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Abstract This chapter explores the creative possibilities offered by latent spaces.
Latent spaces are machine-learnt maps representing large media datasets such as
images and sound. With a latent space, an artist can rapidly search for interesting
places in the dataset, then generate new artefacts around and between places. These
unique artefacts were not in the original dataset, but they relate to it. Readers will
find a detailed explanation of what latent spaces are and how they fit into a series
of developments that have taken place in digital media processing techniques such
as content-based search and feature extraction. We will encounter four examples
of machine learning systems that provide latent spaces suitable for creative work.
The first example is Music-VAE which creates a latent space of millions of musical
fragments represented in the symbolic MIDI format. The second example is Latent
Timbre Synthesis (LTS). Unlike Music-VAE, which works in a symbolic musical
domain, LTS works directly with audio fragments. The third example is StyleGAN
which creates a latent space of images which has specific properties allowing for
style transfers. The final example is VQGAN+CLIP which is a text phrase-to-image
system which uses fine-tuning techniques to iteratively generate images. Finally,
we consider examples of artists working with each of the four systems along with
reflections on their creative processes.

1 Introduction

One might characterise the practice of creating visual art, music or sound as an
exploratory process. An artist explores the space of possibilities in a given domain.
Over time, they develop an understanding of this space and how they can effectively
explore it and present it to others.
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This chapter will consider how such a creative process might change if the artist
has access to a latent space. We will dig into a deeper explanation of latent spaces
later on, but for now, think of a latent space as a map of thousands or even millions
of items. Taking the example of a latent space of images, you would start with a
dataset containing thousands of images. A machine learning system would place all
the images in positions relative to each other, just like a city map showing the various
buildings and landmarks. It would attempt to place similar looking images in similar
positions on the map. The space containing all the positions is known as the latent
space. You can take an image that the map knows, and the map will tell you where
that image is located.

A latent space is no ordinary map, though - you can also take an image that it has
never seen, and it can give you its best guess as to where that image lies based on how
it looks. You can place your finger in a random position on the map, which might
lie in-between known images, and the system can generate you an image that is its
best guess for what you should see there. This ability to place and create artefacts,
not on the original map unlocks a wealth of creative possibilities. In this chapter,
I consider the new opportunities for artistic practice presented by such technology
and how creative practice changes to best exploit these possibilities.

Let us capture a flavour of the change by taking in a view from some contemporary
creative practitioners who have worked extensively with latent spaces. Broad et al.
describe the creation of latent spaces as ‘learning to render entire distributions of
complex high dimensional data with ever-increasing fidelity. They group together the
various ways artists have exploited latent spaces under the term ‘active divergence’.
Active divergence involves ‘optimising, hacking and rewriting [latent space models]
to actively diverge from the training data’ (Broad, Berns, et al. 2021). Referring to
the example of a map of images, the training data would be the set of images used
to create the original map. Optimising, hacking and rewriting are standard methods
for computer artists, but how can they execute those in this machine learning-driven
domain? We will consider this question through several detailed examples later on.

The ability to create and explore latent spaces can be seen as a computer-aided
transition from considering a small number of positions in a creative space to having
access to an interrogable model representing many positions. How can an artist cope
with this abundance of choices? As it turns out, this is nothing new for artists. Going
back to the early days of computer-aided creative work, we find that practitioners
were quick to identify and discuss the ‘over-abundance problem’. In an interview
in 1968, John Cage characterised computerisation as a transition from a scarcity of
ideas to an abundance:

“The need to work as though decisions were scarce-as though you had to limit yourself to
one idea-is no longer pressing. It’s a change from the influences of scarcity or economy to
the influences of abundance and-I’d be willing to say-waste." - Cage 1968 (Austin, Cage,
and Hiller 1992)

A contemporary of Cage, Gottfried Michael Koenig goes a step further in consid-
ering what statistical distributions representing a range of possibilities might mean
for composers:
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“the trouble taken by the composer with series and their permutations has been in vain;
in the end it is the statistical distribution that determines the composition" - Koenig, 1971
(Ames 1987)

