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The Temporal Context in Bayesian Models of Interval Timing:
Recent Advances and Future Directions

Renata Sadibolova and Devin B. Terhune
Department of Psychology, Goldsmiths, University of London

Sensory perception, motor control, and cognition necessitate reliable timing in the range of milliseconds to
seconds, which implies the existence of a highly accurate timing system. Yet, partly owing to the fact that
temporal processing is modulated by contextual factors, perceived time is not isomorphic to physical time.
Temporal estimates exhibit regression to the mean of an interval distribution (global context) and are also
affected by preceding trials (local context). Recent Bayesian models of interval timing have provided
important insights regarding these observations, but questions remain as to how exposure to past intervals
shapes perceived time. In this article, we provide a brief overview of Bayesian models of interval timing and
their contribution to current understanding of context effects. We then proceed to highlight recent
developments in the field concerning precision weighting of Bayesian evidence in both healthy timing
and disease and the neurophysiological and neurochemical signatures of timing prediction errors. We
further aim to bring attention to current outstanding questions for Bayesian models of interval timing, such
as the likelihood conceptualization.
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Although we are often aware of the relative inaccuracy of our
subjective experience of the passage of time, we tend to be unaware
of the factors that shape our temporal estimates. Human time
perception is influenced and biased by a myriad array of factors.
Two robust effects include temporal estimates showing regression to
the mean of an interval distribution (global context; e.g., Acerbi
et al., 2012; Jazayeri & Shadlen, 2010) and being affected by more
immediate preceding trials (local context; e.g., de Jong et al., 2021;
Wiener et al., 2014). Bayesian models of interval timing have
provided important insights into these observations (Figure 1);
however, it remains unclear how exposure to past intervals shapes
perceived time at neural and mechanistic levels. In this article, we
aim to provide a brief overview of how Bayesian models of timing
contribute to our understanding of temporal context effects with an
emphasis on recent research directions and outstanding questions.

The observation that perceived time is affected by the perception
of previous intervals was first documented nearly two centuries ago
(Fechner, 1948; Vierordt, 1868). The impact of the global context on
interval estimates represents one of the best-known timing effects
and is referred to as the Vierordt’s law, central tendency bias (CTB),
or a migration effect across the vast literature on this topic. This
effect describes the tendency for short and long stimuli among a set
(or distribution) of intervals to perceptually migrate toward the mean
and thus be over- or underestimated, respectively (Figure 1D;
Acerbi et al., 2012; Cicchini et al., 2012; Jazayeri & Shadlen,
2010; Lejeune & Wearden, 2009; Petzschner & Glasauer, 2011;
Shi et al., 2013). An abundance of studies have also reported local
context effects (Figure 1E), known as n − 1 or recency effects, or
time-order errors more generally. For instance, comparing two
successive stimulus intervals may lead to an over- or underestima-
tion of the second stimulus depending on factors such as the length
of the interstimulus interval or the duration of the stimuli themselves
(Burr et al., 2013; de Jong et al., 2021; Dyjas et al., 2012;
Hellström, 1985; Nakajima et al., 1992; Wiener et al., 2014). Early
theories explained these perceptual phenomena as a consequence of
an adaptation and sensation weighting, with the latter defined as the
utilization of “generic information” to supplement (uncertain) spe-
cific stimulus information (Anderson, 1971; Ellis, 1973; Hellström,
1985; Helson, 1947). Indeed, Bayesian and signal detection theories
accounting for these perceptual biases figured in textbooks on
cognitive psychology as early as in the 1970s (e.g., Hellström,
1985; Lindsay & Norman, 1977; Tversky & Kahneman, 1974).

These concepts were later expanded upon in the Bayesian
decision theory (Cyert & DeGroot, 1987; Körding & Wolpert,
2006), which proposes that the brain may function as a Bayesian
observer striving to optimally integrate prior knowledge and new
sensory information using Bayesian inference (Friston, 2010; Knill
& Pouget, 2004; but see Bowers & Davis, 2012). The general idea
is that perception benefits from extracting statistical regularities
from the environment that are modeled by a probability distribution
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(prior). In turn, incoming sensory data gives rise to the measure-
ment distribution which specifies the likelihood function. Their
integration results in the posterior distribution, which represents
the perceptual decision space (Figure 1B). Here, a value is selected
according to the implicit decision rule, determined by gains and

losses specified in a cost function, which ultimately results in the
response (Geisler & Kersten, 2002; Teufel et al., 2013). In Bayes-
ian models of time perception, a perceived interval (posterior
distribution) therefore results from a probabilistic inference includ-
ing the internal temporal memory (prior) and new sensory evidence

