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ABSTRACT

Motor  improvements,  such  as  faster  movement  times  or  increased  velocity,  have  been

associated  with  reward  magnitude  in  deterministic  contexts.  Yet  whether  individual

inferences on reward probability influence motor vigour dynamically remains undetermined. 

We investigated how dynamically inferring volatile action-reward contingencies modulated

motor  performance  trial-by-trial.  We  conducted  three  studies  that  coupled  a  one-armed

bandit  decision-making  paradigm  with  a  motor  sequence  task  and  used  a  validated

hierarchical Bayesian model to fit trial-by-trial data. In Study 1, we tested healthy younger

(HYA, 37 [13 males]) and older adults (HOA, 37 [20 males]), and medicated Parkinson’s

Disease  patients  (PD,  20  [13  males]).  We  showed  that  stronger  predictions  about  the

tendency of the action-reward contingency led to faster performance tempo—commensurate

with movement time—on a trial-by-trial basis without robustly modulating reaction time (RT).

Using  Bayesian  linear  mixed  models,  we  demonstrated  a  similar  invigoration  effect  on

performance tempo in HYA, HOA and PD, despite HOA and PD being slower than HYA. In

Study 2 (HYA, 39 [10 males]), we additionally showed that retrospective subjective inference

about credit assignment did not contribute to differences in motor vigour effects. Last, Study

3 (HYA, 33 [6 males]) revealed that explicit beliefs about the reward tendency (confidence

ratings) modulated performance tempo trial-by-trial.

Our study is the first to reveal that the dynamic updating of beliefs about volatile action-

reward contingencies positively biases motor performance through faster tempo. We  also

provide robust evidence for a preserved sensitivity of motor vigour to inferences about the

action-reward mapping in ageing and medicated PD.
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SIGNIFICANCE STATEMENT

Navigating a world rich in uncertainty relies on updating beliefs about the probability that our

actions lead to reward. Here we investigated how inferring the action-reward contingencies

in a volatile environment modulated motor vigour trial-by-trial in healthy younger and older

adults,  and  in  Parkinson’s  Disease  patients  on  medication. We  found  an  association

between trial-by-trial predictions about the tendency of the action-reward contingency and

performance tempo,  with stronger  expectations speeding the movement.  We additionally

provided evidence for a similar sensitivity of performance tempo to the strength of these

predictions in all  groups. Thus, dynamic beliefs about  the changing relationship between

actions and their outcome enhanced motor vigour. This positive bias was not compromised

by age or Parkinson’s disease. 
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INTRODUCTION

The prospect of obtaining rewards invigorates motor performance, with incentives leading to

faster  and more accurate movements (Summerside et  al.,  2018;  Sedaghat-Nejad  et  al.,

2019; Codol et al., 2020). Several non-mutually exclusive mechanisms have been proposed

to account  for  the beneficial  effects of  reward on movement.  These include the reward-

driven  strengthening  of  motor  representations  at  the  cortical  level  (Galaro  et  al.,  2019;

Adkins  &  Lee,  2021),  enhanced  feedback-control  processes (Padmala  &  Pessoa,  2011;

Carroll et al., 2019; Manohar et al., 2019), increased limb stiffness (Codol et al., 2020) and

coarticulation (Sporn et al., 2022; Aves et al., 2021). Despite the growing number of studies

demonstrating how rewards positively bias motor behaviour, the evidence so far is limited to

simple  manipulations  of  reward  magnitude  (presence/absence;  large/small).  Yet,  in  our

everyday life we are exposed to environments rich in uncertainty, where adaptive behaviour

relies on estimating the changing relationship between actions and their  outcomes.  How

beliefs about the probabilistic structure of reward contingencies modulate motor performance

remains largely unexplored. In addition, whether this modulation is compromised with age

and in neurological conditions is unclear. 

Hierarchical Bayesian inference models explain how individuals learn and make decisions

under uncertainty (den Ouden et al., 2010; Feldman & Friston, 2010). On a neural level,

processing  uncertainty  and  updating  beliefs  about  action-reward  contingencies  likely

involves  the anterior  cingulate  cortex (ACC,  Behrens et  al.,  2007;  Hayden et  al.,  2011),

medial prefrontal cortex (mPFC; Rouault et al., 2019) and orbitofrontal cortex (OFC; Rolls et

al., 2019). In multi/one-armed bandit tasks, these models describe learning as governed by

inferences on the probabilistic stimulus-outcome mappings, as well as higher-level beliefs

about the rate of change of these contingencies over time, labelled volatility (de Berker et al.,

2016;  Sheffield  et  al.,  2022).  In  Bayesian  predictive  coding,  beliefs  about  the  probable

causes  of  sensory  data  are  updated  via  prediction  errors  weighted  by  uncertainty  or

precision (Friston et al., 2014; Mathys et al., 2014). Thus, dynamic estimates of uncertainty

allow  for  the  expression  of  individual  differences  in  belief  updating.  If  motor  vigour  is
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modulated by beliefs  about the action-reward contingencies, then individual differences in

uncertainty  estimates  could  explain  differences  in  motor  vigour.  Alternatively,  under

equivalent  signatures  of  decision-making  behaviour,  individuals  could  exhibit  differential

sensitivity of motor performance to the expectation of reward probability.

We tested these hypotheses in three behavioural studies that used a reward-based motor

decision-making  task  based  on  a  one-armed  bandit  paradigm  with  changing  stimulus-

outcome contingencies over time. 

In the first study we investigated  whether dynamic predictions about volatile action-reward

contingencies influence motor sequence performance trial-by-trial. We additionally assessed

whether  the  sensitivity  of  motor  performance  to  the  strength  of  these  expectations

undergoes changes in later stages of life and in patients with Parkinson’s Disease (PD) on

their dopamine-replacement medication. This is motivated by the lack of evidence regarding

how reward sensitivity and reversal learning interact to modulate motor vigour in PD and

older  adults.  On  the one  hand,  evidence  supports  preserved  sensitivity  to  rewards  and

probabilistic learning in ageing and medicated PD (Fera et al., 2005; Euteneuer et al., 2009;

Aves et  al.,  2021).  Yet  other  work suggests  impoverished decision making and reward-

based learning in both groups. Specifically, ageing and medicated PD can underperform in

tasks using volatile probabilistic stimulus-outcome mappings (Cools et al., 2001; Eppinger et

al., 2011; Nassar et al., 2016). However, the medication effects on decision making in PD

(on/off states) is still under debate (Ryterska et al., 2013; Kjær et al., 2019). Accordingly,

whether  ageing and medicated  PD can use their  dynamic  belief  estimates to  invigorate

motor performance trial-by-trial remains unspecified.

In  the  second  study  we  evaluated  the  potential  contribution  of  retrospective  subjective

inferences about credit assignment to explain the motor vigour results. Last, we assessed

how  explicit  beliefs  about  the  reward  tendency  (confidence  ratings)  modulated  motor

performance trial-by-trial. This aimed at providing a more comprehensive understanding of

the motor invigoration effect by beliefs about volatile reward probabilities.
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MATERIALS AND METHODS

Participants

All studies received ethical approval by the review board of Goldsmiths (healthy sample),

University  of  London,  and  the  Neurology  Clinic,  Padua  University  Hospital  (Parkinson’s

Disease [PD] sample). Informed consent was acquired for each participant. Healthy younger

(HYA)  and older  adults  (HOA)  were  recruited  through  online  advertisement  and  via  the

Research Participation Scheme (RPS) at Goldsmiths University, while PD were enrolled at

the Neurology Clinic, Padua University Hospital. 

Study 1

37 HYA (13 males, age 18-40, mean age 27.8, standard error of the mean [SEM] 0.67;

hereafter we follow the intrinsic measures of precision for rounding descriptive and inferential

statistics as reported in Cousineau, 2020), 20 PD patients (13 males, age 40-75, mean age

58.9, SEM 1.32) and an age-matched group of 37 HOA (20 males, age 40-75, mean age

61.5, SEM 1.25) participated in this research. The sample size for healthy samples was

informed by previous work assessing differences between HYA and HOA in decision-making

under uncertainty (de Boer et al.,  2017: N = 30, 30) and our own work assessing group

effects in parameters of hierarchical Bayesian models (Hein et al., 2021; 2022; N = 20, 20).

We increased the sample size to allow for variability being introduced due to the nature of

the online study. 

All participants were right-handed, had normal or corrected vision and were able to perform

controlled finger movements. Amateur/professional pianists and participants diagnosed with

a mental health disorder were excluded from the study. Additionally, exclusion criteria for PD

patients  were:  implanted  with  Deep  Brain  Stimulation  (DBS),  taking  antidepressant

medications, diagnosed with dementia and displaying tremor as an onset symptom. One PD

patient declared to take Laroxyl,  yet confirmed not to be diagnosed with depression. PD

were evaluated through ITEL-Mini Mental state examination (ITEL-MMSE; Metitieri et al.,

2001), Unified Parkinson’s Disease Rating Scale part III (UPDRS-III; Fahn & Elton, 1987),
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Hospital  Anxiety and Depression Scale (HADS; Zigmond & Snaith, 1983) and State-Trait

Anxiety Inventory (STAI Y2; Spielberger, 1983). Supplementary disease-related information

was also gathered (Table 1). Patients completed the experiment in the ON medication state

according  to  their  usual  dopamine-replacement  treatment.  The  individual  dopaminergic

medication details were collected and converted to a levodopa-equivalent daily dose (LEDD)

value (Table 1).

All  participants took part  in the study remotely (online),  except for five PD patients, who

completed the study in the laboratory facilities of the Neurology Clinic of Padua. An Italian

translation of the original experimental instructions in English was created to test some of the

HOA participants (N = 24) and all PD patients (see the Results section for details on our

control analyses to assess the effect of the language of the instructions). The previously

validated Italian translations of the HADS, ITEL-MMSE, UDPRS-III and STAI Y2 scales were

used. HYA and HOA participants received a monetary compensation of £5 (5€ for those

completing the task in Italian), which could be increased up to £10 (10€) as a function of

their task performance. PD patients did not receive a monetary prize, in line with the clinical

research policies at the Neurology Clinic of Padua. 

Study 2

A separate sample of 39 HYA took part  in Study 2, which was aimed at  evaluating the

potential contribution of subjective inferences about task-related reward (credit) assignment

to explain our results (McDougle et al., 2016). HYA participants in this control experiment

were  divided  into  two  subsamples  as  a  function  of  their  reply  (True/False)  to  a  post-

performance question (Q8; Table 2). Group Q8T  consisted of 26 participants (8 males, age

18-40, mean age 24.1, SEM 1.13) and Q8F of 13 participants (2 males, age 18-40, mean age

25, SEM 1.7). The same inclusion/exclusion criteria and compensation as for HYA in Study 1

applied.

Study 3
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For Study 3, we recruited 33 HYA (6 males, age 18-40, mean age 22.4, SEM 1.14) with the

aim  of  understanding  how  trial-by-trial  explicit  confidence  ratings about  action-reward

contingencies  modulate  motor  performance.  The  same  inclusion/exclusion  criteria  and

compensation as for HYA in Study 1 applied.

Table 1

Experimental design

In  Study  1  and  2,  the  experiment  ran  completely  online  on  the  Qualtrics  platform

(https://www.qualtrics.com)  and  was  accessible  through  a  study  link.  The  task  was

programmed in JavaScript and embedded into the Qualtrics form. We provide more details

of the data acquisition below (see Acquisition of online data using JavaScript section). 

Participants  performed  a  novel  computerised  reward-based  motor  decision-making  task

based on a one-armed bandit paradigm with changing stimulus-outcome contingencies over

time (e.g., de Berker et al., 2016). Participants were instructed to play one of two sequences

of finger movements on a virtual piano to express their decision, which is an extension of

standard  one-armed  bandit  tasks  that  instruct  participants  to  manifest  their  choice  by

pressing a right or left button (Hein et al., 2021). 

The  task  consisted  of  a  familiarisation  and  a  reward-based  learning  phase.  In  the

familiarisation phase participants learned how to play two short sequences (seq1 and seq2)

of  four  finger  presses  each.  Each  sequence  was  uniquely  represented  by  one  of  two

different fractal images (Figure 1A). They were asked to position their right hand on the

keyboard as follows: index finger on “g” key, middle finger on “h” key, ring finger on “j” key

and little finger on “k” key. Each key press reproduced a distinct auditory tone, simulating a

virtual piano. Participants were trained to press “g-j-h-k” for seq1 (red fractal) and “k-g-j-h” for

seq2 (blue fractal). Online videos showing the correct hand position on the keyboard and

how to perform the two sequences were provided to increase inter-individual consistency.

The familiarisation phase terminated when an error-free performance was achieved for five
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times  in  succession  for  both  sequences.  The  number  of  sequence  renditions  during

familiarisation was recorded and used for subsequent analyses.

The reward-based learning phase consisted of 180 trials. On each trial, participants were

instructed to choose between two coloured fractals (blue and red) and correctly play the

associated sequence (seq1 and seq2) in order to receive a reward (five points; Figure 1B).

