

A three-phase approach to improve the functionality of t-way strategy

Einollah Pira1 Vahid Rafe2,3 Sajad Esfandyari2

1Faculty of Information Technology and Computer Engineering, Azarbaijan Shahid Madani University, Tabriz

5375171379, Iran
2Department of Computer Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran

3Department of Computing, Goldsmiths University of London, London, UK

pira@azaruniv.ac.ir v.rafe@gold.ac.uk sajad.a1367@gmail.com

Abstract

Although t-way strategy tries to generate a minimum test suite (TS) for detecting errors in software systems, its

functionality is affected by three important challenges. The first one, which relates to the quality of the generated

TS, expresses that some complex errors (e.g. deadlocks in concurrent systems) may not be detected through the

generated TS. The second one is that manually preparing parameters and their values in the modern software

systems is difficult or even impossible, whereas the third one is the low generation speed and the large size of the

generated test suite. In this paper, we propose a three-phase approach (so-called TPA) to handle these challenges. It

seems that injecting some information about special errors into the test suite can raise its quality. For this purpose,

TPA, in the first phase, uses an optimized version of model checking to extract such information from a model of

the system under test. The extracted information is then injected into the test suite. In the second phase, TPA uses

the generated state space in the first phase to automatically prepare parameters and their values. In the last phase,

TPA applies an adopted version of evolution strategy to improve the functionality of t-way strategy in terms of

generation speed and test suite size. Multiple and pairwise comparisons of results confirm that TPA has the best

functionality in comparison with other evolutionary algorithms.

Keywords: Combinatorial testing, T-way strategy, Model checking, Evolution strategy, Interaction strength

1. Introduction

Testing is one of the most important steps in the software development life cycle to detect any gaps, errors,

missing requirements, and others [1]. Testing should check the system under test (SUT) in two aspects of structural

and functional. In the structural one (also called white-box testing), the internal structure, design and coding of SUT

are examined. Conversely, in the functional one (also called black-box tesing), the internal structure of SUT is

ignored and the inputs and expected outputs (of course, from the customer’s point of view) are considered to

validate the overall functionality of SUT [2]. To success the black-box testing, all possible combinations of input

parameters should be checked and this may expose the combinatorial explosion problem in large and complex

systems. To handle this problem, there are several black-box methods such as cause-effect graph (CEG) and

combinatorial testing (CT). CEG is a specification-based testing method that extracts the parameters and their values

from a set of specified requirements. Actually, it graphically demonstrates the relationship between conditions

(causes) and actions (effects) by which a truth table of the causes and the effects can be derived [3]. Similar to CEG,

CT is a specification-based strategy that uses a systematic way (namely, t-way strategy or t-way interaction) to

generate a minimized TS such that it covers the required combinations of input parameters in accordance with the

strength of interaction (i.e. t in the t-way strategy).

Usually, the functionality of t-way strategy is affected by three important challenges. The first one says that

some complex errors (e.g. deadlocks in concurrent systems) may not be found through the generated TS. Actually,

the none of test cases in the TS may detect such errors. The second challenge is about how to set input parameters

and their values of the CT, manually or automatically. In most of the existing methods, this information are usually

set manually and this causes it is difficult or even impossible in the modern software systems. The third challenge

relates to the low generation speed (so-called performance) and the large size (so-called efficiency) of the generated

test suite.

In this paper, we propose a three-phase approach (so-called TPA) to handle these challenges (i.e. each phase

for a challenge). In the first phase, TPA uses an optimized version of model checking (OMC) to extract the

information of special errors from a model of SUT. OMC employs Bayesian Optimization Algorithm (BOA) to

explore the state space intelligently. BOA is an Estimation of Distribution Algorithm (EDA) that learns a Bayesian

network (as a probabilistic model) from the current population and samples the network to generate new solutions

[4]. In this context, a solution (or chromosome) is defined by a path in the state space that has a specific length and

starts from an initial state. Upon finding an error, the exploration is stopped. Otherwise, after exploring the pre-

specified number of states, the last state of a chromosome with the highest fitness value is considered as a pseudo-

error. Due to the detected error (or pseudo-error), the required combinations of input parameters and their values are

inserted into the test suite.

To extract the parameters and their values from the model, multi-stage algorithms have been proposed in the

literature [5]. These approaches, although useful, can only work in simple cases. Moreover, they cannot detect the

values of dynamic parameters. To reslove these problems, a novel approach has been proposed to automatically

extract input parameters and their values from a model of SUT using model checking [6]. In this approach, after

generating the state space entirely, the mentioned information is extracted. Although the approach can address the

second challenge somewhat, it cannot work successfully in a large model of SUT due to the state space explosion

problem. Unlike this approach, TPA, in the second phase, prepares parameters and their values without the state

space explosion problem.

To handle the third challenge, several methods using evolutionary algorithms such as Genetic Algorithm (GA)

[6], [7], Particle Swarm Optimization (PSO) [8], Cuckoo Search (CS) [1], and Ant Colony Algorithm (ACA) [7]

have been recently proposed. Although promising, there is still room for improvement. In the last phase, TPA

applies an adopted version of evolution strategy (so-called AES) to improve the functionality of CT in terms of

generation speed and test suite size. AES is repeated until a test suite with full coverage is generated successfully or

its execution time exceeds 24 h. In each iteration, AES, begins with only one random chromosome (as a test case)

instead of a population of chromosomes, and it tries to increase its fitness (the coverage amount). Finally, TPA adds

the achieved chromosome (test case) into the test suite.

The implementation results of TPA in the GROOVE toolset show that this approach improves the functionality

of CT in terms of efficiency and performance. GROOVE is an open source toolset for designing and model checking

graph transformation systems (GTS) [9]. TPA can generate test suites with the interaction strength up to t = 25.

The rest of the paper is organized as follows: In Section 2, we describe the required background such as BOA,

GTS, MC, and t-way strategy. Section 3 surveys the related work. Section 4 is dedicated to describe the details of

the first and second phases of TPA. In section 5, we present the third phase of TPA with more details. In Section 6,

we evaluate TPA through different benchmark experiments. Threats to validity are discussed in Section 7. Finally,

we conclude the paper and present ideas for our future works in Section 8.

2. Background

2.1. Bayesian Optimization Algorithm

Bayesian Optimization Algorithm (BOA) is one type of EDA which has solved a group of complicated

problems such as Software Testing [10], Protein Folding [11], Planning Problems [12], and Searching the Optimum

Path in 3D Spaces [13]. BOA uses a Bayesian network (BN) to consider multivariate interactions between variables.

In other words, BOA applies the learning and sampling of a BN instead of the traditional genetic operators like

crossover and mutation [4]. BN is a probabilistic graphical model which represents a problem as a set of random

variables and probabilistic dependencies among them [4]. Usually, a BN is illustrated by a Directed Acyclic Graph

(DAG) composed of nodes and arcs, which represent respectively random variables and probabilistic dependencies

between these variables. The amount of probabilistic dependencies for each node is specified by a table. The

components of a BN can be specified either manually by a domain expert or automatically using machine learning

algorithms.
Similar to the other evolutionary algorithms such as GA, BOA produces the initial population of candidate

solutions randomly. BOA then repeats several operations until the termination criteria such as an optimum solution

is found or a maximum number of iterations is performed: (1) the current population is evaluated by a fitness

function. (2) A set of most promising solutions are chosen and a BN is learned through these solutions. (3) The

learnt BN is used to produce new candidate solutions and they are replaced with the ones in the current population

that have the lowest fitness values [14].

2.2. Graph Transformation System

Graph Transformation System (GTS) is a formal language based on the concept of graphs which uses graphs

and graph transformations to describe states and behaviors of a system respectively [15]. To describe a model, GTS

uses a tuple (TG, HG, R) in which TG is a type graph, HG is a host graph, and R is a set of transformation rules. All

node and edge types of a system is represented by TG. Moreover, TG includes two functions to determine

source/destination nodes of edges. HG represents the initial state of the system and each node/edge in HG should be

an instance of a node/edge type in TG, i.e. these graphs should be isomorphic. In a graph transformation rule p: LHS

→ RHS, LHS (also called left-hand side) specifies pre-conditions of p as well as RHS (also called right-hand side)

determines post-condition of p. In simple terms, LHS/RHS sholud be in the current host graph before/after applying

the rule. Similar to HG, LHS and RHS should be isomorphic with TG. Some rules may have a NAC (negative

application condition), which specifies a condition that its existence in the host graph causes the rule cannot apply.

To design a model of a system using GTS, several toolsets such as AGG [16] and GROOVE [9] have been

developed. Among these tools, GROOVE has many important features that cause this tool is selected as a

framework to implement the proposed approach. One of these features is that GROOVE can perform automatic

verification (model checking) by production of the model’s state space. Another feature is that this toolset is open

source and we can add new capabilities to it. As an example of a system modeled in this toolset, the dining

philosophers problem (DPP) with two philosophers is considered. Fig. 1 displays the host graph of the designed

model. As shown in this figure, the nodes of this graph are {n0, n1, n2, n3} in which n0 and n1 have the same type (i.e.

Phil) and also the type of n2 and n3 is the same (i.e. Fork). It should be noted that the host graph in Fig.1 represents

the initial state of DPP with two philosophers in the thinking mode and two forks in the free mode. The current

status of philosophers or forks, which is composed of some attributes along with their values, are written within the

corresponding nodes in the forms of expression of (Attribute Name = "Attribute Value").

To represent a transformation rule, GROOVE merges the graphs of LHS, RHS, and NAC (if available) and uses

coloured coding to recognize their original graphs. In this coding, the components of LHS that should be removed

after rule application, are colored with blue, whereas the ones of RHS, created after rule application, are colored with

green. The common components of LHS and RHS are also colored with black color. Moreover, the components of

NAC are colored with red color. For more information and examples about this subject, interested readers can refer

to [17].