Figure 1
Temporal Models and Biases

Note. (A) In classical models, the causes of sensory stimulation are not predicted. The sensory information ascends
through levels of a processing hierarchy gaining on complexity until it translates into a decision (e.g., perceived time).
(B) In generative models, a joint probability of these causes and sensory data is probabilistically inferred with Bayes
rule (Equation I; Petzschner et al., 2015). Importantly, the resulting posterior mean estimate is shaped by the
precision (inverse of variance) of the prior and likelihood distributions. It is the uncertainty-weighted average of the
prior mean and the likelihood mean (Equation II) with their precision weights being inversely proportional to their
respective variances (Equation III). The panel (C) depicts how the top-down (orange) and bottom-up (blue) chains
interact in hierarchical predictive coding. The orange arrows and the nodes with letter “r” represent predicted neural
responses (priors), whereas the blue arrows and the nodes with “e” represent a mismatch (error) between the
predicted and actual neural responses (likelihood). (D–E) An illustrative example of the global and local context
effects (D and E panels, respectively) in perceived-by-actual interval plots. Themeasurement of a stimulus interval is
represented by a likelihood function (in blue). Both panels show deviations in perceived intervals (posterior; in green)
toward the prior (in orange), that is, the mean of stimulus interval range (global prior) or the preceding 700-ms
stimulus (local prior). The plots further showhow the lower (D) and higher (E) prior precision relative to the precision
of a likelihood impact on the magnitude of temporal bias. For the former, the responses are closer to the likelihood
and therefore less biased, whereas they are significantly biased in the case of a latter. If participants responded only
with a prior, their responses would fall on the orange lines. By contrast, veridical temporal estimates reflecting no
prior influence would fall on the blue line. See the online article for the color version of this figure.
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(likelihood; Acerbi et al., 2012; Gu et al., 2015; Rhodes, 2018; Shi
et al., 2013). Priors and likelihoods may be represented by Gauss-
ian probability distributions characterized by a mean and a vari-
ance, although more complex prior representations that incorporate
higher order statistical features have also been reported (Acerbi
et al., 2012).
According to Shi et al. (2013), the temporal prior may be centered

on the mean of the presented interval range with the width of a
distribution reflecting the precision of the internal memory reference
(Figure 1D). The often-observed asymmetric regression to the mean
may reflect the higher signal-to-noise ratio (narrower likelihood) for
short durations, suggesting that the prior for an interval range
distribution may form at a higher level of the processing hierarchy
(van Rijn, 2016). By contrast, for the likelihood distribution, these
parameters may characterize, respectively, the sensory readout and
its precision for the current stimulus interval. Whereas priors and
likelihoods superficially resemble the memory and internal clock
(tick counts) components of the classic internal clock model
(Gibbon et al., 1997; Shi et al., 2013), the difficulty of forming a
continuous likelihood distribution given the discrete clock output
has been noted in the literature (Rhodes, 2018). Shi et al. (2013)
further identified as one of the outstanding questions in this domain
the unification of a Bayesian timing framework with influential
theories of time perception such as the striatal beat-frequencymodel.
As will be discussed, one challenge for such efforts is almost
universally implied poststimulus integration of the reference mem-
ory, whereas Bayesian temporal priors appear to shape the percep-
tion of ongoing stimulus intervals (Damsma et al., 2021).
The well-recognized strength of Bayesian models is their ability