Trial-by-trial  reward  feedback  about  participants’  choices  was  provided  on  the  screen

(binary: “You earned 5 points!” or “You earned 0 points”). The reward probability associated

with each sequence (or icon) changed every 30-42 trials (as in de Berker et al., 2016). The

mapping governing the likelihood of sequences being rewarded was reciprocal (p(win|seq1)

= 1-p(win|seq2)) and consisted of five stimulus-outcome contingency blocks (90/10, 70/30,

50/50,  30/70,  10/90)  (Figure  1C).  The  order  of  the  contingency  blocks  was  randomly

generated for each participant.

After the first key press, subjects had 5000 ms to perform the sequence, terminating in a

Stop signal. Visual hints suggesting the first key to press for both sequences were displayed:

“It starts with a “g”” – for seq1 (red fractal); “It starts with a “k”” – for seq2 (blue fractal).

Participants were instructed to press key “q” if they needed a reminder of the order of finger

presses for each sequence. No participant required this reminder. 

Correctly playing the rewarded sequence added five points to the participants’ total score

(win  trial).  Thus,  receiving  five  points  indicated  that  participants  chose  the  rewarded

sequence on the trial and did not make performance execution errors when playing it. Zero

points, however, could reflect participants choosing an unrewarded sequence on that trial or,

alternatively,  choosing  a  rewarded  sequence  but  performing  it  incorrectly  (performance

execution  error)  (McDougle  et  al.,  2016).  No  reward  was  provided  when  sequence

performance exceeded the 5000 ms limit (no response trial) and participants were informed

they played too slowly. 

Thus, to maximise the total cumulative points over the experiment, participants had to infer

the probability  of  reward associated  with  each sequence  and adapt  their  choices  when

contingencies changed. They also had to perform the sequences correctly. Participants were

10
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informed  at  the  beginning  of  the  experiment  that  the  stimulus-outcome  mapping  would

change from time to time.  However,  they received no detailed information regarding the

frequency  or  magnitude  of  those  changes.  We  validated  that  each  participant  group

completed the task  correctly  using two measures:  (a)  the  percentage of  trials  that  they

performed either seq1 or seq2 (percPlayed, referring to playing seq1); and (b) percPlayed by

contingency phase. In the first case, percPlayed was used to demonstrate that participants

did  not  have  a  preference  towards  one  of  the  sequences,  which  could  emerge  if  they

perceived one sequence to be easier with regard to motor skills. On average, we expected

percPlayed  to  be 50%.  Next,  (b)  was used  to  assess whether  their  chosen sequences

tracked the contingency changes over time. To compute percPlayed by contingency phase,

we estimated the rate  of  choosing  seq1 in  each contingency phase,  separately  in  each

participant. We then pooled these data across participants in each group, sorted by phases

of increasing contingency values [0.1, 0.3, 0.5, 0.7, 0.9], as defined for seq1.  See further

details below (Behavioural and computational data analysis and Results sections).

In Study 2 we additionally asked participants at the end of the reward-based learning phase

to  reply  to  some questions  about  their  performance.  We were  particularly  interested  in

assessing whether participants could correctly infer what zero points meant, that is, whether

they  could  distinguish  between  a  performance  execution  error  or  a  decision  to  play  a

sequence that was unrewarded on the trial. Both scenarios would result in zero points. We

reasoned that participants who could not always infer the meaning of zero might show a

reduced  invigoration  effect.  Table  2  lists  the  questions  of  the  post-performance

questionnaire, which required binary responses (True/False) and was designed based on

previous work (McDougle  et  al.,  2016;  Herrojo Ruiz  et  al.,  2017).  The binary answer  to

Question 8 “I could always distinguish whether 0 points reflected a performance error or a

bad decision” was used as criterion to split  the control sample into Q8T  (i.e., participants

were always sure about the hidden causes for the lack of reward) and Q8F (i.e., participants

were  not  always sure about  the  hidden  causes for  receiving zero  points).  Among other

questions, participants were asked whether the subjective number estimate of performance
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errors was less than 10, between 10 and 30 or more than 30. This information was used to

investigate whether  Q8T  and Q8F differed in  the rate of  subjective  execution errors.  The

rationale  here  was  that  Q8F  participants  relative  to  Q8T could  attribute  more  zeros  to

performance errors rather than inferring that  their  choice was not rewarded on that trial.

Alternatively, they could misattribute zeros to bad decision outcomes. In both cases, their

biased  credit  assignment  would  be  reflected  in  a  more  pronounced  difference  between

estimated and empirical error rates in Q8F. However, their belief updating would differ; in the

first  case, Q8F participants relative to Q8T  would not update their beliefs following a zero

outcome, as this would be rendered as not informative feedback regarding the underlying

probabilistic  structure. Thus, differences in credit  assignment could explain differences in

decision making and, potentially, associated motor vigour effects. Finally, we also assessed

the  strategy  that  participants  used  to  memorise  the  sequences  (79.5%  of  participants

declared to have memorised the sequences focusing both on the finger movements and the

tones; Q7).

In Study 3, we conducted an offline version of the task described above. The paradigm was

coded  in  psychtoolbox  (http://psychtoolbox.org)  and  run  in  MATLAB (version  2021b).  In

order to better capture measures of  trial-wise reaction times (RT),  excluding deliberation

time,  the  5000  ms  time  window  for  performing  the  sequence  started  at  the  fractals

presentation (and not when the first key was pressed, as in Study 1 and 2). Hence, reward

delivery was contingent on RT and movement time.

Importantly, after each sequence performance we asked participants how certain they were

to be rewarded on that  round (following  Frömer et  al,  2021).  This  aimed at  unveiling  a

potential  association  between  trial-by-trial  explicit  beliefs  about  the  reward  tendency

(confidence ratings) and motor performance. Participants were instructed to type a number

in the 0–99 range on the computer keyboard with their left hand. Value 0 denoted having no

clue  about  receiving  the  points,  while  99  reflected  being  absolutely  certain  of  being

rewarded.  Participants  were  encouraged  to  explore  the  full  0–99  range.  They  were

additionally asked to press the key “z” if  they thought to have committed a performance
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execution error. This allowed us to estimate the percentage of correctly identified errors,

which expands on Study 2 findings  by informing about  trial-by-trial  (real-time) subjective

inference on credit assignment.

Figure 1

Table 2

Acquisition of online data using JavaScript

In Study 1 and 2, due to the nature of the online experiment, cross-browser issues could

emerge. A potential issue was that participants could use a variety of computer hardware,

running on different web browsers, operating systems and keyboard types (e.g., tablets vs

laptops).  To  mitigate  the  effect  of  hardware  variability  on  the  acquisition  of  motor

performance data, we instructed participants to complete the task on a desktop or laptop

computer.  An  inspection  of  browser  user  agent  data  suggests  that  the  experiment  was

performed on a mixture of desktops or laptops running the Chrome & Safari browsers on

Windows and Macintosh operating systems.

Timing  data  was  collected  using  the  web  browser’s  high-resolution  timer.  This  browser

resolution timer has an upper resolution limit of 2 ms on some web browsers. Therefore, all

analysis scripts  truncated timing data to 2 ms precision.  When estimating the mean and

standard error of the mean in time variables, we therefore considered a systematic error of 1

ms (2 ms precision means that our time measures were on average 1 ms too short).

For each participant, keypresses, timing data, points, contingency mapping, outcome, and

other data were extracted on each trial,  then stored and uploaded via JSON to the data

folder in Pavlovia (see https://gitlab.pavlovia.org/oshah001/reward-learning-experiment).

The hierarchical gaussian filter

To model intra-subject trial-by-trial performance in our task, we used a validated hierarchical

Bayesian inference model, the Hierarchical Gaussian Filter (HGF; Mathys et al. 2011, 2014;

Frässle et al., 2021). The HGF toolbox is an open source software and is freely available as
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part of TAPAS (http://www.translationalneuromodeling.org/tapas; Frässle et al., 2021). Here

we used the HGF version 6.1 implemented in MATLAB® 2020b. The HGF is a generative

model that describes how individual agents learn about a hierarchy of hidden states in the

environment, such as the latent causes of sensory inputs, probabilistic contingencies, and

their changes over time (labelled volatility). Beliefs on each hierarchical level are updated

through prediction  errors (PEs)  and scaled (weighted)  by a precision ratio  (precision as

inverse variance or uncertainty). The precision ratio effectively operates as a learning rate,

determining how much influence the uncertainty about the belief  distributions has on the

updating process (Mathys et al., 2011, 2014). 

In our studies, the HGF was used to characterise subject-specific trial-by-trial trajectories of

beliefs  about  stimulus-outcome  contingencies  (level  2)  and  their  changes  over  time

(environmental volatility, level 3). These belief distributions are Gaussian, summarised by

the  posterior  mean  (𝜇2,  𝜇3)  and  the  posterior  variance  (𝜎2,  𝜎3).  The  latter  represents

uncertainty about the hidden states on those levels, that is, our imperfect knowledge about

the true hidden states. On level 2, 𝜎2 is termed estimation or informational uncertainty. More

generally, the inverse 1/𝜎 is termed precision, labelled π. The HGF provides trajectories of

updated beliefs on the current trial, k, after observing the outcome (posterior mean 𝜇i
(k) for

level i = 2, 3). Before observing the outcome, participants’ predictions are denoted by the hat

operator μ̂i
(k) and correspond to the values in the previous trial (𝜇i

(k-1)). As in previous work

using one-armed bandit paradigms (Iglesias et al., 2013; Mathys et al., 2014; Hein et al.,

2021), we modelled learning using the 3-level HGF (HGF3) for binary outcomes (Figure 2A).

In this hierarchical perceptual model, the hidden state on the lowest level, x₁, represents the

binary categorical variable of the experimental stimuli  (for each trial  k,  x₁(k)  = 0 if  the red

icon/seq1 is rewarded [or blue/seq2 loses]; x₁(k) = 1 when red fractal/seq1 is not rewarded [or

blue/seq2 wins]). Higher in the hierarchy, x₂ reflects the true value of the tendency of the

stimulus-outcome contingency, and x₃ the true volatility of the environment (i.e., of x2). Belief

updating  in  the  HGF depends  on  various  parameters,  which  can  be  estimated  in  each
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individual or fixed depending on the hypotheses. This allows for the assessment of individual

learning characteristics. Here we chose to individually estimate parameter ω₂, representing

the tonic (time-invariant) volatility on the second level, and ω₃,  denoting the tonic volatility

on the third level. Generally, ω₂ and ω₃ parameters describe an individual’s learning motif.

Larger ω₂ values are associated with faster learning about stimulus outcomes, and thus

greater update steps in 𝜇2 (see simulations in Hein et al., 2021). Similarly, greater levels of

tonic volatility on level 3, ω₃, increase the update steps on 𝜇3. See details on our priors in

Table 3. Using simulations to assess the accuracy of parameter estimation in the HGF₃, we

and others have previously demonstrated that ω₂ can be estimated accurately, while  ω₃ is

not estimated well (Reed et al., 2020; Hein et al., 2021).

We then coupled the perceptual HGF model to a response model for binary outcomes, which

defined how beliefs about the tendency of the stimulus-outcome contingencies were mapped

onto decisions (e.g., which sequence should be chosen and played according to the beliefs

on the current trial; Mathys et al., 2014). Our response model was the unit-square sigmoid

observation model for binary responses (Iglesias et  al.,  2013;  Mathys et  al.,  2014). This

model estimates on each trial k the probability that the agent’s response y is either 0 or 1

(Figure 2B;  p[y(k)  = 1]  and p[y(k)  = 0]),  as a function of  the predicted probability  that the

icon/sequence  is  rewarding.  This  mapping  from  beliefs  to  decisions  depends  on  the

response parameter ζ (interpreted as inverse decision noise).  Higher ζ values indicate a

greater probability for the agents to select the option that is more likely to be rewarding

according to their  beliefs.  Simulations  demonstrate that  ζ  is  recovered well  (Hein  et  al.,

2021).

In  the  following,  as  stimuli  (red  and  blue  icons)  are  one-to-one  associated  with  motor

sequences (seq1 and seq2, respectively), we will use the term action-reward contingency

when referring to stimulus-reward or stimulus-outcome mappings.

