
StrokeStyles: Stroke-Based Segmentation and Stylization of Fonts
DANIEL BERIO, Goldsmiths, University of London, Computing Dept., United Kingdom
FREDERIC FOL LEYMARIE, Goldsmiths, University of London, Computing Dept., United Kingdom
PAUL ASENTE, Adobe Research, USA
JOSE ECHEVARRIA, Adobe Research, USA

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 1. We stylize glyphs by partitioning them (left, in red) into overlapping and intersecting strokes. (a) We represent strokes as a set of spines with variable
width profiles and annotations describing structural relations among strokes. This is then used to reconstruct the glyph in a variety of path-based styles: (b)
line-based schematizations, (c,d) graphic stylizations using skeletal strokes, (e,f) artistic stylizations that mimic handwriting and (g) graffiti art. (h) We
also use strokes to segment the input into overlapping areas. (i) We use these areas to compute a similarity metric between strokes, allowing consistent
shape-based stylizations across the glyphs of a given font.

We develop a method to automatically segment a font’s glyphs into a set
of overlapping and intersecting strokes with the aim of generating artistic
stylizations. The segmentation method relies on a geometric analysis of the
glyph’s outline, its interior, and the surrounding areas, and is grounded in
perceptually-informed principles andmeasures. Ourmethod does not require
training data or templates and applies to glyphs in a large variety of input
languages, writing systems and styles. It uses the medial axis, curvilinear
shape features that specify convex and concave outline parts, links that
connect concavities, and seven junction types. We show that the resulting
decomposition in strokes can be used to create variations, stylizations, and
animations in different artistic or design-oriented styles while remaining
recognizably similar to the input font.

CCS Concepts: • Computing methodologies → Shape analysis; • Ap-
plied computing → Media arts.

Additional Key Words and Phrases: Font structure, Stroke-based representa-
tions, Glyph stylization, Junction types, Curvilinear Shape Features, Aug-
mented Medial Axis

Authors’ addresses: Daniel Berio, Goldsmiths, University of London, Computing Dept.,
London, United Kingdom, d.berio@gold.ac.uk; Frederic Fol Leymarie, Goldsmiths,
University of London, Computing Dept., London, United Kingdom, ffl@gold.ac.uk; Paul
Asente, Adobe Research, San Jose, USA, asente@adobe.com; Jose Echevarria, Adobe
Research, San Jose, USA, echevarr@adobe.com.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
0730-0301/2022/1-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference Format:
Daniel Berio, Frederic Fol Leymarie, Paul Asente, and Jose Echevarria. 2022.
StrokeStyles: Stroke-Based Segmentation and Stylization of Fonts. ACM
Trans. Graph. 1, 1 (January 2022), 21 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION
Modern fonts are commonly represented as vector outlines. While
this format is convenient for exchange, rendering, and printing,
it makes it difficult to apply modifications or stylizations that are
based on the structure of the glyphs [Campbell and Kautz 2014]. The
visual conventions used in creating a font or glyph can be traced
back to their origins in stroke-based handwriting and calligraphy
[Noordzij 2005], in which a stroke typically embodies a trace of
ink on paper left by the gesture of a calligrapher manipulating a
brush or pen. The outline of a glyph often conceals a latent structure
of generalized strokes that, when combined, closely reproduce the
glyph’s shape. Recovering this underlying structure makes it easier
to stylize and modify glyphs consistently across an entire font.1

1.1 Motivation
Generating fonts in a variety of styles, while leaving sufficient para-
metric control to a user, is a well-known ill-posed problem [Hof-
stadter 1982]. Our goal is to capitalize on the wealth of publicly
available fonts as a source for possible letter structures and styles.
By segmenting the glyphs of a font into strokes and characterizing
1Many related terms are used to refer to an individual character shape and to a collection
of them: character, glyph, letterform, letter, font, type, typeface. We use “glyph” for an
individual character and “font” for a consistently-designed collection of glyphs.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: January 2022.

2 • Daniel Berio, Frederic Fol Leymarie, Paul Asente, and Jose Echevarria

Fig. 2. The targets for our method are glyphs that have a recoverable stroke
structure, such as the first three glyphs from the top left (Rockwell, Giddyup
and Apollo ASM fonts), but not the glyph on the right (Rosewood). The
inferred stroke reconstruction can be exact (Rockwell, Giddyup) or deviate
slightly from the glyph’s outline (Apollo). Our method works with glyphs
having nonstandard structures, like Giddyup and Apollo, which would
present challenges for template-based approaches. In the second row are
stylizations of the first three glyphs, produced by our system with constant-
width skeletal strokes [Hsu et al. 1993].

their topological relationships, we produce a scaffold for generating
structurally-aware stylizations of the glyphs, and the wide variety
of available digital fonts becomes the source for these scaffolds.
Our system relies on well-studied principles from visual percep-

tion [Wagemans et al. 2011]. It must deal with the same issues
raised by the related problem of decomposing 2D object outlines
into parts: multiple ambiguous hypotheses are acceptable, and their
selection depends on subtle perceptual cues [De Winter and Wage-
mans 2006], on domain knowledge, and on functional or causal
attributes [Spröte et al. 2016]. In particular, psychophysical results
suggest that perceptual grouping [Brooks 2015] and formulating
early part-segmentation hypotheses [Xu and Singh 2002] are low-
level processes that occur pre-attentively, or at least very early in
the vision process.

To approximate and model these perceptual processes, we adopt
a recently introduced representation of curvilinear shape features
based on local symmetry axes, and we identify pairwise relations
between these features, called links, that guide the segmentation.
We constrain the space of possible solutions by defining seven types
of junctions, an intermediate representation of how symmetry axes
intersect, that help characterize where and how strokes can overlap
or end. Junctions are found iteratively and their identification fully
characterize the recovered stroke structure of the glyph.
Our method produces plausible stroke-based segmentations of

glyphs, using shape analysis alone (Fig. 2). While this can produce
segmentations that are somewhat different from the traditional
structure of the glyph, or from ground truth if it exists, it has the
considerable advantage of being agnostic to the symbols used and
works with glyphs that do not match any standard structure for
a letter. The result is a system that can be applied to most glyphs
and languages, and even to other 2D shapes that can be closely
approximated by a series of strokes.
This paper contains many symbols; we have included a list of

them in Appendix D.

2 RELATED WORK
Font stylization and synthesis. Some font stylizationmethods oper-

ate on glyph outlines [Campbell and Kautz 2014] or on raster glyph
images [Azadi et al. 2018; Haines et al. 2016]. Other approaches
operate on glyph structures like we do, but rely on a user-guided
segmentation or skeleton assignment [Gingold et al. 2008]. Suveera-
nont and Igarashi [2010] use a skinning approach to assign a user-
defined structure to font glyphs and then propagate changes made
to the skin or skeleton of one glyph to newly-generated ones. With
a similar objective, Phan et al. [2015] rely on a user-guided segmen-
tation of the input glyphs into parametric strokes, defined according
to the model of Jakubiak et al. [2006], and then use a probabilistic
approach to propagate changes made to parts of one glyph to the
rest of its font. Unlike these works, which address style transfer
from one glyph to an entire font, we use stroke decomposition as
input to structural stylization methods that can apply to an entire
font. Our aim is closer to the work of Zhang et al. [2017], who stylize
text by subdividing its letters into parts and reconstructing each
part with a deformed vector image. The segmentation produced by
our method could be used for similar applications.
Other related works use segmentation to create new glyphs or

fonts. Xu et al. [2012] use a semi-automatic segmentation procedure
to extract strokes from Chinese calligraphy instances and apply
a brush model to synthesize new characters based on weighted
interpolation. They then train a neural network to guide the synthe-
sis process, based on the supervision of expert calligraphers. Lake
et al. [2015] use a probabilistic programming approach to infer plau-
sible motor programs from bitmap images of handwriting and then
generate new exemplars by synthesizing novel motor plans. Their
approach relies on an automatic thinning-based stroke segmenta-
tion method that unfortunately does not perform well with fonts.
The output of our method can similarly be interpreted as a motor
plan. Such a motor plan can then be modified, for example using the
approach of Berio et al. [2017], to produce calligraphic-like glyph
stylizations.

Parametric and stroke-based font models. Latin fonts are usually
defined with outlines [Karow 1994], but a stroke-based representa-
tion of electronic fonts can be traced back to the MetaFont system
[Knuth 1979]. It defines glyphs using raster shapes swept along
splines. Jakubiak et al. [2006] similarly describe glyph parts using
Bézier stroke paths paired with variable-width offsets. Hsu and Lee
[1994] show examples of skeletal strokes used in instances of Chi-
nese calligraphy; we also demonstrate how the same method can
be used to stylize arbitrary fonts. Hu and Hersch [2001] present a
parametric component-based representation of glyphs and empha-
size that treating separately each side of a stroke, with respect to a
central spine or axis, produces more aesthetically pleasing results.
We follow a similar asymmetric approach using the stroking method
by Berio et al. [2019], which mimics the appearance of graffiti art.
Cox et al. [1982] present a graph-based description of fonts consist-
ing of stroke-like parts and their topological relations. Our method
captures similar topological relations among strokes.

Decomposition into strokes. Decomposing East Asian characters,
which are often based on a hierarchical structure of radicals and

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: January 2022.

StrokeStyles: Stroke-Based Segmentation and Stylization of Fonts • 3

strokes, has beenwell studied [Chen et al. 2017; Sun et al. 2014;Wang
et al. 2002] and extensive datasets are available for data-driven meth-
ods. However, such methods usually fail with Western fonts and
glyphs, which have a wider range of stylistic variations and decora-
tions, and which often blend components into each other in ways
that make segmentation difficult. For example, Hofstadter [1982]
reflects on the countless forms and structures that a single letter
can assume. This ill-posed problem [Lamiroy et al. 2015] has been
partially addressed with user-defined templates [Balashova et al.
2019; Herz et al. 1997; Phan et al. 2015; Suveeranont and Igarashi
2010; Zhang et al. 2017] or a detailed analysis of glyph outlines
[Shamir and Rappoport 1996].

A related problem is decomposing objects other than glyphs into
parts. Existing methods address this for applications in graphics
[Jiang et al. 2013; Luo et al. 2015; Mi and DeCarlo 2007] and recog-
nition [Macrini et al. 2008]. Recently, with an approach to outline
segmentation sharing some similarities with ours, Papanelopou-
los et al. [2019] use the exterior medial axis branches to identify
some concavities in an outline, and then decompose this outline
into parts. However, these branches can miss features [Belyaev and
Yoshizawa 2001] that are important to stroke decomposition (see
Fig. 4), a problem that we address in our work.
Very few methods consider the problem of potentially overlap-

ping parts. With the aim of vectorization, Luo et al. [2015] and
more recently Kim et al. [2018] propose a data-driven method that
can vectorize overlapping parts of Chinese characters, but their
methods are not easily applicable to our context, since we are in-
terested in segmenting fonts for which no ground truth is avail-
able. Froyen et al. [2015] propose using a Bayesian Hierarchical
Clustering method [Heller and Ghahramani 2005] for the segmen-
tation of simple tubular objects with a mixture of splines paired
with Gaussian thickness profiles. Favreau et al. [2016] propose an-
other approach that uses a Monte Carlo exploration method to
create vectorizations of line drawings that maximise a tradeoff be-
tween simplicity and reconstruction accuracy. However, neither
method is applicable to the thicker, complex shapes found in fonts.
The problem of disentangling potentially overlapping parts also
relates to multi-manifold learning [Arias-Castro et al. 2017; Deutsch
and Medioni 2017; Goldberg et al. 2009], which is the segmenta-
tion of data generated by multiple, potentially-intersecting man-
ifolds. While these methods operate on data samples rather than
outlines, we use some ideas similar to those developed by Deutsch
and Medioni [2017].

3 OVERVIEW
Given a 2D glyph generated with a union of strokes, we target the
inverse problem of recovering the strokes from the glyph outline. In
this context, we consider a stroke to be an elongated 2D region as
created by a drawing or painting gesture between two positions on a
drawing surface [Noordzij 2005]. The recovered strokes when com-
bined must reproduce the original glyph, providing good coverage
of its interior 2D area; this implies that our method can also apply
to other 2D shapes that can be well-approximated by the union of
strokes (Fig. 20). Fig. 3 shows an overview of our system.
Our method relies on a joint analysis of the glyph outline and

its interior and exterior medial axes, a hybrid approach that brings

together geometry and topology. We use the interior medial axis to
describe the glyph topology, while both the interior and exterior
medial axes allow us to compute a series of curvilinear shape features
(CSFs), descriptors of concave and convex geometric features with
associated support segments along the outline (Section 4).
We connect pairs of concavities through line segments that we

call links, where each such link represent a potential location where
a stroke can start crossing a region covered by multiple strokes
(Section 5). Links are then paired to connect a stroke across such
a region. The relevance of a given pair of links is measured via
a perceptually-inspired metric of good continuation along disjoint
outline segments.

We use CSFs and links to transform the interior medial axis into a
set of strokes, a transformation that is driven by the identification of
features that we call junctions (Section 6). Junctions capture seman-
tic stroke attributes by relating branching regions of the interior
medial axis to features along the outline like corners and tips. They
also characterize regions where strokes may cross and overlap each
other. We identify junctions iteratively with a procedure (Section 7)
that is driven by the good continuation metric and a set of measures
aimed at reproducing the glyph outline while producing strokes
that are smooth and perceptually consistent with configuration of
concavities along the outline and their relations to the branching
features of the medial axis. Junctions produce two stroke representa-
tions (Section 8), one consisting of spines paired with variable width
profiles (Fig. 1a), and one consisting of potentially overlapping areas
of the glyph that correspond to different strokes (Fig. 1h).

