β=2 Upper right: β=5 Lower left: β=10 Lower middle: β=20 
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In Figure 4.7 we can see the proportion of correct choices for a 

parameter sweep with Dual-α QL agent. The task is the same 

ReversalBandit as described above (280 trials and three switch 

points). The ranges used for parameter combinations were the same 

for both α and with values as seen in the legend. Ranges for β were 

also as per the figure. These ranges resulted in 605 parameter 

combinations in total. Overall, we can see that larger β leads to higher 

performance. For positive α the optimum is somewhere between 0.2 

and 0.5, together with a negative α between 0.3 and 0.7. This 

illustrates that the more parameters an agent/model has, the more 

difficult it is to get a good overview of its performance across the 

parameter space. Compare Figure 4.7 with Figure 4.2. 

4 . 3 .2  D U A L  U P D A T E  Q L  

Another way to adapt QL is to not only update the action value for 

the chosen action but also update the value for the non-chosen action. 

This takes the structure of the task into account and may be a way of 

representing human participants’ knowledge of that general 

structure, without introducing states in a more explicit way [233]. If 

we denote the non-chosen action as �̃�, on each trial t we perform the 

following two updates: 

𝑄𝑡+1(𝑎𝑡) = 𝑄𝑡(𝑎𝑡) + 𝛼(𝑟𝑡 − 𝑄𝑡(𝑎𝑡)) 

𝑄𝑡+1(𝑎�̃�) = 𝑄𝑡(𝑎�̃�) + 𝛼(−𝑟𝑡 − 𝑄𝑡(𝑎�̃�) 
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In Figure 4.8 we have plotted performance for the Dual Update QL 

agent as proportion of correct choices across the parameter space. The 

range for α was the same as that seen for negative α in Figure 4.7. 

Interestingly, compared to other QL agent types we here see that best 

performance is reached with high values of α, and it additionally 

looks like there’s a slight correlation here between the higher the β, 

the higher is the optimal α. 

4 . 4  A D D I N G  S TAT E S  T O  Q - L E A R N I N G  

The simplest way to add state information would be to adapt our 

existing QL2 algorithm, enhancing it with states. This is easy, since Q-

learning in its original form already has states. The version we have 

been using is a simplification. However, the states meant in standard 

Q-learning are observable states. For example, if you are a law-

abiding citizen and the crosswalk light is red, you stay. When the light 

turns green, you walk. Expressed differently, when the light is red 

there’s a high risk of punishment (being hit by a car or charged for 

jaywalking if that crime exists where you live) if you walk. When the 

light is green, there’s a low risk of punishment for walking, perhaps 

even a high chance of reward for walking because you’re en route to 

Figure 4.8 Proportion of correct choices (y-axis) for parameter combinations of Dual Update 

QL agent. Agent α value is on x-axis. Each line represents different values of β as per the 

legend. Shaded areas indicate 95% confidence interval across the 100 simulations for each 

parameter combination. 
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your favourite coffee shop. For a Q-learning agent in this situation, 

we would have two states – red and green. 

In the case of our ReversalBandit task, there are no such observable 

states. As we mentioned above, this task and especially its non-

reversal version the regular bandit task, are often seen as stateless. 

Another viewpoint is that there is only a single state of the world. 

We could also view the ordinary Bandit task as one where there are 

two hidden states. Either arm1 is the best choice, or arm2 is. But since 

the state never changes, it never becomes relevant to consider. In the 

Reversal bandit however, these hidden states do become relevant 

because what arm is the good one switches. 

Since we know the task contingencies, we can create a QL2 version 

with perfect information about these hidden states. When arm1 is 

best, we are in state 1 and when arm2 is best we are in state2. In our 

algorithm we already switch what arm is best at certain switch points, 

so we can set the new state for the QL2 agent as well. This is of course 

not very realistic for investigating our human data, but it can serve as 

a decent baseline complement to our existing baseline agent 

RandomBias. If this model proves to fit data better than others, it may 

indicate there is something amiss in our data. For reasons that will 

become clear in later chapters, we call this version State Enhanced Q-

learning or SEQL2 for short. 

In mathematical form18, SEQL2 updates state-action values on each 

timestep t like: 

 𝑄𝑡+1(𝑠𝑡, 𝑎𝑡) = 𝑄𝑡(𝑠𝑡, 𝑎𝑡) + 𝛼(𝑟𝑡 − 𝑄𝑡(𝑠𝑡, 𝑎𝑡)) 4.1 

 

18 For algorithmic version, see https://github.com/fohria/phd_thesis 



1 5 0          S T E P P I N G  I N T O  S T AT E S  W I T H  R E V E R S A L  L E A R N I N G  

 

 

To demonstrate the behaviour of our SEQL2 agent, we run 100 

simulations of the same ReversalBandit task described above for the 

human subjects. All 100 simulations used the same agent parameter 

values, where α = 0.3 and β = 7. In Figure 4.9 we have summarised the 

behaviour as what arm was picked across all the trials. We can see 

that before and after the first switch, the behaviour is similar to the 

standard QL2 agent (Figure 4.1), but after the second and third 

switches we immediately go back to the previous value. This is 

because before the first switch, we are in state 1 and the agent must 

learn what arm is best, just as the regular QL2 agent does. After the 

switch, we are now in state 2, which has its own Q-values, and the 

agent must learn these Q-values from scratch. But after the next 

switch – the second switch – we are back to state 1 and the agent thus 

uses its already learnt Q-values. 

4 . 5  A L G O R I T H M S  T H AT  A R E  M O R E  S TAT E F U L  T O  B E G I N  

W I T H  

As discussed in the background chapter, there is evidence that 

animals such as rats and humans can infer hidden states of the 

environment based on non-hidden observations. In the cognitive 

sciences literature this is commonly called belief states19 and the 

models use Bayes’ rule to update a prior belief of what state the 

 

19 In the computer science literature these are commonly referred to as Partially 

Hidden Markov Decision Processes, POMDPs. 

Figure 4.9 Action selections (y-axis, arm1 or arm2, 0 or 1 respectively) on each trial (x-axis) 

averaged across 100 SEQL2 agents, all using the parameter values α=0.3 and β=7. Shaded 

areas indicate 95% confidence interval.  
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animal is in, based on observations of their own actions and their 

consequences – rewards in our case. 

The common way to model such belief states is using Hidden 

Markov Models (HMM) [112, 233]. These allow us to rely on the 

Markov property, i.e., that all the information needed to make a 

choice on the current timestep is included in the prior that we have 

with us. In other words, the prior used in the current trial is the 

posterior from the last trial. 

The specific implementation we are using here is based on [233]. 

We start out with a prior belief over the two states, 𝑝𝑟𝑖𝑜𝑟(𝑠𝑡), where 

𝑝𝑟𝑖𝑜𝑟(𝑠𝑡 = 1) + 𝑝𝑟𝑖𝑜𝑟(𝑠𝑡 = 2) = 1. This belief state indicates if we 

think arm1 is currently the best choice (𝑠𝑡 = 1) or if arm2 is the best 

choice (𝑠𝑡 = 2). Based on this prior, we select an action using the prior 

as the probability of selecting each action. In other words, if we 

strongly believe that arm1 is the best choice (𝑝(𝑠𝑡 = 1) ≫ 𝑝(𝑠𝑡 = 2)) 

then it is more likely we pick arm1. 

When the action is performed, we receive a reward value, and 

together they make an observation 𝑜𝑡 = {𝑎𝑡, 𝑟𝑡}. The posterior belief 

over the two states is then: 

 
𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟(𝑠𝑡+1|𝑜𝑡) = ∑ 𝑝(𝑠𝑡+1|𝑠𝑡

𝑖)
𝑝(𝑜𝑡|𝑠𝑡

𝑖)𝑝𝑟𝑖𝑜𝑟(𝑠𝑡
𝑖)

∑ 𝑝(𝑜𝑡|𝑠𝑡
𝑗
)2

𝑗=1 𝑝𝑟𝑖𝑜𝑟(𝑠𝑡
𝑗
)

2

𝑖=1

 
4.2 

where: 

 

𝑝(𝑜𝑡|𝑠𝑡) = 0.5 + 0.5 ∗ {

𝑐       𝑖𝑓 𝑎𝑡 = 𝑠𝑡 𝑎𝑛𝑑 𝑟𝑡 = 1
−𝑐    𝑖𝑓 𝑎𝑡 ≠ 𝑠𝑡 𝑎𝑛𝑑 𝑟𝑡 = 1
𝑑       𝑖𝑓 𝑎𝑡 = 𝑠𝑡 𝑎𝑛𝑑 𝑟𝑡 = 0
−𝑑    𝑖𝑓 𝑎𝑡 ≠ 𝑠𝑡 𝑎𝑛𝑑 𝑟𝑡 = 0

 

4.3 

and: 

 𝑝(𝑠𝑡+1|𝑠𝑡) = {
𝛾             𝑖𝑓 𝑠𝑡+1 = 𝑠𝑡

1 − 𝛾     𝑖𝑓 𝑠𝑡+1 ≠ 𝑠𝑡
 4.4 

In Equation 4.3, c and d allow for differentiation between rewards 

and non-rewards, which we do not exploit here so in practice 𝑐 = 𝑑 

for our purposes. The γ parameter in Equation 4.4 is interpreted as 

the probability of staying in the current state. We have also extended 

the functionality of γ with an additional parameter δ so that the 

probability of staying in the current state decreases in probability for 
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each timestep. In order to not have γ go below zero, we change γ on 

each timestep like so: 

 𝛾𝑡+1 = max (𝛾𝑡 − 𝛿, 0) 4.5 

When a switch in state happens – when the prior and posterior 

differ in what state has the highest probability – then γ is reset to its 

initial value. We will use two versions of the HMM agent. The 

original, named HMM, and the extended one named HMM-δ. As 

usual, the code implementation can be found in the thesis code 

repository20. 

 

In Figure 4.10 we have plotted the performance for the two HMM 

agents in our ReversalBandit task across their parameter spaces. The 

ranges used were the same for all parameters and are those seen in 

the right-hand figure legend. Each parameter combination has been 

simulated 100 times and the figure shows the average of these 100 

runs. The HMM agent reaches its best performance at γ=0.99 with 

almost 90% proportion of correct choices. For HMM-δ we can see that 

the pattern is similar, the best combination is high γ, preferably 

combined with low δ. To study the behaviour in more detail, we select 

only the simulations of the best cases for each agent, which for both 

are γ=0.99 and for HMM-δ we have δ=0.01. We plot these simsets in 

Figure 4.11, where we can see that the agents nicely follow the switch 

points through the experiment, but here the transitions are smoother 

 

20 https://github.com/fohria/phd_thesis 

 Figure 4.10 Proportion of correct choices (y-axis) in the ReversalBandit task for the HMM 

agent (left) and HMM-δ agent (right). Parameter γ is shown on the x-axis and each line in 

the right-hand plot is a different δ parameter value as per the legend. 
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than in our “cheating” SEQL agent above. We also see that HMM-δ 

switches faster, thanks to the δ parameter influencing the probability 

to stay or switch action. The HMM agent is slightly slower to switch 

but reaches higher performance. 

 

4 . 6  B E H AV I O U R A L  C O M PA R I S O N  O F  A G E N T S  

Before we simulate and fit all the models to see how well our model 

selection methods work, it would be good to compare the behaviour 

of our models. For each agent we select a “good” parameter 

combination – one that is among the best performing parameter 

combinations for that agent. Performance here means proportion of 

correct choices across the experiment. Then we compare agent 

performance in two ways. First, the average performance, based on 

proportion of correct choices during the task. Second, we compare 

switch behaviour after each switch as that seen for the human subjects 

in Figure 4.5. We also add the human subject data in these plots. 

The parameter values chosen, guided by the above results, for each 

agent, were as follows. 

QL2: 𝛼 = 0.4, 𝛽 = 10 

SEQL2: 𝛼 = 0.4, 𝛽 = 10 

Dual-α: 𝛼𝑝𝑜𝑠 = 0.4, 𝛼𝑛𝑒𝑔 = 0.6, 𝛽 = 20 

Dual-Update: 𝛼 = 0.8, 𝛽 = 20 

HMM: 𝛾 = 0.99 

HMM-δ: 𝛾 = 0.99, 𝛿 = 0.01 

Figure 4.11 Proportion of action choices (y-axis; arm1=0, arm2=1) on each trial (x-axis) for 

100 HMM agents all with parameter values γ=0.99 and δ=0.01. Shaded areas indicate 95% 

confidence interval. 
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RandomBias: 𝑏𝑖𝑎𝑠 = 0.5. The reasoning for this value for 

RandomBias is because trial lengths are roughly the same for switch 

intervals. The best performance for the RandomBias agent would thus 

be to have equal probability for both arms. 

For all the agents, we run each 100 times and average the results. 

 

In Figure 4.12 we can see that most of the agents perform similarly 

across the experiment. As a reminder, the Human1 group are those 

who did the task for the first time and the Human2 group did the task 

their second time. Unsurprisingly the SEQL2 agent performs best 

since it has access to information that the other agents or humans do 

not. But the HMM agent is very close. The other noticeable outlier is 

the Human1 group, with slightly lower performance, but still higher 

than the RandomBias agent. It is quite understandable that humans 

learning the task for the first time will vary more in their behaviour. 

Figure 4.12 Proportion of correct choices (y-axis) in the ReversalBandit task for our agents 

and two human groups (x-axis). Error bars indicate 95% confidence interval. 
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In Figure 4.13 we have plotted the proportion of correct choices 

after each switch point for all our agents and the two human groups. 

As we saw earlier, the Human2 group performs very well at the 

second switch point, almost as well as our cheating SEQL2 agent. For 

switch points one and three we can see that the human groups are 

closer to the other agents. It will be quite interesting to see what our 

model selection algorithms determine is the better fit for these 

humans across the entire task. 

4 . 7  PA R A M E T E R  R E C O V E R Y  P E R F O R M A N C E  

As discussed in the previous chapter, simulating behaviour 

algorithmically is slightly different from fitting models. The latter 

involves creating likelihood functions, and these may not always be 

well behaved. In the case of our ReversalBandit, we can use the same 

likelihood functions as in the previous chapter, since the QL 

likelihoods only use actions and rewards as the behavioural 

observations. SEQL2 being the exception, as it needs to be fed the 

stimuli as well. Overall, the QL agents are well-behaved and similar 

in parameter recovery to what was explored in the previous chapter 

so they will not be presented here21. 

We will however look closer at the two HMM agents, as we are not 

yet familiar with the recovery performance of them. We perform the 

parameter recovery check as in the previous chapter. That is, for each 

 

21 But see code repository at https://github.com/fohria/phd_thesis 

Figure 4.13 Proportion correct choices (y-axis) at different number of trials after each switch 

point (x-axis). Each line represents a different agent as per the legend. Human “agents” are 

differentiated by dashed lines and our baseline the RandomBias agent is dotted. Left: First 

switch point. Middle: Second switch point. Right: Third switch point. 
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agent we simulate 1000 agents, each with a randomly selected 

parameter combination. For each agent we then fit its corresponding 

likelihood function to itself to see if parameter values can be 

recovered. Parameter values for the agents were generated as: 

𝛾𝐻𝑀𝑀~𝑈(0, 1),             𝛾𝐻𝑀𝑀𝛿~𝑈(0, 1), 𝛿𝐻𝑀𝑀𝛿~𝑈(0, 1) 

 

In Figure 4.14 we see the recovery results. We see that for the HMM 

agent, parameter recovery is good. Only a few of the thousand cases 

are off, and not by extreme amounts. But for the HMM-δ agent the 

story is not quite as good. We have a similar pattern for the γ 

parameter, but it is worse looking for HMM-δ. The δ parameter itself 

is okay in many cases, but the wide spread indicates that any single 

fitted value has high uncertainty. 

Why this happens is because our introduction of δ becomes 

problematic in the likelihood function. We reset γ after internal switch 

points, where – as described above – the posterior and prior beliefs 

differ in what state is more likely. We also “bottom out” γ (Equation 

4.5) to make sure that γ cannot become negative. This causes the 

likelihood surface to have sharp drops or at least become less 

continuous. We saw an example of this in Figure 3.8. This may 

perhaps be accommodated by using more complex HMM models, as 

demonstrated by for example [170], further discussed below in future 

work. 

The good news is that as we saw in the previous chapter, 

parameter recovery quality is not directly correlated with model 

selection performance. The less good news is that hierarchical 

Figure 4.14 Simulated parameter value (y-axis) plotted against fitted parameter value (x-

axis). Left: HMM agent γ parameter. Middle: HMM-δ agent, γ parameter. Right: HMM-

δ agent, δ parameter. Colour shading indicate the absolute distance between the simulated 

and fitted value, where lighter green is low distance and darker blue is large distance. 
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methods like the CBM toolkit will struggle to fit models with badly 

behaving likelihoods and require much longer computation time, 

making it disruptive to do larger scale model selection investigations. 

Simulating and fitting 1000 HMM-δ agents using MLE can be counted 

in seconds. CBM HBI requires around 10 minutes to fit 100 subjects, 

but around 2 hours to fit 200 subjects. Even then, results are not 

noticeably better – perhaps even worse – than MLE fitting, as seen in 

where CBM-HBI simfits for 200 subjects are shown. 

 

The huge increase in computation time between 100 and 200 

subjects is partly due to CBM HBI (like other Bayesian hierarchical 

models) by its nature uses data from all subjects instead of fitting 

them individually. And partly due to more subjects increases the risk 

of “troublesome” subjects, meaning data sequences that are difficult 

to fit. These issues arise when fitting the HMM-δ model to subjects 

simulated with the same algorithm. When fitting the model to 

subjects simulated with other algorithms, the problem is exacerbated, 

and even more time is required. In such troublesome cases, even the 

Laplace fitting part can fail and falls back to using estimates based 

directly on the priors. Meanwhile, the HMM agent with CBM for the 

same 100 cases takes less than a minute. 

4 . 8  M O D E L  S E L E C T I O N  P E R F O R M A N C E  

The final investigation we need to do before fitting models to our 

human data is to check how well our model selection methods can 

identify and differentiate different models. It is to be expected that 

Figure 4.15 Simulated parameter value (y-axis) plotted against CBM-HBI fitted parameter 

value (x-axis) for subjects simulated with and fitted with HMM-δ. Left: γ parameter. Right: 

δ parameter. Colour shading indicate the absolute distance between the simulated and fitted 

value, where lighter green is low distance and darker blue is large distance. 
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some cases of QL2 may be identified as Dual-α QL and vice versa, 

since the former is a subset of the latter. On such occasions it should 

be the case that QL2 is preferred, since we use BICs and thus prefer 

models with fewer parameters. The same reasoning is likely to hold 

for the HMM and HMM-δ agents as well. 

To recap, we have seven models in total that we are going to 

simulate, fit and then identify based on the fits. These models are QL2, 

RandomBias, SEQL2, Dual-α QL, Dual-Update QL, HMM and HMM-δ. 

We simulate 200 subjects for each model, each simulation with 

separately randomly generated parameter value combinations. We 

thus get a dataset with 1400 subjects. All seven models are then fitted 

to all 1400 subjects using MLE, from which we get a likelihood that is 

converted to BIC values. These BIC values are then fed into VBAT for 

final model comparison and selection. 

We also use CBM, but there we exclude HMM-δ from the fitting 

process, since the likelihood as described above is not well-behaved22. 

This is unfortunate as we would have ideally liked to test the CBM 

paper [211] claim that it is better than MLE at identifying nested 

models. We could however test this claim with the QL2 and Dual-α 

models, which are the same two models tested in their paper and 

these are also included by default in CBM. We used 1000 simulated 

agents (paper uses 40), with the same ratio of 25% QL2 and 75% Dual-

α. Their results showed an almost perfect identification of 25/75, but 

we failed to replicate this finding and CBM reported a 54/46 split of 

cases23. 

To be fair, [211] uses a different reward structure for their two-

armed bandit task called a binarized Gaussian random-walk. The 

precise details of their task are unfortunately not well described in the 

paper, or the accompanying code, and we thus chose to use the same 

ReversalBandit task described above. It is of course likely we could 

replicate their results if we used the same task. However, the relevant 

conclusion from this replication failure is that, as was thoroughly 

discussed in the previous chapter, model selection is notoriously 

difficult and it’s imperative that multiple task and agent scenarios are 

 

22 If we assume that fitting HMM-δ to data generated by other models takes the 

same amount of time as fitting 200 HMM-δ subjects, that would be 14h for 1400 

subjects. More likely it would take longer for reasons stated in previous section. 
23 Code for results can be found in thesis code repository 
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explored when making any claims that one method is better than 

another. 

Furthermore, even without HMM-δ in the mix, CBM is slower to 

compute results compared to MLE. All the 1400 subjects take a minute 

or so to simulate, fit and analyse with BIC and VBAT. For CBM, which 

fits 1200 cases as we removed HMM-δ, the Laplace phase of CBM 

fitting takes around three minutes and is done using multiple 

processes with MATLAB’s parallel pool functionality. The 

hierarchical fitting phase of CBM is not possible to do in parallel and 

takes around 16 minutes, so CBM fitting is roughly 19 times slower 

than MLE/VBAT. This is not terribly slow, but it’s worth noting as 

these tests have been done on a relatively recent and powerful 

laptop24, so with weaker hardware and depending on the 

performance of CBM compared to BIC/VBAT, it is something worth 

taking into consideration when selecting one’s method both timewise 

and energy efficiency/sustainability-wise. 

 

In Figure 4.16 we have plotted the model selection results for 

MLE/BIC, VBAT (using BIC from MLE fits) and CBM. For the MLE-

based methods, most of the agents can correctly be identified more 

than 80% of the time, often upwards of 90%, which is a decent and 

promising result for fitting the human data. CBM generally performs 

worse and is at best on par with the other methods. More generally, 

we can see that Dual-α QL is difficult to identify, most likely due to 

 

24 CPU in laptop is a Ryzen 7 5800H, 45W 

Figure 4.16 Proportion of correctly identified cases (y-axis) for each method (colours as per 

legend). X-axis labels represent the simulated agent name. Error bars are based on 95% 

confidence interval. 
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QL2 model being in the mix as discussed above. Similar reasons are 

likely behind the poor identification for the HMM-δ agent, as the 

HMM agent is nested within HMM-δ agent, in addition to the issue 

with the troublesome likelihood function for the HMM-δ agent. 

Looking further at the comparatively low identification performance 

for RandomBias, it’s likely due to some random cases can look like 

greedy QL agents. We can see these theories are true by looking more 

specifically at what model each subject has been identified as. This is 

shown in Figure 4.17, where we exclude the pure MLE method for 

readability.  

 

In Figure 4.17, we see that as we suspected, most of the Dual-α cases 

are identified as QL2. We can further drill down into this to confirm 

that many of these cases are such that the difference between the 

positive and negative α in Dual-α QL is < 0.5 on average25. Due to the 

inherent randomness of action choices in these tasks it is 

 

25 Result not shown but plot available in code repository 

Figure 4.17 Proportion of cases (y-axis) for each simulated agent (x-axis) identified as what 

model (differently coloured bars as per legend). Shaded sections separate each x-axis category 

for readability. Top: CBM method. Bottom: VBAT method. 
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understandable these misidentifications happen. Similarly, for the 

HMM-δ agent, we see that almost all cases not correctly identified as 

HMM-δ are instead identified as HMM. 

For the comparison of VBAT and CBM methods, the biggest 

deviation is how simulated RandomBias agents are almost exclusively 

misidentified as Dual-α for CBM, but spread across Dual-α, Dual-

Update and HMM for VBAT. The other deviation – and arguably more 

important – is that CBM misidentifies HMM as QL2 for roughly 10% 

of the cases. Because what we are interested here is investigating 

whether participants use the concept of states or rely on “simpler” 

action-values, the VBAT result here is much more in line with what 

we would like to see and therefore will be more reliable for our 

human data with regards to this question. 

Overall, these results are encouraging for fitting our human 

subjects. We can be reasonably sure that the model fitted describes the 

human behaviour well. It is especially encouraging that the two 

HMM models – which have the concept of states – can be reliably 

distinguished from the stateless models (QL family).  

4 . 9  F I T T I N G  H U M A N  D ATA  I N  T H E  R E V E R S A L  B A N D I T  

TA S K  

We now have enough information to fit these six models to our 

human data and be able to interpret the results. To reiterate, the 

human data consists of 23 subjects playing the ReversalBandit task. 

Half the subjects had done a very similar task once before and half 

had not, which we indicate by referring to them as groups 2 and 1 

respectively. The exact timesteps when switches occurred differed 

slightly between the two groups, as mentioned above. 
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In Figure 4.18 we can see that – somewhat surprising – most 

subjects appear to perform in line with the Dual-Update QL model. For 

the participants that did the task their first time (left hand side of the 

figure), their behaviour is more scattered and thus in a few cases 

better fit by other models. Moving on, we see that the CBM results, 

although somewhat more unreliable as we saw in our simfit model 

selection investigations, largely agree with the BIC/VBAT results, 

except for the one subject identified as Dual-α by CBM. This adds to 

the picture that the humans in group1 are more variable in their 

behaviour, but largely use the same strategy as the humans in group2. 

As we have seen earlier, an advantage of VBAT and CBM is that 

we also get probability measures of each model’s fit to each 

individual subject. This has been plotted per subject and method in 

Figure 4.19, where we see that overall, the methods agree on 

individual subject level what model fits best. An interesting case is 

subject 3 where CBM is convinced it’s Dual-α QL, and VBAT is not 

fully certain this subject is Dual-Update QL but gives some chance to 

it being QL2. Subject 8 is a more clear-cut disagreement. But the most 

interesting case here is subject 5 where all three methods (MLE result 

not shown in figure) agree that HMM fits best. As we saw in Figure 

4.16 and Figure 4.17, our methods are very good at identifying HMM 

cases. So, it could very well be that this particular subject thinks about 

the task in terms of states. 

Figure 4.18 Number of subjects (y-axis) that were best fit with each model (x-axis). Coloured 

bars indicate method type as per legend. Left: Human group that did the task the first time. 

Right: Human group that did the task their second time. 
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What our investigations here show is that for this particular dataset 

and the particular models we have chosen to fit, there is overall no 

need for the concept of states to be introduced. Here, it seems more 

likely that most subjects keep track of the value of both arms at once. 

This is perhaps because they know that one arm is always better than 

the other, so if one arm is rewarded that automatically means the 

other one is bad. Hence, updating the values for both arms 

simultaneously make sense. Most published papers would stop there 

and conclude that Dual-Update QL is how humans approach this task. 

But humans are not all the same, individual differences do exist. So, 

if we are to believe our data, at least one individual could very well 

be approaching the task in terms of conceptualising it as states 

(subject 5 in the figures above). And for similar reasons it seems 

reasonable that when first encountering a task, humans attempt 

different strategies, which could explain how the fit results are more 

scattered for the subjects in group1. 

Figure 4.19 Model probability (y-axis) for each subject (x-axis). Separate lines and colours 

indicate model identity as per legend. Top: VBAT method. Bottom: CBM method. 
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4 . 1 0  I N V E S T I G AT I N G  T H E  W O R T H Y  B A N D I T  

As mentioned in this chapter’s introduction, there are many 

variations of the reversal bandit task. One such variation is one where 

reward magnitudes are varied together with what action option is the 

best one. The specific one we will focus on here is one we call 

WorthyBandit after the main author of the paper the task is taken 

from [305]. Subjects have two decks of cards to choose from, a Good 

Deck (GD) and a Bad Deck (BD). The BD provides high points for 

early cards drawn but then goes down-hill, while the GD starts out 

providing low points and then progressively get better. Subjects start 

out at zero points and the goal is to maximize their score. In most 

versions of the task, there is a goal criterion of 450 points to receive 

some additional reward like taking part in a raffle to win a prize. In 

order to reach this criterion, the subjects must resist exploiting what 

initially looks like a good deck and keep exploring the deceptively 

worse option. Note that the concept of card decks here is merely 

superficially different from the Bandit and ReversalBandit tasks 

above. They are all the same kind of tasks; two options for actions that 

each provide a reward. 

In more detail, the points awarded for each card are between 1 and 

10 and after being drawn, that card is discarded. Each subject draws 

a total of 80 cards (i.e., the task has 80 trials) and each deck has 80 

cards (thus 160 cards in total across the two decks). The GD gives an 

average value of 3 points over the first 20 cards drawn, an average of 

7 points over the next 50 cards drawn and an average of 3 points over 

the last 10 cards drawn from it. The BD provides an average value of 

8 points for the first 30 cards drawn from it, an average of 5 points 

over the next 20 cards drawn and an average of 2 points over the last 

30 cards drawn from it. 

We have gained access to a dataset consisting of 166 human 

participants performing this task. Details of participants can be found 

in [121]. All participants had the same specific point sequence for the 

drawn cards. Thus, for consistency, we use the same sequence for all 

simulations below. The sequence has been plotted in Figure 4.20. 
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To better understand how deck choice impacts score in the task, 

we can plot the number of cards picked from each deck and the 

resulting score, as seen in Figure 4.21. There we can see that to 

maximise the points the participant needs to pick roughly an equal 

number of cards from each deck. Because we can only pick 80 cards 

in total, the two card counts are directly correlated, as seen in the 

figure’s symmetry. The maximum score is 514 and the minimum 

score is 392. A minimum of 25 cards drawn from the good deck are 

needed to reach the goal criterion of 450 points. If more than 78 cards 

are drawn from the good deck, the final score drops below the goal. 

 

 

4 . 1 0 . 1  A G E N T  P E R F O R M A N C E  I N  T H E  W O R T H Y B A N D I T  

As mentioned above, there is a goal of having at least 450 points when 

the task ends. So, measuring performance in this task is quite natural 

– we measure the total points achieved. The other thing we would like 

to see is how the choice behaviour develops during the task run, 

Figure 4.20 Reward magnitude (y-axis) for each card in the decks (x-axis). Colours 

differentiate decks as per legend. Horizontal lines represent mean reward for that card 

position range. 

Figure 4.21 Total score in the task (y-axis) depending on how many cards are picked (x-

axis) from each deck (coloured lines as per legend). The green dashed line indicates the goal 

criterion of 450 points. 
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which we do by plotting action choices per trial averaged over 

subjects. For an additional measure, we also calculate the proportion 

of deck1 choices from the current trial to the end of the experiment. 

In other words, on the first trial, this measure is the proportion of 

deck1 choices across all the 80 trials. On the second trial, it’s the 

proportion across the last 79 trials, and so on. On the last trial this 

measure can thus only be one or zero since it is only based on the final 

trial of the task. This measure allows us to see on an individual level 

how the choices change throughout the experiment. 

