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Abstract 

Although t-way strategy tries to generate a minimum test suite (TS) for detecting errors in software systems, its 

functionality is affected by three important challenges. The first one, which relates to the quality of the generated 

TS, expresses that some complex errors (e.g. deadlocks in concurrent systems) may not be detected through the 

generated TS. The second one is that manually preparing parameters and their values in the modern software 

systems is difficult or even impossible, whereas the third one is the low generation speed and the large size of the 

generated test suite. In this paper, we propose a three-phase approach (so-called TPA) to handle these challenges. It 

seems that injecting some information about special errors into the test suite can raise its quality. For this purpose, 

TPA, in the first phase, uses an optimized version of model checking to extract such information from a model of 

the system under test. The extracted information is then injected into the test suite. In the second phase, TPA uses 

the generated state space in the first phase to automatically prepare parameters and their values. In the last phase, 

TPA applies an adopted version of evolution strategy to improve the functionality of t-way strategy in terms of 

generation speed and test suite size. Multiple and pairwise comparisons of results confirm that TPA has the best 

functionality in comparison with other evolutionary algorithms.  
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1. Introduction 

Testing is one of the most important steps in the software development life cycle to detect any gaps, errors, 

missing requirements, and others [1]. Testing should check the system under test (SUT) in two aspects of structural 

and functional. In the structural one (also called white-box testing), the internal structure, design and coding of SUT 

are examined. Conversely, in the functional one (also called black-box tesing), the internal structure of SUT is 

ignored and the inputs and expected outputs (of course, from the customer’s point of view) are considered to 

validate the overall functionality of SUT [2]. To success the black-box testing, all possible combinations of input 

parameters should be checked and this may expose the combinatorial explosion problem in large and complex 

systems. To handle this problem, there are several black-box methods such as cause-effect graph (CEG) and 

combinatorial testing (CT). CEG is a specification-based testing method that extracts the parameters and their values 

from a set of specified requirements. Actually, it graphically demonstrates the relationship between conditions 

(causes) and actions (effects) by which a truth table of the causes and the effects can be derived [3]. Similar to CEG, 

CT is a specification-based strategy that uses a systematic way (namely, t-way strategy or t-way interaction) to 



 

generate a minimized TS such that it covers the required combinations of input parameters in accordance with the 

strength of interaction (i.e. t in the t-way strategy).  

Usually, the functionality of t-way strategy is affected by three important challenges. The first one says that 

some complex errors (e.g. deadlocks in concurrent systems) may not be found through the generated TS. Actually, 

the none of test cases in the TS may detect such errors. The second challenge is about how to set input parameters 

and their values of the CT, manually or automatically. In most of the existing methods, this information are usually 

set manually and this causes it is difficult or even impossible in the modern software systems. The third challenge 

relates to the low generation speed (so-called performance) and the large size (so-called efficiency) of the generated 

test suite.  

In this paper, we propose a three-phase approach (so-called TPA) to handle these challenges (i.e. each phase 

for a challenge). In the first phase, TPA uses an optimized version of model checking (OMC) to extract the 

information of special errors from a model of SUT. OMC employs Bayesian Optimization Algorithm (BOA) to 

explore the state space intelligently. BOA is an Estimation of Distribution Algorithm (EDA) that learns a Bayesian 

network (as a probabilistic model) from the current population and samples the network to generate new solutions 

[4]. In this context, a solution (or chromosome) is defined by a path in the state space that has a specific length and 

starts from an initial state. Upon finding an error, the exploration is stopped. Otherwise, after exploring the pre-

specified number of states, the last state of a chromosome with the highest fitness value is considered as a pseudo-

error. Due to the detected error (or pseudo-error), the required combinations of input parameters and their values are 

inserted into the test suite.  

To extract the parameters and their values from the model, multi-stage algorithms have been proposed in the 

literature [5]. These approaches, although useful, can only work in simple cases. Moreover, they cannot detect the 

values of dynamic parameters. To reslove these problems, a novel approach has been proposed to automatically 

extract input parameters and their values from a model of SUT using model checking [6]. In this approach, after 

generating the state space entirely, the mentioned information is extracted. Although the approach can address the 

second challenge somewhat, it cannot work successfully in a large model of SUT due to the state space explosion 

problem. Unlike this approach, TPA, in the second phase, prepares parameters and their values without the state 

space explosion problem.  

To handle the third challenge, several methods using evolutionary algorithms such as Genetic Algorithm (GA) 

[6], [7], Particle Swarm Optimization (PSO) [8], Cuckoo Search (CS) [1], and Ant Colony Algorithm (ACA) [7] 

have been recently proposed. Although promising, there is still room for improvement. In the last phase, TPA 

applies an adopted version of evolution strategy (so-called AES) to improve the functionality of CT in terms of 

generation speed and test suite size. AES is repeated until a test suite with full coverage is generated successfully or 

its execution time exceeds 24 h. In each iteration, AES, begins with only one random chromosome (as a test case) 

instead of a population of chromosomes, and it tries to increase its fitness (the coverage amount). Finally, TPA adds 

the achieved chromosome (test case) into the test suite.  



 

The implementation results of TPA in the GROOVE toolset show that this approach improves the functionality 

of CT in terms of efficiency and performance. GROOVE is an open source toolset for designing and model checking 

graph transformation systems (GTS) [9]. TPA can generate test suites with the interaction strength up to t = 25.  

The rest of the paper is organized as follows: In Section 2, we describe the required background such as BOA, 

GTS, MC, and t-way strategy. Section 3 surveys the related work. Section 4 is dedicated to describe the details of 

the first and second phases of TPA. In section 5, we present the third phase of TPA with more details. In Section 6, 

we evaluate TPA through different benchmark experiments. Threats to validity are discussed in Section 7. Finally, 

we conclude the paper and present ideas for our future works in Section 8.  

2. Background 

2.1. Bayesian Optimization Algorithm  

Bayesian Optimization Algorithm (BOA) is one type of EDA which has solved a group of complicated 

problems such as Software Testing [10], Protein Folding [11], Planning Problems [12], and Searching the Optimum 

Path in 3D Spaces [13]. BOA uses a Bayesian network (BN) to consider multivariate interactions between variables. 

In other words, BOA applies the learning and sampling of a BN instead of the traditional genetic operators like 

crossover and mutation [4]. BN is a probabilistic graphical model which represents a problem as a set of random 

variables and probabilistic dependencies among them [4]. Usually, a BN is illustrated by a Directed Acyclic Graph 

(DAG) composed of nodes and arcs, which represent respectively random variables and probabilistic dependencies 

between these variables. The amount of probabilistic dependencies for each node is specified by a table. The 

components of a BN can be specified either manually by a domain expert or automatically using machine learning 

algorithms. 
Similar to the other evolutionary algorithms such as GA, BOA produces the initial population of candidate 

solutions randomly. BOA then repeats several operations until the termination criteria such as an optimum solution 

is found or a maximum number of iterations is performed: (1) the current population is evaluated by a fitness 

function. (2) A set of most promising solutions are chosen and a BN is learned through these solutions. (3) The 

learnt BN is used to produce new candidate solutions and they are replaced with the ones in the current population 

that have the lowest fitness values [14]. 

2.2. Graph Transformation System 

Graph Transformation System (GTS) is a formal language based on the concept of graphs which uses graphs 

and graph transformations to describe states and behaviors of a system respectively [15]. To describe a model, GTS 

uses a tuple (TG, HG, R) in which TG is a type graph, HG is a host graph, and R is a set of transformation rules. All 

node and edge types of a system is represented by TG. Moreover, TG includes two functions to determine 

source/destination nodes of edges. HG represents the initial state of the system and each node/edge in HG should be 

an instance of a node/edge type in TG, i.e. these graphs should be isomorphic. In a graph transformation rule p: LHS 

→ RHS, LHS (also called left-hand side) specifies pre-conditions of p as well as RHS (also called right-hand side) 

determines post-condition of p. In simple terms, LHS/RHS sholud be in the current host graph before/after applying 



 

the rule. Similar to HG, LHS and RHS should be isomorphic with TG. Some rules may have a NAC (negative 

application condition), which specifies a condition that its existence in the host graph causes the rule cannot apply. 