To generate the state space of a system, all transformation rules should be applied on the initial state

repeatedly. The states space is usually represented in the format of a graph that nodes and edges specify states and

transitions (i.e. applied rules on the states) between them respectively [18]. For example, Fig. 2 displays the state

space of the DPP’s model with two philosophers. In this figure, s0 and s12 denote to the initial and final states

respectively. In the state space, a state with no output transition is called a final (or deadlock) state. s12 describes the

state of DPP in which all philosophers have picked up their left fork and are waiting for their right fork. Sometimes,

some complex behavior of a model is described by a path, an alternating sequence of states and the applied rules

(transitions) on them. For example, the path "s0 go_hungry s2 get_left s5 go_hungry s8 get_left s12" in Fig. 2

displays how the behavior of philosophers causes a deadlock in the system. Fig. 3 also shows the corresponding

graph of the deadlock state s12.

2.3. Model Checking

Model checking is a formal verification technique which verifies/refutes behavioral properties of a given

system through systematic inspection of all states (state space) of an appropriate model of the system [19]. Hence,

the first step in this technique is to design a suitable model of the system and describe properties by a temporal logic.

Generating the state space of the model entirely is the second step. In the third step, the generated state space is

explored to examine a given property in each state. If the property is verified (or refuted) in a state, a witness (or

counterexample) will be produced. A witness or (counterexample) is a path in the state space that starts from the

initial state and ends in the goal state, i.e. a state in which the property is satisfied (or violated) [20]. There are two

well-known temporal logics, namely LTL1 and CTL2. Each formula in LTL describes an infinite sequences of states

in which each state at any point in time has only a unique successor, whereas in CTL, each state allows to have

several successors. In CTL, the formula to describe the properties is linear in both the size of the state space and the

size of the formula. Hence, in this paper, we have selected CTL to describe the properties.

Fig. 1. Some details of DPP’s model with two philosophers designed in GROOVE

Safety is one of the important properties of systems which can be checked by model checking. A safety

property asserts that a bad state never occurs in the state space. Suppose that q is a bad state (e.g. deadlock), the

property "there isn't any q state in the given system" can be a safety property provided that there shouldn't any q

state in the state space. The formula AG !q is used in CTL (and also in GROOVE) to describe this safety property. In

CTL, symbols A and G denote respectively to all possible paths in the state space and all states in each of these

paths.

Fig. 2. The state space of the DPP’s model with two philosophers

1 Linear Temporal Logic
2 Computation Tree Logic

n0

Phil

philName = "phil (0)"

philStatus = "thinking"

getLeft = "false"

getRight = "false"

left
right

left right

Phil

philName = "phil (1)"

philStatus = "thinking"

getLeft = "false"

getRight ="false"

Fork

forkName = "fork (0)"

forkStatus ="free"

Fork

forkName = "fork (1)"

forkStatus ="free"

n1

n2 n3

Fig. 3. The corresponding graph of the deadlock state of s12, shown in Fig. 2

2.4. T-way Strategy

Generating and checking all test cases in a real-world SUT may not be practical due to the large number of

input parameters and their values. Assume that the set of {x1, …, xp} is input parameters of a dummy SUT such that

each parameter xi (1≤i ≤p) can get di different values. Each test case is shown by a p-tuple (v1, …, vp) in which vi is

one of di values, 1≤i ≤p. For example, in DPP, each component is considered as an independent parameter and can

get one or more values. Hence, in this system, the set of parameters will be {philName for the philosopher’s name,

philStatus for the philosopher's status, getLeft/getRight for the getting status of the left/right fork, forkName for the

fork's name, forkStatus for the fork's status}. These parameters along with their values for a DPP’s model with two

philosophers are shown in Table 1 [6]. In this example, we have p = 6 and d1 = 2, d2 = 5, d3 = 2, d4 = 2, d5 = 2, d6 =

2. To test a SUT completely, entire possible settings of parameters should be generated. Each such setting is called a

test case, and a set of test cases is also called a test suite. Obviously, a test suite should include all possible test cases

in order to detect all existing errors. In the aforementioned example, the complete test suite contains 160 test cases

(2 * 5 * 2 * 2 * 2 * 2 = 160). This number can be very large in complex SUT with high number of parameters, and

this may expose the combinatorial explosion problem.

Table 1: All parameters along with their values for a DPP’s model with two philosophers [6]

forkStatus forkName getRight getLeft philStatus philName
Parameter

Name

"free"

"busy"

"fork (0)"

"fork (1)"

"false"

"true"

"false"

"true"

"thinking"

"hungry"

"hasLeft"

"eating"

"hasRight"

"phil (0)"

"phil (1)"
Parameter

Values

A mathematical method to handle the combinatorial explosion problem is t-way testing in which t denotes the

strength of interaction, and its value can be in the range of 2 to p [7]. In the t-way testing, the achieved test suite

should contain only all t-way interactions instead of all p-way ones. Very small values for t cause that the required

interactions to detect errors cannot be identified. Conversely, if t takes large values, the combinatorial explosion

Phil

philName = "phil (0)"

philStatus = "hasLeft"

getLeft = "true"

getRight = "false"

left

hold right

left

hold
right

Phil

philName = "phil (1)"

philStatus ="hasLeft"

getLeft = "true"

getRight ="false"

Fork

forkName = "fork (0)"

forkStatus ="busy"

Fork

forkName = "fork (1)"

forkStatus ="busy"

problem occurs again. Therefore, it is important to find a suitable value for t. The generated test suite by t-way

testing is called Covering Array (CA). In the dummy SUT, mentioned in above, the covering array is denoted by CA

(N; t, p, d1, …, dp) where N is the number of test cases and t is covering strength. Of course, if all di (1≤ i ≤ p) are

equal with d, it is denoted by CA (N; t, p, d) or briefly CA (N; t, d
p
). Formally, CA is a two-dimensional array N × p

with two following properties [21]. (1) For all i in the range of 1 to p, each of di values of parameter xi should be

seen in column i of the array at least once. (2) All combinations of each t parameters should be covered by a sub-

array N × t.
As mentioned before, the complete test suite in the DPP’s model with two philosophers contains 160 test cases.

By applying 2-way testing, the generated test suite, i.e. CA (N; 2, 6, 2551), will have 10 rows (N = 10). Fig. 4

displays this test suite along with the complete one. As displayed in the Table B of this figure, all values of each

parameter (shown in Table 1) are seen in the corresponding column of this table at least once. For example, all

values of philStatus, which are {"thinking", "hungry", "hasLeft", "eating", "hasRight"}, are seen in column 2 of

Table B. Moreover, all combinations of each two parameters are covered by a sub-array 10 × 2 of Table B. For

example, two parameters philName and philStatus have 2×5 = 10 different combinations which have covered by

columns 1 and 2 of Table B.

Fig. 4. The complete test suite and generated test suite for CA (N; 2, 6, 2551)

A: The complete test suite

forkStatus forkName getRight getLeft philStatus philName
Test Case

Number

"free" "fork (1)" "false" "true" "hungry" "phil (0)" 1

"busy" "fork (0)" "false" "false" "hasRight" "phil (1)" 2

"free" "fork (0)" "true" "false" "thinking" "phil (0)" 3

"busy" "fork (1)" "true" "true" "hasLeft" "phil (1)" 4

"busy" "fork (1)" "true" "false" "eating" "phil (0)" 5

"free" "fork (0)" "false" "true" "eating" "phil (1)" 6

"free" "fork (1)" "true" "true" "hasRight" "phil (0)" 7

"busy" "fork (0)" "true" "false" " hungry" "phil (1)" 8

"busy" "fork (1)" "false" "true" "thinking" "phil (1)" 9

"free" "fork (0)" "false" "false" "hasLeft" "phil (0)" 10

B: The generated test suite, i.e. CA (10; 2, 6, 2551)

forkStatus forkName getRight getLeft philStatus philName
Test Case

Number

"free" "fork (0)" "false" "false" "thinking" "phil (0)" 1

"free" "fork (0)" "false" "false" "thinking" "phil (1)" 2

"free" "fork (0)" "false" "false" "hungry" "phil (0)" 3

"free" "fork (0)" "false" "false" "hungry" "phil (1)" 4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

"busy" "fork (1)" "true" "true" "hasRight" "phil (0)" 159

"busy" "fork (1)" "true" "true" " hasRight " "phil (1)" 160

Applying 2-way testing

3. Related Work

The state-of-the-art researches to improve the performance and the efficiency of t-way strategy can be grouped

in four categories. The first category includes random methods that choose test cases randomly using input

distribution. The most application of this method is to compare the effectiveness of it and other generation

algorithms [22]. The second category contains mathematic methods which use the concept of mathematical

functions such as Orthogonal Array (OA) to generate optimal CA [1]. In [23], the authors apply a recursive

technique to build larger CAs from smaller CAs. Moreover, several tools are designed based on the extension of the

OA construction, e.g., Combinatorial Test Services (CTS) [25] and Test Configuration (Tconfig) [26] strategies.

Although these methods are based on the lightweight computations, they can generate optimal CAs only for small

and special configurations.

The mehtods in the third category use greedy algorithms to produce test cases that cover all possible

combinations according to the input specifications. These algorithms use two different approaches: One-Parameter-

at-a-Time (OPT) and One-Row-at-a-Time (ORT) [27]. In OPT, the CA is firstly constructed for two parameters by

adding row by row. Afterwards, the CA is reconstructed by inserting more parameters, and this process continues

until all parameters are considered. The first implementation of this method is In-Parameter-Order (IPO) algorithm

[28]. Based on IPO, other strategies like In-Parameter-Order-General (IPOG) [29] and In-Parameter-Order-General-

Fast (IPOG-F) [30] are produced. As the name of ORT implies the CA is built row by row. The inserted row should

cover all t-tuples as much as possible. Upon covering all t-tuples, ORT will stop [1]. The Automatic Efficient Test

Generator (AETG) is the first ORT-based strategy to generate the test suite. It chooses one test case among several

candidate test cases in a greedy fashion, and adds it to the test suite [31]. In addition to AETG, other ORT-based

strategies such as Pairwise Independent Combinatorial Testing (PICT) [32] and GTWay [33] can be mentioned.