We start out by looking at the behaviour of our QL2 agent. We 

perform a parameter sweep, with 100 subjects for each parameter 

combination. The parameter ranges used are: 

𝛼 ∈ (0.01, 0.1, 0.2 … 0.8, 0.9, 0.99) 

𝛽 ∈ (0.5, 1, 2, 5, 10, 20) 

Furthermore, we will also contrast three different reward functions 

for the agent. When rewards are between 1 and 10, this can lead to Q-

values quickly inflating – especially if α is large – so that the action 

that received a reward of 10 will keep being the highest valued one 

until the other action has received a reward of 10 itself or enough 

lower rewards to compensate. But the latter may not happen with a 

greedy agent. Of course, one may argue that the β parameter then can 

be lower and exploration can still happen. However, with the 

inherent randomness of these algorithms it is very difficult to predict 

how they will perform, especially for a task like the WorthyBandit 

that has a quite complex reward schedule. Thus, our three reward 

schedules are standard, normalised and scaled, where standard are 

rewards between 1 and 10 as for the humans. The latter two are 

calculated as follows: 

𝑟𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 =
𝑟 − 𝑟𝑚𝑖𝑛

𝑟max − 𝑟min
, 𝑟𝑠𝑐𝑎𝑙𝑒𝑑 =

𝑟

10
 

The difference between these two are that for normalised, the 

lowest reward value – 1 – will become 0, whereas for the scaled 

function the lowest reward value will be 0.1. This may seem strange, 

as 0 is usually considered as “no reward”, but since participants know 

the reward range it is possible that a reward of 1 is evaluated as being 

practically 0. 
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In Figure 4.22 we have plotted the number of cards drawn from the 

good deck for all the parameter combinations and the three reward 

value variants. The normalised and scaled variants (left, middle, 

respectively) perform very similarly, and in both cases the pattern is 

that lower β and very low α leads to more cards picked from the good 

deck. Meanwhile, for the standard variant (right plot of Figure 4.22) 

we seem to have the inverse relationship for β. 

 

Moving onto Figure 4.23, the standard variant (right plot) again 

stands out. How come almost no cases reach the goal criterion, when 

in the previous figure there were many cases reaching around 40 

good draws? We can see why in the histogram in Figure 4.24, where 

we have selected the specific case of the simset (100 simulations with 

the same parameter values) with α=0.4, β=10 for the standard reward 

scale. Practically all cases pick one deck, and then greedily pick the 

same deck throughout the entire experiment. This rarely happens 

with human participants (see below). 

Figure 4.22 Number of cards drawn (y-axis) from the good deck for each α (x-axis) and β 

(coloured lines as per legend) parameter value combination. Left: Normalised rewards. 

Middle: Scaled rewards. Right: Standard rewards. Shaded areas indicate 95% confidence 

interval. 

Figure 4.23 Total reward score (y-axis) for each α (x-axis) and β (coloured lines as per 

legend) parameter value combination. Left: Normalised rewards. Middle: Scaled rewards. 

Right: Standard rewards. Shaded areas indicate 95% confidence interval. Green dashed 

horizontal line indicates goal criterion. 
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Recall that β regulates exploration versus exploitation – higher β 

results in more greedy behaviour, always selecting the action with the 

highest Q-value. With lower β, exploratory actions are made more 

often which is an advantage in this task as mentioned above. A certain 

number of cards must be picked from the good deck before it becomes 

good. So, what happens here when using standard reward values, is 

that the QL2 agents with high β immediately get such a high Q-value 

for one deck compared to the other that it sticks to it throughout the 

entire experiment. Hence why the greedy agents average to around 

40 draws from the good deck in Figure 4.22, because they either pick 

80 from that deck, or 0. In other words, we must conclude that either 

normalised or scaled variant should be used here26. 

 

26 We could theoretically introduce a reward scaling parameter into the 

algorithm, as demonstrated by e.g. [233]. That is not really the focus for us however, 

so we leave this for other authors. 

Figure 4.24 Closer look at the parameter combination α=0.4, β=10 with standard rewards. 

Left: Histogram showing probability (y-axis) of picking a certain number of cards (x-axis) 

for all 100 subjects averaged. Right: Action selected (y-axis) across all trials (x-axis) for 

individual agents (separate lines). GD=good deck, BD=bad deck. Note there are 100 subjects, 

but since they all pick either BD or GD entire task length, the lines overlap. 
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In Figure 4.25 we divided all the simsets (one simset is 100 

simulations of the same parameter value combination) into two 

groups – those that reached at least 450 points (winners) and those 

that did not (losers). In the left part of the figure, we see the 

probability of picking the good deck – deck1 – in proportion to all the 

successive choices, as explained earlier. In both plots in the figure, we 

see how winners have a more balanced approach, while the losers 

aggressively pick the BD early on and then drastically switch to the 

GD as the BD runs out of big rewards. Note that the two plots in 

principle shows the same information, only presented from different 

viewpoints. For later plots of agent simulation performance, we thus 

stick to one of these, but see below for the human participants. 

We now move onto performance for the RandomBias agent and do 

a parameter sweep. The parameter range used for this parameter 

sweep are as follows: 

𝑏𝑖𝑎𝑠 ∈ (0.01, 0.1, 0.2, … , 0.8, 0.9, 0.99) 

100 subjects were simulated for each parameter combination, and 

results are seen in Figure 4.26. 

Figure 4.25 Behavioural differences between winners and losers. Left: Probability of 

selecting a card from deck1 (good deck, y-axis) relative to choices on successive trials (x-

axis). Right: Proportion of choices being bad deck (BD) or good deck (GD) on y-axis across 

all trials on x-axis. Strictly it is the proportion of BD i.e., the line at BD is 1 and the line at 

GD is 0. Dashed line indicates the midline, i.e., equal probability of each option.    
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In the figure, we have combined results for all three types of 

reward scales as they show virtually identical results. We here see that 

a wide range of values for the bias parameter result in scores above 

the goal criterion. For bias 0.5 to 0.8, 100% of the simulations are above 

the criterion, as seen in the boxplots to the right in the figure. In total, 

57% of all random cases are above the criterion. This is unfortunate, 

as it shows that although the task is complicated there is no clear 

measure for us to know if humans are learning anything in the task 

or picking actions at random. It is still possible that, depending on the 

behaviour of humans, some models we fit can better explain their 

behaviour than a random model. For example, if many humans 

struggle to get enough points, this may indicate that they are learning, 

not picking at random, but learning the wrong thing. However, if we 

rely on fitting models to know if humans have learned anything at all, 

that makes our investigations much more challenging, since as we 

have seen many times above that fitting models at all is not reliable. 

If we compare this to the ReversalBandit from earlier, there it’s 

easier to see that humans are doing something slightly different from 

strict Q-learning as they often switch much quicker than QL2 can. 

When it comes to SEQL2, things get very tricky. How, if at all, do 

we define states in this task? The most straightforward way would be 

to use Figure 4.20 as a guide, and then define that state o is when GD 

is best and state 1 is when BD is best, based on how many cards have 

been picked from each deck: 

𝑠𝑡𝑎𝑡𝑒 = {

1 𝑖𝑓 𝑐𝑜𝑢𝑛𝑡𝐵𝐷 < 30 
0 𝑖𝑓 𝑐𝑜𝑢𝑛𝑡𝐵𝐷 > 50
1 𝑖𝑓 𝑐𝑜𝑢𝑛𝑑𝐵𝐷 < 50 𝑎𝑛𝑑 𝑐𝑜𝑢𝑛𝑡𝐺𝐷 < 20

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Figure 4.26 Performance for RandomBias agent (y-axis, total points scored) across the 

parameter value space (x-axis). Green dotted line indicates the goal criterion. Left: Average 

score for each parameter value. Right: Boxplots for each parameter value.  
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The simulation results for SEQL2 are virtually identical to QL2 

results, as seen in Figure 4.27. Note this figure only shows the 

normalised and scaled reward variants. The other QL models, Dual-α 

QL and DualUpdate QL also show the same patterns and are thus not 

shown here but are available in the code repository. 

 

The HMM and HMM-δ models have been altered slightly in order 

to accommodate the WorthyBandit. Instead of Equation 4.3, we are 

instead using a cumulative distribution function like so: 

 
𝑝(𝑜𝑡|𝑠𝑡) = {

𝑟~Φ(𝜇 = 5.5, 𝜎 = 2)              𝑖𝑓 𝑎𝑡 = 𝑠𝑡

1 − 𝑟~Φ(𝜇 = 5.5, 𝜎 = 2)       𝑖𝑓 𝑎𝑡 ≠ 𝑠𝑡
 

4.6 

Where the mean and standard deviations reflect the standard task 

reward variant. Since these parameters for the normal distribution are 

scaled accordingly with the scaled reward values, there is no 

difference between the task variants. Results for the parameter sweep 

for HMM can be seen in Figure 4.28. In the left part of this figure, we 

can see that similar to how optimal β for the QL agents switched 

between ReversalBandit and WorthyBandit, the γ parameter 

(probability of staying in the current state) is now optimal towards 

the lower end but can still be fairly high at 0.8 and still reach the goal 

criterion. On the right-hand side of the figure, we can see a similar 

pattern as for the other agents with regards to what deck winners and 

losers pick cards from. That is, losers greedily pick from the bad deck 

until around halfway into the task and only then gradually explore 

Figure 4.27 Simulations for SEQL2 agent across the parameter space. Left: Total score 

received (y-axis) for different α (x-axis) and β (coloured lines as per legend). Green dashed 

line indicates goal score. Right: Proportion of cards picked (y-axis) from good deck (GD) and 

bad deck (BD) across trials (x-axis) averaged across all subjects but divided into groups as 

seen in legend. 
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the good deck, but fail to do this exploration enough before it’s too 

late. While the winners have a more balanced approach throughout.  

 

For the HMM-δ agent, results are seen in Figure 4.29. To the left, 

we see that with a very low γ, all combinations reach more than 510 

score on average. Following those lines, we see that after γ=0.5 the 

variants start to diverge, where the line for δ=0.01 has a similar 

trajectory to the regular HMM agent, which is also the only 

combination to ever go below the goal criterion. Only a few of these 

combinations reach the heights in score of the lower γ values, 

however. On the right-hand side of the figure, we again see the same 

pattern as we have seen for the previous agents, namely that winners 

have a balanced approach, whereas losers aggressively pick the bad 

deck for too long. 

Figure 4.28 Performance and behaviour of the HMM agent in the WorthyBandit task. Left: 

Total score (y-axis) against γ value (x-axis). The green dashed line indicates the goal score. 

Right: Proportion of cards picked (y-axis) from the good deck (GD) or bad deck (BD) across 

trials (x-axis). The coloured lines indicate if the subjects averaged were winners or losers. 
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4 . 1 0 . 2  H U M A N  B E H A V I O U R  I N  T H E  W O R T H Y B A N D I T  

For the human subjects we are presenting their scores and behaviour 

in similar ways as for the agents above. But here, since we have a low 

number of participants, we can plot their individual scores as separate 

points, as well as have a closer look at their behaviour on a subject 

level.  

Figure 4.29 Performance and behaviour of the HMM-δ agent in the WorthyBandit task. 

Left: Total score (y-axis) against the γ value (x-axis) and δ value (coloured lines as per 

legend). The dashed green line indicates goal score. Right: Proportion of cards picked (y-

axis) from the good deck (GD) or bad deck (BD) across trials (x-axis). The coloured lines 

indicate if the subjects averaged were winners or losers. 
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In Figure 4.30 we have plotted the performance and behaviour of 

the human participants. In the top left we can see that overall, the 

winners tend to exhibit more exploratory behaviour than the losers. 

The winners also seem to react stronger to the shift to bigger 

difference between the decks after trial 50 (compare Figure 4.20). In 

the top right we see that only around half of the participants reach the 

goal criterion (47.6%, to be exact). In the bottom figure, which may 

look overwhelmingly busy at first, we can see the same overall 

pattern as in the top-left plot, namely that participants increase their 

picks of deck1 throughout the experiment overall, but here we also 

see that some participants notice the switch in the last 10 trials (lines 

slope downwards after a point) and some participants don’t (lines 

continue upwards entire task). The observant reader can also spot that 

it looks like at least two participants pick the same deck throughout 

the entire task (one horizontal line at 1.0 and one line at 0.0). To 

doublecheck if there are any overlapping lines, we can check in the 

data, and indeed two participants pick the same deck the entire task. 

These subjects will most likely be best fitted by the RandomBias 

agent, or perhaps a very greedy QL agent. 

Figure 4.30 Human behaviour in the WorthyBandit task. Top-left: Average action choice (y-

axis) for each trial (x-axis). Shaded area indicates 95% confidence interval. Top-right: Score 

(y-axis) for each participant. Each dot is a single participant. Green dashed line indicates 

goal criterion. Bottom: Proportion of choices that are deck1 (y-axis) for each participant 

(coloured lines) across all trials (x-axis).  
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Finally, to get an overview of all our agents together with the 

humans, we plot the total score for all agents (using the parameter 

sweeps described above) and the humans in Figure 4.31. We have not 

chosen specific, well performing, agent parameter combinations here. 

We also used a single reward type, normalised. Since there is a wide 

spread in performance for the human data, it is more appropriate to 

look at the spread for the agents to understand if there are parameter 

combinations that can account for all or some humans. 

In Figure 4.31, we see that the human scores are spread in a 

uniform fashion across the possible scores. The HMM agents are 

better on average, with the HMM-δ agent performing very well. For 

the QL family of agents, QL2 has the best average and smallest 

spread, but all those agents vary across the entire score spectrum, the 

same as the RandomBias and humans. What models may fit the human 

data best? Here it is possible that we may see a wider spread in model 

selection, for example that HMM-δ fits well performing humans well 

and DualUpdateQL fits the low-performing better.   

 

 

4 . 1 0 . 3  M O D E L  S E L E C T I O N  P ER F O R M A N C E  I N  T H E  W O R T H Y B A N D I T  

T A S K  

With only 80 trials, fitting will be challenging. Parameter recovery 

will not be great, but luckily our focus here is model selection, which 

as we saw previously does not necessarily require good parameter 

recovery. Even this may prove challenging with so few trials. 

Additionally, the details of this task may impact how well model fits 

and selections work. This is the eternal challenge in experiments with 

humans in the cognitive sciences. Tasks that don’t bore humans rarely 

Figure 4.31 Score in the WorthyBandit task (y-axis) for each agent type (x-axis).  
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get us enough data, but if we extend the task, the data will be 

unreliable because humans are bored! 

Nevertheless, like for the ReversalBandit above, we now simulate 

and fit 200 randomly generated agents of each type and see how well 

we can identify them. Because the QL agents do not work well with 

the standard reward scale, and the other agent types work well with 

any reward scale, we here only use the scaled reward scale (i.e., 

rewards are 0.1-1 instead of 1-10). We use this scale instead of the 

normalised one (which is 0-1) to have better correspondence with the 

reward values used in the human data. Except for the SEQL2 agent, 

we can again use the same likelihoods as before, because the only data 

we have are rewards and actions. For fitting the SEQL2 model to non-

SEQL2 simulations, we manually add states based on the card count, 

in the matter described above. 

We unfortunately ran into issues and bugs with CBM when fitting 

this task. First, as with the ReversalBandit task, fitting the HMM-δ 

model is prohibitively slow so it is left out of this analysis. Second, the 

Dual-α QL model (which happens to be included by default in CBM) 

fits the data for some subjects so badly that the fitting algorithm 

reverts to using the prior value. This case of very bad fits seems to 

have some bug(s) in its implementation, causing cascading errors in 

the fitting process. The authors have been contacted but as of this 

writing there is no fix for this error, so Dual-α QL has also been left 

out of the analysis. Results for CBM model selections for the 

remaining models are still presented, but keep in mind the ratios 

cannot necessarily be directly compared to VBAT since the latter 

compares likelihoods across all the models.  
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In Figure 4.32 we have plotted the model selection results. What 

stands out is that HMM and DualUpdate QL are identified well by all 

methods, that MLE is multiple times better at identifying SEQL2 than 

the other two and Dual-α QL is quite bad for all methods. CBM is, as 

has been seen before, not notably better than the other methods, 

except for the RandomBias subjects. It’s possible that if CBM had been 

able to fit the additional two models its result would be closer to that 

of VBAT. To better understand what is going on here we need to move 

onto Figure 4.33. 

Figure 4.32 Model selection plots for the two methods (coloured bars as per legend), where 

the proportion of correctly identified cases is on y-axis, and the simulated agent type on x-

axis. 
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In Figure 4.33 we see the full model selection results, not just 

accuracy as in the previous figure. The most important finding here 

is that there is a clear separation between the HMM models and the 

QL family of models – practically no HMM cases are identified as QL 

and vice versa. Most HMM-δ cases that are misidentified are 

identified as HMM, which makes sense as they are nested. 

Unfortunately, it looks like between 20-40% of RandomBias cases can 

be identified as HMM, depending on the method. That means we 

cannot be fully certain a human best fitted with HMM actually uses 

Figure 4.33 Proportion of cases (y-axis) for each agent type (x-axis) identified as what model 

type (different coloured bars as per legend). Shaded areas are simply for readability. Top: 

MLE method. Middle: VBAT-MLE method. Bottom: CBM method.  
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this strategy. For the QL family, we see that except for DualUpdateQL, 

which has high accuracy overall, VBAT tends to classify Dual-α and 

SEQL2 as the standard QL2. QL2 is nested in Dual-α so that part can 

be partly explained, and perhaps it is the case that the addition of 

states in SEQL2 does not help or differentiate very much in the 

WorthyBandit for there to be much difference in their behaviour. 

Because of the difference in results for MLE and VBAT, for example 

that MLE is better at identifying SEQL2 than VBAT, it looks like we 

can use both together to tease out the most likely model for individual 

subjects in the human data that is to be fitted. CBM unfortunately 

does not provide much additional information here. 

One additional measure to check is the VBAT probabilities for each 

model, as seen in Figure 4.34. For QL2 and Dual-α QL, VBAT is overall 

quite certain the best fit is QL2. For RandomBias there is some overlap 

between itself and DualUpdateQL and HMM. For SEQL2 there is not 

much overlap between the correct model and the overall most fitted, 

QL2. For HMM and DualUpdateQL, the probabilities are all very close 

to 1 in the vast majority of cases, although it is not easy to see. 

 

To summarise, if we fit DualUpdateQL or HMM to a subject, we can 

be fairly confident that is the strategy used, but the participant could 

also be using a random approach in the latter case. Dual-α is unlikely 

to be the best fit for any participant (and would thus be a surprise if 

that was the case for the human data). If we fit QL2, then we can be 

confident it is in the QL-family, at least. Somewhat surprisingly, it 

Figure 4.34 Probability (y-axis) for the model (coloured boxes as per legend) being the best 

fit for the group of simulated subjects of each agent type (x-axis). Shaded areas are simply 

for readability. 
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also looks like MLE overall performs very well and in theory we 

would not really need to use the more advanced Bayesian methods. 

4 . 1 0 . 4  F I T T I N G  H U M A N  D A T A  I N  T H E  W O R T H Y B A N D I T  T A S K  

With exhaustive investigations into the behaviour of our agents and 

performance of model selection, we can now fit the human data. Since 

we found CBM did not provide much useful additional information 

we exclude this method from the presentation here. 

 

We have plotted the model selection results for the human data in 

Figure 4.35. Only the MLE method found SEQL2 (11 subjects), 

RandomBias (8 subjects) and Dual-α QL (6 subjects) to be the best fit 

for any of the subjects. They may look like an insignificant count in 

comparison, but we saw above that the MLE method is much better 

at fitting SEQL2 than VBAT. We also see that VBAT has fitted more 

QL2 subjects than MLE, which is also to be expected from the above 

investigation, as VBAT tended to fit most QL family models as QL2.  

The most interesting findings here are the two models at the left, 

DualUpdateQL and HMM. Both were found to be reliable in model 

selection performance above. Are there any correlations between the 

model selections and score for the participants? To investigate this, 

we first focus on the subset of subjects where the two methods agree, 

as any conclusions we draw from that subset we can be more 

confident in. This turns out to be 136 of the 166 subjects. 

Figure 4.35 Count of model selections (y-axis) for each model (x-axis) for each method 

(coloured bars as per the legend) 
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In Figure 4.36 we have the money shot.  QL2 and DualUpdateQL fit 

scores across the spectrum but falls off as we reach the very high 

scores towards the maximum possible. This while HMM increases in 

likelihood to be the best fit above 450, and after 470 or so, it is equally 

roughly equally likely for the rest of the range of possible scores. 

Perhaps it is the case that high-scoring individuals do use state 

inference to a larger degree than non-high scoring individuals? 

We should, however, recall that in the agent performance 

investigations we saw that very few parameter value combinations 

for HMM go below 450 points (Figure 4.28). So, this result may simply 

be due to the inherent dynamics of the models, and not have anything 

to do with participants using state inference, per se. Additionally, 

there are several DualUpdateQL subjects in the right most bin as well. 

Then again, the idea that one model supposedly fits all individuals 

is one we do not agree with, which has hopefully been clear since 

earlier in this thesis. It is entirely possible that DualUpdateQL, QL2 and 

HMM are all possible and successful strategies in this task.  

4 . 1 1  C H A P T E R  S U M M A R Y  A N D  D I S C U S S I O N  

In this chapter, we further explored the limits and capabilities of the 

model fitting and selection methods under consideration – MLE, 

VBAT and CBM. We did so using variations of the two-armed bandit 

task where reward contingencies change throughout the experiment, 

so called reversal bandits. This allowed us to introduce the concept of 

states, both hidden and observable, and investigate how RL models 

Figure 4.36 Histogram with number of subjects (y-axis) across the total score (x-axis) 

received in the experiment. Colours indicate model fitted as per the legend, and lines are 

calculated using kernel density estimate.  
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and HMM models may explain human behaviour in two datasets 

using different types of reversal bandits. 

For the first task, ReversalBandit, we showed that most subjects did 

not need the concept of states to be successful. Instead, it was 

sufficient to keep track of action values for both arms simultaneously. 

The second task, WorthyBandit, is much more complex and 

requires careful balance of exploitation and exploration. Here, many 

subjects found the approach of tracking hidden states more useful 

than that of simply tracking action values. However, most subjects 

managed fine with the same strategy used in ReversalBandit.  

To summarise the results of both datasets, we show it is indeed 

likely that individual participants do use different strategies and 

adapt those to the task at hand. 

For the regular reversal task, we can see in Figure 4.5 and Figure 

4.6 that the group with previous experience of a similar task is, at least 

for the first two switch points, faster at making the switch than the 

other group. This ties back to the concept of “learning to learn” or 

“meta learning” [113, 293] introduced in chapter two, which describes 

how previous experience of a task such as reversal learning can be 

utilised to improve performance in similar tasks. 

Neftci & Aberbeck [193] explain how there may be two main model 

types that can explain this faster learning; Bayesian models using 

priors over the probability of reversal, or state inference models. In 

our case we have focussed on the latter type of model and as 

discussed above, these types of models usually assume involvement 

of prefrontal areas, especially OFC [235, 302]. 

But as seen in the fitting results of our human data (section 4.9), a 

large number of participants without experience of the task and all 

participants with experience of a similar task are fit best by 

DualUpdateQL model. This is quite interesting, as DualUpdateQL 

does not have an explicit concept of multiple states, but it does 

inherently take the task structure into account. The construction of the 

DualUpdateQL model means that the participant learns about both 

choice options after making a particular choice and receiving 

feedback about it. Specifically, if recent evidence points to option A 

being the better one then it follows that option B is the worse option 

and both option values should be altered accordingly. 
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Perhaps this indicates that prefrontal areas are not necessary to 

engage for this task (but see below for an alternate interpretation). 

However, seeing as some participants in one group were actually 

better fitted with the HMM model, it is possible that such individuals 

are motivated enough to engage complex reasoning to find a useful 

task representation (when first encountering the task) which is then 

re-engaged when a similar task is encountered (as for the group with 

previous experience of the task). Alternatively, participants might not 

simply re-engage HMM on later encounters but might adopt a 

DualUpdateQL model if we see the latter as a “summary” (see section 

2.2.5, p. 47) or simpler version of the former model, HMM.  

Related to these speculations are the findings of Schlagenhauf et al. 

[233], where a reversal task was used to compare behaviour between 

healthy controls and patients diagnosed with schizophrenia. Like us, 

they use a standard QL model, a dual update QL model and an HMM 

model (our HMM implementation is in fact based on theirs). What 

they find is that most healthy controls and some patients are best fit 

with the HMM, and those patients that are not, are best fit with the 

standard QL model. We cannot say with any degree of confidence 

without further investigation, but it could be that even the fairly basic 

assumption of task structure built into DualUpdateQL would require 

similar prefrontal systems to those used by more explicit state 

inference models such as HMM. 

Through this lens of both HMM and DualUpdateQL using some 

form of knowledge of task structure, we can make sense of the results 

from fitting our models to the data in the Worthy task. There were 

many subjects best fitted with QL2 here, and those subjects did not 

reach the highest score levels possible, which participants best fitted 

with HMM and DualUpdateQL were able to reach. Building on our 

speculations above, this could mean that those subjects best fitted 

with QL2 did not engage additional systems able to hypothesise 

about possible task structures. 

To be clear, we do not imply that our Worthy task participants, 

who were best fitted by QL2, had any schizophrenia like behaviours 

or thoughts. Rather, these participants perhaps were not motivated 

enough – or unwilling – to exert the effort to think more deeply about 

the task structure. Whatever the reason, this would result in 

differences in model fits between certain individuals that were similar 
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to the group differences observed in [233]. It is not possible for us to 

evaluate these speculations here as we do not have any data on 

participants’ motivation, but we think this line of thought adds to our 

point made throughout this thesis that investigating the how and why 

of individual model fits is valuable to consider in future research, for 

example in order to tease out ideas for neurobiological models. 

Regarding the methodology, we found that MLE – supported by 

VBAT – was the better performer. CBM was at best on par, and at 

worst did not work at all for some models. This is unfortunate 

because the comparison of the methods is left incomplete. More 

serious is the kind of bugs and issues with long computation times 

we ran into. The latter was an issue for methods used in the previous 

chapter as well. What these problems tell us is that – regrettably – 

authors do not fully test their tools before publishing papers telling 

the world how useful these methods are. 

On that point, we show how important it is to cover as much of the 

parameter space as possible when testing methods, preferably with 

thousands of parameter combinations. Additional to this, it is equally 

important to consider how a single unique parameter value 

combination can vary across multiple simulation runs due to the 

inherent randomness of action selection methods such as SoftMax. 

To conclude, the best performing method here is the non-Bayesian 

MLE. Granted, it is efficiently supported with VBAT which is a 

Bayesian based method. As with so many things in life, we thus show 

that a balanced combination of both worlds leads to the best result. 

Even better, this method is the most computationally efficient which 

is very good indeed for the environment. 

 



 

5  T H E  SH A P E  SE Q U E N C E  TA SK  

We have so far seen how RL can often describe the behaviour of 

humans in simple bandit tasks. Even in these simple and apparently 

stateless tasks, the concept of states can be useful. It is thus time to 

introduce tasks with observable stimuli, on which states may be based 

directly or used to guide inference. 

There are multitudes of such tasks, and as we saw with the reversal 

bandit in the previous chapter, just introducing the simple 

adjustment of varying what arm or deck is the best allows for greatly 

increased complexity of the task structure. Thus, adding observable 

stimuli allow for even more complex ways of constructing a task. The 

common base structure for typical state-based tasks however is that a 

stimulus such as a picture of an object is shown, and the participant 

has two or more action options to pick from. The simplest case would 

be a so called go-no go task where a picture is shown, and the 

participant decides if they push a button (go) or not (no-go). 

The most common task variant (although we have not counted this 

formally) is likely to be one where there are a small number of 

different stimuli, and two response options of which one must be 

selected. Only one of the options is correct for each stimulus. For 

example, you may see pictures of different types of food and for each 

you must learn if I like or dislike it. Another alternative would be that 

of a bumblebee searching for nectar in a new-found flower patch. 

Perhaps there are several different kinds of flowers, each with a 

distinct colour (and most likely shape but let us keep it simple) – the 

flower stimulus defines the state. Through trial-and-error, flying from 

flower to flower, the bumblebee learns that overall, purple flowers 

yield more nectar than flowers of other colours (more formally we can 

say the purple flowers have the highest state-action value). 

Another type of task that is quite different at surface, but the same 

concept, would be navigating through a house or a labyrinth of 

rooms. Each room has one or more doors that lead to other rooms, 

and you must learn the value of each action (passing through the 

door) in each state (room) to find a terminal reward such as the exit 

of the labyrinth or where the dog has hidden your slippers. In the 

latter case, if it is the millionth time the dog has stolen your slippers, 

you most likely already have a set of state-action values you can 
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follow for each room and door to get to your goal and hope that, this 

time, the slippers are not soaking wet from drool. 

As set out in the introduction chapter, our aim is to investigate the 

intricate relationship between states, their representation and task 

structure. In the descriptions above, the state is easily defined as an 

image on a screen or a flower in a field but in the real world all 

observations are high-dimensional and continuous. Humans and 

other animals need to be able to generalise over states that look 

different but are functionally the same, while also differentiating 

between states that look the same but are functionally different. 

Furthermore, the information to make such generalisations and 

differentiations is not always directly observable, meaning additional 

information needs to be inferred. 

Therefore, to study how humans discover task structure and make 

generalisations and differentiations, we came up with a new decision 

making task that we call the shape sequence task [249]. 

In this chapter, we will first describe the process of creating the 

shape sequence task (Shapetask for short). The process involved 

several iterations informed by experiments with human participants. 

Results from the final version of Shapetask show that some humans – 

but not all – are able to successfully solve the task. 

We then investigate RL behaviour in Shapetask and show how 

manipulation of state representations can account for the different 

types of human behaviour. To improve the biological plausibility of 

these manipulations, we present models from the literature which 

have a degree of neurobiological support and that combine RL with 

complex state representations. 

As one of these new models proves infeasible to fit using the 

methods presented so far, we then introduce a new model fitting 

method. We characterise model selection performance in Shapetask 

using the new method and can then finally fit the human data and 

discuss the results. 

