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Abstract

This thesis deals with the methodology of building data driven models of non-
linear systems through the framework of dynamic modeling. More specif-
ically this thesis focuses on sequential optimization of nonlinear dynamic
models called recurrent neural networks (RNNs). In particular, the thesis
considers fully connected recurrent neural networks with one hidden layer of
neurons for modeling of nonlinear dynamical systems. The general objective
is to improve sequential training of the RNN through sequential second-order
methods and to improve generalization of the RNN by regularization. The

total contributions of the proposed thesis can be summarized as follows:

1. First, a sequential Bayesian training and regularization strategy for re-
current neural networks based on an extension of the Evidence Frame-

work is developed.

2. Second, an efficient ensemble method for Sequential Monte Carlo filter-
ing is proposed. The methodology allows for efficient O( H?) sequential
training of the RNN.

3. Last, the Expectation Maximization (EM) framework is proposed for

training RNNs sequentially.
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Chapter 1

Introduction

1.1 Background and Motivation

The majority of naturally occurring systems are highly nonlinear and not fully observ-
able [98]. These systems tend to be formed through the interaction of many decentralized
parts whose nonlinear interaction gives rise to what seems to be organized behavior [84].
Systems with these properties are known as complex systems [59, 143]. Predictive mod-
els of complex systems can lead to advances in a wide spectrum of applied science and
engineering problems [1, 48, 59, 97, 98, 197, 205].

Arguably the best route to constructing a model of a system is through derivation of
the equations of motion from first principles [31], because in theory, given the initial con-
ditions, the equations can be solved to forecast future states of the system'. Unfortunately
when building models of naturally occurring systems, the forward approach is not always
feasible as knowledge from first principles of most complex phenomena are rarely avail-
able [130]. Furthermore, even if the equations of motion are known, initial conditions
may be difficult to collect [19, 98].

In most situations where the equations of motion are unknown (or where initial con-
ditions are unavailable), observations are used to infer a model that describes the process
that generated the data [19]. Usually a finite series of observations corresponding to
time-dependent events of a dynamical system are used to reconstruct the equations of
motion [20]. This approach is called the inverse approach to modeling of nonlinear dy-

namical systems [19], which is illustrated in Figure 1.1. The origins of this approach can

"This approach is known as the forward approach to modeling systems.




be traced back to an experiment which found that the geometry of a systems attractor
can be recovered from a time series [158]. It was later proven by Takens [203] that the
geometric information recovered from a time series can lead to a topologically equivalent
reconstruction of the underlying systems dynamics [79]. These results show that observa-
tions from a single variable over time can provide enough information to specify the state
of a dynamical system [98]. Once the state is recovered, to complete the model, all that
remains is the estimation of the state transition function, and this is where neural networks
fit into the picture [2, 19].

Artificial neural networks (namely the Feed-Forward Multi-layered Perceptron) are
universal function approximators [32, 55] which have the capacity to learn and generalize
from examples [10, 15, 77]. These models have been used for nonlinear modeling tasks
such as the reconstruction of attractors [5, 78, 79, 140] and prediction of future states of a
dynamical system [37, 58, 60, 106, 221]. Recurrent neural networks (RNNs) are a class
of artificial neural networks which has feedback connections that propagate information
back in time allowing for the model structure to retain an internal state. Due to its internal
state, the RNN is a powerful computational device [89, 194, 195], that is considered to
be a dynamical system [210] which is capable of learning temporally extended depen-
dencies [228]. RNNs have been shown to be universal function approximators [41, 185]
with the ability to model nonlinear dynamical systems [191]. The RNN has been found
to outperform feed-forward neural models on forecasting time series from synthetic and
real world data sets [58, 102].

When building a neural based model of a nonlinear dynamical system from data, there

are three essential issues that must be considered to achieve accurate predictions:

1. Complexity Control: Complexity control reflects the assumption that simple models
with fewer parameters are more likely to generalize better than models with many
parameters. This issue of model complexity becomes absolutely central for short
and noisy data sets [15, 151].

2. Error Modeling: Noise in a model can be traced to two sources: model mis-
specification, and measurement errors. If the model (i.e. the neural network) is
mis-specified, there will be a difference between the model and the underlying pro-
cess (i.e. the true system). This difference is known as process noise. The second
type of error originates form the fact that observations are never perfect. The error
from obtaining the observation is known as measurement noise. Accounting for

these inaccuracies is essential for accurate forecasts [15, 151].
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Direct Problem Inverse Prablem

observations

obsenvations Nantinear Dynamical Mods!

Figure 1.1: Models of dynamic systems can be built in two main ways, the Direct ap-
proach and the Inverse approach. The direct approach starts with an understanding of the
underlying system. Equations of motion are written down, and the model is verified on
the observables of the system. The Inverse approach starts with little or no understanding
of the system. Observables of the system are used to reconstruct the equations of motion,
and the model is verified on an unseen set of observables.




3. Parameter Estimation: Often times data is not available in batch form, and arrives
sequentially. Development of sequential estimation algorithms that can take into
account the model, the assumptions on the error, and adjust for the optimal com-

plexity are critical for dynamic modeling [78, 151].

These issues have been addressed in various feed-forward neural time series models [13,
78, 122, 151, 218]. but little has been done for their analysis in the case of RNNs.

1.2 Research Questions Addressed in This Thesis

Currently there is no methodology for controlling the functional form, or demanding
smoothness from sequentially trained recurrent neural models of nonlinear dynamical
systems. It is hypothesized that, sequential training of recurrent neural networks with
non-uniform Bayesian regularization can improve generalization in out-of-sample pre-
dictions of nonlinear dynamical systems.

RNNs are known to be costly to train in a sequential setting. Although there has been
research done on reducing the computational complexity of online RNN training algo-
rithms [45, 188, 233], complexity reduction has always come at a tradeoff, i.e. reduction
of the predictive ability of the RNN. This thesis attempts to develop a sequential Monte-
Carlo method which reduces the computational complexity of online training of RNNs,
and can also lead to improved generalization in out-of-sample predictions of nonlinear
dynamical systems.

During sequential estimation of the RNN weights (parameters), there have been no
previous examples of modeling the noise caused by mis-specification of the RNN (pro-
cess noise), and the noise originating from errors in the measurements (measurement
noise). It is hypothesized that, during sequential training, including information about
the characteristics of the process and measurement noise into the training process can

improve generalization in out-of-sample predictions of nonlinear dynamical systems.

1.2.1 Research Objective

The objective of this Thesis is to improve sequential training of recurrent univariate neu-
ral time series models through complexity control, reduction of the computational cost of

sequential training, and by inference of the characteristics of data and modeling errors.




1.2.2 Scope of the Study

This study is limited to the development of sequential recurrent neural time series models
which process a single dimensional series of observations which are real numbers, i.e.
this thesis is limited to the processing of real valued time series®>. More specifically, the
inputs, outputs, and parameters to the RNN represented by (-, -) are defined as:

ye = h(u, wy) (1.1)

where u; € RE is the L dimensional input vector to the RNN, w; € R™ is the m di-
mensional weight (parameter) vector, and i, € R! is the one dimensional output of the
RNN.

The architectures of the recurrent neural networks are limited to fully connected and
Elman RNNs (although the algorithms are general and can be used to train other recurrent
connectionist architectures®) with a single dimensional output mapped one step ahead into
the future.

1.3 Contributions of the Thesis

This thesis extends the literature of RNNs to cover the three areas identified in Section 1.1,
and in doing so, the research questions presented in Section 1.2 have been addressed. This

has led to the three main contributions of this thesis:

1. Sequential second-order Bayesian regularized RNN training.

Regularization is known to play an important role in achieving well generalizing
recurrent neural models. A recursive algorithm is proposed for sequential RNN
training which utilizes Bayesian inference to estimate individualized non-uniform
regularization hyperparameters for each weight, and a noise hyperparameter to
model uncertainty in the data. These hyperparameters are incorporated into re-
cursive weight and Hessian updates, resulting in a sequential Bayesian version of
the Levenberg-Marquardt learning algorithm.

“It has not been definitive that symbolic encoding of time series [186] leads to improvement in forecast-
ing, in fact it has been shown otherwise [211].
3or even other nonlinear models




2. Computationally efficient O( #?) online RNN learning.

Online learning for RNNs is known to be a computationally expensive task. Effort
has been focused on devising strategies to reduce the computational burden of on-
line learning for RNNs. However, reduction in computational complexity has come
with a tradeoff, degradation in the modeling potential of the network. A Monte
Carlo method for online RNN training is proposed that not only reduces the com-
putational complexity of online training, but also provides well generalizing models
that outperform (in terms of out-of-sample error measured in terms of rMSE) exist-

ing sequential learning algorithms.

3. Sequential Maximum Likelihood RNN hyperparameter estimation.

Knowledge of the characteristics of the noise contaminating the data and intrinsic to
the model can lead to improved RNN parameter estimates. A maximum likelihood
framework for RNN training is proposed that allows for computation of these noise
characteristics, and provides a mechanism for incorporating this knowledge (of the

noise characteristics) back into estimates of the RNN parameters.

1.4 Criteria for Success

In this study as well as in other major studies on time series prediction [217, 218, 220], the
validity of the model will be evaluated by the performance of predictions into the future.
In this thesis, model performance will be evaluated by the errors the model commits
defined by some distance metric between the predicted value and the observed value. The
error measures utilized in this thesis have been chosen so that the results are comparable
to other studies within the literature.

The experimental tests have been structured to test for any added value of the proposed
algorithms against a control group, which consists of the RNN trained without the added
improvements (i.e. trained with standard training algorithms), and neural models trained
without the recurrent connections, i.e. feed-forward networks*. The control group in this

study is:

e feed-forward multi layer perceptron trained with the Extended Kalman Filter;

“Evaluation of the proposed models against a control group follows standard methodology for experi-
mentalist research in computer science in the sense that the degree of improvement over existing algorithms
is demonstrated [190].




e recurrent neural network trained with the RTRL algorithm?;

e recurrent neural network trained with the Extended Kalman Filter.

Relatively small error values committed by the proposed models, compared to the control
group indicate an improvement. The degree of success of this research will be determined
by the amount of improvement in prediction accuracy on out-of-sample data over the

control group.

1.5 Sources of Data

The main data sets used for evaluation of the performance of the proposed RNNs will
be the laser data set from the time series competition data sets provided by Weigend and
Gershenfeld [219], along with a variety of chaotic dynamical systems such as the Henon
map [81] and the Lorenz differential equations [117]. These data sets are regarded as
benchmark data sets in the nonlinear time series literature and will provide a means of
comparison to other studies.

Also, more complicated “real world” data sets are used to evaluate the proposed mod-
els. Real world data has been chosen as it serves two main purposes; 1) it serves as means
to validate the proposed models on a complex task, and 2) it relates the work reported in
this thesis to the wider field of modeling real world complex systems. The real world data
sets (i.e. the lake volume time series and electricity spot price time series) considered in
this thesis are related to the following real world problems:

1. Fluctuations in Large Scale Spatiotemproal Climate Dynamics: Modeling climatic
dynamics has become a topic of increasing importance. However, modeling climate
dynamics is known to be a difficult problem due to the nonlinearities and chaotic
properties of climatological processes. This thesis evaluates RNNs on one specific
chaotic climatological process, the change in the volume of the Salt Lake in Utah,
USA [1]. The volume of the Salt Lake serves as a proxy of climate change over a

wide area (of mountainous regions surrounding the lake) through time [3].

2. Nonlinearities in Deregulated Power Exchanges: Accurate forecast models of elec-
tricity spot price dynamics can assist market participants in making informed de-

cisions on the production and supply of power [225]. This can lead to efficient

3This study is focused on sequential training algorithms, so global search strategies such as evolutionary
algorithms, etc. are not considered




1.6

operation of power markets. However, the spot price of electricity is known to be
influenced by climatic dynamics [225], which result in highly nonlinear behavior
that is difficult to model [13]. Three different power exchanges are used throughout
the thesis as each power exchange has its own characteristics; the Nordic Power

Exchange, the Spanish Power Exchange and the Ontario Power Exchange.

Structure of the Study

Chapter 2 discusses architectural structures proposed in the literature used for ap-
proximation of the state transition function. Both linear and nonlinear models are
discussed and their strengths and weaknesses are evaluated. Details of neural net-

works are discussed including their architecture and approximation ability.

Chapter 3 discusses learning algorithms for training the architectures discussed
in Chapter 2. Derivative computation for RNNs are reviewed, and optimization

schemes based on first-order and second-order information are discussed.

Although RNNSs have the ability to estimate a dynamical system, in most cases the
problem is ill-posed. Chapter 4 discusses recurrent neural networks in the frame-
work of inverse problems. Ill-posed problems are focused on and the solutions
around ill-posed problems via regularization are emphasized. A sequential solution
to the ill-posed estimation problem, the recursive Bayesian Levenberg-Marquardt
training algorithm is presented. Finally the performance of the proposed recur-
sive Bayesian Levenberg-Marquardt RNN training algorithm is evaluated on vari-

ous data sets.

Chapter 5 addresses recursive Bayesian state estimation and provides a framework
to estimate the weights of a recurrent neural network. This framework implements
regularization as it is a suboptimal method (unlikely to overfit) and minimizes a
regularized cost function. A novel method to reduce computational complexity
of RNN training and increase prediction accuracy of the RNN over well known
Kalman based training methods is discussed. The model is validated on various
time series forecasting experiments.

Chapter 6 provides a Maximum Likelihood framework for estimation of model hy-

perparameters which account for the uncertainty in the model and the belief in the




data. This is achieved through an Expectation Maximization algorithm which uses
nonlinear sequential Bayesian filtering and smoothing in the expectation step, and
solves for model hyperparameters in the maximization step. The proposed model

is compared to previously proposed models on various time series data sets.

Chapter 7 reviews the work presented in this document. It begins with a summary of
the main points of the thesis. Then the contributions are restated, and the limitations
to the research are discussed. Future directions for further research are proposed,

and finally concluding remarks are provided.




Chapter 2

Architectural Structures for Time

Series Modeling

There are two main approaches to building a model of a dynamical system; the direct
method and the indirect method. The direct approach to modeling assumes a deep un-
derstanding from first principles of the system so that equations of motion can be written
down. When less is known about the system, the inverse approach is usually taken. The
inverse approach assumes the existence of a “teacher function” [161] which has given
rise to the observations. This Chapter provides a review of various time series model
structures that can represent various “teacher functions.” The final section of the chapter
provides a description of the RNN architectures featured in this Thesis.

2.1 Dynamical Systems and Time Series

The effort to understand complex systems has led to an awareness that understanding the
constituent parts of systems in nature does not necessarily lead to an understanding of the
global dynamics of the system [84]. This has encouraged a shift from the reductionist ap-
proach of understanding through compartmentalization and partitioning to a more holistic
perspective (macro view) of systems. Modeling plays an important role in the study of
such complex systems. In one of his plenary talks, Professor John Holland had classified
modeling into three main categories: Exploratory, Existence Proofs, and Data Driven.

Exploratory modeling seeks to gain understanding of complex systems through simula-
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tion in hopes of understanding relevant stylized facts and extracting the basic principles
of what has led to the observed complexity. Building models of complex systems can also
be used to provide a proof of existence of a certain concept. For example Von Neumanns’
self replicating automata provided a proof of concept of reproduction in non-biological
machines (which subsequently changed how life is viewed). The last type of modeling
is known as data driven modeling, and is the focus of this theses. Data driven modeling
aims to uncover the general dynamical rules that gave rise to the observed phenomena.

Dynamic modeling is a data driven method for modeling the temporal dynamics of
systems. The general aim of dynamic modeling is to infer the mapping F : R — RY of
the unknown dynamical system of dimensionality d. Once the governing dynamics of the
system are recovered, they can be used for understanding of the system, forecasting future
states, finding fixed points, etc. In the following chapters, this thesis reviews previous
work and standard algorithms for “recovering” governing dynamics from data, as well as
proposes several new methods and refinements of established techniques.

The concept of dynamical systems can trace its roots far back in the ancient literature,
however concrete mathematical descriptions are generally found in Newtonian mechan-
ics. The evolution rule of the dynamical system is usually described by a differential
equation or difference equation which determines the state for all future times of the sys-
tem given an initial condition.

The dynamical system itself is usually a collection of decentralized parts which di-
rectly (and/or indirectly) influence the system state through time. The change in the
collection of physical mechanisms over time can be described by a system of ordinary

differential equations which are referred to as the system siate equations

d

dt

(11

(t) = F(E(t)) 2.1

where E(¢) is the system state (i.e. system state vector) of dimension d at time ¢ and
F is a smooth vector field that is diffeomorphic, i.e. C” (continuously differentiable 7
times). The function ¢ is a solution to the system of differential equations in Equation 2.1,
and the inverse function ¢! is assumed to exist. Given that the closed form solution
to Equation 2.1 exists, a trajectory in state space is defined as ¢(®Y(Z(0)). Here the
governing rules of the system are assumed to be describable by a set of deterministic
mathematical equations. It is assumed that the governing dynamics of all systems under

consideration in this thesis are deterministic in nature. Some systems operate without
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Original Manifold

Time Domain

Figure 2.1: A diagram of the reconstruction framework proposed by Packard et al. [158]
and proven by Takens’ [203].

inputs, i.e. where the observable is generated though the system dynamics. These types
of systems will be referred to as output systems. All unknown systems in this thesis are
considered to be output systems. The current work is focused on modeling output systems
which generate a scalar output signal. Usually the entire system state is not observable and
in the worst case only a one dimensional scalar measurement of the system state may be
available. It is assumed that the observations are related to the state via the measurement
function:

d(t) = H(E(1)) (2.2)

which is a function H : M — R! that maps the manifold A to the observed sequence of
numbers {d(¢) }, where Z(¢) is the state.

As many systems are continuous in nature the output signal ¢(t) will usually be analog
(1.e., continuous). Discretization of the system output via sampling is usually necessary

to obtain the time series. Discretization of the equations of motion leads to the approxi-

12




mation ; =(t 4 1) — (1)
a = k) — =
—=(t
dt (t) K

Il

(2.3)

where # is the uniform sampling period [1]. With this approximation, the state at time ¢x
can be written as E(tx) = =, which implies that the time evolution of the state can be
written as a discrete sequence =g, =, . .., =,. The equations of motion are now written

as a difference equation [1]

m

i1 = i+ cF(E) (2.4)

which provides discrete time governing dynamics of the system state. To obtain the mea-

surements, if follows that the measurement operator is discritized as [1]:
dy = H(Z) (2.5)
which results in the observed time series of sampled data
oo, di_1,dy,dipy, disa, (2.6)

When building a model of a system from observed data, it is usually the case that prior
knowledge about the underlying physics of the system is limited or nonexistent a priori.
If this is the case, then the model must be built from the data alone. This type of modeling
is known as black-box modeling [114]. The first time series model built in this manor can
be traced to back to Yule in 1927 [231]. Yule built a model of the dynamics of sun spot
activity from a lagged vector of past measurements u,. Yule treated the system generating
the sun spots as an output system in which a delayed vector of system outputs are defined
as

w = [di_y,dia,...,dir)" 2.7

where L is the dimensionality of the lagged vector u;. This lagged vector is often also
referred to as a tapped delay line in the neural networks literature and a delay vector in
the dynamics community.

As Yule was interested in building a predictive model of the sun spot number, he pro-

posed a model of the future number of sun spots y, as a function of previous measurements

v = h(w,u) = h(w,[d_1,d; o, . .. cdi—r]") (2.8)
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where h is represents the hypothesis of the underlying system dynamics, and w is the
parameters of the model. It was shown that this approach is quite effective and can lead
to accurate predictions [220]. However, it was not until the 1980’s that the approach
was fully justified from a physical perspective [158, 203]. The remainder of this chap-
ter reviews popular time series models. In the next section important linear models are

discussed.

2.2 Linear Filter Models

The most simple relationship between previous observations and future values is one of
linearity. The finite impulse response (FIR) model [114] is the most basic autoregressive
linear time series model. The output d; is a linear combination of weighted previous

observations,
13

dy= Ui+ % +6 (2.9)

k=1
where w = (p,<1, - - ., Sp) are the weights/parameters of the model which are multiplied
to their L corresponding previous lagged observations, and ¢ is the bias term. It is as-
sumed that the error term ¢, is Gaussian distributed ¢, ~ N (0, ) which represents the
uncorrelated zero-mean noise in the measurements. The output of the model y is linearly
dependent on the P previous inputs where is P is called the filter order. The optimal

forecast for the FIR model in the sense of the mean squared error measure is given by

J'J
Y= Sktlik + 0 (2.10)
k=1
which is a function of the previous u¢ = [u; 1,11, ...,u—p] lagged exogenous inputs

and the model weights.

The finite impulse response model is a memoryless model (apart from the lagged
inputs uf) that regresses the exogenous inputs uj onto the target d;. Autoregressive mod-
eling takes a different approach of regressing future target values onto past target values
w, = [dy_1,d;_o,...,d,_g] [73], described by the equation below:

L
dy = dpdi+ o+ @.11)

k=1
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where w = (¢, . .., ¢p) are the model parameters. The model error ¢, represents Gaus-
sian noise caused by the discrepancy between the underlying system dynamic and the
linear autoregression. The forecast d; for the autoregressive model as discussed in [114]
is given by i
ye=y_ dudi_i + bo (2.12)
k=1
The autoregressive model can be traced back to some of the first work in time series
analysis proposed by Yule in 1927 [231].
Forecasts can usually be improved by combining both of these structures to form the

linear autoregressive model with exogenous inputs (ARX).
P L
dy = Z Gut—j + Z Ordi—i + o + & (2.13)
j=0 k=0

in which the the optimal forecast is given by

P i
Y= i+ Y brdii + o (2.14)

j=1 k=0
where the weights are a combined parameter vector w = (¢1,...,<p, @o,...,¢s). This

type of model structure has been shown in [116], to be capable of describing any linear
system with exogenous inputs, and thus the model is usually considered to be a “com-
plete” model for linear systems [114]. However, the model is not without drawbacks, one
of which is that the number of parameters L+ P may need to be chosen larger than the dy-
namics of the underlying system. Numerous extensions of this model structure have been
proposed. The most well known extensions of these models is the linear autoregressive

moving average model with exogenous inputs (ARMAX).

P L q
dy= Gyt D Gudei+ ) gimy + € (2.15)
j=1 k=1 =1
where the parameter vector is w = (<1,...,$p, ®0,...,%L,01,-..,0¢). The following
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recursive algorithm approximately computes the optimal forecast for the ARMAX model,

P L q
Y= Stoj+ Y b+ Y Ogftq (2.16)
g=1 k=1

Fees}

where
€t = di—1 — Yi—t, l = Ly ses 44 (2.17)

The ARMAX model has been popular in the areas of time series modeling and signal
processing. Its popularity can be attributed to the relative simplicity of the parameter
estimation algorithms and the straightforward statistical analysis of the model.

Although linear models have been popular in the literature due to their well understood
properties, and straightforward implementation, the linear model is not always suitable
for describing the dynamics of many systems. Most systems that occur in nature contain
inherently nonlinearity; application of linear models are not likely to capture the essential
dynamics of nonlinear systems [220] and they may be entirely inappropriate for even
slightly nonlinear tasks [1, 98].

2.3 Artificial Neural Models

Neural networks are adaptive nonlinear models that may be trained to perform sequence
processing tasks from examples. Feed forward neural networks such as multilayer per-
ceptrons, various recurrent neural networks, and some radial basis function networks,
possess universal function approximation ability [32, 55, 86, 160, 168], and are consid-
ered to be part of a general class of universal function approximators. In practice neural
networks are relatively robust to outliers and are capable of fitting highly nonlinear data
quite well. When constructing models of nonlinear dynamic systems, neural networks
are often chosen because in recent years experimental results have shown that they out-
perform other nonlinear models in time series forecasting of nonlinear dynamical sys-
tems [58, 106, 220].

Recurrent neural networks have a very important advantage over feed forward net-
works and other models in that they firstly, possess the same adaptability as feed forward
networks [200], and secondly, they are able to approximate any smooth dynamical system

arbitrarily well [41, 185]. This is a significant improvement over just function approxi-
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mation in that the network has the potential to become an implicit model of the dynamic
system under consideration [30].

Neural networks are known to be powerful, flexible, and robust nonlinear models
amenable to be trained from examples, and able to show good generalization performance
and predictive power [15, 78]. This chapter provides a background of neural networks
and then goes on to review important neural time series model structures including feed-

forward and recurrent neural architectures.

2.3.1 Background

Artificial Neural Networks are biologically inspired models of computation which origi-
nated with the work of McCulloch and Pits [129]. Neural physiology was the original mo-
tivation behind artificial neural modeling, however the properties of neural models have
become highly abstracted from biological reality. Although the field of neural computa-
tion has a long interdisciplinary history, there are two general streams of neural network
research, one is to understand the physical and/or phenomenological properties of the
brain and/or mind, and the other is for machine learning which is the focus of this thesis.

The term connectionism is widely used in the neural network literature. In this the-
sis connectionism shall be used to define the broadest area of connectionist models in
the sense of Farmer [49], who developed a lattice theoretic framework relating various
connectionist learning systems such as neural networks, immune systems, autocatalitic
networks, and classifier systems. Also, in this thesis, the terms “neural networks” or
“artificial neural networks” will refer to models based upon the abstracted functional
components and operational principles of biological neural networks without reference
to cognitive models.