The fourth category includes methods which use meta-heuristic algorithms. These methods, which use the

ORT-based strategy, generate a random set of test cases, and apply a series of operators (e.g. mutation and crossover

ones in GA) on the test cases to improve them. Afterwards, one test case with the highest fitness is selected and

added to the test suite. This process will be continued until all interactions are covered by the test suite. In [34], the

authors used SA, GA and TS algorithms for solving 2-way interaction. Experimental results show that SA

outperforms GA and TS. In [35], the SA algorithm is extended to support VSCA up to t = 3. Moreover, in [36], the

authors proposed a strategy based on PSO algorithm to generate the test suite. This strategy, which is called Fuzzy

Self Adaptive PSO (FSAPSO), employs fuzzy techniques to compute the PSO parameters. Experimental results

show that FSAPSO can produce test suites up to t = 4, and also it outperforms GA in most of configurationsthe. As

other strategies based on PSO, FSAPSO [37], Particle Swarm-based t-way Test Generator (PSTG) [38], Hybridized

Bat Algorithm and Particle Swarm Optimization (BAPSO) [39], and Discrete Particle Swarm Optimization (DPSO)

[40] can be mentioned. In [41], an approach based on harmony search algorithm is proposed. This approach, which

is called HSS, simulates the behavior of musicians to make the best song. HSS can support much higher strengths

(up to t = 15). In [42], an approach based on Teaching-Learning-Based Optimization (TLBO) is proposed. This

approach, which is called ATLBO, applied hash map for faster access to test cases. Experimental results show that

ATLBO is better than TLBO in terms of efficiency and performance.

As other methods based on GA, PwiesGen [43], and Pairwise Test Sets (GAPTS) [44] strategies can be

mentioned. These strategies usually reach to the optimum test suites after a lot of iterations, as a result, they have the

low generation speed. To handle this drawback, the strategy presented in [45] applies some changes in the structure

of chromosomes. Experimental results show that this strategy is better than PwiesGen, GAPTS, and PWiesGenPM

in terms of the test generation time. One of the powerful algorithms in the context of CT is GS [21]. GS, which is

based on GA, is improved in terms of efficiency and performance by changing the bit structure, quick accessing to

test cases, and adjusting the crossover and mutation operators. Moreover, GS can support much higher strengths (up

to t = 20). In [6], the authors proposed an approach to extract input parameters and their values from a model of SUT

using model checking automatically. Like to GS, this approach can support much higher strengths (up to t = 20).

In [46], the authors proposed the Gravitational Search Test Generative (GSTG) strategy originated from the

gravitational interaction between objects. In GSTG, test cases and their weight are specified by objects and their

mass respectively. Due to absorbing lighter objects by heavier ones with the force of gravity, test cases with less

weight move slowly towards test cases with more weight. As a result, a test case with the highest weight will be

generated. The experimental results show that GSTG can support much higher strengths (up to t = 16). Multiple

Black Hole (MBH) [47] is another meta-heuristic strategy based on the behavior of the black hole and its around

stars. An advantage of MBH is that it doesn’t need to tune multiple parameters. The evaluation results show that

MBH can produce a covering array up to t = 4. Sine Cosine Variable Strength (SCAVS) [48] is another strategy

which uses the mathematical characteristics of the sine and cosine trigonometric functions. SCAVS can generate a

covering array up to t = 6. Artificial Bee Colony (ABC) algorithm [49] simulates the group behavior of honey bees

in the nature. Based on this algorithm, several strategies such as Artificial Bee Colony (ABC) [50] and Artificial Bee

Colony Variable Strength (ABCVS) [51], and Hybrid Artificial Bee Colony (HABC) strategy [52] are presented to

generate the minimum covering array.

A hybrid strategy based on DPSO and GS (GALP) [53], Elitist Hybrid of the Migrating Birds Optimization

algorithm and Genetic Algorithm (EMBO-GA) [54], African Buffalo Optimization (ABO) [55], Auto Constrained

Covering Array Generation (AutoCCAG) [56], Success-History and Linear Population Size Reduction based

Adaptive Differential Evolution strategy (LSHADE) [57], and Bi-objective Dragonfly Algorithm (BDA) [58] are

examples of other meta-heuristic strategies to generate the minimum covering array.

4. The first and second phases of TPA: Optimized model checking using BOA

As mentioned before, one of the important challenges affecting on the functionality of t-way strategy is that the

generated test suite may not reveal some complex errors. For example, according to Fig. 3, two test cases of ("phil

(0)", "hasLeft", true, false, "fork (0)", "busy") and ("phil (1)", "hasLeft", true, false, "fork (1)", "busy") should be in

each generated test suite. Whereas, the test suite in Table B of Fig. 4, generated by GA [6], doesn't contain these test

cases. To resolve this challenge, TPA uses an optimized version of model checking (OMC) that extracts the

information about special errors from a model of a given SUT, and adds this information as test cases into the

generated test suite. Traditional model checking usually explores all reachable states (i.e. the state space) of a given

model thoroughly to check properties [59]. To prevent the state space explosion in very large models, OMC has

been proposed [60]. OMC is a hybrid approach of model checking and BOA that tries to find an error (e.g.

deadlock) without exploring the entire state space. BOA applies a Bayesian network (BN) to capture the

dependencies between problem variables from the current population and samples the network to generate new

solutions [4]. In the BOA-based approach, proposed in [60] for detecting deadlocks in systems specified formally

through GTS, the structure of BNs are supposed fixed and three different versions of the approach are proposed. The

first version, which is called nBOA (naïve BOA), uses the naïve BN. Whereas, the second version, which is called

cBOA (chain BOA), employes BNs with the structure of a chain in which each node depends conditionally on the

previous node. Finally, the third version, which is called tpBOA (two parents BOA), uses the BNs with the structure

of a chain such that each node depends conditionally on two previous nodes. According to the reported results,

nBOA has a better performance in comparison with others. Therefore, OMC uses nBOA to find a deadlock state. If

nBOA can find such state successfully, equivalent test cases are inserted into the test suite. In case of failure, the last

state of a chromosome with the highest fitness value is considered as a pseudo-error and equivalent test cases are

added into the test suite. More details about nBOA are given in [60].

Another important challenge affecting on the functionality of t-way strategy is that manually preparing

parameters and their values in the modern software systems is difficult or even impossible. Although, a novel

approach using model checking has been proposed to extract parameters and their values from a model of SUT

automatically [6], it cannot work successfully in a large model of SUT due to the state space explosion problem.

Unlike this approach, TPA, in the second phase, uses the information of explored states by OMC to prepare

parameters and their values without any problem because OMC stops after exploring the pre-specified number of

states. TPA checks each explored state and adds new parameters along with their values. For example, we consider

the state space of the DPP’s model with two philosophers (i.e. Fig. 2). The state s0 represents the model's initial state

and TPA can extract the initial values of parameters, i.e. "phil (0)" and "phil (1)" for philName, "thinking" for

philStatus, "false" for getLeft, "false" for getRight, "fork (0)" and "fork (1)" for forkName, and "free" for forkStatus.

Similar to s0, all other states are examined to find new parameters along with their values. Table 1 shows the

extracted parameters along with their values for a DPP’s model with two philosophers.

5. The third phase of TPA: an adopted version of evolution strategy

Evolution Strategies (ESs) which are based on ideas of evolution, use selection and mutation operators in order

to iteratively evolve a population of individuals. A (𝜇 + 𝜆)-ES is a general evolution strategy that selects 𝜇 number

of most promising individuals from among the set of 𝜇 current parents and 𝜆 mutants (i.e. the results of parents'

mutation). As mentioned before, the low generation speed and the large size of the generated test suite is considered

as the third challenge of t-way strategy. To resolve this challenge, TPA, in the third phase, applies an adopted

version of evolution strategy (so-called AES) which is a (1 + 1)-ES. It means that AES operates on only one

random chromosome (as a test case) instead of a population of chromosomes. If the mutant is more promising than

the parent one, it is considered as the parent of the next generation. Otherwise, the mutant is ignored. TPA firstly

adds the test cases generated by OMC into an empty test suite, and then it repeats AES until the test suite covers all

t-interactions successfully or its execution time exceeds 24 h. In each iteration, AES generates one chromosome (as

a test case) randomly, and it tries to increase its fitness (weight or the coverage amount) during the different

generations. For this purpose, AES mutates the current chromosome by using q-mutation operator for all q in the

range of 1 to p (the number of input parameters of SUT), and repeats this process for a predefined number of steps

(namely, maxGenerations). Finally, TPA adds the achieved chromosome (test case) into the test suite. Fig. 5 shows

the flowchart of the third phase of TPA. In Section 5.1, a fitness function is proposed to compute the weight of test

cases. The q-mutation operator is also presented in Section 5.2.

Fig. 5. The flowchart of the third phase of TPA

5.1. Fitness function

To calculate the weight of a test case, we firstly introduce the concept of covering matrix. Covering matrix

(CM) is a data structure to calculate the coverage amount (weight) of a test case. CM should hold all t-interactions of

p parameters. It means that, CM has (𝑝
𝑡
) rows, the first t columns (cells) of each row for combinations of t different

parameters, and the rest cells except one for showing the covering status of these combinations. Also, the number of

The third phase of the TPA Approach

Test Cases

Parameters and their values

OMC

t

MutationRate

maxGenerations

Produce initial Covering Matrix (CM)

Add the test cases into an empty test suite (TS)

Update CM due to the test cases

Produce a chromosome randomely

No

TS  TS ∪ chromosome

Update CM due to the chromosome

i  1
i ≤ maxGenerations

 i  i+1

Yes

newchro  q-mutation (chromosome)

newchro.weight >

chromosome.weight

chromosome  newchro
Yes

No

all t-interactions

is covered by TS

 or time > 24 h

Yes

No

Test Suite

Adopted version of evolution strategy (AES)

Approach

the combinations is displayed in the last cell, and the summation of these numbers is called goalCoverage, i.e. the

total number of combinations that should be covered by the test suite. For simplicity in calculations, numeric values

are used instead of parameter names and values. It should be noted that the number of columns in rows can be

different and they depend on the number of values for each parameter. For example, row 1 of the CM in Fig. 6. has 9

coulmns (2+2*3+1), whereas row 5 has 15 columns (2+3*4+1). At the beginning, which the test suite is empty, all

cells for covering status are initialized with 0.