To design a model of a system using GTS, several toolsets such as AGG [16] and GROOVE [9] have been 

developed. Among these tools, GROOVE has many important features that cause this tool is selected as a 

framework to implement the proposed approach. One of these features is that GROOVE can perform automatic 

verification (model checking) by production of the model’s state space. Another feature is that this toolset is open 

source and we can add new capabilities to it. As an example of a system modeled in this toolset, the dining 

philosophers problem (DPP) with two philosophers is considered. Fig. 1 displays the host graph of the designed 

model. As shown in this figure, the nodes of this graph are {n0, n1, n2, n3} in which n0 and n1 have the same type (i.e. 

Phil) and also the type of n2 and n3 is the same (i.e. Fork). It should be noted that the host graph in Fig.1 represents 

the initial state of DPP with two philosophers in the thinking mode and two forks in the free mode. The current 

status of philosophers or forks, which is composed of some attributes along with their values, are written within the 

corresponding nodes in the forms of expression of (Attribute Name = "Attribute Value").  

To represent a transformation rule, GROOVE merges the graphs of LHS, RHS, and NAC (if available) and uses 

coloured coding to recognize their original graphs. In this coding, the components of LHS that should be removed 

after rule application, are colored with blue, whereas the ones of RHS, created after rule application, are colored with 

green. The common components of LHS and RHS are also colored with black color. Moreover, the components of 

NAC are colored with red color. For more information and examples about this subject, interested readers can refer 

to [17]. 

To generate the state space of a system, all transformation rules should be applied on the initial state 

repeatedly. The states space is usually represented in the format of a graph that nodes and edges specify states and 

transitions (i.e. applied rules on the states) between them respectively [18]. For example, Fig. 2 displays the state 

space of the DPP’s model with two philosophers. In this figure, s0 and s12 denote to the initial and final states 

respectively. In the state space, a state with no output transition is called a final (or deadlock) state. s12 describes the 

state of DPP in which all philosophers have picked up their left fork and are waiting for their right fork. Sometimes, 

some complex behavior of a model is described by a path, an alternating sequence of states and the applied rules 

(transitions) on them. For example, the path "s0 go_hungry s2 get_left s5 go_hungry s8 get_left s12" in Fig. 2 

displays how the behavior of philosophers causes a deadlock in the system. Fig. 3 also shows the corresponding 

graph of the deadlock state s12. 

2.3. Model Checking 

Model checking is a formal verification technique which verifies/refutes behavioral properties of a given 

system through systematic inspection of all states (state space) of an appropriate model of the system [19]. Hence, 

the first step in this technique is to design a suitable model of the system and describe properties by a temporal logic. 

Generating the state space of the model entirely is the second step. In the third step, the generated state space is 

explored to examine a given property in each state. If the property is verified (or refuted) in a state, a witness (or 

counterexample) will be produced. A witness or (counterexample) is a path in the state space that starts from the 

initial state and ends in the goal state, i.e. a state in which the property is satisfied (or violated) [20]. There are two 



 

well-known temporal logics, namely LTL1 and CTL2. Each formula in LTL describes an infinite sequences of states 

in which each state at any point in time has only a unique successor, whereas in CTL, each state allows to have 

several successors. In CTL, the formula to describe the properties is linear in both the size of the state space and the 

size of the formula. Hence, in this paper, we have selected CTL to describe the properties.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Some details of DPP’s model with two philosophers designed in GROOVE 

Safety is one of the important properties of systems which can be checked by model checking. A safety 

property asserts that a bad state never occurs in the state space. Suppose that q is a bad state (e.g. deadlock), the 

property "there isn't any q state in the given system" can be a safety property provided that there shouldn't any q 

state in the state space. The formula AG !q is used in CTL (and also in GROOVE) to describe this safety property. In 

CTL, symbols A and G denote respectively to all possible paths in the state space and all states in each of these 

paths.  

 

Fig. 2. The state space of the DPP’s model with two philosophers 

 

                                                           
1 Linear Temporal Logic 
2 Computation Tree Logic 

n0 

Phil 

philName = "phil (0)" 

philStatus = "thinking" 

getLeft = "false" 

getRight = "false" 

 

left 
right 

left right 

Phil 

philName = "phil (1)" 

philStatus = "thinking" 

getLeft = "false" 

getRight ="false" 

 

Fork 

forkName = "fork (0)" 

forkStatus ="free" 

 

Fork 

forkName = "fork (1)" 

forkStatus ="free" 

 
n1 

n2 n3 



 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The corresponding graph of the deadlock state of s12, shown in Fig. 2 

2.4. T-way Strategy 

Generating and checking all test cases in a real-world SUT may not be practical due to the large number of 

input parameters and their values. Assume that the set of {x1, …, xp} is input parameters of a dummy SUT such that 

each parameter xi (1≤i ≤p) can get di different values. Each test case is shown by a p-tuple (v1, …, vp) in which vi is 

one of di values, 1≤i ≤p. For example, in DPP, each component is considered as an independent parameter and can 

get one or more values. Hence, in this system, the set of parameters will be {philName for the philosopher’s name, 

philStatus for the philosopher's status, getLeft/getRight for the getting status of the left/right fork, forkName for the 

fork's name, forkStatus for the fork's status}. These parameters along with their values for a DPP’s model with two 

philosophers are shown in Table 1 [6]. In this example, we have p = 6 and d1 = 2, d2 = 5, d3 = 2, d4 = 2, d5 = 2, d6 = 

2. To test a SUT completely, entire possible settings of parameters should be generated. Each such setting is called a 

test case, and a set of test cases is also called a test suite. Obviously, a test suite should include all possible test cases 

in order to detect all existing errors. In the aforementioned example, the complete test suite contains 160 test cases 

(2 * 5 * 2 * 2 * 2 * 2 = 160). This number can be very large in complex SUT with high number of parameters, and 

this may expose the combinatorial explosion problem. 

Table 1: All parameters along with their values for a DPP’s model with two philosophers [6] 

forkStatus forkName getRight getLeft philStatus philName 
Parameter 

Name 

"free" 

"busy" 

"fork (0)" 

"fork (1)" 

"false" 

"true" 

"false" 

"true" 

"thinking" 

"hungry" 

"hasLeft" 

"eating" 

"hasRight" 

"phil (0)" 

"phil (1)" 
Parameter 

Values 

 

A mathematical method to handle the combinatorial explosion problem is t-way testing in which t denotes the 

strength of interaction, and its value can be in the range of 2 to p [7]. In the t-way testing, the achieved test suite 

should contain only all t-way interactions instead of all p-way ones. Very small values for t cause that the required 

interactions to detect errors cannot be identified. Conversely, if t takes large values, the combinatorial explosion 
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problem occurs again. Therefore, it is important to find a suitable value for t. The generated test suite by t-way 

testing is called Covering Array (CA). In the dummy SUT, mentioned in above, the covering array is denoted by CA 

(N; t, p, d1, …, dp) where N is the number of test cases and t is covering strength. Of course, if all di (1≤ i ≤ p) are 

equal with d, it is denoted by CA (N; t, p, d) or briefly CA (N; t, d 
p
). Formally, CA is a two-dimensional array N × p  

with two following properties [21]. (1) For all i in the range of 1 to p, each of di values of parameter xi should be 

seen in column i of the array at least once. (2) All combinations of each t parameters should be covered by a sub-

array N × t.  
As mentioned before, the complete test suite in the DPP’s model with two philosophers contains 160 test cases. 

