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1   |   INTRODUCTION

Approaching rewards and avoiding punishments are fun-
damental aspects of reinforcement learning (Sutton & 
Barto, 1998) and action monitoring (Ullsperger et al., 2014). 
Activity in the medial prefrontal cortex (mPFC) has been 

proposed to be centrally involved in a neural action monitor-
ing network (Badre & Nee, 2018; Ridderinkhof et al., 2004). 
Particularly, the anterior cingulate cortex (ACC) has been 
identified as a neural hub that implicates a wide range of 
processes including cognitive control, conflict processing, ac-
tion selection (Rushworth et al., 2011; Shackman et al., 2011; 
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Abstract
While frontal midline theta (FMθ) has been associated with threat processing, 
with cognitive control in the context of anxiety, and with reinforcement learn-
ing, most reinforcement learning studies on FMθ have used reward rather than 
threat-related stimuli as reinforcer. Accordingly, the role of FMθ in threat-related 
reinforcement learning is largely unknown. Here, n = 23 human participants un-
derwent one reward-, and one punishment-, based reversal learning task, which 
differed only with regard to the kind of reinforcers that feedback was tied to 
(i.e., monetary gain vs. loud noise burst, respectively). In addition to single-trial 
EEG, we assessed single-trial feedback expectations based on both a reinforce-
ment learning computational model and trial-by-trial subjective feedback expec-
tation ratings. While participants' performance and feedback expectations were 
comparable between the reward and punishment tasks, FMθ was more reliably 
amplified to negative vs. positive feedback in the reward vs. punishment task. 
Regressions with feedback valence, computationally derived, and self-reported 
expectations as predictors and FMθ as criterion further revealed that trial-by-trial 
variations in FMθ specifically relate to reward-related feedback-valence and not 
to threat-related feedback or to violated expectations/prediction errors. These 
findings suggest that FMθ as measured in reinforcement learning tasks may be 
less sensitive to the processing of events with direct relevance for fear and anxiety.
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Vassena et al., 2017), learning of reinforcement contingen-
cies (Behrens et al., 2007; Rushworth & Behrens, 2008), and 
the computation of reward expectations and expectation 
violations, i.e. prediction errors (Alexander & Brown, 2019; 
Sambrook & Goslin, 2014, 2015, 2016; Silvetti et al., 2011, 
2014). While frontal brain processes involved in action mon-
itoring largely have been studied in the context of reward-
related reinforcement learning, the neural dynamics of 
punishment avoidance learning are less well known.

The use of electroencephalography (EEG) techniques 
to measure mid-frontal neural processing in reinforcement 
learning has revealed the frontal midline 4–8  Hz theta 
(FMθ) rhythm to be of particular relevance for action moni-
toring (Cavanagh, Zambrano-Vazquez, & Allen, 2012; Wang 
et al., 2020). FMθ activity is amplified in response to nega-
tive feedback indicating monetary non-reward and mon-
etary loss (Bernat et al., 2015; Cohen et al., 2007; Gruber 
et al., 2013; Mueller et al., 2015), and in goal-directed con-
trol (Cavanagh et al., 2013; Cavanagh, Figueroa, et al., 2012; 
Cohen & Cavanagh,  2011; Cooper et al.,  2019; Pinner & 
Cavanagh,  2017). While this may be interpreted within 
the viewpoint that FMθ relates to processing events that 
are worse than expected (i.e. negatively signed prediction 
error), other studies have also suggested that any surpris-
ing feedback outcomes may increase feedback-locked FMθ 
activity (i.e. unsigned prediction error; Cavanagh, Figueroa, 
et al.,  2012; Gheza et al.,  2019; Mas-Herrero & Marco-
Pallarés, 2014; Rawls et al., 2020; van de Vijver et al., 2014). 
Overall, FMθ seems to reflect activity of a neural system 
that is involved in the processing of prediction errors, cog-
nitive control, and feedback-driven learning.

While the majority of studies on FMθ in reinforce-
ment learning investigated monetary reward and mone-
tary non-reward or loss (Cavanagh, Zambrano-Vazquez, 
& Allen,  2012), it is still unknown whether FMθ func-
tioning in reward learning tasks is similar or different 
to punishment avoidance learning with primary threat 
reinforcers. Several theories suggest separate neural sys-
tems are involved in reward gain vs. punishment avoid-
ance learning (Corr,  2008; Corr & McNaughton,  2012; 
Daw et al.,  2002; Gray & McNaughton,  2000; Smillie 
et al., 2006). In addition, neuroimaging studies report the 
involvement of different systems in monetary gain vs. loss 
avoidance (Menegas et al.,  2018; Palminteri et al.,  2015; 
Palminteri, Justo, et al., 2012; Rigoli et al., 2016; Seymour 
et al., 2007; Yacubian et al., 2006). Given that reward gain 
and punishment avoidance learning recruit non-identical 
neural systems, it is an open question whether FMθ oscil-
lations, which have been observed in response to reward-
related negative feedback, are also relevant for processing 
punishment-related negative feedback.

In fact, FMθ has been related to processing of pun-
ishment cues. It is amplified in response to classical 

conditioned threat (Mueller et al., 2014; Sperl et al., 2018), 
unsuccessful vs. successful avoidance of unpleasant sounds 
(van Noordt et al., 2018), and there is evidence that dispo-
sitional anxiety moderates FMθ effects in reinforcement 
learning (Cavanagh & Shackman, 2015). This suggests that 
FMθ may be sensitive for feedback signaling aversive rein-
forcers and converges with the claim of the adaptive con-
trol hypothesis (Cavanagh & Shackman, 2015; Shackman 
et al., 2011), stating that threat scenarios demand a higher 
need for neural processes involved in cognitive control, 
which in turn are indexed by FMθ activity. However, to our 
knowledge, the sensitivity of FMθ to feedback valence and 
prediction errors in the context of threat-related punish-
ment avoidance has not yet been investigated.

To address this question, we used time-frequency anal-
yses to study feedback processing in one reward-related 
and one punishment-related two-choice reversal learning 
task. While feedback in the reward task signaled monetary 
reward (+10 Cent) vs. non-reward (+0 Cent), feedback in 
the punishment task signaled non-punishment (no noise 
burst) vs. punishment (noise burst). Importantly, to im-
prove the comparability between the tasks, the intensity of 
the noise burst was individually titrated to match the aver-
siveness of monetary non-reward. For each task, a rein-
forcement learning model was fitted to behavior providing 
separate learning rates for gain and loss and computation-
ally derived prediction errors (Cavanagh et al., 2010; Frank 
et al.,  2007). For a comprehensive assessment of predic-
tion errors, self-reported prediction errors were also calcu-
lated based on every participants' trial-by-trial subjective 
reward and non-punishment expectation ratings, respec-
tively (Hajcak et al., 2007; Weismüller & Bellebaum, 2016). 
To investigate the relationship between prediction errors 
and FMθ, the computationally derived and self-reported 
prediction errors were entered into within-subjects single-
trial regression analyses with FMθ as criterion. We hy-
pothesized that FMθ would be amplified in response to 
negative vs. positive feedback, regardless of whether neg-
ative feedback indicated monetary non-reward or an aver-
sive noise burst. Moreover, if FMθ reflected an unsigned 
prediction error signal, it should covary with the degree of 
feedback unexpectedness in both tasks. We also calculated 
perseverations after reversal, post-error slowing (PES), and 
post-correct speeding (PCS) as indices of successful rever-
sal learning and behavioral adjustment, respectively.

2   |   METHODS

2.1  |  Participants

Twenty-six participants were recruited from the 
University of Marburg and were included only if they 
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were right-handed, German native speakers1 with nor-
mal, or corrected-to-normal vision. One participant was 
excluded due to technical issues with saving EEG data 
during the tasks. Two further participants were ex-
cluded because of excessive artifacts in the EEG during 
the punishment task. The final sample consisted of 23 
participants (13 female; mean age of 24.30 years, 
SD  =  3.31). The local ethics committee approved the 
study.