Fig. 6. An example of producing an initial CM

To produce a CM practically, the authors in [6] use nested loops with many loop variables due to the values of

t. As a sample, for t = 10, nested ten-loops with ten loop variables are used. Actually, for each r in the range of 2 to t

(the maximum value of t in [6] is 20), they use nested r-loops with r loop variables. Low readability of such coding

is a drawback. As another drawback for such coding is that for large values of t (t > 20), the authors should modify

the implementation. To resolve these drawbacks, in this paper, we use an array to store the current values of loop

variables, and nested two-loops to simulate nested r-loops with r loop variables (for simplicity, iloop and oloop

denote for the inner and outer loops respectively) [61]. The iloop is used to increment the innermost variable and to

check if it spills over; in case of spilling over, it moves to upper level of the loop. The final condition, i.e. all r loop

variables are reached to the upper bound, to stop the execution of loops is checked in oloop. Algorithm 1 shows the

pseudocode of producing a CM with nested two-loops.

When we want to add a test case into the test suite, firstly its weight should be computed. If the weight isn't

zero, i.e. it covers some combinations, it is added into the test suite. Of course, the CM should also be updated. To

calculate the weight of a given test case, for each row of CM, due to t first columns and corresponding values in the

2 3 2 4

1 2 3 4

Parameter values (d)

Parameter names (x)

Producing an initial CM

xj xi

2 1 0 0 0 0 0 0

3 1 0 0 0 0

4 1 0 0 0 0 0 0 0 0

3 2 0 0 0 0 0 0

4 2 0 0 0 0 0 0 0 0 0 0 0 0

4 3 0 0 0 0 0 0 0 0

൬
4

2
൰ = 6

1 0 2 4 3 5 6 7 8 10 9 11 12 13

2+d [xi] × d [xj]
CM

6

4

8

6

12

8

14

goalCoverage = 6+4+8+6+12+8 = 44

test case, the equivalent decimal value is computed (according to lines 5-13 of Algorithm 2). If the corresponding

column of this value is zero, i.e. this combination isn't covered by the test case, the weight is incremented by one

unit. Moreover, the corresponding column is set to one in order to show that this combination is covered by a test

case (according to lines 14-17 of Algorithm 2). Otherwise, it means that this combination has been covered by

previous test cases and so the weight will not be changed. Finally, the value of goalCoverage is updated. Fig. 7

illustrates an example of computing the weight of a test case and updating the CM.

5.2. Q-mutation operator

In this paper, q-mutation is the only evolution operator to improve the quality of generations. This operator

selects q genes from the chromosome randomly and mutates all of them with a pre-defined probability (namely,

MutationRate). To mutate a gene i (1≤ i ≤ p) of a test case tc = (v1, …, vp), vi is replaced with a new value v'i that is

chosen among candidate values for this gene randomely. At first, the repetition number of all possible values of

parameter i is calculated in the current test suite. The values with minimum repetition numbers are then considered

as candidate values for this gene. For example, Fig. 8 displays the process of the 2-mutation operator on tc = (1, 1, 1,

2). For simplicity, it is supposed that the possibility values for a parameter with w different values are a set of

{0,1,…, w-1}. For example, the second parameter in this figure has 3 different values, and so the possibility values

Algorithm 1 Producing a CM with nested two-loops

1: Input: p: the number of parameters, d: parameter values, t: the interaction strength;

2: Output: CM: a covering matrix, goalCoverage;

3: ArrayList <int[]> CM = new ArrayList<int[]> () ;

4: boolean status = false; int goalCoverage = 0;

5: int totalUP = 0; // the summation of all upper bounds of loop variables

6: int[] UP = new int [t]; // for holding the upper bounds of loop variables

7: for i = 1 to t do

8: UP [i] = p - t + i; totalUP = totalUP + UP [i];

9: end for

10: int[] arrs = new int [t]; // for holding the current value of loop variables

11: arrs [1] = 1;

12: for i = 2 to t do

13: arrs [i] = arrs [i-1] +1;

14: end for

15: while not status do // the outer loop, i.e. oloop

16: if the summation of values in arrs is equal with totalUP then status = true;

17: if all values in arrs are different then

18: int len = the production of d [arrs [r]] for r = 1 to t;

19: int[] a = new int[len + t +1];

20: for r = 1 to t do

21: a [r] = arrs [r];

22: end for

23: a [len + t + 1] = len; goalCoverage + = len; CM . add (a);

24: end if

25: boolean change = true; int r = t; // start from the innermost loop

26: while change and r > = 1 do // the inner loop, i.e. iloop

27: arrs [r] ++; // increment the innermost variable and check if spill overs

28: if arrs [r] > UP [r] then

29: Reintialize loop variables; change = true;

30: else

31: change = false;

32: end if

33: r --; //move to upper level of the loop

34: end while

35: end while

for this parameter are a set of {0,1,2}. Accodring to this figure, two genes of 2 and 4 are selected randomly. Due to

the current test suite, candidate values for each gene are computed and one of them is selected randomly. Finally, the

achieved test case will be tc = (1, 2, 1, 1) that, as expected, it has the higher weight compared to the primary test

case.

Fig. 7. An example of computing the weight of a test case and updating the CM

goalCoverage = 5+3+7+5+11+7 = 38

5

3

7

5

11

7

2+vi × d [vj]+ vj

2+0×3+2 = 4

2+0×2+1 = 3

2+0×4+3 = 5

2+2×2+1 = 7

2+2×4+3 = 13

2+1×4+3 = 9

2 1 0 1 0 0 0 0

3 1 0 0 1 0

4 1 0 0 0 1 0 0 0 0

3 2 0 0 0 0 0 1

4 2 0 0 0 0 0 0 0 0 0 0 0 1

4 3 0 0 0 0 0 0 0 1

1 0 2 4 3 5 6 7 8 10 9 11 12 13

0 2 * *

0 * 1 *

0 * * 3

* 2 1 *

* 2 * 3

* * 1 3

Computing the weight of Test Case = (0, 2, 1, 3)

 v1 v2 v3 v4

Parameter values (d) 2 3 2 4

1 2 3 4

weight = 1+1+…+1 = 6

14

Algorithm 2 Computing the weight of a test case and updating the CM

1: Input: ts: a test case, d: parameter values, t: the interaction strength, CM: the covering matrix;

2: Output: CM: the covering matrix, weight, goalCoverage;

3: int weight = 0;

4: for i = 1 to CM.size() do

5: int[] row = CM.get (i); int[] pow = new int [t];

6: pow [1] = 1;

7: for j = 2 to t do

8: pow [j] = d [row [j-1]] * pow [j-1];

9: end for

10: int c = t;

11: for j = t downto 1 do

12: c += ts [row [j]] * pow [j];

13: end for

14: if row [c] == 0 then

15: row [c] = 1; row [row. size()] -=1; CM.set (i, row);

16: weight ++;

17: end if

18: end for

19: goalCoverage -= weight;

Fig. 8. The process of the 2-mutation operator

6. Evaluation results

To evaluate the efficiency and performance of TPA, the Java language is used to implement it in the GROOVE

toolset. The results of TPA are compared with others in two ways that parameters and their values are prepared. In

the automatically way, we use evolutionary approaches such as GS [21], TLBO [62], BA [63], and PSO [8], and to have

a fair comparison, all approaches have been implemented in GROOVE. In the manually way, in addition to TPA and

GS, we use TConfig as a mathematic method, PICT and IPOG as greedy algorithms, CS, PSTG, and DPSO as

evolutionary algorithms. In result tables, the average test suite sizes and generation times over 20 independent runs

of all approaches are displayed. It should be noted that all results have been obtained on a system with an Intel

CORE i5 processor and 6 GB of memory. In the result tables, if an approach doesn't support corresponding

configuration, the term "NS" is used. Moreover, the term ">day" is used when the approach cannot generate a

complete test suite in less than a day. For more readability, the best results in each row are highlighted.

Before executing the approaches, suitable values for the parameters should be specified. The values for the

parameters of previous approaches have been taken from related articles. Fortunately, TPA has only two important

parameters: MutationRate and maxGenerations. To find a proper value for MutationRate, we have executed TPA

with different values for this parameter. The value by which TPA has the best results is 0.8, which it is relatively

large. Of course, it is expected because TPA is based on mutations only, and to increase the weight of a chromosme,

mutations should be performed in most cases. Moreover, after executing TPA with different values for

maxGenerations, the value of 100 is considered as the best value. Table 2 shows these parameters along with their

proper values.

Parameter values (d) 2 3 2 4

1 2 3 4

Test Suite = {(0, 1, 0, 2), (1, 1, 1, 0), (1, 0, 0, 0)}

3

1

6

3

9

2 1 0 1 1 1 0 0

3 1 1 1 0 1

4 1 0 1 0 0 1 0 0 0

3 2 1 1 0 1 0 0

4 2 1 0 0 0 1 0 1 0 0 0 0 0

4 3 1 1 0 0 1 0 0 0

1 0 2 4 3 5 6 7 8 10 9 11 12 13

5

14

CM =

A test case for mutation: tc = (1, 1, 1, 2)

selected genes for mutation

tc = (1, 1, 1, 2)

 candidate values

2 1

3

The test case after 2-mutation: tc = (1, 2, 1, 1)

weight = 3 weight = 5

Table 2: Proper values for parameters of the used approaches

Value Parameter Approach

100 maxGenerations
TPA

0.8 MutationRate

50 Population

GS [21]
0.4 Crossover rate

0.6 Mutation rate

Tournament selection Selection method

80 Population

PSO [8]
0.8 W

2 C1

3 C2

80 Population

BA [63]

0 Min frequency

100 Max frequency

0.25 Loudness

0.5 Pulse rate

80 Population TLBO [62]

In the automatically way, we employ different models of five known case studies, namely Dining Philosophers

Problem (DPP) [64], Process Life Cycle Problem (PLC) [65], Online Shopping System (OSS) [60], Firewalls

System (FWS) [66], and Hotel Booking System (HBS) [67]. It should be noted that considered deadlock states in

some case studies may not show the actual errors, but since these states don't have any output transitions in the state

space, they can be considered as deadlocks in order to evaluate TPA and the others. In the following, we give a brief

description of these case studies along with running results of all approaches on their sample models.

DPP, which is used to check the correctness of concurrent algorithms, describes the behaviours of several

philosophers seating around a table, and a fork is placed between each neighboring pair of philosophers. The initial

mode of all philosophers is thinking. After a while, each of these philosophers can modify its mode to hungry and

he/she can then pick up his/her left fork provided that it is free. In the case of obtaining the left fork, his/her mode is

changed into hasLeft. If a right fork of a philosopher with hasLeft mode is free, he/she picks up it and modifies

his/her mode to eating. Finally, an eating philosopher releases the obtained forks and goes to thinking. If all

philosophers pick up their left forks, it is called that DPP has faced with a deadlock state, i.e. an error.