By applying 2-way testing, the generated test suite, i.e. CA (N; 2, 6, 2551), will have 10 rows (N = 10). Fig. 4 

displays this test suite along with the complete one. As displayed in the Table B of this figure, all values of each 

parameter (shown in Table 1) are seen in the corresponding column of this table at least once. For example, all 

values of philStatus, which are {"thinking", "hungry", "hasLeft", "eating", "hasRight"}, are seen in column 2 of 

Table B. Moreover, all combinations of each two parameters are covered by a sub-array 10 × 2 of Table B. For 

example, two parameters philName and philStatus have 2×5 = 10 different combinations which have covered by 

columns 1 and 2 of Table B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The complete test suite and generated test suite for CA (N; 2, 6, 2551)  

A: The complete test suite  

forkStatus forkName getRight getLeft philStatus philName 
Test Case 

Number 

"free" "fork (1)" "false" "true" "hungry" "phil (0)" 1 

"busy" "fork (0)" "false" "false" "hasRight" "phil (1)" 2 

"free" "fork (0)" "true" "false" "thinking" "phil (0)" 3 

"busy" "fork (1)" "true" "true" "hasLeft" "phil (1)" 4 

"busy" "fork (1)" "true" "false" "eating" "phil (0)" 5 

"free" "fork (0)" "false" "true" "eating" "phil (1)" 6 

"free" "fork (1)" "true" "true" "hasRight" "phil (0)" 7 

"busy" "fork (0)" "true" "false" " hungry" "phil (1)" 8 

"busy" "fork (1)" "false" "true" "thinking" "phil (1)" 9 

"free" "fork (0)" "false" "false" "hasLeft" "phil (0)" 10 

 

B: The generated test suite, i.e. CA (10; 2, 6, 2551)  

forkStatus forkName getRight getLeft philStatus philName 
Test Case 

Number 

"free" "fork (0)" "false" "false" "thinking" "phil (0)" 1 

"free" "fork (0)" "false" "false" "thinking" "phil (1)" 2 

"free" "fork (0)" "false" "false" "hungry" "phil (0)" 3 

"free" "fork (0)" "false" "false" "hungry" "phil (1)" 4 
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"busy" "fork (1)" "true" "true" "hasRight" "phil (0)" 159 

"busy" "fork (1)" "true" "true" " hasRight " "phil (1)" 160 

 
Applying 2-way testing 



 

3. Related Work 

The state-of-the-art researches to improve the performance and the efficiency of t-way strategy can be grouped 

in four categories. The first category includes random methods that choose test cases randomly using input 

distribution. The most application of this method is to compare the effectiveness of it and other generation 

algorithms [22]. The second category contains mathematic methods which use the concept of mathematical 

functions such as Orthogonal Array (OA) to generate optimal CA [1]. In [23], the authors apply a recursive 

technique to build larger CAs from smaller CAs. Moreover, several tools are designed based on the extension of the 

OA construction, e.g., Combinatorial Test Services (CTS) [25] and Test Configuration (Tconfig) [26] strategies. 

Although these methods are based on the lightweight computations, they can generate optimal CAs only for small 

and special configurations. 

The mehtods in the third category use greedy algorithms to produce test cases that cover all possible 

combinations according to the input specifications. These algorithms use two different approaches: One-Parameter-

at-a-Time (OPT) and One-Row-at-a-Time (ORT) [27]. In OPT, the CA is firstly constructed for two parameters by 

adding row by row. Afterwards, the CA is reconstructed by inserting more parameters, and this process continues 

until all parameters are considered. The first implementation of this method is In-Parameter-Order (IPO) algorithm 

[28]. Based on IPO, other strategies like In-Parameter-Order-General (IPOG) [29] and In-Parameter-Order-General-

Fast (IPOG-F) [30] are produced. As the name of ORT implies the CA is built row by row. The inserted row should 

cover all t-tuples as much as possible. Upon covering all t-tuples, ORT will stop [1]. The Automatic Efficient Test 

Generator (AETG) is the first ORT-based strategy to generate the test suite. It chooses one test case among several 

candidate test cases in a greedy fashion, and adds it to the test suite [31]. In addition to AETG, other ORT-based 

strategies such as Pairwise Independent Combinatorial Testing (PICT) [32] and GTWay [33] can be mentioned.  

The fourth category includes methods which use meta-heuristic algorithms. These methods, which use the 

ORT-based strategy, generate a random set of test cases, and apply a series of operators (e.g. mutation and crossover 

ones in GA) on the test cases to improve them. Afterwards, one test case with the highest fitness is selected and 

added to the test suite. This process will be continued until all interactions are covered by the test suite. In [34], the 

authors used SA, GA and TS algorithms for solving 2-way interaction. Experimental results show that SA 

outperforms GA and TS. In [35], the SA algorithm is extended to support VSCA up to t = 3. Moreover, in [36],  the 

authors proposed a strategy based on PSO algorithm to generate the test suite. This strategy, which is called Fuzzy 

Self Adaptive PSO (FSAPSO), employs fuzzy techniques to compute the PSO parameters. Experimental results 

show that FSAPSO can produce test suites up to t = 4, and also it outperforms GA in most of configurationsthe. As 

other strategies based on PSO, FSAPSO [37], Particle Swarm-based t-way Test Generator (PSTG) [38], Hybridized 

Bat Algorithm and Particle Swarm Optimization (BAPSO) [39], and Discrete Particle Swarm Optimization (DPSO) 

[40] can be mentioned. In [41], an approach based on harmony search algorithm is proposed. This approach, which 

is called HSS, simulates the behavior of musicians to make the best song. HSS can support much higher strengths 

(up to t = 15). In [42], an approach based on Teaching-Learning-Based Optimization (TLBO) is proposed. This 

approach, which is called ATLBO, applied hash map for faster access to test cases. Experimental results show that 

ATLBO is better than TLBO in terms of efficiency and performance. 



 

As other methods based on GA, PwiesGen [43], and Pairwise Test Sets (GAPTS) [44] strategies can be 

mentioned. These strategies usually reach to the optimum test suites after a lot of iterations, as a result, they have the 

low generation speed. To handle this drawback, the strategy presented in [45] applies some changes in the structure 

of chromosomes. Experimental results show that this strategy is better than PwiesGen, GAPTS, and PWiesGenPM 

in terms of the test generation time. One of the powerful algorithms in the context of CT is GS [21]. GS, which is 

based on GA, is improved in terms of efficiency and performance by changing the bit structure, quick accessing to 

test cases, and adjusting the crossover and mutation operators. Moreover, GS can support much higher strengths (up 

to t = 20). In [6], the authors proposed an approach to extract input parameters and their values from a model of SUT 

using model checking automatically. Like to GS, this approach can support much higher strengths (up to t = 20). 

In [46], the authors proposed the Gravitational Search Test Generative (GSTG) strategy originated from the 

gravitational interaction between objects. In GSTG, test cases and their weight are specified by objects and their 

mass respectively. Due to absorbing lighter objects by heavier ones with the force of gravity, test cases with less 

weight move slowly towards test cases with more weight. As a result, a test case with the highest weight will be 

generated. The experimental results show that GSTG can support much higher strengths (up to t = 16). Multiple 

Black Hole (MBH) [47] is another meta-heuristic strategy based on the behavior of the black hole and its around 

stars. An advantage of MBH is that it doesn’t need to tune multiple parameters. The evaluation results show that 

MBH can produce a covering array up to t = 4. Sine Cosine Variable Strength (SCAVS) [48] is another strategy 

which uses the mathematical characteristics of the sine and cosine trigonometric functions. SCAVS can generate a 

covering array up to t = 6. Artificial Bee Colony (ABC) algorithm [49] simulates the group behavior of honey bees 

in the nature. Based on this algorithm, several strategies such as Artificial Bee Colony (ABC) [50] and Artificial Bee 

Colony Variable Strength (ABCVS) [51], and Hybrid Artificial Bee Colony (HABC) strategy [52] are presented to 

generate the minimum covering array. 

A hybrid strategy based on DPSO and GS (GALP) [53], Elitist Hybrid of the Migrating Birds Optimization 

algorithm and Genetic Algorithm (EMBO-GA) [54], African Buffalo Optimization (ABO) [55], Auto Constrained 

Covering Array Generation (AutoCCAG) [56], Success-History and Linear Population Size Reduction based 

Adaptive Differential Evolution strategy (LSHADE) [57], and Bi-objective Dragonfly Algorithm (BDA) [58] are 

examples of other meta-heuristic strategies to generate the minimum covering array. 

4. The first and second phases of TPA: Optimized model checking using BOA  

As mentioned before, one of the important challenges affecting on the functionality of t-way strategy is that the 

generated test suite may not reveal some complex errors. For example, according to Fig. 3, two test cases of ("phil 

(0)", "hasLeft", true, false, "fork (0)", "busy") and ("phil (1)", "hasLeft", true, false, "fork (1)", "busy") should be in 

each generated test suite. Whereas, the test suite in Table B of Fig. 4, generated by GA [6], doesn't contain these test 

cases. To resolve this challenge, TPA uses an optimized version of model checking (OMC) that extracts the 

information about special errors from a model of a given SUT, and adds this information as test cases into the 

generated test suite. Traditional model checking usually explores all reachable states (i.e. the state space) of a given 

model thoroughly to check properties [59]. To prevent the state space explosion in very large models, OMC has 

been proposed [60]. OMC is a hybrid approach of model checking and BOA that tries to find an error (e.g. 