We use strokes and junctions to generate varied stylizations of a
glyph (Section 9), ranging from painterly and decorative effects with
skeletal strokes, to effects that mimic the appearance of calligraphy
or graffiti art, to animations. These stylizations can be generated in
real time, giving the user a powerful way to explore and interactively
adjust different visual results.

Outline (input)

Stylization

CSFs

ConcaveConvex

Medial axis

Stroke
segmentation

Links

Junctions

Fig. 3. High level overview of the segmentation and stylization of a glyph.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: January 2022.

4 • Daniel Berio, Frederic Fol Leymarie, Paul Asente, and Jose Echevarria

4 SHAPE ANALYSIS: OUTLINE & AXIAL FEATURES
Perceptual studies show that 2D shape understanding is driven by a
combination of low-level cues from the boundary and interior local
symmetries, and high-level global properties like the relationships
among parts [De Winter and Wagemans 2006]. Motivated by these
studies, we begin by constructing interior and exterior medial axes
[Blum 1973], denoted M𝐼 and M𝐸 , that provide geometrical and
topological information about the shape of a glyph (Section 4.1).
The medial axes let us identify a set of Curvilinear Shape Features
(CSFs) that characterize concave and convex segments along the
outline (Section 4.2) and facilitate the analysis of outline features
such as tangents at concavities (Section 4.2.2). CSFs also map con-
cave outline segments to axial features called ligatures (Section
4.3), portions ofM𝐼 that might need adjustment to recover smooth
strokes. Furthermore, CSFs faciliate identifying outline features in
relation to the branching structure ofM𝐼 (Section 4.4), which will
help identify partition line segments called links and topological
features called junctions, both needed to correctly find where and
how strokes overlap.

4.1 Medial Axes
Many algorithms for computing the medial axis exist; we use the
discrete Voronoi-based approximation method of Ogniewicz and
Ilg [1992] because it is well-established and robust. We first densely
sample each glyph outline to generate ordered sequences of points
𝒙𝑖 and use the polylines that connect the points as an approximation
of the outline. We use the authors’ chord residual regularization
to discard small spurious medial axis branches that come from
discretization. Because the input to the Voronoi-based method is
point samples, the medial axes always consist of planar graphs made
of polylines connected by vertices 𝒚 𝑗 . The interior medial axisM𝐼

acts as a descriptor of the topological structure of the 2D shape and
is used to identify salient convexities, while the exterior medial axis
M𝐸 is used to identify salient concavities (Section 4.2).

4.1.1 Terminals, forks, branches, and contact regions. Terminals in
themedial axis are vertices of degree one. Forks are vertices of degree
three or more. Terminals correspond to curvature extrema or sharp
corners of the outline, while forks correspond to potential branching
structures of the original shape and to polygonal stroke ends. Forks
with degree more than three occur only in highly-symmetric con-
figurations, like the center of a square; we remove them by making
small perturbations to the outline points. A branch is a series of
end-to-end connected edges that begins and ends at a terminal or a
fork, with interior vertices of degree two.

Each vertex of a medial axis has an associated contact disk with a
radius that is the minimum distance from the vertex to the outline.
Each disk associated with a fork is connected to the outline at three
distinct points. A terminal vertex has an associated terminal disk and
terminal branch. Each terminal disk has a contact region, which is
the arc of the disk that approximates the polygonal shape outline to
within a small tolerance. We use its midpoint as the representative
curvature extremum. Such an arc reduces to a point at a sharp corner
where the terminal branch touches the outline. All vertices of degree
2 have disks touching the outline at two distinct points. We often
visualize ribs that connect such vertices to the outline.

(a) (b) (c)

Fig. 4. (a) Four successive Curvilinear Shape Features (CSFs) with contact
regions in black and with support segments, terminal disks and local sym-
metry axes in color . The pink CSF is a corner and thus has a contact
region reduced to a point. Note that the local symmetry axes can intersect
and overlap, unlike medial axes. (b) AxesM𝐼 (blue) andM𝐸 (red), and the
resulting convexities and concavities found at branch terminals. (c) Local
medial axes are computed over the support segments highlighted in red
(concave) and blue (convex), giving two new CSFs. These features are missed
in (b) because they do not occur at terminal branches of the medial axes.

4.1.2 Branch salience, 𝛽 (𝑏, 𝑓). To distinguish betweenM𝐼 branches
that characterize the body of a stroke from those that identify mor-
phological features like the cap of a stroke or a corner, we define
the salience of a branch 𝑏 protruding from a fork 𝑓 .

We consider the length 𝑠 of the outline segment
that connects two points 𝒙𝑖 and 𝒙 𝑗 that have
ribs connecting to the fork, and that contains at
least two other points with ribs connecting to

the branch’s other endpoint. The branch salience is a measure of
“stick-out” [Hoffman and Singh 1997]:

𝛽 (𝑏, 𝑓) = 𝑠𝒙𝑖 − 𝒙 𝑗

 , (1)

which quantifies the length of the outline segment relative to its
width at its point of attachment to the fork. A branch 𝑏 is said to be
salient with respect to a fork 𝑓 if 𝛽 (𝑏, 𝑓) ≥ 𝜏𝛽 . Based on experiments,
we found 𝜏𝛽 = 2.3 works well. If the outline points are on different
paths, e.g. when 𝑏 is part of a loop surrounding a hole, we set 𝛽 (𝑏, 𝑓)
to an arbitrarily large value.

4.2 Curvilinear Shape Features (CSFs)
Our segmentation procedure requires identifying convex and con-
cave outline regions, including sharp angles at corners. We call these
curvilinear shape features, after Berio et al. [2020] (Fig. 4).

Definition 4.1 (Curvilinear Shape Feature (CSF)). A CSF has five
elements: (i) a local symmetry axis, (ii) a terminal disk, (iii) a contact
region (arc or point), (iv) the associated extremum of curvature,
defined as the midpoint of the contact region, (v) a pair of outline
segments on each side of the contact region called support segments,
representing the CSF’s region of influence.

Each support segment of a CSF is the portion of the shape outline
extending from one end of the CSF’s contact region to the beginning
of the contact region of the adjacent CSF (Fig. 4a, colored outline
segments). Adjacent CSFs always share one support segment and the
CSFs for a given outline fully cover that outline. The local symmetry
axis of a CSF is the medial axis of the part of the outline spanned
by the CSF’s contact region and its two support segments (Fig. 4a,

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: January 2022.

StrokeStyles: Stroke-Based Segmentation and Stylization of Fonts • 5

thin colored lines). Because this outline portion is left open, the
symmetry axis starts at the CSF terminal disk center and extends, in
theory, to infinity; in practice we truncate the axis at an enclosing
bounding box. For visualization purposes we extend the axis from
the terminal disk center to the associated curvature extremum 𝒙𝑐
on the outline, represented by the outline sample nearest to the
midpoint of the contact region. In the following, we often simply
use “concavity” or “convexity” to refer to the CSF associated with
the feature and we use the symbol 𝑐 .

4.2.1 CSF computation. We can compute an initial set of convex
and concave CSFs using the terminal disks ofM𝐼 andM𝐸 . However,
this initial set is incomplete, since the medial axis can miss useful
convexities and concavities, depending on the local configuration
of the outline [Belyaev and Yoshizawa 2001] (Fig. 4b). We could
identify these missing features with the full Symmetry Set [Giblin
and Kimia 2003]; but this is difficult to compute and to manage.
Instead we propose a simpler analysis in which we search for ad-
ditional intermediate local medial axes by visiting each previously
identified support segment. For each such open outline segment, we
consider the potential additional CSFs produced by new candidate
terminal branches. We select as a new CSF the one with smallest
terminal disk radius, and only select a concave CSF if its radius is
below an experimentally-determined threshold (𝑟ℎ = 0.15) scaled
by the glyph height. The search is iteratively repeated for the pair
of newly-introduced shorter outline segments. This procedure ends
when no new features are identified, which in practice takes one or
two steps for most glyphs. More details are in Appendix A.

4.2.2 Concavity features. CSFs facilitate the
computation of outline features useful for
segmentation, such as tangents and normals
near concavities.We assign each concave CSF
a pair of unit tangent vectors 𝒕𝑖 and 𝒕 𝑗 (inset,

red arrows) at the endpoints 𝒙𝑖 and 𝒙 𝑗 of its contact region and a
unit inward normal (blue arrow), 𝒏, with orientation −(𝒕𝑖 + 𝒕 𝑗) and
terminating at the CSF extremum, 𝒙𝑐 . More details are in Appendix
A.

4.3 CSF-based Ligatures
A ligature is a medial axis segment with ribs ending at a concavity.
This notion was introduced by Blum [1973] and more recently used
to identify shape parts [August et al. 1999; Macrini et al. 2011].2

We use ligatures more specifically to refer
to medial axis vertices and segments with
ribs that terminate in the contact region of a
concave CSF. The inset figure shows several
ligatures in red with their associated ribs. A
ligature is always contiguous but can contain

vertices from more than one branch. The union of the ligatures
for a glyph make a set of ligature regions, connected subgraphs of

2Blum first introduced this notion as a many-to-one mapping between medial axis
points and a concave corner (semi-ligature) or a pair of concave corners (full ligature);
this was later generalised to many-to-many mappings in concave outline regions for
greater usefulness and robustness. We use the term ligature to refer to either semi- or
full-ligatures. Our definition of ligatures in relation to CSFs is more general than those
based on concave corners only.

M𝐼 consisting of one or more overlapping ligatures. Each ligature
region is a mapping from a connected portion of M𝐼 to one or
more concavities, and can be considered to be “glue” that connects
perceptually distinct outline parts [Macrini et al. 2011].

4.4 Mapping Concavities to Forks via Sectors
The segmentation procedure requires as-
signing concave CSFs to each fork 𝑓 ∈ M𝐼

and identifying spatial relations such as
adjacency and opposition between concav-
itities and branches incident to 𝑓 .
We formalize these relations by computing

three viewpoints for eachM𝐼 fork 𝑓 , shown as black dots in the inset
figure, one for each pair of incident branches. Each viewpoint is the
midpoint of a circular arc connecting its two branches and centered
at 𝑓 . If the fork’s disk (dashed circle) intersects both branches (sector
1), the arc’s radius is equal to the fork’s disk radius; otherwise the
radius is the distance between the fork and the endpoint of the
shorter branch (sectors 2 and 3).
A sector is a region of the plane that is visible from a given view-
point without being occluded by anyM𝐼 branch. We use visibility
polygons [Fabri and Pion 2009; Preparata and Shamos 1985] to
compute these. Each sector is delimited by two of the branches
incident to 𝑓 . For example, sector 2 in the inset is delimited by the
black branches. When a sector contains the extremum of a concavity,
we say that the concavity and the two delimiting branches are
adjacent (e.g. sector 2’s concavity and the black branches in the
inset) while the concavity and third incident branch are opposite.

4.4.1 Concavity assignment to forks. We use ligatures to assign zero
or one concavity per sector to the sector’s fork 𝑓 , resulting in 𝑓 being
assigned up to 3 concavities. A given concavity may be assigned to
more than one fork. To perform the assignments, we examine each
sector in turn and all concavities adjacent to the sector’s delimiting
branches. Our goal is to determine whether one of these concavities
can be interpreted as the result of the intersection of two strokes
near 𝑓 . If a concavity produces a ligature that overlaps with both of
the sector’s delimiting branches, we assign it to that sector (Fig. 5a).
If there is no such concavity, we search for a concavity that can be
assigned to the sector by computing a series of radius-standardized
distances for all of the concavity’s ligature points.

Definition 4.2. The radius-standardized distance between ligature
point 𝒚𝑖 and a disk in M𝐼 is 𝑠2/𝑟2, where 𝑟 is the radius of the
disk and 𝑠 is the length of the shortest geodesic path throughM𝐼

connecting 𝒚𝑖 to the disk center.

For each ligature point, we compute two radius-standardized dis-
tances: 𝑑𝑓 , which is computed with respect to the fork’s disk, and
𝑑𝑒 , which is computed with respect to another disk, centered at a
point 𝒚𝑒 along the shortest path inM𝐼 that connects theM𝐼 branch
containing the ligature point to the fork. To identify 𝒚𝑒 , we traverse
the path starting from the fork towards the ligature, and conclude
the search if either (i) we encounter a point that has a rib terminat-
ing at the extremum of a convex CSF that is not contained in the
sector (Fig. 5b) or if (ii) we encounter the path endpoint or a fork
whose disk does not overlap with the disk of the originating fork or

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: January 2022.

6 • Daniel Berio, Frederic Fol Leymarie, Paul Asente, and Jose Echevarria

(a) (b) (c)

Fig. 5. Concavity assignment (a) Three sectors for a fork (black dot), with
two concavities shown as red dots assigned to two of its sectors because
they produce ligatures that overlap both of their adjacent branches. (b) The
third sector (in blue) contains a concavity (grey dot) that is not assigned
because it is closer, in a radius-standardized sense, to a point 𝒚𝑒 with a rib
terminating at the extremum of a convex CSF (black cross). (c) In another
case, a sector (yellow) contains multiple concavities and it is assigned the
red concavity. The point 𝒚𝑒 is located at the path endpoint because the
disks of the first two forks overlap. Placing 𝒚𝑒 at the second fork along the
red path would result in the sector not being assigned any concavity.

of any previously visited fork (Fig. 5c). Case (i) helps to distinguish
concavities that are opposite convexities and that characterize a
smooth bend rather than a potential intersection between strokes.
Case (ii) helps to disambiguate nearby forks that potentially share
the same concavity assignment with 𝑓 . A concavity is assigned to
the sector if 𝑑𝑓 ≤ 𝑑𝑒 for any of its ligature points and if the geo-
desic path length 𝑠𝑓max going from the fork 𝑓 to the concavity’s last
ligature point is shorter than similar geodesic paths for any other
concavity (Fig. 5c).