Early research in artificial neural network models began in the 1940°s with McCul-
loch and Pitts’s mathematical representation of a biological neuron as a simple binary
switch [129]. Building on McCulloch and Pitts work, Donald Hebb in 1949, [80] sug-
gested that neural pathways are strengthened each time they are used, which led to the
first learning algorithm for neural networks. The first computational simulation of a
neural network was done at IBM by Nathanial Rochester [10]. Frank Rosenblatt be-
gan working on the underlying processing of the fly’s visual system in 1950’s. This work
eventually led to the Perceptron as a model for visual pattern recognition [179]. At this

point neural network research began to become very popular leading to models such as
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the ADALINE (adaptive linear neuron) and MADALINE (multiple adaptive linear ele-
ments) by Widrow and Hoff [226]. The MADALINE was the first neural network to be
applied to a real world problem and was used in echo cancelation. However, Minsky and
Papert pointed out some of the main limitations of neural network research at that time,
including the work of Rosenblatt’s simple artificial neural network models [132]. With
many yet unsolved issues such as the credit assignment problem, interest and funding in
neurocomputing was greatly reduced. A new wave of interest in neural networks began
in the mid 1980’s mainly as a result of a the popularization of Hopfields work to solve
optimization problems using feedback networks [85] and the rediscovery of the Back-
Propagation algorithm, used to train multi-layer feedforward networks, by Rumelhart,
Hinton and Williams [181, 182] (originally developed by Werbos [223]). Also in the late
1980’s computational power became cheap and ubiquitous allowing many researchers to

run simulations of artificial neural networks.

2.3.2 Basic Principles of Neural Networks

Following the principles Rumelhart and McCelland in their overview of neural informa-
tion processing theory, connectionist theory is presented by stating the functional compo-
nents and operating principles of a connectionist system. Here the outline roughly follows
that of Rumelhart and McClelland [183] in which a connectionist model is defined by

combining specific functional components and operating principles.

e A set of active processing units denoted by g(-) or f(-) which define how the activ-
ities of each unit are updated;

A state of activation denoted by s;

An output function for each unit denoted by o(+);

A pattern of connectivity or topology of the network;

A propagation rule for propagating the activities of the units through the network
which we denote by A(-);

A learning rule to adapt network connectivity based on interaction with the external

environment;
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e An external environment that supplies information u to the network, and a place for

the system’s response ¥ to take place;

Here the function g(-) refers to the dynamic that governs the hidden layer neurons in the
network (this thesis exclusively considers single hidden layer architectures, although mul-
tiple hidden layers can be added without complication). The output layer is governed by
the function f(-). The activation function &(-) is usually nonlinear, real-valued, mono-
tonically increasing, differentiable, and bounded from above and below. The common
choices for the activation function are of the logistical sigmoid family.

The principles presented above, can give rise to a large number of connectionist mod-
els including those for temporal pattern recognition. As this thesis focuses on a specific
instance of neural networks, namely the recurrent neural network, the basic architecture
of the multilayer perceptron and its extension, the recurrent multilayer perceptron, are

discussed in the next section.

2.4 Neural Filter Architectures

Temporal pattern processing involves the tracking of variations in a signal that may or
may not be stable over time. Due to time dependencies, past and present information may
be useful in determining an appropriate future response of the system. Memory plays a
key role in temporal sequence processing and thus architectural considerations specifying
network topology and the activation dynamics of the processing elements is essential to
dealing with temporal patterns. ANNSs are classified into two groups based on the di-
rectional flow of information within the network. The two groups are feedforward and
recurrent models. In a feedforward network, a processing element can send information
only to units which it does not receive information from directly or indirectly [179] re-
sulting in a static mapping from its input to its output space. On the other hand, recurrent
networks [44] fold the output of a unit back in time creating a circular flow of information
which can be modeled as a nonlinear dynamical system [21, 209]. Recurrent networks are
particularly well suited for temporal tasks due to their intrinsic memory resulting from the
configuration of the network whereas feed forward networks are not specifically designed
for temporal processing because of their lack of internal memory. Sliding windows or
time delays u; must be added to allow for the tracking of time dependencies. RNNs do

not need the sliding window which reduces the number of inputs and parameters into the
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network speeding up training and reducing the number of free parameters. Without the

use of a window, the size and lag of the window do not need to be chosen.

2.4.1 Feed-forward networks

The Feed-forward Multi-layered Precetpron (MLP) shown in Figure 2.2 is the most wide-
spread neural network model in both research and industry [131]. Feed-forward neural
networks are universal function approximators [15, 32, 55] which make them powerful
structures for nonlinear modeling. The theorem of universal function approximation for
the MLP justifies the use of the MLP in time series modeling tasks. The main points
behind the MLP universal approximation theorem are that a single hidden layer of neu-
rons with sigmoidal activations and a linear output neuron has the ability to approximate
any continuous function to arbitrary accuracy, assuming that enough hidden neurons are
available.

In feedforward networks information flows in one direction from the input layer to
the output layer. In each layer, there is a row of neurons, and between the layers is
a connection represented by an adaptable weight w(/), Each neuron combines all of
the input signals coming into the unit along with a bias value into a weighted sum and
computes some function of the weighted sum. The neuron activation is a function of the
weighted sum passed through an activation function. The activation is then broadcast to
other units in higher layers, or as the output of the network. The neurons in Feed-forward
networks are organized into layers, namely the input, hidden and output. Between layers
the processing elements are usually fully connected to the units in the next layer. The jth

hidden neuron ¢%)(u,, w') can be represented mathematically as follows:

L
§4) =3 " wlihd, 4 wlit) (2.18)
k=1
where w!"*) denotes the bias of the jth neuron in the hidden layer, andu, = (d;_1,...,d;_r)

denotes the inputs at time ¢. The jth hidden unit output activation s} is computed by

s¥) = W (u, wh) = o(59)) (2.19)
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Figure 2.2: Feed Forward Artificial Neural Network: circles represent neurons, and the
squares represent the input and the bias

The output of the network y; computed as
H
Y = Z w'oD gli) 4 4ylob) (2.20)
j=1

For auto-regressive problems a single output unit produces the network output ;.

One of the main limitations of the feed-forward architecture for time series processing
is that the information flow is one directional, from the input to the output (i.e. the network
is static). To process temporal data, the feed-forward architecture must be augmented in
order to make the “memory” structure of the model more suitable for temporal processing.

The literature points to three ways in which this can be achieved

e explicit unfolding of the time domain
e short term memory

e recurrent connections
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The simplest way to extend a static neural model is by feeding time directly into the
network along with the inputs [100]. A more conventional method of accommodating
time into feed forward architecture is through a delay space embedding, also known
as a sliding window or tapped delay line. The sliding window widens the input space
and orders information from the present to a pre-specified distance L back in time u; =
[di—1,di—a,...,di_r]. Ateach time step the sliding window discretely shifts over the data
series, including the data point of the next time step and removing the last data point from
the window [106].

However, feed-forward networks configured in time-delay form have two drawbacks:
e they impose strong limits on the duration of the temporal events;
o they face difficulties in capturing long-term time-varying relationships in the data.

These limitations have been addressed through the recurrent neural network architecture.

2.4.2 Recurrent neural networks

Since feed-forward networks have no implicit memory structure, a delay window is usu-
ally added to allow temporal patterns to be processed. This augmentation of the network
then makes it necessary to determine the parameters for the lag space before modeling
begins. This process is a pre-modeling process as the number of previous observations
along with the delay time between the observations need to be estimated. It would be so
much more of an advantage if the process of searching for the optimal embedding could
somehow be avoided or incorporated into the process of training the network [199].

Recurrent Neural Networks are biased towards learning patterns which occur in tem-
poral order and thus directly address the temporal relationship of their inputs by maintain-
ing an internal state. Recurrent connections in the network allow feedback of information
in time. In principle, the memory of a recurrent network is unlimited, but in practice van-
ishing gradients, and finite precision hardware can severely limit the amount of memory
the RNN holds [14]. However, the depth of the memory of RNNs is generally greater
than a properly estimated external delay vector, so it is common practice to include only
a single exogenous input to the RNN [199].

While the set of topologies of feedforward networks are fairly limited, an RNN can

take on any arbitrary topology as any node in the network may be linked with any other
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Figure 2.3: Locally Connected Recurrent Artificial Neural Network: circles represent
neurons, the two squares represent the input and the bias, and the diamonds represent the
context nodes

node (including itself). A number of different discrete-time recurrent neural network ar-
chitectures have appeared in the literature [147, 172, 214, 230]. The feedback connections
considered in this work originate from the output of some neuron, and feed back to the
input of the same or some other neuron. The feedback is always passed through the non-

linear activation function, which guarantees that the output of some neuron stays bounded.

One of the most elementary recurrent architectures has feedback connections which
only feed back locally to the same neuron that originated the signal. This type of feed-
back connection is known as local feedback or local recurrence. In the local recurrent
network (Figure 2.3) the hidden layer of a multi-layered preceptron is augmented with
local feed back connections [54]. These local feedback connections change the feed-

forward MLP to a dynamic system. With the feedback connections the network out-
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put is a function of the exogenous inputs u;, along with the values of the context layer
¢ = [eM e, . e e = s,_; which are the previous values of the hidden
layer activations. The context vector of the RNN is the structure by which temporal mem-
ory is maintained. The local feedback structure limits the connectivity of each neuron to
it self, and no “cross talk” between hidden units takes place. The advantage of a locally
connected network generally lies in the simplicity of implementation. Simple Backprop-
agation have been used to compute the gradients of this type of network [50]. The use
of locally recurrent networks, in terms of modeling potential, is limited as there is less
connectivity in the hidden layer. The lack of connections between neurons in the hid-
den layer limits what the network can compute, i.e., the local recurrent network can not
learn to mimic a shift register. This has major implications for time series modeling, as
the model will need a lag vector for the inputs. A more complex model is obtained by
adding global feedback connections to the locally recurrent network. Global feedback
connections are feedback links connecting every hidden unit to every other hidden unit.
With a global feedback architecture, the hidden layer of the network is fully connected to
the outputs of every hidden unit at the last time step. This type of network is known as
globally recurrent networks.

As globally recurrent networks have much more connectivity in the hidden layer, their
modeling potential is much greater than the locally recurrent networks. Much work has
been invested into the computational capabilities of the globally recurrent networlk archi-
tecture. It was found that globally recurrent networks with a single hidden layer have
the computational capability to represent an arbitrary nonlinear dynamical system. The
proof of this has first appeared in [191], which showed that globally recurrent networks
can model a smooth dynamical system arbitrarily well over any fixed length of finite time.
The proof was based on an extension of work from the feed-forward literature [32, 55, 86]
which showed that feed-forward networks can have universal function approximation ca-
pability. By removing all feedback connections in the hidden layer and adding a feedback
connection flowing from the output unit back to the hidden units, an output recurrent net-
work is created. These output recurrent networks are also called Jordan networks [94]
which are illustrated in Figure 2.4. It was proven in [71] that an output recurrent network
is capable of emulating a global recurrent network. An output recurrent network with
H + 1 neurons in the hidden layer and an output with a history of 2H delayed output
values, can be computationally equivalent to a globally recurrent network with H hidden
units. However, these capabilities of emulating globally recurrent networks do not come

for free. The output feedback network is subject to what is termed a linear slowdown [71].
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Figure 2.4: Jorden Connected Recurrent Artificial Neural Network: circles represent neu-
rons, the two squares represent the input and bias, and the diamonds represent the context
nodes

For emulation of one time step of the globally recurrent network with hidden layer of size
H, the output feedback network must be iterated H + 1 times holding the inputs constant.
As output recurrent networks are able to emulate a globally recurrent network, it follows
that output recurrent networks share the same modeling capabilities as global recurrent
networks. This implies that the output recurrent network can model smooth dynamical
systems arbitrarily well.

The previously discussed recurrent network architectures all had a single layer of hid-
den recurrent connections. However it is not necessary to restrict network architectures
to one recurrent hidden layer. Adding hidden layers may allow the RNN to model more
complex mappings compared to a model with the same amount of weights with only a
single hidden layer. These multiple hidden layer RNNs (Figure 2.5) have been reported

to work well on complex tasks such as reconstruction of nonlinear dynamics from noisy
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Figure 2.5: Multiple Layer Fully Connected Recurrent Artificial Neural Network: circles
represent neurons, square represents the input or the bias, and the diamonds represent the
context nodes.

data [78] and control of automotive systems [172]. By adding additional recurrent hid-
den layers, the possibilities of design choices increases. Various connectivity patterns,
i.e., locally recurrent, globally recurrent, are then possible within each layer as well as

variations on connectivity between layers.

2.5 The RNN Structures Featured in this Thesis

This section describes the most popular RNN architectures; the Elman [44], and the
Williams and Zipser [228] recurrent neural architectures. The common thread between
these networks is that both models have globally recurrent connections where each hid-
den unit input is fully connected to each unit in the context layer. These two RNN model
structures are focused on as they are well known in the literature [50, 77, 78] and have
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been shown to have universal function approximation capabilities [191].

2.5.1 Elman Recurrent Neural Network

The Elman network was originally used for speech processing by Robinson and Fall-
side [177]. The structure of this network is identical to the feed forward MLP, but with
one exception, a context layer. The context layer takes the state information from the
hidden activations and feeds it back in to the hidden layer one time step later. The context
layer is treated in the same way as the input layer is treated in the feed forward multi layer
perceptron; that is, the context layer has weights connecting it to the hidden layer.

Elman networks have been particularly popular for time series prediction [6, 26, 118,
119, 123, 159] due to their approximation capabilities [41]. Theoretically, the RNN has
the capacity to represent an arbitrary dynamic system with only a single exogenous in-
put, thus allowing for processing of temporal patterns without an externally provided lag
space, i.e., time is implicit in the model. Empirical studies have found that the Elman
network provides increased predictive capabilities over feed-forward neural models on
synthetic and real world temporal data modeling tasks [58, 102].

The operation of the &-th network node at time ¢ from a dynamic perspective is de-

scribed by a system of difference equations given by:
s = ¢®(u,,5,_;) (2.21)

The neuron activation g(-,-) is a nonlinear function of the input u, and s;_,, the vector
of all neuron activations of the last time step (i.e. the context layer). The output of the

network is given by
yi = a(f(st)) (2.22)

The state vector s; contains the state of each hidden neuron

s = [sM,s@ ... s®

513 5P| (2.23)

PIEERE

and the context vector

@ d® =5, (2.24)
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Figure 2.6: Elman Recurrent Artificial Neural Network: circles represent neurons, square
represents the input and bias, and the diamonds represent the context nodes

is a vector of previous states, where H is the number of hidden neurons.
Figure 2.6 presents a schematic diagram of such a network using a bias term 4(") and a

single network input u,. For notational convenience in the next chapter, the function z(7)

is introduced to represent the bias, input, or context later in a single variable.

b, i=0
(i) =<u?, 1<i<L (2.25)

M Ly1<i<L+H

b

The input vector to the network is defined as before in Equation 2.7. Each hidden node
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computes one component sg‘.) of the state vector via the following equation:

L+H
Ak ¢ o 4
35 b= Z Zt(J')wU 4)
j=0
’ L L+H (2.26)
:b(l}w(k,{))+Zw(k.j)u§j)+ Z w(k,i)cgi—L)
j=1 i=L+1
s = g®(wy, 50-1) = o(6) (2.27)

where w0 is the bias weight, w'*7) for 1 < § < L is the input weight, and w*:¥) for
1 < i < L+ H are the weights on connections that connect the corresponding past i-th
hidden node output (i.e., the feedback state signal sﬁ?l from the previous time step {—1) to
the current state input. The activation functions o(-) considered in this work are sigmoidal
in form

o(a) = 1/(1 + exp(—a)) (2.28)

which map the input a from R into a bounded interval 2 = (0, 1) of length || = 1 where
Q2 CR.
The sum of the states multiplied by the corresponding weights are combined with the

bias and are passed through the activation function to produce the output:
H »
=8 (()(0),w(0)+ Z w‘(;')sg")) =o(f(s:)) (2.29)
j=1

where the output bias and corresponding weight is given by b®) and w® respectively.
The hidden to output node weights w,(,j ) connect the states of the network to the output
node y;. In this thesis, the output node y, € R where ¢ = 1. The total number of weights
in the model ism = H + 1+ (H + I + 1) x H. The overall network model thus becomes

a highly nonlinear function h(w,, u,) of the weights w, and inputs u;.

di = h(wy, 0;) + ¢
(2.30)

=Y+ €

where the noise ¢, is assumed to be independent zero-mean Gaussian with variance o

which is unknown: ¢ ~ N(0,07).
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2.5.2 Williams and Zipser Recurrent Neural Network

The most general recurrent network architecture is the fully connected recurrent network
as shown in Figure 2.7. We adopt the following notation to describe the fully recurrent
network: the state vector s; contains the state of each hidden neuron

5t ) (2.31)

Il
Wl

v2]
=
cn/—-
an

and the context vector
¢ =[c, @ e® D)=, (2.32)

again contains the activations at the previous time step.
The inputs to each neuron consist of the context vector, the input vector for the net-

work u;, and the bias b. The output activation of each neuron is defined as
s® = g%¥(u,,5,_,) (2.33)

where 1 < & < H. If the first neuron (i.e., the output neuron) is indexed, the output of
the network is given by
=g (w,81) (2.34)

As in the Elman network, the function z(j) is as defined in Equation 2.25, and each

neuron g*) computes its activation by first summing the weights times the corresponding

input
L+H
Lk se G
60 = 3 2wt
j=0
J L+H (2.35)
= h*0) o Zw(k,j)ugj) £ Z w(k,i)csi—};)
Jj=1 i=L+1
and then passing the sum through the activation function
s = (g (2.36)
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Figure 2.7: A schematic representation of the fully recurrent neural network architecture
proposed by Williams and Zipser [228].

where w0 is the bias weight, w*# for 1 < j < L are the input weights, and w? for
1 £ ¢ £ L 4+ H are the weights on connections that connect the corresponding past ¢-th
hidden node output (i.e., the feedback state signal s,@l from the previous time step ¢t — 1)

to the current state input. The overall network weight vector is defined as

w = [0 D wULHH) 4 (20) | (2,1)

? 1 b) b rrrt

w(?,L-i—ff)‘ . ’w{.H,L-i-[‘f)] (237)

The total number of weights for the fully connected network are m = (H + I + 1) x H,
and the output node y; € R® where ¢ = 1. The functions &(-) are logistic sigmoidal
nonlinearities defined in Equation (2.28). The entire network is referred to as highly
nonlinear function A (w;, w;) of the weights w; and input u,

df = h(whut) + €
(2.38)

=Y+ €&
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where the noise ¢, is assumed to be independent zero-mean Gaussian with variance 05:

& ~ N(0,0;).
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Chapter 3

Optimization Algorithms for Time

Series Modeling

Learning algorithms provide a means for iterative refinement of the model weights (pa-
rameters) to reach plausible well generalizing models. There are two main categories of
learning/training algorithms: supervised and unsupervised learning algorithms [50]. In
unsupervised learning the training algorithms enable the model to extract salient features
from the data set without providing a teacher function (i.e., there is no desired response
in the training set). On the other hand, supervised learning presents the model with an in-
put and a corresponding output (desired response). Given this relationship, the objective
of the learning algorithm is to adapt model parameters to minimize the error committed
between the desired response and the output response of the network.

As this thesis focuses on supervised learning for time series modeling, we dichotomize
supervised training algorithms into two main categories: fixed point and trajectory learn-
ing algorithms [169]. Fixed point learning algorithms train the recurrent neural structure
to associate a static input with a static desired response, without specifying how the net-
work arrives at the static response. In fixed point learning the training algorithm adapts
model parameters to achieve dynamic stability such that upon presentation of an input, the
network output/s eventually relax to the final desired response. Once this fixed point state
is reached the system does not change. Trajectory learning is required when more than
fixed point behavior is required, such as in time series modeling [169]. A trajectory is a
sequence of desired responses, such as a time series. Unlike fixed point learning, trajec-

tory learning adapts the network so that the network output follows the desired sequence
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over time. Trajectory learning is a more general learning algorithm in the sense that it
specifies how the network output should behave over the intermediate points as well as
the final point [169].

3.1 Supervised Learning as Optimization

Training a time series model refers to searching for a set of model parameters w such
that the model describes the data set, D “well.” For one step ahead forecasting, the
data set consists of the model inputs u; and the corresponding target values d;,, D =
{u;,d;}]_, where T is the number of input-output examples. The inputs are arranged as
w = [di—1,d;—s,...,d;—]. To find a model that describes the data set “well” it seems
reasonable to demand that the model describes the observations in some optimal sense.
How well the model describes the data can be measured by the error the model commits

e(w)=d—y a.1)
=d; — h(w,u)

where at time ¢, the target is d; and the model output is y;, which is dependent on the input
vector u; and the model parameters/weights w. For recurrent networks time is implicit in
the model so the temporal ordering of the data is important. However, for feed forward
networks, the order of the sequence of input/output patterns is not important.

The instantaneous error at particular moment ¢ is:

Ey(w) = (dt — h(w, llt))g 3.2)

At each time step, the standard method in the neural network and signal processing lit-
erature for computing the error of the model is defined by Equation 3.2 [78, 114] which
relies on the definition of the error in Equation 3.1. From this measure, the model pa-
rameters w can be chosen such that the errors e;, ¢ = 1,...,7 are minimized. The most
common criterion for measuring the total error (accuracy) on the data set is the quadratic

cost function:

Cr(w) = % > Er(w) 3.3)




The constant factor 1/2 is included to allow for simplification in future derivations. The
cost function is dependent on the data as well, but to simplify notation it is omitted. The
quadratic cost function may be interpreted as the Euclidean distance between the desired
output vector and the model outputs. It may also be interpreted in a Maximum Likelihood
framework where the likelihood of the parameters/weights and the data L(w, D) can be
maximized via minimization of the cost function Cr(w).

By minimizing the cost function, the training algorithm searches for the “right” set
of parameters through an iterative adaptation of the weights. This process is known as
“training” or “learning”. Learning algorithms can generally be considered as optimiza-
tion procedures or search strategies. There exist numerous types of learning algorithms
such as random search, Evolutionary Algorithms [65], simulated annealing [101], and
gradient based search [228]. Each of these optimization algorithms have their advantages
and disadvantages for various problems'. However, the three mentioned algorithms (ran-
dom search, evolutionary search, and simulated annealing) are generally for batch/offline
learning. For sequential training of neural networks, gradient based optimization methods
are commonly utilized as they are able to compute an instantaneous gradient of the cost
function. As this thesis focuses on sequential methods, the learning algorithms presented
herein generally rely on gradient information.

Following an explanation given in [161], training is considered “an optimization prob-

lem in which the object is to find a set of parameters W that minimizes the cost function,”
w = arg min Cp(w) (3.4)
W

and in the case of Cr(w) being quadratic, minimization of the cost function becomes a
least squares optimization problem. Taylor expansion of the error function C}(w) results
in,

. 3 Lo e 3
Cr(w) = Cr(W) + gr(W)dw + Sow Hap(W)dw (3.5)

where 6w = w — w and the first derivatives VC,(w) are written as

VCr(w) = g(w)

ow

I'The error landscape for nonlinear models is usually characterized by numerous local minima, various
training algorithms have been proposed to search this landscape.

(3.6)
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and the Hessian (second derivatives) are written as

V2Cr(w) = Hy(W)
82Cip(w)

owowT

(3.7)

where W is a local minima of C'r(w). A point in error space is a local minima if the

following conditions are satisfied [63]:
e W is a stationary point, g, (W) =0
e Hr(w) is positive definite, w " Hy(W)w > 0, Vw

For nonlinear problems, it usually is the case that there is no analytical solution to W of
Cr(w), so iterative methods are relied on. To begin the iterative search process, an initial
weight vector w(® is selected, and the algorithm then proceeds by generating a sequence
{w*)} of parameter estimates that tends to a local optimum W. The algorithm produces

an iterative estimate {w(®)} in which convergence toward W can be characterized by

lim [|w® — || =0 (3.8)
k—oo
where the symbol || - || represents some vector norm. In general, the weight update can

be expressed by the following equation
w(k) — w(.‘c—l) 13 nAw(k-—l) (3.9)

where w(*) is the kth iterate of the weight vector, the search direction is Aw(*~1), and 5
specifies the learning rate.

It is usually the case for neural networks and other nonlinear models that the quadratic
cost function contains many weight vectors w which satisfy the conditions for a local

optima. The weight vectors w satisfying the condition
Cr(w) < Cr(w), VYV w (3.10)

are considered global optima (and obtaining these points are the ultimate goal of training

RNNs). Unfortunately with gradient based search, there is no general method that guar-
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antees reaching the global optimum of the error surface. It turns out that iterative methods
are guaranteed to converge to a local optima.

3.2 Derivative Computation

Before a neural network can be used, the weights must be adjusted to minimize the overall
error between the desired and actual values for all output nodes over all input patterns.
This process is termed “learning” or “training.” The most commonly used algorithms for
temporal data processing are gradient based methods in which Backpropagation is used
to obtain derivative information. This procedure consists of two stages, a forward pass in
which a data point (for sequential training) or the entire training set (for batch training) is
passed through the network to obtain an overall measure of network performance, and a
backward pass to compute error gradients in weight space starting at the output layer and
propagating the error backward to successively obtain gradients at each previous layer.
The weights are then modified proportionally to the respective error gradients in which
the steepest descent method is commonly used.

The first training algorithm for computing RNN weight sensitivities was proposed by
Hopfield [8]. The Hopfield RNN had no self feedback connections. The network gen-
erally embodied fixed point behavior, although some extensions allowed for oscillatory
dynamics as a desired effect. Further training algorithms were developed to train contin-
uous time RNNs, including the training algorithm of Pineda [167]. Similar to Hopfield,
the network algorithm of Pineda led to dynamics that ended in fixed point behavior, i.e.,
dy/dt = 0. The algorithm was not useful for achieving oscillatory dynamics. To allow
for a more rich behavior, Doya and Yoshizawa developed a continuous time backprop-
agation training algorithm [42] for trajectory learning. However, this algorithm adapted
hidden weights by considering only its corresponding units direct influence on the error

signal.

