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Abstract

Statistical Methods in Music Corpus Studies: Application, Use
Cases, and Best Practice Examples 
Daniel Müllensiefen, Klaus Frieler

In this chapter, the authors explain that there are two common goals in musical corpus analysis. The

�rst is the description and comparison of musical corpora, the second is to establish relationships

between musical structures and extra-musical data, which can refer to metadata of a particular

musical piece (genre, style, and period labels, composer and performer attributions, etc.) or to

listeners’ perceptions and evaluations. The authors give a brief overview of basic and advanced

statistical methods that have been employed in music corpus studies. The chapter covers descriptive

statistics and visualizations, feature selection and aggregation using principal component analysis. In

addition, random forests and linear regression methods for use in the context of corpus studies are

brie�y explained, as well as supervised and unsupervised classi�cation techniques. Each topic and

method is introduced with a conceptual explanation, suggestions for its application, and usage

scenarios from the research literature.
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Introduction

There are two common goals in musical corpus analysis. The �rst goal is the description and comparison of

musical corpora, the second is to establish relationships between musical structures and extra-musical

data. Extra-musical data can refer to metadata of a particular musical piece (genre, style, and period labels,

composer and performer attributions, etc.) or to listeners’ perceptions and evaluations (e.g., from

perceptual experiments, preference indications, or by commercial success). The goal is to �nd statistical

regularities that apply to not only one song, but instead also to a larger collection of musical pieces, a

musical corpus as a whole, or even to music across di�erent corpora. To achieve this goal, the necessary

ingredients of research are one or more musical corpora as well as a mechanism for extracting meaningful

features or descriptors of musical structure. We use the term “features” here in a very inclusive way to

designate any system of attributes that can be derived from the musical representation system used to

encode the music of the corpus itself. Related and mostly synonymous terms are “properties,” “traits,”

“characteristics,” and “descriptors.” In addition, reliable extra-musical data are necessary so that they can

be compared to and associated with musical features. The tool for relating musical features and extra-

musical data are statistical methods. Statistical analysis enables the researcher to discover and describe

regularities in musical data and is thus a central component for making sense of data in musical corpus

studies. While it seems obvious that di�erent research questions require di�erent statistical methods, there

is a danger that researchers are biased toward answering questions that lend themselves to familiar analysis

methods, re�ected in the popular wisdom that “when all you have is a hammer, every problem looks like a

nail.” Furthermore, as there is a general tradeo� between simplicity and precision of statistical models,

these have to be chosen carefully in terms of research aims and feasibility. In order to raise awareness for

the range of statistical analysis methods for musical corpus studies, we hope to provide a brief overview of a

few common research scenarios together with suitable statistical approaches and speci�c techniques that

can help to answer the corresponding research questions.

This chapter is neither intended to be exhaustive, nor can any of the statistical methods be covered in

su�cient detail to serve as a practical how-to guide for running the analysis. Instead, the aim and scope of

this chapter is to introduce typical research scenarios and use cases in musical corpus studies and then

present best-practice options for statistical analysis. However, for each use case and corresponding analysis

methods, references to in-depth treatments of the underlying statistical theory and practical application

guides are provided. We assume that the reader has some grounding with quantitative methods including

descriptive statistics and statistical tests, as well as linear regression and correlation, at the level of any

basic undergraduate statistics textbook as presented, for example, in Field, Miles, and Field (2012).

The use cases described in the rest of the chapter span typical scenarios in music corpus studies. Early

analysis stages often include exploration and visualization of musical features as well as feature

aggregation and selection, and these often provide the foundation on which later analysis stages build.

Supervised classi�cation or regression are typical use cases for describing how musical features are

associated with external data (e.g., how melodic or rhythmic features of pop tunes are related to their

catchiness or their propensity to become an earworm). In contrast, cluster analysis exploits similarities and

associations within the feature distributions of a musical corpus and aims to discover or introduce internal

structures (clusters) among musical objects.
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Visualization and Exploration

Once features are computed for the pieces of a musical corpus, one of the �rst steps of analysis should be the

visualization of the data and their exploration by graphical devices and descriptive summary statistics.

Tukey (1977) explains the bene�ts of exploratory data analysis and visualization fabulously in one of the

�rst books exclusively devoted to the topic. With a perspective on music corpus studies, there are four

primary reasons for visualizing and exploring musical corpus data before any further analyses are carried

out.

1. From a graphical display of musical feature data, it is much easier and quicker to identify potential

errors in the data, such as values outside of theoretical range or anomalies like a large proportion of

identical values in a feature variable, than it would be by looking at the numbers alone. Data artifacts

like these are not uncommon in musical corpus studies and can arise, for example, from coding

mistakes when music is hand-coded or converted automatically into a machine-readable format

(Huron 1988) or from faulty implementations of musical features. Visualizations often help to spot

and �x errors quickly and are an essential tool for data tidying.

2. Visualizations of musical feature data provide information about the distribution of a musical feature

variable and tell the analyst, for example, whether a feature is heavily skewed to one side, has a �at or

a spiky distribution, or a close-to-normal (i.e., Gaussian or “bell curve”) distribution. The shape of a

feature distribution can be a parameter of interest by itself, and documenting and comparing the

distributions of certain features (e.g., pitch range) across di�erent genres or historical periods can be

a musicological result in its own right. In addition, the shape of a musical feature distribution can

suggest the need for data transformations that might be necessary for the use in subsequent

statistical analysis models (linear models, e.g., assume Gaussian error terms as well as a linear

relationship between predictor variables and the dependent variable; see section 4.1.6 in Tabachnick

and Fidell, 2014, among others).