Figure 2
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Models and priors

In line with previous work (Iglesias et al., 2013; Hein et al., 2021) we fitted the empirical data

with different models. We started by modelling our data with the HGF₃ perceptual model +

sigmoid  response  model,  as  described  above.  In  this  model,  the  third  hierarchical  level

represents  environmental  volatility,  that  is  the  rate  of  change  in  the  action-reward

contingencies. In our paradigm the true volatility was constant across participants, as the

reward contingencies changed approximately every 30-42 trials. In Study 1, using relatively

uninformative priors for  𝜔2,  𝜔₃ as in previous work (prior  mean -4, -7, respectively;  prior

variance 16 in both cases; Iglesias et al., 2017; de Berker et al., 2016; Hein et al., 2021) led

to  numerical  instabilities  in  the  HGF3  in  20%  of  our  participants  across  all  groups,  in

particular in those exhibiting high win rates and thus learning well. The numerical instabilities

also manifested when using tight priors (small variance of 4 or 1 in the prior distribution of 𝜔2,𝜔₃), and when using prior values estimated in our data using an ideal observer model. An

ideal observer is typically defined as the set of parameter values that minimise the overall

surprise that an agent encounters when processing the series of inputs (see an application

of an ideal observer model in e.g., Weber et al., 2020). It is likely that the divergence of the

HGF3 in 20% of our datasets is due to the trial number being smaller than in previous studies

using the HGF3 (180 instead of 320 or 400). We therefore proceeded to use the 2-level HGF

(HGF2) in all our three studies, in which beliefs on volatility on the third level are fixed. Priors

for the perceptual HGF2  model were chosen by simulating an ideal observer receiving the

series  of  inputs  that  the  participants  observed  (Table  3).  We  then  used  the  estimated

posterior  values  on  those  model  parameters  as  priors  for  the  HGF2  perceptual  model

coupled  with  our  response  model.  Complementing  the  HGF,  we  used  two  standard

reinforcement  learning  models,  the  Rescorla-Wagner  model  (RW;  fixed  learning  rate

determined by PEs; Rescorla & Wagner, 1971) and Sutton K1 model (SK1; flexible learning

rate driven by recent PEs; Sutton, 1992). Priors for reinforcement learning models were set

according to previous literature (Diaconescu, 2014; Hein et al., 2021). 
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The different models (HGF2, RW, SK1) were fitted to the trial-by-trial inputs and responses in

each  participant  using  the  HGF  toolbox,  which  generates  maximum-a-posteriori  (MAP)

parameter estimates in each individual. To identify the model that explained the behavioural

data across all participants best, we used random effects Bayesian model selection (BMS,

through  the freely  available  MACS toolbox  https://github.com/JoramSoch/MACS;  Soch  &

Allefeld, 2018). Importantly,  in Study 1 we used the same priors in all  participant groups

(HYA,  HOA,  PD)  as  in  previous  studies  (Powers et  al.,  2017;  Hein  et  al.,  2021).  Note,

however, that recent computational modelling work suggests that using different prior values

in each participant group may be more suitable to capture dissociable group effects (e.g., for

mental  health:  Valton et  al.,  2020).  This  approach,  albeit  interesting,  would  not  favour a

standard statistical comparison between groups: any between-group differences could be

explained by the underlying models having been constructed differently.

Table 3

Behavioural and computational data analysis

First, we validated the task by assessing (a) the percentage of trials that each sequence type

was played (percPlayed)  and (b)  whether percPlayed followed the contingency changes.

See details in Experimental  design.  We additionally examined the percentage of trials in

which  each  sequence  type  was  played  without  performance  execution  errors

(percCorrectlyPlayed).

General task performance in each participant was assessed by analysing the percentage of

errors (percError: rate of sequences with performance execution errors due to one or several

wrong key presses),  win rate (percWin:  rate of trials in which the rewarded sequence is

played without execution errors), the average of the trial-wise performance tempo (mIKI in

ms: trial-wise mean of the three inter-keystroke-intervals [IKI] across four key presses within

the same trial; see Figure 1D for trial-wise mIKI in Study 1) and the mean of the trial-wise

RT (in ms: time interval between the fractal presentation and first key press). Importantly,

mIKI is commensurate with movement time (MT), the time between the first and last key
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press (MT = mIKI * 3). Finally, we also assessed the number of sequence renditions that

participants  completed  during  the  familiarisation  phase  (rendFam:  average  of  renditions

across both sequence types). Time out trials and trials with performance execution errors

were excluded from analyses on performance tempo and RT to avoid potential confounds,

such as slowing following errors (Herrojo Ruiz et al., 2009). 

Next,  to  investigate  decision-making  processes  we  analysed  group  effects  on  three

computational variables that characterised learning in each individual. The model that best

explained the behavioural data across all participants according to BMS was the HGF2 (see

Results  section).  We  therefore  assessed  the  perceptual  model  parameter  𝜔2 (subject-

specific  tonic  volatility,  which influences the speed of  belief  updating  on level  2),  ζ  (the

decision  noise  of  the  response  model),  and  the  average  across  trials  of  𝜎2 (posterior

variance of the belief distribution). The quantity 𝜎2 is particularly interesting, as it represents

informational uncertainty about the tendency of the action-reward contingency. Moreover,

beliefs on level 2 are updated as a function of PEs about the stimulus-outcome mapping (the

mismatch between the observed outcomes  u = 1 or 0 and the agent’s beliefs about  the

probability  of  such  an  outcome)  and  weighted  by  𝜎2 (the  precision  ratio  on  level  2).

Accordingly,  if  agents  are  more  uncertain  about  the  contingencies  governing  their

environment, they will rely more on PEs to update their beliefs on that level.

To test our main research hypothesis that the strength of expectations about the action-

reward  contingency  modulates  the  trial-by-trial  motor  performance,  as  a  function  of  the

group, we focused on the trajectory μ̂ ₂ (dropping trial index k for simplicity; prediction about

the tendency of the action-reward contingency). 

In  Study  3,  we  also  measured  the  explicit  trial-wise  confidence  ratings  (conf:  number

between 0 and 99) about the reward outcome to assess whether motor performance was

sensitive to explicit beliefs about the reward tendency. 

Statistical analyses
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Bayesian analyses on Study 1

General task performance and computational variables

First, we calculated the mean and SEM as summary statistics for each of our general task

performance (mIKI, RT, percError, percWin, rendFam) and computation variables (𝜔₂, ζ, 𝜎₂).
Next, we evaluated between-group differences by computing Bayes Factors (BF) using the

bayesFactor  toolbox  (https://github.com/klabhub/bayesFactor)  in  MATLAB.  This  toolbox

implements  tests  that  are  based  on  multivariate  generalisations  of  Cauchy  priors  on

standardised effects (Rouder et al., 2012). For each dependent variable (DV), we calculated

the BF on the model DV ~ 1 + group, where DV is explained by a fixed effect of group (HYA,

HOA, PD). The model was fitted using the fitlme function of the MATLAB Statistics toolbox.

Computing BF allowed us to quantify the evidence in support of the alternative hypothesis

(full model, in our case assessing the main effect of the group) relative to the null model

(intercept-only model, i.e., DV ~ 1). BF values were interpreted as in Andraszewicz et al.

(2015). As BF is the ratio between the probability of the data being observed under the

alternative hypothesis and the probability of the same data under the null hypothesis, a BF of

20 would indicate strong evidence for the alternative hypothesis. On the other hand, BF of

0.05 would provide strong evidence for the null hypothesis (see Table 1 by Andraszewicz et

al.,  2015 for further details).  Accompanying the BF results, we provided the outcomes of

standard one-way analysis of variance (ANOVA) for completion. In the case of main effects

being observed in  the  group-level  BF analysis,  we conducted follow-up BF analyses on

independent two-sample t-tests. 

When analysing RT, we excluded outliers (RT values larger than three standard deviations

above the mean) at  the subject  level.  For BF analyses,  we used the individual  average

across 180 trials for the mIKI,  RT, and  𝜎₂ variables.  As mIKI and RT were not normally

distributed,  values  were  log-transformed  (natural  logarithm,  log_mIKI  and  log_RT).  The

same preprocessing steps were applied to RT and mIKI values in Studies 2 and 3.  The
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number of renditions during the familiarisation phase was averaged between both types of

sequence. 

Sanity checks were performed to assess that participants chose to play each sequence as a

function of the inferred action-reward contingencies and not based on individual sequence

preferences. These were carried out by computing mean and SEM along with BF analyses

for  paired t-tests on the percentage of  trials  each sequence type was (correctly)  played

(percPlayed;  percCorrectlyPlayed;  outcomes  of  standard  paired  t-test  reported  for

completion). We also report the group mean and SEM of percPlayed by contingency phases,

which  allowed  us  to  observe  whether  participants’  choices  followed  the  changes  in

contingencies over time.

Assessing the association  between predictions  about  the  action-reward contingency and

motor performance using Bayesian Linear Mixed Models

Our main goal was to investigate whether trial-by-trial sequence performance tempo (mIKI)

is modulated by the expectation about the tendency of the action-reward contingency ( μ̂ ₂) in

our  participant  groups.  In  addition,  we  aimed  to  determine  whether  the  group  factor

modulated the sensitivity of performance tempo to  μ̂ ₂, resulting in different slopes of the

association. 

We addressed these questions by implementing a series of Bayesian Linear Mixed Models

(BLMM) in R (version 4.0.3). We used the Bayesian Regression Models using Stan (brms;

Bürkner,  2017; 2018; 2021)  package,  freely  available  on

https://cran.r-project.org/web/packages/brms/index.html.  Brms  relies  on  the  probabilistic

programming language  Stan,  which implements Bayesian  inference using Markov Chain

Monte  Carlo  (MCMC)  sampling  methods  to  estimate  approximate  posterior  probability

distributions for model parameters. 

In the HGF for binary categorical inputs, the sign of μ̂ ₂ (and similarly 𝜇₂) is not informative,

as it represents the tendency of an action-reward mapping for an arbitrary action (e.g., for
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seq1). Yet, we could similarly define the model in reference to the other action (e.g., seq2).

In line with previous work (Stefanics et al., 2018; Hein et al., 2022),  we therefore took the

absolute value of μ̂ ₂ (|μ̂ ₂|) for our analysis to represent the strength of predictions about the

tendency of the action-reward mapping. Trials with greater |μ̂ ₂| values are trials in which the

participants will  have a stronger expectation of receiving a reward, given they select the

correct action. Thus, |μ̂ ₂| represents the strength of the predictions. In one participant (HYA),

we excluded |μ̂ ₂| values of the last 27 trials, as the HGF trajectories diverged, despite the

participant exhibiting normative learning patterns. Next, we centred the |μ̂ ₂| values (|μ̂ ₂∨¿

_c) to allow the intercept estimate for mIKI to reflect the average | μ̂ ₂| value. As for Bayesian

ANOVAs  (see  General  task  performance  and  computational  variables),  mIKI  was  log-

transformed to approach normality (log_mIKI). In one HOA participant, two log_mIKI values

were discarded from the analyses as they were not registered correctly in the JSON file (i.e.,

represented an impossible value of mIKI ~ 50 ms).

In  BLMM with  brms,  it  is  standard to  select  one  group as  reference for  the  parameter

estimates. Brms then estimates the posterior distribution of parameter differences between

each group and the reference group, as well as the posterior distributions of parameters in

the reference group itself.  We set  HOA as the reference group,  and therefore posterior

distributions of between-group differences on response variables were assessed for HOA vs

HYA and HOA vs PD. 

We implemented six models of increasing complexity, with every model including a larger

number of explanatory variables (Table 4). For simplicity, in the following we used variable

label y to represent our dependent variable log_mIKI, and x to represent the explanatory

variable |μ̂ ₂∨¿¿c. To answer our research questions, we primarily focused on: (i) the fixed

effect of x (sensitivity [slope] of the performance tempo to the strength of predictions about

the action-reward contingency in the reference group, HOA); and (ii) the interaction effect x *

group (differences between groups in the sensitivity [slope] of the performance tempo to the

strength of expectations about the action-reward mapping).
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For each model we ran four independent chains with 5000 iterations each, of which the first

1000 were discarded as warmup. This resulted in a total of 16000 posterior samples. In all

models we used default prior distribution for the intercept, and a normal distribution for each

fixed and random effect (fixed effects for group and x, normal [0,2)]; interaction term group *

x, normal [0,1]; random effects for intercept by subject and intercept by trial, normal [0,2];

random effect x by subject, normal [0,1]). The prior on the LKJ-Correlation, the correlation

matrices in brms (Lewandowski, Kurowicka, & Joe, 2009), was set to 2 as recommended in

Bürkner and colleagues (2017). Chain convergence was assessed using the Gelman-Rubin

statistics (R-hat < 1.1; Gelman and Rubin, 1992). 

Models were compared using leave-one-out cross-validation of the posterior log-likelihood

(LOO-CV)  with  Pareto-smoothed  importance  sampling  (Vehtari  et  al.,  2017).  The

identification of the best fitting model  was based on the highest  expected log point-wise

predictive density  (ELPD).  We also checked that  the absolute mean difference in  ELPD

between two models (elpd_diff in brms) exceeded twice the standard error of the differences

(2*se_diff). LOO-CV identified the most complex model (model number 6 in Table 4) as the

best  fitting  model  (see  Results  section  for  further  details).  This  model  explained  the

performance tempo as the interaction between groups and the strength of the expectation

about the action-reward contingency (in addition to main effects). Further, it modelled the

effect of subjects on the intercept and | μ̂ ₂∨¿¿c as a random effect, and the effect of trials on

the  intercept  as  a  random  effect.  We  reported  for  each  parameter  the  posterior  point

estimate  and  the  associated  95% credible  interval  (CI).  See  Results section  for  further

details. 

Because reward expectations could also modulate RT as shown previously (Codol et al.,

2020), we conducted additional analyses to assess the effect of | μ̂ ₂∨¿ on RT trial-by-trial.