 

deadlock) without exploring the entire state space. BOA applies a Bayesian network (BN) to capture the 

dependencies between problem variables from the current population and samples the network to generate new 

solutions [4]. In the BOA-based approach, proposed in [60] for detecting deadlocks in systems specified formally 

through GTS, the structure of BNs are supposed fixed and three different versions of the approach are proposed. The 

first version, which is called nBOA (naïve BOA), uses the naïve BN. Whereas, the second version, which is called 

cBOA (chain BOA), employes BNs with the structure of a chain in which each node depends conditionally on the 

previous node. Finally, the third version, which is called tpBOA (two parents BOA), uses the BNs with the structure 

of a chain such that each node depends conditionally on two previous nodes. According to the reported results, 

nBOA has a better performance in comparison with others. Therefore, OMC uses nBOA to find a deadlock state. If 

nBOA can find such state successfully, equivalent test cases are inserted into the test suite. In case of failure, the last 

state of a chromosome with the highest fitness value is considered as a pseudo-error and equivalent test cases are 

added into the test suite. More details about nBOA are given in [60]. 

Another important challenge affecting on the functionality of t-way strategy is that manually preparing 

parameters and their values in the modern software systems is difficult or even impossible. Although, a novel 

approach using model checking has been proposed to extract parameters and their values from a model of SUT 

automatically [6], it cannot work successfully in a large model of SUT due to the state space explosion problem. 

Unlike this approach, TPA, in the second phase, uses the information of explored states by OMC to prepare 

parameters and their values without any problem because OMC stops after exploring the pre-specified number of 

states. TPA checks each explored state and adds new parameters along with their values. For example, we consider 

the state space of the DPP’s model with two philosophers (i.e. Fig. 2). The state s0 represents the model's initial state 

and TPA can extract the initial values of parameters, i.e. "phil (0)" and "phil (1)" for philName, "thinking" for 

philStatus, "false" for getLeft, "false" for getRight, "fork (0)" and "fork (1)" for forkName, and "free" for forkStatus. 

Similar to s0, all other states are examined to find new parameters along with their values. Table 1 shows the 

extracted parameters along with their values for a DPP’s model with two philosophers. 

5. The third phase of TPA: an adopted version of evolution strategy   

Evolution Strategies (ESs) which are based on ideas of evolution, use selection and mutation operators in order 

to iteratively evolve a population of individuals. A (𝜇 + 𝜆)-ES is a general evolution strategy that selects 𝜇 number 

of most promising individuals from among the set of 𝜇 current parents and 𝜆 mutants (i.e. the results of parents' 

mutation). As mentioned before, the low generation speed and the large size of the generated test suite is considered 

as the third challenge of t-way strategy. To resolve this challenge, TPA, in the third phase, applies an adopted 

version of evolution strategy (so-called AES) which is a (1 + 1)-ES. It means that AES operates on only one 

random chromosome (as a test case) instead of a population of chromosomes. If the mutant is more promising than 

the parent one, it is considered as the parent of the next generation. Otherwise, the mutant is ignored. TPA firstly 

adds the test cases generated by OMC into an empty test suite, and then it repeats AES until the test suite covers all 

t-interactions successfully or its execution time exceeds 24 h. In each iteration, AES generates one chromosome (as 

a test case) randomly, and it tries to increase its fitness (weight or the coverage amount) during the different 



 

generations. For this purpose, AES mutates the current chromosome by using q-mutation operator for all q in the 

range of 1 to p (the number of input parameters of SUT), and repeats this process for a predefined number of steps 

(namely, maxGenerations). Finally, TPA adds the achieved chromosome (test case) into the test suite. Fig. 5 shows 

the flowchart of the third phase of TPA. In Section 5.1, a fitness function is proposed to compute the weight of test 

cases. The q-mutation operator is also presented in Section 5.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The flowchart of the third phase of TPA 

5.1. Fitness function 

To calculate the weight of a test case, we firstly introduce the concept of covering matrix. Covering matrix 

(CM) is a data structure to calculate the coverage amount (weight) of a test case. CM should hold all t-interactions of 

p parameters. It means that, CM has (𝑝
𝑡
) rows, the first t columns (cells) of each row for combinations of t different 

parameters, and the rest cells except one for showing the covering status of these combinations. Also, the number of 

The third phase of the TPA Approach 

Test Cases 

Parameters and their values 
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MutationRate 

maxGenerations 

Produce initial Covering Matrix (CM) 

Add the test cases into an empty test suite (TS) 

Update CM due to the test cases 
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No 
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i  1 
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 i  i+1 

Yes 
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chromosome  newchro 
Yes 

No 

all t-interactions 

is covered by TS 

 or time > 24 h 

Yes 

No 

Test Suite 

Adopted version of evolution strategy (AES) 

Approach 



 

the combinations is displayed in the last cell, and the summation of these numbers is called goalCoverage, i.e. the 

total number of combinations that should be covered by the test suite. For simplicity in calculations, numeric values 

are used instead of parameter names and values. It should be noted that the number of columns in rows can be 

different and they depend on the number of values for each parameter. For example, row 1 of the CM in Fig. 6. has 9 

coulmns (2+2*3+1), whereas row 5 has 15 columns (2+3*4+1). At the beginning, which the test suite is empty, all 

cells for covering status are initialized with 0.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. An example of producing an initial CM 

To produce a CM practically, the authors in [6] use nested loops with many loop variables due to the values of 

t. As a sample, for t = 10, nested ten-loops with ten loop variables are used. Actually, for each r in the range of 2 to t 

(the maximum value of t in [6] is 20), they use nested r-loops with r loop variables. Low readability of such coding 

is a drawback. As another drawback for such coding is that for large values of t (t > 20), the authors should modify 

the implementation. To resolve these drawbacks, in this paper, we use an array to store the current values of loop 

variables, and nested two-loops to simulate nested r-loops with r loop variables (for simplicity, iloop and oloop 

denote for the inner and outer loops respectively) [61]. The iloop is used to increment the innermost variable and to 

check if it spills over; in case of spilling over, it moves to upper level of the loop. The final condition, i.e. all r loop 

variables are reached to the upper bound, to stop the execution of loops is checked in oloop. Algorithm 1 shows the 

pseudocode of producing a CM with nested two-loops. 

When we want to add a test case into the test suite, firstly its weight should be computed. If the weight isn't 

zero, i.e. it covers some combinations, it is added into the test suite. Of course, the CM should also be updated. To 

calculate the weight of a given test case, for each row of CM, due to t first columns and corresponding values in the 

2 3 2 4 

1 2 3 4 

Parameter values (d) 

Parameter names (x) 

Producing an initial CM 

xj xi 

2 1 0 0 0 0 0 0 

3 1 0 0 0 0 

4 1 0 0 0 0 0 0 0 0 

3 2 0 0 0 0 0 0 

4 2 0 0 0 0 0 0 0 0 0 0 0 0 

4 3 0 0 0 0 0 0 0 0 

൬
4

2
൰ = 6 

1 0 2 4 3 5 6 7 8 10 9 11 12 13 

2+d [xi] × d [xj] 
CM 

6 

4 

8 

6 

12 

8 

14 

goalCoverage = 6+4+8+6+12+8 = 44 



 

test case, the equivalent decimal value is computed (according to lines 5-13 of Algorithm 2). If the corresponding 

column of this value is zero, i.e. this combination isn't covered by the test case, the weight is incremented by one 

unit. Moreover, the corresponding column is set to one in order to show that this combination is covered by a test 

case (according to lines 14-17 of Algorithm 2). Otherwise, it means that this combination has been covered by 

previous test cases and so the weight will not be changed. Finally, the value of goalCoverage is updated. Fig. 7 

illustrates an example of computing the weight of a test case and updating the CM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2. Q-mutation operator 

In this paper, q-mutation is the only evolution operator to improve the quality of generations. This operator 

selects q genes from the chromosome randomly and mutates all of them with a pre-defined probability (namely, 

MutationRate). To mutate a gene i (1≤ i ≤ p) of a test case tc = (v1, …, vp), vi is replaced with a new value v'i that is 

chosen among candidate values for this gene randomely. At first, the repetition number of all possible values of 

parameter i is calculated in the current test suite. The values with minimum repetition numbers are then considered 

as candidate values for this gene. For example, Fig. 8 displays the process of the 2-mutation operator on tc = (1, 1, 1, 

2). For simplicity, it is supposed that the possibility values for a parameter with w different values are a set of 

{0,1,…, w-1}. For example, the second parameter in this figure has 3 different values, and so the possibility values 