3.2.1 Backpropagation Through Time

For trajectory learning, the backpropagation through time (BPTT) algorithm [223, 224]
was developed to take into account influences from all weights in the network on the
output signal over time. The algorithm was presented in the same book that popularized

the backpropagation algorithm for feed-forward networks [128]. The algorithm received a
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comprehensive treatment in a book chapter by Williams and Zipser [228] which discussed
practical variations of BPTT. The authors described the process of BPTT in two main
phases, the forward propagation phase, and the backward pass. In the forward phase, net-
work runs forward over the data. Four main quantities are stored, the activations of each
neuron in the network s;, the network output activation ,, the network inputs u,, and the
error ¢;. In the backward pass, the stored information is used to unfold the RNN through
time. This unfolding results in an equivalent multi-layer feed-forward network in which
each “layer” of the unfolded multi-layer feed-forward network corresponds to an activa-
tion state (time step) of the recurrent network. In the unfolded network representation, the

network dynamic equations

L+H
Ak k
57 =2 aliuy”
=0
L ) ( L+H (3.11)
] k). (G J 1)
Wugg® + 37wy + D
i=1 i=L+1

are similar to the original network equations (Equations 2.35) except in the unfolded
representation the weights are now labeled with a time index in square brackets as in
l;]’j ). The square brackets represent the unfolded copies of the weights in time. The
weights in successive layers of the unfolded representation of the RNN are thus constant,
i.e., the value for the (4, j)th weight is constant between the unfolded layers. This means
that the original weight is copied throughout the unfolding w*4) = w[(jf ) for all + =
Ls gue 50
After the network is unfolded, the standard backpropagation algorithm is then applied
to compute the sensitivities of each weight. The gradient of the cost function Cr(w)/9w
can be decomposed in time using using the copied weights as follows:
OCr(w) XT: Cr(w) Oy XT: BCH(w)

owlidy = Bw[(:]’j) Swid) aw[(:]J

(3.12)

note: the partial derivative Bwl(:]’j ) JowtEd) = 1,

Now the unfolded network is like a static feed forward network, and the gradient can
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then be expressed as follows

OCr(w) _ 9Cr(w) st a5

ol os) o8 ouly) e
To simplify notation, the standard short hand relations are introduced [228]:
el = _9Cr(w) 5 = _9Cr(w) (3.14)
stV a4
8y 08" ,
20 =d'(§;") c")w[(;]J = 23} (3.15)
6 = e - o'(8) (3.16)
Substituting in these relations into the partial derivative 9Cr(w)/ c")w ) results in
a;j( ) 592() (3.17)

[

As the weights w[(:]’j ) influence the output directly as well as indirectly (i.e. in the future
via the recurrent connections), the expression 9Cr(w)/ 8s(i) can be thought of as sensitive
to the neuronal activations at the present time ¢ as well as any future activations. So e( s
dependent on s\, 5", and 81", [228] where 5\ = s\ forall £ = 0,...,T.
The direct influence of the neuronal activations SE ) on the cost function is given by
the following expression
8C(w) ~ 9Cr(w) 05,
#ldzrcct T

Os,' 8§£i) 855”

(3.18)

The future activations 5521 can be thought of as indirectly impacting the cost function,
so the expression describing this interaction involves the sensitivities of the cost function

Cr(w) with respect to the elements of future neuronal activities sgl.

T [ T
aCT(w )| = ACr(w) dsity 3 8C(w) 85, 9, 22,105
l' ETI irect — 1 - [ % .
os!! —~ g5 as) —~ sl s, asl?
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The change in the cost function with respect to some neuron activation can now expressed

in terms of the direct and indirect components.

E(i) _ 7aCT(W)
: asﬁ”
OCH(w) 889 Zx 9CH(w) dst, 9glY)
_ (W) 05, Z (W) St-H 5i41
g5 st = asl) 68D asl)
ACH (W) T (3.20)
T\W 1 )
=+ (el B wiy
t+1 =1
ig

The above equation is simpliﬁed via substitution with previously defined quantities and

(UJ
[t+1]

Neuron outputs generated for any time past t > 7" have no impact on C'r(w), and so

€ (&) (which is the partial derivative) is zeroatt =T + 1,and at{ = T, e(t) (i) . The
1,7)

the following Bstﬂ/ast

weights from the unraveled network w[t} are replaced by the original weights w(/), This

leads to the following:

@ e,@ =T
el = (3.21)
1)
)t Z! 1 [(H-l Ll)l t<T

Finally, the weight update at time ¢ is defined as

x BC T
At 8w("‘3 E_ % (3.22)

where 7) is the learning rate. The initial conditions for the algorithm are z5(j) = 0 and the

contextlayercg)z[)forz,: I, 1

3.2.2 Real Time Recurrent Learning

The Real Time Recurrent Learning (RTRL) algorithm [228] uses an instantaneous error

measure Cj, ;,(w) rather than using the entire error measure as in BPTT [228]. The ben-
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efits of this approach is its online operation which is useful if the data set is not complete
before training begins. The RTRL algorithm computes the gradient by forward propaga-
tion of the error gradient in time, while the BPTT algorithm unfolds the network in time
and computes the gradient over the unraveled nodes.

In the RTRL algorithm, the partial derivative Cp(w) /0w is given by

OCr(w)  OCr(w) Os)”

Oy (kat) - asgi) S (kD)
i ] as“’ .
o as i) aw {(k i) *
L4 85?)
Z e(w aw Suwlkd)
=1

now 8s.” /8w can be further expressed as

asl) s asl) a5
- A D 2
Fu® ~ pgl Fuwtcd ~ ° B (3.24)
where change in the summation block s’;fi) with respect to wkd ig
5" a( i wiz(j))
Juwkd) Swkd)
L+H ) 2.
— [,w(i,j) Ouly) | (i Ot J)]
1 aw(kﬂ!} “t\J a'lU(k"!}
J:
L+H
o 0Zi( )
— 4 ad) 25t )
=1 [w 3'10“%”] + 0z (l)
i L+H (3.25)
9z(j) 0z:(7)
_ (£,4) 14 () )
; [ ’ E)w(ff:f)} ap> ’ w(k,z)] + 0 2:(0)
J=1 J=H+1
& (i} L+H (j—L)
— N ) t (i) YC .
- Z [w aw(k,z)] + Z [w 2 8w“"ﬂ”] + ;12 (1)
j=1 j=L+1
L+ff (j—L)
. 0e
- [ (i.d) - [)] + Gipm(l)
j=L+1
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By substituting back into Equation 3.24,

st o T gelimn) )
= ))[ S w(m)m} + 82 (0) (3.26)

j=L+1

where ¢, is the Kronecker delta. The initial conditions for the H dimensional system

(Equation 3.26) are
85[]

From this starting point, the partial derivatives can be propagated forward in time via
recursively computing Equation 3.26 and stepping the network forward in time via Equa-

tions 2.35 and 2.36. Then, the gradient of the cost function can be computed via
ac: : ds!"
—T(W) = Z BL(W)‘—Sf (328)

There have been two main ways in which the RTRL algorithm has been used, batch
and sequential. In the batch update formulation, the algorithm accumulates the gradient
of the error function by Equation 3.28 and then performs the weight update.

8CT(W)

(1) = ) _ p2CTW)
W W FulD

(3.29)

where 77 > 0 is a small constant known as the learning rate, and w'™) is the weight vector
at epoch (batch update) 7.

The alternative is to update the weights after each training pattern. This method has
been popular in the literature as it allows for online operation of the learning algorithm.
In this formulation, the error is computed at each time step rather than accumulated.

ds
W =W, — net(wt—l)a_“: (3.30)
t

This online updating of the weights is known as the RTRL algorithm [228].

To facilitate simpler notation in the following chapters, the partial derivatives of the
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output are then collected into a Jacobian vector

1 1 1 1 H
io= | Ssg ) 855 ) ds! ) BSE ) Bsg ) |
t = 19000 GuLL+H)? 98] ' G@L+H) ! Gy (H,L+H)

(3.31)

3.2.3 Time Complexity of Derivative Computation

Table 3.1: Computational complexity for derivative computation of RNNs. The complex-
ity is expressed in terms of the size of the hidden layer of the network [105].

Algorithm Approximate Time Complexity
RTRL O(H*)
BPIT O(H?)
BPTT-H O(H?)
BPTT-WilPeng O(H?)
BPTT-RTRL Hybrid | O(H?)

The time complexity of the algorithms discussed can be found in the first and second
rows of Table 3.2.3. The variable / represents the number of nodes in the hidden layer.
The BPTT algorithm is considerably faster than the RTRL algorithm, however BPTT is a
batch procedure and RTRL is for online training. Various methods for reducing the com-
putational burden have been proposed such as BPTT-H [228] and BPTT-WilPeng [227].
A hybrid BPTT-RTRL algorithm for online training was proposed [188] which reduced
the RTRL computational complexity by one order of magnitude for online training.

3.3 Batch vs Sequential Training

There are two main approaches to training neural based models: batch training, and se-
quential training. It will be helpful to define the data sets; in cases where data is available
before training starts we define

ptrain _ {yi, dt}g;l

Plest — {yt, G’t};r=T+1

(3.32)
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where T is the number “in sample” data and T is the number of “out of sample” data. In
cases where not all data is available before training starts

pentine — [y, d}  t=1,2,... (3.33)

the data set is not complete.
A) Batch training: Batch algorithms evaluate all data D" before updating the
weights w of the RNN. These algorithms have the following general structure

wlt) = w1 o Awlb—D(pirein ylk-1)) (3.34)

where [ is the batch index, and Aw~1)(.) is the search direction which is a function
of the entire data set and the weight estimate of the last batch update. To evaluate the
performance of the network, the weights are frozen (no training takes place), and the
network predicts over D!, BPTT is typically used to compute the derivatives for this
type of update.

B) Sequential training: Sequential algorithms have the general structure

Wy = Wi + AWt—l('Donzima Wi1) (3.33)

where ¢ is the current time instant, and the search direction is a function of the updated
weight vector at the last time step, the network input vector, and the target all at the
current time step. The main idea is that one update of the weights is performed per time
step. RTRL is typically used to compute the derivatives for this type of update.

There are two different ways in which sequential training can be performed, off-line

and on-line,

1. Sequential off-line training: the algorithm iterates (possibly multiple times) over
the data set D" and updates the weights as in Equation (3.35) i.e., at each time
step. During evaluation of model parameters over D! the weights can still be
updated sequentially as the algorithm can update the weigh vector w; as each new

measurement arrives (at each time step).

!\J

Sequential on-line training: the data set does not have to be complete before training
starts, i.e., the model is trained and evaluated over D""¢, The weight updates take
place as in Equation (3.35).
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3.4 Batch Training Algorithms

First-order gradient descent (known as gradient descent) is the most common approach
to minimization of the cost function. Gradient descent uses the error gradient of the cost
function to guide the search towards a minimum of the cost function. Gradient descent
has been used due to its simplicity, however, it is well known that the procedure is highly
ineffective for training RNNs due to long training times, susceptibility to being trapped

in local minima, resulting in poor generalizing solutions [145, 172, 213].

3.4.1 First-order Batch Procedures

The goal of optimization is to minimize the cost function C(w) through adjustment of
the weights/parameters w. For nonlinear models such as neural networks, this process
generally takes multiple iterations or epochs. The search direction Aw*~1) is generally
chosen such that Cp(w*)) < Cy(w!*=1)), This corresponds to choosing a search direction
that points “downhill” where the derivative of the cost function C-(w) at w'*) is negative,
i.e.

gr (WD) TAWED <0 (3.36)

Adjustment of the weights in the direction opposite of the gradient turns out to be the
direction that decreases the cost function Cr(w) the most rapidly. This direction is com-
monly known as the direction of steepest-descent. With this choice, the weights of the

neural network can be updated at the end of each epoch as

w{fc) - w(k—l) _ Aw(k—l)
(3.37)

= wik—1 _ .r]gT(w(k—l))

This method of iterative refinement of the neural network weights has become known as
gradient descent learning (sometimes assumed to be used with backpropagation). This
method is a first-order optimization technique as only the first-order derivatives of the
cost function are used in the optimization process. The gradient of the cost function is

computed as follows

aCT(W)

gT(W):a—w=—

e (w)— (3.38)

T
w
=1 9

T
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where Js; /0w is the output of the neural network with respect to some weight w. The
convergence of this algorithm relies on a parameter  known as the step size or learning
rate. Generally i is chosen to be a small positive constant such that each step leads to a
decrease in the cost function. This however can be problematic as a small step size may
lead to very slow convergence toward a local minimum. On the other hand, the choice of

7 too large may lead to overstepping the minima, and divergence of the algorithm.

3.4.2 Second-Order Batch Methods

A significant amount of effort has been focused towards improving upon first-order train-
ing algorithms such as gradient descent. A plethora of research in the area has evaluated
most all well known optimization methods for training neural networks [144]. It was
found that the most successful (in terms of speed and generalization capacity) optimiza-
tion algorithms tended to include second-order information of the cost function. Second-
order methods generally use more information about the error surface than first order
methods. The main difference between first-order methods and second-order methods is
that first order methods direct the search in the direction of maximum change, where as
second order methods descend in the direction of the local minimum.

To develop training algorithms based on the information contained in the second
derivatives of the cost function, a second-order Taylor series expansion of the cost func-

tion around the current weight estimate w* is written
: - ; 1 3
Cr(w) = Cp(w®) + AwTg, (wh)) + EAWTHT(WU"))AW (3.39)

where w = w(*) + Aw. The second partial derivatives of C'(w) are known as the Hessian

Hr(w) which is computed as

8°C’T i [ s, dsy BSL}

B (W) = BwTaw 5‘w6wT ow Ow

(3.40)

t=1

Second-order optimization methods generally include the above expansion to obtain the
search direction. Computation of the exact second-order terms are generally expensive to
compute. An R-propagation based procedure for computation of the Hessian is provided
in [153]. In the following sections, well known second-order RNN training algorithms

are reviewed.
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3.4.2.1 Newion’s Method

One of the most well known second-order optimization methods is Newton’s method.
The algorithm chooses the weight estimate at the next time step w) as the minimizer
of the second-order expansion of the cost function C(w). The search direction Aw(*~1)

involves computation of the of the gradient and the inverse of the Hessian matrix
AwD = _[V2CH(w)| "IV Cr(w) = —[Hp(wE )] "1g, (wh=1) (3.41)

where VCr(w) = gp(w*~U) = 9Cr(w)/Ow is the vector of first-order derivatives,
and V2Cr(w) = Hp(w*1)) = 2Cr(w)/0w? is the matrix of second-order derivatives
called the Hessian.

Assuming that a starting point close to the local minimum W is chosen, then the con-
vergence of Newtons method is quadratic [40].

(e+1) _ & I<cll wi®) _ w |, c¢>0 (3.42)

| w
However, if the RNN is initialized far from the local minimum the Hessian may not
be positive definite. In fact, the Hessian may be negative definite, which can result in
the search moving toward a local maxima. Netwon’s method is termed locally conver-
gent [114].
Another limiting factor of Netwon’s method is the enormous computational burden for
calculating the second derivative terms of the inverse Hessian. With these two negative
aspects of the algorithm (local convergence and heavy computational cost), Newton’s

method has not been popular for training RNNG.

34.2.2 The Gauss-Newton Method
A large computational burden can be avoided through an approximation of the true Hes-

sian (Equation 3.40) with

Cr(w) _ iast Os;

Hg-(w("‘*l)) e T (3.43)

where the terms involving the second derivatives of the model output are ignored. As-

suming that the RNN is capable of approximating the underlying system for the set of
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parameters w, then as the number of data points 7" approaches infinity, the approximation
to the Hessian will become exact.

Substituting this approximation (Equation 3.43) for the exact Hessian in Equation
(3.41) results in the Gauss-Newton search direction. This approach makes the implemen-
tation much more simple as only the information from the gradient computation is used.

The Hessian Hy(w*~1) can be written as a function of two components

HT(w(kfl)) s J;(w(k—l))JT(w(k—l)) + ST(W(":“])) (3.44)
where
I (W(k—l)) — % w(k 1 d “St (3.45)
“ ow’ e “ OwawT )
The batch Jacobian matrix is Jr(w) = [j;(w),...,jp(w)]T and the second-order terms

are contained in the matrix S;(w). In the Gauss Newton approach, the hessian is written
as
Hy (w1 = JE(w=D) g (w1 (3.46)

The weight update then becomes

w(n'c) — w(k—l) _ H;l(W(k_l))JT(W(k“l))eT(W(k_l))
(3.47)
- w(k—l) _ [J;(w(k_l))JT(WU‘:_I))]_IJT(WUE_I))ET(W(L:_I))

This simplification eliminates the computations that would have been needed to obtain the
St(w) matrix, which makes the method feasible for RNN training. However, a critical
assumption is that in Equation (3.46) the approximation to the Hessian is always positive
definite.

3.4.2.3 The Levenberg-Marquardt Method

The optimal learning step using second-order information is again restated [15, 77]:
AW = —[V2C (W) IV Cp(w) = [Hp(wkED)] "L (wik-1) (3.48)

Theoretically, such a learning algorithm should converge to the optimal weight vector,
but convergence is not guaranteed since the Hessian is often ill-conditioned. A problem is
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said to be ill-conditioned when small changes in the data can lead to large changes in the
model output. Conditioning can be measured by the condition number k (Hp(w*—1))) =
Amaa/ Mmins Where Apqe and A, are the largest and smallest eigenvalues of Hy(w(—1)),
A large condition number indicates ill-conditioning of the Hessian matrix. It is often the
case in second-order optimization methods that the condition number may become large.
This is especially relevant to equation (3.48), as a large condition number of the Hessian
makes the solution sensitive to the numerical precision of the computational hardware
which leads to errors in the model parameters [66].

Such difficulties of Hessian-based training can be alleviated through regularization [208];
by adding a damping (regularization) parameter to the diagonal of the Hessian a lower
bound on the smallest eigenvalues can be imposed ensuring numerical stability. This leads
to the Levenberg-Marquardt algorithm [112, 127] which offers an efficient technique that
combines regularization with second-order training. The Levenberg-Marquardt algorithm
has become a popular optimization method for Neural Network training. The Levenberg-
Marquardt method tends to be more robust to starting conditions far from the minima than
the Gauss-Newton method. This robustness can be attributed to the Gradient Descent like
behavior of the algorithm far from the minima, and the Newton like behavior close to the
minimum.

It capitalizes on the squared error function (3.3) and uses an efficient approximation
to the Hessian to circumvent the need for extensive computations of second derivatives.
With respect to the total error, it was shown that V2Cp(w) = J1.(w)J(w)+Sr(w), where
Sr(w) denotes the part of the Hessian matrix involving second-order information of the
error surface, and Jr(w) is the Jacobian matrix of first-order derivatives with respect to
each of the weights per training example Jr(w) = [j;(w),...,jp(w)]".

Key to the Levenberg-Marquardt algorithm is the replacement of Sr{w) by a matrix
ol [112, 127]. This algorithm exploits the convenient property that J=(w)J(w) is sym-
metric and non-negative definite. The performance of this algorithm, though relies on
the choice of the o parameter, which is usually found through heuristics. This algorithm
assumes that the Hessian can be inverted only if it is within a trust region of small radius
which can be determined using the eigenvalues {A"), A, ... A3D} and the eigenvec-
tors {v{, v . vI4D} of the Hessian matrix as follows:

V2Cr(w)v) = [Hy(w) 4+ oI]v®) = Hp(w)v® + avl) = (0O £ o)v®  (3.49)
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where « is the predefined regularization constant (damping parameter). The penalized
matrix Hr(w) + al can be made potentially invertible (positive definite) by choosing the
parameter o such that (A®) + a) > 0 for all 4.

There are two problems in the above formulation 1) the batch Levenberg-Marquardt
algorithm is unable to incorporate new measurements without re-processing the entire
batch; and 2) using one global common regularizer does not help to accurately tune the
weights so as to avoid over-fitting [68, 212]. A remedy for the above mentioned problems
is to use recursive inversion of the Hessian with an individualized local regularization pa-
rameter for each weight, identified through Bayesian inference, all of which is explained
in Chapter 4 [137].

3.5 Sequential Training Methods

The previously mentioned training algorithms are all considered “batch” methods for of-
fline situations in which the entire data set is available before the training process begins.
The model is trained on the data set, and then run over an unseen data set to produce
forecasts. No learning takes place during the “forecasting” phase as the model is fully
trained before forecasting takes place. This restriction can be disadvantageous as not all
information is integrated into the model when producing a forecast at the next time step.
In the off-line (batch) mode of training, the weights of the neural model are not updated
until the entire data set is processed. Each of these iterations is known as an epoch in
neural network jargon.

Adaptation of the weights in a sequential setting happens more frequently than in
the batch mode. At each data point, the weights of the model are updated. This allows
for learning on sequentially arriving data, i.e. training can start before the entire data
set arrives. The model continuously improves itself through recursively updating model
weights through time [114]. For learning in a sequential setting, the model parameters are
usually updated immediately after a new measurement arrives, and thus a common error
function chosen to reflect the instantaneous error of the model is given by,

E(w) = %e?(w) (3.50)

)

This type of error measure is useful for gradient based training methods, but for more

complex training algorithms based on second-order information of the error function an
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accumulated error measure is usually chosen.
The accumulated error function is commonly used for sequential training [114]. Based

on this error function, the weight updates are based on the accumulated error given by:

t

Cy(w) = %ZET(W) (3.51)

=1

This accumulated error function allows for sequential versions of Gauss-Newton type

second order algorithms [114].

3.5.1 First-Order Sequential Methods

3.5.1.1 Sequential Gradient Descent

The most simplistic sequential learning algorithm adds recursion to the batch gradient
descent learning rule. In the batch case the gradient of the cost function 8C,(w)/dw
is computed by adding up the gradients obtained from each training example. In the
stochastic gradient approach, each training example is used to estimate the gradient of the
cost function j,(w)e,(w) at each time step ¢, where j, is defined in Equation 3.31.

The weights are then updated by the following equation

Wi = Wi + i, (Wi )es(w_q)
(3.52)

= W1 + g (Wi1)

where the weight estimate is w;, and the step-size parameter at time step ¢ is 7. The
algorithm is called “stochastic gradient” decent [115] because the instantaneous gradi-
ents may be viewed as a random sample of C;(w)/dw. Other authors call the method
“stochastic approximation” [176]. However, in much of the neural network literature, the
stochastic gradient algorithm is usually called back-propagation with sequential gradient
descent [128]. There are two advantages to approximating the gradient by its instanta-
neous value, on-line learning of time-varying systems becomes possible; and in compar-
ison to the (off-line) gradient descent algorithm the on line algorithm may escape from
local minima. As the on line gradient descent is stochastic, although the algorithm takes

a step to decrease the cost function at each step, the stochastic nature of the gradient
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may actually result in an increase of the cost function which allows for the possibility of

stepping out of local minima.

3.5.2 Second-Order Sequential Methods

3.5.2.1 Recursive Gauss Newton

The recursive Gauss Newton training algorithm is a sequential second-order training al-
gorithm that has been used for sequential training of RNN time series models [216]. The
recursive Gauss Newton method differs from the sequential gradient descent method dis-
cussed in Section 3.5.1.1 in that two quantities are sequentially updated, the weight vector
and the Hessian matrix (rather than just the weight vector in the sequential gradient de-
scent method). The recursive Gauss Newton method can be though of as a stochastic
form of the Gauss-Newton method (from Section 3.4.2.2) applied at each data point. The
derivation summarized in the remainder of this section generally follows [114], and a
similar presentation in the context of RNNs can be found in [216].

The estimated weight vector w, at time ¢, is an approximation of W = argmin,, C,(w).

According to the normal form for recursive estimation (3.35) is written as:
wy = w — Hy  (wei)gy (weer) (3.53)

where H;(w;_,) is the Hessian defined later in Equation 3.57, and the gradient is

=125

&

¢ (3.54)
= er(wz—l)e.—(wt—l)
T=1
where j, is defined in Equation 3.31, and
i
g (wi_y) = ZjT(Wt—L)GT(WL—l)
=1

(3.55)

t—1
= Zj.,.(wf,—l)@r(wt—l) — g(we1)e(wir)

= g_1(Wi—1) = Jo(wii)e(wi_q)
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Assuming that w;_; minimizes the cost function C,_,(w) then g_1(w)=0,ie.,

g (we_i) = ji(wi_1)e(wi_q) (3.56)

The pseudo Hessian is given by

1 BEC,(W) T
=3 "
t (3.57)
= > i ()"
=1
where
¢
Ht(wt—l) = ZJT(Wt—l)L(Wt—ﬂi
=1
e (3.58)
= > Wi (Wem) T G, (Wi )i (W 1)" '
=1
=M1 (wim1) + j(wim)j, (W) T
The recursive algorithm involves
Hy(w,_q) = H;_(w,_1) +j¢(Wt71)jt(Wz—1)T
(3.59)

W, = W;_g — H;l(wl—l)gi(wt—l)

The sequential Gauss-Newton method works well for solutions close to the minimum.
However, when far from the minimum, the Hessian is likely to be ill-conditioned. This
problematic limitation of the algorithm can be alleviated by the addition of regularization

parameters to the Hessian to improve numerical stability. Such an approach is the focus
of the next chapter.
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Chapter 4

Recursive Recurrent Bayesian

Levenberg-Marquardt Learning

There are many situations in which RNNs are required to function online such as in situa-
tions where data sequences are either nonstationary and/or when data arrives sequentially.
In this chapter sequential learning and regularization schemes are developed for improved
RNN training. In the sequential learning paradigm network training is reinterpreted in a
dynamical systems framework in which state estimates w, of the original systems states
are computed using a set of measurements {uy,;}. The estimation problem is funda-
mentally dynamic as new measurements arrive at each time step. The newly arriving
observations are incorporated into weight estimates at each time step through recursive
estimation.