Another composer, Iannis Xenakis, famously also worked with statistical distribu-
tions. Writing in 1966, Xenakis saw it as a “musical necessity that the laws pertaining
to the calculation of probabilities found their way into composition" (Xenakis 1966).
This colourful quote embodies the feeling one might have when working with latent
spaces:

"With the aid of electronic computers the composer becomes a sort of pilot: he presses the
buttons, introduces coordinates, and supervises the controls of a cosmic vessel sailing in the
space of sound" Xenakis 1971 (ibid.)

These early statistical creation methods were probably a natural response to the
constraints and formalisms of serialism that had come before. One might draw a
parallel between the movement from serialism to stochastic composition and the rise
of statistical machine learning after decades of formal and symbolic AI techniques.
It is this statistical machine learning which makes creative latent spaces possible.

Reflecting on the quotes above, these early pioneers of statistical, creative spaces
were already transitioning to conceptualising the substrate of their work not as small
numbers of items and simple processes but large sets and complex processes. A
full exploration of the history of artistic practice using statistical distributions and
related techniques is beyond the scope of this writing. We have seen a to-ing and
fro-ing between formalisms and statistical models in computational creative work
and machine learning, with increasingly sophisticated models.

The most recent development in this story started in the mid-2000s, and it makes
the rendering of large datasets into high fidelity latent spaces of images and sounds
possible. LeCun et al. refer to this development as representation learning (LeCun,
Bengio, and Hinton 2015). This is where a machine learning model learns how to
extract and represent the most pertinent information in a dataset of images, sounds
or texts. These machine-designed latent spaces and their capabilities are the subjects
of this chapter.

1.1 Structure of this chapter

In the next section, I will explain what a latent space is and how we can go about
creating them. In section 3, we will consider some examples of recent systems which
enable artists to work creatively in latent spaces. Following that, we will look at
some creative work that has been produced using the example systems we presented
in section 4.
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2 What is a latent space?

Now we will work towards an understanding of what a latent space is, why it is
necessary and how we can go about creating one.

The avant-garde composers quoted in the previous section observed that the
computerisation of creative practice is associated with a transition from a sparsity of
ideas and content to an abundance. Instead of labouring with a single musical score,
we work within a dataset of scores. Instead of working with a single image, we work
with a dataset of thousands or millions of images. This leads us to wonder how we
might adapt our practice to engage with this abundance of material.

We can start with two actions that we might want to take as creative practitioners
given such a dataset: search and generate. Search allows us to find items of interest.
Generate allows us to somehow generate new items using the existing items. These
actions are shown in figure 1. One search approach is to use meta-data such as
filenames, dates, geo-tags and camera settings. For example, you might search for
all images taken in 2010. This approach depends on somebody or something having
already correctly tagged the items, and the search is limited to the available tags.

Once we have located our items of interest in the dataset, we can move to the
generation of new items. For example, you might load the images retrieved from your
search into an image editor and create a collage. The problem is that this approach
takes us back to the ‘sparse’ scenario as only the search part of the process takes
account of the abundance in the archive. Generating like this ignores anything except
the selected items.

Content-based search is another option. Content-based search involves examining
the actual data in the archive. For images, the lowest level of data is the raw colour
values for the pixels; for sound, it is the raw waveforms. Content-based search is
potentially much more potent than meta-data search as it does not rely on accurate
data being added to the items in an archive. Instead, it goes directly to the actual
content in the archive.

But there are a few reasons why working with raw media data is problematic.
It is very large; for example, the data for an image with a resolution of 1024x768
has one number for each red, green and blue channel in its 786,432 pixels, so it is
2,359,296 dimensional. Raw pixel data is also sensitive to image transformations,
such as translations and rotations. If you rotate an image, the pixel data might change
completely. So with raw pixel data, you would not be able to know if one image was

Fig. 1 Observed space con-
tains the raw data representing
the images. Latent space is a
more compact space which
places similar images close to
each-other. A small movement
in latent space should lead to
a small movement in observed
space.

