
Automatic bug localization using a combination of deep learning and model 

transformation through node classification  

Leila Yousofvand1, Seyfollah Soleimani1,*, Vahid Rafe1,2 

l.yousofvand@gmail.com 

s-soleimani@araku.ac.ir 

v-rafe@araku.ac.ir, v.rafe@gold.ac.uk 

Abstract 

Bug localization is the task of automatically locating suspicious commands in the source code. Many 

automated bug localization approaches have been proposed for reducing costs and speeding up the bug 

localization process. These approaches allow developers to focus on critical commands. In this paper, we 

propose to treat the bug localization problem as a node classification problem. As in the existing training 

sets, the whole graphs are labeled as buggy and bug-free, it is required first to label all nodes in each graph. 

To do this, we use the Gumtree algorithm, which label the nodes by comparing the buggy graphs with their 

corresponding fixed graphs. In classification, we propose to use a type of Graph neural networks (GNNs), 

GraphSAGE. The used dataset for training and testing is JavaScript buggy codes and their corresponding 

fixed codes. The results demonstrate that the proposed method outperforms other related methods.  

Keywords: Deep learning, Bug localization, Node classification, Graph neural networks.  

1. Introduction 

Software developers have helped simplify life, save time and money, and help connect with others by 

developing and producing software. When software bugs occur during software development and 

maintenance, accurate and timely bug localization is an important guarantee of software quality. Today, it 

is impossible to quickly locate bugs in case of failure because the complexity and scale of modern software 

have increased. Bug localization has been a manual task that is time-consuming and very expensive [1]. 

Manual bug localization is dependent on the experience, intuition, and judgment of the software developer 

to prioritize and detect probable buggy code. Thus, the demand for techniques that are able to identify bug 

locations in a program with minimal human intervention has increased. Several tools such as FindBugs  [2],  

PMD  [3], TAJS  [4], and ESLint  [5] have been widely used in software debugging as auxiliary tools for 

detecting and locating bugs in Java and JavaScript languages. Despite the success of these techniques, 

developers need more advanced features and capabilities. For instance, if bug reports contain misleading 

explanations, information retrieval (IR) approaches are less effective  [6].  Spectrum-based approaches are 

less effective in locating multiple bugs  [7]. With this in mind, we present a graph-based approach that can 

locate multiple bugs. In this approach, we have designed a node classifier that uses real buggy code and 

corresponding graph as input and classifies graph nodes into buggy and bug-free.  

Graphs are data structures used to solve many problems in mathematics and computer science. The 

most important use of graphs is to model various phenomena and relationships in the real world. For 

example, Google Maps uses graphs to model the road network and route to the final destination. Facebook 

is a graph that shows people and friendships between them. The Internet is a huge graph that shows pages 
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and links between pages. All objects in physical space, human relations, document structures, semantic 

structures, geographical or physical models can be represented using graphs. In recent years, graphs have 

been used to model program source code [8, 9]. There is valuable information about the syntactic and 

semantic structure of the program in this type of graph. Since a large number of software bugs are related 

to the syntactic and semantic structure of program commands, we map the input program source code to a 

graph representation and then train a node classifier to find bugs. To make a classifier, a Graph neural 

network (GNN)  [10], is used. GNN is a beneficial deep learning method that provides a simple way to 

perform prediction tasks at the graph, node, and edge levels  [11].  It summarizes and gather information 

from graph structures and capture graph dependencies by sending messages between sets of objects (nodes 

and edges)  [12]. There are several types of GNNs can be used depending on the type of graph or data 

required. Graph Attention Network (GAN)  [13], Convolution Graph Network (GCN)  [14], Graph SAmple 

and aggreGatE (GraphSAGE) [15] are variants of GNNs. GCN  [14] has been used in various issues due to 

its high efficiency and simplicity and has attracted more attention. They have been very successful in 

graphic subjects such as graph classification  [16] and node classification  [14], and so on. For this reason, 

we decide to use GCN model for our classification step. But a major drawback of GCN is scalability. In 

general, each node’s feature vector depends on its entire neighborhood. This can be quite inefficient for 

huge graphs with big neighborhoods. To solve this issue, we use GraphSAGE, which is an improvement of 

GCN. It handles this problem by sampling a subset of neighborhoods to conduct propagation instead of 

using all neighborhoods information.  

There are two challenges to graph-based bug localization: small training set and imbalanced dataset. 

When a training dataset is small, it is impossible to learn a reliable classifier because performing too many 

repetitions can lead to overfitting. To handle this challenge, we use thousands of real buggy codes and 

related bug-free codes. Researchers have shown that most lines in buggy source code are bug-free, and bugs 

make up only a small portion of a program's source code  [17]. So, the training set is imbalanced. To 

overcome this challenge, we use a re-sampling technique to generate additional nodes from the minor class, 

buggy nodes, and then train the model. 