to account for context effects, including the influence of nontem-
poral factors such as general stimulus intensity or magnitude
(Kruijne & van Rijn, 2021). Although earlier approaches com-
bined a linear-weighted average and scalar timing theory in a
“memory-mixing” model, they lack clarity regarding the mechan-
isms involved in subjective interval representation and the contri-
bution of local and global contexts (Gu &Meck, 2011). By contrast,
in Bayesian timing models (Jazayeri & Shadlen, 2010; Shi et al.,
2013), temporal statistical regularities learnt rapidly through inter-
val exposure lead to the formation of a prior that filters out the trial-
by-trial noise in interval judgments. Put differently, the system
treats each stimulus as reflecting both the stable properties of the
world (that need to be inferred) and the uncertainty introduced, for
example, through noisy sensory processing (that needs disregard-
ing). However, by increasing the precision of temporal estimates
this way, the model, however, inevitably introduces a systematic
bias such as the CTB. Therefore, an identical stimulus interval is
judged as shorter or longer depending on whether it is the longest or
the shortest of a presented interval range, respectively (Acerbi et al.,
2012; Jazayeri & Shadlen, 2010; Lejeune &Wearden, 2009). Taken
together, Bayesian models provide a useful framework for, and
novel insights into, timing phenomena such as the influence of
global and local contexts. The subsequent sections will focus on
more recent developments in the timing literature that further bear
upon some outstanding questions for these models.

Dynamic Integration of Multiple Priors

Despite numerous advantages of this framework, including its
capacity to explain the CTB and account for performance patterns in

special populations as will be discussed in later sections, the original
Bayesian approach to timing assumed a relatively static prior
(interval mean) throughout the course of an experiment (Acerbi
et al., 2012; Jazayeri & Shadlen, 2010), thus failing to incorporate
recency effects, which appear to impact temporal estimates inde-
pendently of a global prior (de Jong et al., 2021; van Rijn, 2016;
Wiener et al., 2014). Indeed, one of the outstanding questions that is
seldom addressed by Bayesian timing models is how these multiple
priors interact in shaping time perception. The internal reference
model (Bausenhart et al., 2014, 2016; Dyjas et al., 2012) combines
the global and local priors in a dynamically updated weighted
geometric moving mean of earlier stimulus intervals. More recent
Bayesian implementations include adaptive priors that change over
time (Berniker et al., 2010; de Jong et al., 2021; Glasauer & Shi,
2021; Petzschner & Glasauer, 2011; Wiener et al., 2014) by also
incorporating Kalman-like filters (Kalman, 1960). In these models,
Kalman gain relates to the trial-by-trial precision (variance) of the
prior and the likelihood distributions that affects their respective
weights before they are integrated in a Bayesian optimal manner.
For instance, low gain values may represent a scenario when a prior
has stabilized over trials, whereas high values suggest a strong
influence of the most recent trial. By applying such model, Wiener
et al. (2014) demonstrated that despite their different timescales,
both global and local context effects result from a common prior
updated on a trial-by-trial basis. Moreover, recent implementation of
a Kalman-like filter revealed that both the range and sequence of
stimulus intervals determine the CTB (Glasauer & Shi, 2021). In a
world that is relatively stable but fluctuates in small random walk
changes, it stands to reason that a recent stimulus gives rise to a
short-term expectation of the one that follows. It was shown that the
CTB may be partially attributed to experimental randomization of
stimuli, since it is substantially reduced for a random walk sequence
(Glasauer & Shi, 2021). These results highlight the potential of
modeling dynamic priors for elucidating how multiple priors may
collaboratively shape time perception. Further, the inclusion of
dynamic priors leads to more flexible and realistic theoretical
models for how Bayesian priors may be acquired and used.

Learning Priors

Prior formation represents a fundamental feature of Bayesian
models of timing, yet our understanding of how different priors are
learnt and how they generalize to different behavioral contexts is still
limited. For instance, learning different statistical properties of a new
prior may be differently paced as suggested by a more rapid learning
of a prior mean compared to its variance (precision; Berniker et al.,
2010; Miyazaki et al., 2005). Bayesian observers by default first
appear to form a single prior by generalizing across sensory infor-
mation, which serves to widen the data acquisition net and facilitate
rapid learning (Roach et al., 2017). With extensive training, parti-
cipants demonstrate a capacity to learn a large set of sometimes
specific priors even if this may not be optimal. Roach et al. (2017)
further showed that Bayesian observers can form multiple more
specific priors when the corresponding interval distributions were
coupled with multiple distinct motor outputs. This is consistent with
the CTB being minimal for expert percussionists who show superior
motor timing skills (Cicchini et al., 2012) and larger in Parkinson’s
disease (PD), which is characterized by motor deficits (Malapani
et al., 2002). Together with stimulus-specific priors learnt through
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more elaborate training, the structuring of prior knowledge is
dynamic in the sense that the emphasis shifts from flexibility to
specificity as learning progresses.
In another study, researchers applied functional magnetic reso-