2.2  |  Procedure

After reading and signing informed consent, partici-
pants were seated in the laboratory in front of a 24″ LED 
computer monitor (Dell U2412Mc; 1920 × 1080 px). The 
stimuli were presented using Neurobehavioral Systems 
Presentation 18.2 software (www.neuro​bs.com). At the 
beginning, the participants underwent a white noise ti-
tration procedure (see below) and subsequently provided 
a baseline valence rating of the four different feedback 
events and provided an unpleasantness rating of the pre-
viously titrated noise burst. Subsequently, participants 
underwent, in counterbalanced order, the reward and the 
punishment versions of a 280-trial probabilistic reversal 
learning task (see below). After each reversal learning 
task, the participants rated how rewarding the desired 
consequences (monetary reward/not receiving a noise 
burst) and how punishing the undesired consequences 
(monetary non-reward/receiving the noise burst was) 
were perceived to be, and again rated the valence of the 
feedback cues. To assess whether the noise burst and mon-
etary non-reward were still perceived as similarly aversive 
throughout the experiment, the participants underwent 
another cycle of the white noise burst titration procedure 
after each reversal learning task. The participants were 
informed in the participation information that they were 
able to win a maximum of 10 € in the reward task, which 
all participants achieved.

2.3  |  Self-reported feedback cue and 
consequences ratings

To control for initial differences on how the feedback 
events were perceived, participants rated the positive vs. 
negative valence of the feedback cues at the beginning of 
the experiment and after each reversal learning task on 
a bipolar scale (−4 to +4, unpleasant, negative vs. pleas-
ant, positive). A unipolar scale was used to measure the 

unpleasantness of the individually reward-matched white 
noise burst (0–4, “How unpleasant was the loud noise?”). 
After each reversal learning task participants rated how 
rewarding they perceived the desired feedback conse-
quence (monetary reward & no noise burst) and how 
punishing they perceived the non-desired feedback con-
sequence to be (monetary non-reward & noise burst) on a 
unipolar scale (0–4, “How rewarding did you feel it was to 
gain 10 Cents/not experience the loud noise?” and “How 
punishing did you feel it was to gain no money/experience 
the loud noise?”).

2.4  |  White noise burst titration

As the goal of this study was to compare feedback-locked 
theta in the context of punishment vs. non-reward, we 
took particular care in calibrating the subjective value of a 
punishment stimulus (i.e., the noise burst) to match the 
subjective value of a reward stimulus (i.e., a 10-cent mon-
etary reward). To this end, we applied the following proce-
dure: participants were presented a noise burst for 1000 ms 
with an intensity of 81, 84, 87, and 90 dB and were asked 
every time, if they would be willing to receive another 
burst presentation for a monetary reward of 10  Cent. If 
they affirmed, the respective burst was presented again. 
After the first habituation-cycle, this procedure was re-
peated, again starting with 81 dB and continuing with in-
creasing intensities. The intensity level that was one level 
higher than the level at which the participant would still 
listen to the burst for the monetary reward during the sec-
ond cycle was set as the “reward value equivalent burst 
intensity.” It was used for the punishment task, with the 
following distribution of intensities across participants: 
N = 2 (8.70%) 84 dB, N = 6 (26.09%) 87 dB, N = 15 (65.22%) 
90 dB. The average unpleasantness rating (0–4) of the indi-
vidually reward-matched noise burst was M  =  3.04 
(SD  =  0.78). The maximum intensity of the noise burst 
was restricted to 90 dB on ethical grounds. To measure po-
tential habituation effects throughout the task, one cycle 
was repeated after each reversal learning task (cycle 3 and 
cycle 4). Table 1 presents the percentage of “yes” choices 
for every cycle2. To investigate the stability of the last 
“yes” choices over the course of the experiment, we calcu-
lated a choice difference score from cycle 2 to cycle 3 and 
4 (cycle 2 minus cycle 3, cycle 2 minus cycle 4). A score of 

 1The instructions given in the task description below are translations 
into English from the German original.

 2An anova including the factor cycle (one, two, three & four) on the 
latest “yes” choice was not significant, F(1, 20) = 0.97, p = .43, 
ηp

2 = 0.13. Moreover, the latest “yes” choices in the first versus fourth 
cycle were positively correlated (rρ = .79, p < .001) suggesting a 
relatively high stability of the reward value equivalent burst intensity 
over the course of the experiment.
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0 means no change, negative scores indicate the choice of 
a lower dB step and positive scores a higher dB step rela-
tive to the reward-matched noise burst selected in cycle 2. 
From the 23 participants, 14 (60.87%) showed no change 
from cycle 2 to 3 and 4 (score = 0), 3 participants (13.04%) 
showed a decrease (M = −1.16 steps), and 6 (26.09%) an 
increase (M = 1.25 steps) from cycle 2 to either cycle 3 or 
4. Accordingly, the last “yes” choices in cycle 2 were 

positively correlated with those in cycle 3, rρ  =  0.90, 
p < .001, and cycle 4, rρ  =  .82, p < .001. In general, the 
choices showed only slight changes over the course of the 
experiment, suggesting that the noise burst intensity was 
relatively stably related to the monetary reward value.

2.5  |  Reversal learning task

As seen in Figure 1b, each trial of the 280-trials reversal 
learning tasks began with a crosshair that was displayed 
for 1000–4000 ms. Thereafter, two shapes (hexagon and 
triangle or circle and diamond) were presented left and 
right from a crosshair until the participant selected one 
of them via button press with the right hand. The left vs. 
right position of the shapes was randomized from trial to 
trial. Once a shape was chosen, it was highlighted with a 
white frame which was shown for 1000 ms. Participants 
were then asked to report the strength of their expecta-
tion to receive positive feedback on a unipolar 0 to 3 scale 

T A B L E  1   Percentages of the noise burst titration choices for 
every cycle. The intensity of the white noise burst for punishment 
task was set in cycle 2

81 dB (%) 84 dB (%) 87 dB (%)
90 dB 
(%)

Cycle 1 86.96 86.96 65.22 56.52

Cycle 2 86.96 91.30 65.22 47.83

Cycle 3 82.61 82.61 60.87 56.52

Cycle 4 82.61 69.57 65.22 52.17

F I G U R E  1   (a) Overview of the experimental procedure. The order of the reward and punishment reversal learning tasks was 
counterbalanced between participants. (b) Example trial for the reversal learning task in the reward context with circle vs. triangle as 
choices and orange vs. teal as feedback cues.

Participation Information & Informed Consent

Feedback Cue Valence Ratings, -4 to +4

White Noise Burst Titration 2
4 trials (81 / 84 / 87 / 90 dB) 
for 10 Cent monetary reward

Noise Burst
Selection

Habituation

Task 1
REW or PUN

Reversal Learning Task 1
2-choice task
4 training trials, 280 trials in the main task

+10 Cent/+0 Cent or no noise burst/noise burst

Feedback Consequences Ratings, 0 to 4

Task 2
PUN or REW

Reversal Learning Task 2
2-choice task
4 training trials, 280 trials in the main task

no noise burst/noise burst or +10 Cent/+0 Cent

Feedback Consequences Ratings, 0 to 4

White Noise Burst Titration 3
4 trials (81 / 84 / 87 / 90 dB) 
for 10 Cent monetary reward

Follow-up

White Noise Burst Titration 4
4 trials (81 / 84 / 87 / 90 dB) 
for 10 Cent monetary reward

Follow-up

time

Noise Burst Aversiveness Rating, 0 to 4

Experimental Procedure Reversal Learning Task

+10 Cent

Jittered 1000 to 4000

Forced choice

Selection (1000 ms)

Expectation rating (0 to 3)
“How strong is the expectation
to win 10 Cent?”

Selection (800 ms)

Feedback (2000 ms)

Consequence (1000 ms)
+10 Cent (REW+) vs.

 +0 Cent (REW-)

time

(a) (b)
Example trial with positive feedback in the reward task

PUN/REW Feedback Cue Valence Ratings, -4 to +4

REW/PUN Feedback Cue Valence Ratings, -4 to +4

White Noise Burst Titration 1
4 trials (81 / 84 / 87 / 90 dB) 
for 10 Cent monetary reward
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(“How strong is the expectation to win 10 Cent/not have 
to listen to the loud noise?”). The expectation rating re-
sponses were self-paced and assessed via button press 
of the left hand. The shapes with the selection indicated 
by the white frame were presented for another 800 ms. 
Thereafter, the frame changed its color to either orange/
teal or green/rose, indicating positive/negative feedback 
for 2000 ms. In the reward task, positive feedback indi-
cated reward (REW+) and negative feedback non-reward 
(REW−). In the punishment task, positive feedback in-
dicated non-punishment (PUN−) and negative feedback 
punishment (PUN+). The actual reinforcer was presented 
for 1000 ms and was different for the reward and the pun-
ishment task: In the reward task, reward and non-reward 
consequences were visually displayed on the screen read-
ing “+10 Cent” or “+0 Cent,” respectively. In the punish-
ment task, punishment was delivered as a white noise 
burst (with the reward-value equivalent burst intensity) 
for 1000 ms via a speaker while non-punishment was the 
absence of a noise burst. At the beginning of every reversal 
learning task, four practice trials were presented under the 
supervision of the experimenter with letters as selection 
cues instead of shapes (P vs. Y and V vs. F). See Table S7 
for details on the permutation of shapes, feedback colors, 
and task sequence.