3. Visualizing the musical feature data of two or more variables on the same graph can also serve to

explore interesting structures in data that provide evidence for the central research question and that

were or were not hypothesized a priori. If prior hypotheses claim a substantial association between

two variables, then this should be visible on a suitable graph. In this sense, data visualization is

complementary to statistical hypothesis testing and can be a very convincing component of

con�rmatory data analysis. In fact, it has been argued that graphs are often better representations of

scienti�c evidence than p values from signi�cance testing (e.g., Smith et al. 2000).

In contrast, when data visualizations are generated without a concrete hypothesis in mind but rather for the

purpose of discovering novel structures in the data, then this analysis is considered exploratory. Exploratory

analysis using graphical methods can be an extremely powerful way of gaining novel scienti�c insights and

for generating new hypotheses. But exploring the data in this way is di�erent from con�rming a priori

hypotheses for which one seeks empirical evidence, and it is absolutely necessary to label exploratory

(graphical) analysis as such. In relatively new and emerging �elds such as corpus-based musicology,

however, strong theories and precisely testable hypotheses are relatively rare. Hence, data-driven

exploration is an important �rst step and can sometimes generate the main result of a musical corpus study

(e.g., the prevalence of the melodic arch contour in Western folksongs; Huron 1996).

In sum, it is good practice to start a music corpus study (or any quantitative study for that matter) with a

descriptive and visual exploration of the dataset. Unfortunately, plots of raw feature distributions are rare in

journal articles, and data are often reported in heavily aggregated form (e.g., reduced to means and standard

deviations) which only characterize a few aspects of a distribution. However, recent trends in Open Science
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(Munafò et al. 2017) and electronic publishing are facilitating the addition of rich data plots along with a

journal article, if only in supplementary materials or accompanying web repositories.

One attractive alternative to supplementary plots of journal articles are web apps, such as the Shiny software

framework, which can open up a dataset to the research community and the general public. Shiny is a

package for designing interactive websites for the statistical programming environment R (Chang et al.

2017; R Core Team 2008). It is very well integrated in the RStudio development environment (RStudio Team

2016) and comparatively easy to use, enabling the combination of common data processing routines with

the creation of interactive web interfaces. These web interfaces can be run on a local computer or launched

on the internet. Shiny apps can be built incrementally by adding further analysis options after the web app

has been launched. Web apps also facilitate the incorporation of download links for raw and processed data

as well as analysis code and hence the implementation of many good Open Science practices. Web apps not

only serve as a perfect supplement to a paper, but can also serve as a handy analysis resource during the

writing process.

Figure 8.1

Screenshot of the Feature History Explorer Shiny web app (https://jazzomat.hfm-weimar.de/feature_history_jazz/) showing how
the range of absolute intervals in jazz solos generally increases over time.

As an example, we describe the Shiny app “Feature History Explorer,”  which was developed in the context

of the paper “A Feature History of Jazz Solo Improvisation” (Frieler 2018). The goal of this corpus study was

to trace the development of features of jazz solo improvisations over time and identify well-known stylistic

periods as well as to potentially uncover new periods of stylistic change or stability. To this end, a large set

of numerical features describing melodic and rhythmic aspects of jazz solos was extracted from all 456

transcriptions in the Weimar Jazz Database (WJD; P�eiderer 2017), along with relevant metadata, most

notably the year of recording.

1

Figure 8.1 shows the central features of the Shiny app and its central “Plot” tab where a chosen feature (y

axis) is plotted against a time variable (x axis). The data for this bivariate plot can be �ltered and

manipulated according to several di�erent criteria, listed in the lower part of the navigation panel on the

left. The resulting scatterplot includes a regression line and statistics for the corresponding linear (or

polynomial) regression model. Plots and models are generated on the �y by the underlying R routines.

The �ltering options in the navigation panel on the left-hand side allow the user to select individual

instrument groups as well as the range of the recording year. In addition, users can preprocess the data and

customize the plot in various ways. The web app allows the download of all features and meta-data for use
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with di�erent data processing tools and also includes descriptions of the most important features, including

links to further documentation. It is also possible to include an HTML version of the companion paper

(Frieler 2018) with direct links to plots and tables generated from the app. However, copyright restrictions

often limit the degree of integration of journal paper and web app.

As a demonstration, Figure 8.1 shows a scatter plot of the feature “abs_int_range” against recording year.

This is a simple feature that represents the range of the absolute interval size in a solo (i.e., the di�erence

between the largest and the smallest semitone interval disregarding the sign [direction]). The y-axis of the

graph ranges up to 42 (i.e., about 3½ octaves, which is the largest interval to be found in any solo of the

WJD). This is a possible value (at least for some instruments), and hence there are no obvious data artifacts

visible in this plot. But Figure 8.1 also shows that the WJD does not cover the whole time range equally, but

rather that there is a high density of solos from the 1940s to the 1960s and again after 1985, while

recordings from the 1970s are underrepresented. Hence, the graphical distribution of recordings across time

provides evidence for the discussion of important questions about sampling strategies and the

representativeness of music corpora (see P�eiderer [2017] for a more in-depth discussion of the choices

underlying the WJD).

Finally, the graph shows a clear increasing trend of the absolute interval range over time. This is in line with

the hypothesis of a general trend toward higher virtuosity in jazz solos because the choice of large intervals

has often been stylistically associated with greater virtuosity in recent decades (Frieler 2018). But �ltering

the data by instrument group reveals that instrument subgroups within the corpus also play a role: it is

generally easier to play large intervals on the saxophone than on brass instruments, and the tenor

saxophone is the largest instrument group in the WJD. In fact, this trend toward larger intervals is mainly

driven by tenor saxophonists in this particular corpus.