Algorithm 1 Producing a CM with nested two-loops 

1:  Input: p: the number of parameters, d: parameter values, t: the interaction strength; 

2:  Output: CM: a covering matrix,  goalCoverage; 

3:  ArrayList <int[]> CM = new ArrayList<int[]> () ; 

4:  boolean status = false; int goalCoverage = 0;  

5:  int totalUP = 0;  // the summation of all upper bounds of loop variables 

6:  int[] UP = new int [t];  // for holding the upper bounds of loop variables 

7:  for i = 1 to t do 

8:         UP [i] = p - t + i;  totalUP = totalUP + UP [i]; 

9:  end for 

10:  int[] arrs = new int [t];  // for holding the current value of loop variables 

11: arrs [1] = 1; 

12: for i = 2 to t do 

13:         arrs [i] = arrs [i-1] +1; 

14: end for 

15: while not status do     // the outer loop, i.e. oloop 

16:    if the summation of values in arrs is equal with totalUP then status = true; 

17:    if all values in arrs are different then 

18: int len = the production of d [arrs [r]] for r = 1 to t; 

19: int[] a = new int[len + t +1]; 

20:          for r = 1 to t do 

21:       a [r] = arrs [r];  

22: end for 

23: a [len + t + 1] = len; goalCoverage + = len; CM . add (a); 

24:     end if 

25:     boolean change = true; int r = t;  // start from the innermost loop  

26:     while change and r > = 1 do   // the inner loop, i.e. iloop 

27: arrs [r] ++;    // increment the innermost variable and check if spill overs 

28: if arrs [r] > UP [r] then 

29:  Reintialize loop variables; change = true; 

30: else 

31:  change = false; 

32: end if 

33: r --;     //move to upper level of the loop 

34:     end while 

35: end while 



 

for this parameter are a set of {0,1,2}. Accodring to this figure, two genes of 2 and 4 are selected randomly. Due to 

the current test suite, candidate values for each gene are computed and one of them is selected randomly. Finally, the 

achieved test case will be tc = (1, 2, 1, 1) that, as expected,  it has the higher weight compared to the primary test 

case.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. An example of computing the weight of a test case and updating the CM 

 

 

 

 

goalCoverage = 5+3+7+5+11+7 = 38 

5 

3 

7 

5 

11 

7 

2+vi × d [vj]+ vj 

2+0×3+2 = 4 

2+0×2+1 = 3 

2+0×4+3 = 5  

2+2×2+1 = 7 

2+2×4+3 = 13 

2+1×4+3 = 9 

2 1 0 1 0 0 0 0 

3 1 0 0 1 0 

4 1 0 0 0 1 0 0 0 0 

3 2 0 0 0 0 0 1 

4 2 0 0 0 0 0 0 0 0 0 0 0 1 

4 3 0 0 0 0 0 0 0 1 

1 0 2 4 3 5 6 7 8 10 9 11 12 13 

0 2 * * 

0 * 1 * 

0 * * 3 

* 2 1 * 

* 2 * 3 

* * 1 3 

Computing the weight of Test Case = (0,  2,  1,  3) 

                                                                  v1   v2   v3   v4 

Parameter values (d) 2 3 2 4 

1 2 3 4 

weight = 1+1+…+1 = 6  

14 

Algorithm 2 Computing the weight of a test case and updating the CM 

1:  Input: ts: a test case, d: parameter values, t: the interaction strength, CM: the covering matrix; 

2:  Output: CM: the covering matrix, weight, goalCoverage; 

3:  int weight = 0;  

4:  for i = 1 to CM.size() do 

5:         int[] row = CM.get (i); int[]  pow = new int [t]; 

6:         pow [1] = 1; 

7:         for j = 2 to t do  

8:     pow [j] = d [row [j-1]] * pow [j-1]; 

9:         end for 

10:       int c = t;  

11:        for j = t downto 1 do  

12:     c += ts [row [j]] * pow [j]; 

13:        end for 

14:        if row [c] == 0 then   

15:      row [c] = 1; row [row. size()] -=1; CM.set (i, row); 

16:      weight ++; 

17:        end if 

18: end for         

19: goalCoverage -= weight; 

        



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. The process of the 2-mutation operator  

6. Evaluation results  

To evaluate the efficiency and performance of TPA, the Java language is used to implement it in the GROOVE 

toolset. The results of TPA are compared with others in two ways that parameters and their values are prepared. In 

the automatically way, we use evolutionary approaches such as GS [21], TLBO [62], BA [63], and PSO [8], and to have 

a fair comparison, all approaches have been implemented in GROOVE. In the manually way, in addition to TPA and 

GS, we use TConfig as a mathematic method, PICT and IPOG as greedy algorithms, CS, PSTG, and DPSO as 

evolutionary algorithms. In result tables, the average test suite sizes and generation times over 20 independent runs 

of all approaches are displayed. It should be noted that all results have been obtained on a system with an Intel 

CORE i5 processor and 6 GB of memory. In the result tables, if an approach doesn't support corresponding 

configuration, the term "NS" is used. Moreover, the term ">day" is used when the approach cannot generate a 

complete test suite in less than a day. For more readability, the best results in each row are highlighted.  

Before executing the approaches, suitable values for the parameters should be specified. The values for the 

parameters of previous approaches have been taken from related articles. Fortunately, TPA has only two important 

parameters: MutationRate and maxGenerations. To find a proper value for MutationRate, we have executed TPA 

with different values for this parameter. The value by which TPA has the best results is 0.8, which it is relatively 

large. Of course, it is expected because TPA is based on mutations only, and to increase the weight of a chromosme, 

mutations should be performed in most cases. Moreover, after executing TPA with different values for 

maxGenerations, the value of 100 is considered as the best value. Table 2 shows these parameters along with their 

proper values. 

 

 
Parameter values (d) 2 3 2 4 

1 2 3 4 

Test Suite = {(0,  1,  0,  2), (1, 1, 1, 0), (1, 0, 0, 0)} 
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1 

6 
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9 

2 1 0 1 1 1 0 0 

3 1 1 1 0 1 

4 1 0 1 0 0 1 0 0 0 

3 2 1 1 0 1 0 0 
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4 3 1 1 0 0 1 0 0 0 

1 0 2 4 3 5 6 7 8 10 9 11 12 13 

5 

14 

CM = 

A test case for mutation: tc = (1,  1,  1,  2)                                                                   

 

selected genes for mutation 

 

tc = (1,  1,  1,  2)                                                                   

 candidate values 

 

2 1 

3
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Table 2: Proper values for parameters of the used approaches 

Value Parameter  Approach 

100 maxGenerations 
TPA 

0.8 MutationRate 

50 Population 

GS [21] 
0.4 Crossover rate 

0.6 Mutation rate 

Tournament selection Selection method 

80 Population 

PSO [8] 
0.8 W 

2 C1 

3 C2 

80 Population 

BA [63] 

0 Min frequency 

100 Max frequency 

0.25 Loudness 

0.5 Pulse rate 

80 Population TLBO [62] 

 

In the automatically way, we employ different models of five known case studies, namely Dining Philosophers 

Problem (DPP) [64], Process Life Cycle Problem (PLC) [65], Online Shopping System (OSS) [60], Firewalls 

System (FWS) [66], and Hotel Booking System (HBS) [67]. It should be noted that considered deadlock states in 

some case studies may not show the actual errors, but since these states don't have any output transitions in the state 

space, they can be considered as deadlocks in order to evaluate TPA and the others. In the following, we give a brief 

description of these case studies along with running results of all approaches on their sample models. 

DPP, which is used to check the correctness of concurrent algorithms, describes the behaviours of several 

philosophers seating around a table, and a fork is placed between each neighboring pair of philosophers. The initial 

mode of all philosophers is thinking. After a while, each of these philosophers can modify its mode to hungry and 

he/she can then pick up his/her left fork provided that it is free. In the case of obtaining the left fork, his/her mode is 

changed into hasLeft. If a right fork of a philosopher with hasLeft mode is free, he/she picks up it and modifies 

his/her mode to eating. Finally, an eating philosopher releases the obtained forks and goes to thinking. If all 

philosophers pick up their left forks, it is called that DPP has faced with a deadlock state, i.e. an error.  

Table 3 displays average test suite sizes and generation times for three different models of DPP. This case 

study has six parameters (i.e. p = 6) and interaction strength (i.e. t) is between 2 and 5. As seen in this table, TPA 

outperforms the others in terms of average generation time (i.e. performance) in all cases. At t = 2, all approaches 

generate test suites with equal sizes (i.e. efficiency). Whereas, in some configurations (three ones), GS and PSO 

have the high efficiency. In rest configurations, TPA outperforms the others in terms of efficiency. 