Further, we evaluated whether the group factor influences the sensitivity of RT to ¿ μ̂ ₂∨¿. In

these analyses, we followed the same procedure as for the sequence performance tempo

analysis.  In particular,  the associations between RT (log-transformed) and | μ̂ ₂∨¿¿c were
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assessed  by  implementing  and  comparing  six  models  of  increasing  complexity  in  brms

(Table 4; see Results for further details). RT values three standard deviations above the

mean were excluded from statistical analyses. This approach was also followed in Studies 2

and 3. As for performance tempo, in the results section we use the variable label y for the

dependent variable (log_RT) and x for |μ̂ ₂∨¿¿c. 

Table 4

Bayesian analyses on Study 2

As described above, in Study 2 participants were allocated to two different analysis groups

(Q8T and Q8F) depending on their answer to a post-performance question (“I could always

distinguish whether 0 points reflected a performance error or a bad decision”, binary answer:

True/False). This allowed us to test the potential influence of subjective inferences about

task-related  reward  assignment  on  the  motor  invigoration  effect  observed  in  Study  1.

Specifically, we reasoned that participants who could not always infer the meaning of zero

might  show  a  reduced  sensitivity  of  motor  performance  by  beliefs  about  the  reward

tendency. 

As for Study 1, we computed the mean and SEM as summary statistics for each dependent

variable. Next, we used the bayesFactor toolbox to calculate the evidence in support of (or

against) group differences in general task performance (mIKI, RT, percError, percWin) and

computational variables (𝜔₂,  ζ,  𝜎₂). We intentionally did not analyse the rate of sequence

renditions during the familiarisation phase as here we were only interested in assessing the

role  of  subjective  inferences  about  credit  assignment  on  motor  sequence  performance

decision-making behaviour. We performed BF analysis on independent two-sample t-tests to

assess  between  group-differences  on  the  variables  of  interest  (results  on  standard

independent t-tests also reported for completion). RT and mIKI were log transformed and

followed the same preprocessing steps as described for Study 1. 
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Next,  to  test  potential  between-group  differences  in  the  mIKI-¿̂ μ ₂∨¿ association,  we

implemented six BLMM of increasing complexity (same models as in Study 1, Table 4). As

for Study 1, the most complex model (model number 6 in Table 4) was identified as the best

fit by LOO-CV (see Results section for further details). The same procedure was used to

investigate the associations between RT with ¿̂ μ ₂∨¿. 

Finally, we evaluated whether Q8T and Q8F  differed in the rate of retrospective subjective

number  estimate  of  performance  errors.  In  particular,  we  were  interested  in  assessing

between-group  differences  in  the  tendency  of  under/overestimating  the  number  of

performance errors. For each participant, the rate of subjective performance execution errors

(subjective_percError)  was  calculated  through  the  post-performance  questionnaire  (see

Questions 1,2,3  Table 2).  We arbitrarily  assigned a value of  0.028 (= 5/180) if  subjects

thought to have committed less than 10 performance errors; 0.111 (= 20/180) for between

20 and 40 estimated performance errors;  0.222 (= 40/180)  for  more than 40 subjective

performance  errors. To  assess  whether  this  rough  estimate  of  the  percentage  of

performance errors reflected a general over or underestimation of the true performance error

rate in the total sample (N = 39), we first conducted a BF analysis on the correlation between

the subjective and empirical  error  rates (Pearson's r coefficient  and p-value reported for

completion). Next, we  identified potential group-related systematic biases in the subjective

estimate. This was done with a BF analysis using  independent two-sample t-tests on  the

normalised rate of subjective errors ([subjective_percError-percError]/percError; results on

standard independent t-tests reported for completion). 

Bayesian analyses on Study 3

In Study 3, we aimed at assessing the association between trial-by-trial explicit beliefs about

the  reward  tendency  (confidence  ratings)  and  motor  performance.  We were  particularly

interested in understanding whether being more certain (following Frömer et al, 2021) about

obtaining the reward—given the right choice—would speed up motor responses.
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First, following the same steps as for Study 1 and 2, we calculated the mean and SEM as

summary statistics for the general task performance variables (mIKI, RT, percWin, conf).

Trial-by-trial confidence ratings were converted to a 0-0.99 scale. 

We aimed to use the confidence rating as a predictor in our BLMM analyses to assess the

sensitivity of motor performance (mIKI and RT) to explicit beliefs about the reward tendency.

This was tested by implementing four BLMM of increasing complexity (Table 4). 

As for Study 1 and 2, we used the label y to represent our dependent variable (mIKI or RT),

and x for the explanatory variable (conf). To test our hypothesis, we specifically focused on

the fixed effect of x (sensitivity [slope] of the motor performance to the confidence ratings

about the predicted outcome). We used the same priors as in Study 1 for the corresponding

factors.  The  most  complex  model  number  4  and  the  model  number  3  (Table  4)  were

identified  as  the  best  fit  by  LOO-CV for  performance  tempo  and  RT,  respectively  (see

Results section for further details). 

In addition, as a sanity check, we evaluated the association of confidence ratings with the

strength of predictions about the action-reward contingency trial-by-trial. The investigation of

motor vigour effects in Study 1 and 2 assumed that the unsigned | μ̂ ₂| values estimated in

the HGF reflect the strength of participants’ expectation on the reward tendency. However,

whether this HGF quantity reflects true explicit beliefs, assessed as confidence ratings, is not

clear.  We evaluated  the  association  between  confidence  ratings  and  the  unsigned  | μ̂ ₂|

values using the formula conf ~ 1 + | μ̂ ₂|_c + (1 + |μ̂ ₂|_c|subj) + (1|trial) in brms. We chose a

default prior distribution for the intercept, and a normal distribution for the fixed and random

effects (fixed effect  for  |μ̂ ₂|_c,  normal [0,2)];  random effects for  intercept by subject  and

intercept by trial, normal [0,2]; random effect |μ̂ ₂|_c by subject, normal [0,1]). The prior on

the LKJ-Correlation was set to 2 as recommended in Bürkner and colleagues (2017).

Finally, we provided summary statistics for the number of empirical performance errors and

the number of  subjective performance errors (how many times the “z”  key was pressed

throughout the experiment). This aimed at expanding on the findings of Study 2, informing
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about participants’  ability to correctly identify performance errors and thus infer the task-

related credit assignment. 
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RESULTS

Study 1

Task validation

Participants played on average seq1 and seq2 50% of the trials (seq1: mean 0.490, SEM

0.008; seq2: mean 0.508, SEM 0.008). This suggests that they did not express a preference

towards a sequence type (percPlayed, BF = 0.2295,  moderate evidence in support of the

null hypothesis for no differences in the percentage of performances by sequence type, t (93) =

-1.204,  p  =  0.232).  Participants  committed  fewer  performance  execution  errors  in  seq1

(mean 0.958, SEM 0.005) than seq2 (mean 0.922, SEM 0.008; percCorrectlyPlayed, BF =

1126.7,  suggesting  extreme  evidence  for  alternative  hypothesis  that  the  rate  of  correct

performance differed in seq1 and seq2, t(93) = 4.576, p < 0.001).  Next, we observed that

percPlayed in each group successfully tracked the contingency changes over time. For true

contingencies  sorted  according  to  increasing  values,  [0.1,  0.3,  0.5,  0.7,  0.9],  HYA

participants played the corresponding sequence at  these rates:  [0.18 (0.02),  0.33 (0.02),

0.48 (0.02),  0.67 (0.02),  0.81 (0.02)].  Similar  values were obtained for HOA participants:

[0.18 (0.02), 0.34 (0.02), 0.48 (0.02), 0.62 (0.02), 0.79 (0.02)]; and for PD patients: [0.16

(0.02),  0.32 (0.03),  0.47 (0.03),  0.63 (0.03),  0.79 (0.03)].  Accordingly,  task  performance

demonstrated  that  each  group  of  participants  learned  to  flexibly  adapt  to  the  changing

contingencies over time.

General task performance

Overall,  as  expected,  our  analyses  revealed  between-group  differences  in  performance

tempo (mIKI in ms, HYA: 300, SEM:15.8; HOA: mean 424, SEM 19.6; PD: mean 537, SEM

26.9; Figure 3A), and reaction time (RT in ms, HYA: 634, SEM: 34.9; HOA: mean 838, SEM

49.4; PD: mean 918, SEM 77.5; Figure 3B), with movements progressively slowing down in

ageing and PD patients. BF analyses on performance tempo yielded extreme evidence for a

group  effect  (log_mIKI:  BF  =  1.1253e+09,  demonstrating  extreme  evidence  for  the

alternative  hypothesis;  F(2,91)  =  35.332,  p  <  0.001).  Post  hoc  pair-wise  t-tests  using  BF
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showed extreme evidence for between-group differences in HYA vs HOA (BF = 1.2044e+04)

and  in  HYA  vs  PD  (BF  =  3.3592e+07).  We  also  found  very  strong  evidence  for  the

alternative  hypothesis  in  HOA  vs  PD  (BF  =  32.591).  Thus,  performance  tempo  (and

therefore movement time) was differently modulated between groups, with HYA being faster

than HOA and PD, and HOA faster than PD. Regarding RT, there  was extreme evidence

supporting between-group differences (log_RT: BF = 404.521; F(2,91) = 11.383, p < 0.001). BF

analysis  on  post  hoc  independent  two-sample  t-tests  revealed  extreme  evidence  for

between-group differences in HYA vs HOA (BF = 109.444) and HYA vs PD (BF = 239.335).

Yet, we only found anecdotal evidence in support of the null hypothesis in HOA vs PD (BF =

0.403). Hence, despite HYA displaying shorter RTs than HOA and PD, our analyses suggest

similar RTs in HOA and PD. 

In addition, we found anecdotal evidence supporting that groups differed in the number of

sequence renditions during the familiarisation phase (rendFam, HYA: mean 5.6, SEM 0.1;

HOA: mean 6.0, SEM 0.2; PD: mean 7.1, SEM 0.8; BF = 1.733; F(2,91)  = 4.448, p = 0.014).

Post-hoc BF analyses to assess differences between pairs of groups revealed anecdotal and

moderate evidence for between-group differences in HYA and HOA (BF = 1.900) and HYA

and PD (BF = 3.030),  respectively.  Still,  HOA and PD practised the two sequences to a

similar extent (BF = 0.853, revealing anecdotal evidence for the null hypothesis). Of note,

practising more during familiarisation was not associated with better win rates or average

performance tempo during task completion.  A correlation  analysis  across all  participants

between the number of repetitions during familiarisation and these variables demonstrated

some evidence for null correlation effects (percWin: BF = 0.290, Pearson r = -0.134, p =

0.200; log_mIKI: BF = 0.397; Pearson r = 0.158, p = 0.131; note that we excluded one PD

patient who practised 21 times during familiarisation as outlier in this correlation analysis).

The group effects observed above were not accompanied by a dissociation between groups

in the win rate or the rate of performance execution errors (Figure 3C-D). BF analysis on win

rates provided moderate evidence for the lack of a group effect (percWin, HYA: mean 0.590,

SEM 0.012;  HOA:  mean 0.561,  SEM 0.014;  PD:  mean 0.553,  SEM 0.021;  BF = 0.210,
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supporting moderate evidence for the null hypothesis; F(2,91)= 1.848, p = 0.163). A similar

outcome was observed in the analysis of performance execution error rates (percError, HYA:

mean 0.061, SEM 0.009; HOA: mean 0.057, SEM 0.008; PD: mean 0.084, SEM 0.020; BF =

0.146, moderate evidence for the null  hypothesis;  F(2,91)  = 1.456, p = 0.239).  In sum, we

found moderate evidence that HYA, HOA and PD did not differ in either the rate of win or

error trials.

Computational parameters

Decision  making  was  assessed  by  looking  at  between-group  differences  in  the

computational variables 𝜔2, ζ and 𝜎2. After excluding the HGF₃ from model comparison due

to numerical instabilities, BMS was conducted on the HGF₂ and two reinforcement learning

models (RW, SK1) using the individual log-model evidence (LME) values provided by the

HGF toolbox. The winning model was the HGF₂, with an exceedance probability of 0.95 and

an expected frequency of 0.90. Of note, although the HGF₃ model was not included in BMS,

a  qualitative  comparison  of  LME  values  for  the  HGF₃ and  HGF₂ models  in  the  80%

participants in which HGF₃ did not lead to numerical instabilities revealed extremely similar

values  (LME  differences  <  1).  This  observation  suggested  that  both  models  described

behaviour in our task with constant true volatility to a similar degree. 

Overall, we found no group effect on the signatures of reward-based learning and decision

making in our volatile task (Figure 3E-G). BF analysis on 𝜔2 demonstrated strong evidence

for the absence of a main effect of group (HYA: mean -1.332, SEM 0.282; HOA: mean -

1.686, SEM 0.438; PD: mean -1.843, SEM 0.609; BF = 0.059; F(2,91)  = 0.380 p = 0.685).