The example demonstrates that data visualization can be a powerful technique for data exploration.

Interactive visualization tools, such as the R/Shiny app presented here, can help to identify obvious artifacts

in the data, gain insight into variable distributions and the underlying sampling process, and provide visual

evidence for or against prior hypotheses and for the generation of novel hypothesis in an exploratory

manner. In sum, data visualizations represent a view on the musical data that is a necessary complement to

any subsequent statistical analyses.

Feature Selection and Aggregation

Features in computational musical research are commonly represented as numerical or categorical values

and are derived from the digital music representation in which a corpus is encoded (e.g., MIDI, kern,

MusicXML). Features such as the range of intervals in a melodic line are often constructed by a series of

transformation and aggregation operations over a set of musical events. In the case of the range of intervals

used in a melodic line (see description of feature “abs_int_range” in the previous section), this involves (a)

assigning numerical values to the pitches of a melodic line, (b) calculating the distance between successive

note events in terms of semitones, and (c) determining the maximum of the calculated distance values. In

this case only three operations are necessary to de�ne the feature. But many features are constructed from

longer chains of transformations and aggregation operations. The combinatorial nature of the feature

construction process gives rise to a potentially very large number of features that can be constructed to

describe a given corpus. Feature computation toolboxes like FANTASTIC (Müllensiefen 2009), jSymbolic2

(McKay et al. 2017), the MIDIToolbox (Eerola and Toiviainen 2004), or the MeloSpyGUI (P�eiderer et al.

2017) provide a vast number of features. Many of these features will be variants of the same idea and aim to

measure the same music-analytic construct, but analytic theory is rarely precise enough to advise the

researcher which feature variant to choose for subsequent analyses.

D
ow

nloaded from
 https://academ

ic.oup.com
/edited-volum

e/41992/chapter/371464078 by O
U

P-R
eference G

ratis Access user on 12 Septem
ber 2022



Feature Aggregation

There are two standard approaches for dealing with a large set of features which may include many

correlated features: feature aggregation and feature selection.

Baayen (2008, ch. 5) provides a concise treatment of the rationale for using principal component analysis

(PCA) and factor analysis (FA) as feature aggregation techniques for (linguistic) corpus studies with

examples in R. In general, feature aggregation aims to combine features that are intercorrelated into

components (PCA) or factors (FA). The main idea behind feature aggregation is that correlated variables

carry very similar information and, therefore, are partly redundant. These aggregation techniques exploit

correlations and redundancies in features sets and reduce the number of variables from many raw features

to a few aggregated components or factors (Baayen 2008).

PCA components and FA factors are speci�c linear combinations of features such that the intercorrelations

among components or factors are minimal (“principal”), and thus the components or factors can be

thought to represent di�erent, independent aspects of the data. To understand why linear combinations can

create minimal correlations, �rst note that combining features into weighted sums of features is equivalent

to rotating the axes used to represent the features. Now consider two strongly correlated features (i.e., two

features for which the data points lie near a single line in the plane). If one rotates the axes so that one axis

coincides with this line, then the data points along this new axis will have a large amount of variation

(“variance”). The variance along the other axes will be much lower, and, as such, if the other axes are

dropped, the loss of information is minimal. In this sense the number of features can reduced while still

keeping the most important information. This procedure can be generalized to arbitrarily many dimensions.

The components or factors resulting from this data reduction process can then be used as predictors in

subsequent analysis models (e.g., regression models that can only estimate unbiased model coe�cients if

their predictor variables are not highly correlated). Often dozens or hundreds of features can be reduced to

only a handful of components or factors, which usually have greater explanatory power than the individual

feature variables. Generally, PCA and FA are conceptually and mathematically related and are often used for

similar purposes. Revelle (2018) discusses similarities and di�erences between the two techniques, for

example, the assumption, exclusive to FA, that a latent (i.e., unobserved) factor is causing the correlations

between observed variables. PCA is employed much more frequently in the context of musical corpus

studies, and so we will only refer to PCA as a feature aggregation technique in the remainder of this section.

Most aspects of PCA modeling that we describe, however, also apply to FA models.

There are a number of challenges in the construction of PCA models. First, the researcher has to decide on

the optimal number of components for a given dataset. There are at least eight di�erent criteria for deciding

the optimal number of components. However, these criteria rarely all agree when used with real datasets.

Revelle (2018) discusses their respective merits and downsides. Several criteria make use of the eigenvalues

of the correlation matrix, which are related to the variance in the correlational data that a component is able

to explain. For example, the widely used Kaiser criterion suggests that we consider only PCA solutions where

all components have an eigenvalue of greater than 1. Revelle (2018) recommends assessing the optimal

number of components on a given dataset by several criteria and aiming to understand why they might

disagree.

The second common challenge for PCA modeling is the interpretation and naming of the resulting

components. This interpretation process is not part of the statistical procedure but an important aspect for

establishing the validity of the PCA model and for its communication and dissemination. The meaning of

each component should generally summarize the features that contribute most strongly to this component

(i.e., features with large “component loadings”). In addition, the interpretation of the overall PCA solution,
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Feature Selection

comprising all components, should be plausible. From this perspective the interpretation of the solution can

also serve as a criterion for deciding the optimal number of components.