Although much effort has been spent on the development of model parameter estima-
tion schemes for RNNs (as shown in Chapter 4), which make use of first and second-order
approximations of the error surface [18, 24, 28, 104, 172, 216], direct optimization (with-
out complexity control) has lead to mediocre results [58, 102, 113]. One reason for this
is the ill-posed nature of the problem, i.e. parameter (weight) estimation involves inver-
sion of a nonlinear dynamical system from finite and noisy data which typically is ill-
posed [19, 79]. Moreover, research in neural modeling has found that for processing time
series, first and second-order batch training algorithms tend to underperform compared to
incremental second-order training algorithms [151].

Previous work have reported on increases in generalization capacity through the reg-
ularization of RNNs [62, 95, 111, 162, 201, 229]. However, the above mentioned papers
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share two common weaknesses: first, they use a uniform regularization parameter for
all weights in the model; and second, the computation of the regularization parameter
relied on suboptimal methods (i.e. heuristics, cross-validation, or bootstrapping). Cross-
validation and bootstrapping use subsets of the data for training and do not use the entire
data set for model parameter estimation [122].

A principled approach to estimation of the regularization parameter(s) has been pro-
posed in a Bayesian setting [122, 148]. The probabilistic framework facilitates inference
of the regularization hyperparameters, which are viewed as beliefs in the uncertainties of
the model parameters. In previous work, the Bayesian evidence procedure [122] has been
followed to impose a uniform regularizer when training RNNs [206] in an off-line man-
ner. This involves off-line estimation of the covariance matrix (Hessian), that is computa-
tionally inappropriate when handling large numbers of network parameters, or numerous
training examples, or both. In such cases the eigenvalues of the Hessian matrix are known
to decay to zero causing numerical instabilities (i.e. singularity of the Hessian).

A solution to both above mentioned problems is to use non-uniform regularization
with hyperparameters that are adapted to maximize the weight posterior distribution [68,
137, 133]. Following this reasoning a probabilistic approach to recursive second-order
training of recurrent networks via a Recursive Bayesian Levenberg-Marquardt (RBLM-
RNN) algorithm is developed [137, 133]. The main contributions are: 1) incorporation
of individual, non-uniform Bayesian regularization parameters for each wei ght to account
for its uncertainties; 2) handling of the target noise through a specific noise hyperparam-
eter; 3) derivation of a regularized equation for recursive second-order estimation of the
weights; 4) formulation of an equation for the recursive computation of the inverted regu-
larized dynamic Hessian matrix; and 5) estimation of Bayesian confidence intervals. At-
tention is directed to the recursive Levenberg-Marquardt algorithm because it was found
to have superior convergence properties than other online algorithms for training neural
networks [152], such as the recursive steepest descent, and the recursive Gauss-Newton

method.

4.1 Ill-Posed Problems

Learning from temporal data involves a tradeoff between, fitting a model to data by mini-
mizing some loss function, and performance on out-of-sample data. When fitting a model

to data, the more flexible the model i.e. the more free parameters there are, ceteris paribus
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the better the fit. However, as the ultimate goal in inductive learning is to perform well
on unseen examples, it follows that smaller models are preferred since networks with
many parameters will tend to capture the noise as well as the underlying signal [15]. This
problem of learning the noise along with the signal is called over-fitting. To prevent over-
fitting constraints such as smoothness must be imposed on the solution in the form of
regularization. Regularization is a method to discourage complex models by imposing a
penalty term in the cost function [15].

Attempting to model a system from observations is known as an inverse problem.
Inverse problems attempt to find unknown causes for known consequences, as opposed to
the direct problem of finding unknown consequences to known causes. Inverse modeling
amounts to finding model parameters given the observed data. Most inverse problems
are ill-posed. Hamard [72] first introduced the notion of ill and well-posed problems and

provided a short criteria for determining a well-posed problem:

e A solution to the problem exists: For every input vector u € U, there exists an

output vector y = h(u), where y € y;

e The solution is unique: For any pair of input vectors u;,u» € U, it follows that
A(uy) = A(u,) iff u; = uy;

e The solution is stable: meaning the mapping is continuous, for any ¢ > 0 there ex-
ists £ = &(¢) such that the condition C,(uy, w,) < £ implies that C, (2 (u;), h(up)) <
€, where C(-,-) represents the distance metric between two arguments in their re-

spective spaces.

All problems that fail to satisfy the above criteria are considered ill-posed. It turns out that
most real world problems fail to meet this criteria directly and are considered ill-posed.

Although it is usually assumed that the modeling problem has a solution, the solution
is rarely unique or stable. For nonlinear systems, uniqueness of the solution is a difficult
constraint to satisfy because there usually exist an almost infinite amount of solutions that
can fit the data. To make matters worse, no measurement is free of noise. If the model
is inherently unstable, small perturbations in the input due to noise can easily become
magnified in the output of the system. Solutions to problems ill-posed in nature have no
practical use.

How then do we get around the ill-posed problem? The method of regularization is a
technique specifically developed for solving ill-posed inverse problems (ill-posed inverse

parameter estimation problems). The main idea of regularization is instead of solving the
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ill-posed problem, a set of well-posed problems that approximate the ill-posed problems
are solved. Regularization theory was first proposed by Tikonov [207] in 1963.
There are two main types of parameter estimation problems: linear and nonlinear. The

general model of a linear estimation problem is defined as a system of equations
Aw~=d (4.1)

where w € R™ is the weight/parameter vector, d € R is the target vector, and the matrix
A € R™*" is a matrix with m < n.

In the case of nonlinear systems, the nonlinear model is described as
h(w,u) ~d (4.2)

where the weights/parameters of the model are w € R™, the targets are d € R", and the
function A(-, -) is a nonlinear mapping.

Originally, the method of regularization was developed for solving ill-posed problems
in linear systems, but has been extended to nonlinear systems [39]. Smoothness is an
essential property for nonlinear dynamical systems, and regularization techniques can be
used to demand smoothness from the model. Before further discussing regularization, it
would be useful to provide a non-rigorous definition of regularization as: any method of
stabilizing the solution to obtain a meaningful result by modifying the original ill-posed
problem.

There are two main objectives in regularization, achieving stability, and uniqueness
in the solution with a much lower sensitivity to noise that the original ill-posed problem.
There are two main routes to achieving these objectives, truncation [52] and Tikhonov
Regularization [208]:

o Truncation: singular value decomposition or total least squares methods are com-
puted, and a lower dimensional summation of the resulting solution matrix is taken
in an attempt to eliminate “high frequency” components leaving the remaining
problem in well conditioned form [215]. Truncation methods have been shown to
outperform other regularization methods, but problems exist such as to what degree
of truncation to perform in discrete ill-posed problems.

o Tikhonov Regularization: through the inclusion of a penalty term to the loss func-
tion a balance between fitting the model and smoothness can be imposed on the
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solution. This method fits naturally into the neural network training framework as
it is cast as an optimization problem [168, 218].

min |Aw —d|* + a||2w)|? (4.3)

where o > 0 is the regularization parameter that controls smoothness and where
|| - || is the Euclidean norm. The function §2(-) is a penalty function that promotes

smoothness from the model.

Regularization can be interpreted deterministically or stochastically. In the deterministic
sense regularization is nothing more than performing numerical stabilization. For exam-

ple Tikhonov regularization transforms the unstable solution
ATAw =A"d (4.4)

into the stable solution
(ATA +al)w=A"d (4.5)

in which small singular values are filtered out via the stabilization term al [208]. Here
the matrix I is the identity matrix.

On the other hand, the stochastic interpretation of regularization models the noise
originating from the observations and the model discrepancy as probability distributions.
Bayes rule has been used to estimate the regularization parameters given estimates of
these distributions [120].

4.2 Regularization in Neural Network Learning

The complexity of a model is determined by the number of free parameters of the model.
By increasing the number of free parameters, the flexibility of the models increases, which
increases the danger of overfitting [25, 36, 57]. Conversely decreasing the number of
free parameters decreases the flexibility of the model and decreases the chance of over-
fitting but increases the chance of not having a powerful enough model. Regularization
in previous work has been achieved through cross validation training (early stopping),
adding noise to the training set, neural ensembles (i.e. combining multiple neural models),
and constructive/destructive methods (i.e. adding/removing neurons during training) [53].
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Training with noise has been shown to be equivalent to regularization [16, 110, 229].
Noise is added to the training data which tends to provide a range of scattered points
around the so called “true point” which prevents the neural network from over-fitting the
data. However, it is not clear how much noise to add and when to stop training.

By combining a mixture of models it has been shown that that the performance can
be improved [91, 163, 164]. The idea behind using comities of models is that by train-
ing individual models with higher variance than bias and then by combining the models,
the variances will be averaged over all the models. The main drawback of this approach
is the need for an additional modeling step to combine the forecasts [34]. The commit-
tee of models may still need to undergo model selection to discard the poor performing
models [34]. Furthermore, it is unclear when to stop training the population.

Popular methods for complexity control can be categorized into two main categories,
penalized likelihood regression [208] and predictive assessment [15], in which there is a
major overlap between the two categories.

Penalized likelihood methods control the complexity of the model through a penalty
term £2(w) placed in the loss function of the model.

C(w) = E(w) + afd(w)

The loss function controls the tradeoff between two conflicting goals, where the first term
E(w) encourages fitting the model closely to the data and the second term £2(w) encour-
ages smoothness of the model (i.e. discourages fitting the data precisely).

Predictive assessment methods use some sort of cross validation technique by seg-
menting the training set into two or more subsets where one or more subsets are saved for
testing and the remaining subsets are used for training. Predictive assessment techniques
are often used to find the parameters for the penalized likelihood loss functions. Early
stopping is the most well known predictive assessment technique that involves breaking
the data set into two sets, a training set and a validation set. The model is then trained on
the training set and, the model performance is evaluated on the validation set. Training
is stopped when the validation error begins to increase. This technique has been shown
to be equivalent to regularization [16]. Cross validation in general and early stopping in
particular has several drawbacks such as the model can not be trained on the full data set
resulting in a biased estimator towards the validation set.

To circumvent the limitations of predictive assessment, a novel algorithm for inferring

regularization coefficients (RNN weights) and regularization hyperparameters in a penal-
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ized likelihood framework is proposed. First, however, an overview of regularization is

provided.

4.3 Regularization for Linear Systems

To illustrate the forward problem, the linear system presented in Equation 4.1 is rewritten
as:
d=Aw+e (4.6

where € is the uncertainty in the observations (i.e. noise in the observations), and d is
the data. The direct problem involves using the matrix A and the vector w to find d. The
inverse problem involves finding the regression coefficients w given d and matrix A. This

operation requires the matrix inverse to solve for w assuming that A is a square matrix.
w=Ald (4.7)

or if A is not square the standard ordinary least squares procedure is usually employed
w=(ATA)'ATd (4.8)

However, due to noise corrupted data, finding the exact solution is not always straight-
forward. The matrix A is usually nearly singular, and thus finding A" is generally non-
trivial. Least squares approaches can result in spurious solutions as ATA is generally
ill-conditioned. This means that the inverse can magnify the noise in d leading to poor
estimates of w.

As it has already been shown that the standard solutions to the inverse problem gener-
ally fail when uncertainty in the data is present, attention is focused on methods that are
robust in the face of uncertainty.

Tikhonov introduced penalized least squares to condition the nonlinear inverse oper-
ator [207]. This method has been used successfully to obtain solution estimates for many
ill-posed problems as in [196] and references their in. A penalty term and the regulariza-

tion hyperparameter are augmented to the quasi-solution expression as shown below

E(w) + af2(w)
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The first term E(w) is the error function, and the second term is a penalty function

that promotes constraints (such as smoothness) on the solution w given that

e {2(w) is continuous, nonnegative and everywhere dense in W;
e the true solution w; belongs to the domain of Q(w);

o forevery positive number d, the set of elements w for which 2(w) < d is a compact
subset of W.

There have been various functions proposed for the penalty term in the penalized cost
function [83, 64, 222]. Weight decay [83] is one of the simplest forms of the regularization
component §2(w), where the regularization function is defined by:

Qw) =wlw (4.9)

Weight decay promotes smoothness in the mapping by penalizing large weights, and forc-
ing the existing small weights towards zero. This is beneficial to generalization as weights
with large absolute values can cause rough or abrupt changes in the output of the net-
work. By discouraging large weight magnitudes, a smoother output is obtained. As small
weights are forced towards zero, a number of the weights are effectively removed from
the network, resulting in a parsimonious model. Simultaneous minimization of £2(w) and

Ep(w) is possible by minimizing the function
C(w) = E(w) + afd(w) (4.10)

where o is a nonnegative coefficient called the regularization parameter. The regulariza-
tion parameter controls the tradeoff between the amount of regularization and the amount
of fitting through the minimization of E(w). When o = 0, i.e. no regularization, the

quasi-solution is obtained and when - — oo the result is a parametric model.

4.4 Regularization for Nonlinear Systems

Regularization theory was applied to neural networks by Poggio and Girosi [168]. For
neural networks two principles of regularization are paramount, smoothness and sim-
plicity. Characteristic of neural network models is the usually high dimension of the w

parameter vector which is far from the goal of parsimonious models.
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Referring back to Equation 4.2, the data is now described by the nonlinear system
contaminated by white noise
dt = h(llt, “’t) + & (41 l)

assuming that w is obtained through least squares optimization over T training patterns
and £, ~ N(p, 0”) is the white noise process that is normally distributed with mean p = 0
and variance o>. The model error variance V7 over many different estimates of w can be
approximated by:

Vw0 (1+ ;’f) 4.12)

where m is the number of weights/parameters, and ¢? is the variance of the white noise.
Assuming there is no more data available, the only way to reduce the variance is by
reducing the size of m. This is where regularization with weight decay steps into the
picture.

By adding a penalty term to the loss function, regularization techniques with a weight

decay functional can be used to reduce variance in nonlinear systems
Z E.(w) + af)(w) (4.13)
=1
Assuming the standard sum of squared error function, the regularized loss function can
be written as

ZE_ ) + a(w) = e(w)el (w) + aw’w (4.14)

Through regularization with weight decay, the variance of the model can be reduced,
assuming that superfluous weights are diminished to values effectively zero. The new

model variance is approximated by

V. ~ o (1 + %) 4.15)

where v < m is the effective number of parameters [15], computed by

m /\1‘
= 4.16
L ; /\1' + o ( )
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where the ith eigenvalue of the Hessian is A; and « is the regularization parameter. The
regularization parameter o > 0, implies that if A; > « by a significant amount, the
quantity A;/(M + a) will be somewhere near 1. On the other hand, if \; < a by a
significant amount, the quantity A;/()\; + ) will approach zero. RNN modeling typically
uses a large number of parameters. It turns out that -, the effective number of parameters,
can be be significantly smaller than m, the total number of parameters. Regularization
for RNNs have the potential to reduce model variance compared to RNNs trained without

regularization.

4.4.1 Determination of Parameter o

Although regularization provides a framework for smooth models, finding the optimal
smoothness parameter(s) and the correct number of degrees of freedom is difficult to
predetermine in advance, as these quantities are dependent on the number of the training
samples, the distribution of the noise in the samples, and the complexity of the underlying
phenomenon to be modeled.

The standard method for determining the value of « in linear ill-posed problems is
through a trial and error process known as the L curve method. Both components of the
penalized error function are minimized, i.e. the error function F(w) and the penalty term
Q2(w) are minimized for various values of a. Then they are plotted against each other in
a log-log scale. Generally an L shaped curve is obtained. The L curve shows the tradeoff
between regularization and model fitting. The horizontal part of the L plots the errors
(or model sensitivity to ) from the regularization and the vertical part of the L plots the
errors due to noise contaminated measurements. The optimal setting of o corresponds to
the value at the corner of the L.

Bayesian methods have become popular for inferring the regularization parameters in
nonlinear models such as neural networks [122]. In the Bayesian regularization frame-
work, the model weights and the regularization hyperparameters are assumed to be de-
scribed by probability distributions. Through an iterative learning process, the parameters
and hyperparameters are updated via Bayes rule resulting in a finely tuned model with
characteristics that match the training data in a statistical sense. The next section dis-

cusses the Bayesian method for inference of RNN parameters.
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4.5 Regularized Bayesian RNN Training

The key principle of Bayesian analysis is that uncertain quantities are modeled as prob-
ability distributions, and inference is performed by constructing the posterior probability
distributions for all unknown entities in a model, given a data sample. To use the model,
marginal distributions are constructed for all entities of interest such as the predictions in
non-parametric regression.

The Bayesian approach was first introduced to Neural Networks by [17, 121, 148].
In his thesis, MacKay pointed out that one of the largest weaknesses of neural networks
is that when building a neural model, the design “depends on a considerable number of
design choices, most of which are currently made by rules of thumb and trial and error.”
Of these so called “design choices,” the most important and difficult is specifying the
complexity of the model.

The Bayesian approach to building neural models implicitly handles the design con-
siderations by defining vague (non-informative) priors for the hyperparameters. Through
estimation of the hyperparameters, the unknown degree of complexity of the model is de-
termined. Model selection is performed by averaging the resulting model over all model
complexities weighted by their posterior probability given the data sample. The model
can be allowed to have different complexity in different parts of the model by grouping
the parameters to have a common hyperparameter or by assigning a hyperparameter to
each parameter.

The goal of RNN modeling is to propetly learn the model regions of both low and
high nonlinearities in the data. The overfitting may vary in the different regions of the
model. Since each weighted term contributes a different curvature to the overall model,
there is a need to manipulate the uncertainty of each weight separately in order to adjust
the smoothness of the functional mapping. Adapting the weights with local regulariza-
tion helps to achieve accurate quantification of each term to the overall output, and local
control over the particular term nonlinearities so as to tune the model curvature to the
data. A set of individually tunable priors & = [ay, ..., @] (Which come from a zero
mean gaussian [122]) are adopted, with variance o; = cr;? which allow each weight to be
influenced by its local regularization hyperparameter [212].

Applied to neural network training the Bayes’ rule for training with hyperparameters

is [15, 122]:
p(d|U,w, 3" )p(w|cr)
p(d|U, o, 571)

p(w|ld, U, a, f71) = (4.17)
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which is proportional to the data likelihood p(d|U, w, 3~1), the weight prior p(w|a), and
inversely proportional to the evidence p(d|U, e, 3~1). Here U denotes the matrix of all
input vectors, and /3 is a measure of the noise contained in the target data d. The evidence
approach assumes a Gaussian approximation to the weight posterior through a second-
order Taylor expansion of the cost function to enable analytical tractability [122].
The likelihood p(d|U, a, 571) reflects the neural network accuracy on the training set.
It is a distribution
p(dju) = N'(h(w,u),0}) (4.18)

with variance o7, which is represented by a noise hyperparameter 8 = o 2. Assuming
zero-mean normally distributed noise implies that the likelihood of the entire data set is:

p(d|U,w,371) ~ exp ( - %ﬁEt(w)) 4.19)

1
Z(8)

where Z(3) = (2x3~1)"/? is a normalizing constant [15, 122].
The weight prior p(w|a) accounts for the subjective beliefs o, about the weights
and the shape of the network mapping. The individual hyperparameters «; are given a

zero-mean normal distribution with inverse variance a1, that is:
p(wla) = N(wl0,a™") (4.20)

This leads to the following zero-mean factorized prior [212]:

m 1 1 R
p(w|a) =~ H m exp ( - gaiw;) 4.21)
i=1 w 1 L

where Z,(a;) = ‘)TI'/CE;"/E is a normalizing constant [15, 122].

The instantaneous Gaussian weight posterior at a particular time step then becomes:

p(w|d, U, e, 371) =~ exp —%( — BE,(w) +w' diag(a)w) (4.22)

ACHE)
where Z is a normalizer produced by Zp(3) and Z,,(a;) [15, 122].

The individual hyperparameters «; control the inference of the weight distribution,
which impacts the weight value and the variance of their distribution. Individual hyperpa-

rameters are more advantageous to simple weight decay regularization (which uses a uni-
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form hyperparameter) as each weight can be individually tuned. Simple uniform weight
decay imposes uniform penalty in the cost function, which is less efficient for achieving
good generalization. Moreover, the uniform weight decay regularization is inconsistent
with the scaling properties of the mappings [15].

The weight posterior distribution embodies all statistical information about the model
parameters. However, neural networks are highly nonlinear models where the posterior
distribution of the weights may have several modes. One approach to overcome this
difficulty is to assume that the weight posterior is sharply peaked, and to approximate it
using a local Taylor expansion of the cost function (up to the second-order) [122].

The intention to perform sequential estimation requires to consider the cost accumu-
lated from the beginning of the time interval up to the current moment ¢. The performance
criterion is reformulated to accommodate Bayesian regularization, which leads to the fol-

lowing cost function:

Cw) = 5 ( 30 BE(w) + wT(aR,)w) (4.23)

where R, is a special matrix (mxm) having zeros everywhere except on the diagonal at
positions i, that is [R;];; = z; . The quantity z; = (T div m) if ¢ < m * (T divm) ora
very large number otherwise [153], and the operator div is the integer division operator.

4.5.1 Recursive Weight Estimation

The training objective in temporal modeling is to evolve the weight posterior p(w;|d;, U, «, 371)
progressively with the arrival of the next training vector. This can be accomplished by se-
quential minimization of the Bayesian cost function. A distinguishing characteristic of
the algorithm is the incremental distribution of the regularization over the entire training
set while optimizing the weights. Such a technique is necessary because the total regu-
larization effect has to be distributed in parts when processing sequentially arriving data.
This can be achieved through augmentation of the covariance matrix by fractions of the
total regularization.

At the minimum of the cost function, the optimal weight estimate of the gradient at

time £ — 1 is zero. Under the assumption that this is an instantaneous minimum, the
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following recursive Bayesian weight training rule is obtained:
W= Wi 1 ﬁH,g_l(wt—l)ji(wt—l)et(w.!—l) - G’inl(Wt—l)Rt“’t—l (4.24)

where w, is the weight vector, H; ' (w;_1) is the inverted regularized Hessian, and c; is the
prior hyperparameter with index ¢ = (¢ + 1) mod m, where mod is the modulus operator.
The term j,(w;_; ) includes the model derivatives which can be computed using the RTRL
algorithm, given by equations (3.31).

The error e;(w;_1 ), which is embedded in the second term of Equation 4.24 determines
the local search direction, while the noise hyperparameter J impacts its magnitude. The
third term (in Equation 4.24) o;H; *(w,_;)R,w;_, accounts for the regularization that is
applied partially until the number of training examples reaches m * (7" div m). The index
of the next hyperparameter a;, 1 < 4 < m is such that s = (¢ + 1) mod m and the value
of the hyperparameter is scaled by the matrix R;.

Equation (4.24) provides a general rule for second-order recursive Bayesian training
that can be applied to training RNNs. It requires several iterations to tune the hyperparam-
eters. The generality of this weight update equation can be explained as follows: 1) if one
global regularization hyperparameter «v is used and the noise variance is assumed 7 = 1.0,
it degenerates to the classical Levenberg-Marquardt method; 2) if small regularizers are
used o; — 0 and F = 1.0 it reduces to Newton’s method; and 3) when regularizers are

very large a; — oo it becomes equivalent to gradient descent.

4.5.2 Recursive Covariance Update

Central to the Levenberg-Marquardt method is the estimation of the inverted regularized
Hessian matrix H; ' (w;_; ). The inverse Hessian is recursively estimated at each time step
as a function of its past values H;';(w;_;) and the current values of the regularization

hyperparameters a;. The dynamic Hessian is updated via:
H,(wi_1) =AY (we1) i1 (wer) + Ay (4.25)

Here A is the distributed version of the regularization matrix A;' = [1 0;0 a;[R,]]

where ¢4 is the diagonal position of the matrix R.
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The sequential modification of the inverted Hessian is derived by writing it in the form
H (Wee) = B2 (Weea) o+ B3 (W ) AT (W) (4.26)

The notation j;_; (w;—) specifies the augmented column vector j; ,(w,_;) by a column
vector with zero elements except for the element at position 7 = t — 1 mod m, and more
precisely

Jioy(wet) = i1 (wer );0...0 1;...0]F 4.27)

After applying the matrix inversion lemma [127] and some simplifications, the following
regularized recursive inverse Hessian update is reached (see Appendix C):

H (wmy) = HZY (W) — AH 1 (We1 )i (Wi )SL 0T (W )HZ, (wemy) (4.28)

where
Sict = (A (W B2, (W )iy (W) + A (4.29)

and the inverted distributed regularization matrix is (A;!)~! defined above. The initial
values on the diagonal of [H;'(w,_,)];; are set to small values.

It should be noted that the proposed partial regularization negligibly increases the
computational complexity of the algorithm because A, is a two dimensional matrix whose
inversion can be computed analytically (with numerically stable formula) [96].

4.5.3 Bayesian Hyperparameter Updates

The Bayesian inference aims at maximization of the weight posterior distribution with
plausible hyperparameters. The most plausible hyperparameters are those that maximize
their likelihood conditioned on the data, known as the evidence for the hyperparame-
ters [122]. The procedure for evidence maximization in the case of normal, Gaussian data
leads to analytical formula for the hyperparameters.

The weight prior hyperparameters are adjusted to maximize the probability of the
weight prior distribution as follows [122]:

Yi

o = — (4.30)
W

by ]
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where +; is defined as follows
Vi =1 — a[Hy (we 1) (4.31)

Note that for each w;, there is one local o; that is computed at the end of the interval.
Each such a; is sequentially distributed while passing through the series.

The output noise hyperparameter is updated to adjust the model to the characteristics
of the training data by the equation [122]:

Ly
=— ' 4.32
? = eyt 3
where e(w) = [e;(w),..., ep(w)] is the vector of errors, and  is the effective number of

parameters (which is less than the actual number of parameters) computable as [137]

Y=m — Z O(!‘J:H;](W]{_l)]ﬁ (433)
i=0

This probabilistic training procedure requires several passes through the data until reach-
ing an acceptably low error. After each pass, the hyperparameters are re-estimated while
keeping the weights fixed.