5 . 1  C R E AT I N G  T H E  S H A P E  S E Q U E N C E  TA S K  

Developing a new task is a process of iteration over many months. We 

will thus present here first the general idea of the task and how it is 

supposed to help us investigate the questions we are interested in, as 
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stated above. Then we describe our task development and testing 

chronologically, ending up with the final version and variations that 

will later be the focus of our subsequent investigations. 

 

As seen in Figure 5.1, in each trial, participants see a large, coloured 

shape on the screen, together with three options on the right for what 

shape they think will appear on the next trial. The possible shapes are 

here blue circle, orange triangle, and purple square and the response 

option buttons are small versions of the same shapes. The options are 

always presented in the same spatial layout and participants indicate 

their choice by clicking one of the buttons, and the next shape in the 

sequence appears. Importantly, there is no explicit indication given to 

the participant if their choice was correct other than them seeing the 

next shape. 

The sequence can be conceptualised by imagining three bags, 

where each bag has three shapes of the same kind inside. All the 

shapes in one bag are drawn before shapes from another bag are 

drawn. Thus, the underlying basic pattern is that each shape will be 

presented three times in a row. Of course, participants are only told 

their task is to find the pattern, the idea of bags is only used here in 

order to understand the task sequence better. There is a shortened 

Figure 5.1 The basic structure of the shape sequence task. Each rectangular panel represents 

a single trial in the task. The participant sees a large shape on the left, and to the right they 

are asked what they think the next shape will be. In this example, the first shape they see is 

a blue circle. Then they see two more blue circles, followed by a purple square.  
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version of the task available online27, to see the task in action as a 

participant would. 

This simple task is not as easy as it looks. Participants may very 

well think that colour provides different information than the shape 

(especially if they are used to psychological experiments), which in 

this case is not true, but it may throw them off. In order to identify the 

complete pattern in the task, participants must identify that the last 

shape of the three presented requires a different response than the 

first two. They must also identify that there is similarity between the 

last presented shape for all three shapes. In other words, we can 

theoretically investigate how humans combine generalisation, 

differentiation, and inference to find task structure which, as 

mentioned above, is exactly our aim. To use the concept of bags, the 

task can investigate the influence of higher-order hidden state 

properties – what bag are we currently in – as well as the process of 

going from states as single trials (one shape) to states as a set of 

several trials (bag). 

The shape sequence task is similar to other tasks in the literature, 

for example the n-back task [48] which is supposed to measure 

working memory  (WM). It is therefore possible that shape sequence 

task partly or wholly measures WM and does not necessarily induce 

RL. But, even if that were the case, participants would still have to use 

some form of the generalisation and differentiation and inference 

mentioned above in order to find the task structure and apply 

working memory to that structure. Additionally – and as mentioned 

in background – RL is by necessity intertwined with memory28, both 

episodic memory [100] and working memory [55, 310]. 

Another similar task – and more related – is the “dimensions” task 

[303]. The stimuli used differed on three dimensions: shape (square, 

triangle, circle); colour (green, red, yellow); and pattern (dots, grid, 

waves). For example, one stimulus could be a circle with red borders 

and dots inside, another a square with green borders and a grid 

pattern inside. Participants were shown three different stimuli 

simultaneously on screen and had to pick one of them. Rewards were 

 

27 https://gamescapad.es/balltask 
28 And most likely most other brain processes, as the idea that any brain function 

exists in isolation from others is only useful for humans doing research intended to 

illuminate such isolated processes  
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explicit and probabilistic, with one of the stimuli having 75% of 

reward and the others 25%. Which stimulus was the most rewarding 

was decided based on only one of the three dimensions (shape, 

colour, pattern), and the dimension-based contingencies changed 

every 15-25 trials. Participants thus had to find the relevant dimension 

among the multiple available. 

The dimensions task is very similar to Shapetask both in 

appearance and aim – studying how humans find structure in the 

world. The difference lies in that in Shapetask, subjects have to find 

that sequential position is a feature of interest. This feature is not only 

across trials, but it also has to be constructed as a feature by the 

subjects since we do not signal sequential position explicitly. 

Another similar line of research is that of implicit learning 

paradigms such as artificial grammar learning (AGL) and implicit 

sequence learning (ISL). Both involve learning sequences of stimuli, 

which involves learning to represent the task in some fashion, but 

they also differ substantially from Shapetask, as shall be discussed 

below. 

In AGL, experimental tasks commonly include a learning phase 

and a test phase [207]. During the learning phase, multiple short 

sequences are shown – for example strings of letters – and 

participants are instructed to memorise these. In the test phase, 

participants are told the sequences they learned are based on certain 

rules and are then shown new sequences and instructed to decide if 

these new sequences follow or do not follow the rules. Performance 

is then measured as the ratio of correctly categorised exemplars in the 

test phase. Shapetask has only one phase, where participants are 

explicitly encouraged to look for a pattern, whereas the pattern is 

covert in phase one of the AGL task just described. 

Experiments in ISL usually measures performance by reaction time 

[247]. For example, on each trial of such an experiment, stimuli targets 

are shown in one of four locations on a screen. Each stimulus is 

associated with a specific corresponding key, and participants are 

instructed to press the appropriate key as fast as possible. The targets 

either appear according to a specific sequence that is not 

communicated to participants, or in a random fashion for controls. 

Interestingly, response times decrease significantly when these 

sequences are fixed, but not in random conditions, implying that 
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participants implicitly learn these sequences. ISL therefore differs 

from Shapetask in two ways. First, ISL involves covert presentation 

of a sequence and second, that performance is assessed via reaction 

time changes. 

Both AGL and ISL touch upon how sequences are learned, which 

from the perspective of this thesis means they investigate the topic of 

task representation. Especially AGL is concerned with chunking [207] 

– how individual letters (for example) are combined into “words”. As 

mentioned in the background chapter of this thesis (section 2.3.1) 

chunking is likely to play a role in how animals cut the world into 

states that interact with task structure to solidify. 

However, as mentioned above, both AGL and ISL are mainly 

investigating implicit learning where participants are usually 

unaware there is a pattern to learn. Further, both AGL and ISL tasks 

are commonly presented in such a way that participants believe the 

task is about something else than finding a pattern. Shapetask, in 

contrast, uses explicit instructions that there is a pattern to learn, 

which most likely engages higher-order processes like attention in a 

different way than for (typical) AGL and ISL tasks. 

On the other hand, Shanks [247] argues that it may be difficult to 

differentiate between implicit and explicit learning, and presents 

multiple findings showing that higher-order processes like 

awareness, attention and memory are involved in both AGL and ISL. 

The dimensions task described above suggests an important role for 

attention in finding what features constitute a state, and Perruchet & 

Pacton [207] notes that attention may indeed play a role in chunking. 

We would thus agree with Shanks [247] that implicit and explicit 

learning most likely overlap in what processes are involved, and the 

story is most likely one where they are sides of the same coin and 

interact with each other. This was discussed above in chapter two, 

and also see the section below on latent learning (section 5.4.1). 

Common for all varieties of our task, but dissimilar from most 

other tasks in the RL literature, is that we did not use explicit rewards. 

In chapter two we noted contradictory findings between model-based 

and model-free RL. We then suggested that these findings might arise 

because there is a more general kind of prediction error function 

delivered by dopaminergic projection systems in the brain. From this 

it is easy to imagine that a sensory (or stimulus event) prediction error 
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would work as a sort of implicit reward prediction error and can be 

captured through algorithms similar to those used with explicit 

rewards and their associated prediction errors. Such ubiquity of 

prediction errors is, as mentioned in the background, the basis of 

theories of free energy [87] and the predictive brain [47, 118]. 

From a general view, we would argue that in most psychological 

tasks where there is a right answer, implicit rewards are a core 

function for most people. Most subjects are motivated to try to 

perform well – for in-person experiments, it is most likely due to the 

social interaction with the experimenter and in online experiments 

the motivational incentive is being paid for participation (see chapter 

3.1 for more discussion of online recruiting). Indeed, most tasks 

emphasize trying to achieve one’s best performance. It is therefore 

likely that successful outcomes on trials of a task are intrinsically 

rewarding, while failure on trials is intrinsically non-rewarding, 

perhaps sometimes even punishing. 

Further, in the perspective of RL, learning requires prediction 

errors. If the task is being learned via RL mechanisms then we would 

not see any learning if there were no reward prediction errors. There 

can only be reward prediction errors if there is some form of reward 

being gained and predicted. If participants do not learn then we 

would have to add explicit rewards. Of course, participants could 

show learning via another, reward independent, mechanism. In that 

case, adding explicit rewards would perhaps show a different 

learning behaviour which could be contrasted with the implicit 

reward scenario. 

Another argument for why we did not add explicit rewards to 

Shapetask is one of designing the experimental flow. If explicit 

rewards were to be added, this could prove distracting to subjects and 

perhaps even make them focus on single trials rather than the pattern 

across trials that we are interested in. 

We have so far described one version of the task, but it is easy to 

imagine how the task can be varied in many ways. For example, we 

can vary the number of shapes in each bag or vary the number of 

shapes. The task could be simplified by removing colours. Different 

kinds of explicit feedback could be introduced, and so on. We chose 

to stick to three different shapes and three shapes in each bag. Even 

with these constraints, the task can be varied in multiple ways, as we 
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will see presently. For all versions, we used jsPsych [152] to create the 

experiment as a web site. 

5 . 1 .1  S C O R I N G  T H E  S H A P E T A S K  

Common for all task versions, we calculate four different scores on a 

per subject basis. For each trial, we calculate: 

1. Correct – if the choice correctly predicts the next stimulus 

2. Shift predict – if the choice for the next stimulus is different 

from the current stimulus 

3. Win-stay – if the prediction on the previous trial was correct, 

and the same prediction is chosen again on the current trial 

4. Lose-shift – if the prediction on the previous trial was incorrect, 

and a different prediction is chosen on the current trial 

The first two, Correct and Shift predict, look at the current 

prediction in relation to the next stimulus. The latter two, Win-stay 

and Lose-shift, look at the current prediction in relation to that made 

on the previous trial. This means we can get trial-by-trial measures 

for each participant. 

We can also sum up these scores to get summary scores for each 

participant. For each trial t, stimuli s and action29 a, and where p is 

probability, we then get: 

𝑝𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 𝑝(𝑠𝑡+1 = 𝑎𝑡) 

𝑝𝑠ℎ𝑖𝑓𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 𝑝(𝑎𝑡 ≠ 𝑠𝑡) 

𝑝𝑤𝑖𝑛𝑠𝑡𝑎𝑦 = 𝑝(𝑎𝑡 = 𝑎𝑡−1|𝑠𝑡 = 𝑎𝑡−1) 

𝑝𝑙𝑜𝑠𝑒𝑠ℎ𝑖𝑓𝑡 = 𝑝(𝑎𝑡 ≠ 𝑎𝑡−1|𝑠𝑡 ≠ 𝑎𝑡−1) 

5 . 1 .2  P I L O T  V E R S I O N  

In the first version of our task, we used only circle shapes 

differentiated by colour and was thus called “Balltask”. We were also 

interested in getting an estimate of participants’ uncertainty about 

their choices and so included a question after each ball prediction 

how certain the participant felt about their choice, indicated on a five 

option Likert scale. This Likert scale question showed only after the 

participant had made a prediction about the next ball colour. In 

Figure 5.2, we see how this would look for a single trial. On the right-

 

29 In keeping with the general descriptions used in the RL literature we will refer 

to the stimulus predictions made on each trial as actions. Note that the action on 

trial t is the prediction for the stimulus on trial t+1. 
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hand side of this figure, we can see the Likert scale going from very 

unsure to very sure. 

 

The base pattern was, as described above, that there would always 

be three balls of the same colour in a row. In other words, we had 

three bags – one for each colour – and in each bag there were three 

balls. A bag was picked at random, and then all the balls in a bag were 

used up (i.e., without replacement) and shown one by one to the 

participant before (metaphorically) putting the balls back into the 

bag. Then a new bag was picked at random again. This meant that 

there was a chance that the same colour would be shown 6, 9 or 12 

times in a row. Longer sequences were obviously theoretically 

possible, but they did not occur in the randomly generated sequences 

used for this task. 

In this pilot version, the same sequence was used for each 

participant. In that sequence, there were a total of 270 trials, consisting 

of 45 cases of 3 identical balls in a row, 16 cases of 6 in a row, 3 of 9 in 

a row and 1 case of 12 in a row. We then recruited 27 people via 

Amazon Mechanical Turk, who were paid approximately £10/h for 

Figure 5.2 Shapetask version 1, a.k.a. Balltask. On each trial, the participant saw a big, 

coloured circle (green, red or blue) and three text buttons with the possible choices (left side 

of figure). After clicking one of the buttons, the question and scale showed up below (right 

side of figure).  
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participating. In order to be reasonably certain that the participants 

would take the task seriously, we set a condition that participants had 

to have at least 100 previously approved submissions to Amazon 

Mechanical Turk to participate. Additionally, after accepting the task, 

all participants were given a standard consent form and were free to 

decline if they so wished. After giving consent, they were given the 

following instruction: 

Welcome to the experiment! 

You will be presented with a series of pictures. Each 

picture is a coloured ball, either red, green or blue. 

Your task is to predict what colour the next ball will be. 

Good luck! 

What we hoped to see in this pilot was that at least some of the 

participants would spot the pattern, and therefore on every third 

choice (the last ball of a bag) pick another colour than the one shown 

on the screen at that time. The second expectation was that we could 

correlate their uncertainty indication with the choice behaviour. 

5.1.2.1  Pilot  results  

To understand the results, recall that one “bag” consists of three balls 

of the same colour, and these balls are presented to the subject one at 

a time. Again, participants are unaware of the notion of the “bags”, 

but they make it easier to explain the procedure. 

Because we are interested in seeing if there is a difference in how 

subjects respond to the first two balls of a bag, compared to the last 

(third) ball in a bag, we will show scores averaged across all balls in 

the same position within the sequence of draws from the hypothetical 

bag. That is, for example, the proportion of correct predictions across 

all balls in position one in a bag. This allows us to see if and how 

participants respond and change their behaviour during the 

experiment. 
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In Figure 5.3 we can see that overall, participants have adapted a 

WinStay-LoseShift (WSLS) behaviour. That is, on positions one and 

two they predict that the next ball colour will be the same as the one 

they see (high correct score in left and middle plots in the figure), and 

they make the same prediction on position 3 (chance level for correct 

responses in righthand plot in the figure, together with high Win-stay 

proportion). 

However, on average, we can also see a small increase in Shift 

predict on position 3 compared to positions 1 and 2. If we combine 

the positions 1 and 2 and compare them to position 3, this difference 

is significant on the group level (paired t-test, 𝑡(26) = −2.53, 𝑝 =

0.018). It may be the case that a few subjects have been able to spot 

the pattern and this increase in Shift predict on position 3 is driven by 

these subjects. In Figure 5.4, we have used the last half of the 

experiment trials30. On the right-hand side, we can see that it is indeed 

the case that a subset of our participants increases their proportion of 

shift predict choices in position 3 compared to positions 1 and 2. 

 

30 The pattern is similar when including all trials, but clearer with the last half. 

The rationalization here is that participants are still learning in the first half. 

Figure 5.3 Summary scores for all subjects in the pilot version of Shapetask. Proportion of 

choices on y-axis and different coloured bars on x-axis are the different score types (see text 

for descriptions). Left: Ball position 1. Middle: Ball position 2. Right: Ball position 2. 
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Also in Figure 5.4, on the left-hand side, we have plotted the Likert 

choices. There we see that some participants have answered the same 

throughout the experiment (straight horizontal lines), possibly 

indicating low effort. But we also see some participants going from 

high certainty in positions 1 and 2 to low confidence for position 3. 

This is the pattern we expected to see, but is it necessarily the case that 

the same participants have this pattern for both the Likert choice and 

the Shift predict score? 

For several subjects, yes, that is the case, but for at least one subject 

it is not, as seen in Figure 5.5. It is possible this participant is confident 

in their choice because they have spotted the pattern (recall that these 

data are for the second half of the trials). In which case the Likert 

choices may not provide much additional information. 

 

Figure 5.4 Averaged Likert choice (left) and Shift Predict score (right) for each pilot 

participant (coloured lines) and for each shape position (x-axis). Here only the last half of 

the experiment trials are included. Left: Likert choice, five-point scale from 1-5 (y-axis), with 

1 being very unsure and 5 being very sure. Right: Shift predict proportion (y-axis). 

Figure 5.5 Likert choice (left) and proportion of shift predict choices (right) for subject two 

in the pilot data.  
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5 . 1 .3  P I L O T  V E R S I O N  2  

The task in its pilot form seemed too difficult for many participants, 

and we also wanted to know how much – if any – of the results 

depended on the fact that we were using anonymous online 

participants. Did some participants fail to find the pattern because 

they did not understand the task? To find out the latter, we recruited 

150 participants from a psychology undergraduate course at 

Goldsmiths, University of London, who did the task for course credit. 

We also introduced a new version of the task, to reduce the number 

of possible repeated sequences. 

In the new version of the task, each colour had to appear before the 

same colour could repeat again. In other words, using the concept of 

bags containing balls again, we imagine there is a bigger bag 

containing the three bags of balls. We randomly pick the first bag out 

of the three (red, green and blue) in the big bag and empty that bag 

of its balls. Next, we pick one of the remaining two bags and finally 

there is only the last bag to pick from the large bag. When all bags and 

their balls have been shown, we refill the small bags and put all three 

back into the big bag and again start picking a random bag out of the 

three. This version is therefore called “bag of bags”. In this way, the 

maximum times a ball colour can repeat is six, which happens if the 

last bag picked in a big bag is the same colour as the first bag picked 

from the next big bag, when all small bags are full.  

The 150 participants were randomly assigned to receive either 

version 1 of the experiment, or version 2. Version 1 was identical to 

the previous pilot, where bags are selected in random order and thus 

allows for longer sequences of the same colour than six. The only 

difference in this second pilot is that each subject received a uniquely 

randomized sequence. Version 2 is the just mentioned “bag of bags” 

alternative version. For easier identification we refer to version 1 and 

2 as “random bags” and “bag of bags”, respectively. Both versions 

had 270 trials in total. Other than the sequences used in these two 

versions, the task was otherwise unchanged and so has the same look 

and functionality as described above for the first pilot. 

5.1.3.1  Pilot version 2 results  

Due to unfortunate bugs in the experiment code, Likert scale data was 

not recorded properly and is thus left out of analysis. Additionally, 

some subjects clicked “agree” on the consent form, closed the browser 
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window, then came back. These participants could not complete the 

task, since a cookie was set as soon as the participant agrees, to not 

allow duplicate entries. This left 106 subjects, of which we excluded 

additional subjects that left the experiment window for more than 

twenty seconds at some point during the experiment. This left 73 

subjects, of which 34 were in the “random bags” version group and 

39 in the “bag of bags” group. 

 

In Figure 5.6 we have plotted summary scores averaged across all 

the participants but separated by task version (rows) and ball position 

(columns). Overall, the results are similar to the first pilot, but looking 

at the rightmost column – shape position 3 – we see that those 

participants doing version 2, bag of bags, have much higher shift 

predict proportion than the group doing random bags. This is 

confirmed by a mixed between-within 2-way ANOVA which reveals 

a significant interaction between position (position 3 vs other) and 

version [𝐹(1, 71) = 29.2, 𝑝 < 0.001]. 

We can further investigate this pattern by looking at the line plots 

of Figure 5.7. There we can more clearly see this stronger pattern of 

higher shift predict for position 3, which for some subjects in the bag 

of bags version is very strong. This effect was significant in the group 

performing the bag of bags version: the shift predict probability for 

Figure 5.6 Proportions (y-axis) across all subjects and trials for each score type (x-axis), 

separated by experiment version (rows) and ball position (columns). 

Top: version1/random bags. Bottom: version2/bag of bags.  
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shape position one and two combined was lower compared to 

position three (𝑡(38) = −8.4, 𝑝 < 0.001). Even for the random bags 

group, there was a significant effect for shape position one and two 

combined compared to position three (𝑡(33) = −3.2, 𝑝 = 0.003). 

However, we should keep in mind that since we do not have a static 

sequence for the random (version 1) version, the difficulty can vary 

between individuals as a function of their specific random task 

sequence. 

 

The pattern seen in the previous two figures arises already within 

the first 99 trials, something not shown here but can be confirmed in 

the code repository. We bore this observation in mind when 

developing the task further below. These results are overall 

promising, as it seems we have succeeded in making the task simpler.  

One could perhaps object here that we are constructing the task in 

order to get to the results we would like to see, biasing the results. 

However, there is a difference between biasing a task to get the results 

you would like and balancing a task’s difficulty so that you can 

investigate the issue at hand. We believe it’s the latter that is being 

done here. 

It is unfortunate the Likert scale results did not register properly, 

but it is not critical. As we saw in the previous pilot, the Likert scale 

was not adding much information. Additionally, thanks to informal 

feedback given by some participants in person, we realised the Likert 

scale makes the task very tedious, and feedback (the next stimulus 

Figure 5.7 Proportion of choices being “shift predict” (y-axis) for each ball position (x-axis). 

Coloured lines separate each subject. Left: Version1/random bags. Right: Version2/bag of 

bags. 
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appearing) is delayed. The main feedback was that the task was 

generally boring and too long. Subjects took between 10-20 minutes 

to complete this task, and it is understandable it is experienced as 

boring since there is not much variety in what is happening. 

5 . 1 .4  B A L L T A S K  B E C O M E S  S H A P E T A S K  

Based on the results and feedback from the two pilot tests, we made 

adjustments to the task, and added an additional task version. The 

main change was that the Likert scale asking about the participant’s 

(un)certainty was removed. As explained above, it disrupted the flow 

of the experiment and as seen in Figure 5.5 did not necessarily 

provide useful additional information. It was thus decided that the 

Likert scale did not provide any real value. 

The adjustments were mainly of a look-and-feel nature, where 

instead of coloured balls we differentiated the “bag contents” also by 

shape: circle, triangle and square. Each shape also has its own distinct 

colourblind-safe colour with the circle being blue, the triangle orange 

and the square purple. This may slightly increase the task difficulty 

as noted earlier, because participants could perhaps believe there was 

a difference in importance between the shapes and colours, when in 

fact there was not. The task appearance in Figure 5.1, presented 

earlier, is representative of this new look. 

We also added animations and delays. When a new shape 

appeared on the screen, it bounced up and down before settling. The 

buttons (actions) were now the shapes themselves instead of text 

buttons, and these buttons did not appear until 1 second after the 

main shape had appeared. These additions were made for two main 

reasons; one to try and guide the participant’s focus in a flow from 

stimulus to action option and the second in order to avoid 

participants clicking buttons without thought. 

The two previous task versions, random bags and bag of bags 

remain but the number of trials was reduced to 99. The specific 

number 99 instead of, say, 100 is because we want a full set of bags of 

bags, and since each bag of bags contain 3*3=9 shapes, we need to 

increase trial count in steps of 9. 
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An additional task version was introduced here, “bag of bags no 

repeat”31, abbreviated BOB-NR. This version works the same as the 

bag of bags (BOB) version, with the exception that the first small 

selected from the large bag cannot contain the same shape as the last 

small bag drawn from the previous bag of bags. In other words, in 

this version there will only ever be a maximum of three shapes in a 

row, never six shapes in a row which can happen occasionally in the 

bag of bags version. 

Finally, we simplified the instruction text (after consent form but 

before the first shape was shown), putting the main instruction in 

bold: 

Can you spot the pattern? 

Your task is to predict the next shape. 

Good luck! 

We also included a text box at the end of the task, where the 

participant could freely type a response to what was asked: 

Did you notice any pattern to the sequence of shapes 

which allowed you to predict the next one accurately? 

5.1.4.1  Shapetask results  

For testing our revamped task and the three versions, we recruited 

participants online through Prolific (www.prolific.co). As mentioned 

in chapter three, Prolific is an online platform for academic research. 

It has been shown to provide good data quality and diverse 

participants [205]. Demographic information is available for all 

subjects, without us (the experimenters) having to ask for it. The 

platform allows to filter participants on, for example, fluency in 

English. 

Recruitment was done in two phases. We first recruited 10-15 

subjects for each version, partly to test our website and database 

setup, partly to test the Prolific platform. Confident in our setup and 

the platform, we then recruited an additional 25-30 subjects for each 

version. Participants were from across the world, with a few from 

 

31 Note this version was called “bag of bags without repeat” in [249], but we 

decided that name in its shortened form “bob-wr” is too easily confused with “bag 

of bags with repeat”. 
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every continent (except Antarctica) and ages ranging from 18 to 74, 

with a mean of 28.7 (SD 9.8). 

In these results, we excluded participants based on two criteria. If 

they had an average response time that was less than one second, 

and/or if they left the experiment window for more than 30 seconds 

in total during the task. This left 32 subjects in the bag of bags no 

repeat version (bob-nr), 39 subjects in the bag of bags version (bob) 

and 39 subjects in the random version (random) for a total of 110 

subjects. 

 

In Figure 5.8 we have the summarised results for all subjects and 

task versions. If we start by looking at random (first row) and bob 

(middle row), we can see that compared to the previous pilot, the 

proportion of shift predict responses for shape position 3 is at least 0.2 

more for the BOB condition. This is most likely thanks to our updated 

Figure 5.8 Proportion of choices (y-axis) for each score type (x-axis) averaged across all 

subjects and trials, separated by shape position (columns) and task version (rows).  
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and more streamlined version of the task making it easier for 

participants to understand the task and focus on the predictions 

without being distracted by the Likert scale answers. It could, of 

course, also be due to random variation, which is especially true for 

the random version, since difficulty there can vary as sequences may 

contain different amounts of six, nine or twelve of the same shapes in 

a row. 

Furthermore, we can see on the bottom row of Figure 5.8 that in 

the BOB-NR version of the task, shift predict scores are now almost 

0.8 across all subjects. This means most of the subjects have found the 

pattern, which to a lesser extent is the case in the BOB version (where 

there is an average of 0.6 shift predict responses in position three). In 

fact, it may be the case that the BOB version has advantages if the goal 

is to investigate potential differences in state representations for 

subjects that find or do not find the pattern. 

Though the patterns just described in Figure 5.8 are quite clear, we 

can confirm there is indeed a significant interaction between task 

version and shift predict scores (positions one and two combined 

compared to position three). A mixed between-within two-way 

ANOVA gives a significant interaction effect 𝐹(2, 107) = 26.2, 𝑝 <

 0.001. For the individual versions, we also compare the group levels 

means for shift predict in positions one and two combined compared 

with position three. This difference is significant for all three versions 

(random: 𝑡(38) = −3.6, 𝑝 = 0.001, BOB: 𝑡(38) = −8.2, 𝑝 <  0.001, BOB-

NR: 𝑡(31) = −9.8, 𝑝 <  0.001). 
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Another way to look at the data is by groups of trials, in order to 

see when behavioural change was occurring across the experiment 

task. This is shown in Figure 5.9. Note that instead of trial number on 

x-axis we have grouped trials via a bag of bags (bob) number, 

meaning each tick on x-axis is averaged for a group of nine 

consecutive trials. These groups make the plots less busy and thus 

easier to read, while trends remain visible. We can see some rough 

patterns here, such as in the random version (top row) and shape 

position two (middle column), that correctness and shift predict 

continuously increase and decrease, respectively, throughout the 

experiment. In the other two versions, subjects catch on fairly quickly. 

We also see there is perhaps also a difference in shift predict for 

position 3, between bob and bob-nr, in that the latter version is around 

its height already at the second big bag (18 trials), while in the former 

– bob version – subjects require another big bag (27 trials) before the 

same can be said. 

Figure 5.9 Proportion of choices (y-axis) for each score type (coloured lines as per legend) 

averaged across all subjects, separated by task version (rows) and shape position (columns). 

On x-axis we have task trials grouped as bag-of-bags, that is nine stimuli/trials per tick on 

x-axis. 
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Thanks to the included free text response at the end of the 

experiment, we could in most cases confirm directly with the 

participant that they had found the underlying pattern in the 

sequence and understood the task. But not all participants did, and 

there is some variation in the results, especially in the random 

version. 

 

In Figure 5.10 we have plotted all subjects individually, for each 

score type averaged across the experiment for each subject. We can 

there see, especially for shift predict (right most column, pink colour) 

that a few subjects seem to always think there will be a shift 

(horizontal-looking lines towards the top of the plots). We also see for 

win-stay (second column from the left, green colour) that for the BOB 

and BOB-NR tasks, many more subjects have a downward slope from 

position 2 to position 3, compared with the random task version 

where more subjects stay with their choice for the third position 

choice (horizontal line or less slope from position 2 to 3). 

To summarise, as we progressively reduce the randomness in the 

position of the shift (from 3, 6, 9 or 12 trials in the random version) to 

Figure 5.10 Proportion of choices (y-axes) for each score type (columns) and each individual 

subject (separate lines) across the three shape positions in each bag (x-axes). From left to 

right: Correct, Win-stay, Lose-shift, Shift Predict. Top to bottom: Random version, BOB 

version, BOB-NR version. Colours are here used as in Figure 5.9 for ease of comparison. 
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mostly 3 and some 6 trial sequences (BOB version) to always after 3 

trials (BOB-NR), subjects were able to shift their prediction on 

position three with increasing frequency. But not all subjects do this 

even in the BOB-NR task, at least not in the number of trials allowed. 

5 . 1 .5  D E F I N I N G  B E H A V I O U R A L  G R O U P S  I N  S H A P E T A S K  

Before looking into how RL algorithms perform, we would like to 

find a useful definition of whether the task is solved or not. From the 

figures above, especially Figure 5.10, we can see that “winners” have 

a good combination of high correct score in positions one and two, 

high win-stay score in position two and high shift predict in position 

three. Similarly, we have another subset of subjects that seem to fall 

into WSLS behaviour if they cannot spot the pattern, something 

especially noticeable in the more difficult random version. These 

subjects generally have high correct score in positions one and two – 

like the winners – but instead have high win-stay score in positions 

two and three. We thus specify these groups using the following cut-

offs: 

𝑤𝑖𝑛𝑛𝑒𝑟 = { 
   𝑝𝑐𝑜𝑟𝑟𝑒𝑐𝑡 > 0.5 𝑖𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 1 𝑎𝑛𝑑 2

𝑝𝑠ℎ𝑖𝑓𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 > 0.5 𝑖𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 3  

𝑤𝑠𝑙𝑠 =  {
𝑝𝑐𝑜𝑟𝑟𝑒𝑐𝑡 > 0.5 𝑖𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 1 𝑎𝑛𝑑 2
𝑝𝑤𝑖𝑛𝑠𝑡𝑎𝑦 > 0.5 𝑖𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 2 𝑎𝑛𝑑 3

 

Subjects not matching these groups will be set as “other”. The best 

representatives of each group will have much higher scores than the 

above, but keeping limits lower hopefully allows slower learners to 

be included.  