Van Balen, Burgoyne, Bountouridis, Müllensiefen, and Veltkamp (2015) used PCA to reduce forty-four audio

features to twelve components and �fty-eight symbolic features to also twelve components (i.e., achieving a

data reduction factor of about 4) in a study on the features that would predict the “catchiness” of excerpts

from a corpus of commercial pop songs. Catchiness was measured as recognition speed and accuracy with

participants in a perceptual experiment. Here, the authors used parallel analysis to decide on the number of

components necessary. Parallel analysis was �rst introduced by Horn (1965) and compares the eigenvalues

of PCA or FA solutions for a given dataset to solutions using randomized versions of the same dataset not

containing any meaningful correlational structure. Parallel analysis suggests accepting a model where all

components have eigenvalues larger than the eigenvalues for the corresponding components extracted

from the parallel but randomized datasets. Van Balen et al. (2015, table 1) also provided meaningful

interpretations for the twelve components that describe the musical aspect summarized (e.g., harmony,

melody), the type of measure (e.g., intensity, entropy) applied, and whether background information from

the musical corpus was used in the construction of the features. Van Balen et al. (2015) then computed

component scores for all music excerpts (i.e., values of the new aggregated features). The component score

variables entered a subsequent linear regression model as predictor variables. Finally, backward elimination

was used as a variable selection strategy (see later discussion) to eliminate all component score variables

without signi�cant power to explain catchiness. Their �nal model combines two audio feature components

(“vocal prominence” and “melodic range conventionality”) and two symbolic components (“melodic

repetitivity” and “melodic/bass conventionality”) to predict participants’ performance on the recognition

task. In summary, the purpose of reducing the large number of audio and symbolic music features to only

twelve components in this study was to combine features that are highly correlated onto the same

component and feed a relatively small number of uncorrelated predictor variables to the �nal regression

model. The latter is often necessary to obtain a more robust output from any variable selection procedure

and to obtain unbiased estimates for predictor variable coe�cients.

Unlike PCA or FA, feature selection procedures do not aggregate the information from several features but

instead aim to select only the feature variables with the largest explanatory power within the context of a

supervised regression or classi�cation model. A very simple approach is to compute, for example,

regression models for all possible subsets of feature variables and choose the subset of predictors that

produces the best model �t on the given dataset. However, the exhaustive search for the best subset of

feature variables can become computationally intractable for large numbers of features because the number

of subsets grows factorially with the number of feature variables. In addition, the exhaustive search

approach is also very likely to pick up on random variations in the data, giving rise to over�tting the model

on the particular dataset, which impacts negatively on the model’s generalizability to new datasets.

Therefore, exhaustive search procedures are rarely used for item selection in practice unless the number of

feature variables is very low (e.g., up to four).

Stepwise variable selection procedures represent a widespread and practical alternative to the exhaustive

search through all possible subsets and are implemented in many software packages (e.g., R or SPSS). In

stepwise selection procedures each variable is assessed for its explanatory power only once. The assessment

is carried out in a serial fashion, starting either with the variable that is most closely (forward selection) or

least closely (backward selection starting from a full model) associated with the outcome variable to be

predicted. Forward selection starts from a model without any predictor variables, the so-called null model,

which means “predicting” the dependent variable with its average value, and adds the strongest predictors

in a step-by-step way. Backward selection starts from a full model including all available predictors and
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Model-Based Feature Selection

removes the weakest predictors �rst. At each step the model with the assessed predictor is compared

against the model without this predictor. Comparisons are typically done via statistical tests (e.g., likelihood

ratio, F-test) that allow the researcher to decide whether the predictor makes a signi�cant contribution to

explaining variance in the outcome variable above and beyond the other predictor variables in the model. If

its contribution to the model explanatory power is signi�cant, then the predictor is added/retained in the

model or otherwise discarded. The stepwise selection process ends when the addition/removal of variables

from the model no longer increases its �t signi�cantly. Backward selection procedures seem to be more

common in practice, but a general recommendation is to run both a backward and forward selection on the

same dataset and observe whether both strategies produce the same result (i.e., select the same subset of

predictors). In their study on catchiness, Van Balen et al. (2015) used a stepwise selection procedure based

on signi�cance tests. To avoid over�tting, they set the signi�cance level to a conservative value of α = .005,

which accounts for the fact that twelve signi�cance tests are required for the stepwise assessment of the

twelve PCA component as predictor variables.

An alternative to the assessment by signi�cance tests is the use of information criteria, such as the Akaike

information criterion (AIC) or the Bayesian information criterion (BIC). Here predictors are added to—or

removed from—the model as long as they optimize the information criterion (beyond a given margin). Both

AIC and BIC have a solid theoretical foundation (Raftery 1995) and balance the �t of the model to the data

with a penalty for the complexity of the model (i.e., the number of predictor variables). The BIC also

considers sample size and often delivers more robust results for large datasets.

A drawback of all stepwise selection procedures is that they are not guaranteed to identify the optimal

subset of predictor variables because each predictor is only assessed at one point in the sequence of steps for

its explanatory power. In addition, models derived from step-wise selection procedures may not generalize

well to new datasets because the selection process is always based on the same dataset. Model-based feature

selection is an alternative to running a potentially long series of stepwise model comparisons and enables

the comparative assessment of the full set of predictor variables at the same time. This can be done in a

linear regression model by shrinking the coe�cients of weaker predictor variables to zero, which eliminates

them from the regression model. Technically, this means �nding a linear regression model with an

additional constraint that the overall sum of absolute coe�cient values should be minimal. This “shrinks”

coe�cients of variables with little explanatory power to zero, which e�ectively provides a feature selection.