4.5.4 Bayesian Network Pruning

The evidence framework [122] provides a means for automatic relevance determination
(ARD) of the weights (i.e. automatic identification of the significant weighs). The sug-
gestion is that when a local hyperparameter shrinks its corresponding weight toward zero,
this weight can be pruned.

The approach employs a Bayesian pruning procedure which has the advantage of
evaluation the significance of all weights considered together, pointing out the individual
weights that are irrelevant in the context of the model as a whole. The overall effect from
pruning is increasing the smoothness of the neural network mapping, and thus improving
its generalization [15].

RBLM-RNN training is an iterative process of three steps: 1) computing the optimal
network weights, 2) re-estimation of the prior hyperparameters and the noise hyperparam-
eter, and 3) pruning the network topology by setting the statistically insignificant weights
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to zero. Weight pruning takes place when the prior hyperparameter becomes greater than
a predefined threshold.

4.5.5 Bayesian Confidence Interval Estimation

The presented algorithm provides useful partial results that can be taken to estimate con-
fidence intervals, necessary for statistical diagnostics. The confidence intervals show the
variance of the network predictive distribution, and thus offer information about the be-
lief in the learned model. Here Bayesian confidence intervals are considered in order to
quantify the degree of belief in the model, through the uncertainties in the weights and
the uncertainty in the data [146]. These uncertainties are the hyperparameters computed
by the training algorithm.

Bayesian confidence intervals are defined as: h(w,u;) % z go50 31 p, Where o p is the
variance of the forecast distribution, and z .5 is the critical point of the standard normal
distribution. These are bands within which the true underlying process is expected to fall
with 95% confidence. Such error bands of the model can be obtained as follows [137]:

L - ;
h(w,u;) £ 2995 - \/ﬁ +J?_1(Wtk1)H¢711 (Wit )iy—q (We1) (4.34)

where /3 is the output noise variance, j,_,(w,_,) is the gradient vector, and H L (wi_y)

is the inverted regularized Hessian matrix at the particular time step. The confidence
intervals can be generated sequentially at each training example by computing the vari-
ance of the prediction error j,_; (w,_1 )H !, (W,_1)j,_ (w,_1) [99]. The calculation of this
quantity uses partial Jacobian-Hessian-Jacobian products that are precomputed during the
recursive covariance update (4.28).

4.6 Experimental Results

The objective of this chapter was to develop an improved dynamic RNN for time se-
ries modeling. Tests were conducted to evaluate the performance of the proposed model
in terms of its predictive ability and computational cost of training. Studies into time
series modeling were carried out using: a group of chaotic nonlinear dynamical sys-
tems, the benchmark laser intensity series from data set A of the Santa Fe time series

prediction competition, and a real-word electricity spot price series (publicly available

70




at www.nordpool.no). The following experiments are all cases of nonlinear regres-
sion for single-input-single-output (SISO) systems.! The residuals were measured by the
normalized mean squared error (1(MSE) computed by nA/SE = (1/(Ta2)) S (dy -
h(w,u;))?, where o, is the standard deviation of the training data.

The performance of the Recursive Bayesian Levenberg-Marquardt RNN (RBLM-
RNN) is related to other neural time series models, such as the feed-forward multi-layer
perceptron (MLP) trained with the extended Kalman filter (EKF), a feed-forward neu-
ral network trained with the Bayesian Levenberg-Marquardt (MLP-BLM) algorithm, an
RNN trained with RTRL, an RNN trained with BPTT, and an RNN trained with the EKF
(using RTRL derivatives). In all simulations, the weights of the networks were initialized
with random uniformly distributed values in the range of [—0.1,0.1]. The computational
cost of training each algorithm was measured by the average time it took for each model
to reach a pre-specified training error. For simulations concerned with evaluating compu-
tational cost, each run began with the same initial conditions (weight vector, state vector,
and number of nodes) for each of the RNNs. Similarly, all feed forward networks began
with the same initial conditions (weight vector and number of nodes). The structure of
the networks in the computational cost simulations were the same as in the prediction
simulations. The average time to convergence was taken for 50 runs where at each run a

different set of initial conditions was randomly chosen.

4.6.1 Modeling Chaotic Processes

The first experiment studied the RBLM-RNN performance on a group of benchmark
equation based nonlinear dynamical systems. The group of chaotic processes included
the Henon map [81], the Tkeda map [90], the Lorenz equations [117] and the Réssler at-
tractor [180]. Plots of the attractors are shown in Figures 4.1 and 4.2. Each training set
was 1000 time steps long, and each test set was 250 time steps long. White noise with
standard deviation of 0.05 was added to the training sets of each series.

The RBLM-RNN and the other recurrent networks, RNN-BPTT, RNN-RTRL, and
RNN-EKF, were initialized with 3 hidden neurons, 1 input and 1 output neuron. For the
RBLM-RNN and MLP-BLM models, the initial hyperparameters were: o; = 10~ and
3 = 1.0 (these values were chosen so as to constrain the initial weight vector to small

numbers). The feed-forward networks were constructed with 3 hidden neurons, and used

IThe derivations in this chapter can be extended for mulitple-input-mulitple-output (MIMO) systems in
a straightforward way.
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an input window chosen according to the embedding dimension of the series (determined
by false nearest neighbors). The initial diagonal elements of the covariance matrix for all
filters were set to 10° [76].

Table 4.1: Residuals of the in-sample fitting and out-of-sample predictions on benchmark
chaotic time series.

Chaotic Attractors
Model Metric Henon Tkeda Rossler Lorenz
train test train test train test train test

MLP-EKF | nMSE | 0.00037 | 0.00086 | 0.00035 | 0.00132 | 0.00025 | 0.00193 | 0.00023 | 0.00162

weights 25 25 25 37
MLP-BLM | nMSE | 0.00032 | 0.00081 | 0.00049 [ 0.00127 | 0.00047 | 0.00101 | 0.00033 [ 0.00096

weights 21 24 23 33
RNN-BPTT | nMSE | 0.00055 | 0.00110 | 0.00058 [ 0.00162 | 0.00070 | 0.00311 | 0.00056 [ 0.00185

weights 19 19 19 19
RNN-RTRL | nMSE | 0.00058 | 0.00103 | 0.00056 [ 0.00159 [ 0.00071 [ 0.00312 | 0.00057 | 0.00172

weights 19 19 19 19
RNN-EKF | nMSE | 0.00043 | 0.00072 | 0.00043 | 0.00101 | 0.00060 | 0.00191 [ 0.00036 [ 0.00121

weights 19 19 19 19
RBLM-RNN | nMSE | 0.00036 | 0.00068 | 0.00048 | 0.00081 | 0.00057 | 0.00092 | 0.00036 | 000090

weights 16 14 17 16

Table 4.1 gives the experimental results of training and single-step ahead forecasting
on the chaotic benchmark series. These results indicate that the RBLM-RNN outperforms
the other competing models in the sense of nMSE. It can be observed that the RBLM-
RNN is more sparse than the other networks, which was achieved by pruning weights
whose hyperparameter values were greater than a predefined threshold ap;qy > 103
(this parameter was found through multiple trials, too small a setting and no weights get
pruned, and too large a setting and too many weights get pruned), while doing 10 iterative
cycles over the data. The computational cost of training in terms of cpu time is given
in Table 4.2. Although the RBLM-RNN is not the lowest in terms of computations per

epoch, its total training time is similar to training times of the feed-forward networks.

4.6.2 Laser Intensity Series

The second experiment studied data taken from the Santa Fe time series competition (Nh3
laser intensity pulses) [88] in order to test the effectiveness of the RBLM-RNN on “real
world” data. Building a model from this series is challenging due to the chaotic nature of
the laser and only three occurrences of the so called “intensity collapse” in the training

set. A plot of this series and its attractor are shown in Figure 4.3. All recurrent networks:
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Figure 4.1: Plots of the Henon and Ikeda map. The Henon map is a one dimensional
iterated function system with correlation dimension estimated at 1.258 with parameters of
the governing equation set to a = 1.4 and b = 0.3 The Ikeda map is a system of equations
representing the plane wave interactivity in an optical ring laser. The parameters of the
equation were setto a = 1.0, b = 0.9, ¢ = 6.0 and ¢ = 0.4 and the correlation dimension
was estimated at 1.59. Both correlation dimensions were estimated from the time series
data through the Grassberger-Procaccia method [69].
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Figure 4.2: Plots of the Rossler and Lorenz attractors. The Réssler attractor is generated
by a system of three differential equations having coefficients ¢ = 0.2, b = 0.2, and
¢ = 4.6 which lead to an estimated correlation dimension of 2.013. The Lorenz attractor is
a nonlinear three dimensional system that provides a simplified model of convection in the
atmosphere. For the parameter settings (Prandtl number o = 10, and the Rayleigh number
p =28 and 3 = 8/3) used in this experiment, the system exhibits chaotic behavior with
correlation dimension estimated at 2.062. The Grassberger-Procaccia method was used
for the estimation of the correlation dimensions of both series.
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Table 4.2: Computational cost of training on benchmark chaotic time series.

Chaotic Attractors

Model Metric Henon Tkeda Rossler Lorenz
mean | std dev | mean | stddev | mean | std dev | mean | std dev
MLP-EKF | CPU Time | 17.77 2,18 14.68 1.96 15.45 203 | 1899 | 2.39
Epochs 77.28 | 12,75 | 63.84 | 10.31 67.2 10.09 | 73.90 | 12.73
MLP-BLM | CPU Time | 14.71 1.46 12.15 0.96 12.78 1.17 | 16.60 | 1.91
Epochs 50.72 5.30 41.90 4.97 44.1 4.15 | 48,51 | 4.98
RNN-BPTT | CPUTime | 21.28 | 1142 | 2247 | 10.65 | 26.88 13.42 | 21.05 | 10.58
Epochs 150.15 | 59.76 | 96.82 | 71.30 | 82.92 | 68.43 | 99.96 | 80.92
RNN-RTRIL | CPU Time | 29.62 | 10.67 | 28.47 | 10.93 | 25.76 931 | 2833 11.26
Epochs 185.15 | 42.55 | 15295 | 3445 | 161.01 | 46.34 | 177.1 | 49.51
RNN-EKF | CPU Time | 33.04 4.87 27.29 1.81 28.72 1.89 | 31.60| 2.16
Epochs 86.94 [ 1590 | 71.82 | 13.34 75.6 1421 | 83.16 | 14.12
RBLM-RNN | CPU Time | 19.83 1.35 14.71 2.26 15.02 241 19.10 | 2.12
Epochs 45.06 4.11 38.92 4.13 41.7 4.89 | 4327 | 4.67

RBLM-RNN, RNN-BPTT, RNN-RTRL and RNN-EKF were implemented for this task
with 3 hidden neurons, 1 input and 1 output neuron. The initial hyperparameters for the
RBLM-RNN and MLP-BLM were: a; = 107 and # = 1.0. The feed-forward networks
were constructed with 4 hidden neurons and input vector of size 10, i.e. the network is
initialized with 49 weights. After multiple trials, it was found that the the RBLM-RNN
and MLP-BLM perform best on the laser series with diagonal elements of the covariance
matrix initialized to values of 10", Figures 4.4 and 4.5 provide plots of the predictions
and the prediction errors of this series respectively. Training took place on the first 1000
data points and the networks were evaluated in a one-step-ahead prediction task over the
next 100 data points.

The results from the conducted experiments are given in Tables 4.3 and 4.4. All mod-
els fit the series well, however the RBLM-RNN performs best on out-of-sample forecasts.
One may be inclined to think that the main reason for this is its good generalization due to
the Bayesian tuning of the regularization hyperparameters. Without Bayesian regulariza-
tion, the MLP-EKF, RNN-BPTT, RNN-RTRL and RNN-EKF tend to overfit the training
series because they achieve very low training error, but high prediction error. The feed-
forward network trained by the Bayesian Levenberg-Marquardt algorithm is second best
after the RBLM-RNN. The mean convergence time for training the RBLM-RNN on the
laser series is higher than the feed-forward models, but the lowest of the recurrent mod-
els. This is partly due to the fact that the RTRL algorithm requires significantly more

computations per epoch than ordinary back propagation. Yet, the computational times of
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Figure 4.3: Laser time series and return map.
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Figure 4.4: Out-of-sample one-step-ahead forecast of the RBLM-RNN and confidence
intervals on the Laser time series. The predictions begin at point 1001, and continue for
100 steps into the future
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the RBLM-RNN and the feed-forward networks are similar due to the small number of
free parameters required to model the laser for the RNN (delay window of size 1) and
large number of free parameters required for the same task in the feed forward network.
Further lowering the total computational time of the RBLM-RNN is the fast convergence
of the RBLM algorithm, which had the lowest mean number of epochs for convergence

of all the algorithms considered.

Table 4.3: Residuals from modeling Laser intensities.

Model weights | nMSE(training) | nMSE(zesting)
MLP-EKF 49 0.00031 0.00468
MLP-BLM 37 0.00088 0.00093
RNN-BPTT 19 0.00032 0.01092
RNN-RTRL 19 0.00036 0.00876
RNN-EKF 19 0.00035 0.00436

RBLM-RNN 17 0.00045 0.00060

Table 4.4: Computational cost of training on the laser time series.

Model CPU Time Epochs

mean | stdev | mean | stdev
MLP-EKF | 26.26 | 2.61 | 101.96 | 16.69
MLP-BLM |21.76 | 1.88 | 68.11 7.37
RNN-BPTT | 37.47 | 29.73 | 179.48 | 108.95
RNN-RTRL | 44.65 | 16.09 | 23551 | 53.03
RNN-EKF | 4633 | 6.59 | 113.79 | 20.17
RBLM-RNN | 36.72 | 243 | 7284 | 7.18

4.6.3 Forecasting Electricity Spot Prices

A current challenge to the energy industry is the efficient management of electricity net-
works. In the final experiment, the predictive ability of the RBLM-RINN on noisy elec-
tricity spot price data taken from the Nordpool power exchange is evaluated. The spot
prices are measured in Euro/MegaWatt per hour. The studied models were trained on
daily average prices from 1/1/2004 to 10/31/2005. A plot of a segment of the in-sample
data is shown in Figure 4.6. Two out-of-sample segments were then used to test the mod-
els generalization capacity. In the first out-of-sample segment, prices from the next day
11/1/2005 until 11/30/2006 were considered for forecasting. In the second out-of-sample
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forecast, prediction began on 1/1/2006 until 1/31/2006, which gives a gap of 2 months
between training and forecasting. A small data set of 18 days prior to 1/1/2006 were fed
to the RNNs to *“prime” the networlks states before prediction began (no weight adapta-
tion took place during “priming”). Once the RNNs were primed, prediction began on
1/1/2006.

Table 4.5: Residuals on Electricity Spot Price Fitting and Prediction.

Model Weights | nMSE(training) | nMSE(testing 1) | nMSE(testing 2)
MLP-EKF 65 0.0680 0.0962 0.1034
MLP-BLM 43 0.05024 0.0899 0.1066
RNN-BPTT 29 0.0497 0.2016 0.2791
RNN-RTRL 29 0.0473 0.1828 0.2376
RNN-EKF 29 0.0458 0.0991 0.1093
RBLM-RNN 19 0.0590 0.0608 0.0831

Table 4.6: Computational cost of training on the electricity spot price time series.

Model CPU Time Epochs

mean | stdev | mean | stdev
MLP-EKF | 20.16 | 2.27 | 96.31 | 15.38
MLP-BLM | 1764 | 1.26 | 62.87 | 641
RNN-BPTT | 25.57 | 19.87 | 198.45 | 87.63
RNN-RTRL | 32.2 | 11.72 | 231.13 | 58.75
RNN-EKF | 38.88 | 5.84 | 107.96 | 19.61
RBLM-RNN | 26.89 | 1.83 | 61.75 | 6.23

All recurrent networks: RBLM-RNN, RNN-BPTT, RNN-RTRL and RNN-EKF were
implemented for this task with 4 hidden neurons, 1 input and 1 output neuron. The co-
variance matrices were initialized with elements 10%. The initial hyperparameters for the
RBLM-RNN and MLP-BLM were: a; = 10~ and # = 1.0. The MLP-EKF was initial-
ized with 4 hidden neurons, but used input vector with time lag 14 from the series?, i.e.
there are 65 weights.

The results from the in-sample fitting and out-of-sample forecasts are given in Ta-
ble 4.5 and the computational costs of training are given in Table 4.6. The plots of the
out-of-sample forecasts and errors are shown in Figures 4.7 and 4.8. The RBLM-RNN

2After multiple trials, it was found that it was necessary to include two weeks of past data in the input
window to achieve accurate predictions. This is possibly due to a weekly seasonality effect in the electricity
series.
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Figure 4.5: Plots of the errors on the Laser time series for all models considered in the
study. The errors are for the one-step-ahead out-of-sample forecast.
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Figure 4.6: In-sample fit of all models on the a segment of the Nordpool electricity price

series.

78




e RELMRNN
404 —85% Cl
— Target

Price (Euro/MegaWatt hour)

T T T T T
670 675 680 685 690 695 700

Day
Figure 4.7: A one-step-ahead out-of-sample forecast and confidence intervals of the Nord-
pool electricity price series. The plot here shows the RBLM-RNN performance in fore-
casting a segement of the unseen data.
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Figure 4.8: The graph above shows the plots of the out-of-sample errors for all models
considered in this study evaluated on a segment of the unseen data.
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does not seem to fit the noise too severely in this series as it does not show the lowest
training error, however the RBLM-RNN performs best on forecasting. It seems that the
Bayesian modeling of the noise characteristics as well as the Bayesian tuning of the regu-
larization hyperparameters may have reduced the overfitting in the training phase. With-
out Bayesian regularizaticn, the MLP-EKF, RNN-RTRL and RNN-EKF seem to overfit
the training series because they achieve very low training error, but very high prediction
error. The MLP-BLM is second best after the RBLM-RNN. The model with the lowest av-
erage (mean) number of epochs to convergence in this experiment was the RBLM-RNN.
Again the mean training time for the RBLM-RNN was lower than that of the RNN-EKF
and RNN-RTRL training algorithms.

4.7 Conclusion

The development of Bayesian regularized neural models has led to three key contribu-
tions. First it was found that Bayesian regularization for recurrent neural networks is
an effective means to control model complexity by automatically selecting model hyper-
parameters without the need for cross-validation or boot-strapping. Second, through the
use of automatic relevance determination by providing one regularization hyper-parameter
for each weight, sparse recurrent neural models have been achieved. Lastly, via the ex-
tended Kalman filter, the direct computation of the hessian has been avoided for the
Bayesian regularization of recurrent neural models. Experimental findings on standard
benchmark time series, Mackey-Glass and sun spots, show significant improvement in
prediction accuracy and reduction in network size over the control group (MLP-EKF,
MLP-BLM, RNN-RTRL, RNN-EKF).

Overfitting has stood in the way of well generalizing recurrent neural models for time
series prediction. This chapter presented an approach to addressing this problem through
a probabilistic recursive training algorithm for dynamic recurrent neural models which
features a sequential approach to regularization in the Bayesian framework. This approach
is unique from previous attempts to regularize RNNs in the sense that the regularization is
carried out sequentially over the training data. The advantage of this is that over large data
sets, ill conditioning of the Hessian matrix is avoided. This chapter has demonstrated that
the sequential Bayesian regularization of RNNs has led to improvements in prediction

accuracy when processing time series. The presented results are encouraging as they
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show that the RBLM-RNN has the capacity to outperform feed-forward neural networks

and other recurrent networks on dynamic modeling tasks in terms of forecast errors.
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Chapter 5

Sequential Bayesian RNN Filtering

This chapter develops sequential RNN training algorithms following the sequential Bayesian
framework. The Bayesian paradigm is widespread in recursive estimation [12, 82, 109,
175] and some strong proponents of Bayesian theory claim that the Bayesian paradigm
provides a unifying theory of recursive estimation [82]. The Bayesian framework was first
introduced into the field of recursive estimation by Ho and Lee in 1964 [82]. Since then
the Bayesian view of recursive estimation has grown immensely and is well accepted in
the literature [11, 56, 108, 175, 198]. In the Bayesian view, the desired quantity of interest
is the posterior conditional density of the system state given the measurements. As new
measurements arrive, knowledge about the posterior is recursively updated.

The sequential Bayesian estimation framework have been found to be highly effective
for training RNNs [26, 78, 103, 126, 155, 165, 171, 173]. This is due to the regular-
ized second-order optimization properties of the sequential filtering framework. During
the optimization, the filter minimizes a penalized cost function, which implicitly applies
regularization during training [9]. An added benefit of sequential Bayesian filters is the
adaptive learning rates individually tuned for each weight. These learning rates are com-
puted in the Kalman gain [189]. Although these methods are second-order optimizers,
they compute suboptimal posterior estimates of the RNN weights which turn out to be
beneficial to RNN training as they discourage overfitting of the training data [9]. Finally,
the filters are sequential so they are less likely to get trapped in local minima [9].

There has been extensive research done in training RNNs with sequential Bayesian fil-
ters [9, 23, 78, 170, 171]. The first work was proposed by Puskurios and Feldkamp [172].
This work showed that the Kalman filter trained RNN can significantly outperform gradi-




ent based methods. Other work by Haykin [78] explored how the filters can learn complex
chaotic dynamics and was suitable for reconstruction of nonlinear dynamical systems.
Further work was done on modeling time varying systems [87]. Various filters in the
Kalman filtering class have been proposed, including the Uncented Kalman Filter [27],
and the Cubature Kalman filter [9]. It was shown that each filter has its own characteris-
tics and improvements can be made from using more “advanced” filtering methods than
the standard extended Kalman filter. This is generally due to the various ways nonlinear-
ities are handled in each filter. One of the main limitations to the original Kalman filter
is the problem of divergence during situations of high nonlinearity [78, 156, 157, 172].
These problems can usually be traced to improper linearization which biases the posterior
estimates of the RNN weights, or the use of incorrect noise covariances (noise covariance
estimation is addressed in Chapter 6).

Improvements have been reported through the use of filters that avoid first-order ap-
proximation of the RNN [78, 156]. However, solutions that have been proposed have a
significant drawback, the computational cost of training. This chapter explores various
alternatives to the leading filtering algorithms for training RNNs. It proposes the SEEK
filter as a method to reduce divergence [166]. However, this method relies on first-order
linearization of the RNN, which carries a large computational burden. To remedy this
problem, a training method based on Monte Carlo sampling is proposed, which avoids
the need for computation of the derivatives all together [134, 136]. Although it may seem
that Monte Carlo methods may negate this savings from avoiding derivative computation,
it turns out that the filter maintains a population of samples whose statistics alleviate the
need for the direct computation of the covariance of the errors, which results in a drastic
reduction in computational complexity. This method of computationally efficient online
Monte Carlo RNN training was pioneered by the author in [134, 136]. The achievements
are a reduction in computational complexity for online training of RNNs and an improve-
ment in out-of-sample forecasts.

These methods are evaluated in terms of how well the filters are able to produce well
generalizing models (i.e. out-of-sample forecasts), as well as a reduction in the compu-
tational burden of RNN weight estimation. The next section provides an overview of the
theory of sequential Bayesian filtering, which is followed by a derivation of the closed
form solution to the discrete time linear optimal filtering problem, which is known as,
the Kalman Filter. Then, novel non-linear sequential Bayesian filtering algorithms for

training RNNs are presented.
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5.1 Sequential Bayesian Inference

The objective of the sequential Bayesian inference in RNN training is the computation
of the posterior probability of the RNN weights, which is a combination of information
about the RNN weights before new measurements are obtained, and information from the
newest observation [12, 93, 175]. Computation of the posterior corresponds to inverting
a noisy sequence of observations {d;,...,d;} to infer the system state, which for RNN
training corresponds to estimation of the RNN weights {wy, ..., w;}.

A naive solution to the inverse problem of finding the weights given the observations
would be to plug the distribution of the weights p(wq) = p(wy,...,w;) and the joint
distribution p(dy.;|wo.) into Bayes rule

di,....d R
p(wU:'-'iwtldl:"'ad-ﬁ) :p( L ? £|WO’ ’Wt)p(wm 1w£)
p(d], b ¥ ,dt) (51)

O(p(dlu 1dt|w01‘ g2 wa)p(wﬂr' ' :wf)

which results in the posterior density of the weights given the observations. The density
of the weights p(wo.), known as the prior density, provides information about the weights
before the observations dp.; are obtained. The information from the observations d,.; are
implicitly contained in the likelihood density p(dy.|wg.;). The combination of these two
densities via Bayes rule leads to the posterior p(wg.|do.;). In theory this formulation will
work, but in practice, for online applications, the computations will grow unboundedly.

Rather than computing the full joint distribution of the entire history of the RNN
weights (i.e. Equation 5.1), given the data, it is much more efficient to compute what is
known as the filtering distribution [93]

p(“’z|d1:t) (3.2)

which uses constant computations per time step, allowing for realtime online filtering. To

do so, the discrete-time state space framework is generally employed [56]:

Wy ~ p(Wewi_1) (5.3)

dy ~ p(di|w;)
where w; € R™ is the weight vector of the RNN, which corresponds to the state of the
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underlying system at time step ¢, and the observations are d; € R!. The RNN weight tran-
sition dynamics is assumed to be governed by a first-order stochastic process represented
by the probability density p(w;|w,_;). The measurement model p(d,|w,) is a functional
relationship between the state and what is observed. This relationship is stochastic in the
sense that there could be a distribution of possible values for any given state.