nance imaging (fMRI) in a time-to-contact estimation task to
investigate the learning of across-trial regularities and trial-specific
information (Polti et al., 2021). The caudate region signaled behav-
ioral improvements specific to the stimulus interval in each trial. By
contrast, hippocampus generalized across all stimulus intervals and
its activation scaled with CTBs. Accordingly, a reduced influence of
previous trials (local prior) on current reproduced intervals was
observed after pharmacological silencing of hippocampal neurons
(Dias et al., 2021), which implicates the hippocampal region in
timing standardization by both temporal priors. These findings
suggest that hippocampus and striatum facilitate two distinct forms
of learning, supporting, respectively, the generalization and speci-
ficity in time perception in a rapid manner. Another recent study in
the nontemporal domain showed that generalization strength is
related to functional connectivity between the dopaminergic mid-
brain and hippocampus (Kahnt & Tobler, 2016). Further, a hippo-
campal dopamine D2-receptor blockade by amisulpride led to
decreased midbrain–hippocampal connectivity and altered general-
ization gradients. Altogether, these results implicate the
hippocampal–striatal network in generalization by temporal priors,
and they suggest that rather than fixed and “hard-wired,” generali-
zation may be flexible and it can be modulated by pharmacological
intervention (Kahnt & Tobler, 2016).
Further research into the role of the striatal–hippocampal inter-

play is thus required to understand the learning of temporal priors
and the generalizability and specificity in timing performance.
According to the internal reference model, which bears similarity
to Kalman filter models, internal references may not be necessarily
replaced by more current ones (Bausenhart et al., 2016). Instead,
they may be retained to some extent and used to reconstruct the
original reference (Ogden et al., 2008) and in some situations, a
long-term reference perseveres in the face of a more current
temporal context (Wearden, 2008). A further outstanding question
is how these effects manifest in long-term training of interval timing
(Bueti et al., 2012).

Temporal Locus of Prior Influence During
Temporal Processing

The integration of temporal priors and sensory evidence is
implicitly reserved for the postsensory phase of the processing of
temporal intervals, given that the duration of a temporal stimulus
(likelihood) is ostensibly available only once the stimulus has ended
(Damsma et al., 2021; Gibbon, 1977; Matell & Meck, 2004). In
some cases, temporal decisions may precede the offset of (long)
stimulus intervals in tasks such as temporal bisection, once the
duration of a subjective mid interval (internal reference) is surpassed
(Balci & Simen, 2014). Electroencephalography (EEG) can capture
brain dynamics in high temporal resolution and is therefore suitable
for investigating the stage during temporal processing when tem-
poral priors and likelihoods are integrated. Past research has shown
that larger amplitude of the contingent negative variation (CNV) and
increased beta oscillatory power associated with longer n − 1 prior
durations indeed reflect the adjustment of a decision threshold in
drift diffusion modeling (Wiener et al., 2018). However, it was later

suggested that these EEG signatures may not unambiguously reflect
the integration of priors in the decisional stage due to the nature of
the temporal bisection task (Damsma et al., 2021). Rather, they may
reflect the updating of the internal reference on a trial-by-trial basis.

Most models of interval timing have largely assumed that inte-
gration with memory (priors) occurs in later perceptual stages. By
contrast, relatively little attention has been devoted to the possibility
that temporal priors may shape perception by modulating stimulus
interval processing online. However, recent evidence suggests that
this may indeed be the case. Electrophysiological evidence suggests
that temporal priors shape perception of an interval during stimulus
processing as well as in the postsensory stage (Damsma et al., 2021;
Sohn et al., 2019). Damsma et al. (2021) methodically explored the
EEG correlates of both global and local context effects in a temporal
reproduction task, implicating the CNV, P2 amplitude and latency
and β-band power over fronto-central electrodes, and the distributed
neural code during the encoding of stimuli in human participants.
The authors suggest that neural populations associated with the
CNV may perform temporal scaling based on context (Remington
et al., 2018; Sohn et al., 2019), pointing out that they were able to
decode the context from EEG dynamics almost instantaneously
following stimulus onset. Their observations concerning the P2
component were related to expectancy suggesting active interval
anticipation based on previous stimuli. Finally, they showed an
association between the prior and β-band power during the currently
processed stimulus interval, earlier than in the decisional stage as
was previously thought (Wiener et al., 2018).