Observed                 Latent                Observed

                Search                   Generate
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very similar to another, just rotated. The two images would appear very far away in
raw pixel space.

So why are humans able to judge two rotated images to be similar? It turns out
that the raw data coming out of the back of the retina is processed through several
stages before meaningful perception takes place. This processing can be called
feature extraction, and algorithmic (as opposed to biological) feature extraction is
what makes content-based search possible. To achieve content-based search, we can
specify a desired feature as a search term then find items with similar features in our
dataset. We might even pass a raw media item such as an image as our search term,
then extract the feature for searching.

Researchers have designed many different features to enable searches for different
things. For example, features that help detect which instrument is playing in a piece
of music or features that help detect the position and orientation of faces in images.
There are many software libraries available that make it possible to extract these
features, for example, the OpenCV library for image features and the librosa library
for audio features (Bradski and Kaehler 2000; McFee et al. 2015).

2.1 Latent spaces

Now we are familiar with the ideas of content-based search and feature extraction,
we are ready to talk about latent spaces. The features that we use to carry out content-
based search form a latent space. We can refer to the original files as the ’observable’
and the features we extract as the ‘latent’. Therefore, the latent space is the space that
contains the features of everything in our dataset. Consider an ’average brightness’
feature for images as a simple example. We can represent this feature as a single
value, perhaps between 0 and 1. To search, we can specify our desired brightness
range and retrieve all images falling in that range. The latent space for this feature
illustrated in figure 2 is a simple, one-dimensional line along which we place all of
the images in our dataset. If we move through the latent space, viewing the images
as we go, we will see them increase in brightness.

Fig. 2 Visualisation of a
latent space based on a one
dimensional image brightness
feature. 100 images from
the imagenet dataset are
organised from darkest to
brightest (Deng et al. 2009).
Additionally, three zoomed in
images are shown, which are
the darkest, middle brightest
and brightest. Brightness
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What about generation? Operating with the content of media archives intuitively
seems to lend itself to generative tasks, as we are working more directly in the
domain we wish to generate. We could manually generate new content from the
found content, as we did for meta-data search. But perhaps there is a more powerful
option, one which maintains a sense of the abundance in the archive. If we can
reverse the feature extraction process somehow, we can actually move from latent
feature space back to the raw data of observed space. With such a feature reversing
technique, we can actually move from any point in latent space back to observed
space. This opens up possibilities such as choosing a point in the middle of two
images, and generating from there. An example of that is shown in figure 1.

But reversing from latent feature space back to observed space is not so straight-
forward. Consider the analogy of a fruit juicing machine. You place your fruit in the
machine, and it extracts the most desirable part of the fruit. But it is not easy to get
back to the original fruit because you have thrown away ‘information’ in the juicing
process. My simple image brightness feature loses a lot of information going from
two million numbers down to one single number, and we could not possibly recon-
struct an image from that. Unfortunately, many existing features developed for image
and sound analysis tasks are not reversible. They were not designed for generative
purposes, so reversing was not a requirement.

Fortunately, there is a new generation of reversible features based on machine
learning. These are machine-designed features used in the representation learning
systems described by LeCun et al. (LeCun, Bengio, and Hinton 2015). Instead of
creating a latent space using human-engineered features, machine learning systems
learn their own features suitable for representing the pertinent information in the
dataset. In parallel, the systems learn methods for feature reversal. I will spend the
rest of the chapter discussing these features and some AI-creativity systems built on
top of them.

Before that, I will summarise the key points from this section: large datasets
of media are now available; creative practitioners wanting to meaningfully exploit
the abundance in these datasets need to be able to search in and generate from
the dataset; content-based search provides the most powerful way to search using
feature extraction; the extracted features form a latent space containing the dataset;
unfortunately many features are not designed for generative purposes and they are
therefore not reversible meaning you cannot generate by moving from latent space
back to raw data in observed space; recent developments in machine learning provide
reversible features which allow for ‘fully abundant’ search and generation.