We propose to use GraphSAGE model and node classification for automatic bug localization. To the 

best of our knowledge, this is the first article that uses this graph representation and GraphSAGE model for 

this problem. We will employ JavaScript code which has been the most popular language on GitHub for 

the past eight years  [18]. In our proposed method, we transform each input code into a graph based on 

Abstract Syntax Tree (AST). The main contributions of our method are preparing labeled training data, 

using deep learning to train a node classifier, and handling imbalanced classification in the graph data 

structure for bug localization in JavaScript codes. We use Gumtree algorithm  [19] to label nodes of graphs 

by comparing the nodes of the buggy graphs with corresponding fixed graphs. In addition, we tested several 

configurations of the node classification to select the best one. Our method covers a broader range of bugs 

such as undefined attributes, adding the async keyword, incorrect use of const /let /var quantifiers, adding 

the export keyword, varnaming, varmisuse, etc. Also, it works well for more complex bugs that need more 

than one fix.  

The rest of the paper is organized as follows: In Section 2, a survey of related work is presented. In Section 

3, the required background, such as bugs in JavaScript program, Abstract Syntax Tree, Graph Convolutional 

Network, GraphSAGE, and imbalanced data classification are described. Our proposed method is detailed 

in Section 4. The experimental setup, including dataset, evaluation metrics, and experimental settings are 

presented in Section 5. Section 6 discuss the experimental results. Finally, we conclude with future work 

in Section 7.  



2. Related Works 

2.1. Spectrum-based bug localization  

The spectrum-based bug localization techniques  [20] rank elements of the program according to their 

probability of being buggy based on failing and passing tests and the analysis of the program elements [21]. 

Elements that have been performed by many failing tests and a small number of passing tests are likely to 

have bugs; conversely, elements of the program that have been performed by many passing tests and a small 

number of failing tests are likely to be bug-free. In early spectrum-based bug localization studies  [22, 23], 

only failed test cases were used. Subsequent studies achieve better results using passing and failing 

experiments [24]. Suspicious values of code lines can be calculated using various criteria  [25]. Spectrum-

based bug localization techniques use four criteria, ,Tarantula [26],  GenProg [27], Ochiai [28], and Jaccard 

[29], to calculate the suspiciousness of code lines in bug localization [30]. Researchers have investigated 

more advanced cases, such as using neural networks to predict buggy code [31] or reducing the number of 

test cases  [32]. Spectrum-based approaches depend on experimental inputs for their performance, but our 

approach does not require experimental inputs and is based on the analysis of entities and their relationships, 

which can complement spectrum-based approaches. 

2.2. IR-based bug localization 

In IR-based bug localization techniques buggy files are identified by using the textual similarity 

between bug reports and the code. These methods consider a report of the bug as a query and turn bug 

localization into a search problem. Some machine learning techniques such as Latent Dirichlet Allocation  

[33],  Support vector machine  [34], Naive Bayes [35], and Latent Semantic Analysis  [36], are used as a 

similarity to find the snippet code that is related to a special bug report. Several code structures such as 

methods, class, comments, and variables have been exploited from source code for bug localization in [37]. 

In addition to bug reports, version histories [38]  have also been studied. Although we extracted features 

from equivalent bug and non-bug files for labeling, our approach is not IR-based and we do not calculate 

the similarity between bug reports and source files in our approach. Our approach can also be used as a 

complement to IR-based approaches.  

2.3. Machine learning-based bug localization 

The goal of Machine learning-based bug localization techniques is inferring or learning the bug 

location. Researchers proposed an approach based on a back-propagation neural network  [39]. In this 

neural network, the difference between the output obtained from the network with the desired output in the 

training data set is calculated as suspicious value. Execution results and coverage data for each test case are 

gathered and used to train a neural network. A generalized back-propagation approach to the object-oriented 

context is proposed  [40]. This study also investigated the use of support vector machines (SVMs). Another 

approach is proposed based on radial basis function(RBF) networks [41]. The RBF networks are less 

sensitive to local minima problem and have a better learning rate [42]. When the training phase of the RBF 

network is completed, the output is considered as suspicious of the statement. These approaches differ from 

our approach by using different techniques as well as taking different inputs from our approach. 

2.4. Model-based bug localization 

In Model-based bug localization techniques, a model can define bug signatures. These techniques use 

the differences between the observed behaviors of the source code and the behaviors of the model to locate 

bugs in the source code  [43]. Some bug localization approaches use models constructed directly from the 



actual source codes  [44, 45]. Actual source code means that these source codes may contain bugs. 