Another electrophysiological study involving saccadic and motor
temporal production in two monkeys explored Bayesian integration
at the level of single neurons as well as population networks (Sohn
et al., 2019). It was found that temporal priors affected behavior
through the modulation of latent dynamics in frontal cortex. Compu-
tational modeling was used to show how priors may establish a
curved trajectory in neural space. Neural states would be projected
along this trajectory onto an encoding axis, creating a warped time
representation reflecting the influence of priors. Taken together,
these studies suggest that temporal priors may shape time percep-
tion earlier than was previously thought, during the ongoing
processing of a stimulus interval thus diverging from earlier
theories that tended to incorporate sequential order of the sensory
processing and memory stages (Gibbon, 1977; Jazayeri & Shadlen,
2010; Matell & Meck, 2004).

The Temporal Likelihood Conundrum

Rather than dealing with a bottom-up hierarchical accumulation
of stimulus characteristics (Figure 1A), predictive processing mod-
els assume that perceptual systems invert the structure of learning
about the world by applying and testing hierarchical generative
models (Figure 1B). The incoming signal representations and their
precision are thus predicted top-down at each processing stage and
the incoming information is used as training data to fine-tune these
predictions (Figure 1C). As such, these models suggest that percep-
tual systems combine two powerful processing features: The sub-
tracting away of the signal predicted by priors by way of confirming
the predictions of a generative model and the selective amplification
of unexplained incoming information that represents uncertainty
(Clark, 2013; Friston & Kiebel, 2009; Hohwy, 2012; Shi & Burr,
2016). Notably, since the predicted signal is subtracted away, the
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likelihood at each level of the processing hierarchy is reduced to the
unexplainable signal (prediction error) and as such it is relayed on.
Henceforth conceptualized as prediction errors, the likelihood can
be modulated by attention-like processes at each level in the
hierarchy (Figure 1C). Specifically, attention has been likened to
a selective increase of gain on those prediction errors that fast-track
the improvement of subsequent predictions and thus more effi-
ciently reduce uncertainty (Clark, 2016).
This view of a likelihood does not conform to some conceptua-

lizations of the temporal likelihood in the Bayesian timing literature,
such as the output pulse count of a dedicated internal clock, ramping
neural activity, or some other interoceptive process (Kononowicz &
van Rijn, 2014; Rhodes, 2018; Richter & Ibáñez, 2021; Shi et al.,
2013). However, recent developments have shown that the capacity
to explain how a Bayesian observer perceives time may not be
contingent on the output of a putative internal clock. On the
contrary, a network representing the visual system was able to
produce reliable interval estimates that were similar to human timing
judgements simply from the accumulation of salient changes in to-
be-timed real-life video stimuli (Roseboom et al., 2019). Specifi-
cally, rich dynamic stimuli were perceived as shorter when fewer
salient changes transpired in the course of their duration, demon-
strating that the implicit processing or awareness of changes in
perceptual content alone may account for the perception of duration.
This model is conceptually similar to neural population “clocks”
(Karmarkar & Buonomano, 2007; Paton & Buonomano, 2018;
Sadibolova et al., 2021), which assume that timing is an intrinsic
property of neural networks, with the temporal stimulus dimension
modeled as a trajectory in a neural state space (see also Matthews
et al., 2014).
Recently, a Kalman filter was suggested to model Bayesian

predictive processing with forward prediction errors as the temporal
likelihood (Shi & Burr, 2016). This account assumes a twofold
corrective process for minimizing prediction errors that involves the
updating of a posterior distribution (percept) and/or dynamic adjust-
ment of a prior for more reliable future predictions (for evidence in
support of both optimal and suboptimal Bayesian integration in this
framework, see Shi & Burr, 2016). By way of example, the strength
of regularization by priors correlates with temporal Weber’s frac-
tions, showing that priors rapidly lose influence as sensory uncer-
tainty decreases (Burr et al., 2013). When incoming sensory
information is reliable, a less precise generative model producing
poor predictions requires recalibration to better fit the external
world. This has been shown to be the case in studies on sensory-
motor recalibration (Stetson et al., 2006; Vercillo et al., 2015;
Vicario et al., 2016), further demonstrating that action is one of
the potent calibrators of internal time representations. Taken
together, the ambiguity regarding the temporal likelihood touches
on a long-standing controversy in the field pertaining to the exis-
tence of an internal clock versus clock-free timing (Matell et al.,
2006; Paton & Buonomano, 2018) and as such, it may bear diverse
forms of Bayesian model implementation.