3 Examples of latent spaces

Now we have a grasp of what a latent space is and what it means to search and
generate, we will consider some examples of latent spaces in creative domains. I
have selected four examples: two for sound and two for image. For each of image and
sound, I present a symbolic approach and a sub-symbolic approach. To clarify those
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terms, in the musical domain, Briot et al. define symbolic as “dealing with high-level
symbolic representations (e.g., chords, harmony)" and sub-symbolic as “dealing with
low-level representations (e.g., sound, timbre)", along with the associated processes
for each domain (Briot, Hadjeres, and F.-D. Pachet 2020). An equivalent definition
for images would have symbolic as the contents of the image (e.g. contains a dog)
and sub-symbolic as describing the raw image data (RGB values, brightness).

Before we take in the examples, we should highlight some terms that we will
encounter. Variational Autoencoders (VAEs) and Generative Adversarial Networks
(GANs) are high-level terms describing approaches to designing and training neural
networks, especially for generative purposes. VAE involves training an encoder to
encode to a latent space and a decoder to decode back out to observable space such
that the error between original and decoded data is minimised. GANs involve a
generative network learning to generate data similar to the training data where the
similarity is judged by a second, ‘critic’ network which is also learning. So with
GANs the error is dictated by the ever-learning critic, not a normal metric as in
VAEs. Below the VAE or GAN method is the actual neural network architecture,
which in both cases will consist of multiple layers of different types such as long,
short term memory (LSTM), convolutional, fully connected and so on.

3.1 A latent space for symbolic music data: Music-VAE

Roberts et al. reported the Music-VAE system in 2018 (Roberts et al. 2018). Music-
VAE works with MIDI files which are a standard data format for representing se-
quences of musical events such as notes. Music-VAE uses a Variational Autoencoder
method in combination with a recurrent, LSTM network for its encoder and decoder.
LSTMs are useful for time series such as sequences of musical events. Music-VAE
can encode musical sequences to a latent space and it can decode from latent space
back to musical sequences.

Generative music systems are not new - there is a long history of methods for
generating symbolic music data. Aside from formal methods such as grammars,
Markov models were a common technique in the literature prior to the dominance of
deep learning. Fernandez et al. survey examples of this work (Fernández and Vico

Fig. 3 Example output from
a single point in the Music-
VAE multi-instrument model
latent space. The different
instrument tracks are shown
with a piano roll view, and
there is a zoomed in view of
one of the instruments shown
with traditional notation.

instrument 1

instrument 2

instrument 3

instrument 4

instrument 5
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2013). Pachet and Roy’s work with statistical models and constraints is perhaps the
pinnacle here (Roy, Papadopoulos, and F. Pachet 2017). There is limited work which
deals explicitly with latent spaces of musical corpora but an example is Ellis and
Arroyo’s Eigenrhythms (Ellis and Arroyo 2004). Music-VAE does have some deep
network precursors: the Ragtime generating DeepHear system by Sun from 2015 is
perhaps the earliest example1. For further examples, we refer the reader to Briot et
al. (Briot, Hadjeres, and F.-D. Pachet 2020).

Returning to our description of Music-VAE, using a dataset of 1.5 million MIDI
files, the researchers trained different Music-VAE models on various inputs in-
cluding 16 bar monophonic melody and bass lines, and drum patterns. The latent
vectors therefore represent melodies, basslines or drum patterns. A later version of
Music-VAE encoded complete musical arrangements, including instrument selection
(Simon et al. 2018).

Music-VAE has been designed with the aim of creating a latent space which is
suitable for creative exploration. The Music-VAE space places similar inputs into
similar places, and it is a smooth space. Smooth means interpolations from one point
to another in latent space produce a gradual series of outputs. In other words, similar
melodies should encode to similar positions in latent space and moving between two
melodies in latent space should sound like a musically smooth transition.