 Note that these conditions are somewhat arbitrary, but they are 

relatively easy and can be used as a general guide both for human and 

algorithmic behaviour. It would have been preferable with a more 

straightforward way of classifying behaviour, but due to the inherent 

complexity of Shapetask we do need to look at patterns across the 

shape positions.  

To test and demonstrate that these conditions give us decent 

groups, we plot the averages of these groups separated by score type 

for each shape position as in Figure 5.11.  
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In Figure 5.11, we can see how across the three versions, these 

groupings provide similar shapes. This is to be expected since we 

have used the same conditions to group participants in each task. For 

the random version, there is only one subject in the win group (which 

is why there is no variance shading). This is not necessarily entirely 

due to differences in subject capability but could also be (partly) due 

to a consequence of randomness. In the random version of the task, 

some participants get a higher proportion of short sequences (3 or 6 

in a row) like in BOB and BOB-NR. Other participants get a higher 

number of very long sequences of the same shape (9 or more in a row). 

If there are many bags of the same shape in a row, then WSLS 

behaviour becomes the overall best strategy. Hence these groups as 

they are presented here are not wholly applicable to the random task 

version, as will be further discussed below. 

To get a better sense of how these groups relate to individual 

performance, we have plotted individual subjects in Figure 5.12. 

There are a few cases that are either miscategorised or have been slow 

to learn, but overall, these groups look to work well. We could 

potentially adjust our criteria to get more clearly defined groups, but 

how would we define these stricter conditions? Should we add that 

Figure 5.11 Shapetask groups. Proportion of choices (y-axes) for each score type (columns) 

across the three shape positions within a bag (x-axis). Groups as per legend. Top row: 

Random task. Middle row: BOB task. Bottom row: BOB-NR task. Left to right: Correct, 

Win-stay, Lose-shift, Shift Predict. Shaded areas indicate 95% confidence interval. 
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winners must also have low scores for shift predict in positions one 

and two? What about lose-shift scores?  

 

These conditional groupings are indeed somewhat arbitrary, but 

they work well enough to use as a guidance for our investigations of 

the algorithms’ behaviour. There will be cases that fall outside these 

strict groupings that we may manually classify as WSLS/winner 

when looking at that case specifically. 

To summarise our grouping results, for the random version there 

are 29 WSLS subjects, 1 win and 9 other. BOB has 10 WSLS, 22 win 

and 7 other, and BOB-NR has 25 win, 2 WSLS and 5 other. These 

changing proportions nicely match the increasing tendency (from 

random to BOB to BOB-NR) to learn the task better via appreciating 

the tendency to shift in position three. 

We cannot say yet which algorithms will be able to handle the task, 

or if there are algorithms that can explain both winners and WSLS 

behaviour (but using different parameter values), for example. In the 

latter case, during model selection, we could find that the same model 

fits both subjects we believe understood the task and found the 

Figure 5.12 Shapetask groups for individual subjects. Proportion of choices (y-axes) for each 

score type (columns) across the three shape positions within a bag (x-axis). Each line 

represents a subject and colours represent groups as in Figure 5.11. Top: Random task. 

Middle: BOB task. Bottom: BOB-NR task. Left to right: Correct, Win-stay, Lose-shift, Shift 

Predict. Shaded areas indicate 95% confidence interval. 
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pattern as well as subjects that did not understand the task and/or did 

not find the pattern. 

5 . 1 .6  S U M M A R Y  O F  S H A P E T A S K  R E S U L T S  

What is impressive here is the fact some humans can spot the pattern 

within the limit of 99 trials, and often much quicker. Some are even 

able to do so when there is randomness in when the shift will occur 

(as in the random and BOB conditions). How is it that humans are 

capable of finding task structure so quickly and efficiently? That is the 

question the rest of this chapter will focus on. 

From these investigations, it looks like we have succeeded in 

creating a task with its difficulty so that at least around half of the 

subjects spot the pattern. The results are clear enough that we can 

confidently say the task works as intended, and by using the human 

results as a guide, we can now look at algorithmic behaviour in the 

same task to find potential candidates for explaining the human 

behaviour. 

We should note here that due to inherent randomness in the 

random version of the task, it is difficult to compare behaviour 

between participants. We could use a static sequence like in the first 

pilot, but then we would have to do further tests to find a sequence 

that is easy enough that some participants can find the pattern. Since 

we have used alternative versions in BOB and BOB-NR that are quasi-

random (random but with some constraints), the obvious route is to 

use one of these versions instead. 

For subsequent investigations, it would streamline our process and 

presentation if we could focus on one of the two remaining versions. 

BOB-NR would be the more straight-forward option, as most of the 

humans successfully found the task structure in this task version. 

However, there is also a case to be made for BOB, because this version 

is more balanced in the proportions of winners vs the rest (as defined 

above). The majority of subjects were able to find the task structure, 

but also a fair many cases of WSLS and other. The reason behind the 

amount of WSLS cases in BOB compared to BOB-NR is probably due 

to some subjects being thrown off by the occasional six-shapes-in-a-
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row but that was not exclusively the case32. Furthermore, since we 

have stressed in previous chapters the importance of individual 

behaviour in RL tasks, it seems appropriate to select the task version 

with a more balanced distribution of behaviours across the whole 

group. Going forward, we will therefore focus on BOB unless 

otherwise stated. 

5 . 2  R L  B E H AV I O U R  I N  S H A P E TA S K  

Starting off our investigations of RL behaviour in Shapetask is the 

standard QL algorithm. Previously we have used its two-parameter 

version with learning rate α and SoftMax temperature β, where the 

latter is not technically part of the QL algorithm itself but used for 

action selection. Here we will extend QL to its full temporal difference 

(TD) form, with a future discount parameter 0 < 𝛾 < 1: 

𝑄𝑡+1(𝑠𝑡, 𝑎𝑡) = 𝑄𝑡(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡 + 𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎) − 𝑄𝑡(𝑠𝑡, 𝑎𝑡)] 5.1 

where max
𝑎

𝑄(𝑠𝑡+1, 𝑎) means the maximum Q-value in the next state. 

This may be somewhat unintuitive, to look into the future before we 

get there. The straightforward reason is that Q-values represent the 

approximate value of state-action pairs, so in order to take the future 

into account, we use our current knowledge of that future, which are 

the Q-values. The more subtle answer is that the value update 

happens during a transition to the next state. We have picked an 

action in our current state and observe its consequences and update 

our knowledge based on this information. For that reason, we could 

also write the above equation with 𝑟𝑡+1, depending on if we 

conceptualise the task as the reward being received based on the 

action taken (𝑟𝑡), or if the reward is what we find in the next state 

(𝑟𝑡+1). Regardless of these nuances, we call this TD form of QL simply 

QL3. 

Many common RL tasks in the literature are so called one-step 

reward tasks, where a stimulus is presented, an action is selected and 

then a reward is received. Hence, it is uncommon (and unnecessary) 

 

32 Counting the number of six-in-a-rows for each group, the maximum was five 

six-in-a-rows and the minimum one. Four win-subjects and three WSLS-subjects 

encountered this maximum. Six winners and one WSLS subjects encountered the 

minimum. See bar plot in code repository. 
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to see anything more than QL2 being used in the literature. In more 

complex tasks, there may be multiple stimulus-action (state-action) 

steps before a reward is received, and these tasks is where QL3 is 

useful. In the computer science literature, these more complex tasks 

are commonly called tasks with sparse rewards [267]. 

To demonstrate, consider a simple 3x3 maze. Each square in this 

maze is a state, and thus has a value attached to it. Our agent can 

move horizontally or vertically and picks their action by getting the 

values of squares next to it. Note this means we are using state-values 

to represent the maze instead of using state-action-values [267], but 

the state-action-values are constructed each step by using the state 

values from neighbouring squares, enabling us to use Equation 5.1. 

If an action is picked that moves outside the maze, the agent 

remains in the same square. The agent will start in the top left corner 

and the reward is in the bottom right, as seen in Figure 5.13. 

 

If we simulate both QL2 and QL3 in this simple task, we can see the 

difference between their mechanisms. In the following simulations, 

we define steps as one square to square transition and one episode is 

the total sum of steps used to reach the goal square with the reward. 

The maximum steps allowed in total were set to 1000, resetting the 

agent to start position at the end of each episode. Both agents used 

𝛼 = 0.3, 𝛽 = 5 and QL3 also used 𝛾 = 0.9. The results are shown in 

Figure 5.14. What this shows is how the QL2 agent can update only 

the value for the state where the reward is found. Which means it will 

Figure 5.13 Simple maze task. The agent is the reddish square in the top left and the reward 

is placed in the bottom right, marked by creamy white.  
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forever be doomed to blindly take actions until it arrives in a square 

next to the reward. It will learn something only if it moves on to the 

reward square. But the QL3 agent can successively update all state 

values back to the starting position and through experience create a 

lit path. 

 

To illustrate clearly what happens for the QL3 agent, see Figure 

5.15. The first time it encounters the reward, the value for that state is 

updated (left part of figure) and the episode ends. The next episode, 

when the agent arrives at a square next to the reward it will now, 

thanks to the future discount, update the value of that state, before 

continuing onto the state where the reward is33. 

 

33 Unless it picks an exploratory action and goes up or left, but in this example it 

went right. 

Figure 5.14 Comparison of QL2 (top) and QL3 (bottom) agents. The line plots show the 

number of steps needed for each episode and the heatmaps on the right show the final state 

values when experiment is over. Note these state values are the agents’ internal state values 

representing the maze, not the maze itself. 
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Coming back to Shapetask, we can see it as a mix of one-step 

rewards and sparse rewards, as there are both immediate rewards (we 

have suggested that correctly predicting next shape equates to a 

reward) and longer-term rewards (correctly identifying the task 

structure). It is not straight forward to calculate if the addition of 

future discounted rewards would help in Shapetask, because our 

agents’ behaviour is a combination of the three parameter values as 

well as inherent randomness in the action selections. But since there 

is structure across multiple steps, it’s reasonable to use QL3 here, and 

simulate behaviour in order to know what to expect. 

5 . 2 .1  Q L 3  B E H A V I O U R  I N  S H A P E T A S K  

Having QL3 play Shapetask, we define the state as the stimulus being 

shown to the participant i.e., the shape34. So, there are three possible 

states in the task. As explained above, we use the BOB version of the 

task with 99 trials. We then generate 1000 random parameter 

combinations and run 100 simulations (each of these also used the 

same task sequence) for each combination. The results presented 

below is the average over the 100 simulations, called a simulation set, 

or simset for short. We use these averages to overcome the inherent 

randomness of each individual run. Parameter values are generated 

as: 

𝛼~𝑈(0, 1), 𝛽~𝑈(0, 20), 𝛾 ~𝑈(0, 1) 

 

34 We could also have used colour as the two are perfectly correlated stimulus 

features across this task. Human subjects may focus on colour/shape or the 

combination. We use shape as a shorthand for this more complex set of possibilities. 

Figure 5.15 Q-Learning with future discount in simple maze example. The state values after 

first (left) and second (right) episodes compared.  
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In Figure 5.16 we have plotted the behaviour of each simset during 

the experiment task. Despite its busy appearance, the figure gives us 

an overview and a sense of the behavioural limits of QL3. It seems 

behaviour stabilises around bob number five, and from the trends in 

shift predict (right-most column) no simset appears to increase in shift 

predict as the task proceeds. No simsets reach higher than 80% correct 

or win-stay. To get a better sense of these behaviours for each shape 

position we have plotted the simsets again in Figure 5.17 but now 

using shape position on x-axis. As one could suspect from the 

previous figure, we can now say with more certainty that there are 

simsets which will exhibit WSLS behaviour (high win-stay in 

positions two and three, second column from the left), but few – if any 

– simsets that will solve the task (no lines with an upward trend for 

shift predict between positions two and three in right-most column). 

 

To confirm our suspicions about the possible behaviours of QL3 in 

Shapetask, we classify each simset according to the criteria in Section 

5.1.5. 

Figure 5.16 Overview of behaviour for all simsets. Proportion of choices on y-axis for each 

bag-of-bags (nine trials) on x-axis. Each line is one simset, and columns are score types. 

From left to right: Correct, Win-stay, Lose-shift, Shift-predict. 

Figure 5.17 Average score (y-axis) for each simset (coloured lines) and shape position (x-

axis), separated by score type (columns). From left to right: Correct, Win-stay, Lose-shift, 

Shift-predict. 
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The next step is looking at parameter values, and how they 

correlate with behaviour. This gets tricky with increasing number of 

parameters for the algorithm together with the complexity of 

Shapetask scoring, with multiple score types and the need for looking 

at shape positions. We could try to do something similar to Figure 3.4, 

but that would now require multiple rows and columns, combined 

with colour, style and size of the plot markers. It is simply not feasible. 

Luckily, we can use our groups to get a decent overview of how 

parameter values relate to performance. In Figure 5.19 each 

parameter value is plotted against itself (diagonal distribution plots) 

and against the other parameters (row, column combination). The 

overall patterns we see there is that for WSLS behaviour to occur, α 

should not be at the extreme ends of its range and β should be at least 

around >5 and above. For γ it is difficult to see a particular trend as 

both groups cover most of its parameter space. 

Figure 5.18 QL3 behaviour groups as per legend. Proportion of choices (y-axis) for each 

shape position (x-axis) and score type (columns). Top: All simsets plotted separately. 

Bottom: Average of all simsets for each group. Left to right: Correct, Win-stay, Lose-shift, 

Shift-predict. 
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This visualisation is not ideal as we do not get the combination of 

all three parameters together in one plot. Technically we could plot 

them together here since there are three parameters, but that method 

would not work for algorithms with higher number of parameters. 

Instead, what we can do is use the knowledge from Figure 5.18 that 

there are simsets with much higher correct and win-stay scores than 

the 0.5 we use as condition to be grouped as WSLS. Adding a new 

group of “high WSLS” cases, where correct in shape position one and 

2, as well as win-stay in position two and three, are all >0.8, we get 

Figure 5.20, where KDE (Kernel Density Estimation) plots replace the 

scatterplots to increase clarity. With the additional reference point of 

the strong WSLS cases, we can now see trends in parameter values 

more easily. High β, low to medium α and γ is preferable somewhere 

between 0.5 and 0.9 or so. These are still not definitive answers to 

what parameter value combinations perform the best and illustrates 

Figure 5.19 QL3 parameter values separated by behavioural group. For the scatterplots, 

rows and columns are parameter value type (α, β, γ), with the combination of row, column 

being used as y-axis and x-axis, respectively, for that specific parameter combination. For 

the diagonal distribution plots, they refer to the parameter in that column. Note that the 

information on the top right of the diagonal is equivalent to that of the lower left but inverted. 
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what was mentioned above that we do not know the exact behaviour 

of the algorithm before we have tested it. 

 

Nevertheless, we do now have an idea of what to expect from QL3, 

namely that it cannot possibly explain the behaviour of those humans 

who find structure in Shapetask, namely those subjects who learn to 

predict a shift every third shape. But QL3 may be able to explain 

behaviour of those humans applying a WSLS strategy, and we now 

have an idea of where in the parameter space of QL3 such humans 

may fall. 

5 . 2 .2  M A N I P U L A T I N G  S T A T E S  T O  C R E A T E  S E Q L 3  

This is the point where, usually, alternate RL algorithms like for 

example model-based RL or other families of algorithms like HMMs 

would be considered. But we are working from the hypothesis stated 

in the chapter two that the basic RL system in the mammalian brain 

is supported by other areas, like for example pre-frontal cortex, by 

being fed state representations that are appropriate for the current 

Figure 5.20 QL3 parameter value plots for each group. The diagonal shows value 

distribution for each parameter value indicated on column bottom. Combination of 

parameter values for each group are shown in the three lower left plots, where darker shades 

indicate higher concentration.  
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task. Working from that hypothesis, in what way can we manipulate 

the states used in QL3 to make it solve Shapetask? 

One way would be to use shape position (within a small bag) as 

the state instead of the shape itself. Another would be to have only 

two states: last shape of a bag (position three) or not (positions one 

and two). As researchers knowing the task structure, either of the just 

mentioned would make sense if we were trying to design a system to 

solve the task. But participants do not know this. What they see is a 

stimulus in the form of a coloured shape, that is their “base” state. 

Shape (and/or colour as noted earlier) should therefore be the basic 

form of the states we use in the algorithm. Alternately, we could have 

two separate QL3 models, one with shape as states and one with 

shape positions. We then find a switch point where subjects switch 

from one representation to the other, where some subjects would 

never switch, and some would do so early. But how would this work 

if shapes had different bag sizes? 

The most straightforward state representation would therefore be 

to use both shape and position. For our standard version of Shapetask 

with three shapes, each coming in bags of three, that is 3*3=9 states. 

Contrast this with QL3 which only has three states and therefore has 

a less complex representation. We previously used the term SEQL – 

State Enhanced Q-learning – in an earlier chapter, and seeing this one 

is based on QL3, we dub it SEQL3. 

The state representation of SEQL3 is more complex than QL3 and 

can be modified further to allow for alternate versions with more 

shape types and/or different number of shapes in each bag. From the 

perspective of participants in the BOB task this may indeed be the 

case. Subjects do not know the underlying structure and observe 

sequences of 3 or 6 same shapes in a row. Even if we only consider 

position, these subjects may be using 18 states (3 shapes x 6 sequential 

positions). In BOB-NR there are only ever three same shapes in a row, 

so it may be the case this state enhancement is more appropriate for 

the BOB-NR task, than the BOB version. 

5 . 2 .3  S I M U L A T I N G  S E Q L 3  B E H A V I O U R  I N  S H A P E T A S K  

The simulation of simsets for SEQL3 is done with the same procedure 

and parameter value ranges as described above for QL3 in Section 

5.2.1. The only difference with SEQL3 is the state representation, 

where, if the shapes circle, triangle and square are represented by 1, 
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2, and 3 respectively35, the stimulus sequence for a given BOB task is 

converted to include position information as: 

[1, 1, 1] → [1, 2, 3] 
[2, 2, 2] → [4, 5, 6] 

[3, 3, 3] → [7, 8, 9] 

For each SEQL state 1-9, there are three actions, meaning in total 

we have 27 state-action values. Note we have condensed the 

presentation below to the most relevant plots, compared to what was 

presented for QL3. Additional plots are available in the code 

repository. 

The results for all simsets are plotted in Figure 5.21, where a 

general pattern stands out. It seems few, if any, simsets exhibit WSLS 

behaviour, indicated by no lines with increasing trend from position 

two to three in the win-stay column, second from left. Rather, the win-

stay scores, together with the trend for shift prediction (rightmost 

column) going upwards from position two to three, tells us that many 

SEQL3 simsets can “win” the task. 

 

Grouping the simsets according to the conditions defined in 

Section 5.1.5, we can see in Figure 5.22 that our suspicions are correct. 

In fact, SEQL3 does not exhibit WSLS behaviour at all, at least not as 

defined by the criteria. 

 

35 Assuming 1-based indexing. The values would be 0, 1, 2 in Python code. 

Figure 5.21 SEQL3 performance in Shapetask for each simset (separate lines), averaged 

across all trials. Proportion of choices (y-axis) for each shape position (x-axis) and score type 

(columns). From left to right: Correct, Win-stay, Lose-shift, Shift-predict.  
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To investigate parameter value combinations, we add a “high win” 

group for SEQL3, in the same way that an additional high 

performance WSLS group was added for the QL3 agent. The 

conditions for the high win group use the same score type and 

positions as the win group, but the average scores are raised to being 

more than 0.8 instead of more than 0.5. 

Figure 5.22 Behavioural groups for SEQL3 in Shapetask. Proportion of choices (y-axis) for 

each shape position (x-axis) and score type (columns). Top: All simsets represented by 

individual lines, coloured by group as per legend. Bottom: Average of each group. From left 

to right: Correct, Win-stay, Lose-shift, Shift-predict.  
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In Figure 5.23, we can see that similar to QL3, SEQL3 can win across 

most of the parameter space, except for combinations of low α and β 

(green win surface compared to orange other group surface and 

distributions). It should be noted that the large overlap between win 

and high win groups is due to the random variation for each 

parameter combination. Even though we run 100 simulations on the 

same task sequence for each such parameter combination, 

performance can vary across the selected limit for win high cases. As 

we have discussed above, our grouping criteria are chosen arbitrarily 

and meant as guidance for our investigations. From that standpoint, 

the important parameter value group differences to look at are 

between the high win group and the other group36. For the high win 

group, we see that higher β is preferred compared with the “other” 

 

36 Independent T-tests between the two groups; 𝛼: 𝑡(325) = 7.6, 𝑝 <

 0.001.   𝛽: 𝑡(325) = 21.1, 𝑝 <  0.001.   𝛾: 𝑡(325) = −8.5, 𝑝 <  0.001. 

Figure 5.23 Parameter value correlations for SEQL3 separated by groups (colours per 

legend). Diagonal distribution plots refer to the parameter indicated along bottom. KDE 

calculated surfaces are shown for parameter value combinations in the lower left, where 

darker shades indicate higher concentration.  
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group, combined with 0 < γ < 0.5. The other group additionally has a 

higher degree of low α than the high win group. 

Importantly, and as already mentioned above, we now know that 

SEQL3 can account for the well performing subjects in the human 

dataset. But like QL3, it cannot account for all types of participants. 

5 . 2 .4  G E N E R A L  D I S C U S S I O N  O F  R L  B E H A V I O U R  

What does it mean that QL3 cannot solve Shapetask, but SEQL3 can? 

In essence, it means that our results – at least in this specific task and 

algorithm niche – are in favour of the hypothesis that state 

representation is critical, at least for some human participants. This is 

an important insight, because it tells us that perhaps low-level 

mechanisms like RL are indeed very similar across mammal species, 

and that what differentiates complex from less complex behaviour is 

how other brain areas are able to create, transform and provide 

suitable state representations to the RL system. 

The fact that QL3 and SEQL3 exhibit WSLS and win group 

behaviour, respectively, across most of their respective parameter 

spaces adds to this line of reasoning that it is the state representation 

that makes the difference, not specific parameter value combinations. 

These results agree then with other research discussed in the 

background chapter, that perhaps it is the case that the dopaminergic 

RL system works in tandem with (mainly) pre-frontal cortex and/or 

hippocampus, where state and task representations are 

manipulated/constructed in order to support learning. 

However, we do not have any firm evidence to connect SEQL3 with 

biological phenomena. We have selected the state representations 

used in SEQL3 based on what makes logical sense, but we have not 

presented any mechanism or proof that SEQL3 is how humans solve 

the task. 

What we would like is a more principled way of reaching results 

like those of SEQL3, based on algorithms and/or state representations 

that other research has shown has possible biological correlates. In 

other words, there are more models to consider before fitting our 

human data. 
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5 . 3  H I E R A R C H I C A L  R L  

Hierarchical RL (HRL) is a broad term involving the concept that 

animals, in particular humans, can find and use environmental 

structure to guide and inform behaviour. This broad concept has 

multiple interpretations and implementations, each focussing on 

various aspects of algorithmic details. For example, [29, 265] frames 

the hierarchical notion as one about actions, where multiple 

“primitive” actions (heat water, put teabag into cup, pour water) are 

chunked together into “action options” (make tea). Since we are more 

interested in the state representation aspect37, here we will focus on 

hierarchical RL as collections of strategies, or task sets [50, 54, 72, 75, 

228].  

The basic idea of task sets (TS) is that humans and other animals 

have different behavioural contexts, where the same stimulus can 

cause different (re)actions depending on the current context. New 

task sets can be created in new situations, selected between and 

reused across different contexts, allowing them to deal with 

generalisation, differentiation and hidden information [54, 75]. 

The implementation of HRL we focus on here is based on [75] and 

is essentially two QL algorithms stacked in hierarchical fashion, see 

Figure 5.24. Based on the context, which works as a higher-level 

stimulus, one of several task sets is selected using SoftMax, based on 

the Q-values of each task set. Every task set consists of its own set of 

stimulus-action values like the regular QL/QL3 agents. Based on the 

reward received, separate prediction errors are calculated for the 

stimulus-action values and the context-task set values which are then 

used to update the values on the respective levels. Mathematically, 

we thus have, for each timestep t, context c: 

 𝑄𝑡+1(𝑐, 𝑇𝑆) = 𝑄𝑡(𝑐, 𝑇𝑆) + 𝛼ℎ𝑖𝑔ℎ[𝑟𝑡 − 𝑄𝑡(𝑐, 𝑇𝑆)] 

𝑄𝑡+1(𝑇𝑆, 𝑠, 𝑎) = 𝑄𝑡(𝑇𝑆, 𝑠, 𝑎) + 𝛼𝑙𝑜𝑤[𝑟𝑡 − 𝑄𝑡(𝑇𝑆, 𝑠, 𝑎)] 

5.2 

where high and low indicate hierarchy level. As mentioned above, 

both levels use SoftMax to select task set and actions but use separate 

parameters 𝛽ℎ𝑖𝑔ℎ, 𝛽𝑙𝑜𝑤. When simulating and fitting their “alien task”, 

 

37 We should note that states and actions are sides of the same coin; both are part 

of the state representation. What actions are available are shaped by how one sees 

the world, and vice versa.  
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[75] used an additional forget parameter, used to reduce values on 

each trial to account for participants forgetting over time. We do not 

use that in our implementation (see below), as Shapetask with its 99 

trials is relatively short in comparison to the hundreds of trials in the 

alien task. 

 

 

 

The HRL algorithm is used in [75] to model human behaviour in a 

task where four different aliens (stimuli) are given different objects 

like an umbrella (actions) which they appreciate differently 

depending on what season it is (context), for example winter or 

summer. The participant is then rewarded between 1-10 points, 

indicated by a measurement tape on screen. The reward size is based 

on if the context-stimulus-action was correct or not, with Gaussian 

noise added. The experiment was conducted with a practice training 

session of 40 trials – where one trial is one context-stimulus 

presentation – followed by a learning phase with 468 trials (3 blocks 

per context and 52 trials in each context). Four test phases followed; 

the first was similar to the learning phase but had the context hidden, 

Figure 5.24 Overview of HRL. Context and task sets (TS) are at the top of the hierarchy and 

marked in green. Based on the context, here TS2 is selected. Based on the stimulus, an action 

is selected based on the action values of TS2, marked in blue. The selected action leads to 

feedback (reward) which is then used to update the values for the action and task set. Adapted 

from [75]. 
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indicated by grey clouds, second a comparison phase where 

participants either saw two contexts or two stimuli and selected the 

one they preferred, third a novel context phase, and fourth and finally 

a mixed phase where context and stimuli were not blocked but 

changed trial-to-trial. Between each test phase there was a refresher 

of the learning phase, but in a shorter 120-trial version. The test 

phases, including the refreshers, added up to 1197 trials and thus 1705 

trials in total when including the training and initial learning phase. 

[75] shows nicely how HRL fits the human behaviour better in this 

task, across the learning phase and test phases, than both a “flat” RL 

model (with separate states for each context-stimulus combination, 

like our SEQL3 above) and a hierarchical Bayesian inference model. 

Most importantly, participants successfully reactivated learned task 

sets in the hidden context phase and generalised knowledge of 

existing task sets to the novel context phase. 

We can see how HRL can handle for example the hidden context 

phase, in that participants are informed about context switches but 

not about their identity. By manually equalising the context-TS values 

when the phase starts, [75] showed that HRL can relearn these values 

while the stimulus-action values in each TS remain intact. 

In addition to these promising results, there is previous evidence 

of HRL being biologically plausible [49, 50, 54, 72], and as discussed 

in the background chapter there is ample evidence of hierarchical 

levels in brain function in general and for (reward) prediction errors 

in particular. In other words, HRL is a strong candidate for Shapetask, 

though it remains to be seen if it works with the low number of trials 

we used. 

5 . 3 .1  A P P L Y I N G  H R L  T O  S H A P E T A S K  

The key to applying HRL to Shapetask is to decide what the context 

would be and how many task sets there are. In the Alien task 

described above, the context and task sets are more obvious, as the 

experiment task has been developed with HRL in mind. In Shapetask 

it is not as straightforward, as only the shape types (and the sequence) 

are directly observable. One way to frame it would be to have the 

shapes (or colours) as stimuli and impose structure on top with 

positions as context/task sets. However, what if the participant frames 

it the other way around, with shape type as context and shape 

sequential position as stimulus (or, rather, what is on top and bottom 
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in the hierarchy)? Theoretically, the hierarchical order should not 

matter here as the number of combinations between shapes and 

positions remain the same. Furthermore, one might ask whether there 

should always be one task set per context? The latter question is 

discussed in [54], where it is shown that clustering of contexts to use 

the same task set is precisely how HRL allows for generalisation of 

knowledge across contexts. This would allow for an alternate 

interpretation of having two contexts/task sets, consisting of position 

being last in the bag or not. Work by [55, 72] discusses task sets in 

relation to working memory capacity and HRL, and suggest a 

maximum human capacity of 3-4 concurrent task sets but 2-3 are 

optimal. 

These considerations highlight both the difficulty of applying 

algorithms to new tasks (i.e., ones that the tasks were not specifically 

designed for) as well as the importance of doing so, as questions arise 

that may not otherwise have been posed and investigated. 

Nevertheless, following the fact that the shape types are directly 

observable and that contexts can be clustered across task sets, it 

would make the most sense to use shape position as context, with one 

task set per position, and each task set consisting of shapes as stimuli 

as well as actions. 

5 . 3 .2  H R L  R E S U L T S  I N  S H A P E T A S K  

Our HRL implementation is based upon Equation 5.2, and uses shape 

position (1, 2, 3) as context. For each context, there is one task set (TS1, 

TS2, TS3) and each TS corresponds to 3x3 state-action values like for 

the QL/QL3 agents. We generate 1000 parameter value combinations 

and simulate 100 subjects for each such combination (simset) and the 

BOB version, with parameter values drawn as: 

𝛼ℎ𝑖𝑔ℎ, 𝛼𝑙𝑜𝑤~𝑈(0, 1),                 𝛽ℎ𝑖𝑔ℎ, 𝛽𝑙𝑜𝑤~𝑈(0, 20) 

Results will first be presented in an overview fashion as for the 

regular RL agents above. Because we have an additional and novel 

aspect here compared to those previous algorithms – the contexts and 

task set selections – we will additionally investigate task set selection 

with regards to performance group (wsls and win). 
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In Figure 5.25 we have the overall performance of all simsets. We 

can glean that there are patterns of WSLS in that some lines have flat 

or increasing trend from position two to position three for win-stay 

(second column from left). There are also patterns of win in that there 

are increasing trends from position 2 to position three for shift predict 

(rightmost column). We confirm this in Figure 5.26 where simsets are 

divided into groups as per conditions defined above38. 