The contingencies were 70/30 for positive/negative 
feedback for selecting one shape and 30/70 positive/
negative feedback for the other shape. In the first rever-
sal learning task that was performed, contingencies re-
versed after 82, 150, and 225 trials, in the second reversal 
learning task after 86, 160, and 223 trials (see Figure 2a). 
Participants were instructed that the frequencies of pos-
itive and negative feedback of the shapes would reverse 
several times during the task. Participants were able to 
pause after the ongoing trial whenever they pressed the 
pause button (reward task: M = 1.87 pauses, SD = 1.69; 
punishment task: M = 2.13 pauses, SD = 1.66; no signif-
icant difference between the tasks, t(22) = 0.84, p =  .41, 
d = 0.16). Participants were instructed to choose as fast as 
possible.

The shapes were hexagon vs. triangle or circle vs. dia-
mond (shape size: 8.47 × 8.47 cm) starting with hexagon 
or circle as the 70/30 cue. The frame colors indicating pos-
itive and negative feedback were orange vs. teal and green 
vs. rose (frame size: 10.37 × 10.09 cm, contour width: 
0.42 cm). An anova including the factor frame color (or-
ange, teal, green, & rose) on the feedback cue valence rat-
ings before the reversal learning tasks was not significant 
(orange: M = 0.48; teal: M = 0.91; green: M = 0.14; rose: 
M = 0.62), F(1, 22) = 1.54, p = .21, ηp

2 = 0.07. The shape 
pairs and feedback pairs, as well as the sequence of the re-
ward task and punishment task, were permuted randomly 
across the participants (48% started with the reward task).

2.6  |  Computational modeling and 
derivation of prediction error variables

2.6.1  |  Computational modeling

The trial-by-trial choices were fit for every subject and 
task by a reinforcement learning model (Q-learning; 
Sutton & Barto,  1998). That is, for every choice option 
(choosing shape 1 or shape 2), an expected value (Q value) 
was calculated which was updated based on previous 
learning experiences with the choice, the current feed-
back outcome, and a learning rate (αREW & αPUN). The Q 
values for the shape i chosen on trial t were updated on 
each trial based on the Q value and feedback in trial t. The 
updated values were used in trial t + 1. Since the reward 
task demanded reward maximization and the punishment 
task punishment minimization, the reinforcements were 

F I G U R E  2   (a) Trial-by-trial percentages of choices between 
the shape 1 and shape 2 before and after reversals for the reward 
and punishment tasks. The vertical lines denote the position of the 
reversals which varied slightly depending on whether the task was 
given first (pattern 1) or second (pattern 2). (b) Violin plot with 
mean values depicted as white circles for ratings on how rewarding 
the desired (left panel) and how punishing the undesired (right 
panel) feedback consequences (+10 cent/no noise burst, +0 cent/
noise burst) were subjectively perceived.

(a)
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set to 1 (REW+) and 0 (REW−) for the reward task and 0 
(PUN−) and −1 (PUN+) for the punishment task (e.g. 
Betts et al., 2020)3:

The trial-by-trial probabilities of choices were 
calculated using a softmax function with an inverse 
gain parameter (β) which determines a more explor-
atory (lower beta) vs. exploitative (higher beta) choice 
strategy. The probabilities were used to calculate the 
log likelihood estimate (LLE) over all the trials of the 
task:

To minimize the negative LLE, we used the MatLab 
2015a (MathWorks) function fmincon (Bai et al.,  2014; 
Collins & Frank, 2016; Fischer & Ullsperger, 2013) and 
started the minimization from ten random starting 
points. The lower and upper bounds for β were [0, 10] 
and [0, 1] for every other parameter. The maximum of it-
erations until convergence was set to 10,000 (Palminteri 
et al., 2015).

2.6.2  |  Prediction errors

The learning rates of the fitted model for each subject were 
used to calculate an individual's trial-by-trial Q values and 
model-estimated prediction errors (ePEs):

The self-reported prediction errors (sPE) were calculated as 
the trial-by-trial difference between the feedback R and the 
self-reported expectation SR. To set the boundaries of the 
sPEs to −1 and 1, the SRs which ranged from 0 to 3 were di-
vided by three [0, 1/3, 2/3, 1]:

2.6.3  |  Model comparisons

The first model was a single learning rate model (M1: 
Vanilla) which included α and β. Since the participants 
showed an exploitative behavioral strategy (see perfor-
mance results), we also fit variants of the M1 model which 
updated not only the Q value of the selected but also the non-
selected option. Model two (M2: DualUpdate) included α, 
β, and κ and has already been used in similar reversal learn-
ing tasks (Marković et al., 2019; Reiter et al., 2016, 2017). 
In this model, the Q value of the non-selected option was 
updated as if the outcome was the opposite of the selected 
option (e.g., if R(t) = 1 then R_f(t) = 0 in the reward task) 
with κ denoting the coupling strength of the PE:

In the present study, self-paced expectation ratings 
were assessed which might have influenced the time in-
terval between action and feedback onset. Previous stud-
ies demonstrated that the duration of this time interval 
may affect electrocortical feedback processing (Arbel 
et al.,  2017; Krigolson,  2018; Weinberg et al.,  2012). To 
assess the influence of action-feedback time interval, a 
third model was fit to the data (M3: Time), including a 
time decaying parameter λ which scaled the influence of 
the single-trial time interval between action and feedback 
onset (in ms) on Q values. The upper and lower bounds for 
λ were [1, Inf]:

In a fourth model (M4: Decay), the non-selected op-
tion was updated with a free decay parameter (γ) which 
reduced the Q values for the non-selected option in every 
positive feedback trial (Cavanagh,  2015). Finally, in the 
fifth model (M5: DecayAll) γ updated the Q values for the 
non-chosen shape in every trial regardless of the feedback 
outcome:

As indices for model fits, we computed pseudo-R2 
statistics for every participant by comparing the in-
dividual LLE to chance (e.g. Cavanagh,  2015; Collins 
& Frank,  2014; Gershman & Tzovaras,  2018), and the 
Akaike information criterion (AIC) and Bayesian 
Information Criterion (BIC) for comparisons between 
different models.

 3The use of different reinforcement sets for the reward vs punishment 
task does not affect the calculation of the trial-by-trial probabilities, and 
thus not the model fitting. It just reflects a more natural valuation: Q 
values in the reward task ranged from 0 to 1 with increasing values 
after monetary reward. The Q values in the punishment task ranged 
from −1 to 0 with an increase in Q values moving closer to 0 (i.e., a 
decrease in the size of the negative values) after successful punishment 
avoidance.

Qi(t + 1) = Qi(t) + � ×
[
R(t) −Qi(t)

]

LLE =
�
t

ln

⎛
⎜⎜⎜⎝

exp
�
� ×Qi(t)

�
∑
i

exp
�
� ×Qi(t)

�
⎞⎟⎟⎟⎠

ePE(t) = R(t) −Q(t)

sPE(t) = R(t) − SR(t)

Q(t+1)non−selected

=Q(t)non−selected+��×
[
R_f(t)−Q(t)non−selected

]

Qi(t + 1) = Qi(t) + � × (� × 1∕ time) ×
[
R(t) −Qi(t)

]

Reward task:Q(t+1)non−selected

=(1−γ)×
(
1+Q(t)non−selected

)

Punishment task:Q(t+1)non−selected

=(1−γ)×
(
1+Q(t)non−selected

)
−1
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      |  7 of 20STOLZ et al.

2.7  |  Behavioral measures

Win-stay behavior was defined as two subsequent choices 
of the same shape after positive feedback and lose-shift 
as a shift from one choice to another after receiving nega-
tive feedback. The frequency of win-stay/lose-shift strat-
egies was calculated as percentage of stay choices after 
positive feedback and the percentage of shift choices 
after negative feedback, respectively (Cavanagh,  2015; 
Frank et al.,  2007; Pizzagalli et al.,  2008). Post-error 
slowing (PES) and post-correct speeding (PCS) reaction 
times (RTs) were computed as pairwise comparisons 
around each error/correct trial, i.e. the average RTs of 
the trial after positive/negative feedback minus the av-
erage of the RTs in the trial before (Dutilh et al., 2012). 
Perseverative errors after a reversal were measured as 
every sequence of more than two subsequent choices of 
the disadvantageous shape (i.e. 30% positive feedback) 
leading to negative feedback (den Ouden et al., 2013).