Dependency-based model derives from dependencies between program statement. A dependency model 

which can handle features of the Java language, such as methods, classes, while-loops, conditionals, and 

assignments is proposed in [46]. In another research, dependency-based models are constructed based on 

first-order logic and the differences between test cases and models are used to identify suspicious 

expressions [47]. In [48], researchers have built program dependency graphs from the bug fixes and 

extracted the feature vector of each node by graph analysis. They combined graph analysis for finding the 

bug location. Value-based models are applied to locate buggy components  [49]. This type of model 

represents data-flow information in programs. Due to the higher computational complexity compared to 

dependency-based models, they use in small projects  [50]. A graph-based code representation that modeled 

the syntactic and semantic structure of program commands is proposed in  [8].  They used a pointer network 

[51] into the graph structure. These approaches differ from our approach by using different types of graphs.  

Also, most of the methods in this category cover specific types of bugs or target bugs in specific databases. 

Our approach covers a wider range of bugs such as undefined attributes, adding the async keyword, 

incorrect use of const /let /var quantifiers, adding the export keyword, varname, varmisuse, etc. It also 

works well for more complex bugs that need to be fixed in multiple places. 

3. Preliminaries 

3.1. Bug in JavaScript program 

A software bug is a defect or an error in a source code program that produces unexpected results. 

Software bugs can lead to delays in software projects and increase software maintenance costs.  

The JavaScript programming language is widely used in client-side web applications. This 

programming language has been the most used language in GitHub for the past eight years  [18]. Although 

JavaScript is very popular with developers, inherent features such as dynamic typing and runtime evaluation 

make it a vulnerable programming languages. Fig. 1 shows examples of bugs in JavaScript code.  

const createAuthToken = function(user) { 

return jwt. sign({user}, config.JWT_SECRET, { 

       subject: user. username, 

       expiresIn: config.JWT_EXPIRY, 

      algorithm: 'HS256' 

}); 

}; 

text: DataTypes.STRING, 

index: DataTypes.INTEGER, 

type: DataTypes.STRING, 

response: DataTypes.STRING 

}, {}); 

question. associate = function(models) { 

 

(a) username should be userName (b) STRING should be TEXT 

Fig. 1. Two examples of JavaScript buggy code snippets 

3.2. Abstract Syntax Tree  

The Abstract Syntax Tree (AST) is a tree representation of the logical structure of a statement. It is 

similar to the parsing tree. The parse tree contains all the grammatical symbols (terminals and non-

terminals) encountered during parsing. The abstract syntax tree is “abstract”, meaning that it does not show 

all the details that appear in the actual syntax, but only contains the content-related and structural details  

[52]. The following tasks are needed to extract an abstract syntax tree from a parse tree: (i) Remove 

Separators and priority markers such as parentheses. (ii) Replace parents that have only one child with their 

child. (iii) Replace the remaining non-terminals by operators that are their children. 

…
 



3.3. Graph Convolutional Network 

Graph Convolutional networks (GCNs) are an attempt to apply deep learning techniques to graphs. The 

most important part of GCN is a graph. A graph is a data structure consisting of two components: nodes 

and the relationships between nodes, known as edges. With 𝑁 nodes, it can be represented as G = (V, E), 

where V = {𝑣𝑖 |𝑖 = 1… 𝑁} is a set of nodes and E ⊆ V × V is a set of edges. A ∈ 𝑅𝑁×𝑁  denotes the 

adjacency matrix of the graph, and  the node feature matrix in this graph is represented by X ∈ 𝑅𝑁×𝐷 . In 

our notation, we use M(i) to represent the set of neighboring nodes of node i. 

GCN is as an beneficial semi-supervised learning on graphs that uses a combination of node features 

and information of graph structure   [14]. A graph convolution layer is defined as follows: 

𝐻𝑖 = 𝑓(�̃�−1�̃�𝑋𝑖𝑊)                                 (1) 

The graph convolution consisting of four phases: (i) applying a linear feature transformation to X by 

multiplying it by W (XW) and sharing W (a matrix of trainable parameters of graph) weights between all 

nodes. (ii) Propagating the information of node to adjacent vertices as well as the node itself by applying 

�̃�Y, where Y = XW and (�̃�𝑌)𝑖= ∑ �̃�𝑖𝑗𝑗 𝑌𝑗 = 𝑌𝑖 + ∑ 𝑌𝑗𝑗∈𝑀(𝑖)  . (iii) Normalizing each row i  and keeping a 

fixed feature scale after graph convolution by multiplying �̃�Y   by �̃� −1. (iv) Applying a nonlinear activation 

function f to output the graph convolution results. The GCN propagation rule is defined as follows: 

𝐻𝑖
(𝑙+1) = 𝜎(𝐿𝐻𝑖

(𝑙)𝑊(𝑙))                              (2) 

where,  𝐻𝑖
(𝑙) is the node embedding representation matrix for a node i at the 𝑙-th layer. We initialize 

𝐻𝑖
(0) = 𝑋𝑖. 𝜎 (·) is the activation function such as ReLU (·) = max (0, ·). 𝐿 ∈  𝑅𝑁×N is the aggregation 

matrix. GCN  [14] uses the graph Laplacian L=Â≜  �̃�−1/2�̃��̃�−1/2 as the aggregator where �̃� =

𝑑𝑖𝑎𝑔(∑ �̃�1𝑖𝑖  ‚ …  ‚ ∑ �̃�𝑁𝑖 𝑖 ), �̂� = 𝐴 + 𝐼𝑁 . 𝐼𝑁 is the identity matrix.  