Similarly, we found strong evidence in favour of a lack of group effect on the informational

uncertainty about beliefs on the tendency of the action-reward contingency, 𝜎2 (HYA: mean

1.610,  SEM 0.177;  HOA:  mean 1.663,  SEM 0.158;  PD: mean 1.559,  SEM 0.218;  BF =

0.045; F(2,91)  = 0.074, p = 0.928). Last, groups exhibited a similar mapping from beliefs to

responses, driven by the response model parameter ζ (HYA: mean 1.735, SEM 0.191; HOA:
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mean 1.523, SEM 0.176; PD: mean 2.095, SEM 0.469; BF = 0.114, demonstrating moderate

evidence for the null hypothesis; F(2,91) = 1.1495, p = 0.321). 

A direct comparison between the Italian HOA subsample and (Italian) PD sample revealed

anecdotal or moderate evidence in support of the null hypothesis when assessing general

performance and decision-making variables (exception for log_mIKI). These findings thus

converge with the outcomes of the full HOA sample analysis. On the other hand, the very

strong evidence in support of group effects on the performance tempo in the full sample was

only  anecdotal  when  directly  comparing  Italian  HOA  and  PD  samples  on  this  variable

(log_mIKI: BF = 2.556; t(42) = -2.348, p = 0.024). These results suggested that Italian healthy

ageing  was  associated  with  slower  performance  tempo  relative  to  UK  healthy  ageing

participants (log_mIKI: BF = 6.637; t(35) = 2.871, p = 0.007; moderate evidence supporting

differences  in  performance  tempo).  Hence,  between-group  effects  on  general  task

performance and decision making cannot be accounted for by language differences. 

Figure 3

Sensitivity  of  motor performance to the strength of  expectations about  the action-reward

contingency

For performance tempo, LOO-CV identified the most complex model (model number 6) as

the best  fit.  The absolute mean difference in ELPD between the winning model and the

second best fitting model (elpd_diff) was -665.8557 and the standard error of the differences

(se_diff)  equals  39.0404  (elpd_diff  >  2*se_diff).  When  ELPD  differences  between  two

models are larger than four, and also if the number of observations is > 100, and the model

is moderately well specified, then the standard error is a good estimate of the uncertainty in

the difference between models (Vehtari et al., 2017; Sivula et al., 2022). Posterior predictive

checks revealed that the best model  had strong predictive power for the range of the DV

(Figure 4A).  In the following we use variable label y to represent our dependent variable

log_mIKI (in log-ms), and x to represent the explanatory variable |μ̂ ₂∨¿¿c. Table 5 presents

a summary of the posterior distributions for the winning model.
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Table 5

First, we found that groups differed in performance tempo, as expected. This is in line with

our previous between-group analyses showing a progressive slowness in execution tempo in

HOA and PD. The posterior estimate for the intercept in the reference group, HOA, was

6.00,  CI  = [5.91,  6.09]  (in ms,  404,  CI  = [368,  443]). The distribution of  the differences

between intercepts in HOA and HYA had a posterior estimated value of -0.34, CI = [-0.47, -

0.21]  (in  ms, -116,  CI  =  [-163,  -70]),  while  the  distribution  of  the  differences  between

intercepts in HOA and PD yielded a posterior point estimate of 0.25, CI = [0.09, 0.41] (in ms,

114, CI = [41, 192]). As neither of the two distributions overlapped with zero, we concluded

that  HYA  performed  the  sequences  faster  than  HOA,  while  PD was  slower  than  HOA

(Figure 4B). 

Next,  we evaluated how the strength of  predictions about  the action-reward contingency

modulated  performance  tempo  on  a  trial-by-trial  basis.  The  analyses  supported  our

hypothesis,  showing that stronger expectations about  the reward contingency invigorated

motor performance through faster execution tempo. Here, we focused on the distribution of

the fixed effect of x (slope of the association between y and x) in the reference group, HOA.

This distribution informs about  the sensitivity of the performance tempo to the strength of

predictions about the action-reward contingency in HOA. The posterior estimate of x was

equal to -0.04, CI = [-0.07, -0.01]. As the distribution did not include zero, this highlights a

negative relationship between performance tempo and the strength of expectations about

the action-reward contingency in the reference group (Figure 4C). 

We  were  also  interested  in  evaluating  between-group  differences  in  the  sensitivity  of

performance tempo to the strength of  expectations about  the action-reward contingency.

This was carried out by assessing the distribution of the interaction effect group * x on the

slope.  Both  the  posterior  distributions  of  slope differences  between HOA and  HYA and

between HOA and  PD overlapped  with  zero,  suggesting  that  the  sensitivity  was  similar
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between groups (HOA vs HYA: posterior estimate = -0.00, CI = [-0.04, 0.04]; HOA vs PD:

posterior estimate = -0.00, CI = [-0.05, 0.04]; Figure 4D). 

Overall,  our BLMM analysis demonstrated that motor performance tempo was influenced

trial-by-trial  by  the  strength  of  predictions  about  the  tendency  of  the  action-reward

contingency,  with stronger  expectations leading to faster  execution tempo.  However, the

sensitivity  of  performance tempo to the strength of  these predictions  was not  differently

modulated between groups, suggesting that all groups could successfully use the inferred

predictions to invigorate their motor performance to a similar degree. 

Figure 4

In a separate analysis, we determined whether the motor invigoration effect extended to the

RT,  reflecting  the  time  to  initiate  the  sequence  performance  (first  key  press).  As  for

performance tempo, LOO-CV identified model 6 as the best fit (elpd_diff = -378.2718, se_diff

=  30.69148;  elpd_diff  >  2*se_diff)  and  posterior  predictive  checks  demonstrated  good

predictive power for the range of the DV albeit less so than for performance tempo (Figure

5A). On the other hand, Gelman-Rubin statistics (R-hat values) demonstrated an excellent

chain  convergence.  Table  5 presents  a  summary  of  the  posterior  distributions  for  the

winning model.

Our brms analysis on the best fitting model revealed shorter RT in HYA compared to HOA,

with no differences emerging between HOA and PD. The posterior point estimate for the

intercept in the reference group, HOA, was 6.65, CI = [6.54, 6.75] (in ms, 771, CI = [693,

856]). The distribution of the differences between intercepts in HOA and HYA was centred at

-0.28, CI = [-0.42, -0.13] (in ms, -188, CI = [-289, -88]), which did not overlap with zero. On

the other hand, the distribution of the differences between intercepts in HOA and PD yielded

a posterior point estimate of 0.09, CI = [-0.08, 0.27] (in ms, 77, CI = [-65, 231]) and included

zero (Figure 5B). These results demonstrated that  HYA initiated the sequence faster than

HOA,  consistent  with  our  mIKI  group  results,  whereas  PD and  HOA had  a  similar  RT

intercept.
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Regarding  the  association  between  the  strength  of  predictions  about  the  action-reward

contingency and RT,  we observed no trial-by-trial  modulation  and no group effects.  The

distribution of the fixed effect of x (slope of the association between y and x in the reference

group, HOA) had a posterior point estimate of -0.02, CI [-0.04,  0.01]. As the distribution’s

centre overlapped with zero, this demonstrates that the strength of predictions about the

action-reward  contingency  did  not  modulate  RT  in  this  group  (Figure  5C).  Potential

between-group differences in the slope were assessed by investigating the distribution of the

interaction effect group * x.  Both the posterior  distributions of  slope differences between

HOA and HYA and between HOA and PD included zero (HOA vs HYA: posterior estimate =

-0.01, CI = [-0.05, 0.03]; HOA vs PD: posterior estimate = -0.03, CI = [-0.07, 0.02]; Figure

5D). This outcome supported that the sensitivity of RT to the strength of expectations about

the reward mapping did not differ between groups. Thus, the strength of predictions about

the action-reward contingency invigorated performance tempo on a trial-by-trial basis without

affecting the RT.

Figure 5

Study 2

Subjective inference about task-related reward assignment

We conducted  Bayesian  analyses  on  the  HYA sample  of  Study  2 to  evaluate  whether

subjective inferences about the hidden causes for the absence of reward could modulate the

motor invigoration effect observed in Study 1. 

Overall, our analyses provided anecdotal and moderate evidence for the lack of differences

between Q8T and Q8F in the main markers of general task performance (log_mIKI: BF =

0.417; t(37)  = -0.795, p = 0.432; log_RT: BF = 0.329; t(37)  = 0.156, p = 0.877; percWin: BF =

0.408; t(37) = 0.758, p = 0.453; percError: BF = 0.596; t(37) = -1.252, p =0.219; see Figure 6A-

D for summary statistics). 

Random effects Bayesian model selection yielded substantially greater evidence in favour of

model HGF2 (exceedance probability 0.94, and expected frequency 0.68). Using this model
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to characterise decision-making processes in Q8T and Q8F samples, we observed that a BF

analysis on 𝜔2, ζ and 𝜎2 provided anecdotal evidence for the absence of a group effect (𝜔2:

BF = 0.560; t(37) = -1.183, p = 0.244; ζ: BF = 0.445; t(37) = 0.895, p = 0.377; 𝜎2: BF = 0.463; t(,37)

= -0.951, p = 0.348; see Figure 6E-G for summary statistics). 

Hence, whether participants were  always certain (Q8T) or not (Q8F) of the implications of

receiving  zero  points,  their  general  motor  sequence  performance  and  decision-making

behaviour seemed similar, albeit this interpretation is based on anecdotal evidence.

Figure 6

We further investigated whether not  being  always sure about  the causes for  the lack of

reward could impact the sensitivity of motor performance (mIKI and RT) to the strength of

predictions  about  the  action-reward  contingency.  As  for  the  main  experiment,  LOO-CV

identified the most  complex model  (model  number 6)  as the best  fit  (mIKI,  elpd_diff  = -

144.9434,  se_diff  = 20.33661;  elpd_diff  > 2*se_diff;  RT, elpd_diff  = -106.3677,  se_diff  =

17.4019; elpd_diff > 2*se_diff). Table 5 presents a summary of the posterior distributions for

the winning models.

For  performance  tempo,  the  posterior  predictive  checks  demonstrated  a  very  strong

predictive power for the range of DV values in the best model (Figure 7A). Consistent with

our previous BF analyses on mIKI, the distribution of the differences between intercepts in

Q8T and  Q8F  overlapped  with  zero,  suggesting  that  subjective  inferences  about  credit

assignment did not impact performance tempo (Figure 7B). BLMM analyses also revealed a

negative association (slope) between the strength of  predictions about  the action-reward

contingency and performance tempo. This replicates our findings in Study 1, showing that

stronger predictions about the reward contingencies are followed by faster execution tempo

(Figure  7C).  Yet,  no  between-group  slope  differences  were  observed.  Thus,  subjective

inferences about the causes for the absence of reward did not modulate the sensitivity of
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performance tempo to  the strength  of  expectations  about  the  action-reward contingency

(Figure 7D).

Figure 7

Regarding RT, the predictive power for the range of RT values was weaker compared to

performance tempo (Figure 8A),  yet  Gelman-Rubin  statistics  demonstrated an excellent

chain convergence (R-hat values equal  to 1.00).  BLMM analyses showed no differences

between Q8T and Q8F (intercepts) on RT, which is in line with our BF results (Figure 8B).

We found no robust evidence for an association (slope) between the strength of predictions

about  the  action-reward  contingency  and  RT  (Figure  8C).  The  95%  CI  of  the  slope

distribution ranged from -0.04 to 0.00. A closer look at the upper bound of the distribution

including three decimal digits revealed a value of 0.002, demonstrating that 0 was marginally

part of the 95% CI. This outcome suggests that RT is not robustly modulated by the strength

of predictions about the action-reward contingency, unlike performance tempo.

No  between-group  slope  differences  were  observed.  Thus,  as  for  performance  tempo,

subjective inferences about credit assignment did not modulate the association between RT

and the strength of expectations about the action-reward contingency (Figure 8D). 

Figure 8

Finally, we investigated the effect of differences in inferences about reward assignment on

the post-performance subjective error rate. First,  the subjective error rate estimation was

validated by computing BF analysis  on the correlation  between subjective  and empirical

error rates. Results provided strong evidence for a positive association in the full sample (N

= 39; BF = 10.204; r = 0.448, p = 0.004). Next, we found no support for between-group

differences in the subjective error rate (BF = 0.432, demonstrating anecdotal evidence for

the null hypothesis; t(36) = -0.850, p = 0.401). Thus, being not always sure about the causes

for  the  lack  of  reward  did  not  influence  the  rate  of  subjective  number  estimate  of

performance errors.
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To conclude, our analyses provided evidence for the lack of differences between Q8T and

Q8F in the evaluated parameters, suggesting that subjective inferences about task-related

credit  assignment  do  not  modulate  decision-making,  general  motor  performance  or  the

association between expectation on reward probability and motor vigour. Thus, even if the

groups in Study 1 would have had differences in credit assignment, it is unlikely that this

would have led to a modulation of group effects. In addition, here we found further support

for  our  main  research hypothesis,  whereby stronger  predictions  about  the action-reward

contingency enhanced motor vigour through faster movement.  

Study 3

Sensitivity of motor performance to confidence ratings about reward

In this study we focused our BLMM analysis on the association between motor performance

(mIKI and RT) and confidence ratings to investigate how explicit  beliefs about the reward

outcome modulated motor vigour. Table 5 presents a summary of the posterior distributions

for the winning models.