2.8  |  EEG recording and pre-processing

The EEG was recorded using a 64-channel ActiveTwo 
system (BioSemi) at 1024 Hz sampling rate. EEG pre-
processing was performed using BrainVision Analyzer 2 
(Brain Products). EEG was downsampled to 512 Hz and 
filtered using a 1  Hz high-pass filter and 50 Hz notch-
filter to optimize the independent component analy-
sis (ICA) solution in detecting components reflecting 
eye-blinks. The EEG was re-referenced to the average 
reference and then manually screened for muscle ar-
tifacts before and after an infomax ICA. ICA compo-
nents reflecting eye-blinks were removed by a trained 
rater (author CS). The artifact markers of the raw data 
inspections and the resulting ICA weight matrices 
were saved and applied to the data with the same pre-
processing steps as described above, but with a 0.1–
100 Hz bandpass-filter (see Winkler et al., 2015). Trials 
including artifacts marked in the raw data inspection 
were rejected. On average, there were 14% bad epochs 
in the reward task (13.60% positive feedback, 14.40% 
negative feedback) and 17.20% bad epochs in the pun-
ishment task (15.60% positive feedback, 18.90% negative 
feedback). An anova on the percentage of bad epochs 
revealed a significant effect of task (reward vs. punish-
ment task), F(1, 22) = 7.57, p < .05, ηp

2 = 0.26. The main 
effect feedback valence (positive vs. negative feedback) 
and the interaction of feedback valence and task did not 
reach significance (Fs ≤4.28, ps ≥.05, ηps ≤0.16; larger ef-
fect for the interaction). The final EEG data were seg-
mented into epochs ranging from −1500 to 3000 ms 
relative to feedback onset.

2.9  |  Wavelet analysis and event-
related potentials

The wavelet analysis was performed by using estab-
lished MatLab custom scripts (Keil et al.,  2007; Panitz 
et al., 2019). EEG segments were baseline corrected in 
the time domain from −1500 to −1400 ms and cosine-
square-tapered (20 samples). Power was computed by 
applying complex morlet wavelets with m  =  f/σf  =  7, 
resulting in power for the frequency bands from 0.22 to 
50 Hz in steps of 0.22 Hz. Thereafter, each epoch was cut 
in length ranging from −300 to 2000 ms relative to feed-
back onset. Finally, the power was normalized to a dec-
ibel (dB) scale for every frequency using the averaged 
power from −300 to −200 ms. Based on previous studies, 
the mean theta power was scored as average power in 
the time-frequency region of 4–8 Hz and a time window 
250–500 ms after feedback onset (Cavanagh, Figueroa, 
et al., 2012; Padrão et al., 2012). As grand average theta 
power was maximal at frontocentral electrodes, average 
FMθ was computed across Fz, F1, F2, FCz, FC1, and 
FC2 electrode sites.

2.10  |  Single-trial regressions

To examine the associations between FMθ and predic-
tion errors, single-trial regression analyses with either 
the standardized ePEs or the sPEs as predictor and the 
standardized theta power as criterion were conducted 
for the reward and punishment task, respectively (Cohen 
& Cavanagh,  2011; Cooper et al.,  2019). The prediction 
errors were transformed to absolute values and thus 
ranged from 0 to 1. For every participant, single-trial re-
gressions were calculated with positive prediction errors 
(positive feedback trials; PE+), and negative prediction er-
rors (negative feedback trials; PE-) as predictor and every 
data point of single-trial power as criterion. Since there 
was an a priori defined time-frequency window (4–8 Hz, 
250–500 ms), this analysis was resulting in a channel (Fz, 
F1, F2, FCz, FC1, & FC2) × frequency (4–8  Hz) × time 
(250–500 ms) matrix of beta slopes. This 6 × 6 × 129 ma-
trix then was averaged, resulting in one average slope for 
every participant. This procedure was conducted for both 
the reward task and the punishment task resulting in 2 
(reward & punishment task) × 2 (ePE & sPE) × 2 (positive 
& negative prediction error) mean beta values for every 
participant. Following the same protocol, single-trial 
analyses were conducted with FMθ as regressor and RT 
slowing (RT current minus previous trial) in the subse-
quent trial as criterion, and logistic regressions analysis 
with FMθ as regressor and switch vs. stay behavior in the 
subsequent trial as criterion. This was separately done for 
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8 of 20  |      STOLZ et al.

positive and negative feedback trials and the reward and 
punishment task.

2.11  |  Statistical analysis

anovas including the factors task (reward vs. punish-
ment) and feedback valence (positive vs. negative) were 
performed on feedback cue valence ratings and EEG 
measures. Between-task comparisons of α, γ, β model 
fit indices, win-stay and lose-shift proportions, feedback 
consequences ratings, PES, and PCS were conducted 
using t tests. To further analyze the feedback valence 
effects in the reward and punishment task, Bayes fac-
tors (BF10) were computed using the bayesFactor tool-
box (Krekelberg,  2022); see Kass and Raftery  (1995); 
Morey and Wagenmakers  (2014); Rouder et al.  (2012); 
Schönbrodt and Wagenmakers (2018). Perseverative er-
rors were subjected to an anova with the factors task 
(reward vs. punishment) and reversal block (1, 2, & 3). 
Mean beta slopes reflecting the association between pre-
diction errors and theta power were tested against zero 
using t tests. These beta slopes were further subjected 
to an anova including the factors task (reward vs. pun-
ishment), sign (PE+ vs. PE−), and prediction error type 
(ePE vs. sPE). The repeated measures anova statistics 
are reported with Greenhouse–Geisser correction where 
appropriate. Post hoc t tests were performed in case of 
significant interaction effects and were reported with 
Bonferroni adjusted p values for multiple comparisons 
(p = .05/4 = .0125). All reported correlation coefficients 
are Spearman's rho rank correlations (rρ). The reported 
effect sizes were partial eta squared (ηp

2) and Cohen's 
d. For all of these statistical analyses, SPSS Statistics 
Version 25 (IBM) was used.

3   |   RESULTS

3.1  |  Performance

There was an average of 168.91 (SD = 10.92) positive feed-
back and 111.09 negative feedback trials in the reward 
task and 169.22 (SD = 9.22) positive feedback and 110.78 
negative feedback trials in the punishment task. As seen 
in Figure  2a, the choices with regard to shapes (choos-
ing shape 1 or shape 2) and behavioral adjustments after 

reversals were comparable between the reward and pun-
ishment tasks. Overall, participants chose the same shape 
after positive feedback in 79.48% (SD = 8.02) of the cases 
in the reward task and 82.53% (SD = 8.31) in the punish-
ment task (win-stay). Participants shifted after negative 
feedback in only 22.79% (SD = 10.62) of the cases in the 
reward task and 20.00% (SD  =  9.10) in the punishment 
task (lose-shift). The percentage of win-stay or lose-shifts 
did not differ between the tasks (ts ≤1.84, ps ≥.08, ds ≤0.32). 
Overall, this suggests that, regardless of the task, partici-
pants did not tend to follow a simple win-stay/lose-shift 
strategy but were persistent with their choice even after re-
ceiving negative feedback (the lose-shift percentages were 
similarly low in either task). Thus, we also fit dual updat-
ing models, which have been demonstrated to better fit to 
exploitative action selection strategies (Cavanagh,  2015; 
Marković et al., 2019; Reiter et al., 2017).

3.2  |  Statistical power analysis

Sensitivity power analyses were conducted using GPower 
with N  =  23, α  =  0.05 (two-tailed), and a power  =  0.80 
(1−β). These analyses revealed that the present study's 
sample size was suited to detect medium to large ef-
fect sizes using anovas with four repeated measures 
(ηp

2 ≥ 0.09) that were calculated for the task and feedback 
valence effects on FMθ. For one sample t tests, i.e. within-
subjects comparisons and t tests against zero, the present 
study's sample size was suited to detect medium to large 
effect sizes (d ≥ 0.61).