3.4. GraphSAGE (SAmple and aggreGatE) 

One of the significant drawbacks of GCN architecture is scalability. That is, the characteristic vector of 

each node depends on its entire neighborhood. This can be quite inefficient for big graphs with big 

neighborhoods. To solve this problem, GraphSAGE has been proposed. The main idea of GraphSAGE is 

to sample the neighborhood information set instead of using the whole of them for propagation. The 

GraphSAGE algorithm  [15] is a comprehensive upgrade over the original GCN.  The GraphSAGE forward 

propagation rule is defined as follows: 

𝐻𝑀(𝑖)
(𝑙+1) = 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒(𝐻𝑗

(𝑙) ‚ ∀ j ϵ M(i))   

𝐻𝑖
(𝑙+1) = 𝜎(𝑊 ∙ 𝑐𝑜𝑛𝑐𝑎𝑡(𝐻𝑖

(𝑙)‚ 𝐻𝑀(𝑖)
(𝑙+1)))                           (3)  

𝐻𝑖
(𝑙+1) = 𝑛𝑜𝑟𝑚(𝐻𝑖

(𝑙)) 

First, the representation of neighboring nodes near each node is aggregated into a single vector. The 

current representation of the node is then contacted with the aggregated neighborhood vector. To use the 

representations in the next step, the concatenated vector is passed through a fully connected layer with σ 

(nonlinear activation function). 

 

 



3.5. Imbalanced data classification 

An imbalanced dataset refers to a dataset in which the number of instances in different classes varies 

greatly. A major problem in data mining and machine learning is imbalanced data classification. In the 

dataset, minority class is a class with less data, and majority class is a class with more data. Ordinary 

classification algorithms do not perform well in imbalanced datasets; Because the Ordinary classification 

algorithms tend to majority class training samples. This increases the error in identifying minority instances 

[53].  Synthetic minority over-sampling technique (SMOTE) is one of the methods that is used to solve the 

problem of the imbalanced datasets in machine learning  [54]. In this method, new samples of the minority 

class are synthesized to balance the dataset by re-sampling the instances of the minority class. 

4. The Proposed Method 

In this work, a node classification algorithm is used to classify graph nodes into buggy and bug-free 

nodes. The general stages of the proposed method are presented in Fig. 2. First, each source code in the 

database is mapped to an AST-based graph. Then, using the Gumtree algorithm, all graph nodes are labeled 

with a buggy or bug-free label. Next, a node classifier based on extracted graphs and labeled nodes is 

trained. Since the data are imbalanced, we use an over-sampling method on the graph data structure. In 

what follows, we describe the details of converting source code to graphs, labeling nodes using Gumtree, 

training and testing steps of the proposed method. The training phase includes over-sampling and node 

classification by using GraphSAGE. 

 
Fig. 2. An overview of the proposed approach 
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In this paper, a graph-based approach that produces symbolic representations of the code is presented. 

In this production, the combination of ASTs with additional edges is used, which leading to providing data 

flow and control flow  [8, 55]. In the mapping stage, different types of edges are used to model the syntactic 

relationships between different tokens. Fig. 3 shows a mapped example of a source code. As we can see, 

syntax nodes are labeled non-terminal based on the program grammar, while syntax tokens are labeled with 

the string they represent. AST-edge edges are used to connect the nodes according to AST  [8, 9].  

 
Fig. 3. An example of a program code and its corresponding graph  

After the mapping step, we used the Gumtree algorithm  [19] to label the graph nodes. Each sample is 

labeled with one of the buggy and bug-free labels. The architecture of the Gumtree algorithm used in our 

work is shown in Fig. 4. First, input files buggy *.js and corresponding bug-free *.js are mapped into two 

graphs, buggy *. json file and corresponding bug-free *. json file. In this stage, the corresponding ASTs 

and a parser are used.  Afterward, these graphs are given to an abstract mapping module to calculate a set 

of mappings as output. Finally, the output (a set of mappings) is given to an action module to calculate the 

actual editing script. For our purpose, actions include updating, inserting and deleting. To generate the final 

output, an abstract output module calculates the output based on input files, graphs, mappings, and editing 

scripts. In our work, the generated editing script and the final output of the Gumtree algorithm are used to 

label the graph nodes. For each node in the graph, if an editing script is generated that contains one or more 

actions, we label that node as buggy and for the other nodes we consider the bug-free label. 