This technique is known as Lasso shrinkage regression and described in detail by Hastie, Tibshirani, and

Friedman (2009). Hastie et al. in their textbook also describe ridge regression, which shrinks the coe�cients

of correlated predictor variables toward each other. Ridge regression can be a useful alternative to feature

aggregation if there are high intercorrelations among predictor variables but the aim is to retain the original

variables in the model rather than to aggregate them into factors or components.

In these circumstances one possible solution is to separate the feature selection step from the subsequent

data modeling. An example of this strategy can be seen in Jakubowski, Finkel, Stewart, and Müllensiefen

(2017) who use symbolic music features of pop tunes to model the propensity of tunes to become earworms

for music listeners. Similar to van Balen et al. (2015), Jakubowski et al. (2017) make use of information from

a large corpus of commercial Western pop songs to de�ne so-called second-order features that re�ect the

commonness or conventionally of a feature value (�rst-order feature) with respect to the feature

distribution in the corpus. Their initial set of variables is comprised of eighty-two features, and the aim of

the data modeling is to classify tunes as either earworms or non-earworms based on a set of musical

features. In a �rst step, Jakubowski et al. used a random forest (Breiman 2001) to predict the earworm status

of each tune using all eighty-two features. Random forests (see more detailed explanation later) are able to

cope with large sets of predictor variables as input and can produce variable importance scores for all
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predictor variables, re�ecting the contribution of each variable to the classi�cation or regression accuracy

of the model, including main and all interaction e�ects. Following the approach outlined by Strobl, Malley,

and Tutz (2009), random forests can deliver unbiased estimates of variable importance even when predictor

variables are substantially correlated. Jakubowski et al. (2017) selected three features with substantial

variable importance score (“tempo” as well as two features measuring the conventionality of the melodic

contour of the tune) as indicated by a random forest model. These three feature predictors where then used

for explanatory modeling of the earworm status of the tunes. Here, Jakubowski et al. used di�erent

modeling techniques (a binary logistic regression and a classi�cation tree model) that allow for

straightforward understanding and interpretation of the contribution of each of the three feature variables

in the model—something that is di�cult to achieve with a complex random forest model. In this example

the random forest only served the feature selection step. The variable importance scores from random

forest models are particularly handy for this purpose, but other statistical techniques are better suited for

the modeling and interpretation of the role that individual features might play for the perception of

earworms.

Supervised Classification and Regression

Perhaps the most frequently used statistical techniques in music corpus studies are supervised

classi�cations and regressions. The basic task consists in predicting an attribute (e.g., “musical genre,”

“composer,” “peak chart position,” “radio spins per month,” “tempo,” “performance indication”) of

musical objects by a set of predictor variables (e.g., features derived from pitch or rhythmic information,

instrumentation). A supervised classi�cation or regression model therefore aims to establish an association

between the predictor variables (i.e., independent variables in statistical terms) and the target attribute (i.e.,

the dependent variable). If the target attribute is measured on a numerical scale (e.g., tempo or radio spins

per month) then the corresponding model is a regression model. If the target attribute is categorical and its

values are di�erent labels without any numerical interpretation (e.g., genre or composer) then this

constitutes a supervised classi�cation model. Genre classi�cation (e.g., Tzanetakis and Cook 2002) and

author attribution (e.g., Jürgensen and Knopke 2004) are prominent problems tackled by computational

musicologists working with large music corpora. The underlying assumption is that the target attribute is a

useful shortcut description for whole set of features that commonly appear together. A supervised

classi�cation model can then be used to predict, for example, the author of a newly discovered musical

piece. Similarly, a regression model can be employed to predict from suitable musical features the chart

success of a song just released. In addition, supervised classi�cation and regression models can also have an

explanatory value by illuminating the process of how labels or scale value are assigned to musical pieces. For

supervised classi�cation and regression, the values of the target attribute are known at the modeling stage,

and they are necessary to learn how the target attribute is structurally associated with the predictor

variables (i.e., the learning or optimization process is “supervised”). In contrast, in unsupervised

classi�cation models (see later discussion) there is no distinction between target attributes and predictor

variables. Here, the statistical model has to learn autonomously how variables are associated with each

other and discover structure and groupings (i.e., “clusters”) in the data, often based on measures of

similarity or distance between observations.

There are many statistical techniques for supervised classi�cation and regression that are suitable for

musical corpus studies, and, although it is beyond the scope of this chapter to go into su�cient detail, there

are excellent introductory examples. For example, both James, Witten, Hastie, and Tibshirani (2013) and

Witten, Eibe, Hall, and Pal (2017) provide excellent introductory and advanced treatments of many

supervised classi�cation and regression techniques, and Weihs, Ligges, Mörchen, and Müllensiefen (2007)

summarize their applications in music research. Therefore, in the following discussion we restrict ourselves

D
ow

nloaded from
 https://academ

ic.oup.com
/edited-volum

e/41992/chapter/371464078 by O
U

P-R
eference G

ratis Access user on 12 Septem
ber 2022



to the presentation of a single example speci�cally designed to illustrate a supervised classi�cation model

with the aim to predict the corpus that a melody belongs to purely from the melody’s musical features.

For this example, 250 melodies were sampled from di�erent music corpora. First, �fty melodies were taken

from each of three subcorpora (German children’s songs, folk songs from the Polish region of Warmia, and

folk songs from Ireland) of the Essen Folk Song Collection (Scha�rath 1995). Additionally, �fty jazz

melodies were sampled from the Weimar Jazz Database (P�eiderer 2017), and �fty pop melodies were taken

from the M S corpus of Western commercial pop songs (Müllensiefen et al. 2008). For each of these 250

songs a set of 138 melodic features was extracted with the help of the melfeature module of the MeloSpyGUI

(Frieler 2017). Using these features, the supervised classi�cation models were constructed with the aim of

mapping each melody to its (sub-)corpus. As statistical techniques, we employed classi�cation trees and

their corresponding ensemble method, random forests (Breiman 2001).