PLC is used to describe the life cycle of processes in the operating system. Each newly created process is 

loaded into the memory if the memory is available. The loaded process can request devices such as CPU or I/O, that 

if they are free, the process gets them and executs, otherwise, it waits. After completing, the process frees all 

allocated devices and stops. In this problem, a deadlock state occurs when all processes have executed and stopped. 

Table 4 displays the parameters name along with their values for a sample model of this case study with 5 processes 



 

and 3 memory segments. As seen, this model has 9 parameters with different values of d1 = 5, d2 = 8, d3 = 3, d4 = 2, 

d5 = 2, d6 = 2, d7 = 2, d8 = 2, and d9 = 2. Therefore, the covering array for this model will be CA (N; t, 9, 5
1
8

1
3

1
2

6
).  

Table 3: Average test suite sizes and generation times for DPP (p = 6), with t varied up to 5. 

BA 

Size/Time(s) 

TLBO 

Size/Time(s) 

PSO 

Size/Time(s) 

GS 

Size/Time(s) 

TPA 

Size/Time (s) 

the size of 

model 
t 

100.78/1.25 100.69/1.84 100.49/1.19 100.56/1.29 100.98/0.86 10 phils 

2 121.53/1.43 121.51/2.11 121.76/1.56 121.63/1.51 121.52/0.78 11 phils 

144.98/2.14 144.92/2.16 144.87/1.74 144.52/1.76 144.58/0.79 12 phils 

507.03/6.87 504.36/9.31 506.31/6.54 505.83/6.14 503.93/0.93 10 phils 

3 610.53/7.58 611.5/11.36 612.42/7.96 610.53/7.68 608.21/0.95 11 phils 

726.5/9.41 723.51/12.69 725.63/9.21 724.62/9.59 722.54/0.99 12 phils 

1015.83/11.39 1018.43/16.98 1013.23/11.22 1015.31/11.73 1016.79/1.12 10 phils 

4 1226.39/14.42 1235.31/21.05 1224.31/16.09 1221.72/13.89 1226.84/1.21 11 phils 

1451.52/15.81 1465.30/23.73 1450.31/16.69 1449.16/16.05 1452.52/1.32 12 phils 

2167.33/16.17 2168.66/21.36 2173.6/16.08 2161.8/15.09 2162.4/1.65 10 phils 

5 2629.63/20.26 2645.32/30.28 2626.33/19.54 2613.4/17.42 2614.85/2.31 11 phils 

3099.25/23.51 3096.42/33.42 3098.32/22.78 3097.34/21.94 3085.31/3.14 12 phils 

 

In Table 5, average test suite sizes and generation times are illustrated for two different models of PLC. This 

case study has 9 parameters (i.e. p = 9) and interaction strength (i.e. t) is between 2 and 8. According to this table, 

TPA has the best performance in all configurations. Although, TPA has the lower (or equal) efficiency compared to 

the others in some configurations, it outperforms them in most ones. 

Table 4: All parameters along with their values for a PLC’s model with 5 processes and 3 memory segments 
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Process 

Name 
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Name 

"true" 

"false" 

"true" 

"false" 

"true" 

"false" 

"free" 

"busy 

"free" 

"busy" 

"free" 

"busy 

"M (0)" 

"M (1)" 

"M (2)" 

"idle" 

"stopping" 
"running" 

"exeIO" 

"waiting" 
"ready" 

"isRun" 
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"P (0)" 

"P (1)" 

"P (2)" 

"P (3)" 

"P (4)" 
Parameter 
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Table 5: Average test suite sizes and generation times for PLC (p = 9), with t varied up to 8. 

BA 

Size/Time(s) 

TLBO 

Size/Time(s) 

PSO 

Size/Time(s) 

GS 

Size/Time(s) 

TPA 

Size/Time(s) 
the size of model t 

42.10/1.04 41.98/1.52 42.03/1.02 42.07/1.02 42.18/0.06 5_process_3_memory 
2 

50.01/1.22 50.58/1.83 50.84/1.27 50.29/1.25 49.62/0.05 6_process_3_memory 

131.02/5.06 129.84/7.50 132.5/5.13 130.51/5.27 130.11/0.22 5_process_3_memory 
3 

151.07/6.39 151.53/9.15 148.96/5.72 149.05/6.01 151.51/0.28 6_process_3_memory 

355.10/24.07 358.93/36.74 355.21/22.53 355.13/23.19 354.15/1.03 5_process_3_memory 
4 

426.97/27.75 432.81/43.24 425.43/27.09 427.92/28.86 425.73/1.35 6_process_3_memory 

781.94/29.03 782.51/84.69 777.93/53.91 775.41/60.8 779.71/2.83 5_process_3_memory 
5 

937.03/34.73 941.43/89.61 938.04/65.17 936.13/73.08 934.18/3.71 6_process_3_memory 

1645.17/83.71 1653.94/123.35 1649.05/82.47 1654.37/87.60 1641.85/4.93 5_process_3_memory 
6 

1971.79/99.83 1973.34/152.69 1974.29/99.93 1985.72/104.64 1971.42/7.15 6_process_3_memory 

3116.93/84.41 3127.52/119.83 3115.26/82.60 3116.52/84.53 3119.31/5.42 5_process_3_memory 
7 

3741.30/101.07 3761.35/144.42 3738.52/101.30 3749.29/105.77 3736.18/7.17 6_process_3_memory 

4669.30/89.83 4673.04/123.06 4678.10/86.30 4671.37/92.39 4660.82/6.78 5_process_3_memory 
8 

4693.04/110.43 4691.83/154.20 4693.53/105.93 4684.54/108.74 4683.63/5.34 6_process_3_memory 

 

 



 

OSS models the process of shopping by customers in a store through the Internet such that customers firstly 

view the list of products, then select and order some of them, and finally pay the bill through a credit card. In this 

system, if all customers have finished their shopping, a deadlock state occurs. Table 6 shows the parameters name 

along with their values for a sample model of this case study with 4 customers and 8 goods. According to this table, 

this model has 8 parameters with different values of d1 = 4, d2 = 2, d3 = 2, d4 = 4, d5 = 2, d6 = 8, d7 = 2, and d8 = 2. 

So, the covering array for this model will be CA (N; t, 8, 4
2
8

1
2

5
). 

Table 7 displays average test suite sizes and generation times for two different models of OSS. This case study 

has eight parameters (i.e. p = 8) and interaction strength (i.e. t) is between 2 and 7. As shown in this table, TPA 

outperforms the others in terms of performance and efficiency in most configurations.  

Table 6: All parameters along with their values for a OSS’s model with 4 customers and 8 goods 
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Status 
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Status 
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Name 
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"noBought" 
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"Good (4)" 
"Good (5)" 
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Table 7: Average test suite sizes and generation times for OSS (p = 8), with t varied up to 7. 

BA 

Size/Time(s) 

TLBO 

Size/Time(s) 

PSO 

Size/Time(s) 

GS 

Size/Time(s) 

TPA 

Size/Time(s) 

the size of 

model 
t 

32.33/0.68 32.66/1.21 32.32/0.70 32.21/0.63 34.12/0.42 4_cus_8_good 
2 

41.29/0.79 41.92/1.36 40.16/0.86 41.64/0.89 40.23/0.42 5_cus_8_good 

143.66/4.03 138.21/5.51 138.66/4.31 138.03/4.01 135.33/0.56 4_cus_8_good 
3 

174.55/5.09 172.31/6.92 177.00/5.30 178.31/5.15 168.84/069 5_cus_8_good 

340.92/14.16 342.95/19.45 334.73/13.40 332.35/14.12 335.05/0.97 4_cus_8_good 
4 

401.31/15.51 419.43/2.68 397.32/15.64 402.23/15.46 405.75/0.98 5_cus_8_good 

790.41/28.96 794.12/40.93 791.83/28.31 788.82/30.66 787.25/184 4_cus_8_good 
5 

985.41/34.50 984.32/54.59 994.54/35.48 987.72/37.43 978.46/1.85 5_cus_8_good 

1561.47/34.54 1559.42/47.57 1556.37/33.64 1561.34/36.11 1555.23/2.31 4_cus_8_good 
6 

1959.11/46.41 1958.10/66.32 1952.45/44.42 1946.32/45.53 1942.85/2.49 5_cus_8_good 

2414.64/36.20 2426.72/34.35 2411.13/26.67 2388.63/39.84 2365.85/3.63 4_cus_8_good 
7 

2991.51/36.69 3033.51/47.86 2997.12/37.41 2993.53/28.45 2987.75/2.90 5_cus_8_good 

 

FWS describes a network system in which firewalls play the role of barriers to prevent unauthorized access to 

secured and controlled internal networks. In fact, a firewall separates the network into internal and external parts. In 

the external part, safe or unsafe packets can be generated, whereas only safe packets can be produced in the internal 

part. These packets (safe or unsafe) can move from the external part to the internal part, and the firewall should stop 

the unsafe packets and denies them. In such situation, it is called FWS has faced with a deadlock state. Table 8 

displays the parameters name along with their values for a sample model of this case study with 6 in-locations (LI) 

and 6 out-locations (LO). As seen, this model has 6 parameters with different values of d1 = 6, d2 = 2, d3 = 6, d4 = 2, 

d5 = 2, and d6 = 5. Therefore, the covering array for this model will be CA (N; t, 6, 6
2
5

1
2

3
). 