Table 3 displays average test suite sizes and generation times for three different models of DPP. This case

study has six parameters (i.e. p = 6) and interaction strength (i.e. t) is between 2 and 5. As seen in this table, TPA

outperforms the others in terms of average generation time (i.e. performance) in all cases. At t = 2, all approaches

generate test suites with equal sizes (i.e. efficiency). Whereas, in some configurations (three ones), GS and PSO

have the high efficiency. In rest configurations, TPA outperforms the others in terms of efficiency.

PLC is used to describe the life cycle of processes in the operating system. Each newly created process is

loaded into the memory if the memory is available. The loaded process can request devices such as CPU or I/O, that

if they are free, the process gets them and executs, otherwise, it waits. After completing, the process frees all

allocated devices and stops. In this problem, a deadlock state occurs when all processes have executed and stopped.

Table 4 displays the parameters name along with their values for a sample model of this case study with 5 processes

and 3 memory segments. As seen, this model has 9 parameters with different values of d1 = 5, d2 = 8, d3 = 3, d4 = 2,

d5 = 2, d6 = 2, d7 = 2, d8 = 2, and d9 = 2. Therefore, the covering array for this model will be CA (N; t, 9, 5
1
8

1
3

1
2

6
).

Table 3: Average test suite sizes and generation times for DPP (p = 6), with t varied up to 5.

BA

Size/Time(s)

TLBO

Size/Time(s)

PSO

Size/Time(s)

GS

Size/Time(s)

TPA

Size/Time (s)

the size of

model
t

100.78/1.25 100.69/1.84 100.49/1.19 100.56/1.29 100.98/0.86 10 phils

2 121.53/1.43 121.51/2.11 121.76/1.56 121.63/1.51 121.52/0.78 11 phils

144.98/2.14 144.92/2.16 144.87/1.74 144.52/1.76 144.58/0.79 12 phils

507.03/6.87 504.36/9.31 506.31/6.54 505.83/6.14 503.93/0.93 10 phils

3 610.53/7.58 611.5/11.36 612.42/7.96 610.53/7.68 608.21/0.95 11 phils

726.5/9.41 723.51/12.69 725.63/9.21 724.62/9.59 722.54/0.99 12 phils

1015.83/11.39 1018.43/16.98 1013.23/11.22 1015.31/11.73 1016.79/1.12 10 phils

4 1226.39/14.42 1235.31/21.05 1224.31/16.09 1221.72/13.89 1226.84/1.21 11 phils

1451.52/15.81 1465.30/23.73 1450.31/16.69 1449.16/16.05 1452.52/1.32 12 phils

2167.33/16.17 2168.66/21.36 2173.6/16.08 2161.8/15.09 2162.4/1.65 10 phils

5 2629.63/20.26 2645.32/30.28 2626.33/19.54 2613.4/17.42 2614.85/2.31 11 phils

3099.25/23.51 3096.42/33.42 3098.32/22.78 3097.34/21.94 3085.31/3.14 12 phils

In Table 5, average test suite sizes and generation times are illustrated for two different models of PLC. This

case study has 9 parameters (i.e. p = 9) and interaction strength (i.e. t) is between 2 and 8. According to this table,

TPA has the best performance in all configurations. Although, TPA has the lower (or equal) efficiency compared to

the others in some configurations, it outperforms them in most ones.

Table 4: All parameters along with their values for a PLC’s model with 5 processes and 3 memory segments

Get

Memory

Get

IO

Get

CPU

IO

Status

CPU

Status

Memory

Status

Memory

Name

Process

Status

Process

Name

Parameter

Name

"true"

"false"

"true"

"false"

"true"

"false"

"free"

"busy

"free"

"busy"

"free"

"busy

"M (0)"

"M (1)"

"M (2)"

"idle"

"stopping"
"running"

"exeIO"

"waiting"
"ready"

"isRun"

"active"

"P (0)"

"P (1)"

"P (2)"

"P (3)"

"P (4)"
Parameter

Values

Table 5: Average test suite sizes and generation times for PLC (p = 9), with t varied up to 8.

BA

Size/Time(s)

TLBO

Size/Time(s)

PSO

Size/Time(s)

GS

Size/Time(s)

TPA

Size/Time(s)
the size of model t

42.10/1.04 41.98/1.52 42.03/1.02 42.07/1.02 42.18/0.06 5_process_3_memory
2

50.01/1.22 50.58/1.83 50.84/1.27 50.29/1.25 49.62/0.05 6_process_3_memory

131.02/5.06 129.84/7.50 132.5/5.13 130.51/5.27 130.11/0.22 5_process_3_memory
3

151.07/6.39 151.53/9.15 148.96/5.72 149.05/6.01 151.51/0.28 6_process_3_memory

355.10/24.07 358.93/36.74 355.21/22.53 355.13/23.19 354.15/1.03 5_process_3_memory
4

426.97/27.75 432.81/43.24 425.43/27.09 427.92/28.86 425.73/1.35 6_process_3_memory

781.94/29.03 782.51/84.69 777.93/53.91 775.41/60.8 779.71/2.83 5_process_3_memory
5

937.03/34.73 941.43/89.61 938.04/65.17 936.13/73.08 934.18/3.71 6_process_3_memory

1645.17/83.71 1653.94/123.35 1649.05/82.47 1654.37/87.60 1641.85/4.93 5_process_3_memory
6

1971.79/99.83 1973.34/152.69 1974.29/99.93 1985.72/104.64 1971.42/7.15 6_process_3_memory

3116.93/84.41 3127.52/119.83 3115.26/82.60 3116.52/84.53 3119.31/5.42 5_process_3_memory
7

3741.30/101.07 3761.35/144.42 3738.52/101.30 3749.29/105.77 3736.18/7.17 6_process_3_memory

4669.30/89.83 4673.04/123.06 4678.10/86.30 4671.37/92.39 4660.82/6.78 5_process_3_memory
8

4693.04/110.43 4691.83/154.20 4693.53/105.93 4684.54/108.74 4683.63/5.34 6_process_3_memory

OSS models the process of shopping by customers in a store through the Internet such that customers firstly

view the list of products, then select and order some of them, and finally pay the bill through a credit card. In this

system, if all customers have finished their shopping, a deadlock state occurs. Table 6 shows the parameters name

along with their values for a sample model of this case study with 4 customers and 8 goods. According to this table,

this model has 8 parameters with different values of d1 = 4, d2 = 2, d3 = 2, d4 = 4, d5 = 2, d6 = 8, d7 = 2, and d8 = 2.

So, the covering array for this model will be CA (N; t, 8, 4
2
8

1
2

5
).

Table 7 displays average test suite sizes and generation times for two different models of OSS. This case study

has eight parameters (i.e. p = 8) and interaction strength (i.e. t) is between 2 and 7. As shown in this table, TPA

outperforms the others in terms of performance and efficiency in most configurations.

Table 6: All parameters along with their values for a OSS’s model with 4 customers and 8 goods

Paid

Status

Good

Status

Good

Name

Cart

Status

Bill

Name

Cart

Name

Shop

Status

Customer

Name

Parameter

Name

"true"

"false"

"Bought"

"noBought"

"Good (0)"

"Good (1)"
"Good (2)"

"Good (3)"

"Good (4)"
"Good (5)"

"Good (6)"

"Good (7)"

"free"

"busy

"Bill (0)"

"Bill (1)"
"Bill (2)"

"Bill (3)"

"Cart (0)"

"Cart (1)"

"true"

"false"

"Cus (0)"

"Cus (1)"
"Cus (2)"

"Cus (3)" Parameter

Values

Table 7: Average test suite sizes and generation times for OSS (p = 8), with t varied up to 7.

BA

Size/Time(s)

TLBO

Size/Time(s)

PSO

Size/Time(s)

GS

Size/Time(s)

TPA

Size/Time(s)

the size of

model
t

32.33/0.68 32.66/1.21 32.32/0.70 32.21/0.63 34.12/0.42 4_cus_8_good
2

41.29/0.79 41.92/1.36 40.16/0.86 41.64/0.89 40.23/0.42 5_cus_8_good

143.66/4.03 138.21/5.51 138.66/4.31 138.03/4.01 135.33/0.56 4_cus_8_good
3

174.55/5.09 172.31/6.92 177.00/5.30 178.31/5.15 168.84/069 5_cus_8_good

340.92/14.16 342.95/19.45 334.73/13.40 332.35/14.12 335.05/0.97 4_cus_8_good
4

401.31/15.51 419.43/2.68 397.32/15.64 402.23/15.46 405.75/0.98 5_cus_8_good

790.41/28.96 794.12/40.93 791.83/28.31 788.82/30.66 787.25/184 4_cus_8_good
5

985.41/34.50 984.32/54.59 994.54/35.48 987.72/37.43 978.46/1.85 5_cus_8_good

1561.47/34.54 1559.42/47.57 1556.37/33.64 1561.34/36.11 1555.23/2.31 4_cus_8_good
6

1959.11/46.41 1958.10/66.32 1952.45/44.42 1946.32/45.53 1942.85/2.49 5_cus_8_good

2414.64/36.20 2426.72/34.35 2411.13/26.67 2388.63/39.84 2365.85/3.63 4_cus_8_good
7

2991.51/36.69 3033.51/47.86 2997.12/37.41 2993.53/28.45 2987.75/2.90 5_cus_8_good

FWS describes a network system in which firewalls play the role of barriers to prevent unauthorized access to

secured and controlled internal networks. In fact, a firewall separates the network into internal and external parts. In

the external part, safe or unsafe packets can be generated, whereas only safe packets can be produced in the internal

part. These packets (safe or unsafe) can move from the external part to the internal part, and the firewall should stop

the unsafe packets and denies them. In such situation, it is called FWS has faced with a deadlock state. Table 8

displays the parameters name along with their values for a sample model of this case study with 6 in-locations (LI)

and 6 out-locations (LO). As seen, this model has 6 parameters with different values of d1 = 6, d2 = 2, d3 = 6, d4 = 2,

d5 = 2, and d6 = 5. Therefore, the covering array for this model will be CA (N; t, 6, 6
2
5

1
2

3
).