These two features are crucial to the creative possibilities of Music-VAE. To
achieve the smooth transitions, Music-VAE uses a variational autoencoder as opposed
to just an autoencoder. The variational autoencoder works with distributions rather
than single points which encourages a better mapping of the space.

Music-VAE’s creators have endeavoured to provide a range of components to
help creatives work with the system. A variety of pre-trained models are available,
including melody, drum, trio and full arrangement models 2. The Magenta.js library
provides ready made helper classes and functions3. Magenta.js allows users to sample
latent space in near realtime, generate MIDI files and play them in the web browser.

Fig. 4 The Music-VAE inter-
polation demo which uses the
tensorflow.js implementation
of Music-VAE. The user can
generate two random points
in latent space and interpolate
between them, listening to the
results. They can also con-
dition the generative model
using a chord sequence.

1 https://fephsun.github.io/2015/09/01/neural-music.html
2 https://goo.gl/magenta/js-checkpoints
3 https://github.com/magenta/magenta-js
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The researchers also provide a range of examples, especially based around the idea
of interpolating between positions in latent space. Figure 4 shows one such demo.

3.2 A latent space for sub-symbolic audio data: Latent Timbre
Synthesis

In 2021, Tatar et al. described Latent Timbre Synthesis (LTS) (Tatar, Bisig, and
Pasquier 2021). LTS involves the creation of a latent space representing a corpus
of audio frames. Therefore LTS is a sound synthesis technique, where a stream of
latent vectors are converted to a stream of audio frames. There are several related
systems which create latent spaces of audio corpora for creative purposes. Casey’s
2005 work represents an early example which addressed the problem of efficient
content-based search in audio documents for resynthesis purposes via the creation
of a compact latent space (Casey 2005). Wavenet is a more recent and more closely
related example (Oord et al. 2016). Wavenet has been through multiple iterations
and is a well established structure for sound and especially voice synthesis. One
of the limitations of Wavenet noted by Tatar et al. and addressed with LTS is
its computational complexity, preventing realtime synthesis. Aside from Wavenet,
other work has involved training networks on raw audio, for example Collins et al.’s
work on ‘brAIn swapping’ (Collins, Ruzicka, and Grierson 2020) and Zukowski and
Carr’s work generating infinite death metal with SampleRNN (Zukowski and Carr
2018; Mehri et al. 2016).

We have selected the Latent Timbre Synthesis system because it explicitly deals
with latent spaces and their application to interactive, creative work in the sound
design and sound art domains. LTS is different from Wavenet and SampleRNN in
that it generates spectral frames instead of raw audio samples, at professional CD
quality as opposed to lower sample and bit rates.

To create its latent space, LTS cuts the raw audio signal into frames then applies
the Constant Q Transform (CQT) to create spectrograms for each frame. CQT is a

Fig. 5 User interface for
the Latent Timbre Synthesis
engine. The user can add
a training dataset and train
then they can generate audio
sequences by interpolating
between positions in the
latent space. The interface is
implemented in Max/MSP but
it talks via OSC to a Python
back-end.
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common feature in music information retrieval tasks such as instrument detection.
Next, LTS trains a variational autoencoder to encode and decode the CQT spectro-
grams to and from latent space. The VAE neural network architecture uses densely
connected andconvolutional layers to encode and decode spectral frames.

Convolutional layers are often used for digital signal processing tasks as they are
a kind of trainable filter where the training adjusts the filter so it can extract the
most useful information from the signal. Convolutional layers are suited to spectral
frame data if the spectral frames are not treated as a sequence. Sequential data would
generally require some sort of recurrent network, such as LSTM. Since it does not
use LSTM-like layers, we can say that LTS does not model the sequence in which
the frames occur.