This state space framework relies on the Markov properties of the state process which
assumes that the sequence of RNN weights {w; : t = 1,2,...} forms a Markov chain.
This implies that the current RNN weight vector w; and any other weight vector in the fu-
ture (i.e. Wyy1, Wypo,...) given the past weight vector w,_; is independent from anything
prior to that:

P(Walwl:f—hdt;s—l) = p(w;|wi_1) (5.4)

Furthermore, the probability distribution of the RNN weight vector w, given the previous
weight vector w,_1, i.e. p(w;/w,_1) is conditionally independent from all other weight
vectors in the past p(w;|wy,_1) = p(w;|w,_1). The probability density function (PDF) of
the RNN weight vector, p(wg.;), can then be written as
11
p(wo, .., wi) = p(wo) [ [ p(wilwi1) (5.5)

i=1

It is also assumed that the measurements d, are conditionally independent of the previous

weight vectors wy,; and also of the previous observations d.;_;
P(dt|W1;t=d1;1—1) = P(dt|wr) (5.6)

hence, the joint distribution of the observations given the RNN weights is given by

l
p(dy, ..., di|wo, ..., W) = p(do|wo) H (di|w:)
, Bt 5.7)
= p(do) [ [ p(dilw)
i=1

The recursive filtering framework consists of applying Bayes rule and marginaliza-
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tion [12, 175]. Starting with the initial prior defined as

___ pldo|wo)p(woldo)
P{Woldo) [ p(do|wo)p(woldo)dwg
_ Pldo)p(wo) (5.8)
p(do)

= p(wo)

recursive calculations are possible given the transition probability function, p(w,|w,_1),
the likelihood density which contains previous knowledge of the system p(w;|d;,_,), cur-
rent information of the system p(d;|w; ), and the initial prior p(wy). With these quantities,
the joint density of the RNN weights given all measurements from zero to time ¢ can be
computed via Bayes rule

p(dyldy—1, W )p(Weldy4—1)

pPlw d @) =
( tl 1t) p(df'dl:i_]) (5 9)
_ P(d.z|Wt)P(Wt |d1:z71) '
p(dt|d1:t—1)
where the measurement update is computed by
pldidy—1) = /P(da|wt)]9(wz|d1:c—1)dwr (3.10)

Based on the Markov properties in Equation 5.4, the effect of each time step is given by

P(Wt, Wi_1 [dl:tfl) = P(Wt|Wz—11d1;t—1)P(Wt~1|d1:571)
(5.11)

= p(wtlwt—l)P(thI |d1:t—1)

Where integration with respect to w,_; gives the well known Chapman-Kolmogorov time

update equation

P(Wz.|d1.-t—1) = fp(wt|wz—1)]9(wt—1|d1;a—1)th—1 (5.12)

Equations 5.9, and 5.12 are recursively iterated to compute the posterior RNN weight
update p(w;|d1.). To see this, consider the posterior as the time step advances: i.e., the
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current posterior becomes p(w;_;|d;,_;). This quantity is advanced forward in time via
the Chapman-Kolmogorov equation, Equation 5.12. Then, after receiving a measurement
dy, the likelihood (computed via Equation 5.12) can then be fed back into Equation 5.9 to
compute the new posterior. From this recursion, at each time step a pair of distributions
p(wi|dyi.4—1), p(w;|dy.;) are computed each time a new observation d; becomes available.

In practice the weight posterior p(w,|dy.;) is only exactly obtainable for linear Gaus-
sian systems. The most widely known algorithm for computing this exact solution is
the Kalman filter which is discussed in the next section. For nonlinear systems the in-
tegral Equations 5.10 and 5.12 have few closed form solutions and approximations need
to be made. Approximation techniques discussed in this chapter include linearization

(discussed in Section 5.3), and Monte Carlo approximation (discussed in Section 5.5).

5.2 The Kalman Filter

The well known Kalman filter [93] provides a solution for linear systems of the kind:

di = 9w, + vy, v, ~ N(0,R) measurement equation, (5.13)
W, = FW,_1 + wy, w; ~N(0,Q)  process equation (5.14)

where $) is the measurement matrix that maps the state vector w; to the observations,
R is the measurement error covariance matrix, Q is a noise covariance matrix, and §
represents the system dynamic matrix, which from here on is assumed to be the identity
matrix as is the norm for neural network training [78].

In a sequential setting the observable and the state are time variant, where d;., =
[dy,...,d;] and wo; = [wo,...,w]. It is assumed that the conditional probability of
the weights given the observations is normally distributed with mean w{ and covariance

matrix Pf

1
p(wildis 1) ~ N(w/,Pf) < exp [— 5 wl)T(P])™ (w, — W{)} (5.15)

P

The Kalman filter can be expressed in two stages. The first stage is known as the forecast

stage, in which the forecast state is given as follows:

W =w, (5.16)
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For the purposes of this thesis, it is assumed that ¥ is the identity matrix and thus is
dropped from the notation. The forecast error-covariance at the time ¢ is provided next.
The correlation coefficient between w; and the system noise, w,, is assumed to be zero
mean and hence E [(W? = wt)w?] = 0. Using this assumption and further simplification

the analysis-error covariance is given as follows:

Pf =F (W{ = Wt)(wfr — wt)ﬂ
= B| (Wi — Wimt —w)(Wiy — Wiy — )]

=E :((w‘?—l — W) —w){(Wiy — W) — w)T] (5.17)

=K _(W?71 — wf.—l)(“"?—l = W_g_l)T] + Q

=P, +Q

The second stage is known as the analysis stage, where the analysis state update, w?,
and the analysis error-covariance, Py at the next times step, {, are derived. It is also
assumed the observations follow a normal distribution with a mean d, and covariance R.

p(di|w;) ~ N(d;, R) x exp { = %(ﬁw,, —d)"R Y (Hw, — dt)] (5.18)

where $) is the linear operator linking the state of the system to the observations.
Bayes’ rule specified in Equation 5.9 is then applied the to Equation 5.15 and Equa-
tion 5.18 resulting in the posterior distribution
(we = wi ) (B) 7 (w0 = wf) = S(Sw, = d) R (Sw, — )]
(5.19)
The maximum of the Equation 5.19 corresponds to the minimum of the negative log of

b~
B

P(Wt|d1:.{) = exp [—

the cost function C'(w;), where the cost function C'(w;),is defined as follows

Clwi) = < [(we — w))T(®]) 7 (w, — w)) + (9w, — d)" R~ (Hw, — dt)] (5.20)

R

The second term (5w, —d;)" R~' ($Hw; —d,) can be thought of as the sum of squares error
measure. The first term (w, — w/)T(P{)~1(w, — w/) can be interpreted as a regulariza-

tion term which provides a distance metric between two RNNs models via the “weighted
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Euclidean distance between their corresponding weight vectors” [9]. This regularization

property holds for all sequential Bayesian filters discussed in this thesis.
aC (we)

The analysis weight vector, w{, is a solution to Tvt|w¢=w? = 0, which implies that
1
P/ (W —w)+ 9 TR (Hwi —d,) =0 (5.21)
and
wi =P/ + 9 R %) [(P))lwl + ﬁTR—ldt} (5.22)

Via the matrix inversion lemma [66] the Kalman filter state update equation and Kalman

gain can be expressed as follows [56]

K, = P/5"(®HP/H" + R)~! Kalman gain (5.23)
we = wl +K(d, — Hw/)  analysis update (5.24)

The accuracy of the prediction of the analysis state, w¥, using Equation 5.24 depends
on the accuracy of the forecast-error covariance, Ptf , and the observation covariance, R.
Equation 5.24 shows how the optimal analysis state w{ is estimated. This is simply a
correction of the forecast w/. The prediction error weighted by Kalman gain, K;(d; —
$w]), is used to correct the forecast state, w/ . The analysis-error covariance P} is derived

in the following equations. The definition of the analysis covariance is
P} = ]E[(wt —wi)(w, —w)T (5.25)
By using Equation 5.13 and Equation 5.22 the following holds [92]

w,—wl=w, —w/ —K,(d, — 5w,
(5.26)
= (I-KH)(w, —wf) - Ky,

It is assumed that the observation and forecast errors are uncorrelated and hence, E {(wt —

w{ ik ] = 0. Using this assumption and further simplification via substitution of Equa-
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tion 5.26, the analysis-error covariance, P} can be written as follows

P = E|(w, — wi)(w, - w))"]

=E [(1 — K H)(w: — w)(w, — w1 - K. 9)T + KvpJ KT
(5.27)
= (1-K,9)P{(1-K$)+K,RKT

=P/ - K 5P/ — (K.HP)" + K, (HP/ 5T + R)KT

Simplification through the use definition of the Kalman gain K, from Equation 5.23, the

analysis covariance can be written as

P; =P/ — P{5T(9P{ 9T + R)"'HP/
(5.28)
= (I- K. 9)P{

which is the well known update formula for the analysis covariance.

5.3 EKEF Training of Recurrent Neural Networks

The Kalman filter is a popular recursive Bayesian state estimation algorithm which pro-
vides the optimal estimate in a minimum variance and maximum likelihood sense, as-
suming linearity in the process and measurement equations and Gaussian noise terms. In
situations with nonlinearity in the state space equations, the EKF [93] has been proposed
as a Kalman filter extension to nonlinear systems which provides a suboptimal estimate.
For EKF training of RNNs (or more generally for Sequential Bayesian training of RNNs)
the RNN is expressed compactly by the functional form

Yo = h(w;,uy) (5.29)

where w, € R™ is the RNN weight vector and u; € RE is the input vector to the RNN.
The outputs of the RNN a scalar quantity y;. This formulation of the RNN facilitates
treatment of the RNN in state space form for sequential Bayesian estimation of the RNN
weights.

To achieve sequential Bayesian training, the RNN weights w, are modeled as a stochas-
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tic process which allows for modeling with uncertainty in their estimate. From this as-
sumption it is then possible to write the state space model of the RNN training problem

as follows

dy = h{w;,0) + vy, v ~N(0,R) measurement equation, (5.30)

W, = Wi + wy, w; ~ N (0,Q) processs equation (5.31)

The weights w; follow a random walk, where the stochasticity originates from the random
variable w,; which is normally distributed with covariance matrix Q. The RNN h(w,, u,)
represents the nonlinear measurement function with output y, that maps the process equa-
tion (Equation 5.30) to the measurement. The desired output d; is taken to be the mea-
surement with zero-mean Gaussian noise v, with variance R. The sequential Bayesian
framework uses the state space model defined in Equations 5.30, 5.31 to infer the weights
W, given measurements d;.

The Kalman filter can not be applied to the nonlinear state space model of Equa-
tions 5.30, 5.31 due to the nonlinearity of the RNN, i.e., the measurement function is
now h(w;,u,) rather than the matrix $3. A simple solution to this problem is to use lin-
earization techniques to make the nonlinear state space model approximately linear. The
process of sequential linearization of i(w;, u;) leads to the well known extended Kalman
filter, which has been found to provide successful results via RTRL [23].

After linearization of the measurement operator (the RNN) around the most recent
weight estimate, the Kalman filtering equations can be applied to update the RNN weights
in two phases, the forecast stage and the analysis stage. In the forecast stage the weights
and covariance are propagated forward in time. In the analysis stage the RNN weights

and error covariance are updated in light of the newly arrived measurement.

The forecast stage: It is again assumed the observation and forecast errors are un-
correlated and hence, E[(w{ — w,)w{] = 0. By applying Equation (5.16), the forecast
error-covariance is derived in the same way as in Equation (5.17)

Analysis stage: In the same way as in the case of Kalman filter, the analysis state and

error-covariance are given as follows:

91




The analysis state

w® = w/ +k(d, — h(w/ u,)) analysis update (5.32)
k, P/jr(j,P/jT + R)~! Kalaman gain (5.33)

where j, is the gradient of the measurement (which is defined in Equation 3.31), A(w/ , u,),

around w{ . The Kalman gain vector is k, and the analysis error-covariance is given by

P? = Ptf - P{Jtr(.ltptf.]? + R)iljaptf
(5.34)
= (I - ktjr.)P{

This process is repeated each time a new data point is received. The EKF has become the
standard algorithm for online training of RNNs [23, 78, 171, 172]. However, the algo-
rithm relies on linearized estimates of the nonlinearities computed via differentiation [78].
Biases and/or errors from the linearization process have the potential to deleteriously af-
fect covariance calculations leading to a degradation of filter performance [12]. This may
cause the filter to diverge during situations of high nonlinearity, leading to biased esti-
mates of the RNN weights [187].

5.4 Singular Evolutive Extended Kalman filter

Although the Kalman filter has been effective in sequential estimation, divergence can be-
come a problem in situations of high nonlinearity [157]. The Singular Evolutive Extended
Kalman filter (SEEK) [166] has been shown to outperform the EKF in various estimation
tasks. The SEEK filter assumes that the error-covariance matrix, P, is symmetric with
real entries. The SEEK algorithm decomposes P into a real orthogonal, matrix L such
that U = L"PL is diagonal. As L is orthogonal the matrix P can be rewritten as follows:

P=LUL" (5.35)
At the beginning of training the initial matrix Uy is defined as

s = [Lif B0 (5.36)




in which the decomposition of the covariance P leads to the m x m diagonal matrix U
which contains the eigenvalues.
The initialization is based on the first observation dy, in which the initial weight vector
is computed via:
wi = wo + LoUpLg jo By (do — h(wo, ug)) (5.37)

From this point on, the EKF analysis equations are slightly modified to reach the SEEK
filtering algorithm. The main objective of the filter for training RNNs is to compute the
quantities w* given w/ and the observations. The gain k; is the vector that scales the
update of the analysis weights against the error committed by the RNN,

As in the Kalman filter, the new observation d, at time ¢ is used to correct the forecast

according to:
wi = w] + Kk(d, — h(w{ u)) (5.38)

However, the gain k;, is expressed much differently from the original Kalman filter, as
k, = L,U,LTjT R™1 (5.39)
where L, = L;_; and Uy is defined as follows:
U;' = plUZY, + (LTL,) 'LTQL,(LTL,) ™Y~ + jTLTL Y, L.. (5.40)

where j, is the RTRL gradient defined in Equation 3.31 and 0 < p < 1 is the forgetting
factor.

The SEEK filter has been shown to be effective for state estimation of complex non-
linear high dimensional models in oceanography [166], as well as improved performance
over the EKF for training RNNs [157]. A useful feature of the model in the climate sci-
ences community is that the filter can be run in reduced rank, which can save a significant
amount of computations during state estimation. However, the reduced rank estimation
was found to degrade RNN prediction performance during training, so the filter has only
been run at full rank of the covariance matrix.
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5.5 EnKF Training of RNNs

The Ensemble Kalman Filter (EnKF) [47] has made a great impact for data assimilation
of highly nonlinear large scale models [48, 97]. This section focuses on the ensemble
filtering approach for estimation of RNN weights for online time series modeling. The
ensemble Kalman filter (EnKF) was first proposed by Evensen [46] for estimation in dy-
namical systems. The EnKF takes a unique approach to filtering by using an ensemble
forecast to approximate the error covariance matrix P/, and the estimate of the state [47].
The distinguishing feature of the EnKF is that it avoids the computation of the derivatives
of the observation function h(w,,u,) altogether. The EnKF approximates the integrals of
the distributions of interest by discrete summation, thus computing efficiently their mo-
ments, which results in a reduction of computational complexity. The proposed algorithm
has superior convergence properties to gradient descent learning and EKF filtering [136].

The main difference between the EKF and the EnKF is that the EKF approximates the
nonlinearity of the underlying system through linearization via differentiation, whereas
the EnKF represents the system nonlinearity through integration of a statistical sample
of weight estimates. The sample, or ensemble, is used to compute the error covariance
which leads to computation of a single Kalman gain. The Kalman gain is then used to
update the statistical sample (ensemble) in the analysis step. There is a second benefit of
using an ensemble; namely reduced computational complexity. The EnKF has the most
favorable computational complexity of all online training methods for RNNs [136]. A
major savings comes from the absence of a separate covariance matrix to be evolved and
updated. Another major savings comes from the use of the full nonlinearity of the model
which circumvents the need to compute derivatives of the RNN.

The algorithm starts by randomly generating an ensemble of plausible weight vec-
tors within a predefined interval. The initial ensemble contains a number of independent
weight samples from the distribution of the state which are all equally important:

W{ = [w.{,lﬂ W{,ZZ) X :w{,n] (5.41)
where W/ € R™") in which there are n samples in the ensemble, and m number of

RNN weights. The EnKF does not resample the ensemble, rather it only updates the

members of the ensemble (weights) after the arrival of new information.
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Each ensemble member is accessible via the operator W/ (f) = Wt; The ensemble

forecast is defined as y, ; = h(W/ (4), u;) where the forecast vector is is given by

Y. = [yf-,lu Yiay. .. :yt,n] (542)

Statistics of the ensemble can be computed via simple operations. The most useful are

the mean, which is computed by
of, 1 !
W = — E Wi, (5.43)

To simplify notation, it will be convenient to introduce the ensemble perturbation matrix

s f 1 _ -
Wt:—n—l(w{]—w{,wﬁg—w{,...,w,{ —w{) (5.44)
—

The error covariance matrix of the ensemble is then computed as

P -
P/ = W, (W,)" (5.45)
Restating the definition of the Kalman gain from the EKF:
ke = P/ji (P + R)™ (5.46)

Assuming the derivative j, was available, then each weight vector in the ensemble could
be updated through this equation as in the standard EKE. However, it is costly to compute
J; (with RTRL). Alternatively, the statistics from the ensemble can be used to compute the
Kalman gain, which alleviates the need for linearization with the Jacobian i J

This can be achieved by first, computing the mean of the predicted outputs by

1 n
= —'n 1 Z h(W,{i,u.[) (547)
’ i=1
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and then computing the following covariance matrix and variance by

n

wi 1 — — B
p/Y = D oW =) (e — )" (5.48)

n
Y 1

Y= —= (i = T)(wei — )" (5.49)

n

=1
This covariance matrix and variance may be considered as approximations of the corre-
sponding quantities in standard filters

p:Y ~ P, (5.50)
and
pf¥ =~ jTPj, (5.51)

The advantage of computing these quantities through the ensemble is the ability to ap-
proximate the Kalman gain without resorting to the use of numerical derivatives [47].
This allows the gain update to be computed by the standard Kalman equation

k, = P/if (i,P/i’ + R)™
(5.52)
~p'(R+p}")!

where R is the output noise variance.
Then the updating of the individual weights in the ensemble is carried out by adding
the newly arrived observation to this ensemble mean via the Kalman gain

Wi =W +k(d, — h(W/,u,)) (5.53)

where Wy denotes the mean of the posterior p(w,|d,).

5.5.1 Computational Complexity of RNN Ensemble Filtering

The standard approach to online training in RNNs entails computation of the gradient
of the error function with respect to the weights via the RTRL algorithm [228]. The
RTRL algorithm takes O(H*) computations (where H is the number of neurons), which
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Computation Cost
yii = h(Wl (@), u) Vi | O(n)
Yy O(n)
Yii — Ty Vi O(n)
p’ O(n)
(B+p")"" O(n)
k, O(n)
W O(mn?)

Table 5.1: The table provides the number of computations for each step of the algorithm.
The computational complexity depends linearly on the number of RNN weights m and
quadratically on the number of samples in the ensemble n [125]

is impractical for training large networks'. Various methods have been proposed to speed
up online learning of RNNs, but usually with a tradeoff.

One of the first approaches to complexity reduction was through a modification of the
RTRL algorithm which proposed sub-grouping each output neuron together with an arbi-
trary number of neurons in the hidden layer [233]. Through this strategy, non-overlapping
sub-networks were effectively created, leading to drastic savings in computations in the
order of O(H*/g*), where g denotes the number of sub-groups. However, as g increases
a tradeoff is incurred; less crossover of training information flows between the sub-groups
resulting in a significant degradation of the network’s capabilities.

Other variants of the algorithm were proposed, such as dynamic sub-grouping [45],
but again the algorithm relies on arbitrary reduction in the sensitivity matrix which also
degrades the networks modeling power when sub-grouping increases. The most promi-
nent limitation of the sub-grouping strategy is the assumption of multiple output neu-
rons. When applied to single output systems, such as univariate time series modeling, the
sub-grouping strategy is not valid for online applications, and a post processing stage is
necessary.

A Hybird BPTT/RTRL scheme has been put forward by [188], which reduced the
computational complexity to O(H”). The method relies on segmenting the training set
and running back propagation through time on each segment and then using RTRL to for-
ward propagate the gradient history before the start of the next time step. Other methods
that similarly reduce computational complexity to O(H?) have been proposed by [202],

'The literature has “traditionally” stated the computational complexity of RNN training algorithms in
terms of the size of the Hidden layer. The relationship between the number of weights m and the size of the
hidden layer H is m ~ H?
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which make use of Greens function. A common thread through all work mentioned is
estimation of the RNN weights through differentiation (i.e. previous work focused on
finding efficient ways to compute the derivatives of the RNN).

The EnKF trained RNN takes a different approach to complexity reduction in on-
line learning of RNNs through a sequential Bayesian filtering framework and proposes
a Markov Chain Monte Carlo approach for derivative free RNN weight estimation. The
key difference of the proposed approach is estimation of the RNN weights via integra-
tion, rather than differentiation. The EnKF provides an online training solution that can
reduce the computational complexity by two orders of magnitude from the original RTRL
algorithm without sacrificing the modeling potential of the network [136].

The extended Kalman filter (EKF) [172], and the sigma-point (unscented and central
difference) Kalman filters (SPKF) [27, 51, 170] have been proposed as online training
algorithms for RNNs. Although the filtering techniques offer superior convergence prop-
erties to gradient descent, the computational complexity per time step for the EKF is
equivalent to RTRL (and it also depends on RTRL derivatives). The SPKF family has
computational complexity of approximately O(H®), which is much higher than RTRL,
and that is why they are not discussed further.

The RNN-EnKF provides a theoretical computational complexity of O(n? H?) where
n is the ensemble size [125, 150]. The computational computational complexity of each
operation is provided in Table 5.1. The parameter n is treated as a constant, in the sense
that the parameter n typically varies from 20 — 200 depending on the problem (for data
assimilation in high dimensional problems) [124]. The experimental results show that n
can be set to 20 and really does not improve the forecast errors (i.e. accuracy of the model)
much beyond 20 (for online learning). It was suggested that the ensemble size may have
dependence on the dimension of the attractor of the system that is being modeled [141,
142], and not necessarily a function of the number of free parameters of the model. This
relationship is not fully understood, so a graph of the ensemble size vs number of neurons
vs model error for one epoch is provided in Figure 5.1. The plot suggests that low model
errors are achievable with small ensemble sizes. Lower errors are possible if the filter is
run for multiple epochs. As the ensemble size n is treated as a constant®, the theoretical
time complexity of the algorithm with respect to the amount of neurons is approximately
O(H?). At the time of publication of this Thesis, there is no online training algorithm for

*Assuming that 72 is constant, its contribution to the growth in computations is linear, and is dominated
by the higher order term / and is thus disregarded.
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RNNs with a lower computational complexity. In the following sections, the performance
of the proposed algorithm is evaluated.

MSE
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Figure 5.1: Neurons vs Ensemble Size vs MSE obtained after one pass over the data,
averaged over 100 runs. Each color band indicates the expected MSE for a range of cor-
responding network configurations. For a given computationally feasible network con-
figuration the plot suggests to use an ensemble size of 20 in order to achieve reasonable

MSE values. The plot also shows that large ensemble sizes do not necessarily lead to low
MSE values.

3.6 Experimental Results

The objective of the presented work is to develop computationally efficient methods for
sequential training of RNNs for use on time series modeling. To provide a comparison of
model performance in terms of computational cost and accuracy, several popular learn-
ing algorithms for recurrent networks are compared; the RTRL algorithm [228], and the
Extended Kalman Filter for RNNs (RNN-EKF) [23].
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Studies into time series modeling and forecasting were carried out using two real
world data sets; the first are measurements of the volume of the Great Salt Lake, and
the second are hourly averages of the electricity spot prices in the Spanish market. The
Salt Lake volume series consists of 3463 average measurements of the lake volume, from
which the first 3000 measurements are used for training. The Spanish electricity spot
price series consisted of 1152 hourly averages of electricity spot prices corresponding
to 48 days. In section 5.5.1, it has already been established that the proposed algorithm
has a lower theoretical computational complexity than the existing methods for on-line
training of RNNs. However, lower theoretical complexity does not necessarily mean
a faster training algorithm in practice. The following experiments assess the speed of
the algorithm in terms of CPU time on practical on-line time series forecasting tasks.
For these experiments, 7 error thresholds in units of MSE were selected in the range
of [.01,.007] and the algorithms were timed to reach these thresholds. The simulations
were repeated 50 times at each threshold starting from different initial wight vectors,
and the averages were plotted. All simulations were carried out on a Pentium-4 3.6-
GHz, 1024-MB RAM workstation. Also the suitability of the algorithm in batch training
mode for forecasting out-of-sample (i.e. freezing the weights after training and predicting
one step ahead over a predefined future unseen interval) is assessed. Below, the results
on the average convergence times, in-sample performance (fitting), and one step ahead
forecasting on the out-of-sample segment are reported. Forecast errors are measured by
the root mean squared error (rMSE) computed by rM SE = ((1/(T)) S, (dy — y,)2)'/2,
where T is the length of the data sample. In all simulations, the weights of the networks

were initialized with random uniformly distributed weights in the range of [—2, 2].

5.6.1 Modeling the Volume of the Salt Lake

The volume of the Salt Lake in Utah, USA, has been used as a proxy for climate variability
in the region as the much of the regions precipitation collects into the lake basin. The Salt
Lake has a length of about 113km, a width of about 48km, and an average depth of 5m.
This large surface area and shallow depth make the lake volume sensitive to changes in
the climate. The average volume of the Salt Lake was shown to be chaotic [3], which
provides an interesting test for the models.

For this application, all the recurrent networks were initialized with 3 hidden neurons,
one input and one output neuron. The RNN-EKF, RNN-SEEK, and the RNN-EnKF filter

=

was initialized with 12 set to 1.0e™”. The diagonal elements of Q in the RNN-EKF, and
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Computational Cost of RNN Training on the Salt Lake Data Set
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Figure 5.2: Convergence performance of the three online training algorithms applied to
the Elman RNN on the Salt Lake data set.