In Table 9, average test suite sizes and generation times are displayed for three different models of FWS. This

case study has 6 parameters (i.e. p = 6) and interaction strength (i.e. t) is between 2 and 5. Due to this table, TPA has

the best performance in all configurations. Exception two configurations, TPA has the higher (or equal) efficiency

compared to the others.

Table 8: All parameters along with their values for a FWS’s model with 6 in-locations (LI) and 6 out-

locations (LO)

Position hasunSafeP hasSafeP LO Name isFound LI Name
Parameter

Name

"onLO"

"onLI"
"onFW"

"onIF_LO"

"onIF_LI"

"true"

"false"

"true"

"false"

"LO (0)"

"LO (1)"
"LO (2)"

"LO (3)"

"LO (4)"
"LO (5)"

"true"

"false"

"LI (0)"

"LI (1)"
"LI (2)"

"LI (3)"

"LI (4)"
"LI (5)"

Parameter

Values

Table 9: Average test suite sizes and generation times for FWS (p = 6), with t varied up to 5.

BA

Size/Time(s)

TLBO

Size/Time(s)

PSO

Size/Time(s)

GS

Size/Time(s)

TPA

Size/Time(s)

the size of

model
t

39.5/0.45 36.98/0.63 37.00/00.43 37.51/0.49 37.00/2.01 fire_6_LI_6_LO

2 65.71/0.83 65.53/1.07 65.98/0.79 65.51/0.81 65.11/3.03 fire_8_LI_8_LO

262,49/3.44 263.10/4.77 262.54/3.19 262.63/3.73 260.74/3.11 fire_10_LI_10_LO

110.53/1.44 110.97/1.87 113.92/1.48 113.51/1.75 111.23/2.04 fire_6_LI_6_LO

3 195.24/5.93 196.10/9.00 195.31/5.19 195.01/6.02 193.63/3.17 fire_8_LI_8_LO

505.00/19.16 505.24/27.30 506.93/17.12 507.46/15.33 503.51/4.52 fire_10_LI_10_LO

260.91/2.91 263.91/3.88 262.57/2.83 260.31/2.97 263.31/2.12 fire_6_LI_6_LO

4 457.84/14.30 461.57/18.37 454.51/14.64 454.50/13.11 454.75/3.42 fire_8_LI_8_LO

712.00/20.11 709.73/25.94 713.50/19.51 712.51/21.76 709.31/4.72 fire_10_LI_10_LO

474.10/4.08 471.92/5.55 481.31/3.79 472.80/3.15 468.21/2.21 fire_6_LI_6_LO

5 847.50/14.91 848.83/22.65 841.52/18.81 846.03/13.70 840.90/3.66 fire_8_LI_8_LO

1307/25.64 1301.41/32.33 1314.35/24.92 1305.31/22.78 1296.41/4.23 fire_10_LI_10_LO

HBS deals with a system by which the clients can perform the hotel booking. To do this, HBS has some agents

that receive and process the requests of the clients. In this system, if all clients have performed their booking, a

deadlock state occurs. Table 10 shows the parameters name along with their values for a sample model of this case

study. According to this table, this model has 13 parameters with different values of d1 = 3, d2 = 2, d3 = 9, d4 = 8, d5

= 2, d6 = 19, d7 = 3, d8 = 2, d9 = 1, d10 = 2, d11 = 19, d12 = 1, and d13 = 1. As a result, the covering array for this

model will be CA (N; t, 13, 2
4
9

1
3

2(19)
2
1

3
8

1
).

In Table 11, average test suite sizes and generation times are displayed for one sample model of HBS. This

case study has thirteen parameters (i.e. p = 13) and interaction strength (i.e. t) is between 2 and 8. As seen in the

table, similar to the previous case studies TPA outperforms the others in terms of performance in all configurations.

At t = 2, all approaches have equal efficiency. In most configurations, TPA outperforms the others in terms of

efficiency.

In the manually way, in addition to TPA and GS, we use TConfig as a mathematic method, PICT and IPOG as

greedy algorithms, CS, PSTG, and DPSO as evolutionary algorithms. Table 12 compares TPA with the others for 6≤

t ≤25. In this table, only average test suite sizes are shown. As can be seen, the methods CS, TConfig, IPOG and

PSTG can only produce test suites up to t = 6. DPSO can generate test suites up to t = 12. Whereas, methods PICT

and GS can generate test suites up to t = 16 and t = 20 respectively. According to the table, TPA has the best

efficiency among all mentioned methods. It can support interaction strength up to t = 25.

Table 10: All parameters along with their values for a HBS’s model

Room

Status

Bill

No

CreditC

Number

Paid

Amount

UnPaid

Amount

Room

Number

Customer

Name

Parameter

Name

"registerd"

"booked"

"vacant"

1000

1001

…
1018

"667540"

"187331"

0

20000

40000
….

140000

0

20000

40000
….

160000

2

1

"Andre"

"Wegener"

"Coburg"

Parameter

Values

Hotel Location Amount Bill_Cntr Occupied Phone isFound
Parameter

Name

"Austria" 20000 1001

1002

….
1019

"true"

"false"

"+4995618210" "true"

"false"

Parameter

Values

Table 11: Average test suite sizes and generation times for a sample model of HBS (p = 13), with t varied up

to 8.

BA

Size/Time(s)

TLBO

Size/Time(s)

PSO

Size/Time(s)

GS

Size/Time(s)

TPA

Size/Time(s)
t

23.42/1.29 23.11/1.72 23.83/1.23 23.45/1.24 23.33/0.88 2

87.41/10.98 87.42/12.33 86.28/10.94 85.52/11.85 84.41/2.76 3

287.10/109/74 293.41/110.12 283.04/107.34 285.74/105.51 277.54/8.33 4

853.84/752.88 845.02/699.39 832.45/740.31 841.22/674.49 831.03/66.21 5

2199.12/2893.48 2194.63/2503.31 2173.03/2639.47 2154.75/2345.91 2165.30/204.45 6

5020.41/12648.31 5023.03/11084.21 5012.34/8042.93 5001.87/7169.65 5010.31/598.61 7

10928.62/23841.10 11842.73/25437.60 10205.36/15069.32 10207.24/13764.29 10187.24/973.54 8

As mentioned before, MutationRate specifies the mutation probability of the selected genes in the q-mutation

operator. Due to the functionality of this operator, large values for MutationRate concludes the best results. To

examine this assertion, we have executed TPA on CA (N; t, 2
10

), 2≤ t ≤ 6 for different values of MutationRate. The

chart of Fig. 9 show generated test suites sizes for 10 independent runs. According to this chart, TPA has the best

efficiency for MutationRate = 0.8.

Similar to MutationRate, maxGenerations is also an effective parameter on the functionality of TPA. This

parameter determines the maximum iteration number of q-mutation operator. To check the impact of this parameter,

we have executed TPA on CA (N; t, 3
7
), 2≤ t ≤ 6 for different values of maxGenerations. The chart of Fig. 10

illustrates generated test suites sizes for 10 independent runs. As seen in the chart, whatever the value of this

parameter is high, q-mutation operator is more repeated and this causes the weight of the current test case is

increased. Hence, small values for this parameter have the negative effect on the efficiency of TPA. When its value

increments, the efficiency also raises. TPA has the best efficiency for maxGenerations = 100. Off course, large

values (>100) don't change the efficiency.

Table 12: Average test suite sizes for higher strengths

Greedy

algorithms

Mathematic

method
Evolutionary algorithms

CA
IPOG

N

PICT

N

TConfig

N

DPSO

N

PSTG

N

CS

N

GS

N

TPA

N

1409 1455 1515 1409 1401 1399 1405.9 1401.46 CA (N; 6, 3
8
)

NS 4618 > day 4451 NS NS 4444.9 4444.00 CA (N; 7, 3
9
)

NS 14599 > day 13933 NS NS 13921.4 13923.91 CA (N; 8, 3
10

)

NS 45521 > day > day NS NS 43835 43529.31 CA (N; 9, 3
11

)

NS 141990 > day > day NS NS 136153.30 115393.10)
12

; 10, 3NCA (

NS 278993 > day > day NS NS 267196.30 266933.39)
14

; 11, 3NCA (

NS 9112 > day 8972 NS NS 8898.0 8874.73)
14

; 12, 2NCA (

NS 12441 > day > day NS NS 10272.0 9894.41 CA (N; 13, 2
14

)

NS 25036 > day > day NS NS 23389.6 23437.44 CA (N; 14, 2
15

)

NS 51127 > day > day NS NS 46698.6 45452.39 CA (N; 15, 2
16

)

NS 100266 > day > day NS NS 95709.3 95653.12 CA (N; 16, 2
17

)

NS > day > day > day NS NS 179595.6 177312.93 CA (N; 17, 2
18

)

NS > day > day > day NS NS 330463.0 356156.30 CA (N; 18, 2
19

)

NS > day > day > day NS NS 625001.6 637322.19 CA (N; 19, 2
20

)

NS > day > day > day NS NS 1048576 1048576 CA (N; 20, 2
20

)

NS > day > day > day NS NS NS 2097152 CA (N; 21, 2
21

)

NS > day > day > day NS NS NS 4194303 CA (N; 22, 2
22

)

NS > day > day > day NS NS NS 8388607 CA (N; 23, 2
23

)

NS > day > day > day NS NS NS 16777215 CA (N; 24, 2
24

)

NS > day > day > day NS NS NS 33554431 CA (N; 25, 2
25

)

Fig. 9. The effect of MutationRate on the efficiency of TPA

6.1. Statistical analysis of results

In this section, we employ the Friedman test [68] for multiple comparisons of all algorithms, and the Wilcoxon

signed-rank [69] for pairwise comparisons of TPA and each of the others.