5 PAIRING CONCAVITIES WITH LINKS
Past work has shown that pairs of concavities provide important
cues for segmenting object silhouettes into parts [De Winter and
Wagemans 2006]. Different approaches use such pairs to define
“partition lines” [Luo et al. 2015; Singh and Hoffman 2001] or “cuts”
[Papanelopoulos et al. 2019] that delimit perceptually-distinct object
parts. Our stroke segmentation problem is related, but it differs in
that it requires identifying incidence and crossing relations between
potentially overlapping strokes. We start by joining pairs of concav-
ities that we previously mapped to forks with line segments that we
call links.

Definition 5.1. A link, denoted 𝜂, is a line segment that connects
the extrema of two concave CSFs (𝑐𝑖 , 𝑐 𝑗) that have been assigned to
forks, and that is entirely within the glyph.

A single link identifies a potential location where one stroke can
intersect or cross another stroke. Furthermore, by pairing links we
seek to identify where a stroke enters and exits an ambiguous glyph
region, i.e. an area that could be shared by multiple crossing and
overlapping strokes.

Valid links. A glyph typically contains numerous links, some of
which are not helpful, such as the diagonal links in the stem of the
“B” in Fig. 6.a. We call the ones that do help valid links (Fig. 6.b).
For a link to be valid, it must be possible to assign it a branch
and an orginating fork (Section 5.1) that indicate an intersection
between two strokes. Furthermore, we consider two valid links
to be incompatible if they intersect or have the same branch/fork
assignment; otherwise they are compatible. We call a set of valid

0.00

0.25

0.50

0.75

1.00(a) (b) (c)

Fig. 6. Valid link selection. (a) Links that are internal to the shape. (b) Valid
links that result in a valid branch assignment and are mutually compatible.
(c) Valid links with corresponding salience.

links that are mutually compatible a segmentation hypothesis. We
choose among segmentation hypotheses using a measure of link
salience (Section 5.2), itself in part dependent of a measure of good
continuation between concavities (Section 5.3).

5.1 Assigning Branches and Forks to Links
A link encodes a direction that can indicate how a stroke protrudes
from an intersection with another stroke; we call this direction the
link’s flow. We use the flow to search for a branch that emanates
from an originating fork in a similar protruding direction. A link is
valid only if such a branch can be identified.

5.1.1 Flow and protruding directions.

Definition 5.2. The flow 𝝋𝑖 𝑗 (inset: red arrow) for
a link (dashed blue) connecting a pair of concavi-
ties 𝐶 =

{
𝑐𝑖 , 𝑐 𝑗

}
is a unit vector with orientation

−(𝒏𝑖 + 𝒏 𝑗), where 𝒏𝑖 and 𝒏 𝑗 are the concavities’
inward normals (yellow arrows).

Definition 5.3. The protruding direction 𝝅 (𝑏, 𝑓 ,𝐶)
(inset: blue arrow) of a branch 𝑏 connected to a
fork 𝑓 with respect to a set of concavities 𝐶 is
given by the first unit tangent vector along the

branch that is not part of a ligature (red branch segment) produced
by a concavity in 𝐶 . If the whole branch is part of a ligature, 𝝅 is
the tangent at 𝑓 . A branch connecting two forks has two protruding
directions, one for each fork.

Intuitively, the protruding direction uses ligatures to identify a point
along a branch that is not shared by multiple strokes, and thus can
be used to approximate the tangent along a single stroke spine.
A link will be considered for further evaluation only if we can iden-
tify a branch 𝑏 and an originating fork 𝑓 , for which the projection,
𝑝 , of flow 𝝋𝑖 𝑗 onto 𝝅 is strictly positive, where 𝑝 is computed as:

𝑝 (𝑏, 𝑓 ,𝐶) = 𝝋𝑖 𝑗 · 𝝅 . (2)

5.1.2 Fork and branch assignment. We use Eq. 2 to search for a
branch 𝑏 and fork 𝑓 by considering the forks 𝑓𝑖 and 𝑓 𝑗 that were
assigned to the concavities 𝐶 =

{
𝑐𝑖 , 𝑐 𝑗

}
(Section 4.4.1). We consider

two mutually-exclusive cases to identify valid links.

Case 1: Normal link. There is at least one fork 𝑓𝑖 that has both of
the link’s concavities assigned to it. For each such 𝑓𝑖 we identify
the branch 𝑏𝑖 that delimits both sectors containing the concavities
and compute 𝑝 (𝑏𝑖 , 𝑓𝑖 ,𝐶). If there is more than one such 𝑓𝑖 , we take
the one with the largest positive 𝑝 and assign (𝑏, 𝑓𝑖) to the link.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: January 2022.

StrokeStyles: Stroke-Based Segmentation and Stylization of Fonts • 7

(a) (b) (c) (d) (e)

Fig. 7. Branch and fork assignment of a link (dashed blue line). A red arrow
shows the flow direction, 𝝋𝑖 𝑗 , (Def. 5.2) of the link, while black dots and
red segments are forks and branches that could be assigned to that link.
(a, b, c, d) show prototypical branch configurations that result in a normal
link. In (d), the concavities are assigned to both the black and the blue fork,
but 𝑝 (Eq. 2) is positive only for the black fork. (e) The link intersects two
branches incident to different forks, creating a compound link.

Fig. 7a-d show four prototypical configurations resulting from such
an assignment.

Case 2: Compound link. There is no fork that has both concavities
assigned to it and the link intersects two or more branches (Fig. 7e).
We define 𝐹𝐵 to be the set of forks at the endpoints of the intersecting
branches. We then consider each 𝑓𝑖 ∈ 𝐹𝐵 and find the branch 𝑏𝑖
with maximum projection 𝑝 (𝑏𝑖 , 𝑓𝑖 ,𝐶) among branches incident to
each fork. If (i) all the projections 𝑝 (𝑏𝑖 , 𝑓𝑖 ,𝐶) are positive, (ii) all the
branches 𝑏𝑖 are non-salient, (iii) none of the branches share a fork,
(iv) each branch 𝑏𝑖 has ribs terminating in only one concavity in 𝐶 ,
and (v) each fork 𝑓 𝑖 has a disk that overlaps with the disk of another
fork in 𝐹𝐵 , this results in a special configuration we call a compound
link. Then, the link is assigned any one of these branches together
with its fork. This configuration is similar to a normal link, except
that the protrusion is not sufficient for the branches to merge at a
single fork (compare Fig. 7 d & e).

5.2 Link salience
The disambiguation of incompatible links can be achieved with a
measure that prioritizes perceptually salient links. We use three
concepts from perceptually-driven studies of part decomposition
to favor links that are: (i) short (aka the “short-cut rule” [Singh
and Hoffman 2001; Singh et al. 1999]), (ii) located between outline
regions with good continuation (aka “limbs” [Siddiqi and Kimia
1995]) and (iii) connecting pairs of concavities with a relatively
small radius of curvature (aka the “minima rule” [Hoffman and
Richards 1984]). Link salience is then computed as:

𝜔 (𝜂) = 𝑒−(𝑟1+𝑟2)/(2𝑟max) +𝜓 (𝑐1, 𝑐2) (3)

combining an exponential function that decays with increasing
concavity radii 𝑟1, 𝑟2, scaled by the maximum concavity radius 𝑟max,
together with a measure of good-continuation between the linked
concavities, denoted𝜓 (𝑐1, 𝑐2), that decayswith the distance between
concavities and thus penalizes longer links.

5.3 Good continuation (𝜓) for links
Selecting valid links requires pairing concavities using a measure
of good continuation along the outline. We use association fields
[Wagemans 2018], which have been proposed to model the neural
processes responsible for contour integration and perceptual group-
ing in early vision. A few computational implementations have been
defined, the original one being based on cocircularity [Parent and

0.00

0.25

0.50

0.75

1.00(a) (b)

Fig. 8. Association fields for two concavities in a letter T with corresponding
colored values𝜓 . The tangents pointing to the right are colored according
to their association with the black tangents. (a) Case where the corners
are well-aligned and the association field gives a sufficiently high good-
continuation value𝜓 ≈ 0.75. (b)Case where the corners are not well-aligned:
the association field from one corner reaches the other but only with a low
good-continuation value𝜓 ≈ 0.25.

Zucker 1989; Yen and Finkel 1998], i.e., how one local orientation,
typically specified by an edge, can be connected to another nearby
edge if it is reachable by circular paths within a region specified by
the field. We adapt a more recent experimentally verified approach
by Ernst et al. [2012] that is based on a stochastic model of con-
tour integration [Williams and Thornber 2001]. Given two oriented
edge elements, the model defines a field that decays as a Gaussian
function of deviation from perfect cocircularity, collinearity, and
distance between the two edges (Fig. 8).
We compute the good-continuation value𝜓 (𝑐𝑖 , 𝑐 𝑗) for a link’s two
concavities by first selecting the outline tangent at an endpoint of
each concavity (§4.2.2) that is most orthogonal to the link’s flow 𝝋𝑖 𝑗
(Def. 5.2). The association field is then computed using the concavity
endpoints and tangents, and set to decay exponentially with distance
relative to a spread parameter, 𝜎𝑑 , which we set to 2𝑟max, i.e. twice
the maximum radius of any M𝐼 disk that is not part of a ligature
region. More details are in Appendix B.
We will also evaluate a good continuation measure𝜓 in two other
cases: (i) when selecting the best crossing paths for strokes, such
that a stroke can enter and exit an ambiguous glyph region, by
comparing pairs of links (§7.2), and (ii) when associating stroke
spines (§7.3.2). Before we reach those cases, using links and their
assigned concavities, we need to categorize allM𝐼 forks and their
incident branches into higher level features we call junctions.

6 JUNCTIONS
A junction 𝛾 comprises a set of M𝐼 forks 𝐹𝛾 together with their
assigned links and concavities. It defines a configuration of M𝐼

branches that correspond to a particular area in the glyph. For
brevity, we will say that the junction covers these branches and forks.
Once all junctions have been identified, they uniquely determine
the inferred stroke decomposition of a glyph. Note that we use
“junction” to refer toM𝐼 branches joining, and not to glyph strokes
joining. Junctions often coincide with areas where strokes join, but
not always.
We define a taxonomy of seven junction types (half, Y, T, L, stroke
end, protuberance and null), shown in Fig. 9, sufficient for our goal
of stroke stylization.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: January 2022.

8 • Daniel Berio, Frederic Fol Leymarie, Paul Asente, and Jose Echevarria

(a) (b) (c) (d) (e) (f) (g)

root

Fig. 9. Junctions. The first row shows each fork (black dot), branch (thick colored path), concavity (red dot) and link (dashed segment) configuration that
characterizes each junction type. The second row shows the resulting strokes. (a) Two half-junctions, defined by two link pairs (dashed blue and pink) that
share the same multitraced crossing path that connects the same forks (black dots). The two junctions produce two crossing strokes. (b) One T-junction,
defined by one link (dashed blue). (c) One Y-junction, defined by a concavity opposite a root branch. (d) One L-junction, with the root in grey and its hierarchy
(lighter grey), which will be discarded. (e) Stroke end. (f) Protuberance, characterized by a compound link (dashed blue). (g) Three null-junctions leading to a
single stroke.

6.1 Junction types
Half-junctions. One stroke goes across one or more other strokes. A
half-junction is characterized by a pair of links that are assigned to
different forks and have a high good-continuation value between
the concavities at the link ends (Fig. 9a). Unlike the other junction
types, which identify one or two strokes with all branches incident
to one fork, a half-junction identifies one stroke that connects two
branches and enters and exits a region delimited by the links. This
simplifies the analysis of complicated crossings with more than two
strokes. A simple crossing like that in Fig. 9a consists of two half-
junctions that cover the same forks. Any additional stroke crossing
the same area would imply an additional half-junction. The crossing
path of each half-junction is the shortest sequence of branches in
M𝐼 connecting the forks assigned to the links.

T-junctions. One stroke is incident to another in a near-perpendicular
fashion. A T-junction is characterized by a link that identifies a
branch protruding from a fork (Fig. 9b).

Y-junctions. Two strokes branch out of an overlapping region. A
Y-junction is characterized by a representative concavity 𝑐 that is
assigned to a fork 𝑓 and that is opposite to a salient root branch
incident to 𝑓 (Fig. 9c).

L-junctions. One stroke contains a corner or an elbow-like bend
(Fig. 9d). L-junctions have a configuration similar to Y-junctions,
with a representative concavity opposite a root branch, but this root
is short and often not salient.

Stroke-ends. The M𝐼 branching structure at the junction is a tree
composed of non-salient branches and is associated with the end of
a stroke (Fig. 9e).

Protuberances. TheM𝐼 branching structure is nested with one of the
non-salient branches being assigned to a compound link (Fig. 9f).

Null-junctions. M𝐼 contains a fork arising from a small or noisy
outline feature. (Fig. 9g).

6.2 From junctions to strokes
Junctions identify semantic stroke features while also helping de-
termine how M𝐼 branches are transformed into strokes. To drive
this transformation, we create a stroke graph S in which each vertex
is a M𝐼 branch and each edge connects branches that are part of
the same stroke. Each vertex in S is also associated with a stroke
segment, a spine and a width profile that initially coincide with
the the path of the branch in M𝐼 and the union of the disks for
that branch. The vertices in S are initially set to be disconnected.
We identify junctions one by one, and with each identification we
perform structural operations (Section 6.2.1) on the connectivity
and structure of S and adjustment operations (Section 6.2.2) on the
associated stroke segments. Which operations are performed is a
function of the junction type (Section 6.2.3). We will describe the
identification procedure in detail later, in Section 7, after discussing
the different junction types in more depth and how these transform
M𝐼 into strokes.
Once all junctions have been identified, the stroke segments for
each connected component of S map to one stroke in the glyph.
Fig. 10 shows the steps in the segmentation of a single glyph. Each

(a)

(b)

Fig. 10. Recovering strokes for a letter “A”. (a) Structural operations on the
stroke graph S with vertices (M𝐼 branches) shown as red dots and edges as
red arcs. The arcs connect branches that are combined into a single stroke.
(b) Adjustment operations on the stroke segments: blue strokes with black
spines are before adjustments, while black strokes with white spines are
after adjustments. Each step straightens curved strokes near a junction; in
the first step the effect is very subtle.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: January 2022.