In the last stage of our proposed approach, we apply supervised node classification. Nodes in a graph 

have a type feature. The range of values for this feature includes non-terminal nodes (N), terminal (T) and 

value nodes (V). In addition to this feature, syntactic features are valuable for extracting useful information 

from code written in a programming language. In fact, different types of syntax nodes and their relationships 

are the most efficient features for predicting buggy nodes. Indeed, the various types of syntactic nodes and 

their relationships are the most efficient features for predicting buggy nodes of the graph. We also encode 
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𝑥𝑠 ∈ 𝑅𝑛  feature to gather more syntactic AST information for each node in the graph. 𝑥𝑠  is the value of a 

node in a set of syntactic variables.  

As mentioned earlier, most lines in the buggy source code are bug-free, and bugs make up only a small 

part of the program source code. For this reason, we have an imbalanced dataset.  To tackle this problem, 

GraphSMOTE approach [56] is used to balance the training set. GraphSMOTE is a new framework that 

operates on graph and dose the over-sampling task. This framework uses interpolation in embedded space 

obtained by a GNN-based feature extractor to generate synthetics minority nodes. It predicts connections 

for synthetic nodes by using an edge generator to.  

Now, we can train a classifier on the new training set. The aim is predicting the category of a node in a 

binary classification setup, where making it a node classification task. A two-layer GraphSAGE with 

feature matrix X and adjacency matrix A is intended to train a model. The forward propagation of our model 

is defined as following form:  

𝐻𝑖
(2) = 𝑊(2)  · 𝐶𝑜𝑛𝑐𝑎𝑡(𝐻𝑖

(1). 𝐻𝑀(𝑖)
(2)) 

𝐻𝑖
(1) = 𝑊(1)  · 𝐶𝑜𝑛𝑐𝑎𝑡(𝐻𝑖

(0). 𝐻𝑀(𝑖)
(1)) 

𝐻𝑀(𝑖)
(2) = 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒(𝐻𝑗

(1) ‚ ∀ j ϵ M(i))                            (4) 

𝐻𝑀(𝑖)
(1) = 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒(𝐻𝑗

(0) ‚ ∀ j ϵ M(i))   

𝐻𝑖
(0) = 𝑋𝑖 

 
Fig. 4.  The architecture of Gumtree algorithm [19] 

5. Experimental Setup 

5.1. Dataset 

We used Hoppity’s dataset  [8, 57] in the experiments. This dataset contains a lot of samples collected from 

JavaScript programs in GitHub. In GitHub’s commits, various types of changes exist, such as refactorings, 

bug fixes, feature additions, etc. Only bug fixes are selected based on the number of changes  [8]. For a 

commit, JavaScript files are considered before and after the changes.  For our experiments, 27,184 pairs of 

buggy JavaScript files and their corresponding bug-free files, are selected from this dataset. The total 
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number of nodes is 6,072,325 from which 60% (3,643,395) were used for training, 20% (1,214,465) for 

validation, and 20% (1,214,465) for testing. In the training set, there are 252,627 buggy nodes and 

3,390,768 bug-free nodes. The maximum number of nodes in each graph is set to 800.  

5.2. Evaluation Metrics 

In the imbalanced dataset, the classification evaluation criterion is different from ordinary datasets. In 

this dataset, common criteria such as the accuracy criterion alone cannot be used. Therefore, to evaluate 

our proposed method, other evaluation criteria along with this criterion are used. We measured the 

performance of our model by the following metrics: Confusion Matrix (CM), accuracy, Precision, Recall, 

and F1 scores. Confusion Matrix is a suitable metric for measuring the success and efficiency of 

classification systems. 𝐶𝑀𝑖𝑗 indicates how many elements of class i are labeled as members of class j. Table 

1 shows this matrix.  The formula of accuracy and other metrics based on this matrix are shown in Table 

2Table 2.  Evaluation metrics.  

Table 1.Confusion Matrix 

` Predicted class 

  Buggy Bug-free 

Actual class Buggy TP FN 

Bug-free FP TN 

 

Table 2.  Evaluation metrics 

 

 

 

 

5.3. Experimental Settings 

We explore the following questions to analyze the performance of the proposed method: 

RQ1: Does the proposed method outperforms other related bug localization methods? 

RQ2: What is the effect of oversampling on the performance of the proposed method during node 

classification? 

RQ3: During the training, what is the effect of the parameter l (number of GraphSAGE layers) on the 

performance of the proposed method? 

RQ4: How robust is the proposed model to the overfitting problem? 

     For measuring the performance of the proposed method, we perform experiments based on the 

mentioned dataset in section 5.1.  