The Precision of the Likelihood and Prior Distributions

To form a more reliable percept of the environment, the brain
needs to estimate sensory uncertainty (Beierholm et al., 2020). For
instance, the magnitude of the CTB is related to the magnitude of
uncertainty in sensory measurement and the select cost function

(Mamassian & Landy, 2010). Deteriorating precision (variance) of
the Bayesian likelihood compensated for by an overreliance on
temporal priors is thought to account for a larger CTB in older adults
(Turgeon et al., 2016). Increased noise and temporal uncertainty
together with impairments in attention and memory that come with
normal aging likely mediate these timing impairments. Conversely,
expert percussionists exhibit a reduced CTB relative to other
musicians and controls, reflecting elevated precision weighting of
sensory information presumably due to their extensive interval
training (Cicchini et al., 2012). Similar observations are made in
clinical populations. For instance, patients with PD show a greater
CTB than controls and yet further CTB magnification upon with-
drawal of their dopamine medication (Gu et al., 2015; Malapani
et al., 2002). Their CTB is reduced both with learning through
feedback and with dopamine agonists, which points to the partly
overlapping dopamine-mediated mechanisms for learning and sig-
naling of perceptual likelihood precision (Gu et al., 2015). Further,
the pathogenesis of autism spectrum disorder is associated with a
deficient dopaminergic system (Pavăl, 2017) and children with
autism do not optimally use Bayesian temporal priors to reduce
errors in temporal reproduction tasks (Karaminis et al., 2016).

However, assuming that the CTB scales monotonically with
lower precision of the likelihood and low tonic dopamine levels
(Gu et al., 2015; Mikhael et al., 2021) may be an oversimplification
given apparent contradictory evidence for an increased performance
standardization by temporal prior with elevated tonic dopamine on
amphetamine and in schizophrenia (Cassidy et al., 2018). Halluci-
nations in schizophrenia have been attributed to the breakdown of
perception with the false generation of prediction errors and their
high precision weighting (likelihood) as well as the breakdown in
top-down beliefs (priors; Fletcher & Frith, 2009). Although dopa-
mine was previously suggested to signal the salience of prediction
errors by encoding the precision of a likelihood distribution (Friston
et al., 2012), it has also been associated with the precision weighting
of Bayesian priors in schizophrenia. A recent temporal reproduction
study (Cassidy et al., 2018) aimed to investigate the precision
signaling of temporal priors in patients with schizophrenia given
their pronounced timing deficits (Thoenes & Oberfeld, 2017).
Cassidy et al. (2018) manipulated in each trial the precision of
the prior distribution (expectations formed from a sequence of 2–4
context intervals) before asking patients and controls (on and off
amphetamine) to reproduce a fixed auditory target interval (700 ms)
that followed. The auditory context tones formed a 2 by 3 design
being drawn from a distribution with low or high variance and short,
medium, and long means (relative to the target interval). Both
groups exhibited a clear CTB in the low-variance condition, sug-
gesting that the uniform context intervals produced a narrow
(precise) interval prior that was subsequently up-weighted in their
reproductions. By contrast, only the patients and controls on
amphetamine exhibited the CTB in the high-variance condition.
This suggests that elevated dopamine augments prior precision
weighting under uncertainty.

In an independent line of research, the dopamine antagonist
haloperidol has been shown to impair temporal expectations and
disrupt signaling of an otherwise precise temporal prior (Tomassini
et al., 2016, 2019). In separate experiments, patients with PD and
healthy participants were presented with foreperiods between warn-
ing and go stimuli, at which point they were required to respond as
quickly and accurately as possible by pressing a key. The foreperiod
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intervals were drawn from high- or lowmean distributions with high
or low variance. Critically, the low-variance conditions resulted in
fast learning and higher predictability of the expected foreperiod
offset and concomitantly faster response times. The administration
of haloperidol strikingly reduced this advantage of a precise prior,
independently of a motor impairment (Tomassini et al., 2016).
Taken together, these observations highlight that dopaminergic
dysregulation may be associated with disrupted precision signaling
for both priors and likelihoods.
Although dopamine has long been a focus of research in the study