 

There are two main findings of interest in Figure 5.26. The first is 

that it appears HRL is capable of exhibiting both WSLS and win 

behaviour. This is potentially exciting, because an algorithm that can 

explain a wider range of behaviours is preferable to those that only 

explain a few. However, the second interesting find here is that these 

behaviours are not as distinctive as those of the strongest human 

examples of WSLS and winner subjects where the corresponding 

 

38 The proportions of groups were 69% other, 21% win and 10% wsls. 

Figure 5.25 Overview of HRL performance in Shapetask. Proportion of choices on y-axis for 

each shape position on x-axis, across each score type in columns. Each line is a separate 

simset. From left to right: Correct, Win-stay, Lose-shift, Shift-predict. 

Figure 5.26 HRL performance in Shapetask by group. Proportion of choices on y-axis for 

each shape position on x-axis and score type (columns). Groups coloured as per legend. Top: 

All individual simsets as separate lines. Bottom: Group averages across simsets. 
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score proportions for win-stay and shift predict are much higher 

(compare middle row Figure 5.11). We will come back to this 

observation when investigating task set selection below. Overall, the 

win score levels are comparable to human BOB levels. The downside 

of these results is that most simsets are categorised as other, but 

perhaps this will prove a decent fit to some humans struggling to find 

a pattern in the task. 

 

In Figure 5.27 we have plotted parameter value spaces for each 

parameter and group. To better see overlap, we here use “unfilled” 

KDE plots on the off-diagonals. Interestingly, the “other” group 

behaviour is possible across the entire parameter space. To win, what 

looks most important are the high-level parameters for selecting task 

set, with high value 𝛽ℎ𝑖𝑔ℎ, but values on the lower level do not seem 

to matter as much. For WSLS, the reverse is true, where a low value 

Figure 5.27 Parameter value pair plot for HRL in Shapetask. On diagonal, parameter value 

distributions as per labels at the bottom. The bottom left triangle of plots show join 

distributions for each parameter value combination as per row and column labels combined. 

Colours indicate group as per label. 
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𝛽ℎ𝑖𝑔ℎ is preferred, and on the lower level a high 𝛽𝑙𝑜𝑤 plus 𝛼𝑙𝑜𝑤 

between around 0.1 and 0.7. 

Of the best performing simsets in the winner group, only a few 

reach above 0.6 for shift predict in position three. Similarly, only a few 

simsets reach above 0.6 for win-stay in position three in the WSLS 

group. We are interested to see if these simsets have plateaued in 

performance or if there is still an upwards trend towards the end of 

the experiment. 

To investigate this, we chose to use the two last bag-of-bags of the 

task, meaning the last 18 trials, and averaged each score type across 

only those trials. From these scores we then classify “win high” as 

those cases that are >0.8 for correct in positions one and two, as well 

as >0.8 for shift predict in position three. Similarly, “WSLS high” are 

those that are >0.8 correct for positions one and two and >0.8 win-stay 

for positions two and three. This gives us Figure 5.28 where we see 

line shapes more similar to the levels humans achieved over the 

whole task (light blue and pink for high winner and high WSLS, 

respectively). Note that the figure shows behaviour for all trials, not 

just the last 18 trials used for grouping. 

 

This is encouraging, as it seems HRL is indeed able to qualitatively 

produce behaviour like humans. However, very few cases reach these 

criteria. Fewer than five (depending on random variation for 

parameter value combinations) out of the thousand simsets are “win 

high” or “wsls high”. 

5.3.2.1  Taskset selection  

We now turn our attention to the process of selecting task sets in the 

HRL algorithm for Shapetask. Since task set selection values have to be 

learned, there is stochasticity involved in whether good context-TS 

Figure 5.28 Proportion of choices (y-axis) for each shape position (x-axis) and score type 

(columns) for each group (coloured lines as per legend). From left to right: Correct, Win-

stay, Lose-shift, Shift-predict. 
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values are learned. Overall, as seen in Figure 5.27, greedy values for 

𝛽ℎ𝑖𝑔ℎ are thus preferred in order to win Shapetask. 

However, because of the just mentioned stochasticity in selecting 

task sets, it is possible to see completely different behaviour types for 

different runs of the same parameter values. In other words, if we run 

HRL two times – both times with the same parameter values – we can 

get WSLS behaviour one time and winner behaviour the other.  

To highlight the dynamics involved, we repeat the same process as 

in the previous section of simulating 1000 simsets. We then find a 

candidate simset that has the highest value for Shift-predict in 

position three, averaged over the last 18 trials. The example simset 

shown below thus have 100 subjects, all using the same parameter 

values 𝛼𝑙𝑜𝑤 = 0.79, 𝛼ℎ𝑖𝑔ℎ = 0.51, 𝛽𝑙𝑜𝑤 = 14.85, 𝛽ℎ𝑖𝑔ℎ = 19.92. 

 

In Figure 5.29, the subjects within the example simset have been 

plotted, showing only the Shift-predict score across all trials for each 

shape position. The variance for position three is quite large, 

spreading across almost the entire value range. To investigate further, 

we find the best and worst subjects within this simset, defined by 

comparing the mean of Correct score for positions one and two 

together with the Shift-predict score for position three. The best 

subject is thus the one with the highest such combined score, and the 

worst subject that with the lowest. Because we store what task set is 

being selected on teach trial, we can see what task set was selected on 

each trial. 

Figure 5.29 Proportion of Shift-predict (y-axis) for each shape position (x-axis) for example 

simset found as explained in text. Boxplots show the variance across subjects within the 

simset. 
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In Figure 5.30, task set selections for every trial have been plotted 

for both the best (top row) and worst (bottom row) subjects. The best 

subject has early on successfully generalised across shape positions 

one and two and use the same task set for both positions (task set 3 in 

green circles, left and middle columns), while using a separate task 

set for shape position three (task set 2, yellow circles, right column). 

This allows these two task sets to be optimized for the task. 

Meanwhile, the worst subject is more varied in the first half of the 

task. Around halfway, it settles on task set 3 in green circles for 

position one (left column) and task set 2 in yellow circles for position 

two (middle column). For shape position 3 (right-most column), the 

subject has in the last half of the task picked mostly task set 2 in yellow 

circles (right column). 

What different kinds of score behaviour might our best and worst 

subject examples show? 

 

In Figure 5.31 we can see the consequences of the different task set 

selections of the two subjects. The best subject (solid line) shows the 

same pattern as human winners, namely high correct score in the two 

first shape positions and high Shift-predict for position three. The 

Figure 5.30 Taskset selections (y-axis) for each trial (x-axis) and subject type (rows). Colours 

refer to the same value as y-axis to make figure easier to read. Columns show the trials in 

that shape position. From left to right: Shape position 1, Shape position 2, Shape position 3. 

Figure 5.31 Behaviour of two example subjects from the same simset. Proportion of choices 

(y-axis) for each shape position (x-axis) and subject type (line styles as per legend). From 

left to right: Correct, Win-stay, Lose-shift, Shift-Predict. 
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worst subject (dashed line) instead shows a pattern similar to human 

WSLS subjects, where Win-stay increases from shape position two to 

three. 

In other words, two subjects that use the same parameter values 

exhibit qualitatively different behaviours. We should note that we can 

also find examples that will behave similarly to the best subject above, 

but that select different task sets for each position. What is crucial, 

then, is that the agent selects a unique task set for position three. This 

is what the worst subject struggles with as seen above. 

This issue of large variance in task set selection can also explain 

why the “other” group in for example Figure 5.26 has a trend towards 

the behaviour of winners but does not quite get there39. 

5 . 3 .3  C O N S T R A I N I N G  S T R U C T U R E  

As discussed above in Section 5.3.1, there are more constrained 

variants of the context-task set structure. We could keep the three 

positions as context and reduce the number of tasksets to two. Further 

reduction can be made by using two contexts: last shape in the bag, 

or not, together with two task sets. The latter mentioned is the 

smallest possible setup, and thus what the following results will be 

based upon. For convenience, this version of HRL is called HRL-2240. 

 

Unfortunately, as seen in Figure 5.32, the same issue remains even 

when constraining the context-TS structure to a minimum. If we 

increase the number of trials in the BOB Shapetask to 270, however, 

 

39 See plot in code repository, https://github.com/fohria/phd_thesis 
40 In code we call this “lastinbag” 

Figure 5.32 Taskset selections for best and worst subjects in best performing simset using 

HRL-22. Taskset selected is y-axis, across all trials (x-axis) for each shape position 

(columns). Top: Best subject. Bottom: Worst subject.   
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then as seen in Figure 5.33, after around 160 trials even the worst 

performing subject (bottom row) can separate the task sets properly. 

 

That this switch in taskset usage translates to “winning” behaviour 

can be confirmed in Figure 5.34. 

 

Can we find that the same pattern holds for the original HRL 

implementation when extending the task to 270 trials? Theoretically, 

it should require more trials than for HRL-22, since HRL has one more 

context and task set hence there are more ways the stochasticity can 

play tricks. 

Figure 5.33 Taskset selections for best and worst subjects in best performing simset using 

HRL-22 and 270 trials in Shapetask. Taskset selected is y-axis, across all trials (x-axis) for 

each shape position (columns). Top: Best subject. Bottom: Worst subject.  

Figure 5.34 Behaviour of the worst and best subjects in the best performing simset using 

HRL-22 and 270 trials in Shapetask. Proportion of choices (y-axis) for each shape position 

(x-axis) and subject type (line styles as per legend). From left to right: Correct, Win-stay, 

Lose-shift, Shift-Predict.  
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As seen in Figure 5.35, 270 trials do not appear to be enough for the 

original HRL implementation to optimize the taskset selections. This 

is further evidenced by the behavioural plot of Figure 5.36. 

 

5 . 3 .4  O V E R A L L  B E H A V I O U R  O F  H R L - 2 2  

In the previous section we found that our alternate implementation 

called HRL-22 may provide better results when it comes to finding 

winners. However, a positive aspect of the original HRL results were 

that both WSLS and winner behaviour was possible, which is a good 

thing when it comes to fitting human data, if the goal is to explain 

something about the human behaviour. If one type of algorithm or 

state representation can explain more types of behaviour, that is 

preferable as it explains a larger number of observations. 

Therefore, we run 1000 simset simulations for HRL-22, as we did 

for HRL above, group them as per our existing conditions and check 

potential parameter value correlations between these groups. We will 

use 99 trials for Shapetask BOB variant, since our human data uses 99 

trials. 

Figure 5.35 Taskset selections for the best and worst subjects in best performing simset using 

HRL and 270 trials for Shapetask. Taskset selected is y-axis, across all trials (x-axis) for each 

shape position (columns). Top: Best subject. Bottom: Worst subject.  

Figure 5.36 Behaviour of the best and worst subjects in best performing simset using HRL 

and 270 trials for Shapetask. Proportion of choices (y-axis) for each shape position (x-axis) 

and subject type (line styles as per legend). From left to right: Correct, Win-stay, Lose-shift, 

Shift-Predict. 
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Interestingly, the constrained state representation of HRL-22 does 

not noticeably increase general performance compared with HRL. 

This is perhaps not surprising, following our previous finding that 

HRL-22 requires more than 150 trials to stabilise and separate task 

sets. What is positive, is that even the constrained context-TS 

representation of HRL-22 can still produce WSLS cases. Furthermore, 

the group proportions are now more balanced. For HRL-22 we get 

53% other, 30% WSLS and 17% winners. 

Figure 5.37 HRL-22 performance in Shapetask, separated by groups as per legend. 

Proportion of choices (y-axis) for each shape position (x-axis) and score type (columns). Top: 

Individual simsets separated by lines. Bottom: Average for each group. From left to right: 

Correct, Win-stay, Lose-shift, Shift-predict. 
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In Figure 5.38 we have plotted the parameter space of HRL-22. The 

“other” group has been excluded for clarity, as it still covers the 

majority of the combined parameter space. Two groups have been 

added in addition to the regular Win and WSLS groups, indicating 

cases with >0.7 shift predict in position 3 (Win-high group) or >0.7 

Win-stay score in positions two and three (WSLS-high group). We 

chose 0.7 here instead of 0.8 as above in order to have more cases in 

the “high” groups to easier distinguish parameter space distributions. 

With regards to the parameter space itself, it is clear that for 

𝛼𝑙𝑜𝑤, 𝛼ℎ𝑖𝑔ℎ, 𝛽𝑙𝑜𝑤 there is much overlap between the groups. The main 

difference is found by comparing the Win-high and WSLS-high 

groups, in that the latter prefers low 𝛽ℎ𝑖𝑔ℎ while the former prefers 

high 𝛽ℎ𝑖𝑔ℎ. This makes sense from what we saw above when 

investigating taskset selections. With low 𝛽ℎ𝑖𝑔ℎ, the WSLS-high group 

takes many more explorative selections – random behaviour if you 

prefer – and there is less chance that distinct task sets for shape 

position three will appear and continue to be chosen. Without any 

Figure 5.38 Pair plot comparing parameter value spaces for each group. Diagonal shows 

distribution for the parameter labelled at the bottom. Scatterplots show combination of 

parameter values as per row, column combination. Colours indicate group as per legend. 
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proper discrimination between task sets, the agent becomes 

essentially context-less and thus falls back on the WSLS behaviour we 

saw for the regular QL3 agent. 

But with high values for 𝛽ℎ𝑖𝑔ℎ, the agent is equipped to 

distinctively create and select separate task sets for the appropriate 

context. In the best cases, as we saw above, the agent will select 

separate task sets for position three and positions one and two, 

enabling it to learn how to win at Shapetask. 

5 . 3 .5  H R L  D I S C U S S I O N  

HRL is capable of exhibiting both WSLS and Winner behaviour, 

which makes it a fitting candidate to explain a majority of human 

behaviour in Shapetask. Unfortunately, due to inherent randomness 

in selection of task sets, even for a single combination of parameter 

values, HRL can exhibit this duality of behaviour. This issue is 

alleviated by increasing the number of trials, and is likely the reason 

why [75], which the HRL implementation is based on, uses around 

four times as many trials in its learning phase for both humans and 

algorithm, as we do in Shapetask. 

In the human results for Shapetask, however, we show that some 

humans can find the task structure within 99 trials, and often in the 

early parts of the task. HRL is therefore not as good a model as SEQL3, 

at least in the case of explaining those well-performing humans. 

To be fair, humans do come into a task with a great deal of pre-

existing knowledge. We can account for that in two ways. The first 

way would be to pre-train our model in some fashion, an approach 

common in the deep learning approach to cognitive science. The crux 

there is figuring out how much training accounts for evolution, how 

much for life experience, and how much is training/learning in the 

task at hand? 

The other approach is the one used here, to manipulate the state 

representation in ways that may account for how humans may come 

into a task with pre-existing knowledge. SEQL3 provides a better 

account for well-performing humans, but HRL can explain a broader 

spectrum of behaviours. Furthermore, in the BOB task, some human 

winners do have performance scores on similar levels as the average 

best HRL simsets. 
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The interesting part of HRL is how to decide and construct the 

context and task sets. [54, 72] show how this can be done in a more 

dynamic way, using non-parametric methods to add new contexts 

and task sets. It is not immediately clear how this would be applied 

to Shapetask, as one would still need to define what aspects of the 

task are used as building blocks. 

To summarise, HRL may be able to explain a wide section of the 

human data. The above behavioural demonstrations have also shown 

how the application of alternate algorithms on Shapetask illuminates 

aspects of those algorithms that may not be apparent in their original 

task environments.  

5 . 4  T H E  S U C C E S S O R  R E P R E S E N TAT I O N  

The Successor Representation (SR) was introduced by [67] and can be 

seen as a middle ground between model-free (MF) and model-based 

(MB) RL [180, 227]. SR does not learn the full state transition function, 

like MB RL. Instead, SR approximates it through experience, storing 

how often future states will be visited from the current state. The 

resulting so called “future state occupancy” values can then be 

combined with separately stored reward values for each state in order 

to support action selection at decision time. In other words, although 

SR requires more memory than regular MF RL algorithms like QL, SR 

does not need to compute future state values anew at every step, 

which MB RL does. 

There are several lines of research supporting biological correlates 

for SR. It can represent activation patterns in prefrontal and 

hippocampal areas such as those measured by fMRI [180] – some of 

which correlate with place and grid cells [257] – which bridges the 

roles of OFC and hippocampus for task structure and state 

representations [297, 302, 312]. Together with support for SR in 

human behavioural tasks [182] and computational studies showing 

that SR (depending on its specific implementation) can explain both 

MF and MB RL phenomena [227], some authors have even suggested 

SR can help frame the RL dopaminergic system as one about 

prediction errors in general and not just reward prediction errors [91]. 

The specific implementation of SR we will focus on here is based 

on [227] and combines SR with temporal difference learning (TD) and 

is thus called SRTD. However, we will first introduce the SR in more 
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general mathematical terms, based on [91, 98, 182], to then focus on 

the specific version from [227]. 

Mathematically, SR has two main components in the matrix M and 

vector R, where M holds the state transition approximation (future 

state occupancy values), and R stores the immediate reward expected 

upon encountering state s. Thus, R is a vector with the same length as 

the number of states. 

More formally, [67] shows that state values in the SR can be 

calculated as the sum of rewards for all states s’ following the current 

state s: 

 𝑉(𝑠𝑡) = ∑ 𝑀(𝑠𝑡, 𝑠′)𝑅(𝑠′)

𝑠′

 5.3 

where it should be noted that s’ includes the current state, as it is 

possible (depending on the task) to stay in the current state, and M is 

the SR, the expected discounted future state occupancy [91]: 

 
𝑀(𝑠𝑡, 𝑠′) = 𝔼 [∑ 𝛾𝑘𝕀(𝑠𝑡+𝑘 = 𝑠′)

∞

𝑘=0

] 
5.4 

where 𝔼 is expected value, γ a future discount parameter and 𝕀(∙) = 1 

if its argument is true, and 0 otherwise. The 𝕀 is sometimes called the 

Kronecker delta [98], but also has other names like “one-hot 

encoding” depending on the field41. 

Based on Equation 5.4 and the Bellman equation, a temporal 

difference error for M can then be derived [91, 99, 227]: 

 Δ𝑀(𝑠𝑡, 𝑠′) ∝ 𝛿𝑡
𝑀(𝑠′) = 𝕀(𝑠𝑡 = 𝑠′) + 𝛾�̂�(𝑠𝑡+1, 𝑠′) − �̂�(𝑠𝑡, 𝑠′) 5.5 

where �̂� denotes the approximation of M. We can now see that the 

right-hand side of Equation 5.5 is indeed very similar to the reward 

prediction error in, for example, Equation 5.1. In other words, 

through experience, an SR-based agent can learn to approximate the 

state transition function, just like a QL3 agent can learn to 

approximate state-action reward values. 

As noted, the matrix M is the SR itself and represents the state 

space of size S with S rows and S columns. Each row represents the 

 

41 https://stats.stackexchange.com/q/308916 



2 4 0          T H E  S H A P E  S E Q U E N C E  T A S K  

 

state r and each column value 𝑴𝑟𝑐 is the probability42 of being in that 

state in the future – how many times we can expect to be in the state 

c, starting from state r. Conversely, each column represents the state 

c and each row value 𝑴𝑟𝑐 is the probability of that state having been 

visited in the past. In other words, rows represent the future and 

columns represent the past. 

As an example, imagine a small gridworld maze of size 3x3 rows 

and columns, which thus have 9 states. M would then be of size 9x9, 

as seen in Table 5.1. It is possible to initialise M as an identity matrix 

as done here, meaning there is some initial belief that the agent can 

transition into the same state. For example, in a gridworld maze 

where the agent comes back to the same state if it walks into a wall. 

But the diagonal can also be initialised to zero and this transition then 

also needs to be learned [181]. 

1 4 7 

2 5 8 

3 6 9 

 

 1 2 3 4 5 6 7 8 9 

1 1 0 0 0 0 0 0 0 0 

2 0 1 0 0 0 0 0 0 0 

3 0 0 1 0 0 0 0 0 0 

4 0 0 0 1 0 0 0 0 0 

5 0 0 0 0 1 0 0 0 0 

6 0 0 0 0 0 1 0 0 0 

7 0 0 0 0 0 0 1 0 0 

8 0 0 0 0 0 0 0 1 0 

9 0 0 0 0 0 0 0 0 1 
 

We now turn to the specific implementation by [227], which we call 

SRTD. We still have the matrix M, but the vector R has been replaced 

with a weights vector w, which like R has the same length as the 

 

42 It is technically not a probability but a value for expected future state 

occupancy – how many times we can expect to be in the future state c when starting 

in state r.  But we will use probability and likelihood as shorthand to make the text 

easier to read. 

Table 5.1 SR example using a gridworld maze. Left: 3x3 gridworld where each state is 

numbered 1-9. Right: Corresponding SR representation before starting to explore the maze. 

Rows and columns are numbered as per their state in the maze. Each row represents the 

future state occupancy values, if one is currently in state=row. Similarly, columns represent 

the past. 
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number of states. In principle this SRTD version works the same as 

SR described above, meaning if we replace R with w in Equation 5.3 

we get the values for each state. By extension, we can get the values 

for all states through matrix multiplication: 

 𝑉 = 𝑀 × 𝑤 5.6 

Indeed, [227] state that the above equation will be correct when the 

items of w correspond to each state’s one-step reward. The difference 

to R then, is that w here works as a linear function approximation and 

[227] show (in supplementary materials) that this approach yields 

improved performance early in training, before M has enough 

experience to have converged. 

More specifically, M and w are learned in parallel, where on each 

transition from state s to s’, as indicated by the colon statement, every 

element of row s in M is updated as: 

 𝑀𝑡+1(𝑠, ∶) = 𝑀𝑡(𝑠, ∶) + 𝛼𝑆𝑅[𝟏𝑠 + 𝛾𝑀𝑡(𝑠′, ∶) − 𝑀𝑡(𝑠, ∶)] 5.7 

where 𝟏𝑠 is a vector of all zeros except in position s where it is 1, 𝛼𝑆𝑅 

is the learning rate, γ the future discount and s’ is the next state. 

The second component w is then updated using the new M, 

together with the reward prediction error. All items i of w are updated 

according to: 

 𝑤𝑡+1(𝑖) = 𝑤𝑡(𝑖) + 𝛼𝑤 ∗ 𝑅𝑃𝐸 ∗ 𝑀𝑡(𝑠, 𝑖) 5.8 

where RPE is the reward prediction error as in regular QL: 

 𝑅𝑃𝐸 = 𝑅(𝑠, 𝑎) + 𝛾𝑉𝑡(𝑠′) − 𝑉𝑡(𝑠) 5.9 

where 𝑅(𝑠, 𝑎) is the reward for taking action a in state s. Note that M 

and w share discount parameter γ but have separate learning rates α. 

Thanks to M, SR(TD) has some of the features of MB algorithms in 

that there is information about state transition probabilities. The 

multiplication of M and w (Equation 5.6) is one operation, which is 

cheap computationally, and thus by influencing V grants aspects of 

MF algorithms. We do not have to calculate all future state values 

based on the state transition function, as we must with MB RL 

algorithms. 
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5 . 4 .1  L A T E N T  E X P L O R A T I O N  O F  G R I D W O R L D  M A Z E S  

In their recent paper [227] demonstrates how SR can be implemented 

to exhibit aspects of MB and MF behaviour. We shall here focus on 

their SRTD implementation, and the task used (based on [278]), latent 

learning in a gridworld maze as seen in Figure 5.39. The maze consists 

of 10x10 squares, where some are walls (black squares in figure) and 

some are corridors (grey squares in figure). Additionally, and further 

described below, it has an additional state “outside” the maze. 

 

During the latent learning phase of the experiment, no reward is 

present, and the agent is allowed 25000 random exploration steps43 in 

the maze as seen to the left in Figure 5.39. The agent starts this 

exploration phase in the square marked S and whenever square R is 

reached, the agent only has the option to enter a separate 

 

43 Of course, in a real-world task with actual rats, this number of steps may or 

may not reflect reality. Even if we divide a rat labyrinth into discrete squares, it is 

questionable if the rat would require so many steps. Lowering the number of steps 

in the code for the exploration phase decreases stability of results. But this is a 

general problem when relating RL to animal behaviour, as discussed in the 

background chapter.  

Figure 5.39 Gridworld maze. Left: Grey areas are traversable, and the black squares are 

walls. In the latent exploration phase, the agent is put in start position S and gets to explore 

the maze until it reaches reward position R. When square R is reached, the agent enters a 

consummation state and is then “picked up” and put back in start position S. In the reward 

phase, the agent is placed twenty times directly on R, which allows it to enter the 

consummatory state and receive a reward. Right: Test phase, where the M learned during 

exploration phase and w learned during reward phase are combined into state values. Red 

arrows point towards the state with highest value. Adapted from [227] 
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consummation state44 (not shown in the figure as it is technically 

outside of the maze, but see Figure 5.40) before it is then “picked up” 

and put back in start position S. The agent may thus journey from S 

to R multiple times until the maximum 25000 steps have been used 

up and the exploration phase ends. Only M (Equation 5.7) will change 

in value during this phase, since w (Equation 5.8) requires a reward 

to be present for the RPE (Equation 5.9) to differ from zero. 

In the next phase, a reward is introduced to the consummation 

state. The agent is now placed directly on the square marked R in 

Figure 5.39, from which it moves into the consummatory state where 

it consumes the reward. In other words, the reward is not directly 

associated with the square R inside the maze. When the agent is 

placed at square/state R, there are no other actions available in this 

state than to go into the consummatory state, and so the agent steps 

from R to the consummation state and receives a reward. This is 

repeated twenty times, and since a reward is now present, w can now 

change when updated. 

The test phase consists of placing the agent in the starting state S 

(corresponding to the square inside the maze to the right of the mouse 

in right-hand illustration of Figure 5.39) and calculating the values for 

each state in the maze (Equation 5.6). In other words, neither M nor 

w are updated here, instead [227] demonstrates the resulting 

behavioural policy with drawing arrows on each state. The arrows 

are pointing towards the neighbouring state with the highest value, 

(V, Equation 5.6) as seen in the right-hand side of Figure 5.39. Thus, 

the arrows show the path that a fully greedy agent would take. In 

other words, the agent can navigate to the reward location R through 

the combination of its state transition approximation M, learned 

during the exploration phase, and its experience of rewards stored in 

w from the reward phase. 

This contrasts with a regular MF model like QL3, which would 

require to explore the maze from the start multiple times with the 

reward present. This because QL3 only has state-values, and they can 

be updated only if there is a reward present. We saw this in Figure 

5.15, where the rewarded state was updated the first time the agent 

 

44 It is not technically a consummation state in the exploration phase, as there is 

nothing to consume. But we call it consummation state in both phases for 

consistency. 
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encountered it, then the states next to the reward state could be 

updated the second episode, and so on. 

5.4.1.1  The Hotel  Cali fornia problem  

As described above, during the latent exploration phase, the agent is 

put back into the starting state S after it has reached the maze position 

R. More specifically, in state R there is only one action allowed for the 

agent, which is to move into the consummation state, which is the 

state where the reward is later placed during the reward phase. Just 

like in the old song Hotel California, where you can check-out but 

never leave, the agent cannot escape R when it has arrived there. It 

can only “check-out” the consummation state. 

In Figure 5.40, right-hand side, the original task illustration from 

Figure 5.39 has been altered to illustrate that the consummatory state 

is outside of the maze and only reached from the Hotel California 

(HC) state. In other words, there are in fact additional states in this 

maze than the 10x10 grid (also matching better how [227] simulated). 

The Hotel California effect is crucial, as it causes the state values V to 

cleanly end up pointing towards R. Without check-in, the simulation 

doesn’t work the same. 

 

To demonstrate the importance of the specifics of the 

implementation used by [227], we modified their provided code and 

tested the case of letting the SRTD agent explore for 25000 steps 

Figure 5.40 Illustration of the Hotel California problem. Left: Resulting policy after reward 

phase in modified latent learning task where agent is free to leave the Reward state during 

exploration phase. Right: Original version where agent is picked up from Reward state 

(marked HC) and put back to starting state (right of mouse) during exploration phase. 

Adapted from [227] 
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without picking the agent up when it reaches R and return it to S. 

Instead, we let the agent move into and out of R just like all other 

states. We call this “free” latent exploration. Then we did the same 

reward phase procedure as in the original experiment, where we 

added the reward in R (or, rather, the consummatory state) and put 

the agent down into R twenty times. To be clear, in this phase the 

agent can only move to the consummatory state, like the original 

version. When we then calculate the policy by multiplying M and w 

we get the result seen on the left-hand side of Figure 5.40. 

As can be seen, the SRTD algorithm can no longer solve this task 

as well as the original version with pickups during exploration45. 

Why? What happens is that since we multiply M with w, and M now 

has quite high probability of moving from state R (the dark grey 

square without arrow, to the left of the cheese) to the neighbouring 

states, we get the curious case of those neighbouring states having a 

higher average return than the actual goal state. Note that state R does 

have value, it is dark grey and not black, but it has lower value than 

its neighbours. 

We can understand this through Equations 5.6-5.9. In the HC 

(original) versions exploration phase, when the agent reaches state R, 

it can move only into the state outside the maze, state CS 

(consummation state). That means 𝑀(𝑅, ¬𝐶𝑆) = 0, so in the reward 

phase when w is updated, 𝑤(¬𝑅) = 0, 𝑤(𝑅) ≠ 0. The consequence is 

that when V is calculated by combining M and w, we do get values 

for all states because 𝑀(¬𝑅, ∶) ≠ 0, and they all point towards state R 

since that is the only state with a w value that is not zero. 

In the free exploration version, because the agent is free to move in 

any direction from state R, 𝑀(𝑅, ∶) ≠ 0, so all w values are updated in 

the reward phase. Since the entire matrix M contributes to the state 

values V, the states surrounding state R also contribute. Notice that 

values in w cannot decrease, so with the repeated reward trials, the 

neighbours of R increase in value and can get higher values than state 

R itself. 