Working with latent spaces of spectral frames as opposed to raw audio samples
is common amongst deep synthesis systems which aim to operate in near realtime
on regular hardware. This performance level is an important feature for accessibility
and interaction (Grierson et al. 2019). Tatar et al. report synthesis running at twice
realtime with a commonly available consumer gaming GPU (GTX 2080). This is
similar to the performance reported for other realtime tools for deep synthesis, e.g.
the DDSP system (Engel et al. 2020; Yee-King and McCallum 2021)

Tatar et al. provide the Python code comprising the LTS system4. They also
include a user interface created using Max/MSP which communicates with the
Python system via Open Sound Control messages (see figure 5). With this UI, users
can supply a dataset of audio files and train the system, or they can explore the latent
space by providing two audio files and interpolating between them. This interpolation
activity is similar to the interpolation activity in the Music-VAE system, except the
output is a stream of audio frames instead of discrete MIDI arrangements.

3.3 A latent space for sub-symbolic image data: StyleGAN

Kerras et al. reported StyleGAN in 2019 (Karras, Laine, and Aila 2019). StyleGAN
is an image synthesizer which is trained using generative adversarial methods. This
means there are two models: the image synthesis model and a discriminator model
which evaluates the synthesis model. Both models are trained at the same time -
as the synthesis model improves, the discriminator model gets better at finding its
flaws. StyleGAN creates a latent space of a dataset of images (70,000 in the original
article). Therefore you can generate a latent vector and StyleGAN can convert that
into an image, or vice-versa.

Similarly to Music-VAE, users can move around in StyleGAN’s latent space and
see how the resulting images change. The difference is that StyleGAN allows for
more control over how users do that. StyleGAN takes the latent vector and creates
several transformed versions of it (we might call these ‘sub-latents’). To synthesize
an image, the sub-latents are passed as control inputs to different layers in the image

4 https://gitlab.com/ktatar/latent-timbre-synthesis
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synthesis network. StyleGAN’s user can manipulate the raw latent vector, or they
can manipulate one or more of the sub-latents before they go into the generator’s
layers. Users can even take latent vectors of two images, and mix and match which
sub-latents they pass into the network, leading to mixtures between the two images.
This is much more subtle than simply interpolating between the latent vectors of the
two images.

The different layers of StyleGAN tend to represent semantically meaningful as-
pects of the training dataset, e.g. for faces, presence or absence of sunglasses, hair
length, face angle and so on. That means that ‘sub-latent mixing’ allows for a tech-
nique called style transfer where semantic characteristics of one image can be applied
to another. For example, given an image of a young person and an older person, it is
possible to transform the older person’s image such that they look young.

Earlier I described how there has been a to-ing and for-ing between formal and
statistical methods in machine learning. Often, formal methods are associated with
more explicit modelling of semantic features. It is interesting to note that the statistical
structure learned by StyleGAN allows it to perform semantic style transfer between
images.

3.4 A latent space for combined symbolic and sub-symbolic image
data: VQGAN + CLIP

In 2021, the Internet witnessed a storm of creative image generation using a novel
text to image converter called VQGAN + CLIP5. The text to image system relies

Fig. 6 The editable parame-
ters for Katherine Crowson’s
VQGAN notebook viewed in
Google colab.

5 https://www.vice.com/en/article/n7bqj7/ai-generated-art-scene-explodes-as-hackers-create-
groundbreaking-new-tools
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Fig. 7 Response of the VQGAN network to the phrase ”the space of possible worlds”, iteration 0
(top left) then iteration 100 (top right), 250 (bottom left) and 500 (bottom right)

on two networks, CLIP and VQGAN (Razavi, Van den Oord, and Vinyals 2019;
Esser, Rombach, and Ommer 2021). VQGAN can generate images from latent space
similarly to StyleGAN. CLIP can evaluate an image as to how well it matches a
text phrase. The method begins with the user selecting a textual input phrase and a
‘noise vector’ or what we know as a latent vector in VQGAN’s latent space. Then the
system iteratively generates images from VQGAN using the latent vector, evaluating
the images for how well they match the phrase with CLIP. Each iteration, the text
to image matching error is used to fine-tune the weights in VQGAN so it produces
better matches.