4

Generally speaking, classi�cation (or decision) tree models work by recursively partitioning datasets into

homogeneous subgroups where the target variable has mostly the same value (e.g., a corpus label as in this

example). The data are split according to threshold values of the predictor variables. At each node of the

tree, the predictor variable that maximally increases the homogeneity of the subgroups is selected for

splitting. This process of partitioning the data into subgroups is repeated recursively until subgroups cannot

be split any further either because a minimum group size criterion is reached or because there is no increase

in homogeneity to be gained from a further split.

Tree models possess a number of characteristics that make them well-suited for the analysis of this dataset.

Tree models use a built-in variable selection mechanism (see earlier discussion) and can easily cope with

large sets of predictor variables. They do not assume a linear relationship between predictors and the target

attribute (dependent variable). Finally, tree models are ideal for identifying higher-order interaction e�ects

and also lend themselves very naturally to a graphical interpretation and understanding of the data (cf.

Figure 8.3). However, despite these advantages, tree model can lack predictive power and generalizability of

their results in comparison with other classi�cation techniques. To overcome these limitations, Breiman

(2001) suggested random forests as an extension of tree-based statistical models. In a random forest model,

many trees are grown independently to predict the target attribute or classi�cation label. For each tree only

a bootstrap sample (i.e., a number of randomly selected data points) of the available data is used, and the

number of explanatory variables is limited to random subset of all available predictor variables. From the

many tree models grown within a random forest, the label that is predicted by the majority of tree models

serves as the overall predicted classi�cation label. The “importance” of a variable is then measured as the

number of times it was selected for a node in all trees.

Random forests have been shown to have a superior prediction accuracy compared to individual tree models

as well as compared to many other statistical predictive techniques (Fernandez-Delgado et al. 2014).

Random forest models cannot be easily visualized but importance values for all predictor variables can be

used to determine a subset of best predictors (see earlier discussion). For the current example, the eight

feature predictors with the highest importance values according to the random forest are displayed in

Figure 8.2.

The eight selected predictors are all related in some way to complexity. Syncopicity is the amount of

syncopation in a melody; pitch_bigram_entropy is the entropy of consecutive pitch pairs, which can be

interpreted as the predictability of the next pitch after knowing the preceding pitch value;

pc_bigram_entropy is the entropy of consecutive pitch class pairs, which can be interpreted as the

predictability of the next pitch class (“chroma”) after knowing the preceding pitch class value;

mcm_entropy is the entropy of distribution of metrical positions, which measures the uniformity in how

metrical positions are occupied (a structured variable rhythm has lower mcm_entropy than a totally

isochronous rhythm); pc_entropy is the entropy of pitch class distribution, which is higher for more
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chromatic melodies, lower for diatonic, and even lower for pentatonic melodies; pc_bigram_entropy_norm is

the normalized entropy of pitch class pairs, like pc_bigram_entropy but normalized to values between 0 and

1; pitch_entropy is the entropy of pitches, which measures the variability of pitch usage in a melody; and

nPVI_ioi is the pairwise variability index of inter-onset intervals, which is a measure for the uniformity of

rhythms (the lower the value, the more uniform the rhythm).

The boxplots show that the �ve di�erent melody corpora can have very di�erent values on some of these

features. For instance, jazz and pop melodies have a much higher number of syncopations than the three

subcorpora form the Essen collection. The jazz melodies clearly di�er from the other four corpora in terms

of pitch_bigram_entropy and other pitch-based features. Children’s songs (Kinder), for example, have lower

mcm_entropy values than melodies from all other corpora. Making use of the information of all features, the

random forest model achieves an average classi�cation accuracy of 88%, which is reasonably high

considering the chance level of 20% on this �ve-class classi�cation task.

Figure 8.2

Boxplots of the most important variables according to a trained random forest on the example melody classification problem.
Syncopicity: Amount of syncopation in a melody. Pitch_bigram_entropy: Entropy of consecutive pitch pairs. Pc_bigram_entropy:
Entropy of consecutive pitch class pairs. Mcm_entropy: entropy of distribution of metrical positions. Pc_entropy: Entropy of pitch
class distribution. Pc_bigram_entropy_norm: Normalized entropy of pitch class pairs. Pitch_entropy: entropy of pitches. nPVI_ioi:
Pairwise variability index of inter-onset intervals.

Out of these eight features, the subsequent classi�cation tree model only made use of four features and

achieved a classi�cation accuracy of 85.2%. Hence the classi�cation tree performs the classi�cation task

less accurately compared with the random forest, but, in turn, the tree model consists of only four very

simple rules that can be directly translated to musicological knowledge. The leftmost branch of its graphical

representation in Figure 8.3 shows that a single feature, pitch_bigram_entropy, is su�cient to identify all

jazz solos (with only one Irish folk song erroneously misclassi�ed into this group). Pitch_bigram_entropy

measures the lack of predictability of the second pitch in two-pitch sequences, which is much larger (i.e.,

pitch_bigram_entropy ≥5) for jazz solos than for the melodies from the other corpora (pitch_bigram_entropy

<5). Following the right branch from the top node, the next feature is syncopicity, which helps to classify

nearly all pop songs (forty-three out of �fty, with four misclassi�cations). Syncopations are relatively rare

in European folk songs, whereas they are much more frequent in commercial pop music. The most

important feature di�erentiation for the remaining of folk songs is mcm_entropy, which measures the

predictability of metrical positions. Here, high values are a feature of a large portion (34/50) of the Warmian

(East Polish) folk songs. This corresponds to a large number of songs with an odd meter in the Warmia
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corpus. The �nal branch uses the pitch_entropy feature, with German children songs being much more

predictive in pitch content (lower entropy) than folk songs from Ireland.