 

45 It will, of course, come very close to the reward so will still be able to learn 

how to find the reward quicker than a naïve agent 
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5.4.1.2  Tolman approves  

The paper [227] cites Tolman’s classic paper [278] for their latent 

exploration task. Experiments mentioned there were run similarly to 

the HC version of latent exploration, namely that rats were picked up 

when they reach the goal box, even when there was no reward. We 

will disregard that Toman’s mazes were much simpler than the 

gridworld presented above and say only there is an argument to be 

made that [227] is simulating only a specific type of experiments; they 

do not claim to have done anything else. However, there have been a 

few experiments done since 1948, and even without looking at those 

in detail, it is not far-fetched to imagine that a rat may be able to 

explore a maze in such a way as the one used above, the free 

exploration version, and yet be able to quickly find its way to the goal 

box after having been exposed to rewards there. It seems curious to 

not have fully explored this case. 

Furthermore, we do not have to move past the 1940s to find just 

such an experiment. Seward [245] let rats freely explore a maze for 30 

minutes, including the goal box which had an empty food bowl, and 

they were free to go back from the goal box through the maze during 

this time. Seward then introduced a reward into the goal box and 

presented this to rats by lowering them down into the goal box 

through the roof. At this point the goal box was closed to the rest of 

the maze, to give the rats some secluded feeding time. Worth 

mentioning is that there were two goal boxes in each maze, and they 

differentiated from each other as well as the rest of the maze by 

different floor colours and/or materials. When later tested from the 

start of the maze, 87.5% of the rats that got to freely explore the maze 

went directly for the food. Directly meaning they did not go down 

blind alleys or alleys leading to another goal box. 

The experiment just described is thus similar to our free 

exploration, shown in the left part of Figure 5.40. In this version of the 

task, the rat would quickly arrive at squares neighbouring the reward, 

from where finding the reward is easy. Perhaps this “fuzzy” 

recollection of the reward location describes animal navigation and 

cognitive maps better than the more exact HC version. Speculations 

aside, and more importantly, the free exploration version and 

subsequent test still proves the point that SRTD can account for latent 

learning in mazes. This because an SRTD agent without exploration, 
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and only exposed to the reward phase of the task (where the rat is 

placed directly in the reward square), would only have resulting state 

values V for the state R and its two neighbours. The rest of the maze 

has not been visited, so M is zero for most squares. This also makes 

sense, as a rat that has only seen a reward box and is then tested from 

start, will have no idea there is a connection between the reward 

square and the maze it suddenly finds itself in. 

It is unfortunate these scenarios are not fully explored by [227], but 

to be fair, this does not take away from their grander points about 

what type of tasks SRTD is capable of. It is understandable that tricks 

like these are needed to get algorithms to work nicely, and sometimes 

to work at all, and those implementation details do not necessarily 

matter. We would have liked to see this issue at least mentioned 

however, preferably discussed, since SRTD works in our free 

exploration, although not as cleanly. 

5 . 4 .2  S H A P E T A S K  A S  A  M A Z E  

Our interest in SR lies in applying it to Shapetask, in order to 

investigate how well SR might explain human behaviour in this task, 

if at all. Studies on SR, like the one described above, often focus on 

spatial knowledge [182, 227] but other research points to cognitive 

maps being applicable to more abstract knowledge, with links to SR 

[14, 21, 92, 257]. Therefore, Shapetask may prove useful in adding to 

this literature. 

We approached the application of SRTD to Shapetask by extending 

the code from [227] to add Shapetask to the repertoire of tasks 

simulated with variants of their code. This posed the interesting and 

illuminating question of how to transform Shapetask into a maze 

problem? 

No matter what kind of maze we construct – in our heads or in the 

code we will use for simulations of this task – we impose and assume 

structure that don’t necessarily match what experiment participants 

do. What we do know is that our human participants were instructed 

to “find the pattern” which grants us some assumptions for the 

implementation. Therefore, translating Shapetask into maze form is 

an excellent example of the overarching problem we are trying to 

investigate; state creation and task structure and how these are closely 

intertwined. 
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Shapetask is not fully deterministic in its state transitions, in any of 

its versions (rather as if the maze had a non-zero chance of being 

changed between trials). We also have the situation that regardless of 

chosen action, the next state will follow the predetermined sequence 

and not rely on what action was chosen. This should not pose a 

problem directly, since there is nothing inherently stopping the 

matrix M in SRTD from having multiple states being possible to 

follow a certain previous state. But it may be the case that more 

experience (more trials) is needed for M to handle a non-deterministic 

task compared with a deterministic one. 

The most straightforward approach to create a maze requires at 

least nine states for each shape and position, as seen in Table 5.2 (left). 

If the first shape in a bag-of-bags is square, then we have a sequence 

of states for that bag as 2, 5, 8. In the BOB version of Shapetask, we 

then go to either state 1 or 3. An example sequence for one bag-of-

bags can thus be 2, 5, 8, 1, 4, 7, 3, 6, 9. The maze is somewhat magical, 

in the sense that if we imagine it as a physical maze with rooms 

connected by doors – the last door for each shape (7, 8 or 9) will 

teleport to either 1, 2 or 3. 

 1 2 3 

 1 4 7 

 2 5 8 

 3 6 9 
 

    

1 1 2 3 

2 4 5 6 

3 7 8 9 

4 10 11 12 

5 13 14 15 

6 16 17 18 

7 19 20 21 

8 22 23 24 

9 25 26 27 
 

In a regular maze like that described in the previous section 

introducing SRTD, we use state values and get action-values by 

looking at the values of neighbouring states. Through the Bellman 

Table 5.2 Overview of Shapetask as a maze. Left: Each shape and position combination 

creates a uniquely numbered combined state. Right: Numbered rows corresponds to the 

numbered state in the table to the left. Values 1-27 are the numbered compound states 

interpreted as being in state=row, having selected shape=column on the previous trial. 
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equation we can convert state-action values 𝑄(𝑠, 𝑎) to state values 

𝑉(𝑠) [267], but in order to understand how to create structures that 

work with the M, w and V of SRTD we have to realise the integrated 

nature of states and actions. 

Recall our SEQL3 model, which uses nine states like in Table 5.2 

(left), and for each state there are three action values and thus 27 

values in total. In SEQL3, those action values mean “the value of 

selecting action a, in state s”. By reframing the same value structure 

as “the value of being in state s, having chosen action a”, it means we 

can get action values by checking the neighbours of the current state, 

and select actions based on this context. 

For example, consider Table 5.2 (right). Each row corresponds to 

the state number in the maze in Table 5.2 (left). If the current state is 

position two in the square bag – state 5 in the maze – then depending 

on what action was picked in the last trial – triangle, square, or circle 

– we are in “compound states” 13, 14 or 15, respectively, as seen on 

row 5 of Table 5.2 (right). Here, being in compound state 13 means 

seeing the second square of the bag (i.e., sequential position 2), having 

picked triangle as the prediction on the previous trial. Compound 

states 14 and 15 also mean we are seeing the second square of the bag, 

but we picked square or circle, respectively, on the previous trial. In 

other words, the stimulus is the same for all three compound states, 

but the context is different. 

This state structure as described allows us to reason about state 

transitions in Shapetask and use it as our M matrix, which becomes 

27x27 in size, with weights w of size 27. The resulting 𝑽 = 𝑴 × 𝒘 thus 

also becomes 27 values and is very similar – in fact identical – to the 

structure of SEQL3. 

5 . 4 .3  P L A Y I N G  S H A P E T A S K  W I T H  S R T D  

To simulate SRTD behaviour in the BOB version with 99 trials of 

Shapetask, we started by adding Shapetask as a playable task with 

minimal changes to the model code from [227]. This step was taken to 

make it easier to confirm our approach worked correctly. We then 

reimplemented the SRTD algorithm in Python (and confirmed it 

produced identical behavioural profile), which is the code used in the 

presented results below. It is worth noting that in both the original 

code and our implementation, M is updated in a different form than 
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Equation 5.7 (allowing cleaner separation of s and s’). The form used 

in code can be derived from the just mentioned equation thus: 

𝑀𝑡+1(𝑠, ∶) = 𝑀𝑡(𝑠, ∶) + 𝛼𝑆𝑅[𝟏′ + 𝛾𝑀𝑡(𝑠′, ∶) − 𝑀𝑡(𝑠, ∶)] 

= 𝑀𝑡(𝑠, ∶) + 𝛼𝑆𝑅𝟏′ + 𝛼𝑆𝑅𝛾𝑀𝑡(𝑠′, ∶) − 𝛼𝑆𝑅𝑀𝑡(𝑠, ∶) 

= (1 − 𝛼𝑆𝑅)𝑀𝑡(𝑠, ∶) + 𝛼𝑆𝑅𝟏′ + 𝛼𝑆𝑅𝛾𝑀𝑡(𝑠′, ∶) 

= (1 − 𝛼𝑆𝑅)𝑀𝑡(𝑠, ∶) + 𝛼𝑆𝑅[𝟏′ + 𝛾𝑀𝑡(𝑠′, ∶)] 

For the Python implementation, we additionally changed to 

SoftMax from the original code’s use of ε-greedy for action selection. 

This was done so action selection is consistent across all our 

algorithms. As with previous algorithms, we generate 1000 random 

combinations of parameter values and for each such combination we 

simulate 100 subjects. Parameter values were drawn as: 

𝛼𝑆𝑅~𝑈(0, 1), 𝛼𝑤~𝑈(0, 1), 𝛽~𝑈(0, 20), 𝛾~𝑈(0, 1) 

 

In Figure 5.41 the averaged results for each simset are shown, and 

it looks like we have a general pattern of winners without WSLS cases. 

We confirm this by grouping the simsets as we have done above for 

previous algorithms (defined in section 5.1.5) and we do indeed have 

only the winners and others groups here, as seen in Figure 5.42. 

Figure 5.41 Overall SRTD behaviour in Shapetask. Proportion of choices (y-axis) averaged 

for each simset (separated by lines) and shape position (x-axis) and score type (columns). 

From left to right: Correct, Win-stay, Lose-shift, Shift-predict. 



5 . 4   T H E  S U C C E S S O R  R E P R E S E N T AT I O N        2 5 1  

 

What can also be gleaned from Figure 5.42 is that there is some 

variation in the winners group. Therefore, before looking at 

parameter value correlations for the groups, we find the higher 

performing winners, using conditions as high being >0.8 Correct score 

for shape positions one and two, and >0.8 Shift-predict score in shape 

position three. To allow for potential slower learning in some cases, 

we use thed last 18 trials for these groupings. In the specific 

simulation run shown in these figures there were 783 winner simsets, 

of which 231 met the criteria of “high winners”. 

 

In Figure 5.43 we can see that the high winner’s group indeed show 

a more distinct pattern across the score types and shape positions. 

Thanks to this subgroup, we can see in the parameter space plot in 

Figure 5.44 that both winners and others share most of the parameter 

space, but the high winners distinguish themselves by having low γ 

values. Because SRTD has information about shape position it is likely 

Figure 5.42 SRTD behaviour grouped by winners and others. Proportion of choices (y-axis) 

for each shape position (x-axis) and score type (columns). Group colours as per legend. Top: 

All simsets shown as individual lines. Bottom: Averages for each group. From left to right: 

Correct, Win-stay, Lose-shift, Shift-predict. 

Figure 5.43 SRTD behaviour grouped by high winners, winners and others. Proportion of 

choices (y-axis) for each shape position (x-axis) and score type (columns). Group colours as 

per legend. From left to right: Correct, Win-stay, Lose-shift, Shift-predict. 
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not hugely beneficial with a high γ value, i.e., looking farther into the 

future. Instead, one-step rewards for each shape position are 

sufficient and often – as seen – better for performance.  

 

5 . 4 .4  D I S C U S S I O N  O F  S R T D  

SRTD can solve the Shapetask well, and this within the 99 trials. The 

range of results seen look promising for potentially fitting human 

winners. This performance is perhaps not surprising, seeing as the 

state representation structure is in principle identical to that of 

SEQL3. This similarity is interesting in that it confirms the utility of 

SRTD for state representation and task structure, but also that 

perhaps some humans are able to chunk and generalise into more 

efficient structures like SEQL3. 

Figure 5.44 SRTD parameter values for each group. Diagonal distribution plots refer to the 

parameter value labelled at the bottom of each column. Group colours as per the legend. The 

scatter plots show the combined parameter space for the two parameters labelled on the row 

and column.  
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The alternate framing of Shapetask as a maze together with the 

state transition matrix M, provides the convenient side effect in that 

it quite naturally allows us to speak of contexts. If we are on, say, 

position 1 of the circle bag, then no matter what action we pick – what 

shape we predict will appear next – the state we arrive in is the same, 

but the context will depend on our choice. This is similar to 

arguments made for episodic RL [98, 100], suggested to account for 

cases where the Markov property may not be enough, where not only 

the values themselves matter but also the recent history of steps.  

The downside of SRTD is that it is unlikely to fit the human 

subjects using WSLS behaviour. For this reason, HRL looks like the 

overall more promising approach, if one is looking for a model that 

can account for as many human subjects as possible. 

To summarise, the results shown for SRTD adds to the growing 

literature showing how the concept of cognitive maps is applicable to 

more abstract reasoning and knowledge, and not only explicitly 

spatial (navigation) problems. 

5 . 5  C O N T R O L  G R O U P  M O D E L S  

In addition to the already mentioned models, we would also like 

models we can use as baseline control. One such is a model making 

random choices, allowing for some bias for one or more actions. We 

call this model RandomBias, and it has two parameters, bias1 and 

bias2. The probability this model picks any of the three actions can be 

described as: 

 𝑝𝑡(𝑎1) = 𝑏𝑖𝑎𝑠1, 𝑝𝑡(𝑎2) = 𝑏𝑖𝑎𝑠2, 𝑝𝑡(𝑎3)

= 1 − (𝑏𝑖𝑎𝑠1 + 𝑏𝑖𝑎𝑠2) 

5.10 

We generate 1000 random parameter combinations with 100 

subjects for each combination, with parameter values drawn as: 

𝑏𝑖𝑎𝑠1~𝑈(0, 1), 𝑏𝑖𝑎𝑠2~𝑈(0, 1 − 𝑏𝑖𝑎𝑠1) 

In Figure 5.45 we visualise the results as the average score for each 

shape position and simset. Because we pick actions at random and 

have three actions and stimuli, we see that overall, there is roughly 

1/3 correct score throughout the experiment for each shape position. 

Similarly for Shift-predict score we see that roughly 2/3 of the time a 
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shift is predicted for each shape position. None of these simsets are 

grouped as WSLS or winners and thus group plots are not shown. 

 

5 . 6   M O D E L  S E L E C T I O N  F O R  S H A P E TA S K  

Having introduced the models of interest for Shapetask, we now turn 

to fitting those models to data. Of the five models – QL3, SEQL3, HRL, 

SRTD and RandomBias – we already know that only one of them can 

possibly explain the full variety of human behaviour at group level 

(at least for the wide range of parameter combinations that we used 

in our simulations). That model is HRL, because it can show both 

WSLS and winner behaviour. 

Unfortunately, HRL cannot be fitted using likelihood-based 

methods. The main reason is that we do not have access to the taskset 

selections in our observed behavioural data. All we have are the 

observed actions, rewards and stimuli. Even in the HRL-22 version 

this means the only way to select tasksets in the likelihood function is 

using SoftMax for taskset selection. But this causes the likelihood to 

become non-deterministic and MLE fitting mostly returns the same 

values used to initialise the fitting function (random guesses within 

the boundaries). Another possibility would be to generate all possible 

taskset selections, and find the best fit based on the data we do have. 

However, even for HRL-22 with two tasksets, that would be 299 

possible combinations for 99 trials of Shapetask and thus 

computationally intractable. 

Because of this issue with HRL, we will first exclude it from 

analysis to investigate how well our existing methods for model 

Figure 5.45 RandomBias behaviour in Shapetask. Proportion of choices (y-axis) for each 

shape position (x-axis) and score type (columns). Individual lines are the averages for each 

simset (parameter value combination). From left to right: Correct, Win-stay, Lose-shift, 

Shift-predict. 
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fitting work for Shapetask. We then present an alternate method with 

which HRL can be included and show model recovery performance. 

5 . 6 .1  M O D E L  S E L E C T I O N  P E R F O R M A N C E  W I T H  M L E  F I T T I N G  

We use the same simulation functions and parameter ranges as 

described above (for each separate algorithm) to generate 200 agents 

for each of the five algorithms, resulting in 1000 simulated subjects in 

total. In this step we do include HRL, more specifically HRL-22. We 

then fit all models except HRL to all 1000 subjects. Even though HRL 

is excluded in the fitting step, we will get an idea of what other 

algorithms are the common best fits for the HRL subjects and use this 

information in subsequent analyses. 

 

In Figure 5.46 we have plotted the overall results for the simulation 

and fitting process. First off, HRL cannot be correctly identified since 

we do not fit using that model which is why there is no result for this 

agent. It is included in the plot anyway, for easier comparison with 

subsequent plots. Further, we can see that for QL3, RandomBias and 

SEQL3 the performance is quite good, with >80% correctly identified 

cases. For the SRTD subjects the result does not look as good, it does 

not reach even half correctly identified subjects. However, this result 

makes sense by looking at Figure 5.47 where we have plotted all 

model selections. There we see that in the majority of cases, the model 

selected instead of SRTD is SEQL3. As we noted above in the 

behavioural studies, SEQL3 is very similar in behaviour and structure 

to SRTD. Because the BIC measure penalises models with more 

Figure 5.46 Overall model selection performance for Shapetask. Proportion of correctly 

identified subjects on y-axis for each simulated model on x-axis. Coloured bars indicate 

fitting method as per legend. 
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parameters, SEQL3 is often selected instead. It should be noted that 

due to randomness, the exact proportions of SRTD subjects identified 

as SEQL3/SRTD may vary. 

 

For the HRL subjects in Figure 5.47, results are in line with 

expectations, given that the HRL model could not be selected. That is, 

the two main models being selected are QL3 and SEQL3. As we saw 

above in the behavioural studies, QL3 is capable only of WSLS 

behaviour, while SEQL3 is capable only of Winner behaviour. Since 

HRL is capable of both these behaviours it makes sense these two 

models are the most selected ones. 

5 . 6 .2  M O D E L  S E L E C T I O N  W I T H  A P P R O X I M A T E  B A Y E S I A N  

C O M P U T A T I O N  

In order to fit models with intractable likelihoods such as HRL, we 

can use an alternate family of methods called Approximate Bayesian 

Computation (ABC) [264, 279]. ABC methods are fairly common in 

Figure 5.47 Model selection performance in Shapetask. Proportion of identified cases (y-

axis) for each simulated algorithm (x-axis). The fitted model used as per colours in legend. 

Shaded/non-shaded areas are only for readability. Top: MLE/BIC method. Bottom: VBAT 

method. 
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fields such as systems biology [159] and astronomy [126] but not 

widely used in research on learning and decision making (but see 

[260, 283] for related work). ABC can also be called “likelihood free” 

or “simulation based”. The latter term is closest to how ABC works, 

as in essence it entails simulating the model and comparing the 

results with observations. 

The simplest form of ABC is rejection sampling [279, 283]. We have 

some observed data D, and we would like to find the model M 

parameters M(θ) that most likely produced D. We draw a random 

value 𝜽∗ from a suitable probability distribution, simulate 𝑀(𝜽∗) and 

get some data 𝐷∗. The observed and simulated data are then 

compared using a distance function d, and tolerance 𝜀 ≥ 0. If 

𝑑(𝐷, 𝐷∗) < 𝜀 we accept the drawn 𝜽∗, otherwise we reject it. 

In other words, the principle of ABC is in statistical terms a Monte 

Carlo approach – simulate random cases enough times and the 

approximation will be close to the true value or distribution. Of 

course, this builds on carefully selecting the distance function and 

tolerance. Additionally, if the prior distribution we use to draw 

samples of θ from is very different from the true posterior, we may 

have to simulate millions of times before approaching decent 

convergence. This makes ABC rejection sampling – and ABC methods 

in general – very computationally inefficient. We will come back to a 

brief comparison between MLE and ABC below. 

Because of this computational inefficiency there are more 

advanced methods such as Markov Chain Monte Carlo (MCMC, also 

used in Bayesian inference with likelihoods as described in chapter 

three) and Sequential Monte Carlo (SMC) [279, 283]. We will here 

focus on the latter, ABC-SMC, as it is the one used in the Python 

package pyABC [138, 232] which we use for our analyses. 

The advantage of ABC-SMC is that instead of sampling values of θ 

one at a time, it generates many values at once, called a particle 

population. Through importance sampling [279], new particle 

populations are generated from accepted particles in the previous 

generation. This allows the algorithm to gradually reduce the 

tolerance ε for each generation while still accepting a sufficient 

number of particles (parameter values) for the resulting posterior 

distribution [138, 279, 283]. 
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Several Python packages exist that implement ABC-SMC, such as 

astroABC [126], ABC-SysBio [159] and ELFI [164]. We settled on 

pyABC [138, 232] as it has a straight-forward interface we could 

integrate with our existing simulation functions, as well as automatic 

tolerance tuning and built-in support for model selection. 

Model selection in ABC works by comparing the marginal 

likelihoods of the posterior distributions [279]. In other words, if we 

generate a distribution O of all possible data outcomes for model 

M(θ), we can get the probability of a specific outcome o as 𝑝(𝑜|𝑀). 

This aspect is used by ABC-SMC to approximate the marginal 

posterior distributions 𝑃(𝑀𝑖|𝐷) where D is some observed data and i 

the model index. Given these posterior distributions for models we 

can compare models with the Bayes Factor (BF), which was 

introduced in an earlier chapter. Below we refer to BF evidence 

intervals as presented in Table 3.1. 

An important note is that the way model selection works in pyABC 

(based on [279]) means that models with higher number of 

parameters are penalised, because the more parameter dimensions, 

the smaller the chance that parameters are accepted. 

Knowing the basics of ABC, we should mention that in [75] – which 

our HRL implementation is based on – the authors used a variation 

of simulation based model fitting. They mention ABC methods were 

unsuitable for their use case, though what they did could be called a 

group-based ABC approach. They simulated the entire group of 

subjects thousands of times and selected those simulations that best 

described the entire group, based on means and standard deviations 

for their chosen distance metric. 

We have chosen not to apply this approach here because we 

already know, as discussed above, that HRL is the only model that 

could possibly describe all or most humans in Shapetask. The task in 

[75] apparently did not result in behaviour as heterogenous as that in 

Shapetask, where we have multiple distinct kinds of behaviour. 

Furthermore, as also discussed in previous chapters, we are interested 

in potential individual differences in what model best describes 

behaviour. 
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5 . 6 .3  I M P L E M E N T I N G  A B C  F O R  S H A P E T A S K  

As mentioned above, ABC requires a distance function to compare 

observed data with simulated proposals. Since our data consists of 

sequences of actions, rewards and stimuli, where subsequent entries 

depend on former data points, it is infeasible to compare the 

outcomes directly. Instead, we can use summary statistics for the 

distance function [279, 283]. Luckily, we already have suitable 

summary statistics we know well from our behavioural studies 

above, namely the four score types Correct, Win-stay, Lose-shift and 

Shift predict. For a simulated outcome of actions, rewards and stimuli 

we calculate the mean of the four score types for each shape 

sequential position and thus get 4 ∗ 3 = 12 summary statistic values. 

If we treat these values as coordinates in a 12-dimensional space, we 

can calculate the Euclidean distance between the observed data from 

a subject and the simulated data from models. 

The downside of using summary statistics is that we lose trial-to-

trial dynamics of the data such as learning rates. For example, if one 

algorithm reaches stable performance on trial 80 and another at trial 

40 yet may have the same mean summary statistic across all trials. The 

consequence is that it will be more difficult to distinguish between, 

for example, SEQL3, SRTD and HRL as they are all capable of 

producing winners. This could in theory be alleviated by adding 

complexity to the distance function, like also calculating learning 

curves for each score type. But the more complex the distance 

function, the more computationally heavy the fitting process 

becomes, so again our decision not to do this is a trade-off. 

5 . 6 .4  A B C  M O D E L  S E L E C T I O N  P E R F O R M A N C E  

To investigate model selection performance with ABC-SMC, we 

simulate and fit in two steps. First, we do simulate and fit like we did 

for MLE above. That is, we simulate all five models but exclude HRL 

from the fitting process. Second, we simulate and fit using all five 

models. This approach allows us to compare our results with MLE in 

the first step and thus get an apples-to-apples contrast of 

performance. The insights thus gained can then be used to make 

better interpretations of the second step. 

 We simulate 20 subjects per model (see below for why such a low 

number) and fit all models to each subject. As we have five models to 

simulate in both steps, this gives us 5*20=100 subjects in total. Because 
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SoftMax β parameter values close to zero causes the algorithms that 

use it to behave more randomly, we here made a slight adjustment to 

parameter ranges used, compared to MLE. All β for simulations and 

fits were drawn from 𝛽~𝑈(1, 20). This still provides a wide range of 

behaviours, and is the same range for β values used in e.g. [75]. 

As mentioned above, ABC-SMC evolves particle generations with 

each generation being a better approximation of the true posterior. 

For this performance check, we use five generations as the maximum. 

With these settings, fitting for all 100 subjects takes around 2 hours 40 

minutes, meaning 1.6 minutes per subject. pyABC takes full 

advantage of multicore systems, and the simulation and fitting 

process was done on a laptop46 released in 2021. In comparison, on 

the same laptop, the above MLE simulation and fitting of 1000 

subjects took less than one minute. This is why a relatively small 

number of simulated subjects was used here. 

It is possible the above-mentioned alternatives to pyABC are faster 

for this method, but none would be as fast as MLE. As was discussed 

in previous chapters, then with regards to Bayesian MCMC and 

Variational Bayesian Inference, such long computation times is a 

hindrance to iteratively finding good solutions. In the case of ABC-

SMC one would like to be able to experiment with, for example, 

different distance functions of varying complexity. But such long 

computation times for confirming results understandably becomes 

restrictive. 

 

 

46 Laptop CPU: AMD Ryzen 7 5800H, 45W TDP 

Figure 5.48 Model selection performance when HRL is excluded from models fitted. 

Proportion of subjects (y-axis) for each simulated model (x-axis) that was best fitted with 

what model (coloured bars as per legend). Shaded areas are only for readability. 
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In Figure 5.48 the results have been plotted for fitting four models 

(excluding HRL) using ABC to 100 subjects, 20 for each algorithm. 

Keeping in mind this dataset is small, the results are nonetheless quite 

encouraging. If we compare to Figure 5.47, we see the results largely 

concur. We have very good performance for QL3 and RandomBias, in 

the latter case performance is better than for MLE, where some 

RandomBias cases are selected as QL3. For SEQL3, MLE is clearly 

better, but ABC only selects SRTD instead of SEQL3 which as has been 

discussed above can be explained in that their performance overlaps. 

We can see the same phenomena for the simulated SRTD cases where 

again SRTD and SEQL3 are the two most selected models for these 

subjects. In contrast to MLE fitting, here ABC fits some SRTD subjects 

as QL3 which tells us that the summary statistics used in the distance 

function mean that some SRTD subjects on a performance level are 

similar to QL3 cases. For the HRL subjects, ABC fitting concurs with 

MLE fitting on a qualitative sense, in that we get a large amount of 

QL3 and SEQL3 fitted subjects, with QL3 being the most common 

one. 

To summarise, ABC fitting largely agrees with MLE fitting and we 

can now include HRL in the fitting process and with some more 

confidence be able to analyse the results. 

 

For the second step of simulation and fitting of all five models, we 

generated a larger dataset with more subjects for better statistical 

certainty. We got 400 simulated and fitted subjects, 80 subjects per 

simulated agent/algorithm type. Because we now had an additional 

Figure 5.49 Model selection performance in Shapetask for ABC method. Proportion of 

subjects (y-axis) for each simulated model (x-axis) that was best fitted with what model 

(coloured bars as per legend). Shaded areas are only for readability. 
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model to fit on each iteration, the entire process took around 15h in 

total, so around 2.25 minutes per subject. 

In Figure 5.49 we have plotted the results for the simfit process 

when HRL is included as one of the models fitted. We have very good, 

>75%, performance for the QL3, RandomBias and HRL models. It is 

somewhat surprising that HRL performs so well, as the expectation 

would be that HRL was more mixed like SEQL3 and SRTD. Again, we 

should remember that we only have 80 subjects for each model. But 

seeing how HRL is also the best fit for a decent amount of QL3, SEQL3 

and SRTD subjects, another way to look at these results is they show 

the flexibility of HRL. Because HRL can display a wider variety of 

behaviours than the other models, and since the ABC method only 

samples part of the parameter space for each model, it’s overall more 

likely HRL samples will have a low enough distance to be accepted 

by the ABC-SMC algorithm. In other words, the non-HRL cases fitted 

as HRL are most likely subjects with less distinct behaviour than what 

QL3, SEQL3 and SRTD are capable of. We will get back to such 

behavioural connections below. 

We also see that SRTD and SEQL3 cases overlap quite a bit, again 

due to their similarity as we saw in the behavioural studies and 

discussed above with both MLE and ABC fitting of four models 

(when HRL was excluded). The better performance for SEQL3 here is 

likely due to it being able to produce stronger winners than SRTD or 

HRL. Again, see below for these speculations on behavioural 

connections. 
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We can summarise the results differently, in the form of confusion 

matrices as seen in Figure 5.50. The regular confusion matrix (left) 

shows the same information as in Figure 5.49, only in a more succinct 

format. The inverse confusion matrix (right), however, sheds a 

different light on the data. Values along the diagonal in the inverse 

confusion matrix indicate how likely it is that the model with the best 

fit was in fact the model that generated the data. For example, 

RandomBias seemed to have perfect behaviour in the previous figure 

(and the regular confusion matrix). But since RandomBias is also the 

best fit for some subjects simulated with other models, then if we 

assume these results are somewhat reliable, and RandomBias is the 

best fit for a human subject, we will only be correct in 75% of cases. 

That is, of course, also under the assumption that one of these models 

must be the true model of human behaviour. 

The inverse confusion matrix provides a slightly rosier view of the 

performance when fitting SEQL3 and SRTD, with around 60% 

probability for both. That is still not very high, but certainly better 

than what the regular confusion matrix provides. More importantly, 

if either SEQL3 or SRTD are found to be the best fit, there is very little 

chance of any other models than those two being the correct one. As 

previously discussed, these two models are similar in structure and 

behaviour and that connection is kept even when only using 

summary statistics in ABC fitting. 