6. Experimental results  

6.1. Results analysis for RQ1 
 

To evaluate the superiority of the bug localization performance of the proposed method, we compare it with 

two related methods on JavaScript codes, respectively. Methods that have been compared include Hoppity  

[8] and TAJS  [4]. In this study, the performance of the proposed method has been evaluated in comparison 

to Hoppity using the accuracy metric. In Table 3, the results of comparing the proposed method with the 

𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵
 𝑹𝒆𝒄𝒂𝒍𝒍 =

𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
 

𝑭𝟏 =
𝟐

𝟏
𝑹𝒆𝒄𝒂𝒍𝒍

+
𝟏

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏

 



Hoppity approach are shown. In this table, the accuracy of our approach is higher than Hoppity. We tested 

less data than Hoppity due to hardware limitations. Because our approach required producing a large 

number of nodes. Nevertheless, we came to the desired results. For comparing the proposed method to 

TAJS, we randomly selected 30 buggy codes from our test set to compare our method with TAJS. The 

reason for choosing this set and performing the test in this way is the impossibility of automatically 

comparing our entire test set with TAJS. TAJS static analyzer only accepts JavaScript projects that use 

ES5. TAJS claims to be very good at detecting undefined property bugs, but as shown in Table 4, it has 

detected only two bugs of undefined property. TAJS cannot also detect functional bugs and refactoring. It 

ignores internal library analysis and generates a lot of unrelated false warnings due to unsuccessful location.  

Table 4 presents the list of selected data and test results in the TAJS, Hoppity, and the proposed method. In 

this table, symbol  indicates that the method correctly identified bug locations in that code, while symbol 

× indicates that it incorrectly identified bug locations in that code. As can be seen, our proposed method 

for bug localization is significantly better than other related methods in this comparison. The number of 

bug files that have two types of undefined feature bugs and functional bugs in the dataset is very high. An 

undefined property bug indicates that a variable has not been assigned a value or that the variable has not 

been declared at all. Our proposed method can identify this type of bugs well because among the considered 

features, we introduced the parent feature of each node, which can be identified by following the sequence 

of nodes. 

We believe that graphs define the syntactic relationship between program components well. Also, different 

nodes are defined based on language specifications. The proposed method has introduced information and 

values of vertices as important and distinguishing features. Therefore, the proposed method is able to detect 

bugs related to program specifications. 

Table 3.  Comparison purposed method with Hoppity 

Acc (%) Max. Graph Size No. Graphs Dataset Method 

35.5 500 36,361 Hoppity OneDiff [57] Hoppity 

90.5 800 27,184 Hoppity OneDiff [57] Proposed method 

Table 4.  Comparison proposed method with TAJS and Hoppity by 30 random testing points 

File (GitHub Link) TAJS Hoppity Proposed method 

index.js (Link) ˟ ˟ ˟ 
convert.js (Link) ˟ ˟  
router.js (Link) ˟ ˟  
articles.server.route.js (Link)    
index.js (Link) ˟ ˟ ˟ 
ListAlbums.js (Link)  ˟  
QuizQuestion.js (Link) ˟ ˟ ˟ 
order.js (Link) ˟ ˟  
crosshairs.js (Link) ˟ ˟  
Advisors.js (Link) ˟ ˟  
splash.js (Link) ˟ ˟  
Container.js (Link) ˟ ˟ ˟ 
index.js (Link) ˟   
z.js (Link) ˟ ˟ ˟ 

https://github.com/dmcgrann/js-ajax-hitting-apis-lab-v-000/commit/0209008e3d22f922a587bcdf40060ee815298c17#diff-bef722a4e76855b0e7e8074a4cb9dd7acfe1f234
https://github.com/isaacjeon/roma2hira/commit/028d64e26ae24f648e1bc55ea15bdc83d22f9119#diff-7902fc58d7b169439db15f4402169badd4575875
https://github.com/lesleydreyer/LetsRoll/commit/2e7bad193537ac659197b31910a6cd107d21aae3#diff-a0b7d09d124c9e82a5b671e1d38ced0faede6700
https://github.com/Zelda256/MEAN/commit/51e80d7be178438379bcee7b275bfb1c5bfe0771#diff-17d4a6c32eb25b5a1391a7fca55503b85f78e7b5
https://github.com/nkdmiller/js-dom-and-events-acting-on-events-lab-v-000/commit/b6c67c2061e91447d838e04117dc8ca51c9db08f#diff-22d95365634ed74391eea94d0d44ba1f9400550c
https://github.com/adikodos/rn-mitrais-mb/commit/ccf8aac86ee1574ba719703b71e94a021011dd52#diff-32c4daa9c7fb78b22dd648c388931243fe5e890e
https://github.com/alessandrovangeli/React-QuizComponent/commit/f2cd672972d219d3c4685bdf82b9e2eedc7390fe#diff-c3b05273c2a6ce97b914db724d62a12e47e08fe2
https://github.com/the-musketeers-GS/musketeer-shop/commit/3c1389eb3543699b6e967efffceed4fd6bb95e57#diff-77a51c64541e1b9dc6e96c5b594f7db05ae520df
https://github.com/TaganTrader/ALFACharts/commit/deec72c343cce71ad1cd941324cf01404e9e7b8b#diff-ab16c3383f4a47621d6b5279998bdc878b8bce01
https://github.com/hackcincinnati/site/commit/b252e87b75459bd1d59c3c328be7337bd49f9731#diff-739e12243ed94acf83028e7cdcd42665887036fd
https://github.com/jayzyaj/react-native-with-redux-react-navigation-v2-boilerplate/commit/7ed616fad59d09db94070b46ed3fbb14b88cc0b5#diff-39236f471f57123a565e05c45d89dc4d9025ae32
https://github.com/haotv1989/AloChat/commit/89ba96a08678d1d78bd71df97227c34f5ed8abb2#diff-a851d1917bbac157d3bcf5ea41001dccf8d96d84
https://github.com/exocet-engineering/pandora-validation/commit/37e148e3f9fd518b583fb6e07490db4906974ce3#diff-5d06495643198a6ba754b0c50e2aaf88ca155290
https://github.com/hundredrabbits/Orca/commit/0aa31e141e93d8ca07d293cd8cc1e60069dcfb2d#diff-4a03dce0b7536ef32da4b125d4a510cd48b64cc3