Figure 8.3

Decision tree using the most important variables identified by a random forest model for the melody classification example.

This example demonstrates the principle of supervised classi�cation using random forests and

classi�cation tree algorithms. One has to bear in mind that a classi�cation tree does not make use of all

existing di�erences between melodies from di�erent corpora but uses only of the most discriminative ones.

This focus on the most discriminative features produces simpler and more parsimonious models that can be

visualized in a graphical structure. But the restriction to use only a reduced set of predictors also means a

loss in classi�cation accuracy. This tradeo� between model simplicity and predictive power applies to all

supervised classi�cation and regression techniques. Therefore, the choice of a particular statistical

technique should be guided by the purpose of the statistical analysis and primary research question.

Clustering (Unsupervised Classification)

In contrast to supervised classi�cation techniques, the purpose of unsupervised classi�cation or clustering

is to group similar objects (e.g., music pieces) into the same cluster and assign corresponding labels that

indicate cluster membership. Hence, the result of a clustering process is often the creation of a new

categorical variable with cluster labels that can be interpreted as an index for the similarity between objects.

Generally, objects from the same cluster are considered more similar than objects from di�erent clusters.

Therefore, clustering induces or retrieves structure in a dataset. Clustering can aim to discover “real”

structures in the data (i.e., recreate variables that were part of the data generation process). For example, in

musical corpus studies clustering can aim to cluster together songs from the same genre if the genre

information itself was not available (e.g., Mörchen et al. 2006). When cluster analysis is used for objective

structure discovery, the clustering model can, at least in theory, be compared to “ground truth” data that

would indicate the true cluster membership. Alternatively, “constructive” clustering (Hennig 2015) can be

used to induce a new grouping structure (e.g., by clustering commercial Western pop songs into the two

discrete groups “hits” vs. “non-hits”; see Frieler et al. 2015) while acknowledging that the underlying

construct commercial success is not discrete but a continuous variable that comprises numerical variables

such as peak chart position and duration in the charts. In this case the clustering solution cannot be

evaluated against any ground truth data, but is determined by the choices of the researcher regarding the

clustering algorithm and the desired number of clusters.

2
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Clustering has a long tradition in musical corpus studies and probably started with the desire to group tunes

in large folk song collections into tune families. Béla Bartók’s classi�cation of Serbo-Croatian folk songs in

the Parry collection is an early example of the systematic ordering of melodies in a corpus by structural

features (Bartók and Lord 1951; regarding methodology, see Bartók 1976). Later Wolfram Steinbeck (1982)

introduced formal cluster analysis methods to folk song classi�cation using features of musical structure

that were computed from a symbolic music representation. Currently, cluster analysis is still used in cross-

cultural research to classify musical pieces into a (small) number of groups that re�ect their similarity (e.g.,

the clustering of ethnographically recorded songs into dance, lullaby, healing, and love songs; Mehr et al.

2019).

There are many di�erent approaches to cluster analysis, many of which are discussed in the textbooks by

Kaufman and Rousseeuw (1990) and Everitt, Landau, Leese, and Stahl (2011). But, on a conceptual level,

there are generally three steps in a cluster analysis that also apply to clustering in musical corpus studies:

the computation of a dissimilarity matrix, the application of a clustering algorithm, and the interpretation

and description of the cluster solution.

Dissimilarity matrix. Once features are extracted for a collection of music pieces, the dissimilarity between

each possible pair of pieces can be computed using a wide range of distance (or similarity) measures. The

choice of distance measure strongly depends on the type of features that are used to describe the pieces in

the collection. Some distance measures (e.g., Euclidean distance) can only be applied to numerical features,

while others (e.g., Gower’s coe�cient; Gower 1971) also work with mixed-type data (i.e., a set of features

that includes categorical, ordinal, and metrical features). In any case, the dissimilarity value for a pair of

pieces should summarize the dissimilarity across the features extracted from the pieces. However,

dissimilarity measures are not necessarily always computed directly from feature variables that describe

speci�c aspects of a music piece. Instead, similarity between musical objects might be obtained directly by

comparing two musical sequences, as, for example, by techniques that compare symbol strings

(Müllensiefen and Frieler 2004) or by compression-based measures (e.g., Pearce and Müllensiefen 2017).

Clustering algorithm. The aim of most clustering algorithms is to �nd a cluster solution where each cluster is

fairly homogeneous (i.e., the distance between objects within the cluster is small) and all clusters are well

separated from each other (i.e., the distance between objects of di�erent clusters is large). But homogeneity

and separation can both be achieved in various ways. Additionally, within-cluster homogeneity and

between-separation can be di�erent goals, and, depending on the priorities of the researcher, di�erent

weightings may lead to di�erent clusterings. There is an abundance of di�erent clustering methods

available that optimize homogeneity and separation in very di�erent ways. Additionally, cluster methods

di�er in how the number of clusters is chosen, how the relationship between clusters is de�ned (e.g.,

hierarchical vs. nonhierarchical partitioning), how outlier cases are dealt with, and what geometrical cluster

shapes are permissible. Finally, there are di�erent methods for assessing the stability and �t of cluster

solutions with regards to the data. This long list of options and approaches makes it clear that there is no

optimal clustering method for musical corpus analysis per se but that the choice for a particular algorithm,

implementation, and evaluation method needs to be made very much with an understanding of the data and

the research goals in mind.