In Table 9, average test suite sizes and generation times are displayed for three different models of FWS. This 

case study has 6 parameters (i.e. p = 6) and interaction strength (i.e. t) is between 2 and 5. Due to this table, TPA has 



 

the best performance in all configurations. Exception two configurations, TPA has the higher (or equal) efficiency 

compared to the others. 

Table 8: All parameters along with their values for a FWS’s model with 6 in-locations (LI) and 6 out-

locations (LO) 

Position hasunSafeP hasSafeP LO Name isFound LI Name 
Parameter 

Name 

"onLO" 

"onLI" 
"onFW" 

"onIF_LO" 

"onIF_LI" 
 

"true" 

"false" 

"true" 

"false" 

"LO (0)" 

"LO (1)" 
"LO (2)" 

"LO (3)" 

"LO (4)" 
"LO (5)" 

"true" 

"false" 

"LI (0)" 

"LI (1)" 
"LI (2)" 

"LI (3)" 

"LI (4)" 
"LI (5)" 

Parameter 

Values 

 

Table 9: Average test suite sizes and generation times for FWS (p = 6), with t varied up to 5. 

BA 

Size/Time(s) 

TLBO 

Size/Time(s) 

PSO 

Size/Time(s) 

GS 

Size/Time(s) 

TPA 

Size/Time(s) 

the size of 

model 
t 

39.5/0.45 36.98/0.63 37.00/00.43 37.51/0.49 37.00/2.01 fire_6_LI_6_LO 

2 65.71/0.83 65.53/1.07 65.98/0.79 65.51/0.81 65.11/3.03 fire_8_LI_8_LO 

262,49/3.44 263.10/4.77 262.54/3.19 262.63/3.73 260.74/3.11 fire_10_LI_10_LO 

110.53/1.44 110.97/1.87 113.92/1.48 113.51/1.75 111.23/2.04 fire_6_LI_6_LO 

3 195.24/5.93 196.10/9.00 195.31/5.19 195.01/6.02 193.63/3.17 fire_8_LI_8_LO 

505.00/19.16 505.24/27.30 506.93/17.12 507.46/15.33 503.51/4.52 fire_10_LI_10_LO 

260.91/2.91 263.91/3.88 262.57/2.83 260.31/2.97 263.31/2.12 fire_6_LI_6_LO 

4 457.84/14.30 461.57/18.37 454.51/14.64 454.50/13.11 454.75/3.42 fire_8_LI_8_LO 

712.00/20.11 709.73/25.94 713.50/19.51 712.51/21.76 709.31/4.72 fire_10_LI_10_LO 

474.10/4.08 471.92/5.55 481.31/3.79 472.80/3.15 468.21/2.21 fire_6_LI_6_LO 

5 847.50/14.91 848.83/22.65 841.52/18.81 846.03/13.70 840.90/3.66 fire_8_LI_8_LO 

1307/25.64 1301.41/32.33 1314.35/24.92 1305.31/22.78 1296.41/4.23 fire_10_LI_10_LO 

 

HBS deals with a system by which the clients can perform the hotel booking. To do this, HBS has some agents 

that receive and process the requests of the clients. In this system, if all clients have performed their booking, a 

deadlock state occurs. Table 10 shows the parameters name along with their values for a sample model of this case 

study. According to this table, this model has 13 parameters with different values of d1 = 3, d2 = 2, d3 = 9, d4 = 8, d5 

= 2, d6 = 19, d7 = 3, d8 = 2, d9 = 1, d10 = 2, d11 = 19, d12 = 1, and d13 = 1. As a result, the covering array for this 

model will be CA (N; t, 13, 2
4
9

1
3

2(19)
2
1

3
8

1
). 

In Table 11, average test suite sizes and generation times are displayed for one sample model of HBS. This 

case study has thirteen parameters (i.e. p = 13) and interaction strength (i.e. t) is between 2 and 8. As seen in the 

table, similar to the previous case studies TPA outperforms the others in terms of performance in all configurations. 

At t = 2, all approaches have equal efficiency. In most configurations, TPA outperforms the others in terms of 

efficiency. 

In the manually way, in addition to TPA and GS, we use TConfig as a mathematic method, PICT and IPOG as 

greedy algorithms, CS, PSTG, and DPSO as evolutionary algorithms. Table 12 compares TPA with the others for 6≤ 

t ≤25. In this table, only average test suite sizes are shown. As can be seen, the methods CS, TConfig, IPOG and 

PSTG can only produce test suites up to t = 6. DPSO can generate test suites up to t = 12. Whereas, methods PICT 

and GS can generate test suites up to t = 16 and t = 20 respectively. According to the table, TPA has the best 

efficiency among all mentioned methods. It can support interaction strength up to t = 25. 



 

Table 10: All parameters along with their values for a HBS’s model  

Room 

Status 

Bill

No 

CreditC 

Number 

Paid 

Amount 

UnPaid 

Amount 

Room 

Number 

Customer 

Name 

Parameter 

Name 

"registerd" 

"booked" 

"vacant" 

1000 

1001 

… 
1018 

"667540" 

"187331" 

0 

20000 

40000 
…. 

140000 

0 

20000 

40000 
…. 

160000 

2 

1 

"Andre" 

"Wegener" 

"Coburg" 
 

Parameter 

Values 

Hotel Location Amount Bill_Cntr Occupied Phone isFound 
Parameter 

Name 

"Austria" 20000 1001 

1002 

…. 
1019 

"true" 

"false" 

"+4995618210" "true" 

"false" 

Parameter 

Values 

 

Table 11: Average test suite sizes and generation times for a sample model of HBS (p = 13), with t varied up 

to 8. 

BA 

Size/Time(s) 

TLBO 

Size/Time(s) 

PSO 

Size/Time(s) 

GS 

Size/Time(s) 

TPA 

Size/Time(s) 
t 

23.42/1.29 23.11/1.72 23.83/1.23 23.45/1.24 23.33/0.88 2 

87.41/10.98 87.42/12.33 86.28/10.94 85.52/11.85 84.41/2.76 3 

287.10/109/74 293.41/110.12 283.04/107.34 285.74/105.51 277.54/8.33 4 

853.84/752.88 845.02/699.39 832.45/740.31 841.22/674.49 831.03/66.21 5 

2199.12/2893.48 2194.63/2503.31 2173.03/2639.47 2154.75/2345.91 2165.30/204.45 6 

5020.41/12648.31 5023.03/11084.21 5012.34/8042.93 5001.87/7169.65 5010.31/598.61 7 

10928.62/23841.10 11842.73/25437.60 10205.36/15069.32 10207.24/13764.29 10187.24/973.54 8 

 

As mentioned before, MutationRate specifies the mutation probability of the selected genes in the q-mutation 

operator. Due to the functionality of this operator, large values for MutationRate concludes the best results. To 

examine this assertion, we have executed TPA on CA (N; t, 2
10

), 2≤ t ≤ 6 for different values of MutationRate. The 

chart of Fig. 9 show generated test suites sizes for 10 independent runs. According to this chart, TPA has the best 

efficiency for MutationRate = 0.8. 