count.js (Link) ˟ ˟ ˟ 
question.js (Link) ˟ ˟  
blink.js (Link) ˟   
display.js (Link) ˟   
point.js (Link) ˟ ˟ ˟ 
getETHFromFaucet.js (Link) ˟ ˟ ˟ 
stream_muting.js (Link) ˟ ˟  
mana.js (Link) ˟ ˟ ˟ 
gather.js (Link) ˟ ˟  
index.js (Link) ˟ ˟ ˟ 
Form.js (Link) ˟ ˟ ˟ 
before_router_match.js (Link) ˟ ˟  
index.js (Link) ˟   
ROT13.js (Link) ˟ ˟ ˟ 
help.js (Link) ˟ ˟  
CaseDetailsFileTab.js (Link) ˟ ˟  

6.2. Results analysis for RQ2 

       As mentioned, we are dealing with imbalanced data. Therefore, data (graph nodes) balancing is needed. 

In this case, we have more than one graph, unlike the usual node classification problems. So, the imbalanced 

rate (𝑖𝑚𝑟𝑎𝑡𝑖𝑜) in each graph is different. We set this variable to the ratio of the number of minority class to 

the number of majority class nodes. In Fig. 5 the distribution of the training set before and after over-

sampling is shown. 

 

Fig. 5. The distribution of the training set 

To study the effect of data balancing, we recorded the results of executing the proposed algorithm on the 

described dataset before and after the oversampling. The effectiveness of the proposed algorithm is 

evaluated by the Precision, Recall, F1-scores, and accuracy. Fig. 6 shows the results for this experiment. In 

this Figure, it can be seen that the accuracy of our proposed method after oversampling is 0.906, and 

Precision, Recall, and F1 scores are 0.586, 0.880, and 0.703, respectively. High Precision relates to the low 

false positive rate. We have got .586 Precision which is good. Recall is the ratio of correctly predicted 

positive observations to the all observations in actual class. We have got recall of 0.880 which is pretty 

good for this model as it’s above 0.5. F1 Score is the weighted average of Precision and Recall. Therefore, 

this score takes both false positives and false negatives into account. We have got 0.703 F1 Score which is 

a good result. The proposed method after oversampling outperforms the proposed method before 

3,390,768

3,390,768

252,627

2,919,755

0 1,000,000 2,000,000 3,000,000 4,000,000

Orginal imbalanced dataset

GraphSMOTE(oversampling)