In more detail, the CLIP network learns a latent space of paired text and image
features. Effectively, you can pass it text and an image and it will tell you how closely
they match. It knows what the expected image features should be for a given text
input, and it can compare those expected image features to the ones from the image
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you pass it. That gives you an error between the expected image for a given phrase
and the image you passed. On the other hand, the VQGAN network has learnt a
latent space of a large number of images and it can then generate back out from that
latent space to images. VQGAN is similar to StyleGAN in that sense. In fact, it is
possible to swap out the image generator - an earlier iteration of this technique used
a relative of StyleGAN called BigGAN as the image generator.

To use the two networks together, we start with a text phrase. Then we select
a position in VQGAN’s latent space. We reverse from VQGAN latent space to an
image. Then we pass that image and the text phrase to CLIP. CLIP computes the
features of the text and the image. Then it computes the distance between the text
and image features. This provides an error value, which we use to fine-tune the
weights on VQGAN using normal neural network training techniques. Then we try
generating the image again, and so on.

The technique produces interesting results because the ‘search’ can start anywhere
in VQGAN’s latent space. The fine-tuning then warps the space so that the selected
position moves to improve the CLIP rating. The warping is iterated, so you can
extract images periodically as the warping is taking place. For example, you might
happen to start at the position representing dogs in latent space, but want the phrase
‘big green houses’. The result would be a dog like image iteratively warped into a
big green house. The selection of the starting position and the target phrase, and the
images that occur along the way provide for a huge range of creative possibilities.

The provision of this ‘CLIP leading a generator’ method in an accessible form
is credited to machine learning engineers/ artists Katherine Crowson and Ryan
Murdoch. They provided easily modified and executed Google colab notebooks
containing the code for the implementation. Google colab makes it possible to run
blocks of Python code on Google’s compute infrastructure using just a web browser.
Colab notebooks became something of a currency for digital artists in the early
2020s.

4 Creating with latent space systems

In this section, we will revisit each of the generative systems we discussed in the
previous section and consider some examples of work that has been created using
them.

4.1 Composers working with Music-VAE

In 2019, the band ‘Young Americans Challenging High Technology’, consisting of
musicians Claire L. Evans & Ross Goodwin used Music-VAE in a music project. At a
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Google I/O talk in 20196, Evans explained their creative process when they worked
with Music-VAE in collaboration with the researchers who created it. Evans and
Goodwin manually annotated their back catalogue of music into MIDI and extracted
melodies, basslines and drum patterns. They trained a Music-VAE model on this
corpus. According to Evans, Music-VAE “Allowed us to find melodies hidden in
between songs from our own back catalogue”. Thus they made use of Music-VAE’s
interpolation capabilities to find new melodies which carried the essence of YACHT
music. In order to move from there to a full piece of music, they applied certain
human workflow rules such as ‘only use melodies generated from the model, do not
improvise’. They used another model to generate the lyrics in a similar fashion, by
training it on a corpus of their lyrics then generating from that latent space. To create
the final track ‘Loud Light’, they took the MIDI data and lyrics from the machine
learning models and created the final music using standard production techniques.

4.2 Composers using Latent Timbre Synthesis

Tatar et al. worked with nine composers to create a compilation album using the LTS
system 7 (Tatar, Bisig, and Pasquier 2021). They report on the results of interviews
with the participating composers wherein they queried many areas of the com-
posers’ experiences. Considering comments made by the composers with particular
relevance to latent spaces, one “found the wide range of sound output possibili-
ties of LTS rather exhausting”. Other composers discussed different phases in their
workflows. Tatar et al. characterised this as wider, exploration search followed by
narrower, exploitation search. These concepts relate to the divergent and convergent
strategies described by Tubb and Dixon (Tubb and Dixon 2014). The compositions
and interview transcripts are publicly available8.