For performance tempo, LOO-CV identified the most complex model (model number 4) as

the best  fit  (mIKI,  elpd_diff  =  -112.4178,  se_diff  =  15.74263;  elpd_diff  > 2*se_diff).  The

posterior predictive checks demonstrated that the observed outcome variable y overlapped

well with the simulated datasets yrep from the posterior predictive distribution (Figure 9A).

The y distribution exhibited two peaks, however, denoting two modes of mean performance

tempo in our sample. The BLMM analyses showed a negative association (slope) between

the confidence ratings and the performance tempo, with stronger explicit beliefs about the

reward tendency speeding up performance (Figure 9B). The slope estimate was -0.04 (95%

CI from -0.08 to -0.001, including three decimal digits in the upper bound; Figure 9C). 

In the case of  RT, LOO-CV identified the model  number 3 as the best  fit  (elpd_diff  = -

45.046830, se_diff = 18.255767; elpd_diff > 2*se_diff). This model did not include trials as

random effect.  The  posterior  predictive  checks  showed  in  this  case  that  the  y  and  yrep

distributions overlapped perfectly (Figure 9D). As opposed to performance tempo, we found
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no robust modulation of RT by confidence ratings (Figure 9E). The 95% CI of the slope

distribution ranged from -0.20 to 0.01. Thus, a zero effect was a credible value of the slope

distribution (Figures 9F). 

Overall,  these results support the conclusion that being more certain about obtaining the

reward speeds up performance tempo—and thus movement time—without having a clear

effect on RT. This expands our previous findings on the computational parameter | μ̂ ₂∨¿¿c,

supporting a motor invigoration effect by explicit  beliefs about the reward tendency under

volatility. 

In a separate sanity check, we assessed whether our measure of confidence was correlated

with |μ̂ ₂∨¿ in the HGF₂. This would suggest that implicit beliefs about the tendency of the

action-reward  contingency—captured  with  computational  modelling—can  be  a  proxy  for

explicit  ratings  about  the  confidence  of  reward  delivery.  Indeed,  a  BLMM  analysis

demonstrated a strong association between |μ̂ ₂∨¿ and confidence ratings. The posterior

point estimate for the intercept was 0.53, CI = [0.47, 0.59]. The distribution of the fixed effect

of the association between |μ̂ ₂∨¿ and the confidence ratings had a posterior point estimate

of 0.09, CI [0.04, 0.14]. R-hat values were below 1.1, indicating chain convergence (Gelman

and Rubin, 1992). 

Last, descriptive statistics of performance variables in this task revealed values consistent

with HYA samples in Studies 1 and 2 (mIKI, in ms, mean 335, SEM 14.4; RT, in ms, mean

662, SEM 26.7; percWin, mean 0.542, SEM 0.011; conf, mean 0.527, SEM 0.028). Also, out

of the 180 trials, participants made 9.1 (SEM 1.6) performance errors on average, while they

subjectively  reported making 4.8 (SEM 0.7) errors.  Thus,  they subjectively  reported only

53% of the performance errors they committed. 
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DISCUSSION

We  investigated  how  predictions  about  the  tendency  of  the  action-reward  contingency

invigorated motor performance trial-by-trial in healthy younger adults (HYA), in medicated

Parkinson’s Disease patients (PD), and in an age-matched sample of healthy older adults

(HOA).  The  task  was  a  combination  of  a  standard  one-armed  bandit  decision-making

paradigm with a motor sequence task. We fitted the trial-by-trial behavioural data using the

Hierarchical  Gaussian  Filter  (HGF;  Mathys  et  al.  2011,  2014;  Frässle  et  al.,  2021)  and

performed Bayesian analyses (Bayes Factor and Bayesian Linear Mixed Models [BLMM]). 

Study  1  showed  a  trial-by-trial  modulation  of  performance  tempo—commensurate  with

movement time—by the strength of expectations about the action-reward contingencies. The

invigoration effect was limited to performance tempo and was not observed for reaction time

(RT).  Moreover,  BLMM  revealed  a  similar  sensitivity  of  performance  tempo  to  these

predictions in  our  three groups.  This  provides compelling  evidence for  a preservation of

motor  invigoration  by expectations  of  reward probability  in  HOA and PD,  expanding the

understanding on how reward sensitivity and reversal learning interact to modulate motor

vigour in ageing and medicated PD. 

Previous investigations of the beneficial effects of reward on motor behaviour (e.g., faster

and more accurate motor performance; Sedaghat-Nekad et al., 2019) have been limited to

manipulations of reward magnitude (presence/absence; large/small) in deterministic contexts

(Codol  et  al.,  2020;  Sporn  et  al.,  2022;  Aves  et  al.,  2021).  Our  findings  expand  on

computational work that demonstrated the updating of beliefs in a perceptual task to speed

RT (Marshall  et  al.,  2016).  The authors  found that,  as participants  learned  to  track the

transition probabilities between stimuli, different decision-making variables affected RT. Our

results  show  that  the  trial-by-trial  influence  of  motor  vigour  by  belief  updating  can  be

extended beyond the perceptual domain to learning about action-reward contingencies. 
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Despite the preserved motor invigoration effect in HOA and PD, we found extreme evidence

for between-group differences in the mean performance tempo. HYA were faster than HOA

and PD, and HOA quicker than PD. The slower sequence execution in HOA is consistent

with a general slowness of hand movements in later stages of life (Ketcham et al., 2002;

Aves et al., 2021). Regarding PD, the slower performance is likely explained by a sequence

effect (SE). SE is a common bradykinetic symptom in PD, which manifests through slower

and attenuated sequential movements (Kang et al., 2010). Dopamine (DA) intake does not

ameliorate  symptoms  associated  with  SE,  suggesting  a  non-DA  involvement  in  the

pathophysiology of this effect (Bologna et al., 2016). Similar results were found for RT, with

HYA displaying shorter RT than HOA and PD. Yet, RT did not dissociate between HOA and

PD.

We additionally found evidence for similar win and error rates in our three groups. Empirical

findings on reward learning in ageing and medicated PD have been mixed. Some studies

have  shown  reduced  probabilistic  and  reversal  learning  in  older  adults  and  PD  ON

medication,  suggesting difficulties in  establishing new stimulus-outcome associations and

updating reward beliefs  (Cools et  al.,  2001;  Eppinger  et  al.,  2011;  Nassar  et  al.,  2016).

Consistent  with  this,  de  Boer  et  al.  (2017)  demonstrated  poorer  probabilistic  reversal

learning in ageing compared to young participants, with the attenuation of the anticipatory

values  signals  in  the  prefrontal  brain  accounting  for  the  impoverished  performance.

However, other work argued for preserved reward sensitivity and learning in older adults and

medicated PD (Fera et al., 2005; Euteneuer et al., 2009; Aves et al., 2021). Specifically, PD

ON medication have been found to successfully learn from rewards,  and exhibit deficits in

reversal  learning exclusively  for  negative feedback (Frank et al.,  2004;  Levy-Gigi,  2019).

Also, Hird et al. (2022) reported that age does not modulate the invigorating effect of reward
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on motor responses. This  is consistent  with our findings,  highlighting a preserved motor

invigoration effect by reward in ageing and medicated PD. 

Our  groups  did  not  differ  in  the  main  markers  of  decision  making.  We  provided  some

evidence for the absence of a group effect on tonic volatility (𝜔2; index of individual learning

about the action-reward mapping under volatility [Hein et al., 2021]), estimated uncertainty

about the action-reward tendency (𝜎2) and on the mapping from beliefs to responses (ζ).

Accordingly,  belief  updating  in  our  task  with  changing  action-reward  contingencies  was

comparable across HYA, HOA and PD groups.

One aspect that was not identified in Study 1 was whether participants correctly inferred the

hidden causes for the lack of reward (McDougle et al., 2016).  Study 2 demonstrated that

retrospective subjective inference about credit assignment did not contribute to differences in

general  motor  performance,  decision making,  motor  vigour  or  the subjective  estimate of

performance errors. Because the feedback that participants received was veridical (unlike in

McDougle et al., 2016), the effects of misattribution of the causes of zero reward in our study

are likely very small, as the anecdotal evidence suggests. A limitation of this study, however,

was that it  relied on retrospective self-report.  Accordingly,  we conducted a third study to

determine  whether  trial-by-trial  explicit  beliefs  about  the  reward  tendency  (confidence

ratings) are associated with faster motor performance. 

Study 3 demonstrated that performance tempo is associated with confidence ratings trial-by-

trial: being more certain about obtaining the reward speeded up the movement. Moreover,

the confidence ratings were robustly correlated with the strength of the predictions.  This

outcome supports that implicit beliefs about the tendency of the action-reward contingency—

captured  with  computational  modelling—can  be  a  proxy  for  explicit  ratings  about  the

confidence of reward delivery.
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The invigoration effect of beliefs (both implicit and explicit) did not extend to RT. Accordingly,

across our three studies, RT was not robustly modulated in the same dynamic trial-wise

manner as performance tempo was. In Study 1 and 2, RT included deliberation time (no

constraints  on  initiating  the  sequence),  which  could  have  introduced  noise  to  the  RT

distribution and weakened the motor vigour effects. By contrast, RT in Study 3 excluded

deliberation time.

According to current  hypotheses,  motor vigour  is based on trading-off  future efforts and

gains, reflecting a subject's willingness to invest energy to harvest future rewards (Shadmehr

et al., 2010; Yoon et al., 2020). Specifically, it increases when the option is inferred to be

valuable and decreases for perceived effort. This has been demonstrated both for movement

times and RT (Summerside et al., 2018, Codol et al., 2020). It follows that changes in vigour

should be modulated by inferences on the tendency of reward probability. We demonstrated

that  exclusively  performance tempo—commensurate with movement time—is affected by

beliefs  about  the  action-reward  contingency  on  a  trial-by-trial  basis.  The  lack  of  robust

invigoration effects on RT is consistent with sequential planning effects introducing noise to

the RT distribution. Recent work has demonstrated that the preparatory state of discrete

sequential  finger  movements  reflects  sequence  planning  skills  (Mantziara  et  al.,  2021).

Accordingly, RT in our task would include trial-by-trial variability in sequence preparation,

which may mask the underlying motor vigour effects. A prediction for future work would be a

trial-by-trial invigoration of RT, beyond movement time, in motor tasks that do not require

preparation of discrete movements.

A limitation of the present work is that, due to the nature of our online experiment, we only

tested PD ON medication. Future work should investigate the effect of DA on the trial-by-trial

association between the expectations of reward probability and motor vigour. Interestingly, a

recent study by Hird et al.  (2022) found only a weak association between dopamine D1
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receptor availability and the invigorating effect of reward. This outcome, together with our

finding of preserved dynamic motor vigour effects in medicated PD, raises an interesting

question: if motor vigour and learning are driven by the dopaminergic system as previously

postulated (Balleine et al.,  2007; Eppinger et al.,  2011), how robust is this association in

more complex  scenarios  rich  in  uncertainty  and with  changing  reward probabilities  over

time? Our  results  suggest  that  DA-replacement  therapy  could  restore  putative  decision-

making deficits during learning in volatile environments in PD. 

In addition, the interplay between dynamic decision making and motor performance might be

driven by several neurotransmitter systems linked to precision weighting of prediction errors

during belief  updating:  acetylcholine  (Moran et  al.,  2013);  noradrenaline  (Dayan and Yu,

2006); in addition to dopamine (Iglesias et al.,  2013; Haarsma et al.,  2021). On a neural

level,  learning  uncertain  stimulus-reward  contingencies  relies  on  the  ACC,  OFC,  and

portions of the mPFC (Hayden et al., 2011; Rolls et al., 2019; Rouault et al., 2019). The

mPFC  is  also  involved  in  mapping  beliefs  to  actions  during  exploration-exploitation

(Domenech et al.,  2021). Follow-up neuroimaging studies could assess the role of these

regions in the motor vigour effects reported here, including the preserved effects in ageing

and PD.

To conclude,  this  study is  the first  to  demonstrate  that  inferring  the probabilistic  reward

mappings  positively  biases  motor  performance  through  faster  performance  tempo.

Additionally, we provided novel evidence for a preserved sensitivity of the motor invigoration

effects in HOA and PD. Thus, healthy young, old and medicated PD can similarly obtain

benefits in their motor performance when updating beliefs about the volatile action-reward

contingencies.
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Figure 1. Task structure. A, In the task familiarisation phase participants learnt to play two

sequences associated with two images (red fractal – seq1 "g-j-h-k"; blue fractal – seq2 "k-g-

j-h"). B, On each trial of the reward-based learning phase, subjects decided which sequence

to  play  in  order  to  get  the  reward.  The  two  icons  were  always  either  red  or  blue  and

presented to the left  or  right  part  of  the screen,  respectively.  First,  participants  made a

prediction about which sequence (associated to the corresponding icon) was more likely to

give them a reward. When a decision was reached, they played the corresponding sequence

using the keyboard. Finally, the outcome (win +5p or 0p) was revealed. In the example, the

participant  played  seq1  and  obtained  five  points,  suggesting  correct  prediction  and

execution. In Study 3, participants were instructed to rate how certain they were of being

rewarded on each trial after they performed their chosen sequence. Confidence ratings were

provided by typing any number between 0 and 99 (not shown in the figure). C, Displays the

typical  subject-specific  mapping  of  probabilistic  stimulus-outcome  contingency  over  the

course of 180 trials. In the example, the order of reward mappings for the blue icon (and

corresponding seq2) is 10-50-30-90-70% (reciprocal for red icon and corresponding seq1).