Figure 5.50 Confusion matrices for model fitting of Shapetask. Left: Regular confusion 

matrix, where rows sum to one, with name of simulated model on y-axis and name of fitted 

model on x-axis. For a given simulated agent row, each number on the row represents the 

proportion of cases where the best fitted model was the model with name as per x-axis. Right: 

Inverted confusion matrix, where columns sum to one, with name of simulated model on y-

axis and name of fitted model on x-axis. For a given fitted model column, the numbers in 

that column represent the likelihood that the best fitted model generated the data. 
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Also as previously discussed, if HRL is found to be the best fit, 

there is around 1/3 chance of either QL3, SEQL3 or SRTD being the 

true model. This also reinforces the previously made points that HRL 

is more flexible in the kinds of behaviours it is capable of. 

 

Another way to analyse the results is with the Bayes Factor (BF), as 

shown in Figure 5.51. The BF shown is using the natural log scale 

transformation described above in Table 3.1, and is here calculated 

between the winning model and the model with the next highest 

probability. Note that for two categories – QL3 fitted to QL3 

simulations and the RandomBias simulations – are not shown in full. 

Their upper quartiles (75%) are 72.3 and 18.5, respectively. In cases 

where the next highest probability was 0, we calculated the BF as 

1/10−50. 

Recall from Table 3.1 that 𝑙𝑜𝑔(𝐵𝐹) between 2 and 6 are considered 

“positive” evidence and 6-10 are “strong”. What we can understand 

from the BF plot above is that for QL3, RandomBias and HRL 

simulated cases, BF values above 2 are common. For correctly fitted 

QL3 cases, the majority are above BF 6 and many even above 10. We 

have a similar pattern for correctly fitted RandomBias cases, but if we 

look at QL3 cases identified as RandomBias, these can stretch up to 

BF 9. This means that some fits suggest the evidence for the 

RandomBias model would conventionally be regarded as strong, 

even when the data were actually generated by QL3. Thus, we 

preferably need a BF of more than around 9 to be certain of a true 

Figure 5.51 Bayes Factor (y-axis) for the best (colours as per legend) and second best fitted 

models for each simulated model (x-axis). Dashed horizontal lines indicate Bayes Factor 

evidence categories as per Table 3.1. Note that the y-axis has been cut so two categories are 

not shown in full, in order to better view the other categories. Shaded areas are for 

readability. 
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RandomBias case. For HRL fitted cases, there are those with values 

above 6, but we can also see that many cases of HRL wrongly fitted 

to SEQL3 have BF values between 2 and 5, so to be certain an HRL 

case is truly HRL we would prefer BF values more than 5. 

For SEQL3 fitted wrongly to SRTD, we can see that the top whisker 

is around 4, which is fairly close to the top whisker of correctly fitted 

SEQL3 cases. Similarly, for SRTD fitted cases, they rarely get BF above 

2 even for correctly fitted cases. Thus, it seems BF will be unreliable 

to correctly determine whether a subject, who was best fitted with 

SEQL3 or SRTD, gave data that were actually generated by either of 

these models. 

To summarise, Figure 5.51 tells us that BF will probably only be 

useful to confirm QL3, RandomBias and HRL cases. For those, we can 

only be certain with BF values above 6 for QL3 and HRL, and above 

9 for RandomBias. 
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It may also be informative to look at behavioural plots of each 

simulated subject, based on what the best fitted model was. In Figure 

5.52 we plot each simulated agent type on separate rows, with 

coloured lines in each subplot indicating what model was best fit to 

that group of subjects. 

The most outstanding case here are the RandomBias simulations 

(second row from the top), with almost entirely flat lines for each 

score type. This is also reflected in the subjects simulated with other 

agent types where RandomBias was the best fit – they are the group 

of cases with score lines closer to flat lines than for all the other cases. 

Figure 5.52 Behavioural curves for each simulated agent type (rows) showing proportion of 

choices (y-axis) for each shape position (x-axis) and score type (columns). Colours indicate 

what model was the best fit as per legend. Transparent areas around each line indicate 95% 

confidence interval. Simulated agent types, top to bottom: QL3, RandomBias, SEQL3, 

SRTD, HRL.  
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We also see that subjects best fit with QL3 has a distinct WSLS type 

behaviour, although in the simulated SRTD cases best fit with QL3 

show a weaker pattern of WSLS behaviour. This latter category is new 

to us – from the above behavioural investigations we did not catch 

this “weak” form of WSLS cases, as the mean for win-stay in shape 

position 2 is not above 0.5. But the same cases have a slight increase 

in shift predict on shape position 3, which the QL3 fitted cases for 

HRL and QL3 simulations do not have. 

When it comes to SEQL3, as expected from the behavioural 

investigations, this is the best fitting model for very strong winners. 

It additionally has only three parameters, whereas both SRTD and 

HRL have four, thus giving it an edge in the model selection process. 

We can also see that when SRTD is the best fit, it often has high shift 

predict in position 3, often as high as SEQL3, while HRL fitted cases 

have lower shift predict in position 3. Simultaneously, HRL has 

higher overall correct in positions one and two, and higher win-stay 

in positions 2 and 3, compared to SRTD, in most of the fitted cases. 

In short, there are clear behavioural categories depending on what 

model is found to be the best fit. This should not come as a surprise, 

given we use these scores as our distance function in ABC fitting. Yet 

it is good to confirm our methods make sense. 

5 . 6 .5  S U M M A R I S I N G  M O D E L  S E L E C T I O N  P E R F O R M A N C E  

As expected from the behavioural studies, ABC model selection 

shows that HRL is the only model capable of being the best fit for all 

the models under consideration (except RandomBias). It is also the 

only model among the three models with alternate state 

representations – SEQL3, SRTD and HRL – that has good recovery 

performance, as shown in Figure 5.49. 

As we have discussed, the state representation structure for SEQL3 

and SRTD are close. That SEQL3 has better recovery performance 

than SRTD can partly be seen as an effect of SEQL3 having fewer 

parameters, and our model selection methods are favour models with 

few parameters. Because of their shared state representation 

structure, if we see SEQL3 and SRTD as a group, then their recovery 

is in fact quite good, as demonstrated by the inverse confusion matrix 

in Figure 5.50. 
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It is also encouraging that RandomBias and QL3 show distinct and 

good performance, despite HRL being able to display behaviour like 

that of QL3. This means if we do find QL3 or RandomBias being the 

best fit to human subjects, we can accept the result with good 

confidence, and especially so if the Bayes Factor in favour of these 

models is large. 

However, it remains something of an issue that HRL, SRTD and 

SEQL3 can overlap. The Bayes Factor plots in Figure 5.51 showed us 

that common values for accepting one model over another (𝑙𝑜𝑔(𝐵𝐹) 

in the range 2-6; Table 3.1) are not strong enough to tease the 

considered models apart. Of these three models, HRL was the only 

one showing the possibility of BF values more than 6. 

Despite the restricted usefulness of BF values, the behavioural 

plots of Figure 5.52 show why HRL, SRTD and SEQL3 are difficult to 

tease apart. The best example being the SRTD simulations (third row 

from the top), where the three models’ behaviours can be described 

as nested. SEQL3 being the best fit for strong winners, SRTD the best 

fit for some winners and HRL being the best fit for behaviour that falls 

between winners and RandomBias behaviour. Thanks to our 

extensive behavioural studies before model fitting and selection, we 

can use these behavioural plots to help confirm the model selection 

results. 

5 . 7  F I T T I N G  M O D E L S  T O  H U M A N  B E H AV I O U R  I N  

S H A P E TA S K  

Armed with knowledge of how well the fitting process can be 

expected to work, we can now fit our human data. We have fitted the 

five models (HRL, QL3, RandomBias, SEQL3 and SRTD) using 

pyABC and the same settings as described above for the simfit 

process. We will present overall results for all three Shapetask 

versions – BOB, BOB-NR and Random – and then dig deeper into the 

results for BOB since that is the version we focus on as discussed 

earlier in this chapter. We have results for 110 human subjects, of 

which 39 are BOB, 32 are BOB-NR and 39 are for the Random version. 
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The results from fitting and model selection can be seen in Figure 

5.53. Starting with the result for the Random version of Shapetask, 

HRL is the best fitting model for most subjects, followed by 

RandomBias and QL3. As mentioned earlier, it is difficult to draw 

general conclusions from this version of the task, as the shape 

sequence varies a lot between subjects. It is nevertheless interesting 

that HRL can account for behaviour for so many subjects, as this 

implies the subjects tried to learn something about the task, and again 

drives home the point that the HRL model is quite flexible. 

For the BOB and BOB-NR versions of Shapetask, there is an 

interesting contrast in the amount of SEQL3 fitted subjects. Recall that 

SEQL3 can reach higher overall performance than the other models. 

Because BOB-NR is less variable in the maximum length of shape 

repeats (3 vs 3 or 6) than BOB, a larger proportion of subjects had very 

good performance in the BOB-NR task. As seen in the behavioural 

studies of the human data above, strong winner subjects figured out 

the task quickly and thus reached high performance best explained 

by SEQL3. 

We have also speculated that perhaps SEQL3 and SRTD are close 

enough in state representation structure that we can group them. One 

way to check if this speculation holds is to consider only those 

subjects that were best fit with SEQL3, and see what model was the 

next best fit. For BOB-NR, 20 cases were best fit by SEQL3 and of these 

12/20 had SRTD as the runner-up, and 8/20 subjects had HRL as 

runner-up. For BOB, 15 cases were best fit by SEQL3 and of these 

there were 5/15 cases with SRTD as the runner-up and 10/15 had HRL 

as runner-up. Keeping in mind that sample sizes are small, these 

Figure 5.53 Model selections for human subjects in Shapetask. Proportion of subjects (y-

axis) that were best fit with the model indicated by coloured legend, for each Shapetask 

version (x-axis). 
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numbers are somewhat consistent with our speculation. SRTD 

generally is the better fit in cases where shift predict on shape position 

is as high as SEQL3 but where correct score is not as high, as seen in 

for example Figure 5.52.  

 

In Figure 5.54 we show the distribution of Bayes Factors (BF) for 

each task version. As previously, the BF is calculated between the best 

fitted model and the next best fitted model. The figure has been cut 

off on the y-axis as a few categories have very high values. For QL3 

fits in BOB version, the mean 𝑙𝑜𝑔(𝐵𝐹) is 138 (SD 126) and for BOB-

NR mean QL3 𝑙𝑜𝑔(𝐵𝐹) is 120 (SD 156). QL3, and some RandomBias 

cases, are the only two models where the 𝑙𝑜𝑔(𝐵𝐹) is high enough to 

be certain it is the best fit. Even though many cases have 𝑙𝑜𝑔(𝐵𝐹) 

between 2-6 (positive evidence; Table 3.1), we found in Figure 5.51 

that values should preferably be above 6 to confidently discern 

between the five models under consideration. 

Figure 5.54 Boxplot showing Bayes Factor (y-axis) for each fitted model (colours as per 

legend) and Shapetask version (x-axis). Note y-axis has been cut off and does not show full 

range of a few categories (see text). Dashed horizontal lines indicate Bayes Factor evidence 

levels as shown in Table 3.1. 



5 . 7   F I T T I N G  M O D E L S  T O  H U M A N  B E H AV I O U R  I N  S H A P E T A S K        2 7 1  

 

In the behavioural plots of Figure 5.55, we can mostly confirm our 

previous speculations. SEQL3 is the best fit for strong winners, QL3 

is the best fit for strong WSLS subjects and HRL the best fit for weaker 

winners or mixes of WSLS and winner behaviour (Random version, 

bottom row). The RandomBias model covers a larger spectrum of 

scores, as seen by the large CI, but common for all the cases best fit by 

the RandomBias model is the relative non-varying behaviour across 

the shape positions, indicating that subjects did not pick up on any 

sequential patterns. SRTD is capable of strong winners like SEQL3, 

but except for a single BOB-NR case, it is absent in the results. This is 

most likely due to the parameter count being larger for SRTD than 

SEQL3, so the model selection method prefers the latter model. In the 

one SRTD case the shift predict score for positions one and two are 

almost 0.5. See below for a closer look at this subject. 

Focusing on the BOB version, there are comparable proportions of 

HRL and SEQL3 cases – 12 and 15 cases, respectively. Before drawing 

conclusions about SEQL3 being the subjects with best performance, 

we should stop and ask if there is any correlation between number of 

6-in-a-row shape runs and being best fit by HRL or SEQL3 models. 

Figure 5.55 Behavioural plots for human subjects in Shapetask, grouped by fitted model as 

per colours in legend, with score type in columns and task version on rows. Each individual 

plot shows proportion of choices on y-axis across each shape position on x-axis. Transparent 

areas around lines indicate 95% CI. From left to right: Correct, Win-stay, Lose-shift, Shift 

predict. From top to bottom: BOB, BOB-NR, Random. 
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Perhaps it is simply the case that subjects who got more 6-in-a-row in 

BOB are the ones best fit with HRL? We can answer this question with 

an independent T-test between the number of 6-in-a-row for the two 

groups. It shows no significance, 𝑡(25) = 0.33, 𝑝 = 0.75 so that is most 

likely not the reason for the difference in fits. This comparison is not 

significant between SEQL3 and QL3 either: 𝑡(25) = −0.88, 𝑝 = 0.39. 

 

What may give us a hint about the reason for the difference 

between HRL and SEQL3 cases in the BOB version of the task are the 

Figure 5.56 Learning curves for human subjects in BOB task. Proportion of choices (y-axis) 

for each bag-of-bags (x-axis, one bag-of-bags is 9 trials). Coloured lines indicate score type 

as per the legend, with transparent areas representing 95% CI. From left to right: Shape 

position 1, 2 and 3. From top to bottom: Cases best fit by QL3, SEQL3, RandomBias, HRL, 

respectively.  
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learning curves plotted in Figure 5.56. Note that the x-axis 

corresponds not to individual trials but bag-of-bags (i.e., each tick on 

x-axis is the average for 9 trials), to get smoother curves (less noise) 

with patterns that are more distinguishable. 

Starting with QL3 on the top row, we see very distinct WSLS 

behaviour. This is expected since it is what we also saw from QL3 in 

behavioural investigations. What is interesting to note here though is 

that the behaviour starts very early in the experiment, meaning that 

the curves start out at around the same levels which they end up at. 

This makes it difficult to say if subjects are indeed learning, or if they 

are just selecting the same shape as whatever the current stimulus 

happens to be. 

This is in contrast with the SEQL3 subjects (second row from the 

top), where we do see an increasing trend for the first 3 bag-of-bags 

(27 trials), after which behaviour stabilises. This pattern is especially 

apparent in the Shift predict score line for shape position three (right 

most column). 

The RandomBias subjects (third row from the top) are quite 

interesting, because we can see that the average scores shown 

previously in Figure 5.55 do not tell the whole story. Towards the 

second half of the experiment, subjects’ Correct score increases for 

shape positions one and two, while Shift predict decreases. Win-stay 

also has an increasing trend for the first two shape positions, even 

slightly in the third shape position. This tells us it may be the case 

these subjects (or at least a subset) are slower at picking up the pattern 

and could perhaps have figured it out with more trials. 

For the HRL subjects, we can see that for shape positions one and 

two they look like a mix between QL3 and SEQL3 behaviour. As for 

SEQL3, we do see that for the first 3 to 4 bag-of-bags their curves 

increase/decrease, so there is some learning going on. In the third 

shape position the Shift predict oscillates throughout the experiment, 

indicating that perhaps these subjects have spotted separate patterns 

for different shapes, and get confused whenever a particular shape 

suddenly appears in a set of six or three when before it was in 

three/six, respectively. Or perhaps they think the pattern changes 

throughout the experiment. In a way one could perhaps say these 

subjects do not see the forest for the trees – they focus on the details 

and fail to see the grander pattern. 
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We should also take a look at individual subjects, in case there are 

any outliers we cannot catch in the group plots. This has been done in 

Figure 5.57. First, in the upper right plot, there are two RandomBias 

subjects that have shift predicted on almost every trial. It seems likely 

they did not make much effort in this task. 

More interestingly, we can here see more clearly that there is a 

continuum in summary scores for subjects best fitted with QL3 to 

HRL to SEQL3. QL3 subjects show quite clear WSLS behaviour, with 

one of these subjects having sloping to lower win-stay (lower left) in 

position 3 from 2. Staying in the win-stay plot, HRL subjects pick up 

where the just mentioned QL3 subject left off. As we increase the slope 

between positions 2 and 3 we get to the SEQL3 fitted subjects. 

Figure 5.57 Individual summary scores for subjects playing Shapetask BOB. Proportion of 

choices (y-axis) for each shape position (x-axis) and score type (columns). Colours indicate 

best fitted model as per legend. 
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We can also connect back to the behavioural groups we defined in 

section 5.1.5. In Figure 5.58 we have separated our BOB subjects by 

those behavioural groups on rows, and coloured subjects by the 

model that was the best fit. Again, the behavioural groups are 

arbitrarily chosen (but of course based on logic), but they nicely 

highlight the same patterns just mentioned above with regard to the 

previous figure. Namely, that HRL straddles winners and WSLS 

subjects. Also noticeable is how the RandomBias model captures all 

the “other” cases exclusively. This is also the case for the BOB-NR 

subjects (see code repository for these plots), as well as for the subjects 

doing the random version of the task – except for one HRL fit. 

Figure 5.58 Shapetask BOB subjects, coloured by fitted model (see legend) and separated by 

behavioural groups (rows). Proportion of choices on y-axis for each score type (columns) and 

shape position (x-axis). From top to bottom: WSLS, Win, Other. From left to right: Correct, 

Win-stay, Lose-shift, Shift predict. 
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Finally, we highlight the one individual fitted with SRTD. This 

subject – 38 – did the BOB-NR version of the task and as noted above, 

they had a peculiar score summary of 0.5 shift predict for the first two 

shape positions. In Figure 5.59 we can see that on early trials, subject 

38 predicted a shift (pink line) on almost every trial, regardless of 

shape position. Then around halfway through – bob number 6 on x-

axis - there is quite a dramatic shift in behaviour. Now subject 38 

starts to win-stay/lose-shift on shape position 1, win-stay on position 

2 and shift predict on position 3. In other words, subject 38 did almost 

solve the task, and found the pattern around halfway through the 

experiment. Perhaps some of the RandomBias fitted subjects 

mentioned above had a similar approach, and therefore showed a 

large proportion of shift predict choices for all shape positions. But 

for those subjects, the pattern never clicked. 

5 . 8  C H A P T E R  S U M M A R Y  A N D  D I S C U S S I O N  

In this chapter we introduced a novel decision-making task we call 

the shape sequence task – or Shapetask for short. Participants are 

shown a pre-determined sequence of shapes one at a time and need 

to predict what shape comes next. Participants are instructed to “find 

the pattern” but get no explicit feedback on their choices. We show 

that in versions of the task with reduced randomness in the sequence 

generation (i.e., with fewer sequences of the same shape that were 

longer than three), a majority of human subjects can find the 

underlying pattern within just 99 trials, often quite early on in the 

training sequence. 

Figure 5.59 Learning curves for individual subject 38 in BOB-NR task, fitted best with 

SRTD model. Proportion of choices (y-axis) across bag-of-bags (x-axis; 9 trials averaged) for 

each score type (coloured lines as per legend) and shape position (columns). From left to 

right: Shape position 1, Shape position 2, Shape position 3. 
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We then showed how standard Q-learning (QL3) can account for 

those human subjects in Shapetask who show win-stay lose-shift 

(WSLS) behaviour, but not those subjects that solve the task by 

learning to shift their prediction every third trial in the sequence. 

Equipping Q-learning with a different state representation, however, 

the resulting SEQL3 algorithm can show similar behaviour to those 

humans who find the key sequential pattern. 

We argue these results show how Shapetask 1) can theoretically 

investigate how humans combine generalisation, differentiation, and 

inference to find task structure; and 2) reveals that standard RL, 

equipped with appropriate states, can account for human behaviour. 

By not using explicit rewards we also argue the results 3) support 

theories proposing that RL may account for a more general “sensory” 

prediction error rather than one that is just reward based. 

To improve support for these arguments, we introduced two 

models from the literature with plausible neurobiological 

connections. Hierarchical RL (HRL) imposes structure by essentially 

stacking two QL algorithms with the upper level selecting task sets – 

contexts – and the lower level selecting actions. We show this model 

can account for multiple types of behaviour in Shapetask, both 

“winners” (those who learn the sequential pattern) and subjects 

showing WSLS behaviour. 

SRTD (Successor Representation, Temporal Difference) combines 

aspects of model-free and model-based RL by approximating the state 

transition function through experience. We show this model can 

better account for strong human winners in Shapetask than HRL but 

does not explain the behaviour of WSLS subjects. Furthermore, we 

demonstrate how SRTD is structurally equivalent to SEQL3. 

Finally, we demonstrate model selection in Shapetask using the 

ABC (Approximate Bayesian Computation) method. The four models 

QL3, SEQL3, HRL, SRTD and a baseline RandomBias model were 

then fitted to the human data. The results of this model fitting and 

selection shows that strong WSLS subjects are indeed best fit with 

QL3, strong winners are best with SEQL3, and those subjects showing 

weaker WSLS or winner behaviour are best fitted with HRL. 



2 7 8          T H E  S H A P E  S E Q U E N C E  T A S K  

 

5 . 8 .1  T E C H N I C A L  D I S C U S S I O N  

It is unfortunate that HRL has an intractable likelihood, forcing us to 

use more crude methods for model fitting and selection. Using ABC 

we lose the dynamics of the task, meaning the changing behaviour 

across trials. Likelihood based methods naturally include this aspect. 

We could compensate by selecting only the last x trials and perform 

ABC fitting on those data. But at what point does that become cherry 

picking our data, and/or how do we choose those last x trials? Perhaps 

a better option would be to include more aspects in the distance 

function. For example, one could find the slope of scores across all 

trials or even fit curves and use the found parameter values for 

distance. 

But as discussed earlier, this would increase computation time 

enormously, as it takes many hours already. Calculating the slope or, 

even worse, fitting a curve, are much more complex calculations than 

just summing up the scores. However, if one were to attempt this, it 

would be appropriate to investigate if there is a faster Python library 

than pyABC (if one indeed exists). Another option would be to look 

beyond Python and find a fast ABC library in another programming 

language, for example C++ or Julia. Also, since each simulation is 

separate, the process is easily able to take advantage of parallelisation. 

Thus, it would most likely gain huge speed improvements to 

implement ABC with support for using GPUs (Graphics Processing 

Unit). 

5 . 8 .2  G E N E R A L  D I S C U S S I O N  

No matter what specific model from HRL, SRTD or SEQL3 is the best 

fit for individual subjects, we have shown that state representations 

do indeed matter for successfully solving Shapetask. These models 

update behavioural values based on implicit rewards in the same way 

as QL3 does, but they differ in the composition of the structure these 

updates are applied to. We have thus showed that some manipulation 

of state representation change is needed, even if it would be neither 

of the specific models tested here. 

Because subjects show such distinct behavioural types in 

Shapetask, it is unlikely that one single model would explain all 
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subjects. Instead, we would argue that one size does not fit all47, and 

humans as a group are capable of multiple strategies. Our results 

would then also indicate that even among winner subjects, some 

humans use a strategy like SEQL3, and some a strategy like HRL. 

Trying to tease HRL apart, it is possible that some subjects indeed 

represented the task as HRL would predict. This allowed these 

subjects to flexibly select an appropriate task set depending on the 

position and shape/colour. But this representation came at the cost of 

not showing strong distinct behavioural patterns: either WSLS or 

solving the task. This might have been because subjects had to expend 

effort exploring how to calibrate task set selection. This is suggested 

because of our observation that a larger number of trials was likely to 

be needed to be certain that HRL stabilises.  

Similarly, those subjects best fit with SEQL3 successfully found a 

very efficient state representation, often fairly quickly. One could 

perhaps object here and say maybe subjects simply counted the 

number of shapes in a row and selected actions like “one-two-shift”. 

But without an appropriate representation of the states and task 

structure, how would subjects form the notion about what to count? 

What is more important to consider, is how far we can take the 

equivalency between SEQL3 and SRTD. We showed above that 

structurally, they are in practice equivalent. We also showed in model 

selection performance that when SEQL3 or SRTD had generated the 

data, especially so if SRTD had generated the data, then the likelihood 

was very small that any other model than these two would be the best 

fit. Since SEQL3 additionally has fewer parameters than SRTD, and 

assuming the two models are nested, it would then make sense we 

only found a single case where SRTD was the best fit, rather than 

SEQL3. 

Assuming then this equivalency between SEQL3 and SRTD hold, 

most winning human subjects were best fit with SRTD rather than 

HRL. Perhaps, and this is highly speculative, it is the case that SRTD 

is the fuzzy start of humans representing a task and as they gain 

information, this representation solidifies and solidifies into either 

QL3 or SEQL3 like representations. For most subjects, this happens 

quickly, but for subject 38 the solidification took longer. For some 

 

47 If one is so inclined to claim one size should fit all, then at best our results are 

inconclusive as to what size (model) that would be. 
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subjects – the ones best fit by a RandomBias model – this solidification 

does not happen until late in the task or perhaps never at all. 

However, this is not quite the whole story, as our results show that 

those subjects using a QL3 (WSLS) strategy, did so from the very start 

and showed little if any exploration. Then again this may be a 

question of effort and motivation, as there was no extra payment for 

solving the task. So QL3/WSLS participants made their prediction by 

clicking the same shape that they saw on the screen and thus were 

able to get the task over with quickly. Additionally, as there was no 

explicit feedback on participants’ choices, this behaviour was not 

“punished”. Perhaps they expected a message to appear if they did 

the wrong thing and so carried on unchanged when such a message 

did not appear. It is also possible QL3/WSLS subjects settled on the 

immediately found strategy and genuinely thought they had found 

the correct pattern, or at least a “good enough” pattern. 

The obvious next step to develop this task further would be to add 

explicit rewards. As discussed above, part of our goal was to 

investigate how and if implicit rewards, in the form of sensory 

prediction of shapes (and/or colours), could be captured by standard 

RL algorithms that commonly assume explicit rewards. We 

successfully show this is indeed the case, adding to previous theories 

[91] on a more general prediction error story for midbrain dopamine 

than that of just rewards. But adding explicit rewards would 

complement our findings and would possibly enable us to answer 

some questions that are not clear from our current results. 

On that point, using explicit rewards could allow for discerning 

between cases of low effort and those believing they found the correct 

pattern. The same can be said for RandomBias cases, where we do not 

know if subjects genuinely were confused or did not care. It is also 

possible that using explicit rewards would allow more subjects to 

successfully solve the task, which could, if desirable, be compensated 

in difficulty level by varying the number of shapes in each bag. 

In short, we show Shapetask is viable for investigating the topic of 

state representation and task structure. With the possibilities for new 

variations of Shapetask, we believe it shows great promise for use in 

future work investigating these topics. 

 



 

6  DI SC U S SI O N  A N D F U T U R E  W O R K  

We started our journey by asking how humans and other animals find 

and create structure in the world. We approached this question from 

the perspective of reinforcement learning (RL) – learning from 

rewards. Our hypothesis was that RL is supported by other brain 

areas, where appropriate state representations for the task at hand are 

created, manipulated and/or retrieved. These state representations 

are provided to the RL system, where they are used as fundamental 

units for the learning process.  

We based this hypothesis on two pillars, as detailed in chapter two. 

The first pillar is the reward prediction error hypothesis of dopamine, 

which is well established on a neurobiological level [197, 240]. The 

second pillar is derived from previous contradictory findings 

concerning what type of RL may occur in brains [53, 71, 201]. This 

contradiction may be explained by taking a more integrated view of 

dopamine as a more general stimulus prediction error [91, 180, 227] 

supported by (orbito-)frontal cortex and hippocampus providing 

state representations [14, 54, 235, 302]. 

6 . 1  S U M M A R Y  O F  K E Y  F I N D I N G S  

6 . 1 .1  C H A P T E R  T H R E E  

In order to study how humans find task structure, we wanted to test 

models found in the literature on existing and new data gathered 

from human experiments. Testing such mathematical models of brain 

function, we need methods for parameter estimation and model 

selection. In chapter three, we introduced and investigated two main 

classes of methods for fitting models to data: maximum likelihood 

estimation (MLE) and Bayesian inference. Both methods use 

likelihoods – in essence inverted simulation functions – to find the 

most probable parameters used to generate the data being fitted. 

Bayesian methods have traditionally been difficult to use due to their 

computational requirements but have gained popularity in recent 

years in part due to increased availability of fast computers and partly 

thanks to improved algorithms for Bayesian inference. Most 

importantly they have gained popularity due to claims they are better 
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able to both estimate parameter values and find the best fitting 

models [2, 211, 234, 298]. 

We used a standard learning and decision-making task – the two-

armed bandit – and simulated artificial datasets with an RL based 

algorithm playing this task (section 3.3), as well as an agent playing 

randomly (with potential for bias towards one option). We then 

compared (in sections 3.9-3.10) both parameter recovery and model 

selection performance with MLE and several kinds of Bayesian 

inference-based methods, some of which used toolkits published by 

other authors. 

Among these toolkits, we found the Computational and 

Brain/Behaviour Modelling (CBM) [211] to be the easiest to use with 

a straight-forward approach to adding new models. It uses Bayesian 

hierarchical model fitting and selection, and thus naturally provides 

uncertainty measures for fits on both subject and group level. 

Unfortunately, CBM does not seem to be actively maintained and is 

only available in MATLAB (both issues will be further discussed 

below). 

As for results, we found that some of the Bayesian based methods 

were indeed generally slightly better at parameter recovery than 

MLE. However, there was no direct correlation between parameter 

recovery performance and that of model selection. In fact, MLE was 

often noticeably better at selecting the correct model than Bayes’ 

based methods (section 3.10.4). This was true even with few data 

points (100 trials per subject), which is supposedly where Bayesian 

inference shines [68, 234]. 

We found this surprising, and very important for two main 

reasons. One is that in experiments with human subjects, we often 

have to make do with relatively few datapoints because humans very 

easily get bored and so tasks are often kept quite short. The second is 

that MLE is multiple times faster – on the scale of minutes versus 

hours in worst case scenarios – than the Bayesian methods. This is 

important because if MLE is just as good or even better for model 

selection, there is little point in wasting energy on a more 

computationally demanding method. 