StrokeStyles: Stroke-Based Segmentation and Stylization of Fonts • 9

(a) (b) (c)

Fig. 11. Operations on the branches and connectivity of S. (a) Connecting
two branches incident to the same fork (black dot). (b) Multitracing (dupli-
cating) a branch. (c) Discarding two branches and the tree-like hierarchy
attached to one of them.

step shows the changes to the stroke graph and the adjustments to
the stroke segments.

6.2.1 Structural operations on S. Identifying a junction leads to
applying one or more of the following structural operations to S:

• Connect two or moreM𝐼 branches: add edges between pairs
of vertices in S. The correspondingM𝐼 branches are incident,
and will be part of the same stroke (Fig. 11a).

• Multitrace one or more M𝐼 branches: duplicate the corre-
sponding vertices in S. This will let anM𝐼 branch be shared
by more than one stroke (Fig. 11b).

• Discard one or more branches incident to the same fork:
remove them from S. This removes branches that are not
relevant to constructing a stroke. The operation is similar
to conventional medial axis pruning methods [Shaked and
Bruckstein 1998] and is applied recursively to any attached
tree-like hierarchy inM𝐼 . It ends when it encounters a branch
already connected in S (Fig. 11c).

6.2.2 Adjustment operations. Transforming the connected compo-
nents of S into strokes involves assembling a simple path for each
component, starting from a degree 1 vertex in S if it exists, or from
an arbitrary vertex if the path forms a loop. Recall that the paths in
S begin as the paths of theM𝐼 branches. To recover smooth strokes
from these paths, we must remove distortions that often occur near
ligature regions. We use transitions that replace portions of one or
more stroke segments with ones that smoothly interpolate an initial
and a final pair of centers and radii, (𝒚𝑖 , 𝑟 𝑖) and (𝒚 𝑗 , 𝑟 𝑗). We define
two transition types:

• A smooth transition has a spine with points sampled from
a clothoid connecting 𝒚𝑖 to 𝒚 𝑗 and disk radii given by lin-
early interpolating between 𝑟 𝑖 and 𝑟 𝑗 . The parameters of
the clothoid are determined by estimating a pair of tangents
(𝒕𝑖 , 𝒕 𝑗) coinciding with 𝒚𝑖 and 𝒚 𝑗 (Fig. 12, top row) and then
using a secant-based optimization method by Levien [2009].
If not stated otherwise, 𝑟 𝑖 and 𝑟 𝑗 are also assumed to be the
disk radii at 𝒚𝑖 and 𝒚 𝑗 . Note that in many cases this clothoid
reduces to a straight line segment.

• A straight transition has a straight spine that connects 𝒚𝑖 and
𝒚 𝑗 and a constant width profile 𝑟 𝑖 = 𝑟 𝑗 = 𝑟 (Fig. 12, bottom
row).

6.2.3 Junction operations. Each junction type determines a series of
structural and adjustment operations that transform S into strokes:

Half-junctions. A half-junctionmultitraces the branches that fall
along the crossing path and then connects the multitraced branches

(a) (b) (c)

Fig. 12. Disk adjustment operations with a smooth transition (top row) and
a straight transition (bottom row). (a)Branches (color coded) and disks (blue)
before adjustment. (b) Ligature (in red) being replaced by the transition.
The black dot in the second row is the endpoint of the straight transition.
(c) Adjusted branch and disks.

with the branches protruding from the two links. The junction
adjusts the stroke segments associated with these branches with a
smooth transition. The transition starts and ends at the limits of the
ligature region produced by the junction’s linked concavities.

T-junctions. AT-junction connects the two non-protruding branches
incident to the fork and adjusts the associated stroke segments with
a smooth transition. The junction also adjusts the stroke segment as-
sociated with the protruding branch with a straight transition. The
transition extends the segment so it terminates at the intersection
with the path produced by the smooth transition.

(1)

(2) (4)

(3)Y-junctions. A Y-junction connects the root to one
of the other branches and leaves the other branch
smoothly protruding from the connected path (in-
set, 1, 2). The choice of which branch is connected depends on the
junction identification procedure detailed in Section 7.3. Other inter-
pretations are possible: 3, with a multitraced root, and 4, with three
separate strokes. We find that the first two are sufficient for our
stylization purposes, but others might be useful in other scenarios.
The junction adjusts the connected stroke segments with a smooth
transition and the protruding one with a straight transition. Both
transitions replace the ligature produced by the concavity and the
disks centered within the fork.

L-junctions. An L-junction discards the root branch, connects the
other two branches and adjusts the corresponding stroke segments
with straight transitions that meet at a common point of intersection.
The transitions have a constant radius 𝑟 𝑖 = 𝑟 𝑗 determined by the
radii at the edges of the ligature produced by the concavity.

Stroke-ends. A stroke-end discards the two least salient branches
incident to the fork along with any attached branch hierarchies, and
adjusts the third branch with a straight transition that extends the
fork to a location near the outline.

Protuberances. A protuberance adjusts the branch assigned to the
compound link with a straight transition and discards all the other
non-salient branches associated with the link for which Eq. 2 is
positive. The junction also connects the branches incident to the
discarded ones.

Null-junctions. A null-junction discards the least salient branch
incident to the fork and connects the other two branches incident
to the fork.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: January 2022.

10 • Daniel Berio, Frederic Fol Leymarie, Paul Asente, and Jose Echevarria

7 JUNCTION IDENTIFICATION
Junctions often occur in complex and nested configurations and their
identification becomes non-trivial. Similar to existing approaches for
part decomposition [Papanelopoulos et al. 2019; Siddiqi and Kimia
1995], our identification method uses an iterative approach (Fig. 10)
consisting of four main steps. First, we identify protuberances asso-
ciated with compound links. Second, we use good continuation to
identify half-junctions that cover forks in a single ligature region.
We process these junctions early since they identify crossing paths
that should not be disconnected by other subsequently identified
junctions. Third, we identify all the remaining junction types by
examining oneM𝐼 fork at a time. Fourth, we examine pairs of previ-
ously identified T-junctions, transforming some into half-junctions
if the corresponding links have high good continuation value.

Auxiliary graph H. Identifying a junction can be interpreted as re-
covering a part of a stroke, and this can change which concavities
and links are meaningful for identifying the next junction. To man-
age these changes we use a graph H = (𝐶,𝐻) having one vertex
per concavity and one edge per valid link. Each iteration of the
identification procedure removes vertices (concavities) and edges
(links) from H depending on the identified junction. Removing a
vertex also removes all incident edges, affecting the subsequent
identification of remaining junctions.

7.1 Step 1: Identify protuberances
In the first step, we identify a protuberance from each previously
identified compound link. This step does not modify H but it local-
izes small protrusions, transforming these into small strokes that
can later be associated with T-junction or a half-junction, and less
often to another junction

7.2 Step 2: Identify half-junctions
Identifying half-junctions requires finding candidate link pairs in H
that can be associated based on good continuation.

For two links 𝜂𝑖 and 𝜂 𝑗 having concavities
(𝑐1, 𝑐2) and (𝑐3, 𝑐4), we define the connecting
good-continuation value 𝜓 (𝜂𝑖 , 𝜂 𝑗) to be the prod-
uct𝜓 (𝑐1, 𝑐3)×𝜓 (𝑐2, 𝑐4) for the non-crossing links
connecting the endpoints of 𝜂𝑖 and 𝜂 𝑗 .

Two links 𝜂𝑖 , 𝜂 𝑗 , can be paired into a half-junction if they do not
share a concavity and the connecting good-continuation value
𝜓 (𝜂𝑖 , 𝜂 𝑗) is greater than a threshold, set experimentally to 0.25.
Candidate half-junctions can occur in ambiguous nested configu-
rations. We consider a link in a pair to be nested if it is assigned
a branch that is part of any crossing path defined by another pair
(Fig. 13a). If this is the case, the nested pair is not considered a
potential half-junction.
In some glyphs, particularly in hanzi, one stroke crosses another
and ends in a short, rounded protrusion (Fig. 7e). In this case the
tangents at the concavities do not always capture the perceived
direction of stroke continuation, but we can detect this because
one of the links 𝜂𝑖 or 𝜂 𝑗 is assigned a non-salient branch. We then
re-orient the tangents corresponding to its concavities to match the
link flow direction.

(a) (b)

1

2

3

4

5

6

7

Fig. 13. Half-junction disambiguation. (a) The red colored links are all part
of potential half-junction pairs. The dashed-red links are nested. For example
link 3 is nested because its protruding branch (blue) is part of the crossing
path between link 1 and link 6, which can be paired. Link 7 (green) is not
paired with any other link 𝑖 because 𝜓 (𝜂𝑖 , 𝜂7) never exceeds the pairing
threshold. (b) This configuration results in two half-junctions produced by
the pairs (1, 6) and (4, 5)

We identify an initial set of half-junctions by examining groups
of links that are assigned forks that are part of a single ligature
region. For each group we identify candidate link pairs 𝜂𝑖 , 𝜂 𝑗 that
are consistent with the conditions above and are not nested, and
then process these pairs in order of decreasing good continuation
𝜓 (𝜂𝑖 , 𝜂 𝑗). We create a half-junction only if a pair does not include a
previously processed link.

7.2.1 Updating H. Every time we identify a half-junction, we re-
move its two links fromH. We also remove any link that is assigned a
branch that shares more than one vertex with the crossing path. This
guarantees that the path will not be disconnected by a subsequently-
identified junction.

7.3 Step 3: Identify other junctions
The five other junction types are identified one fork at a time with a
procedure that depends on the links𝐻 𝑓 and concavities𝐶 𝑓 assigned
to a given fork 𝑓 , both of which are in H. Our goal is to select a
junction 𝛾 for 𝑓 that produces a good approximation of the glyph
near 𝑓 , while also producing strokes that are smooth and consistent
with the configurations of concavities𝐶 𝑓 and links𝐻 𝑓 . We evaluate
a potential junction using four measures:

(1) Coverage, ΛI: Rewards strokes that provide a good cover of
the corresponding glyph region (Section 7.3.1).

(2) Smoothness, Λ𝜓 : Rewards T-, Y- or L-junctions that produce
smooth strokes (Section 7.3.2).

(3) Concavity significance Λ𝑤 : Rewards T-, Y- or L-junctions that
are consistent with the configuration of concavities in 𝐶 𝑓

(Section 7.3.3).
(4) Link salience Λ𝜂 : Rewards T-junctions that are characterized

by a salient link (Section 7.3.4).
Coverage applies to all junction types, while smoothness and concav-
ity significance only apply to T-, Y- and L-junctions, and link salience
only applies to T-junctions.
This class-dependent organization of measures lets us disambiguate
junctions without relying on training data [Plamondon and Srihari
2000] but poses the challenge of comparing measures with different
ranges [Bailey 2001]. We adopt a heuristic solution akin to the
“one-versus-one” classification [Galar et al. 2011] where, given 𝑁
candidate junctions (Section 7.3.5), we evaluate all 𝑁 (𝑁 − 1)/2
pairwise junction combinations using the terms that are valid for
both junction types (Section 7.3.6). We process forks iteratively with
an ordering procedure (Section 7.3.7) that depends on 𝐻 𝑓 and 𝐶 𝑓 .

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: January 2022.

StrokeStyles: Stroke-Based Segmentation and Stylization of Fonts • 11

T Y Y L Stroke-end Null

pi = 4.58 pi = 3.44 pi = 4.38 pi = 2.92 pi = 1.18 pi = 2.42
Λ = − 0.01
Λψ = − 0.57
ΛC = 0.13
Λη = − 0.18

Λ = − 0.01
Λψ = − 1.47
ΛC = 0.20

Λ = − 0.01
Λψ = − 0.54
ΛC = 0.20

Λ = − 0.21
Λψ = − 1.70
ΛC = 0.20

Λ = − 1.51 Λ = − 0.56

(a) (b) (c) (d) (e) (f) (g)

Fig. 14. Possible interpretations for the fork in this K (black dot) where
the two diagonal strokes, shown in blue, join. (a) The blue area also shows
the before-adjustment area used in the coverage calculation and the most
salient concavity (red dot). The darkened areas in the remaining subfigures
show the adjusted strokes. (b) The T-junction interpretation has the highest
score and so is the one selected. (c-d) The most salient concavity (red dot)
is below the fork (black dot), leading to the root for the two Y-junction
interpretations being the branch that extends to the upper right. (e) It also
forces the L-junction’s corner, which must be opposite the most salient
concavity, to be in the upper right and forcing the implausible structure
shown. (f) In the stroke-end interpretation, the entire branch hierarchy to
the right of the fork is evaluated as an elaborately flared end to the short
branch connecting the fork to the vertical; because this is not plausible, the
score is very low. Note that the two highest-scoring interpretations give the
same stroke decomposition.

7.3.1 ΛI: Coverage. For each junction type, we seek to evaluate
howwell the resulting strokes cover the underlying glyph region. To
do so, we consider the connected components of S that include any
branch covered by the junction. We then rasterize the associated
stroke segments before and after the operations induced by the
junction and compute their respective areas 𝐴𝛾 and 𝐴′

𝛾 (Fig. 14).
The coverage is computed as:

ΛI = ln
[
(𝐴𝛾 ∩𝐴′

𝛾)/𝐴𝛾
]
. (4)

7.3.2 Λ𝜓 : Smoothness. For T-, Y-. and L-junctions, we reward the
junction type thatmaximizes stroke smoothness.We quantify smooth-
ness as a geometric mean:

Λ𝜓 = ln

(
𝑀∏
𝑖=1

𝜓𝑖

) 1
𝑀 , (5)

where𝑀 depends on the junction type and𝜓 𝑖 are good continuation
values computed along stroke spines. For T- and Y-junctions,𝑀 = 1
and𝜓 𝑖 is the good continuation for the point-tangent pairs used to
compute the smooth transition of the connected stroke.