In order to obtain the maximal reward, participants needed to track these changes and adapt

their choices throughout the experiment. D, The trial by trial changes in performance tempo

in  ms  (mIKI;  mean  inter-keystroke-intervals;  see  Behavioural  and  computational  data

analysis section for further details) for healthy younger adults (HYA; light blue), healthy older

adults (HOA; dark blue) and patients with Parkinson’s Disease (PD; in purple) across 180

trials in Study 1. Black dots represent the trial-by-trial within-group averages of performance

tempo. Bars indicate 95% interval probabilities. Participants tended to play the sequences

faster towards the end of the experiment, possibly reflecting a practice effect. 

53

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

53



54

1269

1270

54



Figure 2. The Hierarchical Gaussian Filter (HGF) for binary outcomes. A, Illustration of

the 3-level  HGF model  (HGF3)  with relevant  parameters modulating each level  (adapted

from  Hein  et  al.,  2021).  Level x₁ represents  the  binary  categorical  variable  of  the

experimental stimuli on each trial k; x₂ reflects the true value of the tendency of the stimulus-

outcome contingency, and x₃ the true volatility of the environment. In our experiment, 𝜔2, 𝜔3

and 𝜁 were free parameters and were estimated by fitting individual responses and observed

inputs with the HGF. 𝜅 represents the strength of coupling between level 2 and 3 (fixed to 1

in our study; not shown in the text; see Mathys et al., 2014 for the model equations).  B,

Belief trajectories for the HGF3 across the total 180 trials in a representative participant in

Study 1. At the lowest level, black dots (u) represent the outcomes, denoting whether seq1

was rewarded or not (1 = seq1 wins [seq2 loses]; 0 = seq2 wins [seq1 loses]); orange dots

(y)  represent  the participant’s  choices (1 = seq1 is played;  0 = seq2 is played);  orange

crosses depict performance execution errors; the black line is a subject-specific learning rate

about  stimulus outcomes (𝛼;  see Mathys et  al.  2014 for  the full  HGF equations).  At  the

second level,  𝜇2  (𝜎2) is the trial-by-trial trajectory of beliefs (mean and variance) about the

tendency of the stimulus-outcome contingencies (x₂). A mean estimate  𝜇2  shifted towards

positive values on the y-axis indicates that the participant had a greater expectation that

seq1 was rewarded relative to seq2. In addition,  larger (absolute)  𝜇2  values on that axis

denote  a  stronger  expectation  that  given  the correct  sequence  choice  a  reward will  be

received. The trajectory of beliefs about phasic (log)volatility (𝜇3 [𝜎3]) is displayed at the top

level. The true volatility in our task, x3, was constant, as the stimulus-outcome contingencies

changed every 25-35 trials.  Participants could, however, express individual differences in

their  log-volatility  estimates,  which  could  be captured  by  the HGF3 (e.g.,  Powers  et  al.,

2017). In our three studies, the winning model was the 2-level HGF (HGF2), in which volatility

was fixed across participants. Blue circles on the y-axis denote the upper and lower priors of

the posterior distribution of beliefs, 𝜇i
(0)± 𝜎i

(0), i = 2,3. 
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Figure 3. Markers of general task performance and decision making across groups.

Data presented for healthy younger adults (HYA; in light blue), healthy older adults (HOA; in

dark blue) and patients with Parkinson’s Disease (PD; in purple) in Study 1. A, Performance

tempo (mIKI, mean inter-keystroke-interval, in ms); B, Reaction time (RT, in ms); C, Rate of

win trials (percWin); D, Rate of performance execution errors (percError); E, Tonic volatility

(𝜔2); F, Informational uncertainty on level 2 (𝜎2); G, Response model parameter (ζ). Values

mIKI, RT and 𝜎2 are averaged across 180 trials within each participant. mIKI and RT values

are log-transformed. In every plot, to the right of each mean (large dot) and standard error of

the mean (denoted by the vertical bar) the individual data points in each group are shown to

visualise group population variability. 
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Figure 4. Invigoration of performance tempo by beliefs is preserved in healthy ageing

and in Parkinson’s disease. Bayesian Linear Mixed Model (BLMM; model number 6, y ~ 1

+ group * x + [1 + x|subject] + [1|trial]) with healthy older adults (HOA) as the reference

group in Study 1.  A, Illustration of the posterior predictive checks where the distribution of

the observed outcome variable (y, in our case performance tempo) is compared to simulated

datasets (yrep) from the posterior predictive distribution (100 draws).  B, Distributions of the

difference in ms between performance tempo (intercept) in HOA and healthy younger adults

(HYA), and in HOA and patients with Parkinson’s Disease (PD). For each distribution, the
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grey vertical bar indicates the posterior point estimate, while the grey area under the curve

represents the 95% credible interval (CI). In the current plot, CIs do not overlap with zero

(the  null  hypothesis).  This  indicates  that  there  is  a  95%  probability  of  between-group

differences in performance tempo. C, Results of the BLMM analysis. We analysed how the

strength of predictions about the action-reward contingency modulates performance tempo

separately  for  HYA (in  light  blue),  HOA (in  dark  blue)  and  PD (in  purple).  Here,  mIKI

(performance tempo: mean inter-keystroke-interval) values are represented in the log-scale.

The negative slopes suggest that stronger predictions about the action-reward contingency

are associated with faster performance tempo.  D, Distributions of the difference between

slopes in HOA vs HYA, and HOA vs PD. Here, as CIs include zero we can conclude with

95% probability that groups do not differ in how the strength of predictions about the reward

contingency  influences  motor  performance  tempo.  Thus,  the  sensitivity  of  performance

tempo to the strength of predictions about the reward mapping is not differently modulated

between groups. 
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Figure 5.  Motor  vigour  effects  on reaction times across healthy young,  older  and

Parkinson’s participants. Bayesian Linear Mixed Model (BLMM; model number 6, y ~ 1 +

group * x + [1 + x|subject] + [1|trial]) with healthy older adults (HOA) as the reference group

in Study 1.  A,  Illustration of the posterior  predictive checks where the distribution of  the

observed outcome variable (y, in our case reaction times [RT]) is compared to simulated

datasets (yrep) from the posterior predictive distribution (100 draws).  B, Distributions of the
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difference in ms between RT (intercept) in HOA and healthy younger adults (HYA), and in

HOA and patients with Parkinson’s Disease (PD). For each distribution, the grey vertical bar

indicates the posterior point estimate, while the grey area under the curve represents the

95% credible interval (CI). In the current plot, CI of the bottom distribution does not overlap

with zero (the null hypothesis). This indicates that there is 95% probability of between-group

differences in RT. On the other hand, the distribution at the top includes zero. This suggests

that there is 95% probability of HOA and PD not differing in RT.  C, Results of the BLMM

analysis. We analysed how the strength of predictions about the action-reward contingency

modulates RT separately for HYA (in light blue),  HOA (in dark blue) and PD (in purple).

Here, RT values are represented in the log-scale. We found no modulation of RT by the

strength  of  expectations  about  the  reward  mapping.  D,  Distributions  of  the  difference

between  slopes  in  HOA vs  HYA,  and  HOA vs  PD.  Here,  as  CIs  include  zero  we  can

conclude with 95% probability that groups do not differ in how the strength of predictions

about the reward contingency influences RT. Thus, the sensitivity of RT to the strength of

predictions about the reward mapping is not differently modulated between groups.
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Figure 6. Effect of retrospective credit assignment on general task performance and

decision making. Markers of general task performance and decision making in participants

that replied True to Question 8 (Q8T; in dark brown) and participants that replied False to

Question 8 (Q8F;  in  light  brown) in the post-performance questionnaire  (see  Table 2)  in

Study 2. A, Performance tempo (mIKI, mean inter-keystroke-interval; in ms, Q8T: mean 287,

SEM 13.2; Q8F: mean 307, SEM 27.2); B, Reaction times (RT; in ms, Q8T: mean 564, SEM

30.5; Q8F: mean 555, SEM 68.7);  C, Rate of win trials (percWin; Q8T: mean 0.574, SEM

0.013; Q8F: mean 0.555, SEM 0.024);  D, Rate of performance execution errors (percError;

Q8T: mean 0.077, SEM 0.010; Q8F: mean 0.102, SEM 0.020);  E, Tonic volatility, (𝜔2;Q8T:

mean -1.624, SEM 0.510; Q8F: mean -0.715, SEM 0.357); F, Informational uncertainty on

level  2 (𝜎2;  Q8T:  mean 1.740,  SEM 0.203; Q8F:  mean 2.057,  SEM 0.237);  G,  Response

model parameter, (ζ; Q8T: mean 1.599, SEM 0.237; Q8F: mean 1.271, SEM 0.206). Values

mIKI, RT and 𝜎2 are averaged across 180 trials within each participant. mIKI and RT values

are log-transformed. In every plot, to the right of each mean (large dot) and standard error of
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the mean (denoted by the vertical bar) are displayed the individual data points in each group

to visualise group population variability.

Figure 7. No effect of retrospective credit assignment on motor vigour: performance

tempo. Bayesian Linear Mixed Models (BLMM; model number 6, y ~ 1 + group * x + [1 + x|

subject] + [1|trial]) with participants that replied True to Question 8 (Q8T; see  Table 2) as

reference  group  in  Study 2.  A,  Illustration  of  the  posterior  predictive  checks where  the

distribution  of  the  observed  outcome  variable  (y,  in  our  case  performance  tempo)  is

compared to simulated datasets (yrep) from the posterior predictive distribution (100 draws).

B, Distribution of the difference in ms between performance tempo (intercept) in Q8T and in

participants  that  replied  False  to  Question  8  (Q8F;  see  Table  2).  The  grey  vertical  bar

indicates the posterior point estimate, while the grey area under the curve represents the

95% credible interval (CI). In the current plot, CI does overlap with zero (the null hypothesis).

This indicates that there is 95% probability of no between-group differences in performance

tempo. C, Results of the BLMM analysis. We analysed how the strength of predictions about
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the action-reward contingency modulates performance tempo separately for Q8T (in dark

brown)  and Q8F (in  light  brown).  Here,  mIKI  (performance tempo: mean inter-keystroke-

interval) values are represented in the log-scale. The negative slopes suggest that stronger

predictions  about  the  action-reward  contingency  are  associated  with  faster  performance

tempo, which replicates our findings in the main experiment (see Figure 4C). D, Distribution

of the difference between slopes in Q8T and Q8F. Here, as CIs include zero we can conclude

with 95% probability that groups do not differ in how the strength of predictions about the

reward  contingency  influences  motor  performance  tempo.  Thus,  the  sensitivity  of

performance tempo to the strength of predictions about the reward mapping is not differently

modulated between groups.
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Figure 8. No effect of retrospective credit assignment on motor vigour: reaction times.

Bayesian Linear Mixed Models (BLMM; model number 6, y ~ 1 + group * x + [1 + x|subject] +

[1|trial]) with participants that replied True to Question 8 (Q8T; see  Table 2) as reference

group in Study 2.  A, Illustration of the posterior predictive checks where the distribution of

the observed outcome variable (y, in our case RT) is compared to simulated datasets (y rep)

from the posterior predictive distribution (100 draws). B, Distribution of the difference in ms

between RT (intercept) in Q8T and in participants that replied False to Question 8 (Q8F; see
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Table 2). The grey vertical bar indicates the posterior point estimate, while the grey area

under the curve represents the 95% credible interval (CI). In the current plot, CI does overlap

with zero (the null hypothesis). This indicates that there is 95% probability of no between-

group differences in performance tempo.  C, Results of the BLMM analysis. We analysed

how  the  strength  of  predictions  about  the  action-reward  contingency  modulates  RT

separately for Q8T (in dark brown) and Q8F (in light brown). Here, RT values are represented

in the log-scale. We found no robust evidence for a modulation of RT by the strength of

expectations about  the reward mapping.  The upper bound of the distribution including

three decimal digits revealed a value of 0.002, demonstrating that 0 was marginally part

of the 95% CI. D, Distribution of the difference between slopes in Q8T and Q8F. Here, as CIs

include zero we can conclude with 95% probability  that  groups do not  differ  in how the

strength of predictions about the reward contingency influences RT. Thus, the sensitivity of

RT to the strength of  predictions about  the reward mapping is  not  differently  modulated

between groups.
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Figure 9. Explicit confidence ratings invigorate performance tempo.  Bayesian Linear

Mixed Models (BLMM; model number 4, y ~ 1 + x + [1 + x|subject] + [1|trial]) in Study 3 for

performance  tempo  (left)  and  reaction  times  (RT;  right).  A,  Illustration  of  the  posterior

predictive checks where the distribution of the observed outcome variable (y, in our case

performance tempo) is compared to simulated datasets (yrep) from the posterior predictive

distribution (100 draws). B, Results of the BLMM analysis. We analysed how explicit beliefs

about the reward tendency (confidence ratings) modulate performance tempo. Here, mIKI

(performance tempo: mean inter-keystroke-interval) values are represented in the log-scale.