It is also important because constructing likelihood functions is 

complicated. It is very easy to make mistakes, and so one should 

always test one’s likelihood functions work by simulating data and 
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then see if the parameters used for generating said data can be 

recovered [203, 300]. This is often an iterative process – especially for 

mathematical non-natives. Hence, if each time you test a change to 

your likelihood function you have to wait hours to see the results, you 

will be satisfied when it seems to work. However, you might be 

deterred from a fuller exploration by the lengthy time commitment 

involved, and so may miss something that makes it not work so well 

for datasets other than your own. 

The above findings conflict with some published studies that show 

Bayesian methods to be superior [2, 211, 298]. We suggest this may be 

due to that authors often use few artificial subjects, on the level of tens 

of simulated subjects, instead of thousands. Larger numbers are 

needed in our experience in order to cover most of the parameter 

space, which is important as recovery ability can vary across said 

parameter space. As just mentioned above, this is most likely due to 

the authors simply not having (or taking) the time for the entire fitting 

process for thousands of simulated subjects. Such pressure of time is 

unfortunately – in this author’s opinion – likely to be a direct 

consequence of the publish or perish culture in today’s academic 

world [89]. 

However, we should perhaps hold this judgment before testing the 

methods on more agents and task types. Our results may not 

necessarily be representative for more complex types of models and 

tasks. Therefore, we addressed this in chapter 4. 

6 . 1 .2  C H A P T E R  F O U R  

In chapter four, we kept the best performing methods from the 

previous chapter – MLE and CBM – to investigate further. We now 

introduced more complexity to the task in the form of two types of 

reversal bandits. We also added a wider array of models into the mix, 

some of the RL family and two from the family of Hidden Markov 

models (HMM), models which have hidden – or belief – states that 

are inferred based on observations. 

For each task and model, we simulated subjects and fitted all 

models. This confirmed our results from the previous chapter that 

MLE was the most reliable method for selecting the model that most 

likely generated the data (section 4.8). Furthermore, despite being 

easy to use in general, we found the CBM toolkit exhibited bugs that 

caused us having to leave this method out of a few of the 
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comparisons. This unfortunately made the comparison incomplete 

but would unlikely have changed the picture on what model selection 

method was best, considering the previous results from chapter three. 

The specific issue encountered was one where fitting a model to 

data that was very different from what the model expected would 

cause the CBM program to crash. We reported the bug and have yet 

to receive a reply. From what we understand of the crash, it is caused 

by the fitting process being unable to find a good fit and thus it is then 

supposed to fall back on the priors. We bring this up here, because it 

further illustrates our point made about the results in the previous 

chapter, where authors do not fully test their methods. Because we 

ran into this error, not just with one of the models we added, but also 

one of the models that was included in the CBM toolkit. Again, we do 

not judge the authors. Oversights are easily made under pressure to 

publish. 

We also fitted two human datasets with the two types of reversal 

bandit. In the first task, called simply ReversalBandit, all subjects 

except one were best fit by some form of RL based model without 

states. The one other subject was best fit with an HMM (section 4.9). 

The second task, known as WorthyBandit, was more complex, in that 

rewards varied in value rather than just being present or absent. Once 

again most subjects still were best fit by RL based models but here 

more subjects were best fit with the HMM (section 4.10.4). 

We would argue, based on the assumption most of the best fits 

were indeed correct, that the result from the human data shows the 

value of considering individual behaviour within the sample. In 

many studies found in the literature, authors describe what the best 

fitting model is, but only at the group level [75, 78, 81, 158, 263, 280, 

290]. We believe this approach can be misguided, depending on the 

kind of models one is fitting. If the model describes what happens on 

a biological level – how neurons activate for example – then this might 

be appropriate at group level as we all share the same underlying 

neurobiological principles. But the kind of models we are studying 

here describes learning and decision-making at the behavioural level. 

Considering variations in life experience and the creativity of 

humans, a group of them can deploy a multitude of strategies and 

solutions to one and the same problem. For example, for the free 

response question at the end of Shapetask (see section 5.1.4), 
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participants presented several alternate theories on what pattern they 

believed they found. So why would one – and only one – learning 

model describe all individuals’ performance on a task? 

As previously noted, even though Bayesian MCMC (Markov 

Chain Monte Carlo, see section 3.9) indeed has better overall 

parameter recovery performance than MLE, it is not fully reliable. 

Additionally, one should keep in mind that one reason for 

hierarchical Bayesian models overall having less noisy parameter 

estimates is due to shrinkage – individual values being drawn closer 

together as they all share a group level distribution. This is often cited 

as a major advantage [2], but only will be of value if all participants 

use the same strategy, i.e., can be described by the same model. If 

participants cannot be described by the same model – which we have 

argued is often the case – then shrinkage could actually lead to 

misleading results. 

The above issues on heterogenous groups and shrinkage are taken 

into account in the Variational Bayesian Analysis Toolbox [62] (VBAT, 

part of which we used in conjunction with MLE fitting as described 

in section 3.10.2) and CBM [211], where model selection and fitting 

are done concurrently. That means subjects that are not well fit with 

a specific model should also contribute little, if anything, to the group 

level parameter distribution(s) for that specific model. However, as 

discussed above, our results indicate MLE is still the better choice for 

model selection. Hopefully, Bayesian methods can improve here so 

we can get the good model selection performance of MLE as well as 

uncertainty measures of Bayesian inference. 

For the reasons discussed, we would therefore recommend caution 

about studies claiming correlations between model parameter values 

and other measures such as personality, intelligence scales or mental 

health, unless the study includes proof their method can reliably 

recover parameters of simulations with known parameter values. 

Even then, it is important to consider how such results can be 

interpreted in relation to other tasks and populations [74, 190]. 

6 . 1 .3  C H A P T E R  F I V E  

In chapter five, we introduced the Shapetask, a novel learning and 

decision-making task. Participants are shown a sequence of coloured 

shapes and must predict what the next coloured shape will be. There 

are three different shapes, and the sequence of trials is generated so 
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that the same shape will always be presented at least three times in a 

row (although variation in number of repeats – sometimes six repeats, 

or even nine and twelve repeats in the hardest version of the task – 

occurred to differing extents across versions). Participants were not 

explicitly rewarded or punished for their choices. We argued that 

when a participant’s prediction for the next shape is correct, this acts 

pretty much like an explicit reward and likewise when their 

prediction is wrong this acts like a non-reward outcome. Subjects thus 

have to figure out that sequential position (how many times a shape 

has occurred in a row) is important, and that the context when the 

third repetition of a shape occurs is different from the first two 

repetitions, thus potentially requiring different choices. We showed 

that in easier versions of the task, with a lower chance of getting 

repeating sequences longer than three, a majority of the participants 

are able to correctly find the underlying pattern. Not only do they find 

the pattern, but most do so within 100 trials, often earlier (section 

5.1.4.1). 

We then showed how standard RL in the form of Q-learning (called 

QL3) can account for the behaviour of participants choosing a win-

stay, lose-shift (WSLS) strategy (section 5.2.1). But in order to account 

for the participants that solve the task by correctly identifying the 

pattern, we had to modify the state representation of the task used by 

the same Q-learning algorithm (creating a novel version we called 

State Enhanced QL3, SEQL3; section 5.2.3). 

We believe this shows support for our initial broad hypothesis that 

RL is supported by appropriate state representations. In chapter two 

(section 2.2) we noted how there are conflicting accounts in the 

literature as to whether model-free or model-based RL – or both – can 

explain signals in the dopaminergic system. We also described recent 

proposals that what has been viewed as model-based may perhaps be 

better explained by model-free systems being fed state 

representations from frontal cortex areas and/or hippocampus [213, 

248, 297, 302]. If Q-learning can display different behaviours 

depending on the state representations on which computations are 

made – then perhaps the view of model-free versus model-based RL 

is misguided. Perhaps, what has been interpreted as model-based RL 

reflects the influences of the state representations being fed in from 

other brain areas.  
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These speculations are, as discussed in chapter two (section 2.3), in 

line with recent research. But in our case, it was mere speculation, as 

we manipulated the state representations into a form that was 

suitable for the task; and, at this point, we had shown only qualitative 

results with simulations. So, to establish a connection more firmly 

with other research, we fitted models proposed and developed in that 

research. These models (see next paragraphs) take an integrated view 

of RL and state and task structure. 

We selected two of the most promising models from the literature. 

First, SRTD (Successor Representation, Temporal Difference) which 

combines aspects of model-free and model-based RL by 

approximating the state transition function through experience 

(section 5.4). We demonstrated how Shapetask can be construed as a 

spatial maze-like task fitting for the SRTD implementation we used 

(which had been developed to simulate performance in complex 

spatial mazes). We also demonstrated how SRTD is structurally 

equivalent to SEQL3, and thus will have a similar behavioural profile 

in simulated behaviour. That is, like SEQL3, SRTD can account for 

human participants who learn the sequential aspects of Shapetask (in 

chapter five we referred to these subjects as “winners”). We also 

showed that SRTD does not account for subjects who display a 

persistent WSLS strategy. This result adds to existing literature [194, 

206] suggesting that cognitive maps for spatial and abstract 

knowledge may share mechanisms. 

The second model, Hierarchical RL (HRL), imposes structure by 

essentially stacking two QL algorithms one above the other (section 

5.3). The upper level is used to select task sets – or contexts – and the 

lower level selecting the actions deployed in each context. We showed 

that this model could account for multiple types of behaviour in 

Shapetask, both winners and subjects showing WSLS behaviour. 

One notable detail found in our behavioural investigation of HRL 

was that two simulated subjects that use the same parameter values 

can exhibit qualitatively different behaviours (section 5.3.2.1). We 

showed this was due to randomness in task set selection, and that 

with a larger number of trials the issue could be alleviated. This effect 

appeared even with only two task sets. The consequences of this are 

that HRL may be highly dependent on task contingencies such as, for 

example, number of trials and reward magnitudes. For example, if 
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high reward magnitudes are possible, it may require a larger number 

of trials before task set values appropriate for the task are found. This 

effect seems to be additionally exacerbated with more than two task 

sets, as we showed in the same section. Additional study of this effect 

would be needed, but if researchers would attempt to, for example, 

correlate HRL parameters with other measures, this effect should be 

kept in mind. 

Although HRL has shown promising results in previous research, 

it unfortunately has an intractable likelihood function disallowing the 

use of likelihood-based methods, such as MLE, for model fitting. We 

therefore used a simulation-based model fitting method – 

Approximate Bayesian Computation (ABC) – to fit our selected 

models to the Shapetask human data (section 5.6.2). We showed this 

method had a similar model selection profile to MLE when fitting the 

models with tractable likelihoods, which made us more comfortable 

with interpreting the ABC fitting results. 

The model fitting and selection results for our human data (section 

5.7) showed that strong WSLS subjects were best fit with QL3, strong 

winners best fit with SEQL3, and subjects showing weaker WSLS or 

winner behaviour are best fitted with HRL. Some subjects were best 

fit with a randomly acting agent that had specific probabilistic biases 

for picking each of the three actions. 

These results are interesting, because regardless of whether HRL, 

SRTD or SEQL3 is the best fit for individual subjects, each of them 

updates behavioural values based on implicit rewards in the same 

way as QL3 does. The difference between them lies in the composition 

of the structure these updates are applied to. We have thus showed 

that some manipulation of state representation change is needed to 

capture performance in Shapetask, even if none of the specific models 

tested here do a perfect job of capturing the full range of observed 

human performance. 

Because subjects show such distinct behavioural types in 

Shapetask performance, it is unlikely that one single model would 

explain the behaviour of all subjects. Instead, we would argue against 

a one size fits all viewpoint, and stress that humans are capable of 

multiple strategies. If one were to argue for one size fits all, perhaps 

in pursuit of scientific parsimony, then it is very unclear, based on our 

results, what sort of model could capture all the diverse behaviours 
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that humans show in Shapetask. Our results in the model fitting and 

selection of Shapetask (section 5.7) would then indicate that even 

among winner subjects, some humans use a strategy like SEQL3, and 

some a strategy like HRL. 

The above arguments make intuitive sense. If it is the case that state 

representations matter – that the neural systems of humans and 

potentially other animals form mental structures that are useful for 

learning – then why would it be the case that everyone uses the same 

sort of representation? In other words, we are suggesting that 

although the basic physiology of the underlying neural system(s) may 

be the same, through the combination of life experience and genes, 

some individuals may use one strategy instead of another when faced 

with the same task. Since we do not really investigate how HRL/SRTD 

arises – only that these are cognitive structures that may have been 

used by participants – it is entirely plausible that some subjects used 

what looks like HRL and others used SRTD/SEQL3.  

An additional finding here to note is that as we did not use explicit 

rewards in Shapetask and ran our simulations treating outcomes that 

met participants’ predictions as implicitly rewarding. The success of 

our simulations, using this assumption, therefore adds to the existing 

literature suggesting a larger role for dopamine than that of reward 

prediction errors [91]. This literature argues that dopamine accounts 

not only for reward prediction errors, but sensory prediction errors 

more generally. This would appear to fit with more general theories 

proposing that prediction errors of both the world, our body and our 

thoughts is how the mind is made up [46, 87, 118]. 

Overall, we believe the results just summarised show that 

Shapetask is a valid tool for investigating how humans find structure 

in the world. Our results are preliminary and thus naturally 

incomplete, and some aspects of our findings may be explained by 

lack of effort, confusion, or both, in our human participants. In order 

to test the ideas further, we would need, among other things, to 

compare learning using explicit rewards in the same task. 

6 . 2  L I M I TAT I O N S  

The first limitation relates to Shapetask, and the assumptions we 

make about what “solving” the task means. We define solving it as 

changing one’s prediction (with high probability) every third trial in 
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the sequence. We did find that those participants who solved the task 

by our definition were often able to report on this strategy in their 

debriefing comments, as well as informal feedback from pilot 

participants. So, we believe our assumption holds, but adding more 

variations of the task such as explicit rewards (further discussed 

below), would further ground this assumption. Furthermore, in the 

development of the task itself, we should perhaps have started 

Shapetask from a single shape with multiple colours, or a single 

colour and multiple shapes as a baseline and work up from there. 

Another limitation is that we did not include any measure of 

working memory capacity, or used a model with aspects of working 

memory built in. This could be appropriate since not only is it 

sometimes argued that working memory is tightly integrated with 

(reinforcement) learning [55] – as discussed in chapter two – but there 

may also be correlations between working memory capacity and 

success in Shapetask. It is possible that there is no difference per se in 

the state representations a group of participants apply, but rather they 

vary in the level of difficulty they have remembering how many 

shapes in a row they have seen previously. 

On the topic of additional models, we also could have tested more 

types of RL agents without manipulating the state structure. For 

example, we could have tested Dual-α and Dual-Update chapter four 

on Shapetask. Since these models use state representations like those 

of QL3, they would not be able to differentiate between the last 

stimulus of a bag and the preceding ones, and thus are likely to have 

similar behavioural profiles to that of QL3. In the case of Dual-α, it 

may also be the case that perseverance effects should be taken into 

account [263]. 

We also could have run studies in which participants performed 

both Shapetask and another task. This would have allowed us to 

“cross compare” algorithms on these multiple tasks. For example, if 

we had run these further studies, we could have compared the fits of 

the Alien task from [75] and Shapetask using SRTD, and similarly 

tested the fit of HRL on the maze task from [227] as well as Shapetask. 

It is not immediately clear how either implementation combination 

would work, so this would require additional tinkering with the 

models and/or tasks in order to do this. 
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There was not sufficient time during this PhD to fit additional 

models and run further studies with task combinations. This is always 

an issue with PhDs, but the issue was exacerbated here because much 

of the model fitting turned out to be unexpectedly time consuming. 

There were two aspects to this. 

First, the time taken to simulate and fit successfully implemented 

models was often considerable. We noted earlier how important it is 

to ensure broad parameter coverage in model testing. So, in this 

thesis, we used sets of 1000 randomly selected parameter 

combinations where each such combination was run 100 times to 

average across stochastic variations of the tasks and agents (see for 

example section 3.3). Furthermore, we saw with ABC fitting for 

Shapetask, that it was roughly comparable (in terms of results) to 

MLE fitting. But it took around two minutes per subject with the five 

models included. Adding further models would naturally increase 

the time taken, and thus the time needed to test performance, for two 

reasons. The first is quite simply that more models mean more time. 

The second is that more models will inevitably lead to similar 

performance profiles. For example, adding more RL variants would 

very likely mean more models would show WSLS behaviour like 

QL3. In this case, our distance function may prove insufficient to 

properly distinguish between them. This would need to be alleviated 

by incorporating more nuances in the distance function used for ABC 

fitting; such additional nuances add further to the run times of the 

code. 

We proposed a few more options on how to deal with ABC fitting 

due to intractable likelihoods in the chapter five discussion. Yet 

another option would be to simply exclude models with intractable 

likelihoods. But that would of course not be ideal. We have not 

encountered many papers using HRL, and its intractable likelihood 

may be partly responsible for this. However, see [83] for an interesting 

approach of using neural networks to approximate likelihoods. 

A further reason for the unexpected time taken to test and fit the 

models was that, based on the literature, we did not expect Bayesian 

inference to be so little better than MLE. We therefore assumed our 

implementations of Bayesian inference were wrong because we 

expected Bayesian inference – MCMC in particular – to be much more 

accurate in parameter recovery and model selection. We switched 
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from the Python specific library pyMC3 to Stan as the latter has a 

larger community when it comes to the kind of models we are 

interested in, with existing packages like hBayesDM. This was overall 

a good move, as Stan has a clean separation of models from other 

code, interfaces for multiple programming languages, and built-in 

support for regular loops. Whereas in pyMC3, specific operators are 

needed to loop through data where the next trial depends on the 

previous one as in our models48. 

Despite eventually finding the best packages to deploy, as 

discussed previously, it gradually became clear that many of these 

libraries (and associated papers) have undergone relatively limited 

testing. In hindsight this is not entirely unexpected as discussed 

above. Some packages have arbitrarily chosen boundaries for 

parameter values, some do not include more basic control models, 

and some appear to have tried their method on data from a relatively 

limited range of tasks. We encountered a case where the paper claims 

they have both code and data available, and the code was indeed 

available openly. But it would not run without the data. And the data 

was, in practice, not open. It was required to register at a government 

data repository and fill in a large number of forms to even be 

considered for access. Another case we encountered was one where 

the code repository linked from the published paper was empty, 

except for a message saying, “code available soon”. The paper was 

five years old. 

We mention these examples, not to criticise anyone specifically, but 

rather to point to a problem within the entire field, and academia in 

general. Publish or perish is a known cultural issue within academia 

[89], and it causes authors to not be able to take the time needed to 

produce thoroughly tested work. This is especially a problem when it 

comes to work like that of this thesis, where code is as much a part of 

the thesis (or paper) as the text itself. In recent years, it has become 

more common for journals to ask, or even require, that code be 

published together with the paper. That is a step in the right direction, 

but it is extremely rare for anyone to (be required to) peer review the 

code in the same way that they do the text. We suggest that this – peer 

 

48 As of this writing in July 2022, pyMC was released with some major changes. 

It is possible the interface is easier to use now (it would be called 4, but they 

dropped the numbering)  
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review of code – would be a highly desirable change to the 

publication process in this field. Similar calls have been made by 

[222]. 

This issue is not only important in terms of the time required. It is 

also important because it can lead to misleading results. Papers may 

get published where authors have used existing tools and claim their 

model fitting implies that participants used a certain model with 

certain parameter value ranges. If the tool they used has not been 

thoroughly tested, the results may be inaccurate, as discussed above. 

Creating tools that makes it easier for others is obviously a very good 

thing for the scientific community. But it is important to provide users 

with the information they need to make informed decisions about the 

tool which has been provided. 

Nevertheless, as we have shown, MLE is as good as, if not better, 

than Bayesian inference in terms of model selection for the models 

and tasks used in this thesis (as demonstrated in chapters three and 

four). We hope that future publications of this work may allow other 

researchers a more informed choice regarding the modelling and 

fitting tools they use. 

In this section, we have addressed limitations, some of which 

naturally suggest further work that might remedy said limitations. 

Next we turn to suggestions for future work more generally.  

6 . 3  F U T U R E  W O R K  

The most straight-forward future work here will be releasing the 

Python framework we developed for the thesis. It would involve 

some additional work in documentation, packaging and testing but 

would perhaps be valuable for other researchers to use. We may call 

it “simfitRLy”. Given our comments above we would naturally try to 

ensure this package has as few bugs as possible, good documentation 

and is easy to use and understand. 

On that note, it would also be beneficial to port the part of VBAT 

we used into Python. Currently, VBAT is only available for MATLAB, 

which is prohibitively expensive for many researchers and interested 

individuals around the world. There is a free and open-source variant 

of MATLAB called Octave, but it is not as fully featured and does not 

run VBAT. Many of the optimization functions, for example, that are 
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used by VBAT and other model fitting programs, do not exist for 

Octave. We believe science should be as open as possible, and for that 

reason, journals might consider avoiding accepting code written in 

MATLAB that will not run in Octave. The code itself may be openly 

published, but it is in practice not fully open if one has to purchase 

the MATLAB program. We are quite privileged to have been able to 

access MATLAB through our university. We realise this is quite the 

radical suggestion, seeing as much of neuroscience and neuroimaging 

research uses MATLAB. 

As mentioned above, there are two main avenues for future work. 

Task variations of Shapetask and adding more models. 

6 . 3 .1  T A S K  V A R I A T I O N S  

The downside of our assumption that implicit rewards are at play in 

Shapetask is that it is possible some subjects do believe they found the 

correct pattern when behaving in WSLS fashion. This would be 

possible if a participant felt they were gaining the maximum level of 

successful predictions possible from the task. With explicit rewards 

(and/or instructions that make it clear that almost 100% successful 

prediction can be attained) we would be able to more easily 

distinguish between such participants, and those who were simply 

expending low levels of effort. However, it is likely that general 

performance will then increase, since subjects can calibrate their 

beliefs based on the feedback received. If desirable, one could 

possibly offset this improvement in average success levels by, for 

example, varying the number of shapes in each bag (e.g., 4 triangles, 

3 squares, 2 circles). 

Explicit rewards are not without their downsides, however. With 

implicit rewards we can partly investigate theories of sensory 

prediction error. This would not be as easy, or even possible, with 

explicit rewards. The existing implicit rewards version of the task 

could be used in imaging studies to investigate what overlap between 

brain areas there might be between explicit and implicit rewards, 

interrogating our speculations about sensory prediction.  

On the note of imaging studies and task variations, as mentioned 

in chapter five, there are similarities between Shapetask and the 

“dimensions” task presented in [303]. In their task, participants had 

to find what aspect of the stimuli was relevant for receiving rewards, 

and imaging results [196] showed that attentional mechanisms were 



6 . 3   F U T U R E  W O R K        2 9 5  

involved with reducing the complexity down to the relevant features. 

The dimensions task thus requires representation learning, like 

Shapetask, but the difference between them is that in Shapetask the 

feature of interest is found across trials. There is bound to be overlap 

between relevant brain areas and networks used in both tasks, as they 

both involve representation learning, but we imagine Shapetask 

could activate working memory areas to a larger degree. If so, seeing 

as Shapetask and the dimensions task are similar, one could also 

imagine a spectrum of task versions between them, to test potential 

similarities and differences in attention versus working memory for 

representation learning. 

We can also imagine a middle-ground between explicit and 

implicit feedback. Instead of providing feedback after each trial, there 

could be a checkpoint around half-way through the experiment 

(seeing as most subjects settled in their behavioural patterns early on 

in the task) where, if the subject were doing WSLS choices we can 

gently nudge them with feedback stating there may be another way. 

This would retain the important explorative aspect of Shapetask, as 

well as providing an opportunity to combine with imaging methods 

to see if attentional areas would be engaged to find an alternative 

representation after this feedback. 

Another, more intriguing, idea for improving motivation and 

effort when adding explicit rewards would be to make the task more 

interesting. As it is, the task is quite boring. One possible way of doing 

so would be to make the task into Rock-Paper-Scissors. Most people 

(at least in the western world, to our knowledge) are familiar with this 

game, and since it is a game, it may more naturally engage 

participants’ motivation. It can be the same principle as Shapetask, if 

we imagine a computer opponent on screen, that has been coded to 

select Rock/Paper/Scissors in specific sequences. If participants can 

find the pattern that the opponent, for example, always picks three 

rocks and then either paper or scissors, then they can win most of the 

time. This would, of course, be more of explicit reward than implicit, 

as there is a clear win/lose condition. It would also potentially involve 

more social cognition than Shapetask, depending on how the 

opponent would be presented.  
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6 . 3 .2  M O D E L S  

When it comes to model fitting, there is research showing that the 

inclusion of response time data may improve parameter recovery 

[11], which would be interesting to contrast with our results. Results 

from the sequential learning literature [247] indicating that response 

times decrease as participants learn sequences, may explain such 

improvements in parameter recovery. It would thus be interesting to 

include reaction times in future variations of Shapetask experiments, 

not only to improve parameter recovery but also to cross-check 

results with the sequential learning literature. The participants tested 

in this thesis were almost all tested remotely which means that 

reaction times are likely to be noisy and unreliable. Including reaction 

times would be easier with in person testing. 

Additionally, response times may also help distinguishing 

between the contributions of RL and working memory (WM) [173]. 

We have briefly mentioned WM above but have not included models 

in our analysis that incorporate WM directly. This would be an 

important addition, as they are closely connected [156, 310] and some 

processes which researchers think of as RL may in fact be WM [55, 

310].  

There are multiple aspects we could have added like variable 

learning rate, noise parameters, more action selection types (UCB, 

Thompson sampling) etc. They would all be valid and interesting to 

investigate but would of course be time consuming and not directly 

relevant to our interest in state representations. However, as 

discussed in chapter two, neural processes of state representation and 

action selection are interconnected and some studies indicate 

alternatives to SoftMax might be preferable [93]. 

More specific to that point of interest would be to include HMM 

models for Shapetask. Especially interesting would be more 

advanced HMM models, for example one such as [170], that more 

naturally include dynamic beliefs on switch points in reversal tasks. 

However, it is not immediately apparent how to apply hidden state 

models on Shapetask. This because the states that participants need 

to find in Shapetask – positions – are not hidden, per se. They are 

rather meta patterns across trials. One approach would be to adapt 

HRL taskset selection to use HMMs, which could potentially also 

allow a useful likelihood function to be created for HRL. 
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It would perhaps also be possible to combine SRTD with HRL, or 

at least the hierarchical concept, as shown with multi-scale SR [183]. 

SR also has multiple other implementation variations that would be 

valuable to add for comparison, such as SR-Dyna [182, 227]. However, 

SR-Dyna uses offline replay, which has been implemented in 

behavioural tasks as inter-trial delays. In Shapetask such delays 

would perhaps put larger load on potential WM influences. 

So far we have mainly discussed “static” state representation 

models, meaning the representational structures are pre-defined. But 

how do animals create new and change our existing structures? There 

is research on non-parametric models [54, 94, 102, 195], in our context 

meaning models that can add categories based on data. So, instead of 

pre-defining for Shapetask that we have three shapes and three 

positions, the model would be able to dynamically add the shapes 

and positions as they are experienced through the task. This is, of 

course, not very straight-forward to implement, rather incredibly 

complex. Because the model would also need to be able to, if needed, 

reduce the number of states if such generalisation would be 

beneficial. In Shapetask, that would entail generalising that the first 

two positions are in principle the same state, but different from the 

last position, where a different response is required. Of course, the 

model would need to be able to detect other patterns of repetition 

(over two, four, five trials etc.), subject to working memory capacity 

constraints [55] in particular for larger repeating sequences. 

6 . 4  F I N A L  R E M A R K S  

Throughout this thesis we have discussed state representations; how 

animals represent the world. These states are often seen as snapshots 

in time and are therefore deeply entangled with structure – how states 

are linked together to represent tasks and environmental events 

spanning across time. We have in this thesis been able to shed some 

light on what type of existing models may be suitable to explain this 

complicated relationship.  

But what is a state representation, and what makes one better than 

another? Hoffman [116] and Niv [195] would both say in different 

ways and from different viewpoints, that what is important is 

whether a state is useful. The only way to find out whether a certain 
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state representation is useful, is through feedback on one’s actions 

from the environment. 

As exemplified by the beetles in chapter two (section 2.3), a state 

may be sufficiently useful until it is not. The beetles have strong 

innate priors for their state representations – interfaces to the world – 

and may thus fail when confronted with a reality they cannot see for 

what it truly is. Humans are more flexible than the beetles and can 

adapt their state representations to be more “useful” interfaces if they 

notice their predictions of the world are no longer and/or not entirely 

correct. 

This adaptive process of representations of single states, tasks and 

models of the world involves (as explained in more detail in chapter 

two) multiple processes like learning, memory, and attention. Briefly, 

these processes interact in a holistic [213] manner, where attention to 

different features of the environment modifies the state being used in 

the current learning task or situation. Based on the feedback received 

– rewards in the case of RL – attention itself can then be adjusted to 

modify what features compose the state. 

Because of computational limitations, humans cannot afford to 

proceed with this process exhaustively [214] and will thus often settle 

on representations that are “good enough”. In our experimental 

results on the Shapetask, we could see this for subjects using WSLS 

behaviour; these subjects most likely used a representation that did 

not take the sequential overarching structure into account. But they 

were still mostly correct (at least 66% depending on the task version) 

and would get paid in money or course credits regardless of their 

performance. So the representation was “good enough”. As always 

with humans (and probably some other animals many other animals) 

though, some personalities are not satisfied with good enough and 

find the better representation, exemplified by those subjects who did 

find the structure.  

 Earlier in this chapter, we discussed multiple ways to extend or 

alternate Shapetask to investigate how subjects may change attention 

during a task to improve their representations. For example, feedback 

could be provided halfway through the experiment to subjects 

performing WSLS behaviour, and if combined with imaging 

methods, it could be investigated if and how attentional processes are 

then engaged to modify the existing state representation. How such 
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attentional processes then interact with learning and memory to 

shape state representations is an important future direction for RL 

and representations [195, 213, 214] and may also be key to improving 

artificial systems [25]. 

6 . 4 .1  W R A P P I N G  U P  

It is quite interesting to see how the bottom-up theories of RL and the 

top-down theories of the predictive mind [46, 87, 118] share the 

concept of prediction errors and are starting to converge in the 

research of recent years. We suspect that phenomena like the aha 

experience [274] will prove to be symptoms of internal (implicit) 

reward mechanisms that trigger when the predictions of our internal 

model – the state representation – matches what happens in the 

world. 

Our thesis is just a small piece in this puzzle of unknown size, and 

we hope our findings will prove fitting for future pieces. 
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