RNN-SEEK were set to 1.0e™. The learning rate for the RNN-RTRL was set to .05. The
computational cost of training RNNs over the Salt Lake data set is provided in Figure 5.2.
The plot clearly illustrates that for relatively high error tolerances, the RNN-EnKF is
much slower than the RNN-EKF, RNN-SEEK, and the RNN-RTRL al gorithm. However,
when a low MSE is required, the RNN-EnKF is the fastest because the other algorithms
take significantly more epochs to reach convergence than the RNN-EnKF. The the average
mse/epoch for all given algorithms is provided in the second column of Table 5.2. On
average the EnKF achieved lower average epochs to reach convergence than the other
algorithms which suggests that the RNN-EnKF is more suitable for online learning than
the RTRL, SEEK and EKF algorithms. As stated above, a small network size was used for
the simulations, due to the practicality of completing the simulations in a timely manner.
The small network size favors the RNN-RTRL and RNN-EKF algorithms, however the
RNN-EnKF still managed to converge the fastest when high accuracy was demanded.
The numerical results of the out-of-sample forecasts of the studied algorithms on the
Salt Lake data set is provided in Figure 5.3. The third and fourth columns of Table 5.2
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Forecasts of the Salt Lake Data Set
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Figure 5.3: Out-of-sample predictions by the RNNs (given by the network output y;) on
the average volume of the Salt Lake (which corresponds to d;), where each time step is
15 days.

summarize the forecasting results for single step ahead model fitting and prediction on
the Salt Lake data set. The in-sample performance of EnKF, EKF, and SEEK algorithms
show quite similar ability to fit the in-sample data. However, in out-of-sample forecasting,
the EnKF-RNN outperforms the other recurrent network training algorithms including the
recurrent network trained by the EKF, SEEK, and the gradient descent RNN algorithm.

Table 5.2: Experimental Results on the Salt Lake Data Set

Model Mean (Stdev) Epochs | tMSE(training) | tMSE(zresting)
RNN-RTRL 346.8 (173.8) 1.834e5 5.277e5
RNN-EKF 12.4 (6.4) 1.931e5 2.341e5
RNN-SEEK 11.6(5.9) 1.920e5 2.193e5
RNN-EnKF 3237 1.917e5 2.035e5




Computational Cost of RNN Training on Spanish Spot Prices
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Figure 5.4: Average convergence times of three online training algorithms applied to the
Elman RNN evaluated on the Spanish electricity spot price data set.

5.6.2 Modeling Electricity Spot Prices of the Spanish Market

The second study investigates the performance of the proposed model on forecasting
hourly prices from the Spanish electricity market. Here the hourly spot prices recorded
from June 26, 2008 to August 31, 2008 are considered, from which the first 48 days (June
26, 2004 to August 12, 2004) were used for training and the remaining two weeks (August
13, 2004 to August 26, 2008) were used for out-of-sample forecasting®.

The RNN-EnKF and the other recurrent networks, RNN-RTRL, RNN-SEEK and
RNN-EKF, were initialized with 3 hidden neurons, and one input neuron and one output
neuron. The initial diagonal elements of the covariance matrix for Q of the RNN-EKF,
and RNN-SEEK and R for all filters were set to 1.0~ and 1.0e~2 respectively.

A plot of the average training times to reach pre-specified error targets on the Spanish
electricity spot price data set for all algorithms are provided in Figure 5.4. Similar to the
previous experimental section, the RNN-EnKF is found much slower than the competing

3The data is publicly available from www.omel.es
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algorithms when the convergence target is set to relatively high MSE values. As the con-
vergence target is lowered, the RNN-EnKF outperforms the RNN-EKF, RNN-SEEK and
similar to the RNN-RTRL. One should take note that only 3 hidden neurons were used in
this task, and superior RNN-EnKF performance can be expected as the hidden layer is ex-
panded. As in the previous experiment, the RNN-EnKF is able to achieve convergence in
fewer epochs than the other algorithms, and the mean number of epochs for convergence
for a MSE of .009 was 2.4 epochs, as shown in the second column of Table 5.3. The RNN-
EnKF again shows superior convergence properties and also comparable computational
time for training with respect to the RNN-EKF, RNN-SEEK and RNN-RTRL.

Electricity Spot Price Forecasting of the Spainish Market

Price Mw/Hr

5
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Figure 5.5: One hour ahead forecasts results of the considered RNN models on forecasting

hourly average spot prices of the Spanish electricity market (where the forecast is taken
from the output of the network y, and the Target is d;).

The third and fourth columns of Table 5.3 give the experimental results of training
and single-step ahead forecasting on the Spanish spot price series. These results demon-
strate that the RNN-EnKF algorithm performs similar to or outperforms the standard RNN
training algorithms in terms of training and forecasting. A plot of the out-of-sample pre-

dictions are given in Figure 5.5. This plot illustrates improvement in predictive ability
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Table 5.3: Numerical Results on the Spanish Electricity Spot Prices

Model Mean (Stdev) epochs | tMSE(training) | IMSE(testing)
RNN-RTRL 508.7 (950.1) 0.346 0.385
RNN-EKF 21.6 (1.8) 0.344 0.383
RNN-SEEK 17.8 (1.8) 0.341 0.379
RNN-EnKF 2.4 (1.9) 0.336 0.376

through the use of the EnKF over the use of the EKF for training neural networks. Simi-
lar performance was achieved between the RNN-EnKF and RNN-SEEK algorithms.

5.7 Conclusion

Recurrent neural networks are known to be highly powerful forecasting tools, but one of
the largest obstacles to their practical use is the severe computational complexity of their
on-line training algorithms. The research community has proposed algorithms that signif-
icantly reduce the computational complexity for on-line applications, but all algorithms
so far have encountered two main disadvantages; the first being a degradation of model
performance as the complexity is reduced, and second, the algorithms assume the RNN
has multiple outputs.

This chapter reviewed the sequential Bayesian framework as a possible solution to the
costly online RNN training problem. Various sequential Bayesian estimation algorithms
such as the Kalman filter and the EKF are derived and discussed. One of the major prob-
lems of RNN training with the EKF is divergence during situations of high nonlinearity
(as well as the high computational cost of training). The SEEK filter was proposed as
a derivative based method for RNN training that may reduce divergence. However, the
method is based on linearization (RTRL derivatives) which is expensive to compute.

A novel sequential Monte Carlo estimation algorithm known as the EnKF was then
proposed for on-line learning of RNNs. The approach proposed in this chapter circum-
vents these limitations of previously proposed research (decrease in prediction accuracy
as computational complexity is reduced, and assumptions of multiple output neurons)
through the use of Monte Carlo based stochastic sampling. The main theoretical result
is an online algorithm for training RNNs with a computational complexity of approxi-
mately O(H?). Further experimental studies show that in practice the EnKF performance
(in terms of training times, and out-of-sample prediction errors) is superior to popular
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training algorithms such as the RNN-EKF and the RNN-RTRL. These results show that
the proposed online ensemble based training algorithm reduces computational complexity

without sacrificing the modeling capability of the RNN.
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Chapter 6

Sequential Maximum Likelihood

Learning for RNNs

The models discussed in the previous chapter are useful for sequential learning tasks,
assuming a priori knowledge of the noise distributions over the process and measurement
equations. In cases when these quantities are unknown, extensive tuning must take place
or, the hyperparameters may be estimated during the training of the model (the second
approach being more efficient).

This chapter elaborates on a method proposed to overcome the need for a priori
knowledge of the noise distributions when building models from time series data with
RNNs. This is achieved through the use of the sequential Bayesian estimation framework,
and an iterative technique for computing Maximum Likelihood estimates of the models
hyper-parameters, known as the Expectation Maximization (EM) algorithm [192, 193].
The approach capitalizes on the strengths of extended Kalman filtering and smoothing for
dynamic estimation, and the probabilistic iterative parameter re-estimation algorithm for
training RNNs. This approach allows for the estimation of both the model uncertainty
and the noise in the data [192], and was introduced to machine learning in [33, 61]. The
Kalman filter and smoother are utilized for parameter estimation, and the EM algorithm
is used for hyper-parameter estimation. This alleviates the need to tune hyper-parameters
to fit the model as they are adapted in the maximization step, which leads to improved

out-of-sample performance on time series forecasting tasks [135, 138, 139].
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6.1 Maximum Likelihood Learning via

Expectation Maximization

In the Maximum likelihood estimation framework, it is assumed that the data D, =
(uy, d;) are independently and identically distributed (i.i.d.). Given i.i.d. data, the com-

plete likelihood can then be written as

T
L(uy,wa,...,ur,dy,ds, ..., dr|6) o< | [ pldiu,) (6.1)

t=1

where 8 = [R, Q, p, 3] is the vector of the unknown hyperparameters, where R and Q are
the measurement variance and process covariance in the Kalman filter, and g, ¥ are the
initial mean and variance of the Kalman filter. For time series modeling, the observations
may not be be independent, so the likelihood is rewritten as [75]

T
L(u,a,...,ur,dy,da,...,dr|6) [ | pdildii—ruy) (6.2)

=1

In this formulation the probability density function p(d;|d,..—1u,) is written so that the
distribution of d; is now conditioned on the past ;.,_;.

These assumptions are convenient in a computational sense as the mean and covari-
ance of this conditional distribution can be computed via the family of sequential Bayesian
filters, (i.e., Kalman filters) [192].

The innovations form of the log-likelihood function of the parameters w and hyperpa-
rameters & can be written down as [70]

T T
1 -
log L() o 3 ZIOE IR+ P{| - Z(dt - h(wt:ut))T(Ptf + R)"H(d — h{w,uy))

t=1 t=1
(6.3)
The task is then to maximize the log-likelihood through optimization of the RNN pa-

LI =

rameters (weights) and hyperparameters. However the likelihood function is a highly
nonlinear function of the unknown parameters and hyperparameters. To solve for the
hyperparameters @, the expectation maximization algorithm can be utilized [192, 193].
For completeness, the derivation of the EM algorithm is provided following an explana-

tion given in [193]. The framework starts with the indirect maximization of the joint or
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complete data likelihood
L(wl:wﬂa"-aWT:dl:dﬂr"':dTle) (64)

of the observed measurements d1, ..., dy and the unobserved hidden states wy, . .., wy.
In the EM framework, the set of observed measurements d;.r along with the unobserved
hidden states w1, make up the complete data set. The EM algorithm is a general frame-
work for finding maximum likelihood estimates of this incomplete data set. The method
was introduced by Dempster et al. [38] as a unified framework of several iterative proce-
dures proposed by other authors, e.g.[74, 205] as discussed in [107].

The above joint likelihood L(d1.r, W1.7|@) is a function of the complete data set given
the unknown but constant vector of hyperparameters 6. With the RNN weights wy.7
treated as unobserved variables, the log-likelihood function cannot be decomposed any

further. To obtain the marginal probability the following must be solved

log L{dy.7, Wi.r|0) = log/p(dl:Tawl:ﬂB)dWl:T (6.5)

The EM algorithm maximizes the above equation indirectly, through a two step iterative
process. In the first step of the EM algorithm, the RNN weights w,. are estimated given
the current set of hyperparameters € (i.e , the integral in Equation 6.5 is computed). The
second step then estimates the hyperparameters @ ( that were used in the previous step)
given the newly updated RNN weights. Then, the process starts all over again by re-
estimating the RNN weights with the new hyperparameters 6.

Assuming some arbitrary distribution ¢ over the RNN weights w,., the log-likelihood
of the observed data log L(d,,r|€0) = log [ p(dy1.7, W1.7|@)dw,.7 can then be expanded as
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follows:

p(dl:T: WL:T|9)
Q(W1:T|dl:T; 9)
(dir,wi.r|@)

P
> wirldyr,8)In
_/Q( 1'71 LT ) q(W1;T|dl:T19)

= /q(w11T|d1:T:8) lnp(dl:Tywl;Tle)dwl:T (66)

In /P(dl:'mwl:ﬂe)dwlz'r = 111] (I(WI:TldI:TaG) dwyr

dwy.r

- / Q(wl:Tldl:T: 9) In Q(Wl:TldlzT1 B)dWhT

= Fl(q,0)

where in the first line, the likelihood function is rewritten by multiplying by

q(Wrrldir, 8)/q(wir|dyr, 0) (6.7

The inequality on the middle line is Jensen’s inequality [15]. This leads to the lower
bound F(q, ) on the third line, which is just the negative of the Kullback-Leiber diver-
gence [38]. Defining energy as — log p(d1.r, Wi.r|6) and starting with the configuration
{d\.7,W1.r}, then the lower bound is the free energy F(q,8), which is the expected en-
ergy under g minus the entropy of ¢ [149]. The EM algorithm alternates between max-
imization of the lower bound F (g, @) with respect to ¢ and &, holding one or the other
fixed.

Starting with some initial condition for the hyperparameters 6°' = @, the Expectation
and Maximization steps are as follows

T

g"*" = arg max F(q, BOM)
q

(6.8)
BTIE'IL' —y ﬂl‘g H]gx F(q?’lclﬂ? 9)
The Expectation step is maximized when
g (wyr|dyr, @) = p(wr|dr, QUM) (6.9)

At its maximum, the lower bound is F (g, @) = log L(Dr|@).
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The optimum (maximum) in the maximization step, is computed by maximizing

] a(wirldyr, 8) In pldyr, wir|8)dwr.r 6.10)
which leads to

™" = arg Inaxflog])(dlzT: WI:T|9)p(w1:T|D1:T7B)dwliT
0

(6.11)

= arg mng{IOSP(WhT: 631:T|9°M)]

which is the form found in [38] used to describe the EM algorithm. The name of the
algorithm, EM originates from the two step iterative process that is used to increase the
log-likelihood function log L{d+|@), i.e., computing the expectation and then maximizing

the resulting quantity. This process can be summarized as follows:

e Initialization Step: The parameters are initialized and the hyperparameters are set
to 8 = 6.

e Expectation-step: The expectation of the complete data conditioned on the current
values of the hyperparameters 8¢ is computed

Q(6,6"") = E|log p(wi.r, du.r)ldv.r, upr, 6] 6.12)

e Maximization-step: The hyperparameters ™ are solved for such that (8, 6°%)
is maximized
gnew = arg mex Q(8,0"") (6.13)

This is achieved via differentiation of Q(8,8°) with respect to the hyperparam-
eters 8 = [R,Q, i, 2] and solving for the desired quantities. The process then
repeats it self.

The proposed approach for training RNNs follows that of [61, 192] in that the E-step
uses the Kalman filtering and smoothing recursions. In the E-step, an estimate of the
state w given the data dy.7 and hyper-parameters 8 = [R, Q, p, Z] is produced. The
noise hyperparameters R, and Q of the EKF are assumed to be unknown a priori. In the

M-step, the parameters @ are then estimated given the new weight/parameter estimate.
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The M-step uses the likelihood function to solve for the hyperparameters. One of the
beneficial properties of the EM algorithm is that the log-likelihood always increases or
stays constant after each cycle of E- and M-steps [38].

The set of hyperparameters @ is initialized with fixed constant prior values. Via the
Markov properties and independence assumptions introduced in Section 5.1, the joint
likelihood of the data (Equation 6.4) is written as

L(wg,...,Wp,dy,...,dr|0) = p(wor,d.7|0) (6.14)
where the conditional probability can be expanded as [43]:
p(wo.r, do, T|9 p(wo, T|9 dD:T|WO:T;9) (6.15)

The right hand side of Equation 6.15 can be broken down further as

T
p(dD:leO:T:B) — Hp(d'r|w‘r9) (6.16)

and
T
p(wor|0) = p(wo, 6 H (Welw:—1,0 (6.17)
putting these expressions together results in the the joint likelihood of the complete data
T T
p(w,d1.r|0) = p(wo|0) | [ p(w-Iw:—1,0) [ | p(d-|w-,6) (6.18)

=1 T=1

It is assumed that the following probabilities are Gaussian:

1 1
p(WO{B) = WETP[ (W‘g — ,u)TZ'l(wU — ,LL)] (619)
1 1
p(Wi|we_q,0) = me[ - §(Wr, - WL—I)TQ_l(wi - Wt—l)] (6.20)
1 1
pldi|wy, 6) = Wemg)[ — =(d, - h(wt,ut))zR_]] (6.21)
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where the initial value of g = w7, the initial covariance is defined as & = PY.
The “complete data” {wy.p, Dy.+} which includes the set all of RNN weights and the
set of all observations is used to maximize the likelihood of the RNN weights and the

observations given the hyperparameters [192]

T—1

T
lnp(w,DlzT]G) = L1 - ; In |R1 — LQ — ln|Q|
4 (6.22)
1 1
- L3 - 3 In |E| - —T(rn;)+ C) ].Il(g’ﬂ')

where the constants ¢, and m are the dimension of the output of the meodel and the number

of weights respectively. The substitutions are:

[%(dt — h(w,, u,.))aR-l]

)

1

M=

L1=—
i

[%(Wt = Wt—l)TQ—l(Wt — wi_])] (6.23)

5

I

|
(]~

,._
Il

1

Ly = —5(wo — p) X7 (wo — i)

l\Jll—‘

6.1.1 Maximization Step

To find the set of hyperparameters 8 that maximize the likelihood of the “complete data,”

the expectation of Equation 6.24 is taken.

&

E[ln p(wo.r, D1.r|0)] = E[(d; — h(w;,u,))* R — —ln|R|

M*ﬂ
l\JIs—l

g - iy
Ez_: [(wy —wi_1) Q7 (W — Wy ] = —1H|Q\
1 1 T T+ 1)m
— LB{two - r(wo — )] - S| - LEETH I oy
(6.24)
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which can be written as

T
Q(8,6°) = — 3 Sisl(d, — hiwe,w))?R~"] ~ 2 In R

t=1

- Ztr W) TQ (W = Wis)] — = 1n[Q) 5:20)
1 1 Te+(T+ 1)m
— Luf(wo — wyrwo — ) — 2 ] - LTI 1y o

where tr is trace operator. To compute the above conditional expectations, the EKF, with
hyperparameters set to 0°', is utilized (this happens in the Expectation step). The above
equations are then solved analytically for the hyperparameters in the maximization step.

This happens through differentiating the resulting expectation of the log-likelihood
with respect to B!, yielding

1 a (T ]
st Do) = 2 (i 1)
(6.26)
T 1
=R; 25[ PI_]f df Ah(w_g,llt)) ]
o=l
where the substitution of L, is defined as
T
= > tr(RGIPTS, + (dh — hlwe,w))?) 6.27)
t=1
Setting the resulting solution equal to zero and solving for £ results in
1 T
Z [ Pyj; + (d; — h(wuuc))g} (6.28)
t=1
Similarly, differentiating with respect to Q yields:
0 T-1 1 o 5
70 )~ ——Q-5(C-2BT +AT) (6.29)
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which after equating to zero and solving for Q leads to

1

Q=75

(C— BA™'BT) (6.30)

where the matrix quantities are

A

Il
M)

_P;i-l + WT—I(WEI)T}

ﬁ
I
i

=
[
(]~

P+ W ()] (6.31)

=
[

P
I
[~

[P7 -+ wl(w)T)]

._,.
Il
-

It is also possible to solve for the initial conditions in the M step, via differentiation
of the expectation of the log-likelihood function with respect to the initial mean
d _1 T
which yields the initial value of & = w] and similarly for the covariance, taking the
derivative with respect to 3 yields

ad
——E[lnp(w,D1.7|0)] = =X —

FR (Wi —p) (Wi —p)+PL (633)

|~

1
2

which leads to the initial covariance X = PY.

The algorithm alternates between two steps, the E-step and the M step. Starting off
with an initial guess for 8, in the E-step, the expected values of w¥, P] and P',‘ft_l are
obtained from their current estimates through extended Kalman filtering and smoothing.

Then, in the M-step, the new values of 8 are obtained using the above equations.

6.1.2 Expectation Step

For general nonlinear systems the conditional density p(Wo.r|y1.7, @) is non-Gaussian. A
classical and computationally efficient approach from engineering and control literature

which provides a Gaussian approximation to the joint posterior, is the extended Kalman
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filter and smoother. The extended Kalman filter and smoother is based on a first order
Taylor series expansion of the nonlinearity A(-, -) about the Kalman filter predictor w{_,
leading to time variant dynamics.

Training the RNN using the EKF requires computation of the Jacobian j, which is
a vector of first order derivatives of the error with respect to the weights of the RNN
computed at each time step. The Jakobian is computed via Equation 3.31 as in [23]. The

following equations describe the EKF training algorithm:

f

Wt — W?il
P = i1 +Q
k= P/j}[i,P{i; + R]™ (6.34)

W? = W{ s kt(di — h(W{,ul))
P} = P/ — kij,P/
where the vector k; is the Kalman gain. The EKF is a suboptimal estimator based on
linearization of the nonlinearity of the underlying system. It provides an approximation
of the state mean w, and the state covariance P;.
After computing the estimates w; and P; by Equations (6.34) the Rauch-Tung-Striebel

smoother [174] is utilized for recursively computing corrections to the EKF estimates.

This is achieved through the following backward recursions:

S 1= P?—I(P{)_l
W'IT—I = W?_l + Stfl(Wir — W{)

(6.35)
PL, =P., +8,.(PT —P/)ST,

Pg:t—l = P?SF—l £y Sf(PT—H,L - P?)S;f—l

with boundary condition PL.;._; = (I — krj;)P7 1.
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6.2 Experimental Results

The practical task addressed using EM trained RNNs is modeling and forecasting hourly
electricity spot prices. To test the effectiveness of the proposed model, data from two
power exchanges is used for model validation. The data sets include prices from the

hourly Ontario energy price (HOEP), and the Spanish power exchange. In both ex-
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Figure 6.1: Out-of-sample predictions of the Ontario spot prices. The model forecasts 1
hour ahead, for 7 days, starting from April 26, 2004, which corresponds to 168 hours of
forecasted values shown above.

periments, the data considered was hourly Market Clearing Prices (MCP). Although the
use of exogenous variables other than MCPs (such as electricity load, temperatures, etc.)
have been proposed in previous studies, it has been inconclusive as to which variables,
if any, contribute to increased explanatory power of a model [29, 67, 154]. This chapter
utilizes a single time series of previous prices as the input to the RNN. In order to allow
for comparison of the proposed model to previous work, 48 days of data prior to the test
set was used to construct the training series, which corresponds to 1152 training examples
as in previous studies [7, 29]. The models were then evaluated on the subsequent data set,

which consisted of 7 consecutive days of unseen data (which is called the out of sample
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Figure 6.2: Out-of-sample forecasts of the second segment of the Ontario data set. The
models forecast 1 hour ahead, for 7 days, starting from August 2, 2004, which corresponds
to 168 hours of forecasted values shown above.

data set), corresponding to the next 168 hourly measurements. A test set length of 7 days
was used so as to make results comparable to previous studies.

To provide a further comparison with other nonlinear time series models, several
well known training algorithms for recurrent networks relevant to the RNN-EM have
been implemented, including the Extended Kalman Filter for recurrent networks (RINN-
EKF) [23]. These algorithms are compared with a standard (feed-forward) MLP neural
network trained with the Extended Kalman Filter (MLP-EKF), and also an MLP neu-
ral network trained with the EM algorithm [33]. All data sets were pre-normalized be-
tween the values [0, 1]. In all simulations, the weights of the networks were initialized
with random uniformly distributed weights in the range of [—2, 2]. The simulations were
carried out on a Pentium-4 2.6-GHz, 1024-MB RAM workstation. The Mean Abso-
lute Percentage Error (MAPE) is a standard error measure found in the electricity de-
mand/spot price forecasting literature [35, 204], and is used here to report errors. Er-
rors from previous studies on the same data set featured in this section were reported in
MAPE [29]. So to make results comparable, errors are reported in MAPE, computed by
MAPE = (100/(168)) S21% |d; — 1| /d; where d; is the actual price and y; is forecasted

i=1
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price.

6.2.1 Ontario Electricity Market Price Forecasting

In the first experiment, the predictive performance of all implemented networks are evalu-
ated on the Ontario spot price data series. The Ontario Electricity Market (OEM) is one of
the newest and largest electricity markets North America. It became a competitive market
in 2002. The OEM provides power to more that 12 million people and is linked up to other
power pools such as the PJM power pool. The MCPs in the OEM are determined every
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Figure 6.3: Out-of-sample one hour ahead forecasts on the Spring week of the Spain data
set starting from May 20, 2004 hour 1 and continues for 168 hrs. The bold solid line
represents the forecast, and the dotted line represents the actual spot price, in euros per
megawatts per hour

five minutes, and hourly averages are then computed. These hourly averages are called the
hourly Ontario energy price (HOEP). As a service to its users, the OEM provides hourly
forecasts of the HOEP, and sends the forecast to all market participants. However, the
OEM provided forecasts are known to contain significant errors [178]. Here the HOEP
prices from three seasons Spring, Summer, and Winter are considered. To facilitate com-

parability of the proposed model to previous work, the test sets of this section follow the
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Figure 6.4: Per-Epoch convergence and log-likelihood of the model, evaluated on spring
Ontario spot prices from March 11, to April 25, 2004. The bold solid curve shows an
increasing likelihood of the model as training progresses. The dashed line shows the
convergence of the model (rate of change of the likelihood).

same dates as tested in [4, 232]. Each training set consisted of 48 days (1152 hourly
measurements) followed by an out-of-sample test set consisting of two weeks of price
data (168 hourly measurements)’. The errors of the test sets were reported per week. The
spring data set included price measurements from March 11 to May 9, 2004 from which
the first 48 days (March 11, to April 25, 2004) were used for training and the remaining
two weeks (April 26 to May 9, 2004) were used for out-of-sample forecasts. The Sum-
mer data set consisted of data ranging from June 8 to August 8, 2004. The training set
ran from June 8 to July 25, 2004 and the subsequent two weeks of July 26 to August 8
were used for the test set. The final data set consisted of data points from October 26, to
December 26, 2004, in which the dates of October 26, to December 12, 2004 belonged
to the training set. The test set included the dates of December 13 to December 26, 2004.
The two recurrent networks were initialized with 3 hidden neurons, one output neuron,
and input parameters 7 = 6 and d = 5. The feed-forward networks were constructed with
6 hidden neurons, and 6 inputs. All models trained with the EKF filters were initialized

!The data is freely available at www.ieso.ca/
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Table 6.1: One Hour Ahead Forecast Results on the Ontario Data Set (Scores Reported in
MAPE)

Spring Summer Winter

week | [ week 2 | week 1 | week 2 | week 1 | week 2
MLP-EKF | 16.83 | 16.74 12.64 15.25 16.77 16.96
MLP-EM | 1548 | 15.39 11.87 12.07 16.78 16.73
RNN-EKF | 16.01 | 16.54 11.89 11.96 16.59 16.45
RNN-EM | 15.09 | 15.16 10.32 10.21 15.78 15.71

RULE 2170 | 17.80 | 22.92 |37.77 |24.60 | 24.55

IESO 2378 | 25.26 | 10.41 16.22 | 22.06 | 23.51
MLR 1626 | 19.23 | 17.69 |2055 | 1673 | 18.54
MLP 16.56 | 1934 | 1745 |2027 | 17.03 | 19.69

WMLP 1521 | 1862 | 1791 |18.72 | 16.61 18.02

-2

with the R hyper-parameter set to 1.0e~%, and the diagonal elements of [Q];; set to 1.0e™2,
The EM trained models were initialized with R and the diagonal elements in [Q];; set to
200.