number of nodes

Data Distribiution

Buggy

Bug-free

https://github.com/dpjanes/iotdb-mongodb/commit/9952ab7f1f73cb9c5c0914d43e04d1db7bd413e2#diff-20fea90bc7e72f9c89ebd41821086bed718c2743
https://github.com/magnew/flom-react/commit/0df07e887707a2a734a616cd4fc3f60cab4082cf#diff-f19293c18625a5ad39cfbeee3ebd3ff725735e6e
https://github.com/r-craig73/j5-leds/commit/135e9a8c61374db793764c2728acb5cb02108a40#diff-265055e07964567e02c5d36b0bf800936beabf37
https://github.com/h0wiechan/Craxi/commit/9e70e758773fd0fd91274d48b26321474da9fbc0#diff-a5521de85ba783b0f33ace21ea4ec102e9d280de
https://github.com/feds01/graph-js/commit/11b25ed385852827c09c7bdc9d875755db0e484c#diff-a31f2b1d465912c78c07383eba78f21be4d7f286
https://github.com/maticnetwork/matic.js/commit/e9e44ba59819c33f8423bb342734158caad21285#diff-6f31aac6956c5cfd1409ee13a4b3dfa14bade307
https://github.com/showell/zulip/commit/4ad09700219ef3d360716ee67b94c3014f380396#diff-201adbf11d8eda23faf6a3325c97d8f76069f9f5
https://github.com/design1online/WTF-Adventure/commit/0bdff4824862cb66e65a6d9cdbc07238849eed5c#diff-4cd9fa90e65740e1570252974e696e107d38e3c5
https://github.com/RanvierMUD/simple-crafting/commit/eb916f02686d40366652f43dedad66e7718f30f8#diff-83e19eca34e5221bc3a8577eab17e3ac8ede5665
https://github.com/yichenwan/geekTalks/commit/02fa7d8fe56e2c6bc4ff4285863231e19ca8e464#diff-1223a53b6fcc2586fd9183eb773d0c7e1ef3b3b6
https://github.com/muellercodes/pizza-totally-rocks/commit/0ddf28fc0437298e0834526835139761b73be6c4#diff-23b87b62423116ba4b600514d0c7bfecc4079d0f
https://github.com/cmux/koot/commit/5698b32e35bc8b0c4dec6ed2ebbfb369baca3740#diff-11002bdecf0d1d089ce88a8024d909db451894d5
https://github.com/karjac14/fo_rest/commit/7c6ef6df2b09a08d3cc162b9b2ff3f723ec62ab4#diff-dccea0b573825ba6db0915d8ac6c3fee44e7d940
https://github.com/cryptii/cryptii/commit/50a820a11a628485d1ca5018b1b8f110a5aeebe7#diff-8d6cb35669b358721e6835ae7b7b0d9fcaf12707
https://github.com/AieouSavren/DiscordWithDatabase/commit/a86beb39ba7f249ac0eaf6ca6c80fee408a9fcf6#diff-ee6a6a3a9fe7af317466c411284b3dd331419144
https://github.com/compucorp/uk.co.compucorp.civicase/commit/e9a2bcaa439f5e5eb00f660d11b244e4719ad6a6#diff-7b0737caefa6acd05aa3f8524c641d4ab2496f29


oversampling in accuracy, precision, recall and F1. The proposed method before oversampling is good 

rarely in accuracy metric. Indeed, it classified all nodes of graphs as bug-free nodes.  

 

Fig. 6. Overall performance on a held-out set  

6.3. Results analysis for RQ3 

To investigate the effect of model depth (number of GraphSAGE layers) on classification performance, we 

change the number of GraphSAGE layers from one to ten in our model. To analyze and obtain the optimized 

depth, we record recalls, precisions and f1-scores at each stage. In Fig. 7, the results of this experiment are 

shown. The results show that using 2 GraphSAGE layers brings more accurate results in the mentioned 

database. 

 

 

Fig. 7. The effect of model depth on classification performance  
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The final configuration of our proposed model is shown in Fig. 8. The following hyperparameters provide 

the best accuracy for this problem. We use two GraphSAGE layers with 32 units for each hidden layer. We 

use the mean aggregator in GraphSAGE layers. A rectified linear units (Relu) layer is used between two 

GraphSAGE layers. After Relu layer, a dropout layer with rate p=0.5 is used. We used binary cross-entropy 

as the loss function. The network is trained with the Adam optimizer. Our experiments were implemented 

on a computer with an Intel(R) Core (TM) i7-7500U3.50GHz CPU, 12GB RAM, and Nvidia 920MX GPU. 

Python version 3.6.5 was used in the implementation, as well as the Pytorch [58] library (1.7.0), DGL [59] 

library (0.6.1). 

 

 

Fig. 8.  The configuration of the proposed model 

6.4. Results analysis for RQ4 

The usual node classification methods perform on the nodes of a single graph, but we deal with a large 

number of graphs with up to 800 nodes in this problem. To handle the overfitting problem, the dataset 

is splatted and 20% of the nodes in each graph are selected randomly for testing, 20% for validation, 

and the remaining for training. Table 5 shows the evaluation results of our model based on the confusion 

matrix on a held-out test set. Based on this table, the true positive percentage is 0.88, the true negative 

percentage is 0.90, and the false positive percentage and the false negative percentage are 0.09 and 

0.11, respectively. The values of these criteria show that the evaluation results of our approach are 

promising. 

Table 5.  Results on true/false predictions 

 

7. Conclusion and Future Works 

Class 

… 

Input GraphSAGE layer GraphSAGE layer ReLU Dropout 



Graphs are rich and flexible structures used to solve many complex problems. Recently, this data structure 

has been used to model programming source code. The proposed models contain valuable information about 

the syntactic and semantic structure of programs. In this paper, we proposed a new solution for bug 

localization that uses graphs and graph-based classifications. We considered the problem of locating the 

bug as a node classification problem. The results show that the proposed method performs better than other 

related methods. In the future, one can consider edge classification as well for bug localization.  
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