The Friedman test is a non-parametric statistical hypothesis test, which can be employed for multiple

comparisons of several related samples. This test ranks the algorithms for each configuration separately and then

computes mean ranks over all configurations. The first rank is given to an algorithm with the least mean rank (i.e.

the best efficiency), the second rank to another algorithm with the second best and so on. If two algorithms are given

similar ranks, it will be concluded that they have similar efficiency. This test has two output test statistics: (1) Chi-

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

110.0

120.0

130.0

140.0

150.0

160.0

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t = 2

t = 3

t = 4

t = 5

t = 6T
es

t
su

it
e

si
ze

MutationRate

Square which is like a variance over the mean ranks; whatever the mean ranks are far from each other, it's value is

more gerater than 0. (2) Asymp. Sig. which is a p-value. If p is less than 0.05, the null hypothesis can be rejected and

this shows that there is a meaningful difference among different groups of data. In here, the Friedman test is carried

out using the SPSS toolbox on the results displayed in Tables 3, 5, 7, 9, 11, and 12 (overall, 57 different

configurations). According to Table 13, it is concluded that (1) TPA obtains the first rank (the best efficiency)

among the considered algorithms. (2) The mean ranks are far from each other (Chi-Square = 57.664). (3) There is a

significant difference among the performance of algorithms (Asymp. Sig. = 0.000).

Fig. 10. The effect of maxGenerations on the efficiency of TPA

Table 13: Results of the Friedman test

BA TLBO PSO GS TPA

3.43 3.75 3.22 2.68 1.92 Mean Rank

4 5 3 2 1 Rank

Chi-Square = 57.664 , Asymp. Sig. = 0.000

Wilcoxon signed-rank is a non-parametric statistical hypothesis test which can be employed for pair

comparisons of two related samples. Similar to the Friedman test, this test can also be performed using the SPSS

toolbox. For two given algorithms A and B, this test has the following output test statistics: (1) R- /R+ shows the

number of samples in which the algorithm A outperforms/ underperforms the algorithm B. (2) R= denotes the

number of samples in which A and B have the equal efficiency. (3) Asymp. Sig. which is a p-value; if p is less than

0.05, it is concluded that A is significantly better than B. Table 14 shows the Wilcoxon signed rank test results for

pair comparisons of TPA with GS, PSO, TLBO, and BA. For each pair comparison, R-, R+, R=, and p-value are

reported. According to this table, the values of R- are much greater than the ones of R+ and R= in all pair

comparisons. Hence, we conclude that TPA has the best efficiency. Moreover, all obtained values of p are less than

0.05, and this confirms that TPA is meaningfully better than the other algorithms.

0.0

40.0

80.0

120.0

160.0

200.0

240.0

280.0

320.0

360.0

400.0

440.0

30 40 50 60 70 80 90 100 110 120

t = 2

t = 3

t = 4

t = 5T
es

t
su

it
e

si
ze

maxGenerations

Table 14: Results of the Wilcoxon signed-rank test

 TPA-GS TPA-PSO TPA-TLBO TPA-BA

R- 39 41 49 46

R+ 18 15 8 11

R= 0 1 0 0

Asymp. Sig. (2-tailed) p < 0.05 p < 0.05 p <0.05 p < 0.05

7. Threats to validity

In this section, we discuss about the possible threats to validity of our work. The first threat is related to the

first and second phases of TPA. It is probable that TPA cannot perform the two first phases successfully. In other

words, TPA may not detect a deadlock state in the given model, and so the parameters and their values will not

ready to start the third phase, i.e., genearting the minimum test suite. The second threat is that the impartiality of

benchmark experiments may be a concern. As mentioned in Section 6, TPA and other approaches are evaluated in

the automatically and manually ways that parameters and their values are prepared. In the automatically way, TPA is

compared with GS, TLBO, BA, and PSO, which all of them have been implemented in GROOVE. Whereas, in the

manually way, TPA is compared with TConfig, PICT, IPOG, CS, PSTG, and DPSO, which their source codes are

not available. Therefore, in the manually way, unlike the automatically way, there may be a concern because the

comparisons rely only on the previous published results. The third threat is related to how each approach

implements the coverage matrix and calculates the weight of a test case. In the automatically way, these isn’t any

concern about these issues because of implementing all approaches in GROOVE. But, in the manually way, there is

a concern about these subjects due to a lack of source codes of the TConfig, PICT, IPOG, CS, PSTG, and DPSO

approaches.

8. Conclusion and Future Works

In this paper, we discussed about the existing challenges of t-way strategy and proposed solutions to resolve

them. The first and second challenges respectively relate to the low quality of the generated TS (i.e. some complex

errors may not be found through this TS) and how to prepare parameters and their values for the t-way strategy.

Moreover, the third challenge is the low generation speed and the large size of the generated test suite. To resolve

these challenges, we proposed a three-phase approach (so-called TPA). In the first phase, TPA used an optimized

version of model checking (OMC) to extract the information about special errors from a model of SUT and injecting

them into the TS. In the second phase, TPA uses the explored states in the first phase to prepare parameters and their

values automatically. To handle the third challenge, several methods using evolutionary algorithms have been

proposed. Although some of them can support test suite generation up to t = 20, they have the low generation speed.

In the third phase, TPA applies an adopted version of evolution strategy to increase the generation speed. Moreover,

TPA can generate test suites with the interaction strength up to t = 25. Experimental results confirm that TPA

outperforms the other greedy, mathematic, and evolutionary algorithms in terms of test suite size and generation

speed. Studing other evolutionary algorithms and proposing a hybrid approach of them and TPA can be considered

as a future work.

Compliance with Ethical Standards

Conflict of interest The authors declare that there is no conflict of interest for any of them in this article.

Ethical approval This article does not contain any studies with human participants or animals performed by any of

the authors.

Informed consent Informed consent was obtained from all individual participants included in the study.

Authors contributions SE was responsible for conceptualization, methodology, software and writing original

draft; VR and EP were responsible for supervision, writing, reviewing and editing.

References

[1] B. S. Ahmed, T. S. Abdulsamad, and M. Y. Potrus, “Achievement of minimized combinatorial test suite for

configuration-aware software functional testing using the cuckoo search algorithm,” Inf. Softw. Technol., vol.

66, pp. 13–29, 2015.

[2] S. Nidhra and J. Dondeti, “Black box and white box testing techniques-a literature review,” Int. J. Embed.

Syst. Appl. IJESA, vol. 2, no. 2, pp. 29–50, 2012.

[3] G. J. Myers, T. Badgett, T. M. Thomas, and C. Sandler, The art of software testing, vol. 2. Wiley Online

Library, 2004.

[4] J. Pearl, Probabilistic reasoning in intelligent systems: networks of plausible inference. Elsevier, 2014.

[5] M. Grindal and J. Offutt, “Input parameter modeling for combination strategies,” in Proceedings of the 25th

conference on IASTED International Multi-Conference: Software Engineering, 2007, pp. 255–260.

[6] S. Esfandyari and V. Rafe, “Extracting Combinatorial Test parameters and their values using model checking

and evolutionary algorithms,” Appl. Soft Comput., vol. 91, p. 106219, 2020.

[7] T. Shiba, T. Tsuchiya, and T. Kikuno, “Using artificial life techniques to generate test cases for combinatorial

testing,” in Proceedings of the 28th Annual International Computer Software and Applications Conference,

2004. COMPSAC 2004., 2004, pp. 72–77.

[8] B. S. Ahmed, K. Z. Zamli, and C. P. Lim, “Constructing a t-way interaction test suite using the particle swarm

optimization approach,” Int. J. Innov. Comput. Inf. Control, vol. 8, no. 1, pp. 431–452, 2012.

[9] H. Kastenberg and A. Rensink, “Model checking dynamic states in GROOVE,” in International SPIN

Workshop on Model Checking of Software, 2006, pp. 299–305.

[10] R. Sagarna and J. A. Lozano, “Scatter search in software testing, comparison and collaboration with

estimation of distribution algorithms,” Eur. J. Oper. Res., vol. 169, no. 2, pp. 392–412, 2006.

[11] R. Santana, P. Larrañaga, and J. A. Lozano, “Protein folding in simplified models with estimation of

distribution algorithms,” IEEE Trans. Evol. Comput., vol. 12, no. 4, pp. 418–438, 2008.

[12] E. Pira, “A novel approach to solve AI planning problems in graph transformations,” Eng. Appl. Artif. Intell.,

vol. 92, p. 103684, 2020.

[13] B. Yuan, M. Orlowska, and S. Sadiq, “Finding the optimal path in 3D spaces using EDAs–the wireless sensor

networks scenario,” in International Conference on Adaptive and Natural Computing Algorithms, 2007, pp.

536–545.

[14] M. Pelikan, D. E. Goldberg, and S. Tsutsui, “Hierarchical Bayesian optimization algorithm: toward a new

generation of evolutionary algorithms,” in SICE 2003 Annual Conference (IEEE Cat. No. 03TH8734), 2003,

vol. 3, pp. 2738–2743.

[15] G. Rozenberg, Handbook of Graph Grammars and Comp., vol. 1. World scientific, 1997.

[16] G. Taentzer, “AGG: A graph transformation environment for modeling and validation of software,” in

International Workshop on Applications of Graph Transformations with Industrial Relevance, 2003, pp. 446–

453.

[17] E. Pira, “Using Markov Chain Based Estimation of Distribution Algorithm for Model-Based Safety Analysis

of Graph Transformation,” J. Comput. Sci. Technol., vol. 36, pp. 839–855, 2021.

[18] E. Pira, V. Rafe, and A. Nikanjam, “Searching for violation of safety and liveness properties using knowledge

discovery in complex systems specified through graph transformations,” Inf. Softw. Technol., vol. 97, pp.

110–134, 2018.

[19] C. Baier and J.-P. Katoen, Principles of model checking. MIT press, 2008.

[20] E. Pira, M. Z. Reza, and F. Soltani, “Verification of confliction and unreachability in rule-based expert

systems with model checking,” Int. J. Artif. Intell. Appl., vol. 5, no. 2, p. 21, 2014.

[21] S. Esfandyari and V. Rafe, “A tuned version of genetic algorithm for efficient test suite generation in

interactive t-way testing strategy,” Inf. Softw. Technol., vol. 94, pp. 165–185, 2018.

[22] C. Nie, H. Wu, X. Niu, F.-C. Kuo, H. Leung, and C. J. Colbourn, “Combinatorial testing, random testing, and

adaptive random testing for detecting interaction triggered failures,” Inf. Softw. Technol., vol. 62, pp. 198–

213, 2015.

[23] A. Hartman and L. Raskin, “Problems and algorithms for covering arrays,” Discrete Math., vol. 284, no. 1–3,

pp. 149–156, 2004.