Interpretation. The outputs of most clustering algorithms are simply alphanumerical labels (e.g., “A,” “B,”

“C,” etc.) that are assigned to the members of each cluster. These labels do not have any a priori meaning,

and whether a speci�c cluster of music pieces is labeled “A” or “B” is often completely arbitrary. Hence,

once a clustering solution has been obtained and evaluated, the individual clusters need to be described and

interpreted, and labels can potentially be replaced with meaningful cluster names. Here, the distribution of

features within each cluster can be very useful for identifying summary characteristics of each cluster and to

distinguish di�erent clusters from each other. There is no principled technical or statistical solution to the

interpretation of a cluster solution, but it is the responsibility of the researcher to �nd a convincing
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argument for interpreting clusters on the basis of the empirical evidence at hand (e.g., see labeling of

clusters of harmonic sequences in popular music assigned by Sha�er et al. 2019).

A good example of the use of cluster analysis in musical corpus studies is the paper on the cultural and

geographical spread of song types in traditional Taiwanese music by Savage and Brown (2014). Their

primary research question concerns the prevalence of distinct song families among twelve di�erent

indigenous peoples in Taiwan. The authors used a corpus of 259 traditional Taiwanese songs collected from

across the entire island. Each song was characterized by twenty-six categorical and ordinal features that

re�ected di�erent aspects of musical structure and are modeled after Alan Lomax’s Cantrometrics

classi�cation system (Lomax 1976; Savage et al. 2012). From the matrix of song features (259 songs and 26

features), Savage and Brown computed the dissimilarity matrix of all possible song pairs (33,411 di�erent

dissimilarity values) using a distance measure (Rzeszutek et al. 2012) very similar to Gower’s coe�cient of

similarity (Gower 1971). The dissimilarity matrix was then taken as input to the k-means clustering

algorithm, which partitioned the 259 songs into k di�erent clusters. In k-means clustering the clusters are

disjoint (i.e., each song belongs to only a single cluster) and do not possess any hierarchical structure (i.e.,

no cluster is part of another cluster). The researcher needs to decide in advance into how many di�erent

clusters the collection of songs should be partitioned. Because there are no strong suggestions from prior

research or ethnomusicological theory for the number of clusters, Savage and Brown ran the k-means

algorithm several times with values for k ranging from 1 to 25. For each cluster solution, they compute the

within-group sum of squares as a criterion of cluster (in)homogeneity and then use the magnitude of

decrease on this criterion for deciding the optimal number of clusters. On their data, the decrease of cluster

inhomogeneity was less strong after �ve clusters, and therefore they chose the �ve-cluster solution. In a

�nal step, they interpreted the �ve clusters in terms of the most important aspects of musical structure

(e.g., metrical regularity, rhythmic variability, most prevalent scale and contour types, typical phrase

length). Savage and Brown do not claim that the �ve clusters correspond to any objective reality, but they

arrived at their clustering solution via observing a model–data �t index. Hence, their cluster analysis

induces structure in a constructive way.

The song clusters are subsequently used in the main analysis of the study where the authors showed that

there are large di�erences in the prevalence of these song clusters in di�erent geographical regions and

among the twelve indigenous Taiwanese peoples. Consequently, they derived cluster names from the

geographical region where each song cluster is most prevalent.

The use of cluster analysis in their study helps to distinguish between geographical region, cultural group,

and type of song, where the type of song is de�ned purely by musical features. Only this constructive

de�nition of song type by cluster analysis enables the authors to draw a di�erentiated picture of the musical

overlap and the musical similarities (as well as di�erences) across di�erent indigenous cultural groups. It is

a good example of how cluster analysis can induce in a musical corpus a useful summary structure that is

not visible from the distributions of a large feature set.

Conclusion

This chapter is intended as an inspiration for exploring the wide range of statistical methods that might be

suitable for music corpus analysis. We encourage making the most of the musical corpus and the

corresponding feature data, which usually take long to compile and are often tricky to extract. Musical

corpus studies are usually very data-rich and o�er many di�erent perspectives of scienti�c inquiry that can

be investigated by applying statistical methods.

The descriptions of individual methods presented in this chapter do not cover all aspects necessary for their

application to a real dataset. But we hope that each section conveyed the central message that the choice for
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or against individual methods and analysis options needs to be made with a clear research question in mind

and a profound knowledge of the data available in the corpus. Across the individual sections, we have

provided possible answers to questions that frequently appear in musical corpus studies: “Does my data

show the expected trends?” and “Is there any interesting structure in the data that I have not been aware

of?” “What are the most important features in my dataset?” and “How can I combine several features that

seem to measure the same thing?” “Can I predict interesting attributes of the musical pieces in my corpus

from musical features?” “How can I group together pieces that are musically similar?” Obviously, there are

many more questions that can arise as part of a musical corpus study, but exploration, prediction, and the

construction of a classi�cation structure are tasks that are relevant for investigation and comparison of

musical corpora, and answering these questions with the appropriate statistical methodology is a core part

of research in this �eld.
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Notes

1  https://jazzomat.hfm-weimar.de/feature_history_jazz/.

2 We use the terms “unsupervised classification” and “clustering” synonymously in this section.
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