For L-junctions, 𝑀 = 2 and we compute two good
continuation values, respectively between the tan-
gents 𝒕𝑖 , 𝒕 𝑗 at the ends 𝒚𝑖 ,𝒚 𝑗 of the ligature and two
other tangents 𝒕𝑘 , 𝒕𝑙 , parallel to the junction’s straight

transitions (inset, black lines) and anchored at their point of inter-
section.
For all cases we compute good continuation (Section 5.3) with spread
parameter 𝜎𝑑 set to the distance between the tangent origins, which
results in a measure invariant to distance.

7.3.3 Λ𝑤 : Concavity signifiance measure. The inward normal 𝒏 at
a concavity 𝑐 is similar to the “process arrow” proposed by Ley-
ton [1988], which captures the direction of a force that produces the
concavity when locally applied to an elastic version of the outline.

We use this analogy to compute the signifi-
cance of a concavity 𝑐 with respect to the fork
position 𝒚𝑓 , by assuming that the glyph is
made of an idealized linear-elastic, isotropic,
incompressible material with a Poisson ratio

of 0.5. Based on Flamant’s solution for a normal force acting on an
elastic half-plane [Kachanov et al. 2003], the normal displacement
at 𝒚𝑓 produced by a force applied at a point 𝒙𝑖 along the contact
region and oriented according to 𝒏 is proportional to:

𝑢 = −0.5 ln
(
𝑅2

𝐿2

)
+ cos2 𝜃

𝑅2
, (6)

where 𝜃𝑖 is the angle between 𝒏 and the vector from 𝒙𝑖 to 𝒚𝑓 , 𝑅 is
the magnitude of this vector and 𝐿 is a constant that determines
a distance at which the displacement vanishes [Timoshenko and
Goodier 1951]. We use 𝐿 = 2𝑟𝑓 , where 𝑟𝑓 is the disk radius at the
fork. The significance of a concavity 𝑐 (inset: grey sectors) is then

𝑤 (𝑐, 𝑓) = 𝑢/𝑟1/2 , (7)

where 𝑟 is the CSF radius. Intuitively, high significance for just one
concavity in 𝐶 𝑓 suggests the presence of a Y- or L-junction, while
high significance for two such concavities suggests the presence of
a T-junction. To quantify this, we sort the concavity significances
𝑤𝑖 for the three fork sectors (Section 4.4) in decreasing order,𝑤1 ≥
𝑤2 ≥ 𝑤3, setting 𝑤𝑖 = 0 if a sector has no concavity. We consider
their differences normalized by the sum Σ𝑤 = 𝑤1 +𝑤2 +𝑤3 [Westin
et al. 2002]. If we are evaluating the junction 𝛾𝑖 as a Y- or L-junction,
then we compute:

Λ𝑤 (𝛾𝑖) = ln [(𝑤1 −𝑤2 +𝑤3)/Σ𝑤] , (8)

where a high value of Λ𝑤 (𝛾𝑖) means that𝑤1 > 𝑤2 ≃ 𝑤3. If we are
evaluating 𝛾𝑖 as a T-junction, then we compute:

Λ𝑤 (𝛾𝑖) = ln [(2𝑤2 −𝑤3)/Σ𝑤] , (9)

where a high value of Λ𝑤 (𝛾𝑖) means that𝑤1 ≃ 𝑤2 > 𝑤3.

7.3.4 Λ𝜂 : Link salience . This last measure is simply given by:

Λ𝜂 = ln𝜔 (𝜂) , (10)

where 𝜔 (𝜂) is the salience of the junction’s link (Eq.3).

7.3.5 Candidate junctions. For each fork 𝑓 we build a set 𝐽𝑓 of
candidate junctions. Each such set always include a null-junction
and a stroke-end, given by the least salient individual branch and
the least salient branch pair incident to the given fork 𝑓 . The other
members of 𝐽𝑓 depend on the presence and configuration of links
and forks assigned to the fork, and on the saliency of the fork’s
incident branches.
If 𝐻𝑓 (the set of forks assigned to 𝑓) is non-empty, 𝐽𝑓 can contain a
T-junction for each link in 𝐻𝑓 . If𝐶 𝑓 (the set of concavities assigned
to 𝑓) is non-empty, we consider the two Y-junction configurations
and single L-junction produced by the most significant concavity
in 𝐶𝑓 . The presence of T-, Y- and L-junctions in 𝐽𝑓 depends on the
following constraints:

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: January 2022.

12 • Daniel Berio, Frederic Fol Leymarie, Paul Asente, and Jose Echevarria

(1) 𝐽𝑓 contains a Y-junction only if the root is salient.
(2) 𝐽𝑓 contains a T-, Y- or L-junction only if all the branches

incident to the fork, with the exception of the root if present,
have saliency greater than a lower bound 𝛽min.

(3) 𝐽𝑓 contains an L-junction only if the representative concavity
is well aligned with the root, i.e. the dot product between
the root protruding direction and the concavity bisector is
positive.

(4) 𝐽𝑓 contains an L-junction only if the representative concav-
ity has a curvature radius smaller than 𝜆L𝑟 𝑓 cos(𝜃𝑐/2), with
𝑟 𝑓 the fork’s radius and 𝜆L a user configurable multiplier
experimentally set to 0.5.

Constraint 1 enforces consistency with the Y-junction definition.
Constraint 2 functions similarly to a medial axis pruning strat-
egy, but considers junction configurations to determine whichM𝐼

branches are not significant. We use a lower bound 𝛽min = 1.5 for
the examples given. Increasing 𝛽min will make flared stroke ends
more likely to be categorized as stroke-end junctions and less likely
to be separated as a serif with a T-junction. Constraint 3 avoids
certain cases where a concavity being assigned to a fork can result
in misidentifying a stroke-end or null-junction as an L-junction.
Constraint 4 avoids certain cases in which corners are misidentified
as null-junctions. While this last constraint is not critical to the
recovery of plausible strokes, it improves stylization results in par-
ticular in cases that involve structural modifications of the stroke
spines.

7.3.6 Identification. The preference for one junction 𝛾𝑖 among a
pair (𝛾𝑖 , 𝛾 𝑗) is given by:

Λ𝑖 𝑗 (𝛾𝑖) = ΛI + 𝛿TYLΛ𝜓 + 𝛿TYLΛ𝑤 + 𝛿TΛ𝜂 + Λ𝛾 (11)

where 𝛿TYL = 1 if both𝛾𝑖 and𝛾 𝑗 are one of a T-, Y- or L-junction, and
𝛿T = 1 if both are T-junctions. Otherwise, both terms are zero. The
last term Λ𝛾 lets a user express a preference for the identification
of certain junctions types with Λ𝛾 = ln 𝜆𝛾 , where 𝜆𝛾 is a junction-
dependent weight that defaults to 1. We find that it works well to
use a slightly lower value of 𝜆𝛾 for null-junctions, and a higher value
of 𝜆𝛾 for T-junctions. This generally favors L-junctions over null-
junctions in certain corner configurations, and favours T-junctions
over Y-junctions in the presence of a link. In the examples given, we
use 𝜆𝛾 = 1.1 for T-junctions and 𝜆𝛾 = 0.95 for null-junctions. We
finally estimate the probability of selecting a junction 𝛾𝑖 among a
pair, with:

𝑃𝑖 𝑗 (𝛾𝑖) =
expΛ𝑖 𝑗 (𝛾𝑖)

expΛ𝑖 𝑗 (𝛾𝑖) + expΛ𝑖 𝑗 (𝛾 𝑗)
(12)

and select the junction 𝛾𝑖 that maximises:

𝑃𝑖 =
∑︁

1>=𝑗≠𝑖<𝑁
𝑃𝑖 𝑗 (𝛾𝑖). (13)

7.3.7 Iterative process. We process forks in an order of decreasing
priority given by

min
𝑏∈𝐵 𝑓

𝛽 (𝑏, 𝑓) max
𝜂∈𝐻 𝑓

𝜔 (𝜂) + 2𝐾, if 𝐻 𝑓 is non-empty ,

min
𝑏∈𝐵 𝑓

𝛽 (𝑏, 𝑓) max
𝑐∈𝐶 𝑓

𝑤 (𝑐, 𝑓) + 𝐾, if 𝐻 𝑓 is empty and 𝐶 𝑓 is not ,

min
𝑏∈𝐵 𝑓

𝛽 (𝑏, 𝑓), otherwise ,

(14)
where 𝐵 𝑓 is the set of branches incident to the fork ,𝑤 (𝑐, 𝑓) is the
significance of a concavity (Eq. 7), 𝜔 (𝜂) is the salience of a link
(Eq. 3) and 𝐾 is an arbitrarily large constant that favours processing
forks with assigned links before forks without a link, and forks
with assigned concavities before forks without. Using the minimum
branch salience terms 𝛽 (𝑏, 𝑓) generally favours a depth-first pro-
cessing of forks. Fig. 10 shows a typical sequence resulting from
this ordering.

7.3.8 Updating H. As with half-junctions, we remove vertices (con-
cavities) and edges (links) from H after each junction identification.
We remove a concavity from H if it is shared by two previously
processed links that are assigned to the same fork, and if it is the
representative concavity of a Y-junction. Finally, every time we
process a T-junction, we test if the good continuation along the
link is greater than a relatively high threshold (0.4 in the examples
given). If this is the case, we remove both concavities from H. This
is based on the observation that separating the protrusion identified
by the representative link can produce a locally flat region in the
neighborhood of the discarded concavities.

7.4 Step 4: Convert T-junction pairs to half-junctions
In certain configurations such as the one emphasized in Fig. 15a,
an area that is characterized by two ligature regions is perceived to
be coverd by two crossing strokes. However, the steps described so
far result in identifying two T-junctions that produce two strokes
incident to a common stroke (Fig. 15b). We check if this kind of
configuration can be transformed into one consisting of two crossing
strokes (Fig. 15c), with a procedure similar to the one used for
half-junctions in Section 7.2. If the distance between the incident
endpoints of the two strokes is less than both radii of the forks

(a) (b) (c)

Fig. 15. Final identification of half-junctions. (a) The glyph region em-
phasied with the blue circle consists of two strokes that are perceived as
crossing and have two separate ligatures. (b) The procedure up to Section
7.4 produces two T-junctions, which results in three strokes; the yellow and
blue strokes protrude from the red stroke. (c) The links that characterize the
two T-junctions have high good continuation, so the procedure in Section
7.4 transforms these junctions into one single half-junction replacing the
previous two strokes (yellow and blue) with a single longer one (blue).

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: January 2022.

StrokeStyles: Stroke-Based Segmentation and Stylization of Fonts • 13

(a) (c) (d)

Fig. 16. Faces and edges of Q for different junction types. The tangents
determining the edges are marked in black. (a) A T-junction adds one
edge and produces two faces, one including the two arc segments of the
concavities’ contact regions. (c) A Y-junction adds one edge and produces
two faces. (d) Three half-junctions in the same area, adding 12 edges (3
quadrilaterals).

covered by the T-junctions, and the good continuation𝜓 (𝜂𝑖 , 𝜂 𝑗) for
the junction links is greater than the same threshold used in Section
7.2, we construct one half-junction from the two links and discard
the two T-junctions. The result is similar to the one produced by
two half-junctions, but in this case one half-junction connects two
previously disconnected strokes, while one stroke has been already
connected by the previously identified T-junction pair.

8 STROKE RECONSTRUCTION
The stroke graph S, together with junctions, provides a flexible, high-
level descriptor of the inferred stroke structure of a font. We use this
descriptor in two methods to reconstruct strokes. Our first method
produces strokes using the traditional definition of a stroke—a spine
paired with a varying width profile function. The second produces
stroke areas, a type of part-decomposition of the glyph consisting of
potentially overlapping shapes that when unified closely reproduce
the original glyph.

8.1 Strokes
To recover a spine and a width profile function from a connected
component of S we consider the concatenated sequence of stroke
segments associated with each branch in the component. Each se-
quence is akin a polyline in IR3 with each coordinate [𝒚𝑖 , 𝑟 𝑖] consist-
ing of an adjusted position concatenated with an adjusted radius. To
remove small discontinuities that can persist after the adjustment
steps, we smooth the coordinates with a conventional spline method.
We perform smoothing in a piecewise manner, with pieces delimited
by the stroke endpoints and at L-junctions.
We also check for strokes that can be closely approximated with a
straight spine and a constant width profile. To do so, we compute a
linear least square fit of a 3D line to the coordinates and use this line
if the mean-squared error of the fit is less than a user-configurable
threshold.