[24] N. Kobayashi, “Design and evaluation of automatic test generation strategies for functional testing of

software,” Osaka Jpn. Osaka Univ, 2002.

[25] A. Hartman, “Software and hardware testing using combinatorial covering suites,” in Graph theory,

combinatorics and algorithms, Springer, 2005, pp. 237–266.

[26] A. W. Williams and R. L. Probert, “A practical strategy for testing pair-wise coverage of network interfaces,”

in Proceedings of ISSRE’96: 7th International Symposium on Software Reliability Engineering, 1996, pp.

246–254.

[27] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM Comput. Surv. CSUR, vol. 43, no. 2, pp. 1–

29, 2011.

[28] Y. Lei and K.-C. Tai, “In-parameter-order: A test generation strategy for pairwise testing,” in Proceedings

Third IEEE International High-Assurance Systems Engineering Symposium (Cat. No. 98EX231), 1998, pp.

254–261.

[29] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, “IPOG: A general strategy for t-way software

testing,” in 14th Annual IEEE International Conference and Workshops on the Engineering of Computer-

Based Systems (ECBS’07), 2007, pp. 549–556.

[30] M. Forbes, J. Lawrence, Y. Lei, R. N. Kacker, and D. R. Kuhn, “Refining the in-parameter-order strategy for

constructing covering arrays,” J. Res. Natl. Inst. Stand. Technol., vol. 113, no. 5, p. 287, 2008.

[31] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, “The AETG system: An approach to testing

based on combinatorial design,” IEEE Trans. Softw. Eng., vol. 23, no. 7, pp. 437–444, 1997.

[32] J. Czerwonka, “Pairwise testing in the real world: Practical extensions to test-case scenarios,” Microsoft Corp.

Softw. Test. Tech. Artic., 2008.

[33] K. Z. Zamli, M. F. Klaib, M. I. Younis, N. A. M. Isa, and R. Abdullah, “Design and implementation of a t-

way test data generation strategy with automated execution tool support,” Inf. Sci., vol. 181, no. 9, pp. 1741–

1758, 2011.

[34] J. Stardom, Metaheuristics and the search for covering and packing arrays. Simon Fraser University

Burnaby, 2001.

[35] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, C. J. Colbourn, and J. S. Collofello, “A variable strength

interaction testing of components,” in Proceedings 27th Annual International Computer Software and

Applications Conference. COMPAC 2003, 2003, pp. 413–418.

[36] T. Mahmoud and B. S. Ahmed, “An efficient strategy for covering array construction with fuzzy logic-based

adaptive swarm optimization for software testing use,” Expert Syst. Appl., vol. 42, no. 22, pp. 8753–8765,

2015.

[37] K. Z. Zamli, B. S. Ahmed, T. Mahmoud, and W. Afzal, “Fuzzy Adaptive Tuning of a Particle Swarm

Optimization Algorithm for Variable-Strength Combinatorial Test Suite Generation,” ArXiv Prepr.

ArXiv181005824, 2018.

[38] B. S. Ahmed, K. Z. Zamli, and C. P. Lim, “Application of particle swarm optimization to uniform and

variable strength covering array construction,” Appl. Soft Comput., vol. 12, no. 4, pp. 1330–1347, 2012.

[39] Y. A. Alsariera, A. H. Al Omari, M. A. Albawaleez, Y. K. Sanjalawe, and K. Z. Zamli, “Hybridized BA &

PSO t-way Algorithm for Test Case Generation,” IJCSNS, vol. 21, no. 10, p. 343, 2021.

[40] H. Wu, C. Nie, F.-C. Kuo, H. Leung, and C. J. Colbourn, “A discrete particle swarm optimization for covering

array generation,” IEEE Trans. Evol. Comput., vol. 19, no. 4, pp. 575–591, 2014.

[41] A. R. A. Alsewari and K. Z. Zamli, “Design and implementation of a harmony-search-based variable-strength

t-way testing strategy with constraints support,” Inf. Softw. Technol., vol. 54, no. 6, pp. 553–568, 2012.

[42] K. Z. Zamli, F. Din, S. Baharom, and B. S. Ahmed, “Fuzzy adaptive teaching learning-based optimization

strategy for the problem of generating mixed strength t-way test suites,” Eng. Appl. Artif. Intell., vol. 59, pp.

35–50, 2017.

[43] P. Flores and Y. Cheon, “PWiseGen: Generating test cases for pairwise testing using genetic algorithms,” in

2011 IEEE International Conference on Computer Science and Automation Engineering, 2011, vol. 2, pp.

747–752.

[44] J. D. McCaffrey, “An empirical study of pairwise test set generation using a genetic algorithm,” in 2010

Seventh International Conference on Information Technology: New Generations, 2010, pp. 992–997.

[45] P. Bansal, S. Sabharwal, S. Malik, V. Arora, and V. Kumar, “An approach to test set generation for pair-wise

testing using genetic algorithms,” in International Symposium on Search Based Software Engineering, 2013,

pp. 294–299.

[46] K. M. Htay, R. R. Othman, A. Amir, and J. M. H. Alkanaani, “Gravitational search algorithm based strategy

for combinatorial t-way test suite generation,” J. King Saud Univ.-Comput. Inf. Sci., vol. 34, no. 8, pp. 4860–

4873, 2022.

[47] H. N. N. Al-Sammarraie and D. N. Jawawi, “Multiple black hole inspired meta-heuristic searching

optimization for combinatorial testing,” Ieee Access, vol. 8, pp. 33406–33418, 2020.

[48] J. M. Altmemi, R. R. Othman, and R. Ahmad, “SCAVS: Implement Sine Cosine Algorithm for generating

Variable t-way test suite,” in IOP Conference Series: Materials Science and Engineering, 2020, vol. 917, no.

1, p. 012011.

[49] D. Karaboga, “Artificial bee colony algorithm,” scholarpedia, vol. 5, no. 3, p. 6915, 2010.

[50] A. K. Alazzawi, H. M. Rais, and S. Basri, “Artificial bee colony algorithm for t-way test suite generation,” in

2018 4th International Conference on Computer and Information Sciences (ICCOINS), 2018, pp. 1–6.

[51] A. K. Alazzawi, H. M. Rais, and S. Basri, “ABCVS: An artificial bee colony for generating variable t-way test

sets,” Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 4, 2019.

[52] A. K. Alazzawi, H. M. Rais, and S. Basri, “Hybrid artificial bee colony algorithm for t-way interaction test

suite generation,” in Software Engineering Methods in Intelligent Algorithms: Proceedings of 8th Computer

Science On-line Conference 2019, Vol. 1 8, 2019, pp. 192–199.

[53] S. Esfandyari and V. Rafe, “GALP: a hybrid artificial intelligence algorithm for generating covering array,”

Soft Comput., vol. 25, no. 11, pp. 7673–7689, 2021.

[54] H. L. Zakaria, K. Z. Zamli, and F. Din, “Hybrid migrating birds optimization strategy for t-way test suite

generation,” in Journal of Physics: Conference Series, 2021, vol. 1830, no. 1, p. 012013.

[55] J. B. Odili, A. B. Nasser, A. Noraziah, M. H. A. Wahab, and M. Ahmed, “African buffalo optimization

algorithm based t-way test suite generation strategy for electronic-payment transactions,” in Proceedings of

International Conference on Emerging Technologies and Intelligent Systems: ICETIS 2021 (Volume 1), 2022,

pp. 160–174.

[56] C. Luo et al., “AutoCCAG: An automated approach to constrained covering array generation,” in 2021

IEEE/ACM 43rd International Conference on Software Engineering (ICSE), 2021, pp. 201–212.

[57] E. Pira, V. Rafe, and S. Esfandyari, “Minimum Covering Array Generation Using Success-History and Linear

Population Size Reduction based Adaptive Differential Evolution Algorithm”.

[58] M. Ahmed, A. B. Nasser, and K. Z. Zamli, “Construction of Prioritized T-Way Test Suite Using Bi-Objective

Dragonfly Algorithm,” IEEE Access, vol. 10, pp. 71683–71698, 2022.

[59] E. Pira, V. Rafe, and A. Nikanjam, “Using evolutionary algorithms for reachability analysis of complex

software systems specified through graph transformation,” Reliab. Eng. Syst. Saf., vol. 191, p. 106577, 2019.

[60] E. Pira, V. Rafe, and A. Nikanjam, “Deadlock detection in complex software systems specified through graph

transformation using Bayesian optimization algorithm,” J. Syst. Softw., vol. 131, pp. 181–200, 2017.

[61] “Generating dynamically nested loops.” https://www.codeproject.com/Tips/759707/Generating-dynamically-

nested-loops (accessed Oct. 13, 2020).

[62] Z. Abbasi, S. Esfandyari, and V. Rafe, “Covering Array Generation using Teaching Learning base

Optimization Algorithm,” TABRIZ J. Electr. Eng., vol. 48, no. 1, pp. 161–171, 2018.

[63] R. Yousefian, S. Aboutorabi, and V. Rafe, “A greedy algorithm versus metaheuristic solutions to deadlock

detection in Graph Transformation Systems,” J. Intell. Fuzzy Syst., vol. 31, no. 1, pp. 137–149, 2016.

[64] Á. Schmidt, “Model checking of visual modeling languages,” Bp. Univ. Technol. Hung., 2004.

[65] E. Pira, V. Rafe, and A. Nikanjam, “Searching for violation of safety and liveness properties using knowledge

discovery in complex systems specified through graph transformations,” Inf. Softw. Technol., vol. 97, pp.

110–134, 2018.

[66] S. M. Bellovin and W. R. Cheswick, “Network firewalls,” IEEE Commun. Mag., vol. 32, no. 9, pp. 50–57,

1994.

[67] A. Kalaee and V. Rafe, “Model-based test suite generation for graph transformation system using model

simulation and search-based techniques,” Inf. Softw. Technol., vol. 108, pp. 1–29, 2019.

[68] M. Friedman, “A comparison of alternative tests of significance for the problem of m rankings,” Ann. Math.

Stat., vol. 11, no. 1, pp. 86–92, 1940.

[69] F. Wilcoxon, “Individual comparisons by ranking methods,” in Breakthroughs in statistics, Springer, 1992,

pp. 196–202.