As indicated by the AIC, BIC, and pseudo-R2, the mod-
els fit increasingly better (M1 to M5); see Table S1 in the 
supplements. The best fitting model (M5) suggests that the 
participants' expectation levels for the desired outcome (Q 
values) of non-chosen options diminished regardless of 
feedback valence. The Q values and ePEs were calculated 
using the best fitting parameters of each participant in 
M5; see Table 2. The model M5 showed better fitting indi-
ces in the punishment vs. reward task, t(22) = 2.13, p < .05, 
d = 0.50. The free parameters were not significantly differ-
ent between the tasks, (ts ≤0.81, ps ≥.43, ds ≤ 0.17), suggest-
ing that learning performance was comparable for reward 
gain learning and punishment avoidance learning.

To assess the similarity of the computationally derived 
parameter for expectations (Q-values) and the trial-by-trial 
self-reported positive feedback expectation we assessed 

T A B L E  2   Mean (SD) model parameter and fit indices for the best fitting model (M5: DecayAll)

α β γ AIC BIC Pseudo-R2

Reward task 0.44 (0.31) 3.85 (1.82) 0.61 (0.37) −240.00 (56.68) −229.09 (56.68) 0.37 (0.15)

Punishment task 0.43 (0.28) 4.14 (1.22) 0.58 (0.37) −211.56 (58.63) −200.66 (58.63) 0.44 (0.15)
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      |  9 of 20STOLZ et al.

within-subject correlations of the respective time-series 
for each participant. The average within-subject correla-
tion was rρ = .24 (Min = −0.19, Max = 0.77, SD = 0.27) for 
the reward task and rρ =  .25 (Min = −0.23, Max = 0.76, 
SD  =  0.20) for the punishment task. The within-subject 
correlations for the reward (Fisher's z  =  0.27) and pun-
ishment tasks (Fisher's z  =  0.27) did not differ from 
each other, t(22) = 0.01, p =  .99, d < 0.01, and showed a 
between-task correlation across participants, rρ  =  .58 
(p < .01). Together, this indicates that (a) computational 
indices and self-report markers reflect two substantially 
different perspectives on expectations with only a very 
modest degree of overlap and (b) subjects with relatively 
higher convergence of subjective and computationally de-
rived expectations in the reward task also have a relatively 
higher convergence of subjective and computationally de-
rived expectations in the punishment task and vice versa.

3.3  |  Reaction times

Overall, RTs in the reward task (M  =  761.76 ms, 
SD  =  37.94) were numerically faster than those in the 
punishment task (M = 832.46 ms, SD = 181.96), although 
the difference was at the borderline for statistical signifi-
cance, t(22) = 2.10, p = .05, d = 0.43. As given in Table 3, 
PES was significantly increased in the punishment vs. re-
ward task, t(22) = 3.34, p < .01, d = 0.79, suggesting slower 
RTs after negative feedback in the punishment task. 
Moreover, PCS was greater in the punishment vs. reward 
task, t(22) = 3.25, p < .01, d = 0.71, i.e. participants reacted 
faster after positive feedback in the punishment task. 
There were no significant effects of task or reversal block 
on the amount of perseverative choices after reversal (Fs ≤ 
1.38, ps ≥.27, ηp

2 ≤ 0.12); see Table 3.

3.4  |  Self-report feedback cue and 
consequences ratings

3.4.1  |  Feedback cue ratings

There was a significant main effect of feedback valence, 
F(1, 22)  =  30.37, p < .01, ηp

2  =  0.58 as positive feedback 
cues were perceived as more appetitive than negative 
feedback cues4. The task × feedback valence interaction 
also reached significance, F(1, 22)  =  12.29, p < .01, 
ηp

2 = 0.36, indicating that the difference between positive 
and negative feedback was larger for the punishment 

(M = 3.76, SD = 2.63) vs. reward (M = 1.81, SD = 2.90) 
task; see Table 3. The main effect of task on self-reported 
valence ratings of the feedback cue did not reach signifi-
cance, F(1, 22) = 2.06, p = .17, ηp

2 = 0.09.

3.4.2  |  Feedback consequences ratings

The absence of the noise burst (M = 3.13, SD = 1.22) was 
numerically rated as more rewarding than the reception 
of a monetary reward (+10 Cent; M = 2.52, SD = 0. 85), 
although the difference was at the borderline for statistical 
significance, t(22) = 2.13, p = .05, d = 0.58; see Figure 2b. 
Being confronted with the noise burst was rated as sig-
nificantly more punishing (M  =  3.32, SD  =  0.78) than 
experiencing monetary non-reward (+0 Cent; M = 1.26, 
SD = 0.96), t(22) = 7.40, p < .001, d = 2.18; see Figure 2b.

4   |   EEG MEASURES

4.1  |  Event-related FMθ power

For the event-related theta power, the main effect of 
task did not reach significance, F(1, 22) = 1.00, p =  .33, 
ηp

2  =  0.04. There was a significant effect of Feedback 
Valence (positive vs. negative), F(1, 22)  =  12.72, p < .01, 
ηp

2  =  0.37, with increased power following negative 
(M = 1.16 dB, SEM = 0.09) compared with positive feed-
back (M = 0.85 dB, SEM = 0.06). Importantly, this main 
effect was further qualified by a significant interaction of 
task × feedback valence, F(1, 22) = 5.38, p < .05, ηp

2 = 0.20; 
Figure  3. Post hoc comparisons revealed that feedback-
locked FMθ power was potentiated in response to REW− 
vs. REW+, t(22) =  3.93, p < .01, d =  1.01. This feedback 
valence effect was substantially weaker for the compari-
son PUN+ vs. PUN−, t(22) = 2.15, p < .05, d = 0.49 and 
would not reach statistical significance when correcting 
for multiple comparisons of post hoc tests. Moreover, 

 4The missing feedback cue ratings of two participants, which arose 
through technical issues with the stimulus presentation software, were 
replaced by the mean values of the other participants' ratings.

T A B L E  3   Mean (SD) values of behavioral and rating variables 
in the reward and punishment task

Reward task
Punishment 
task

Post-error slowing (PES; ms) 27.01 (71.26) 100.28 (107.27)

Post-correct speeding (PCS; ms) 23.47 (47.99) 68.08 (72.29)

Perseverations reversal block 1 3.09 (1.65) 3.13 (2.22)

Perseverations reversal block 2 3.04 (2.44) 3.52 (1.70)

Perseverations reversal block 3 3.35 (2.06) 2.83 (1.83)

Positive feedback cue ratings 1.43 (1.64) 2.19 (1.47)

Negative feedback cue ratings −0.38 (1.74) −1.57 (1.67)
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there was no significant difference in FMθ to REW− vs. 
PUN+, t(22)  =  2.02, p  =  .06, d  =  0.38, and REW+ vs. 
PUN−, t(22) = 0.69, p = .50, d = 0.15. For a similar analy-
sis of delta (1–4 Hz) power, see Appendix S1.

To provide a more comparative hypothesis testing for 
the compelling evidence of smaller feedback valence ef-
fect in the punishment vs. reward task, we calculated 
the Bayes factor (BF) for the comparison of REW+ vs. 
REW− and PUN− vs, PUN+. These analyses revealed a 
BF10 = 47.75 in the reward task (REW+ vs. REW−), and 
BF10  =  1.46 in the punishment task (PUN− vs. PUN+). 
Following the suggestions of Wagenmakers et al. (2011), 
the BF10 indicates very strong evidence in favor of the H1 
(REW+ and REW− are different from each other) in the 
reward task and anecdotal evidence in favor of the H1 in 
the punishment task. This further supports the notion of 
a smaller feedback valence effect in the punishment vs. 
reward task.

An anova including the factors task and feedback va-
lence on uncorrected baseline (−300 to −200 ms) in FMθ 
did not reveal any significant effect (Fs ≤ 0.30, ps ≥.59, 
ηp

2s ≤ 0.01), which overall does not provide evidence for a 

difference in tonic FMθ activity. Moreover, an anova in-
cluding the factors task and half (first half vs. second half) 
on uncorrected baseline (−300 to −200 ms) FMθ power 
did not reveal any significant effect (Fs ≤ 1.68, ps ≥ .21, 
ηp

2s ≤ 0.07). These results overall do not provide evidence 
for global tonic differences in the tonic FMθ in the reward 
vs. punishment task.