Similar to MutationRate, maxGenerations is also an effective parameter on the functionality of TPA. This 

parameter determines the maximum iteration number of q-mutation operator. To check the impact of this parameter, 

we have executed TPA on CA (N; t, 3
7
), 2≤ t ≤ 6 for different values of maxGenerations. The chart of Fig. 10 

illustrates generated test suites sizes for 10 independent runs. As seen in the chart, whatever the value of this 

parameter is high, q-mutation operator is more repeated and this causes the weight of the current test case is 

increased. Hence, small values for this parameter have the negative effect on the efficiency of TPA. When its value 

increments, the efficiency also raises. TPA has the best efficiency for maxGenerations = 100. Off course, large 

values (>100) don't change the efficiency.  

 

 

 

 

 



 

Table 12: Average test suite sizes for higher strengths 

Greedy 

algorithms 

Mathematic 

method 
Evolutionary algorithms 

CA 
IPOG 

N 

PICT 

N 

TConfig 

N 

DPSO 

N 

PSTG 

N 

CS 

N 

GS 

N 

TPA 

N 

1409 1455 1515 1409 1401 1399 1405.9 1401.46 CA (N; 6, 3
8
) 

NS 4618 > day 4451 NS NS 4444.9 4444.00 CA (N; 7, 3
9
) 

NS 14599 > day 13933 NS NS 13921.4 13923.91 CA (N; 8, 3
10 

) 

NS 45521 > day > day NS NS 43835 43529.31 CA (N; 9, 3
11

) 

NS 141990 > day > day NS NS 136153.30 115393.10 )
12

; 10, 3NCA ( 

NS 278993 > day > day NS NS 267196.30 266933.39 )
14

; 11, 3NCA ( 

NS 9112 > day 8972 NS NS 8898.0 8874.73 )
14

; 12, 2NCA ( 

NS 12441 > day > day NS NS 10272.0 9894.41 CA (N; 13, 2
14

) 

NS 25036 > day > day NS NS 23389.6 23437.44 CA (N; 14, 2
15

) 

NS 51127 > day > day NS NS 46698.6 45452.39 CA (N; 15, 2
16

) 

NS 100266 > day > day NS NS 95709.3 95653.12 CA (N; 16, 2
17

) 

NS > day > day > day NS NS 179595.6 177312.93 CA (N; 17, 2
18

) 

NS > day > day > day NS NS 330463.0 356156.30 CA (N; 18, 2
19

) 

NS > day > day > day NS NS 625001.6 637322.19 CA (N; 19, 2
20

) 

NS > day > day > day NS NS 1048576 1048576 CA (N; 20, 2
20

) 

NS > day > day > day NS NS NS 2097152 CA (N; 21, 2
21

) 

NS > day > day > day NS NS NS 4194303 CA (N; 22, 2
22

) 

NS > day > day > day NS NS NS 8388607 CA (N; 23, 2
23

) 

NS > day > day > day NS NS NS 16777215 CA (N; 24, 2
24

) 

NS > day > day > day NS NS NS 33554431 CA (N; 25, 2
25

) 

 

 

Fig. 9. The effect of MutationRate on the efficiency of TPA   

6.1. Statistical analysis of results  

In this section, we employ the Friedman test [68] for multiple comparisons of all algorithms, and the Wilcoxon 

signed-rank [69] for pairwise comparisons of TPA and each of the others. 

The Friedman test is a non-parametric statistical hypothesis test, which can be employed for multiple 

comparisons of several related samples. This test ranks the algorithms for each configuration separately and then 

computes mean ranks over all configurations. The first rank is given to an algorithm with the least mean rank (i.e. 

the best efficiency), the second rank to another algorithm with the second best and so on. If two algorithms are given 

similar ranks, it will be concluded that they have similar efficiency. This test has two output test statistics: (1) Chi-
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Square which is like a variance over the mean ranks; whatever the mean ranks are far from each other, it's value is 

more gerater than 0. (2) Asymp. Sig. which is a p-value. If p is less than 0.05, the null hypothesis can be rejected and 

this shows that there is a meaningful difference among different groups of data. In here, the Friedman test is carried 

out using the SPSS toolbox on the results displayed in Tables 3, 5, 7, 9, 11, and 12 (overall, 57 different 

configurations). According to Table 13, it is concluded that (1) TPA obtains the first rank (the best efficiency) 

among the considered algorithms. (2) The mean ranks are far from each other (Chi-Square = 57.664). (3) There is a 

significant difference among the performance of algorithms (Asymp. Sig. = 0.000). 

 

 

Fig. 10. The effect of maxGenerations on the efficiency of TPA   

 

Table 13: Results of the Friedman test 

BA TLBO PSO GS TPA  

3.43 3.75 3.22 2.68 1.92 Mean Rank 

4 5 3 2 1 Rank  

Chi-Square = 57.664 , Asymp. Sig. = 0.000 

 

Wilcoxon signed-rank is a non-parametric statistical hypothesis test which can be employed for pair 

comparisons of two related samples. Similar to the Friedman test, this test can also be performed using the SPSS 

toolbox. For two given algorithms A and B, this test has the following output test statistics: (1) R- /R+ shows the 

number of samples in which the algorithm A outperforms/ underperforms the algorithm B. (2) R= denotes the 

number of samples in which A and B have the equal efficiency. (3) Asymp. Sig. which is a p-value; if p is less than 

0.05, it is concluded that A is significantly better than B. Table 14 shows the Wilcoxon signed rank test results for 

pair comparisons of TPA with GS, PSO, TLBO, and BA. For each pair comparison, R-, R+, R=, and p-value are 

reported. According to this table, the values of R- are much greater than the ones of R+ and R= in all pair 

comparisons. Hence, we conclude that TPA has the best efficiency. Moreover, all obtained values of p are less than 

0.05, and this confirms that TPA is meaningfully better than the other algorithms. 
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Table 14: Results of the Wilcoxon signed-rank test 

 TPA-GS TPA-PSO TPA-TLBO TPA-BA 

R- 39 41 49 46 

R+ 18 15 8 11 

R= 0 1 0 0 

Asymp. Sig. (2-tailed) p < 0.05 p < 0.05 p <0.05 p < 0.05 

7. Threats to validity 

In this section, we discuss about the possible threats to validity of our work. The first threat is related to the 

first and second phases of TPA. It is probable that TPA cannot perform the two first phases successfully. In other 

words, TPA may not detect a deadlock state in the given model, and so the parameters and their values will not 

ready to start the third phase, i.e., genearting the minimum test suite. The second threat is that the impartiality of 

benchmark experiments may be a concern. As mentioned in Section 6, TPA and other approaches are evaluated in 

the automatically and manually ways that parameters and their values are prepared. In the automatically way, TPA is 

compared with GS, TLBO, BA, and PSO, which all of them have been implemented in GROOVE. Whereas, in the 

manually way, TPA is compared with TConfig, PICT, IPOG, CS, PSTG, and DPSO, which their source codes are 

not available. Therefore, in the manually way, unlike the automatically way, there may be a concern because the 

comparisons rely only on the previous published results. The third threat is related to how each approach 

implements the coverage matrix and calculates the weight of a test case. In the automatically way, these isn’t any 

concern about these issues because of implementing all approaches in GROOVE. But, in the manually way, there is 

a concern about these subjects due to a lack of source codes of the TConfig, PICT, IPOG, CS, PSTG, and DPSO 

approaches. 

8. Conclusion and Future Works 

In this paper, we discussed about the existing challenges of t-way strategy and proposed solutions to resolve 

them. The first and second challenges respectively relate to the low quality of the generated TS (i.e. some complex 

errors may not be found through this TS) and how to prepare parameters and their values for the t-way strategy. 

Moreover, the third challenge is the low generation speed and the large size of the generated test suite. To resolve 

these challenges, we proposed a three-phase approach (so-called TPA). In the first phase, TPA used an optimized 

version of model checking (OMC) to extract the information about special errors from a model of SUT and injecting 

them into the TS. In the second phase, TPA uses the explored states in the first phase to prepare parameters and their 

values automatically. To handle the third challenge, several methods using evolutionary algorithms have been 

proposed. Although some of them can support test suite generation up to t = 20, they have the low generation speed. 

In the third phase, TPA applies an adopted version of evolution strategy to increase the generation speed. Moreover, 

TPA can generate test suites with the interaction strength up to t = 25. Experimental results confirm that TPA 

outperforms the other greedy, mathematic, and evolutionary algorithms in terms of test suite size and generation 



 

speed. Studing other evolutionary algorithms and proposing a hybrid approach of them and TPA can be considered 

as a future work. 
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