8.2 Stroke areas
A stroke area is a 2D part of the glyph derived from a single stroke.
Stroke areas enable stylizations that depend on the shape of the
stroke parts and help quantify the accuracy of our segmentations
(Section 9.1). They are created by using junctions to partition the
input shape into disjoint faces and then using the connected compo-
nents of the stroke graph to guide the assembly of these faces into
stroke areas.
We construct a planar map [Fabri and Pion 2009; Preparata and
Shamos 1985] Q built from the glyph outline with additional edges

(a) (b) (c) (d)

Fig. 17. Stroke areas for the letter R in different fonts. The last result is
based on a stroke that crosses itself, producing a stroke area with a hole.

derived from the junctions. Each T-junction adds one edge to Q,
connecting the origins of tangents on the ends of its link (Fig. 16a).
Each Y-junction also adds one edge to Q.
We take the direction of one of the tangents of the junction’s repre-
sentative concavity and connect the concavity extremum to the first
intersection with the outline. The tangent is the one that is least
aligned with the protruding branch (Fig. 16c). A half-junction adds
a quadrilateral to the graph. Two of its edges connect the tangent
origins of the non-crossing link endpoint pairs, the same ones used
to compute good continuation in Section 7.2. The other two edges
connect the same tangent origins along the links (Fig. 16d).
Once Q has been constructed, we create one area for each stroke
by performing a union of some of the faces in Q. We first construct
a disk area for each stroke. Each area is the union of the disks for
the branches in the associated connected component of S as well
as for any branches discarded by a junction that covers a branch
in this connected component. We then assign any face enclosed by
any of the quadrilaterals added by a half-junction to the stroke for
that half-junction. Each remaining face is assigned to the stroke for
which the intersection of the face and the stroke disk area is largest.
Fig. 17 shows the stroke areas for the letter R in various fonts.

9 RESULTS AND DISCUSSION
Strokes and stroke areas provide the basis for evaluating our method
with respect to ground truth segmentations and for producing a
variety of stroke-based stylizations of the input glyphs.

9.1 Segmentation quality
Quantitative evaluation of the results of stroke segmentation is diffi-
cult because there is no ground truth for most Western fonts. How-
ever, we can compare the segmentation results with the make-me-
a-hanzi dataset [Kishore 2018], which includes outline and stroke
ground truth for a variety of simplified and traditional Chinese
(Han) characters. To perform the evaluation, we first segment the
glyph into stroke areas as described in the previous section.
Similarly to Kim et al. [2018] we then perform an “Intersection over
Union” (IoU) test on the rasterized stroke areas. For each segmented
stroke area, we identify the most similar stroke from ground truth
by maximizing the intersection area. Rasterizing at a resolution of
512 × 512 gives an average per pixel accuracy of 0.979, which is
slightly better then the result of 0.958 reported by Kim et al. [2018].
This result is influenced by some inaccuracies in the planar map
edges (Fig. 18a) and by different stroke decompositions (Fig. 18b).We
consider a stroke to be incorrect if its IoU is < 0.8, which excludes
small errors like the one in Fig. 18a, and results in a per-stroke
accuracy of 0.976.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: January 2022.

14 • Daniel Berio, Frederic Fol Leymarie, Paul Asente, and Jose Echevarria

(a) (b) (c)

Fig. 18. Quantitative evaluation with the make-me-a-hanzi dataset; the
ground truth is to the right of each pair. (a) Our method derives the same
stroke structure as that of the ground truth but one T-junction (marked
with a red circle) includes a stroke deformation. (b) All strokes are correctly
identified by our method except for the middle area, emphasized in red. We
derive one single stroke rather than the two in the ground truth because
there is no salient concavity near the top left of that area. (c) Using 𝜆𝛾 = 1.
for L-junctions results in a segmentation different from the ground truth.
With an increased value of 𝜆𝛾 = 1.2 the segmentation is identical to the
ground truth, globally producing the results discussed in Section 9.1

Certain ground-truth decompositions cannot be deduced from the
outline alone because they depend on domain knowledge. For ex-
ample, “boxes” in Chinese characters should almost always be seg-
mented into three strokes. Sometimes there are outline details that
lead to a correct segmentation, but not always (Fig. 18b). In other
cases, the segmentation result is sensitive to parameter choices.
For example, with the parameters used throughout the paper for
Western fonts, Fig. 18c results in a corner being interpreted as a
Y-junction. For the make-me-a-hanzi dataset we found that using
a value of 𝜆𝛾 = 1.2 for L-junctions (Section 7.3.6) fixed cases like
Fig. 18c and generally improved the segmentation results. With
this parameter choice only 8% of the glyphs in the make-me-a-
hanzi dataset had segmentation errors that were not of the types
discussed above; 11% had errors that could not be avoided without
domain knowledge or different parameter choices, and 81%were seg-
mented identically to the ground truth. From a qualitative viewpoint,
100% of our segmentations produced strokes that create a readable
reconstruction and robust stylization of the glyph, independent of
the choice of parameters.
We further tested our method on 100 fonts and it generates plausible
segmentation results in the vast majority of cases. The most encoun-
tered failure case is for very thick glyphs in which the average stroke
thickness is larger than the average stroke length (Fig. 19), leading
to a medial axis with branches that cannot readily be discarded as
non-salient. The segmentation also gives useful results on other
types of non-glyph shapes as long as there is a recoverable articu-
lated or branching structure (Fig. 20). This suggests that our method
could be useful to recover stroked paths from filled vector art or
from scanned documents.

9.2 Stylization and animation
Strokes and junctions provide the basis for a variety of stylization
methods. In particular, junctions provide semantic annotations that
determine connectivity relations between strokes or features such
as corners that can be preserved across stylizations. Grounding
text stylization on fonts has a number of advantages: (i) the large
variety of existing fonts provides a large variety of starting points
for stylization, (ii) the method is agnostic to the language or writing
system, and (iii) the embedded kerning information can be used to
determine inter-glyph spacing, which is known to be difficult to

(a) (b) (c)

Fig. 19. Challenging case with a glyph in the Manicotti font. The first row
shows the character “A”, which produces non-salient features similar to
stroke ends that , in (a), do not produce a medial axis subtree that our
method is able to identify as a stroke-end junction. These cases are difficult
to detect with our current junction taxonomy and result, in (b), in an
inplausible stroke decomposition, and, in (c), in an area decomposition
that simply ignores the non-salient features. In the second row the ends of
the top and bottom serifs have been slightly extended, disambiguating the
medial axis and giving plausible strokes and areas.

Fig. 20. Stroke decomposition of silhouettes. The left mammal silhouette
(from the PhyloPic database, http://phylopic.org) results in strokes that
capture its articulated structure. The right hand results in a plausible recon-
struction, but the segmentation deviates from the perceived structure of a
hand, with the pinkie being part of the same “stroke” as the palm.

achieve with methods that create stylized text from scratch [Haines
et al. 2016].

9.2.1 Skeletal strokes. The spines recovered from the stroke graph
can be directly used to produce some simple stylizations. Fitting
Bézier curves to each spine can produce “Hershey fonts”, which
have glyphs consisting of constant-width strokes (Fig. 21). Such
fonts are well-suited for fabrication and manufacturing applications.
The same curves can be used as the spines for skeletal strokes [Hsu
and Lee 1994], which enable a variety of glyph stylizations ranging
from painterly to decorative (Fig. 22).

9.2.2 Schematization. We can also generate stylizations by simpli-
fying the spines into sparse control polygons and schematizing the
results. This can be done with a number of polygonal simplification
methods; we use Discrete Contour Evolution [Latecki and Lakämper
1998] with a user-controlled threshold (Fig. 23). For a schematized
stylization, we quantize the orientations of stroke segments using
the C-oriented method [Nöllenburg 2014], which approximates a
polyline with another one consisting of segments having a discrete

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: January 2022.

StrokeStyles: Stroke-Based Segmentation and Stylization of Fonts • 15

Fig. 21. Hershey font stylization (black) overlayed on the original font (gray).

Fig. 22. Font stylization with skeletal strokes. The left column shows the
text in the original font. The right column shows the corresponding stroke
stylizations. The first example on the right shows the result of using skeletal
strokes as implemented in Adobe Illustrator to change weight, cap, and join
styles; the other three show various decorative effects. The strokes in the
bottom right example use variable width.

(a)

(b)

(c)

Fig. 23. Simplification and schematization of the strokes in Fig. 21: (a) Path
simplification. Spine schematization [Dwyer et al. 2008]: (b) quantizing
orientations to multiples of 60◦; (c) restricting orientations to 30◦ and 120◦.

set of orientations. We use the solution of Dwyer et al. [2008], which
creates regular-looking polygonizations and stylistic abstractions of
the letter structure (Fig. 23b,c). These also form the basis for other
stylization techniques described below.

Structural adjustment. Schematization applies to each stroke sepa-
rately. This can corrupt the glyph topology by disconnecting strokes
that previously met at T- or Y-junctions. However, the connectiv-
ity information encoded by these junctions allows us to correct
these errors by extending spines along their end-tangents until they
intersect their opposite nearby spine. We use a similar procedure
to maintain structural relations between strokes in the stylization
methods that follow, with details given in Appendix C.

9.2.3 Calligraphic effects. The schematized or simplified vertices
of a spine can be used as a motor plan for generating motion paths
that mimic the aesthetics of certain kinds of calligraphic writing
(Figs. 1e,f and 24). We generate smooth trajectories with the adaptive
smoothing method of Berio et al. [2017] and increase dynamism by
varying brush thickness depending on the synthesized trajectory

(a)

ABRACADABRA

(b)

ABRACADABRA

(c)

STROKESTYLES

Fig. 24. Schematization and smoothing applied to strings in different fonts
(Apollo ASM, Impact, Amador). The second example in (c) shows stroke
ends extended for calligraphic effect. The second example in (a) and both
examples in (c) use varying brush thickness derived from the stroke width
profiles

speed [Berio et al. 2018], or depending on the width profile of a
stroke (Fig. 24), similar to [Seah et al. 2005]). Different degrees of
smoothing at the corners results in different calligraphic effects.

9.2.4 Graffiti art: The origins of graffiti styles can be traced back
to more traditional forms of calligraphy and lettering as well as to
certain types of fonts [Arte 2015]. We can simulate this contempo-
rary art form, which features disctinctive forms of letter-stylization,
with a variant of skeletal strokes [Berio et al. 2019] that mimics
the intertwining, folding and extrusion effects that can be seen in
traditional graffiti art (Fig. 25). The local width of each stroke can
be determined by the previously computed thickness profile, and
multiple strokes optionally can be combined with local union op-
erations at T-, Y- junctions and half-junctions. We also use curve
smoothing [Berio et al. 2017] and the rendering methods of Berio et
al. [2019] to provide smooth color gradations, solid-colored blocks,
and highlight effects common to contemporary graffiti (Fig. 26).

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: January 2022.

16 • Daniel Berio, Frederic Fol Leymarie, Paul Asente, and Jose Echevarria

Fig. 25. Schematization and “graffiti strokes” [Berio et al. 2018] applied with
the same parameters to the letter “A” in different fonts (Andes, Giddyup,
Doctor Fibes, College, Apollo ASM). In the last two examples (bottom left),
the serifs are replaced with arrow heads.

Fig. 26. Mimicking graffiti effects with the layering and rendering tech-
niques of Berio et al. [2018].

9.2.5 Structural modifiers. T-, Y- and L-junctions identify strokes
that can be altered for additional stylization effects. Strokes that do
not terminate in one of these junctions can be extended to achieve
various visual effects (Fig. 24, last row). Junctions also help identify
serifs. We detect a serif as a relatively short, straight stroke that con-
tains the connected portions of one single T-junction and does not
contain any other Y- or L- junction. This detection can be exploited
for stylization, for example, replacing serifs with arrow heads as is
common in graffiti. (Fig. 25).

9.2.6 Stroke animation. Strokes can be used as motion paths to
generate a variety of animation effects. The smoothing method
of Berio et al. [2017] produces dense polylines, with distances be-
tween vertices reflecting the kinematics that are similar to human
hand motion. This can be exploited to generate natural-looking
stroke animations (Fig. 27). Stylized brush animations can also be
generated by incrementally visualizing a stroke, or by animating
a particle system that follows the stroke’s path. We order strokes
with a simple topological sorting heuristic rewarding top-to-bottom
and left-to-right movements, but the strokes derived by our method

(a) (c) (d)(b)

Fig. 27. Animating the drawing of a stylized R.

Fig. 28. Stylization based on similarity between stroke areas. In the first
row, strokes are color-coded based on common clusters. In the second row,
each stroke in a cluster is replaced with the same custom artwork. Note that
including junction structure in the stroke similarity metric allows distinct
stylizations to apply to otherwise-similar strokes, like the horizontal strokes
in R, P, L, and A. Artwork ©Daichi Ito, Adobe Research. The same stroke
areas can be used to drive other replacement-based stylization methods
such as the one by Zhang et al. [2017].

are suitable for more sophisticated approaches [Fu et al. 2011; Tang
et al. 2017].

9.2.7 Area-based stylization: Stroke similarity. The same stroke ar-
eas used to evaluate segmentation are also the basis of a similar-
ity measure among strokes in a complete font. We compute the
difference between two stroke areas by aligning their centroids,
rasterizing them, and then measuring the Jaccard distance [Deza
and Deza 2013, p. 299] between the resulting bitmaps: 1 minus the
intersection divided by the union. If one stroke terminates in a T- or
Y-junction and the other does not, the distance takes the maximum
value of 1. We then group strokes using single-linkage agglomera-
tive clustering and determine clusters based on a user-configurable
threshold. While the distance is computed offline, the clustering
procedure is interactive, and users can adjust the threshold to their
preference. We then replace each stroke area in a cluster with an
artistic rendering based on the shape, generating stylizations that
apply uniformly across an entire font (Figs. 1i and 28).

9.3 Implementation details
The core segmentation procedure is written in the Python pro-
gramming language, and includes the QHull library [Barber and
Huhdanpaa 1995] to efficiently compute 2D Voronoi diagrams used
for medial axes recovery. We executed our methods on a 2.7 GHz
Intel Core i7 processor with four cores. Outline analysis and segmen-
tation together take an average of 2 seconds per glyph; normally we
precompute these for an entire font, but they could also be computed
on demand and cached. The stylization procedures described in this
section are written in C++ using OpenGL for hardware-accelerated
rendering. They run in real-time and allow exploring different styl-
izations through an interactive user interface.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: January 2022.