4.2  |  Single-trial regressions with signed 
prediction errors as regressors and FMθ 
as criterion

None of the eight slopes resulting from the single-trial re-
gressions with computationally derived estimated positive 
(ePE+) and negative (ePE−) prediction errors (|t|s ≤ 1.27, 
ps ≥ .22, ds ≤0.27) or self-reported positive (sPE+) and neg-
ative (sPE−) prediction errors (|t|s ≤ 1.28, ps ≥ .21, ds ≤ 0.27) 
as regressor and FMθ as criterion was significantly dif-
ferent from zero; see Table 4. Consistent with the power 
analysis and the absence of any significant effects, BF01s 
comparing ePE/sPE against zero ranged between 1.93 

F I G U R E  3   (a) Feedback-locked time-frequency plots for positive and negative feedback at frontocentral electrode sites (averaged across 
Fz, F1, F2, FCz, FC1, & FC2). The ERPs are superimposed over the power plots in black. The time-frequency regions of interest are shown in 
black boxes. (b) Scalp topographies of the mean FMθ power negative–positive differences in the time-frequency region of interest. (c) Violin 
plot with mean values depicted as white circles for FMθ power in response to positive feedback (REW+/PUN−) and negative feedback 
(REW−/PUN+).
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and 4.54, suggesting anecdotal to substantial evidence in 
favor of the H0 (no difference from zero). This indicates 
that the present data do not provide a robust association 
between FMθ and either a signed or an unsigned predic-
tion error. The relationships between FMθ and the ePE 
of every fit computational model (Table S2) as well as the 
results of anovas including the factors of prediction error 
type (ePE vs. sPE), sign (PE+ & PE−), and task (reward vs. 
punishment) on the resulting beta values are presented in 
the Tables S3 and S4.

Since the chosen time window for the analysis of 
prediction errors and FMθ includes both early (e.g., 
P200 and the Reward Positivity) and late phasic ac-
tivity (e.g., P3a), we calculated regression analysis 
with ePE/sPE as predictor and early (250–375 ms) 
and late (375–500 ms) FMθ power as criterion. 
None of the slopes with ePE as predictor and early 
(0.006 ≤ Ms ≤ 0.019, ts ≤ 1.01, ps ≥ .32, ds ≤ 0.21) and 
late FMθ (−0.022 ≤ Ms ≤ 0.004, |t|s ≤ 1.02, ps ≥ 0.32, 
ds ≤ 0.21) as criterion, and with sPE as predictor 
and early (−0.026 ≤ Ms ≤ 0.005, |t|s ≤ 1.09, ps ≥ 0.29, 
ds ≤ 0.23) and late FMθ (−0.032 ≤ Ms ≤ −0.001, 
|t|s ≤ 1.91, ps ≥ 0.07, ds ≤ 0.19) as criterion were statis-
tically different from zero; see Table S4. This suggests 
an absence of evidence for a significant association 
between prediction errors and early as well as late 
FMθ.

In addition to fitting a model which quantifies the in-
fluence of the time interval between action and feedback 
onset (M3: Time) on action selection, we also calculated 
regression analyses with the single-trial time interval as 
regressor and FMθ as criterion for every participant. The 
resulting slopes did not significantly differ from zero for 
both the reward (M = 0.007, SD = 0.03) and punishment 
(M = 0.003, SD = 0.04) task (ts ≤ 1.02, ps ≥ 0.32, ds ≤ 0.21). 
Together with the relatively poor fit of the M3 model (see 
Table S1) this overall suggests little evidence in support of 
a modulation of FMθ by the time interval between action 
and feedback onset.

It is conceivable that cognitive control was of particular 
relevance at stages of the experiment where participants 
had to learn and relearn feedback contingencies (i.e., at 
the beginning of the task and after a reversal). To evaluate 
whether the relationship between PEs and FMθ depends 
on the learning stage in the experiment, we ran single-trial 
multiple regression analyses with every signed prediction 
error (ePE+/ePE−/sPE+/sPE−), the trial numbers within 

learning/reversal blocks (i.e. 1, 2, 3, …), and the interac-
tion term PE × trial as predictor and FMθ as criterion. 
None of the slopes of ePE+/ePE− (−0.006 ≤ Ms ≤ 0.011, 
|t|s ≤ 1.17, ps ≥ .25, ds ≤ 0.24), trial (−0.003 ≤ Ms ≤ 0.017, 
|t|s ≤ 1.05, ps ≥ .30, ds ≤ 0.22), and ePE+/ePE− × trial 
(−0.010 ≤ Ms ≤ 0.011, |t|s ≤ 0.89, ps ≥ 0.38, ds ≤ 0.19) was 
significant different from zero. None of the slopes of 
sPE+/sPE− (Ms ≤ 0.017, ts ≤ 1.33, ps ≥ .20, ds ≤ 0.28), 
trial (−0.006 ≤ Ms ≤ 0.017, |t|s ≤ 1.18, ps ≥ .25, ds ≤ 0.24), 
and sPE+/sPE− × trial (−0.004 ≤ Ms ≤ 0.009, |t|s ≤ 0.84, 
ps ≥ 0.41, ds ≤ 0.17) was significantly different from zero. 
Overall, these results do not provide supporting evidence 
for a substantial influence of the trial within the block on 
prediction error processing indexed by FMθ.

4.3  |  Exploratory analyses: Effects of 
feedback valence vs. unsigned prediction 
errors on FMθ

Because negative feedback was less frequent than posi-
tive feedback, the observed increases of FMθ to negative 
vs. positive reward feedback may still be driven by sur-
prise/prediction error processing (Rawls et al.,  2020). 
To probe this interpretation of the observed feedback 
effect on FMθ, we computed within-subject multiple 
regressions with single-trial feedback valence (positive 
vs. negative) and (unsigned) single-trial prediction error 
as predictors and FMθ as criterion on each data point 
in the 250–500 ms time window on frontocentral cluster 
(see methods section). Finally, the resulting beta matrix 
was averaged for every participant. The mean standard-
ized beta values across subjects for each analysis are 
shown in Figure 4.

Converging with the pattern of results for the trial-
averaged data, the single-trial regression slopes with 
feedback valence as predictor and FMθ as criterion dif-
fered significantly from zero in the reward task (ts ≥ 3.53, 
ps ≤ 0.002, ds ≥ 0.74) and this was not the case in the pun-
ishment task (ts ≤ 1.74, ps ≥ 0.10, ds ≤ 0.36). An anova in-
cluding the factors task (reward & punishment task) and 
prediction error type (ePE & sPE) on the slopes of feedback 
valence and FMθ revealed a significant main effect of task, 
F(1, 22) = 4.49, p < .05, ηp

2 = 0.17. The other effects were not 
statistically significant (Fs ≤ 0.15, ps ≥ .71, ηp

2s ≤ 0.01). For 
the relationships between the unsigned prediction errors 
and FMθ, regression slopes did not differ significantly from 

ePE+ epE− sPE+ sPE−

Reward task 0.007 (0.04) −0.005 (0.07) 0.013 (0.05) −0.001 (0.05)

Punishment task 0.011 (0.04) 0.007 (0.07) 0.011 (0.05) 0.013 (0.08)

T A B L E  4   Mean (SD) values of 
standardized beta slopes with single-trial 
estimated and self-reported prediction 
errors as regressors and FMθ as the criterion
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zero (ts ≤ 1.38, ps ≥ .18, ds ≤ 0.29) and anova s on the slopes 
did not reveal any significant main or interaction effects 
(Fs ≤ 0.66, ps ≥ 0.43, ηp

2s ≤ 0.03). Overall, these results do not 
provide evidence for an association between unsigned pre-
diction errors and FMθ nor do they support the idea that 
the observed effects involving Feedback Valence are sub-
stantially driven by unsigned prediction error processing.

4.4  |  Single-trial regressions withFMθas 
predictor and behavioral adjustment 
as criterion

The single-trial regressions with FMθ as predictor  and 
RT adjustment (i.e., slowing in the current vs. previous 
trial) as criterion revealed that none of the eight slopes 
was significantly different from zero for positive feedback 
(|t|s ≤ 1.54, ps ≥ 0.13, ds ≤ 0.32) and negative feedback trials 
(|t|s ≤ 0.28, ps ≥ 0.78, ds ≤ 0.06); see Table 5.

For the single-trial regressions with FMθ as predictor 
and switching (vs. staying) behavior as criterion, the slope 
of FMθ responses to monetary non-reward (REW−) on 
subsequent switching was at the borderline of significance 
differing from zero, t(22) = 2.07, p = .05, d = 0.43. None 
of the other slopes was different from zero (|t|s ≤ 0.88, 
ps ≥ 0.39, ds ≤ 0.18).