of interval timing (Coull, Cheng, et al., 2011), it is unlikely to be the
sole neuromodulator that signals the precision of Bayesian evidence
and therefore uncertainty. Other neurotransmitters have been impli-
cated in associative learning tasks in nontemporal domains, such as
acetylcholine (Iglesias et al., 2021) and noradrenaline (Lawson
et al., 2021). For instance, preliminary data suggest that whereas
low-level sensory prediction errors activate the dopaminergic mid-
brain, high-level sensory prediction errors about the probability of
the sensory outcome activate the cholinergic basal forebrain
(Iglesias et al., 2021). The distinct dopamine–acetylcholine me-
chanisms are yet to be confirmed, however, since this interpretation
is complicated by the fact that the midbrain receives cholinergic
inputs while basal forebrain receives dopaminergic inputs as well as
additional GABAergic and glutamatergic connections in these
regions. In another study, the administration of propanol (noradren-
ergic blockage) resulted in increased overconfidence in one’s priors
and diminished learning of cue–outcome contingencies (Lawson
et al., 2021). Elsewhere it has been argued that classic psychedelics,
which are known to modulate interval timing (Wittmann et al.,
2007; Yanakieva et al., 2019) and primarily operate on the 5-
hydroxytryptamine 2A (5-HT2A) receptor as partial serotonin
agonists, may produce their psychoactive effects by reducing the
precision of priors high up in the cortical hierarchy (Carhart-Harris
& Friston, 2019). Finally, in the predictive coding framework,
unexplained prediction errors are thought to be signaled by α-
amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) re-
ceptors at ascending connections of a processing hierarchy, whereas
the predictions descend top-down at N-methyl-D-aspartate
(NMDA) receptors (Self et al., 2012). Ketamine, which has been
shown to reliably modulate interval timing (Cheng et al., 2007;
Coull, Morgan, et al., 2011) and has been proposed as a pharmaco-
logical model of schizophrenia (Corlett et al., 2019), has been
shown to reduce the electrophysiological signature of prediction
errors (mismatch negativity) by inhibiting NMDA receptors and
thus disrupting the inference of statistical regularities (Coull,
Morgan, et al., 2011; Weber et al., 2020).

Temporal Decisions

In predictive processing, the unexplained signal (prediction error)
travels to another processing level in the cortical hierarchy and the
incoming signal is only used for tuning and nuancing predictions
rather than encoding the state of the world. Yet, the perception of the
stimulus is not contingent on eliminating all forward-flowing
prediction errors. Indeed, Clark (2016) proposes a piecemeal suc-
cession from a perception of a general nature (“gist”) toward an
increasingly richer percept as the residual errors gradually decrease
(Clark, 2016; Hegdé, 2008). In accordance with this hypothesis,
recent timing data showed a reduced regression to the mean in

reproduced intervals (i.e., smaller CTB) when participants had an
opportunity to respond a second time immediately after their first
response with or without feedback (Bader & Wiener, 2021). Given
that temporal priors shape perception of ongoing stimulus intervals
(Damsma et al., 2021; Sohn et al., 2019), it is perhaps not surprising
that the first response reflects the CTB more than the second
response. Moreover, the first response may allow participants to
evaluate their performance and incorporate new information into
subsequent temporal decision-making.

Bayesian models concerned with a “pure” expression of a poste-
rior distribution resulting from prior and likelihood integration
would be incomplete without perceptual decisions reflecting both
the posterior beliefs as well as the expected cost (loss function;
Feldman, 2014; Jazayeri & Shadlen, 2010; Shi et al., 2013). In
Feldman (2014) illustrative example, the posterior belief in two
hypotheses (heart attack or heartburn) would not be sufficient in
decision-making without considering the consequences of misclas-
sifying the heart attack (patient’s death) and heartburn (unnecessary
medical procedures). Bayesian decision theory therefore assumes
that final timing responses will reflect the best posterior distribution
estimate that additionally maximizes the benefit to the observer. To
help with their responses, participants must therefore develop
expectations about the relative cost of correct and incorrect re-
sponses. Indeed, the evidence shows that cognitive apparatus moni-
tors endogenous performance uncertainty to guide timing decisions
and that human participants are, to a certain extent, aware of the
direction and magnitude of their temporal errors (Akdoğan & Balci,
2017; Balci et al., 2009, 2011; Foote & Crystal, 2007; Simen et al.,
2011). Moreover, Bader andWiener (2021) showed that participants
may use this internal error monitoring to reduce the CTB, and that
they further benefit from reduced timing uncertainty (coefficient of
variation) when external performance feedback is provided. Fur-
thermore, reinforcement learning compensates for detrimental slow
memory drifts that introduce timing variability, even when maxi-
mizing the reward exploration in itself also increases variability
(Wang et al., 2020). Conversely, timing choices under conditions of
high uncertainty show a preference for safe (low cost), albeit small,
rewards and uncertainty about how long the reinforcement is
available leads to vigorous performance to maximize the reward
benefit (Balci et al., 2011; Foote & Crystal, 2007). Altogether this
evidence suggests a close link between the processes underlying
time perception and learning.