StrokeStyles: Stroke-Based Segmentation and Stylization of Fonts • 17

10 CONCLUSION
In this paper we first presented concepts and algorithms to auto-
matically segment font glyphs into strokes, and then demonstrated
how such strokes can be used to generate in real time a variety of
stylizations of the input. We introduced along the way a number of
innovations, namely:

(1) Using Curvilinear Shape Features (CSFs) that describe convex
and concave outline regions.

(2) Links that connect concave CSFs across the body of a glyph
and describe potential stroke crossings.

(3) A set of seven junction types—half-, T-, Y-, L-, stroke end, pro-
tuberance, and null—that characterizeM𝐼 sub-structures and
determine semantic stroke attributes useful to drive structurally-
aware stylizations of a glyph.

(4) A novel application of association fields [Ernst et al. 2012] to
the problem of stroke segmentation of glyphs.

Our system, StrokeStyles, solves a long-standing inverse problem
of segmenting 2D font glyphs [Wang 2013, §4]. The strokes we
can recover are based on spines and profile functions and enable a
variety of stylization methods including skeletal strokes [Hsu et al.
1993], animation, calligraphy, and graffiti.
This paper did not compare our stylizations with the ones produced
by existing methods because our objective of producing stylization
based upon the glyph structure is novel. Our real-time stylization
framework provides a “sandbox” in which a user/designer can ex-
plore many different stylization options, ranging from readable
stylisations to highly abstract renditions that still evoke the original
font structure. This applies especially to the calligraphic and graffiti
stylisations, which can operate in a domain where aesthetics take
priority over readability [Craveiro 2017].
Stroke segmentation can also be useful in related applications like
automatic font hinting [Shamir 2003], segmenting characters in
historical documents [Lamiroy et al. 2015], painterly applications
of robotic [Deussen et al. 2012], stylization methods that require
taking glyph structure into account [Zou et al. 2016], animated
reconstructions of arbitrary glyphs [Gingold et al. 2008] and pro-
ducing training data for sequence-based generative models [Ha and
Eck 2018; Kotani et al. 2020].
Data-driven approaches based on deep-learning typically rely on a
large body of human-labelled training data. We instead demonstrate
a solution that relies on experimentally-validated principles of visual
perception and computational geometry concepts. The advantage of
our approach is that it is adaptable to fonts for which training data
might be scarce or non-existent and to glyphs that do not match
the training data. Our solution requires tuning a few parameters,
but these have intuitive visual and perceptual interpretations and
can be adjusted by the user for the required use case.In Section 9.1
for example, we have adjusted the system parameters to increase
segmentation accuracy for Han characters. Such parameter changes
could also be determined depending on information encoded as font
metadata.
In future research, we plan to explore how data-driven solutions
could be combined with our approach. For example, we could use
data to incorporate language-specific domain knowledge. More
specifically, we could add a data-driven term to Eq. 11 to help identify

junctions while still using the geometric and perceptual factors that
we have defined. In our experiments we also have considered using
measures such as stroke-radius variation or quality of fit to concave
glyph areas.We finally selected themeasures described in Section 7.3
as a sufficient minimum to produce plausible stroke segmentation
for the glyphs we tested.

REFERENCES
Ery Arias-Castro, Gilad Lerman, and Teng Zhang. 2017. Spectral Clustering Based on

Local PCA. Journal of Machine Learning Research 18 (2017), 1–57.
Anssi Arte. 2015. Forms of Rockin’: Graffiti Letters and Popular Culture. Dokument

Press.
Jonas August, Kaleem Siddiqi, and Steven W. Zucker. 1999. Ligature Instabilities in the

Perceptual Organization of Shape. Computer Vision and Image Understanding 76, 3
(1999), 231–243. https://doi.org/10.1006/cviu.1999.0802

Samaneh Azadi, Matthew Fisher, Vladimir G Kim, Zhaowen Wang, Eli Shechtman,
and Trevor Darrell. 2018. Multi-Content GAN for Few-Shot Font Style Transfer.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
7564–7573. https://doi.org/10.1109/CVPR.2018.00789

Alex Bailey. 2001. Class-dependent features and multicategory classification. Ph. D.
Dissertation. Southampton Univ. (United Kingdom).

Elena Balashova, Amit H. Bermano, Vladimir G. Kim, Stephen DiVerdi, Aaron Hertz-
mann, and Thomas Funkhouser. 2019. Learning a Stroke-Based Representation for
Fonts. Computer Graphics Forum 38, 1 (2019), 429–442. https://doi.org/10.1111/cgf.
13540

Brad Barber and H Huhdanpaa. 1995. QHull. The Geometry Center, University of
Minnesota, http://www. geom. umn. edu/software/qhull (1995).

Alexander Belyaev and Shin Yoshizawa. 2001. On Evolute Cusps and Skeleton Bifurca-
tions. In International Conference on Shape Modeling and Applications. IEEE, 134–140.
https://doi.org/10.1109/SMA.2001.923384

Daniel Berio, Paul Asente, Jose Echevarria, and Frederic Fol Leymarie. 2019. Sketching
and Layering Graffiti Primitives. In 8th ACM/Eurographics Expressive Symposium
on Computational Aesthetics and Sketch Based Interfaces and Modeling and Non-
Photorealistic Animation and Rendering. 51–59. https://doi.org/10.2312/exp.20191076

Daniel Berio, Sylvain Calinon, and Frederic Fol Leymarie. 2017. Dynamic Graffiti
Stylisation with Stochastic Optimal Control. In Proceedings of the 4th International
Conference on Movement Computing. Association for Computing Machinery. https:
//doi.org/10.1145/3077981.3078044 Article no. 18.

Daniel Berio, Frederic Fol Leymarie, and Réjean Plamondon. 2018. Expressive Curve
Editing with the Sigma Lognormal Model. In Proceedings of the 39th Annual Eu-
ropean Association for Computer Graphics Conference: Short Papers. Eurographics
Association, 33–36.

Daniel Berio, Frederic Fol Leymarie, and Réjean Plamondon. 2020. Kinematics Re-
construction of Static Calligraphic Traces from Curvilinear Shape Features. In
The Lognormality Principle and its Applications in e-Security, e-Learning and e-
Health, Réjean Plamondon, Angelo Marcelli, and Miguel Ángel Ferrer (Eds.). Series
in Machine Perception and Artificial Intelligence, Vol. 88. Chapter 11, 237–268.
https://doi.org/10.1142/9789811226830_0011

Harry Blum. 1973. Biological Shape and Visual Science (Part I). Journal of Theoretical
Biology 38, 2 (1973), 205–287. https://doi.org/10.1016/0022-5193(73)90175-6

Joseph L Brooks. 2015. Traditional and New Principles of Perceptual Grouping. (2015),
57–87.

Neill DF Campbell and Jan Kautz. 2014. Learning a Manifold of Fonts. ACM Transactions
on Graphics (TOG) 33, 4 (2014). https://doi.org/10.1145/2601097.2601212 Article no.
91.

Xudong Chen, Zhouhui Lian, Yingmin Tang, and Jianguo Xiao. 2017. An Automatic
Stroke Extraction Method Using Manifold Learning. In Proceedings of the European
Association for Computer Graphics: Short Papers (EG ’17). Eurographics Association,
65–68.

Charles H Cox, Philippe Coueignoux, Barry Blesser, and Murray Eden. 1982. Skeletons:
A Link Between Theoretical and Physical Letter Descriptions. Pattern Recognition
15, 1 (1982), 11–22. https://doi.org/10.1016/0031-3203(82)90056-5

Rodrigo Pena Carvalho Dos Anjos Craveiro. 2017. The Influence of Graffiti Writing
in Contemporary Typography. SAUC — Street Art and Urban Creativity Scientific
Journal 3, 2 (2017), 65–83. https://doi.org/10.25765/sauc.v3i2.82

Joeri De Winter and Johan Wagemans. 2006. Segmentation of Object Outlines Into
Parts: A Large-Scale Integrative Study. Cognition 99, 3 (2006), 275–325. https:
//doi.org/10.1016/j.cognition.2005.03.004

Oliver Deussen, Thomas Lindemeier, Sören Pirk, and Mark Tautzenberger. 2012.
Feedback-Guided Stroke Placement for a Painting Machine. In 8th Annual Sympo-
sium on Computational Aesthetics in Graphics, Visualization, and Imaging. 25–33.

Shay Deutsch and GérardMedioni. 2017. Learning the Geometric Structure of Manifolds
with Singularities Using the Tensor Voting Graph. Journal of Mathematical Imaging

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: January 2022.

18 • Daniel Berio, Frederic Fol Leymarie, Paul Asente, and Jose Echevarria

and Vision 57, 3 (2017), 402–422. https://doi.org/10.1007/s10851-016-0684-2
Michel Marie Deza and Elena Deza. 2013. Encyclopedia of Distances. Springer. https:

//doi.org/10.1007/978-3-642-30958-8 Updated and revised second edition.
Tim Dwyer, Nathan Hurst, and Damian Merrick. 2008. A Fast and Simple Heuristic for

Metro Map Path Simplification. In International Symposium on Visual Computing.
Springer, 22–30. https://doi.org/10.1007/978-3-540-89646-3_3

Udo A. Ernst, Sunita Mandon, Nadja Schinkel–Bielefeld, Simon D. Neitzel, Andreas K.
Kreiter, and Klaus R. Pawelzik. 2012. Optimality of Human Contour Integration.
PLOS Computational Biology 8, 5 (2012), 1–17. https://doi.org/10.1371/journal.pcbi.
1002520

Andreas Fabri and Sylvain Pion. 2009. CGAL: The Computational Geometry Algorithms
Library. In Proceedings of the 17th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems (GIS ’09). 538––539. https://doi.org/10.
1145/1653771.1653865

Alexandre Faure, Lilian Buzer, and Fabien Feschet. 2009. Tangential cover for thick
digital curves. Pattern Recognition 42, 10 (2009), 2279–2287. https://doi.org/10.1016/
j.patcog.2008.11.009

Jean-Dominique Favreau, Florent Lafarge, and Adrien Bousseau. 2016. Fidelity vs.
Simplicity: A Global Approach to Line Drawing Vectorization. ACM Transactions
on Graphics (TOG) 35, 4 (2016). https://doi.org/10.1145/2897824.2925946 Article no.
120.

Vicky Froyen, Jacob Feldman, and Manish Singh. 2015. Bayesian Hierarchical Grouping:
Perceptual Grouping as Mixture Estimation. Psychological Review 122, 4 (2015),
575–597. https://doi.org/10.1037/a0039540

Hongbo Fu, Shizhe Zhou, Ligang Liu, and Niloy J Mitra. 2011. Animated Construction
of Line Drawings. In ACM Transactions on Graphics (TOG), Vol. 30. 1–10. https:
//doi.org/10.1145/2070781.2024167

Mikel Galar, Alberto Fernández, Edurne Barrenechea, Humberto Bustince, and Francisco
Herrera. 2011. An overview of ensemble methods for binary classifiers in multi-
class problems: Experimental study on one-vs-one and one-vs-all schemes. Pattern
Recognition 44, 8 (2011), 1761–1776. https://doi.org/10.1016/j.patcog.2011.01.017

Étienne Ghys, Sergei Tabachnikov, and Vladlen Timorin. 2013. Osculating Curves:
Around the Tait-Kneser Theorem. The Mathematical Intelligencer 35, 1 (2013), 61–66.
https://doi.org/10.1007/s00283-012-9336-6

Peter J. Giblin and Benjamin B. Kimia. 2003. On the Local Form and Transitions of
Symmetry Sets, Medial Axes, and Shocks. International Journal of Computer Vision
54, 1 (Aug 2003), 143–157. https://doi.org/10.1109/ICCV.1999.791246

Yotam Gingold, David Salesin, and Denis Zorin. 2008. Stroke-by-Stroke Glyph Animation.
Technical Report. Creativity and Graphics Lab (CraGL) at George Mason University,
Fairfax, Virginia, USA. https://cragl.cs.gmu.edu/fontanim/.

AndrewGoldberg, Xiaojin Zhu, Aarti Singh, Zhiting Xu, and Robert Nowak. 2009. Multi-
Manifold Semi-Supervised Learning. In 12th International Conference on Artificial
Intelligence and Statistics. 169–176. http://proceedings.mlr.press/v5/goldberg09a.
html

David Ha and Douglas Eck. 2018. A Neural Representation of Sketch Draw-
ings. In Sixth International Conference on Learning Representations (ICLR).
https://arxiv.org/abs/1704.03477.

Tom SF Haines, Oisin Mac Aodha, and Gabriel J Brostow. 2016. My Text in Your
Handwriting. ACM Transactions on Graphics (TOG) 35, 3 (2016). https://doi.org/10.
1145/2886099 Article no. 26.

Katherine A Heller and Zoubin Ghahramani. 2005. Bayesian Hierarchical Clustering.
In 22nd International Conference on Machine learning (ICML). ACM, 297–304. https:
//doi.org/10.1145/1102351.1102389

Jacky Herz, Roger D Hersch, and Jakob Gonczarowski. 1997. Coherent Processing of
Character Skeletal Forms. Computers and Graphics 21, 6 (1997), 727–736. https:
//doi.org/10.1016/S0097-8493(97)00050-2

Donald D Hoffman and Whitman A Richards. 1984. Parts of Recognition. Cognition 18,
1-3 (1984), 65–96. https://doi.org/10.1016/0010-0277(84)90022-2

Donald D Hoffman and Manish Singh. 1997. Salience of Visual Parts. Cognition 63, 1
(1997), 29–78. https://doi.org/10.1016/S0010-0277(96)00791-3

Douglas R Hofstadter. 1982. Variations on a Theme as the Essence of Imagination.
Scientific American 247, 4 (1982), 14–21.