5   |   DISCUSSION

The goal of the present study was to investigate if FMθ 
bursts are sensitive to negative feedback indicative of sub-
sequent punishment. To this end, participants performed 
both a reward-, and a punishment-, related reinforcement 
learning task. While the learning performance did not 
depend on the type of reinforcer, the response of FMθ to 
negative c.f. positive feedback was significantly greater in 
the reward condition than in the punishment condition; 
specifically, FMθ was significantly elevated to negative 
feedback in the reward but not in the punishment task. 
Moreover, in contrast to feedback valence, we were not 
able to find any significant associations between either 
computationally derived or self-reported signed or un-
signed prediction errors and FMθ. Together, this indicates 
that phasic FMθ is more sensitive to feedback valence in 
reward than in punishment reinforcement learning.

FMθ was amplified to negative vs. positive feedback 
in the reward task, i.e., to feedback signaling non-reward 
vs. reward. This result converges with previous findings 
that FMθ is modulated by monetary non-reward and 
loss in reward-related reinforcement learning (Andreou 
et al., 2017; Cavanagh et al., 2010; Cavanagh, Zambrano-
Vazquez, & Allen,  2012; Marco-Pallares et al.,  2008; 
Mas-Herrero & Marco-Pallarés, 2016; Mueller et al., 2015). 

F I G U R E  4   Slopes and intercepts of the multiple regression analysis including the predictors of feedback valence (here FB) and 
unsigned PEs (ePE & sPE) for the reward (left panel) and punishment task (middle panel); ‘part.’ denotes the predictor partialled out in 
the multiple regressions. The right panel shows the mean slopes, demonstrating that the feedback valence effect in the reward task was not 
affected by trial-by-trial unsigned prediction errors. *p < .05 **p < .01.

Multiple Regressions of Feedback Valence and unsigned PE on FMθ

Mean Slopes on FMθ 

Feedback Valence Unsigned PE
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RT slowing 
positive fb.

RT slowing 
negative fb.

Switch 
positive fb.

Switch 
negative fb.

Reward task 0.015 (0.05) −0.004 (0.06) −0.006 (0.05) 0.017 (0.04)

Punishment task −0.010 (0.05) 0.001 (0.05) −0.001 (0.04) −0.014 (0.08)

T A B L E  5   Mean (SD) values of 
standardized beta slopes with FMθ as 
predictor and subsequent behavioral 
adjustment (RT slowing & switching) as 
criterion
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Together with previous studies which reported increased 
FMθ to negative feedback (Mueller et al.,  2015; van de 
Vijver et al.,  2011), conflict (Cavanagh et al.,  2014; Neo 
et al.,  2020; Pinner & Cavanagh,  2017), novelty (Brown 
& Cavanagh,  2020), and the need for cognitive control 
(Cavanagh & Shackman,  2015; Cooper et al.,  2019), our 
results are in line with the assumption of FMθ as an index 
of ACC activity involved in cognitive control processing 
(Cavanagh, Zambrano-Vazquez, & Allen,  2012; Domic-
Siede et al., 2021).

In contrast, there was no significant feedback valence 
effect on FMθ in the punishment task, i.e., to punishment 
vs. non-punishment. While this is in line with a recent 
study showing no effect of monetary loss on FMθ (Rawls 
et al., 2020), it is surprising from the perspective that FMθ 
reflects a signal sensitive to cognitive and motivational sa-
lience (Cavanagh & Shackman, 2015; Cooper et al., 2019). 
Self-reports and behavioral results of the present study 
would suggest an even higher salience of reinforcers in 
the punishment context: the punishment feedback cue 
was rated as more negatively valent than non-reward 
and the noise burst as a more punishing feedback conse-
quence than monetary non-reward. Moreover, PES and 
PCS were greater in the punishment vs. reward context, 
suggesting greater cognitive control and behavioral ad-
justment (Cavanagh & Shackman,  2015;Danielmeier 
& Ullsperger, 2011; Fischer et al.,  2016). As suggested 
by Rawls et al.  (2020), FMθ may be generally elevated 
for threat-related reinforcement conditions leading to 
increased tonic FMθ levels during the punishment vs. 
reward task and thereby attenuating potential valence 
effects of phasic theta bursts. However, we did not find 
significant task differences in baseline FMθ, which does 
not provide evidence for higher tonic levels of FMθ in the 
punishment vs. reward task. Additionally, it is conceivable 
that our punishment task induced state fear, which might 
have moderated feedback processing indexed by FMθ. As 
it has been reported that induced stress alters feedback 
processing (for a review see Starcke & Brand, 2012), it may 
be that state fear, which involves an overall increased hy-
pervigilance and alertness toward threat (Grillon,  2008; 
Maren et al., 2013; Panitz et al., 2018; Stolz et al., 2019), al-
tered feedback processing in the present punishment task. 
This could be addressed in future studies by using state 
and trait measures or mood inductions to see whether 
feedback-locked FMθ is moderated by the levels of fear 
and anxiety in punishment avoidance learning.

Importantly, the present results on FMθ contrast 
with the adaptive control hypothesis which ascribes 
FMθ a more global role, namely reflecting unspecific 
cognitive control processing, such as in threat scenarios 
which elicit state fear and negative affect (Cavanagh & 
Shackman,  2015; Shackman et al.,  2011). Our findings 

however suggest differential effects of FMθ in reinforce-
ment learning depending on the learning context, which 
may engage separate neural systems during tasks demand-
ing reward maximization vs. punishment avoidance, re-
spectively. While there are studies linking activation in the 
striatum to both reward and avoidance learning (Häusler 
et al., 2016; Schlund et al., 2011; Smith et al., 2016), there 
is also evidence in line with the assumption of two dif-
ferent systems for reward and punishment domains (Kim 
& Anderson,  2020; Palminteri et al.,  2015; Palminteri, 
Clair, et al., 2012; Palminteri, Justo, et al., 2012; Robinson 
et al.,  2010). First, there are reports of intra-striatal dis-
sociation with a more dorsal involvement in punishment 
cf. reward processing (Schlund et al.,  2016; Seymour 
et al., 2007). Second, other studies stressed the anterior in-
sula (Palminteri et al., 2015; Palminteri, Justo, et al., 2012), 
and the amygdala (Schlund & Cataldo,  2010; Yacubian 
et al.,  2006) as potential substrates of a neural system 
specific to punishment avoidance learning. Finally, it has 
been argued that reward and punishment learning are dif-
ferentially modulated by dopamine and serotonin (Cools 
et al., 2011; Daw et al., 2002; Fischer & Ullsperger, 2017; 
Jocham & Ullsperger, 2009; Macoveanu, 2014; Pickering 
& Pesola, 2014; Richter et al., 2014; Seymour et al., 2012). 
Thus, it may be that the present results on punishment-
related feedback processing reflect the recruitment of a 
neural threat network whose activity is less well indexed 
by theta activity in the frontal EEG cluster. This overall 
sheds a different light on FMθ as a global index for cogni-
tive control and provides evidence for context-dependent 
modulation of FMθ by feedback valence and PEs.