Table (6.1) contains the MAPEs for each model over the out-of-sample periods tested.
The scores reported in the upper half of the table correspond to the models tested in
this paper, and the scores in the lower half are taken from an experimental section in a
similar study [4] which tested a heuristic based model (RULE), the forecast provided by
the Ontario power exchange (IESO), a linear regression model (MLR), a feed-forward
MLP (MLP), and a wavelet based MLP (WMLP). For the first week of the Spring data
set, on average, the RNN-EM outperforms the RNN-EKF and the feed-forward network
trained with both the EKF and the EM algorithm as shown in the second column of Ta-
ble (6.1). The proposed model also outperforms the models in the lower section of the
table. The corresponding numerical results of the forecasting for week 1 are presented
in Figure (6.1). Figure (6.2) presents the performance of the models on the second week
of the Summer data set. Slightly lower errors were found when forecasting in the sum-
mer months, as shown in Table (6.1). However, the RNN-EM algorithm still manages to
outperform the other Kalman trained models for both weeks. As reported in the previous
study, the IESO provided a low error forecast for the first week of the Summer test set.
The proposed RNN-EM reports an error score that is slightly higher. However, in the Win-
ter months, the proposed RNN-EM significantly outperforms the IESO provided forecast.
The proposed model also provides lower error forecasts than the other remaining Kalman
trained models included in this study. The convergence of the algorithm was monitored
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Figure 6.5: Evolution of the model hyper-parameters as training progresses on the spring
Ontario spot prices. The bold solid line shows the convergence of the I parameter, and
the dashed line shows the trace of the Q matrix.

over 50 iterations over the data. The solid line in Figure (6.4) shows the log-likelihood
of the model over the training period. The likelihood monotonically increases as training
progresses, which indicates good convergence of the model. The dashed curve shows the
slope of the likelihood at each epoch. As training progresses, convergence is reached. The
solid line in Figure (6.5) shows the EM estimates of the observation variance 2 quickly

converge. The trace of the process noise covariance Q converges toward zero slower.

6.2.2 Forecasting of the Spanish Electricity Market

The second study investigates the performance of the proposed model on forecasting
hourly prices from the Spanish electricity market. Competition in the power industry
in Spain began in 1988, and is now the fifth largest electricity market in Europe. Here the
data is taken from the hourly spot prices from the last week of February, May, August,
and November, which are the same weeks tested in [22]. The training sets for building
the forecast models included the previous 42 days of hourly data leading up to the test set.
The dates of the Winter training set ranged from January 7 to February 17 2002, and the
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test set ranged from February 18 to February 24, 2002. The Spring training set included
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Figure 6.6: One hour ahead out-of-sample predictions of the Spain spot prices for the
Summer week beginning on August 19, 2004 which corresponds to the first hour in the
chart, and continues for 168 hrs. The bold solid line represents the forecast, and the dotted
line represents the actual spot price, in euros per megawatts per hour.

data from April 8, to May 19 2002, and the test set ran from May 20 to May 26, 2002,
The Summer training set used data from July 8, to August 18, 2002 and the following
week August 19 to August 25, 2002 were used for the test set. Finally, the Fall data set
included data taken from the dates of October 7, to November 17, 2002 and the test set
was constructed from the dates of November 18 to November 24, 20022, Each of the
recurrent networks were initialized with 3 hidden neurons and one input and one output
neuron. Similarly, the feed-forward networks were initialized with 3 hidden neurons, but
used an input window of size 4. For the EKF trained networks, the initial diagonal ele-
ments of the covariance matrix for both [Q];; and R for all filters were set to 1.0e~® and
1.0e=? respectively, and for the EM trained models, both [Q];; and R were set to 100.
The upper portion of Table (6.2) provides the performance of each of the models on
one hour ahead forecasting. The lower part of Table (6.2) shows results on the same

data set reported in [22]. The model errors considered in [22] and reported in the lower

2The data was downloaded from www.omel.es
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Figure 6.7: Out-of-sample one hour ahead forecast forecasts on the Fall week of the
Spanish data set. The predictions begin on November 18, 2004, which corresponds to
the first hour in the chart and continues for 168 hrs. The bold solid line represents the
forecast, and the dotted line represents the actual spot price, in euros per megawatts per
hour.

portion of Table (6.2) are the MLP trained with the second-order Levenberg-Marquardt
algorithm (MLP-LM), the Autoregressive Integrated Moving Average linear time series
model (ARIMA), and a Naive predictor (Naive) which is a random walk. The values in
the second column shows the out-of-sample performance of the models on the Spring
data set. The RNN-EM has the lowest error out of the models compared in the study.
The MLP-EM algorithm and the RNN-EKF have similar performance, but the RNN-EM
provides the lowest errors in predictions. The performance of the RNN-EM evaluated
over the Spring out-of-sample data set are shown in Figure (6.3). For the one hour ahead
forecasts on the Summer data set, the RNN-EM provides superior forecasts, as shown in
column 3 of Table (6.2). The model predictions are shown in Figure (6.6). The fourth
column of Table (6.2) reports the performance of the models on performance on the Fall
data set. There was a greater difference in performance between the models on this data
set, with the RNN based forecasts having lower errors than the MLP based models. Both
RNN models performed better than the feed-forward models, with the RNN-EM perform-
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Figure 6.8: One hour ahead out-of-sample predictions of the Spain spot prices for the
Winter week starting from January 7, 2002. The bold solid line represents the forecast,
and the dotted line represents the actual spot price, in euros per megawatts per hour.

ing slightly better than the RNN-EKF. This suggests that the RNN may be more suitable
for forecasting during the Fall than the MLP. The performance of the RNN-EM is shown
in Figure (6.7). For the final (Winter) data set, there was not much variation in the per-
formance between the models, as shown in the last column of Table (6.2). The prediction
results of the RNN-EM are provided in Figure (6.7). In most cases the use of the EM
algorithm has led to improvements in out-of-sample predictions over the EKF, and the
RNN-EM more closely approximates the target series than the remaining algorithms.
After 50 epochs of training with the EM algorithm, the plots of the convergence prop-
erties of the model are provided in Figure (6.9). The solid curve shows the log-likelihood
of the model increasing over the training period. The dashed curve shows the derivative
of the likelihood at each epoch. In Figure (6.10), the solid line shows the EM estimates
of the observation variance R which rapidly increase then approach a near constant value.

The dashed curve shows the trace of Q approach zero.
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Table 6.2: One hour ahead forecast performance on the Spain data sets (Scores Reported
in MAPE)

Model | Spring | Summer | Fall | Winter

MLP-EKF | 5.37 11.37 | 1341 ] 4.81
MLP-EM | 5.30 11.32 | 13.08 | 4.36
RNN-EKF | 5.27 11.38 9.04 | 4.39
RNN-EM | 4.87 10.38 893 | 4.26
MLP-LM | 5.36 1140 | 13.65| 5.23
ARIMA 6.36 13.39 [13.78 | 6.32
Naive *27 2730 | 1998 | 7.68

6.3 Conclusion

Reliable forecasting of electricity spot prices is one of the most fundamental tasks for
companies that trade in the electricity markets. Recently, RNNs have been proposed as a
dynamical model suitable for capturing spot price dynamics. This paper extends the work
in the area by proposing a probabilistic method for training recurrent neural models on
electricity spot price time series. It is demonstrated that the EM training of RNNs has
lead to improvements in prediction accuracy in out-of-sample forecasts of electricity spot
prices. From numerical simulation on electricity spot data from two exchanges, it was
found that the proposed model outperformed feed-forward and recurrent neural network
algorithms on electricity spot price forecasting, as well as models proposed in previous
studies. The presented results are encouraging and can serve as a stimulation for further

investigation into modeling electricity prices from other markets.
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Figure 6.10: Evolution of the model hyper-parameters estimated with the EM algorithm
on the Spanish summer spot prices training set. The bold solid line shows the convergence
of the R parameter, and the dashed line shows the trace of the Q matrix.
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Chapter 7

Summary and Conclusion

The previous chapters have dealt with the formulation and implementation of a computa-
tional framework for recursive Bayesian estimation of RNN parameters and hyperparam-
eters. A theme common to all RNN training algorithms considered herein has been the in-
clusion of a recursively estimated regularization term which demands model smoothness
and discourages over-fitting. It turns out that this method generally produces excellent
results in terms of out of sample forecasts.

The remainder of this chapter further expands on these conclusions. It begins by
recapitulating the main points of the thesis, including the novel features of the proposed
algorithms and some of their shortcomings. Addressing these issues leads to a discussion

on the possible paths for future work.

7.1 Summary

This dissertation can be summarized as follows

e Chapter 2 begins by distinguishing between the two main approaches to building
a model of a dynamical system; the direct method and the indirect method. The
direct approach to modeling assumes a deep understanding from first principles
of the system so that equations of motion can be written down, and then solved
for future states of the system. When less is known about the system, the inverse
approach is usually taken. The inverse approach assumes the existence of a “teacher
function” which has given rise to the observations. The teacher function takes the

form of various time series model structures that are reviewed in the subsequent
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sections of Chapter 2. The recurrent neural structures considered throughout this
dissertation are then specified in the final section of the chapter.

In Chapter 3, supervised learning algorithms for gradual refinement of the weights
of the RNN architectures presented in Chapter 2 are reviewed. The chapter be-
gins by defining RNN training as an optimization problem. Then the chapter re-
views popular algorithms used for computing the derivatives of the RNN. Next,
training algorithms are categorized into batch and sequential operation and fur-
ther sub-categorized into first and second-order optimization classes. The strengths
and weakness of the optimization algorithms with respect to RNN training are dis-
cussed. A gap in the literature is identified as no sequential Levenberg-Marquardt

RNN training has been investigated.

Chapter 4 investigates the sequential Levenberg-Marquardt RNN training from a
Bayesian perspective. The chapter begins by reviewing ill posed problems, and
then reviews solutions to the ill-posed problem via regularization. Then a recur-
sively regularized learning algorithm based on second-order sequential Levenberg-
Marquard optimization is developed. The forecast errors of the proposed model was
compared to a group of first and second order trained neural models on a multitude
of chaotic dynamical systems as well as a complex electricity spot price forecast-
ing task. The proposed model showed improved generalization capacity over non-
regularized RNNs (i.e. the proposed model had the lowest out of sample forecast

errors over the other first and second order trained neural models).

The novel features introduced in this chapter are restated here:

1. incorporation of individual, non-uniform Bayesian regularization parameters

for each weight to account for its uncertainties;

~

handling of the noise through a specific noise hyperparameter;

3. derivation of a regularized equation for recursive second-order estimation of

the weights;

4. formulation of an equation for the recursive computation of the inverted regu-

larized dynamic Hessian matrix;

5. estimation of Bayesian confidence intervals.




The main limitation to the proposed algorithm is the that large outliers are not han-
dled well by the algorithm. There is no means to down-weight any large deviation
from the mean of the data set.

Chapter 5 presents the sequential Bayesian estimation framework for RNN train-
ing. The chapter first introduces a probabilistic view of RNN training via sequen-
tial Bayesian estimation, and then reviews nonlinear Kalman filtering algorithms
as a means to compute posterior weight estimates. The EnKF is proposed as an
efficient monte carlo filtering algorithm for RNN training. The filter is compared
to various first and second-order RNN training algorithms, and it is found that the
EnKF trained RNN provides a computationally efficient solution to RINN parame-
ter estimation. Furthermore, the out of sample forecast errors of the EnKF trained
RINN was found to be lower than other first and second-order RNN models which
indicate that the proposed method is capable of producing well generalizing RNN

time series models.

The novel features of this chapter are as follows:

1. an online ensemble approach to training RNNs which avoids derivative com-

putation;

[y

. reduction in computational complexity for online training to O(H?) which is
two orders of magnitude lower than RTRL;

The main limitation of the EnKF is covariance shrinkage. The EnKF systematically
underestimates the error covariance during filtering, and in some cases an ad-hoc
strategy for covariance inflation is necessary [97]. Although this has not been found
to severely impact RNN training where the number of RNN outputs are less than the
number of parameters, this can potentially become problematic when the number

of RNN outputs exceeds the number of parameters [97].

Chapter 6 investigates a maximum likelihood framework for RNN training. This
is achieved through the use of the expectation maximization algorithm which al-
lows for estimation of RNN parameters as well as hyperparameters. The frame-
work builds on Kalman filtering for parameter estimation (discussed in Chapter 5),

Kalman smoothing for estimation of the parameter covariances, and a probabilistic
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iterative hyperparameter re-estimation algorithm. The proposed algorithm is eval-
uated on an electricity spot pricing task, and is compared to various models previ-
ously proposed in the literature. It was found that the EM trained RNN provided
the lowest out of sample forecast errors over other first and second-order trained
RNNs as well as other times series models proposed in the electricity spot pricing

literature.

The novel feature of this chapter is:

1. a method for solving for the process and measurement noise hyperparameters

when building models from time series data with RNNs.

The EM algorithm is known to be slow to converge. Even though the RNN pa-
rameters are estimated rapidly in the Expectation step, hyper parameter estimation
takes more than a few epochs to reach convergence. This is a potential area for

improvement.

7.2 Future Directions

This dissertation reviewed the literature and provided solutions for improving RNN time
series modeling. Although improvements were realized, this study has opened the door to

further research. Future research directions suggested by the presented material include:

e Further investigation of the sequential Levenberg Marquardt algorithm with heavy

tailed noise distributions to account for outliers in the data.

e The Ensemble Kalman filter is known to occasionally suffer from “ensemble col-
lapse.” It is though that this phenomena can be avoided through an additional term

in the cost function to promote negative correlation between ensemble members.

e The speed of convergence of the expectation maximization learning algorithm can
be improved via conjugate gradient search. It is though that after computing the
derivatives of the hyperparameters in the maximization stage, conjugate gradient

search can then accelerate convergence of hyperparameter estimation.
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7.3 Concluding Remarks

This dissertation has surveyed the literature in time series modeling with RNNs. State of
the art algorithms for RNN training have been reviewed. Three novel approaches to build-
ing RNN models from time series data have been proposed. Comparisons have been made
between the proposed algorithms and previously leading approaches in neural time series
forecasting. It was found that the proposed models outperform other well known neural
models in terms of out of sample forecast errors. The proposed algorithms are applied
to the problems of climatological modeling and electricity spot price forecasting, which
relate the developments within this dissertation to the wider field of modeling nonlinear
dynamic systems.
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Appendix A

Derivation of the BPTT Algorithm with

Ordered Derivatives

This section provides a derivation of the BPTT algorithm from the perspective of ordered
derivatives [223]. It is assumed that the gradient descent algorithm will be used. The
rate of change of the cost function C(w) is computed through the methodology of the
ordered derivative which takes into account all influences on the weights with respect to

the cost function:
8+ CT (W)

oplid) — AT
Aw' = —p EIEE)

(A.D

Through the use of ordered derivatives, the weights w(/) are not written with time in-
dexes, i.e. copies of the weights are not made at each time step. Throughout the deriva-
tion, the chain rules for ordered derivatives are invoked multiple times, so familiarization
with the generic chain rules for ordered derivatives may be helpful [184]. The first chain

rule is applied twice to the cost function as follows:

FrCr(w) _ 0CH(w) o= O Cr(w) 85
i) Awlid) Z as;@ Ow(id)
T

0Cr(w)  8*Cr(w)os)”\ 05"
=0+ ; ! ] -
(Z; a5y ost” aggl))aw(m
9 Cr(w) Bs” o5
=0 o5} 85’5“ Ow(id)

(A.2)
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where the RNN weights w("7) of the ith neuron impacts the cost function indirectly via

") which propagates through the output of the ith neuron, resulting

the summation block §;
in the activation s;". () " As the RNN weights w("/) and the summation blocks s ) are not
directly impacting C'(w), the partial derivatives 9Cr(w) /0w and 9Cr(w)/ E)sjE are zero.

Here, the chain rule is invoked to the first term twice in the third line of the above
equation 9+ Cp(w)/ 35(”. As the outputs st impact the cost function Cp(w) directly

&(9) (1)

and indirectly through summation blocks §;” and outputs s, at the next time step, twice

invoking the first chain rule results in:

tCr(w)  OCT(W) o= 8TCr(w) 85,
R T )
Js, Js; i—o 054 ds;

_ 9Cr(w) ZT:(GCT(W) a+cT( )asgjl)asgil

_|_
(i) 1)
ds; ; ast E)st :_)1 85, +1 Js; (A3)
OCT(w otC gt \ gl
_ T(E))+Z(O+ T( ) Eﬁl) tl
Js; 0 ast 28 Bs"
_ aCr(w) Z 0t Crp(w) 85t+1 aSH-l
8551) t=0 85521 85521 s}’ z.+1
Via the following conditions:
i) ¢
—e for0<t<T
it _ [~
sy 0 otherwise
&’ _
— o'(s;’) forallt (A.5)
08,
08" :
S !1 wt®  forall ¢ (A.6)
35( )
Equation A3 isvalidfor0 <t < T -1
9+ Cr(w) g e R
— = e+ —E_m—a(sﬁ N ®) (A7)
St t=0 S¢

Furthermore, as the neuronal activations at times ¢ > T + 1 have no impact on the cost
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function Cp(w)
0" Cp(w)

0 = (A.8)
5741
A recursive equation can be obtained
o+Cr(w) |~ fort="T o
O w - . |
Js, -+ 3T, Q+C(f)( Lo(syw)  otherwise

which can be used in Equation A.3 to provide the required weight update.

To simplify notation, the following shorthand notations are introduced:

(i) 8+CT(W)

€ _ (A.10)
{ ast
5 _ 0°Cy
50 = 20w (A11)
: +(1)
0s;
which results in
@) egi) fort =T
e (A.12)

e + i St t<T

Given the definition of the gradient of the cost function, found in Equation A.1, the last
line of Equation A.2, and the following partial derivative

a3t”

m = Zz(j) (A.13)

where the function z,(7) is defined in 2.25. The RNN weight update can be written as

_nzam w) st g8l
£ a0 g GuEd)

ﬁ—flz 51 z(J —-"?25¢ z(

Aw'™) =

(A.14)
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Appendix B

Derivation of the RTRL Algorithm with

Ordered Derivatives

The method of ordered derivatives can also be used to derive the RTRL algorithm [184].
As in the previous BPTT derivation, the derivation starts from the weight update rule

(kD) — _ 0+ Cr(w)

e 1 Awkb

(B.1)
The gradient of the cost function represents the sensitivities of all weights w on the cost
function. The weight w*! of the /kth neuron influences the cost function indirectly
through the activations sgi) of all neurons (¢ = 1,...,H). The second chain rule for

ordered derivatives can be invoked as follows:

LH i
9*Cr(w) _ 9Cr(w) Z*': ;I (w) o+t
Owlkd) AwkD) 2 asgi) t w0
L+H (4)
a ots
=0+ Y —=E(Wi—rg (B.2)
=L 8S£) Hwkd
L+ H i
-3 -pln
i=L+1 8{[}
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For the partial derivative 9*s\” /8w, the second chain rule applies:

orst) o5t os) orgl’ as\” o)
= T T T — = e
ekl ki A1) Agpy(i, (i kel
+4li
ERONCAL
=G (St )8wU‘r”

For the last partial derivative in the above equation §+§\" /@w(*) the summation block 9
has direct dependence on the weight vector w*") and indirect dependence on the inputs

z(7) to the network. The second chain rule applies here as well

o s T a5 arz())

wkl T Gk + / 5’21(‘7') Okl

I
_‘Dq
&
=
g

Y T C) B 7 LN - £ N ¢ D)
(i,d) t ot Bd) t
=1 Ol +;‘—21;1 Y B ks
L+H &Lty
E Al
=zl + 2, w5

where 6%*) in the above equation is the Kroneker delta.
The change in the summation block with respect to the weights is equal to the follow-
ing
a8t "
sk,
8’{[}'("‘:’1) - "‘l(l) (B‘S)
this is the main difference between the derivations of the RTRL algorithm (i.e. the ordered
derivatives vs the traditional RTRL derivation). The traditional method for derivation of
RTRL is rewritten below.

a8l (T wiiz(j))

DD Hw®ED
L+H _ i
- i: {w(i,j) 0uld) | . (j)aw( ’J)]
= AuwlED T k) (B.6)
de
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gkt i<t
Pt Awk.
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Substituting Equation B.5 into Equation B.3 results in a recursive relation for computing

the ordered partial derivatives 9*s{" /u/()

TEONEICHY (ij)8+cl
wikD :U(SL )[5 ' Zt(£)+ Z wr” W] (B.7)

Through substitution of the results obtained in Equation B.7 into the definition of the gra-
dient of the cost function with respect to the weights Equation B.2 results in the training

rule.
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Appendix C

Derivation of Bayesian

Levenberg-Marquardt Training Rule

The developed sequential Bayesian approach to RNN filtering considers the following

objective error criterion (cost function) formulated according to the evidence framework:
Cy(w) = = ( S BE.(w) + wT(ain)w) C.1)

E.(w) = (d: - F(w,uT))g (c2)

Treating the learning process as an optimization task suggests to consider the Taylor
expansion of this cost function in the vicinity of the current weight vector w,_, estimated
at time instant ¢ — 1. Using the notation g,(w;_;) = dC¢(w;_,)/0w,_; to denote the gra-
dient, and H,(w,_;) = 0C?(w;_1)/(dw;_10w,_1) to denote the Hessian, the expansion
can be written as follows:

1.+
Cf(W) = C{,(ngl) 4 gz(wt_l)(SW + E(SWIHt(Wf_l)(SW (CB)
where 0w = w — wy_1.

This equation is solved for the weight vector, so as to reach the minimum of the cost

function, by expanding the gradient. The minimization of the Taylor expansion leads to
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the well known Newton’s training rule [115, 152]:
wi=w_ — H ' (wimi)g, (W) (C4)

which in this recursive form means that one complete iteration of Newton’s method is
performed at each next time step with the arrival of a new data point.

The intention here is to perform sequential Bayesian training via minimization of
the cost function. The derivative of the Bayesian cost function is taken, and terms are

rearranged as follows [137]:

g (wm = 22 _ ZﬁeT ) 4 waeR,
- - ZﬂeT ~ Beu(wii(w) + warR, ©
— g, (W) — Bey(W)j, (W) + waiR,
however, the gradient g,_;(w) = 0 and thus
£,(W) = —Ber(W)j, (W) + c:WR, (6)

After substituting into Equation (C.6) into Equation (C.4) and rearranging terms, the train-

ing equation becomes:
W =W + ﬁﬂf,_l(wf—l)jt(wt—l)et(w.'.fl) — o Hy H (wim ) Rywy g {

where the second term is the incremental update, and the third term is the regularizer.
According to the specific definition of the matrix R,, the amount of regularization is
partially distributed during training until reaching the boundary condition m= (7" div m).
Regularization is applied one element at a time, that is partial regularization is carried out
at every moment in time so as to distribute the total regularization over time. Bayesian

regularization is applied when updating the Hessian matrix as follows [137]:

H;(wi—1) = Hi—q(wimg) + ﬁjt(wt—l)jlr(wt—l) + iRy (C.8)
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by using [R];; = 1.0/2:,4 = (t+1) mod mif (t) < (N div m)or z; = 1.0' otherwise.
Key to the derivation is to apply the matrix inversion lemma for sequential inversion of

the regularized Hessian:

Hy(wi_1) = He (W) + B (W) AT 5 (wea) (C.9)
1 1 . i . ” - .
where A7 = ( ) is the regularization matrix, and j;(w,_,) consists of a
0 a;[Re)s

column of the derivative vector j; (w,_;) augmented by a column with zero elements,

except for the element at position ¢ = ¢ mod m as follows [115]:

j?(WH) ) (C.10)
0

j:(“’z—l) = ( " 1

When we apply the matrix inversion lemma [96]: (A+BCD)~! = A™'—A~'B[DA'B+
C™']"'DA ! to the above expression we arrive at:

. -1
(B wes) + 85 (W) AT T (W) ) = B (wet) = BH (W) (W)
Cadi Hy (W)

(C.11)

where

Si1 = (BT (v )BT (win)i T + A €12)

which is the recursive update formula for computing the inverted Hessian

Hi ' (W) = H;jl(wﬂ—l)_ﬁH;jl(wf*l)j::(wt—l)Sf_—llj::(W't—l)+At)71j:,‘T(wt—l)Hf,_jl(wt—l)
(C.13)

It should be noted that the denominator of the second term S;_; is only a two dimensional

square matrix which is inverted with analytical formula [96].
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