The negative slope had a point estimate of -0.04 (95% credible interval [CI] from -0.08 to -

0.001, including three decimal digits in the upper bound). The 95% CI did not include zero.
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This suggest that being more certain about receiving a reward outcome is associated with

faster performance tempo, which replicates our findings with the computational parameter

¿ μ̂ ₂∨¿ (see Figure 4C and Figure 7C).  C, Distribution of the slope. The grey vertical bar

indicates the posterior point estimate, while the grey area under the curve represents the

95% CI. The vertical red line denotes zero. D, Illustration of the posterior predictive checks

where the distribution of the observed outcome variable (y, in our case RT) is compared to

simulated datasets (yrep) from the posterior predictive distribution (100 draws). E, Results of

the BLMM analysis. Here, RT values are represented in the log-scale. We found no robust

evidence for a modulation of RT by the strength of expectations about the reward mapping

(95% CI from -0.20 to 0.01). F, Distribution of the slope. The grey vertical bar indicates the

posterior point estimate, while the grey area under the curve represents the 95% CI. The

vertical red line denotes zero.
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TABLES

Table 1. PD clinical information

Patient # Age
UPDRS 

III ON

ITEL-

MMSE
STAI Y2 HADS_A HADS_D

Disease 

Duration

(years)

Main 

Symptom

Most 

Impaired 

Side

Last Drug

Intake

(minutes)

LEDD Active Substance

1 57 38 22 51 6 3 10 R/B SX 30 920 Benserazide, Levodopa, Rasagiline, Ropinirole

2 46 17 22 40 10 16 7 R SX 75 1197 Carbidopa, Entacapone, Levodopa

3 53 10 22 42 7 5 4 R/B DX 120 100 Rasagiline

4 63 6 22 25 4 2 3 B DX 720 50 Selegiline

5 57 6 22 33 7 7 2 R DX 120 300 Benserazide, Levodopa

6 53 22 20 53 9 8 23 R/LE BOTH 130 420 Carbidopa, Levodopa, Rotigotine

7 62 24 22 33 4 3 11 T DX 120 1105 Benserazide, Levodopa, Pramipexole

8 62 6 22 28 3 5 8 R/B/D DX 75 450 Carbidopa, Levodopa, Opicapone, Selegiline

9 62 17 22 25 4 3 8 T SX 100 652 Benserazide, Levodopa, Pramipexole, Selegiline

10 69 7 21 45 5 6 3 B SX 120 300 Benserazide, Levodopa

11 58 7 20 31 5 1 9 R DX 30 970 Amantadine, Carbidopa, Entacapone, Levodopa, Pramipexole

12 54 25 19 32 2 5 7 R SX 40 1780 Benserazide, Levodopa, Rasagiline, Rotigotine

13 66 16 19 34 4 10 12 R/B DX 150 1580
Amantadine, Carbidopa, Levodopa, Opicapone, Pramipexole, 

Safinamide

14 53 21 22 44 5 5 8 R BOTH 5 320 Ropinirole

15 55 4 22 37 4 1 2 R/T DX 30 452 Benserazide, Levodopa, Pramipexole, Rasagiline

16 69 13 20 35 1 0 7 B SX 437 470 Benserazide, Levodopa, Ropinirole, Selegiline

17 65 5 21 26 1 7 16 R/B SX 360
100 + 3.9

ml/h 

Levodopa, Opicapone, Pramipexole, Trihexyphenidyl
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levodopa 

infusion 

gel

18 59 7 21 37 2 4 2 R/B SX 5 150 Carbidopa, Levodopa

19 58 8 22 30 1 4 5 R/T DX 100 452 Benserazide, Levodopa, Pramipexole

20 56 17 22 40 6 8 6 R DX 185 1110 Amantadine, Benserazide, Levodopa, Pramipexole

MMSE predicted  score  =  1.01 x  ITEL-MMSE score  +  5.16;  HADS_A =  anxiety  score;  HADS_D =  depression  score;  R  =  rigidity,  B  =

bradykinesia, LE = lack of energy, T = tremor, D = dyskinesia. 
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Table 2. Post-performance questionnaire

Please, indicate whether the following statements are True or False.

Please  note  that performance  errors mean  pressing  the  wrong  key(s)  or  key(s)  in  the  wrong  order,  while bad

choices mean playing a sequence that received no points on that attempt.

1. I made fewer than 10 performance errors [True/False]

2. I made between 10 and 30 performance errors [True/False]

3.  I made more than 30 performance errors [True/False]

4. I recognised a performance error, because the tone sounded different than expected [True/False]

5. I recognised a performance error, because the finger movement felt different [True/False]

6. I memorised the sequences focusing on the finger movements, without paying attention to the tones [True/False]

7. I memorised the sequences focusing both on the finger movements and the tones [True/False]

8. I could always distinguish whether 0 points reflected a performance error or a bad decision [True/False]

9. I was often not sure whether 0 points reflected a performance error or a bad decision [True/False]

Post-performance questionnaire included in Study 2. Question 8 (Q8) is aimed at evaluating

subjective inferences about the task-related credit assignment. 
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Table 3. Means and variances of the priors on perceptual  parameters and starting

values of the beliefs of the winning HGF₂ model

Prior Mean Variance

𝜅 (all) 1 0𝜔₂ (Study 1)
-2.17 16 𝜔₂ (Study 2)
-2.16 16𝜔₂ (Study 3)
-2.22 16𝜔₃ (all)
-7 0

μ₂⁽⁰⁾ (all)
0 0𝜎₂⁽⁰⁾ (all)
0.1 0

μ₃⁽⁰⁾ (all)
1 0𝜎₃⁽⁰⁾ (all)
1 0

ζ (all) 48 1

Free parameter  𝜔₂ was estimated in its unbounded (linear) space. The prior values on  𝜔₂
(mean  [variance])  were:  -2.17  (16),  -2.16  (16)  and  -2.22  (16)  for  Study  1,  2  and  3,

respectively. These prior values were obtained using an ideal observer model that received

the input that each participant had experienced. The response model parameter, ζ, was log-

transformed, to allow for its estimation in an unbounded space. The remaining parameters

were fixed  and not  estimated in  each participant:  𝜎2
(0), 𝜎3

(0), 𝜅,  μ₂(0),  μ₃(0). The coupling

strength between level 2 and 3 is κ, which was fixed to 1 (Hein et al., 2021). Among the fixed

parameters, the following ones operate in their log-transformed space: 𝜎2
(0), 𝜎3

(0), 𝜅, μ₃(0). The

prior variances are given in the space in which the parameters are typically estimated.
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Table 4. Models of  increasing complexity  used for  Bayesian  Linear  Mixed Models

analyses

Study # Model # Model

1 - 2

1 y ~ 1 + (1|subject)

2 y ~ 1 + group + (1|subject)

3 y ~ 1 + group + x + (1|subject)

4 y ~ 1 + group * x + (1|subject)

5 y ~ 1 + group * x + (1 + x|subject)

6 y ~ 1 + group * x + (1 + x|subject) + (1|trial)

3

1 y ~ 1 + (1|subject)

2 y ~ 1 + x + (1|subject)

3 y ~ 1 + x + (1 + x|subject)

4 y ~ 1 + x + (1 + x|subject) + (1|trial)

Models of increasing complexity used in Study 1 and 2 (top) and Study 3 (bottom). In Study

1 and 2, y corresponds to the motor performance (log_mIKI or log_RT); x is the unsigned

centred  value  of  the  prediction  about  the  tendency  of  the  action-reward  contingency  (

¿ μ̂ ₂∨¿¿c).  This  parameter  represents  the  strength  of  the  predictions.  In  model  1,  y  is

explained by a fixed effect of the intercept and a random effect of intercept by subject (the

latter accounts for repeated measurements); model 2 adds a fixed effect of group; model 3

includes the fixed effect of x, which allows to assess the sensitivity (slope) of performance

tempo or RT to ¿ μ̂ ₂∨¿¿c in the reference group; model 4 incorporates the interaction term

between group  and  x,  which  allows  to  investigate  the between-group differences in  the

sensitivity (slope) of performance tempo or RT to  ¿ μ̂ ₂∨¿¿c; model 5 includes the random
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effect of ¿ μ̂ ₂∨¿¿c by subject; last, model 6 includes a random effect of intercept by trial. In

Study 3, y corresponds to the motor performance (log_mIKI or log_RT); x is the confidence

rating. In model 1, y is explained by a fixed effect of the intercept and a random effect of

intercept by subject (the latter accounts for repeated measurements); model 2 adds a fixed

effect of x, which allows to assess the sensitivity (slope) of performance tempo or RT to

confidence ratings; model 3 includes the random effect of confidence ratings by subject; last,

model 4 includes a random effect of intercept by trial. 
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Table 5. Summary of the posterior distributions for the fixed effects of the best fitting

Bayesian Linear Mixed Models

Study # Dependent Variable Fixed Effect Estimate l-95% CI u-95% CI R-hat

1

Performance tempo

y: HOA 6.00 5.91 6.09 1.00

y: HOA vs HYA -0.34 -0.47 -0.21 1.00

y: HOA vs PD  0.25 0.09 0.41 1.00

x: HOA -0.04 -0.07 -0.01 1.00

group * x: HOA vs HYA -0.00 -0.04 0.04 1.00

group * x: HOA vs PD -0.00 -0.05 0.04 1.00

Reaction times

y: HOA 6.65 6.54 6.75 1.01

y: HOA vs HYA -0.28 -0.42 -0.13 1.00

y: HOA vs PD  0.09 -0.08 0.27 1.00

x: HOA -0.02 -0.04 0.01 1.00

group * x: HOA vs HYA -0.01 -0.05 0.03 1.00

group * x: HOA vs PD -0.03 -0.07 0.02 1.00

2

Performance tempo

y: Q8T 5.62 5.51 5.72 1.00

y: Q8T vs Q8F 0.07 -0.11 0.25 1.00

x: Q8T -0.04 -0.06 -0.01 1.00

group * x: Q8T vs Q8F -0.00 -0.04 0.04 1.00

Reaction times

y: Q8T 6.24 6.13 6.34 1.00

y: Q8T vs Q8F -0.01 -0.19 0.18 1.00

x: Q8T -0.02 -0.04 0.002 1.00

group * x: Q8T vs Q8F 0.01 -0.03 0.04 1.00

3
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Performance tempo

y 5.82 5.73 5.91 1.00

x -0.04 -0.08 -0.001 1.00

Reaction times

y 6.47 6.37 6.58 1.00

x -0.10 -0.20 0.01 1.00

Estimates, credible intervals (CIs) and R-hat values for the fixed effects of the best fitting

models in Study 1, 2 (model number 6: y ~ 1 + group * x + [1 + x|subject] + [1|trial]) and in

Study 3 (model number 4: y ~ 1 + x + [1 + x|subject] + [1|trial]). In Study 1, y: HOA refers to

the posterior estimate for the intercept in the reference group (healthy older adults, HOA). y:

HOA vs HYA and y: HOA vs PD reflect the posterior distributions of the differences between

intercepts  (HOA  vs  healthy  younger  adults  [HYA];  HOA  vs  Parkinson’s  patients  [PD],

respectively). x: HOA is the posterior distribution of the  association (slope) between motor

performance (either performance tempo or reaction times) and the strength of predictions

about the action-reward contingency in the reference group. group * x: HOA vs HYA and

group * x: HOA vs PD are the posterior distributions of slope differences between HOA and

HYA and between HOA and PD, respectively.  In Study 2,  y:  Q8T refers to the posterior

estimate for the intercept in the reference group (participants that replied True to Question 8,

Q8T). y: Q8T  vs Q8F  reflects the posterior distribution of the difference between intercepts

(Q8T vs participants that replied False to Question 8 [Q8F]). x: Q8T is the posterior distribution

of the association (slope) between motor performance (either performance tempo or reaction

times) and the strength of predictions about the action-reward contingency in the reference

group. The upper bound of the CI for the slope effect in the BLMM analyses for RT is given

with three decimal digits to demonstrate that 0 was included in the 95% CI. group * x: Q8T vs

Q8F is the posterior distribution of slope difference between Q8T and Q8F. In Study 3, y refers

to the posterior estimate for the intercept. x is the posterior distribution of the association

(slope) between motor performance (either performance tempo or reaction times) and the

confidence ratings. The upper bound of the 95% CI estimate of the slope effect in the BLMM
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analyses for performance tempo was -0.001, when considering three decimal digits. In all

studies, l-95% CI and u-95% CI refer to the lower and upper bound of the credible intervals

of the posterior distributions of the fixed effects. For each parameter, we also reported the

corresponding  Gelman-Rubin  statistics  (R-hat  values).  Values  <  1.1  indicates  chain

convergence (Gelman and Rubin, 1992). 
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