Even though we put considerable effort into the 
operationalization and analyses of PEs (Cohen & 
Cavanagh,  2011), we did not find any correlations be-
tween single-trial FMθ and the degree of computation-
ally derived or self-reported PEs. In addition, a further 
analysis showed that unsigned PEs did not affect the ob-
served feedback valence effect. This result is in contrast 
to previous findings which suggested that FMθ is sensi-
tive to unexpected, i.e. salient events, and thus does index 
an unsigned PE (Cavanagh, Figueroa, et al.,  2012; Mas-
Herrero & Marco-Pallarés, 2014). Additionally, there are 
studies involving tasks, which are unlikely to engage ex-
plicit learning, that demonstrate main effects of feedback 
expectancies on reward- and punishment-related fronto-
central event-related potentials (Hird et al., 2018; Soder & 
Potts,  2018; Talmi et al.,  2013) as well as reward-related 
FMθ power (Gheza et al.,  2018). The non-significant 
modulations of FMθ by PEs in the present study may 
be due to the relatively small number of reversals over 
the experiment, which provoked an exploitative strat-
egy with participants commonly following win-stay and 
rarely following lose-shift choice patterns. Based on the 
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behavioral results it is conceivable that participants ex-
perienced strong positive PEs at the beginning of an 
exploitative choice streak, which then declined after re-
peated positive feedback for the exploitative choices being 
made (Cavanagh, 2015). Moreover, successful learning in 
the reversal learning tasks demanded choice persistence, 
particularly after strong negative PEs, which presumably 
occurred during an exploitation streak (because positive 
feedback occurred on average only 70% of the time for the 
better response choice). Strong negative PEs in these cir-
cumstances are generally not good predictors of a rever-
sal of feedback contingencies. This suggestion is in line 
with the idea of a stronger utilization of more explicit 
(model-based) expectations in the present study, masking 
expectations which are based on trial-by-trial value asso-
ciations as derived by model-free Q learning (Botvinick & 
Weinstein,  2014; Daw et al.,  2011; Wang, Kurth-Nelson, 
et al.,  2018). Besides the task demands, it might also be 
that assessing self-reported expectations within each trial 
further contributed to participants' overall use of more ex-
plicit predictions (Akam & Walton, 2021; Doll et al., 2009; 
Smittenaar et al., 2013). Overall, since negative PEs were 
not indicative of the need for behavioral adjustment, it 
may be that FMθ was less affected by trial-by-trial pre-
dictions but more by implicit learning about the rever-
sals, decoupling the often-replicated association between 
PEs and FMθ (Cooper et al., 2019; Kaufman et al., 2010; 
Pinner & Cavanagh, 2017; Reber, 2013). In the context of 
prior work, our results thus suggest that FMθ does not in-
dicate unsigned or signed PEs per se but that the correla-
tion between FMθ and prediction error magnitude may be 
strongly influenced by task-specific demands and learning 
goals.

There was a hint for a predictive value of increased 
FMθ power in response to feedback indicating monetary 
non-reward and subsequent switching behavior. This con-
verges with previous studies, showing that increased elec-
trocortical responses to feedback indicating non-reward/
monetary loss are associated with subsequent switching 
behavior (Cavanagh & Shackman,  2015; van de Vijver 
et al.,  2011). In contrast, there was no significant effect 
for the association between FMθ and post-punishment 
switching in the punishment task. This result pattern 
is informative with regard to the observation of a larger 
feedback valence effect in the reward vs. punishment 
task, suggesting that the increased FMθ responses to non-
reward vs. reward here may reflect behavioral adaptation. 
In contrast to switching behavior, there was no significant 
relationship between FMθ and PES/PCS, presumably due 
to the lack of an RT limit in the current task.

There are some limitations of the present study. The 
noise burst titration procedure might have not been entirely 
successful and resulted in a slightly higher unpleasantness 

of the noise burst intensity compared with the pleasantness 
of monetary reward. This is indicated by feedback cue and 
consequences ratings, and the distribution of the chosen 
noise burst intensity. Still, even though the punishment re-
inforcer seemed to be more salient, we did not observe a 
significant FMθ valence effect in the punishment task. In 
addition, there were overall more bad epochs in the punish-
ment vs. reward task, which is in line with the suggestion 
of higher unpleasantness and salience of the noise burst. 
Since the number of bad epochs were comparable across 
feedback valence types within the tasks, and differed sig-
nificantly only between the tasks, we assume that this did 
not affect the feedback-valence effects on FMθ, but rather is 
an example of how threat experiments can induce method-
related effects. Although we calculated PES and PCS mea-
sured as pairwise comparisons around error and correct 
trials, which is more robust than traditional approaches 
(see Dutilh et al., 2012), the RT-based measures should be 
interpreted with caution since there was no time limit for 
the behavioral responses in the reversal learning tasks.

While we used an established model-free algo-
rithm which is suitable for single-trial EEG analyses 
(Cavanagh,  2015), it does not provide information re-
garding participants' knowledge about the reversal 
learning task structures. Comparisons between model-
based and model-free reinforcement learning algorithms 
are better suited to estimate individual differences in 
the knowledge about the reversal learning task struc-
ture (Daw et al.,  2011; Lucantonio et al.,  2014; Wang, 
Lee, et al., 2018; Wunderlich et al., 2012). For instance, 
there is a probabilistic model recently reported by 
Marković et al.  (2019) that uses hidden Markov mod-
els to estimate state dynamics and could be used to ex-
amine the neural basis of behavioral transition after a 
contingency reversal (Marković et al., 2020). Assessing 
expectations via self-report may have added further fac-
tors influencing learning during the current tasks. The 
influence of these additional factors may have weak-
ened the relationship between computationally derived 
PEs and FMθ. On the one hand, assessing self-reported 
expectations might have altered PE processing by in-
creasing the time interval between action and feedback 
onset. However, additional analyses including a sepa-
rate model and single-trial analyses on FMθ account-
ing for the time interval between action and feedback 
onset interval did not support this hypothesis. On the 
other hand, assessing self-reported expectations might 
have changed the overall nature of participants' expecta-
tions, contributing to the decoupling of trial-by-trial PEs 
and FMθ. In contrast, there are studies which demon-
strated that the frontocentral feedback-related nega-
tivity event-related potential was associated with both 
computationally derived and self-reported PEs (Hajcak 
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et al., 2005; Ichikawa et al., 2010; Soder & Potts, 2018; 
Yeung et al., 2005). The effects were even stronger when 
expectations were assessed directly after the action vs. at 
the end of the trial (Hajcak et al., 2007). We thus would 
argue that the present null findings on the association 
between PEs and FMθ might be due to the implicit na-
ture of the learning task rather than the presence of self-
report ratings. It could be interesting for further studies, 
however, to investigate if the levels of implicit learning 
together with manipulations of the action-feedback in-
tervals influence feedback processing.

There are two further peculiarities of the present 
study that deserve attention. First, aversive noise bursts 
are considered a primary reinforcer while monetary re-
ward is a secondary reinforcer. Although monetary re-
ward is highly overlearned and may even sometimes 
have stronger effects on behavior than primary reinforc-
ers such as food (Beck et al., 2010; Delgado et al., 2011), 
the reward delivery was briefly delayed while the noise 
bursts were presented immediately as a consequence of 
performance. Even though we cannot rule out effects of 
slightly delayed vs. more immediate presentation of re-
inforcer, the results of the present study are in line with 
those of Rawls et al.  (2020) who similarly found no ef-
fects of negative feedback on FMθ with monetary loss 
as negative feedback reinforcer. Here, we showed that a 
similar lack of FMθ modulation is observed in the con-
text of actual threat stimuli. Second, the tasks demanded 
different motivational directions. While the participants 
approached monetary reward in the reward task, they 
had to avoid an aversive noise burst in punishment task. 
It is possible that the reported modulations of FMθ reflect 
different systems that are more related to negative and 
positive reinforcement rather than negative and positive 
valence (Richter et al., 2014). Based on: (A) the similarity 
of the two reversal learning tasks used here; (B) the par-
ticipants' comparable performance across tasks; (C) and 
the ratings on non-punishment consequences, we would 
argue that successful avoidance in the punishment task 
was perceived as a positive outcome (Kohls et al., 2013; 
Palminteri et al.,  2015; Sescousse et al.,  2013). Second, 
some authors expressed concerns regarding the statisti-
cal comparison of categorically different reinforcer types 
(Talmi et al.,  2013; but see Heydari & Holroyd,  2016). 
In contrast to Talmi et al.  (2013) and Heydari and 
Holroyd  (2016), the present reinforcer magnitudes un-
derwent a titration procedure and thus may have been 
qualitatively closer to each other than in previous stud-
ies. However, to accomplish the best possible matching 
between reinforcer  magnitudes, future research should 
consider examining FMθ in response to primary rein-
forcers from same categories (e.g. juice or odors) in posi-
tive vs. negative reinforcement learning.

In summary, our study provides first evidence that 
feedback-locked FMθ is more sensitive to feedback va-
lence in monetary reward learning tasks compared with 
punishment tasks involving threat-related primary rein-
forcers. Moreover, we did not find any correlation between 
signed and unsigned PEs and FMθ. Overall, this suggests 
that FMθ does not reflect a global index for cognitive con-
trol processing but rather demonstrates that FMθ activity 
depends strongly on the learning context. We argue that 
punishment avoidance vs. reward learning depend upon 
non-identical neural systems, and that the activity of the 
system supporting punishment avoidance affects mea-
sures of FMθ to a lesser degree. We would finally suggest 
that correlations between FMθ and PEs strongly depend 
on whether PE processing is crucial for achieving task-
specific learning demands. Our study also raised a num-
ber of further questions, which need to be investigated in 
future studies in order to provide a more comprehensive 
insight into the role of FMθ during punishment avoidance 
learning.
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