Several attempts have recently been made to consolidate mostly
independent work on the roles of dopamine in time perception and
reward prediction learning (Fung et al., 2021; Mikhael et al., 2021;
Mikhael & Gershman, 2019; Petter et al., 2018; Toren et al., 2020).
Although both predictive processing and reinforcement learning
models are preoccupied with prediction errors, their focus appears to
differ. Whereas the former strives to minimize perceptual prediction
errors (surprise and uncertainty), the latter builds on maximizing the
rewards. Referring to rational inattention in behavioral economics,
Mikhael et al. (2021) introduced a model that asserts that increasing
task precision (e.g., improving temporal performance) is associated
with higher energetic costs. Whether the agent decides to incur this
cost depends on tonic dopamine. For example, high dopamine under
high average reward availability increases learning from positive
reward errors and tips behavior toward exploitation (Gershman &
Tzovaras, 2018). In this scenario, temporal priors are thought
to have diminished influence, whereas the likelihood precision
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increases. Conversely, low dopamine is associated with exploration
and learning from negative reward prediction errors, as well as an
increased CTB and lower temporal likelihood precision. Although
this model accounts for a larger CTB in PD as well as its reduction
in response to pharmacological intervention (Gu et al., 2015;
Malapani et al., 2002), it cannot account for a larger CTB with
elevated dopamine in schizophrenia or under amphetamine
(Cassidy et al., 2018). The relationship between dopamine, tim-
ing, and reinforcement learning may not follow a monotonic linear
function (Linnet et al., 2012; Wallace et al., 2011) and it may be
more complex. Further research is required to disentangle these
ostensible inconsistencies.

Summary and Future Directions

This work has sought to provide a synthesis of recent research
aiming to elucidate interval timing from the perspective of Bayesian
inference. Bayesian inference has been successfully applied to
account for well-documented interval timing biases such as recency
and migration effects (Acerbi et al., 2012; Cicchini et al., 2012;
Jazayeri & Shadlen, 2010). Recent evidence argues against static
Bayesian priors (de Jong et al., 2021; Glasauer & Shi, 2021) and we
are beginning to understand the specifics of prior formation (Polti
et al., 2021; Roach et al., 2017). A Bayesian prior does not only
represent the range of intervals (prior distribution mean and vari-
ance) but also their sequence (Glasauer & Shi, 2021), which has not
been historically considered. Further work will also be required to
disentangle precision weighting of the prior and likelihood and in
particular the role of dopamine in these processes. Future research
will similarly benefit from clarifying how Bayesian timing is
instantiated within independent neurochemical systems or complex
multisystem (e.g., dopamine–glutamate) interactions. There are
numerous outstanding questions regarding the utility of the Bayes-
ian inference framework in the study of interval timing. In particular,
future research is warranted in the consideration of discrepancies in
the conceptualization of temporal likelihoods. For example, is it an
output of a dedicated timing system or a property of neural networks
(Matell & Meck, 2004; Paton & Buonomano, 2018; Roseboom
et al., 2019)? How can Bayesian models of interval timing be
reconciled with competing accounts, such as those based on an
internal clock, coincidence detection, or neural networks? To the
extent that these models are incompatible, it will be imperative to
draw out their divergent predictions in order to facilitate adversarial
tests of these accounts, which should engender further updating and
potential rapprochement between rival theoretical camps. Taken
together, the principal strength of Bayesian inference is in optimal
integration of prior knowledge and new sensory information that
offers insights into perceptual processes. Determining the extent and
limits of these insights continues to be debated.
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