4.3 Artwork using StyleGAN

Terence Broad is a practitioner in the creative visual domain using machine learning
techniques. In the article ‘Amplifying the uncanny’, Broad et al. explore Mori’s
uncanny valley using StyleGAN (Mori 1970; Broad, Leymarie, and Grierson 2020).
The researchers acknowledge that a criticism of generative image systems is that
“the endless generation of samples from a given model, while initially mesmerising
and transfixing, can quickly become banal, monotonous repetitions for the sake of
overwhelming the viewer”. Broad exploits this overwhelming feeling by attempting
to create large palettes of uncanny faces. Broad also exploits the nature of the GAN
training method, manipulating how the discriminator decides on the credibility of

6 https://www.youtube.com/watch?v=pM9u9xcM_cs
7 https://medienarchiv.zhdk.ch/entries/376e81a2-a6b9-4b74-91a3-9144c192f8e1
8 https://medienarchiv.zhdk.ch/entries/376e81a2-a6b9-4b74-91a3-9144c192f8e1
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the images from the generator. Thus he ‘fools’ the discriminator into guiding the
warping of the manifold of latent space towards his own ends. That means training
towards maximally uncanny faces instead of maximally realistic ones.

4.4 Artwork using VQGAN/ CLIP

As mentioned above, artist/ engineers Katherine Crowson9 and Ryan Murdoch are
credited with creating Google colab notebooks which allowed people to experiment
with state-of-the-art text to image technology by editing some simple parameters in
a text field and executing GPU accelerated neural network models for free on the
Google compute infrastructure. Figure 6 shows a screenshot of the parameter panel
in Katherine Crowson’s VQGAN-CLIP notebook. These colab notebooks made high
resolution, pre-trained image generators available to artists with minimal technical
training.

Creating accessible technology which regular artists could use meant that in
2021, the currencies for some digital visual artists suddenly became pre-trained
image processing neural network with acronymic names, colab notebooks and non-
fungible tokens. Artists could simply edit a text field such as that shown in Figure
6 in their web browser, press a series of play buttons, and the notebook code and
Google’s compute infrastructure would do the rest of the work. Once created, artists
could use NFT technology to place the images on the blockchain and place them
onto the art market.

The work often combines multiple visual elements in dream-like, brightly
coloured images. The artists sell the images as sets containing tens or hundreds
of images. For further reading and examples of neural visual art using CLIP and
GANs from 2021, we refer the reader to an article by Luba Elliott10.

Having considered four examples where creative practitioners worked with ma-
chine learning tools and latent spaces, we will now leave this discussion with a
quote from Memo Atkin. Atkin is a digital artist, researcher and long-time user of
deep networks for image and video generation. Here is what Atkin had to say about
generative systems in his 2021 PhD thesis:

It is incredibly valuable that a person has the ability to freely explore such a massive space,
so that they may embark on an goal-less, purely inquisitive and creative exploration, to build
an understanding of the extents of such a system’s creative capacity (Akten 2021).

5 Conclusion

In this article, I have considered how it is possible to use machine learning tech-
niques to create and explore latent spaces for different creative domains. The latent

9 https://kath.io/,https://twitter.com/RiversHaveWings
10 https://www.rightclicksave.com/article/clip-art-and-the-new-aesthetics-of-ai
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spaces might be symbolic, e.g. Music-VAE or they might be sub-symbolic, as in
Latent Timbre Synthesis. The spaces can even combine symbolic and sub-symbolic
elements, as in the VQGAN + CLIP text to image system. I have presented examples
of creative practitioners working with each of the example systems, illustrating how
creatives might go about exploiting their capabilities. Some used the systems to learn
and explore latent spaces of their own previous work, others exploited the techniques
to deliberately create ’non-optimal’, uncanny output. I also explained the importance
of accessibility of the technology. Providing artists with pre-trained models, easy
to hack code and easy access to compute infrastructure lead to a fantastic explo-
sion of new visual work in the early 2020s. I look forward to the future of creative
exploration of latent spaces and expect to see fantastical images and hear unheard
sounds.
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