Siu Chi Hsu and Irene H. H. Lee. 1994. Drawing and Animation Using Skeletal Strokes.
21st Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH)
(1994), 109–118. https://doi.org/10.1145/192161.192186

S. C. Hsu, I. H. H. Lee, and N. E. Wiseman. 1993. Skeletal Strokes. In Proceedings of
the 6th Annual ACM Symposium on User Interface Software and Technology (Atlanta,
Georgia, USA) (UIST ’93). 197–206. https://doi.org/10.1145/168642.168662

Changyuan Hu and Roger D Hersch. 2001. Parameterizable Fonts Based on Shape
Components. IEEE Computer Graphics and Applications 21, 3 (2001), 70–85. https:
//doi.org/10.1109/38.920629

Elena J. Jakubiak, Ronald N. Perry, and Sarah F. Frisken. 2006. An Improved Rep-
resentation for Stroke-Based Fonts. In ACM SIGGRAPH 2006 Sketches. https:
//doi.org/10.1145/1179849.1180020

Tingting Jiang, Zhongqian Dong, Chang Ma, and Yizhou Wang. 2013. Toward
Perception-Based Shape Decomposition. In Computer Vision – ACCV 2012. Lec-
ture Notes in Computer Science, Vol. LNCS 7725. Springer, 188–201. https:
//doi.org/10.1007/978-3-642-37444-9_15

Mark Kachanov, Boris Shafiro, and Igor Tsukrov. 2003. Handbook of Elasticity Solutions.
Springer Netherlands. https://doi.org/10.1007/978-94-017-0169-3

Peter Karow. 1994. Digital Typefaces: Description and Formats. Springer. https:
//doi.org/10.1007/978-3-642-78105-6

Byungsoo Kim, Oliver Wang, A Cengiz Öztireli, and Markus Gross. 2018. Semantic
Segmentation for Line Drawing Vectorization Using Neural Networks. Computer
Graphics Forum 37, 2 (2018), 329–338. https://doi.org/10.1111/cgf.13365

Shaunak Kishore. 2018. Make Me a Hanzi Dataset. https://github.com/skishore/
makemeahanzi. www.skishore.me/makemeahanzi/

Donald E. Knuth. 1979. Mathematical Typography. Bull. Amer. Math. Soc. 1, 2 (1979),
337–373. https://doi.org/10.1090/S0273-0979-1979-14598-1

Atsunobu Kotani, Stefanie Tellex, and James Tompkin. 2020. Generating Handwrit-
ing via Decoupled Style Descriptors. In Proceedings of the European Conference on
Computer Vision (ECCV). 764–780.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. 2015. Human-Level
Concept Learning Through Probabilistic Program Induction. Science 350, 6266 (2015),
1332–1338. https://doi.org/10.1126/science.aab3050

Bart Lamiroy, Thomas Bouville, Julien Blégean, Hongliu Cao, Salah Ghamizi, Romain
Houpin, and Matthias Lloyd. 2015. Re-typograph Phase I: A Proof-of-Concept for
Typeface Parameter Extraction from Historical Documents. In Document Recognition
and Retrieval XXII, Eric K. Ringger and Bart Lamiroy (Eds.), Vol. 9402. International
Society for Optics and Photonics, SPIE, 80–91.

Longin Jan Latecki and Rolf Lakämper. 1998. Discrete Approach to Curve Evolution. In
Mustererkennung 1998. Springer, 85–92. https://doi.org/10.1007/978-3-642-72282-
0_7

R.L. Levien. 2009. From Spiral to Spline: Optimal Techniques in Interactive Curve Design.
Ph. D. Dissertation. EECS Department, University of California, Berkeley. PhD
thesis, EECS Department, University of California, Berkeley.

Michael Leyton. 1987. Symmetry-Curvature Duality. Computer Vision, Graphics, and
Image Processing 38, 3 (1987), 327–341. https://doi.org/10.1016/0734-189X(86)90087-
3

Michael Leyton. 1988. A process-grammar for shape. Artificial Intelligence 34, 2 (March
1988), 213–247. https://doi.org/10.1016/0004-3702(88)90039-2

Lei Luo, Chunhua Shen, Xinwang Liu, and Chunyuan Zhang. 2015. A Computational
Model of the Short-Cut Rule for 2D Shape Decomposition. IEEE Transactions on
Image Processing 24, 1 (2015), 273–283. https://doi.org/10.1109/TIP.2014.2376188

Diego Macrini, Sven Dickinson, David Fleet, and Kaleem Siddiqi. 2011. Bone Graphs:
Medial Shape Parsing and Abstraction. Computer Vision and Image Understanding
115, 7 (July 2011), 1044–1061. https://doi.org/10.1016/j.cviu.2010.12.011

Diego Macrini, Kaleem Siddiqi, and Sven Dickinson. 2008. From Skeletons To Bone
Graphs: Medial Abstraction for Object Recognition. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/CVPR.2008.4587790

Xiaofeng Mi and Doug DeCarlo. 2007. Separating Parts From 2D Shapes Using
Relatability. In IEEE 11th International Conference on Computer Vision (ICCV).
https://doi.org/10.1109/ICCV.2007.4409014

Martin Nöllenburg. 2014. A Survey on Automated Metro Map Lay-
out Methods. https://i11www.iti.kit.edu/extra/publications/n-asamm-
14.pdf. In 1st Schematic Mapping Workshop. University of Essex, UK.
https://sites.google.com/site/schematicmapping/home.

Gerrit Noordzij. 2005. The Stroke — theory of writing. Hyphen Press. Translated from
the Dutch original of 1985 by Peter Enneson.

Robert L Ogniewicz and Markus Ilg. 1992. Voronoi Skeletons: Theory and Applications.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 63–69. https:
//doi.org/10.1109/CVPR.1992.223226

Nikos Papanelopoulos, Yannis Avrithis, and Stefanos Kollias. 2019. Revisiting theMedial
Axis for Planar Shape Decomposition. Computer Vision and Image Understanding
179 (2019), 66–78. https://doi.org/10.1016/j.cviu.2018.10.007

Pierre Parent and Steven W. Zucker. 1989. Trace Inference, Curvature Consistency, and
Curve Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 11,
8 (1989), 823–839. https://doi.org/10.1109/34.31445

Huy Quoc Phan, Hongbo Fu, and Antoni B Chan. 2015. Flexyfont: Learning Transferring
Rules for Flexible Typeface Synthesis. In Computer Graphics Forum, Vol. 34. 245–256.
https://doi.org/10.1111/cgf.12763

R. Plamondon and S. N. Srihari. 2000. Online and off-line handwriting recognition: a
comprehensive survey. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 22, 1 (2000), 63–84. https://doi.org/10.1109/34.824821

Franco P. Preparata and Michael Ian Shamos. 1985. Intersections. 266–322. https:
//doi.org/10.1007/978-1-4612-1098-6_7

Hock Soon Seah, Zhongke Wu, Feng Tian, Xian Xiao, and Boya Xie. 2005. Artistic
Brushstroke Representation and Animation with Disk B-Spline Curve. In ACM
SIGCHI International Conference on Advances in Computer Entertainment Technology.
88––93. https://doi.org/10.1145/1178477.1178489

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: January 2022.

StrokeStyles: Stroke-Based Segmentation and Stylization of Fonts • 19

Doron Shaked and Alfred M Bruckstein. 1998. Pruning Medial Axes. Computer Vision
and Image Understanding 69, 2 (1998), 156–169. https://doi.org/10.1006/cviu.1997.
0598

Ariel Shamir. 2003. Constraint-Based Approach for Automatic Hinting of Digital
Typefaces. ACM Transactions on Graphics (TOG) 22, 2 (2003), 131–151. https:
//doi.org/10.1145/636886.636887

Ariel Shamir and Ari Rappoport. 1996. Extraction of Typographic Elements From
Outline Representations of Fonts. Computer Graphics Forum 15, 3 (1996), 259–268.
https://doi.org/10.1111/1467-8659.1530259

Kaleem Siddiqi and Benjamin B Kimia. 1995. Parts of Visual Form: Computational
Aspects. IEEE Transactions on Pattern Analysis and Machine Intelligence 17, 3 (1995),
239–251. https://doi.org/10.1109/34.368189

Manish Singh and Donald D Hoffman. 2001. Part-Based Representations of Visual
Shape and Implications for Visual Cognition. In Advances in Psychology. Vol. 130.
401–459. https://doi.org/10.1016/S0166-4115(01)80033-9

Manish Singh, Gregory D Seyranian, and Donald D Hoffman. 1999. Parsing Silhouettes:
The Short-Cut Rule. Perception and Psychophysics 61, 4 (1999), 636–660. https:
//doi.org/10.3758/BF03205536

Patrick Spröte, Filipp Schmidt, and Roland W Fleming. 2016. Visual Perception of
Shape Altered by Inferred Causal History. Scientific Reports 6, 36245 (2016). https:
//doi.org/10.1038/srep36245

Yuandong Sun, Huihuan Qian, and Yangsheng Xu. 2014. A Geometric Approach to
Stroke Extraction for the Chinese Calligraphy Robot. In IEEE International Conference
on Robotics and Automation (ICRA). 3207–3212. https://doi.org/10.1109/ICRA.2014.
6907320

Rapee Suveeranont and Takeo Igarashi. 2010. Example-Based Automatic Font Genera-
tion. In Smart Graphics. Number LNCS 6133 in Lecture Notes in Computer Science.
127–138. https://doi.org/10.1007/978-3-642-13544-6_12

Fan Tang, Weiming Dong, Yiping Meng, Xing Mei, Feiyue Huang, Xiaopeng Zhang,
and Oliver Deussen. 2017. Animated Construction of Chinese Brush Paintings.
IEEE Transactions on Visualization and Computer Graphics 24, 12 (2017), 3019–3031.
https://doi.org/10.1109/TVCG.2017.2774292

S P Timoshenko and J N Goodier. 1951. Theory of Elasticity. McGraw-Hill. https:
//books.google.co.uk/books?id=11ISAAAAIAAJ

Johan Wagemans. 2018. Perceptual Organization. In Stevens’ Handbook of Experimental
Psychology and Cognitive Neuroscience, Sensation, Perception, and Attention. Vol. 2.
Chapter 18, 803–872. https://doi.org/10.1002/9781119170174.epcn218 4th Edition.

Johan Wagemans, Andrea J van Doorn, and Jan J Koenderink. 2011. Measuring 3D
Point Configurations in Pictorial Space. i-Perception 2, 1 (2011), 77–111. https:
//doi.org/10.1068/i0420

JueWang, ChenyuWu, Ying-Qing Xu, Heung-Yeung Shum, and Liang Ji. 2002. Learning-
Based Cursive Handwriting Synthesis. In Eighth IEEE International Workshop on
Frontiers in Handwriting Recognition. 157–162. https://doi.org/10.1109/IWFHR.2002.
1030902

Yue Wang. 2013. Interview with Charles Bigelow. TUGboat 34, 2 (2013), 136–167.
Carl-Fredrik Westin, Stephan E Maier, Hatsuho Mamata, Arya Nabavi, Ferenc A Jolesz,

and Ron Kikinis. 2002. Processing and Visualization for Diffusion Tensor MRI.
Medical Image Analysis 6, 2 (2002), 93–108. https://doi.org/10.1016/S1361-8415(02)
00053-1

Lance Williams and Karvel K Thornber. 2001. Orientation, Scale, and Discontinuity
as Emergent Properties of Illusory Contour Shape. Neural Computation 13, 8 (Aug
2001), 1683–1711. https://doi.org/10.1162/08997660152469305

Songhua Xu, Hao Jiang, Francis CM Lau, and Yunhe Pan. 2012. Computationally
Evaluating and Reproducing the Beauty of Chinese Calligraphy. IEEE Intelligent
Systems 3 (2012), 63–72. https://doi.org/10.1109/MIS.2012.46

Yaoda Xu and Manish Singh. 2002. Early Computation of Part Structure: Evidence
From Visual Search. Perception and Psychophysics 64, 7 (2002), 1039–1054. https:
//doi.org/10.3758/BF03194755

Shih Cheng Yen and Leif H. Finkel. 1998. Extraction of Perceptually Salient Contours
by Striate Cortical Networks. Vision Research 38, 5 (1998), 719–741. https://doi.org/
10.1016/S0042-6989(97)00197-1

Junsong Zhang, Yu Wang, Weiyi Xiao, and Zhenshan Luo. 2017. Synthesizing Or-
namental Typefaces. Computer Graphics Forum 36, 1 (2017), 64–75. https:
//doi.org/10.1111/cgf.12785

Zhiyuan Zhao and Alan Saalfeld. 1997. Linear-time sleeve-fitting polyline sim-
plification algorithms. In Proceedings of the 13th AutoCarto symposium, Vol. 13.
https://cartogis.org, 214–223.

Changqing Zou, Junjie Cao, Warunika Ranaweera, Ibraheem Alhashim, Ping Tan, Alla
Sheffer, and Hao Zhang. 2016. Legible Compact Calligrams. ACM Transactions on
Graphics (TOG) 35, 4, Article 122 (2016), 12 pages. https://doi.org/10.1145/2897824.
2925887 Article no. 122.

A CSF COMPUTATIONS
When searching for additional CSFs (§4.2.1), we need to avoid false
positives, particularly those associated with outline segments that

approximate spirals. A spiral is a curve segment with monotonically-
varying curvature. Such a curve does not have any curvature ex-
trema between its ends [Leyton 1987] and thus should not produce
an additional CSF. This can be further characterized by the Tait-
Kneser theorem [Ghys et al. 2013], which states that all osculating
circles of a spiral segmentwith strictly positive or negative curvature
are disjoint and nested. However, because CSF analysis operates on
a sampled curve, looking for additional CSFs for an outline segment
that closely resembles a spiral is likely to produce many additional
terminal branches and spurious CSFs (Fig. 29a,b). To avoid such false
positives, we compute the degree of overlap 𝛿𝐶 ∈ [0, 1] between any
two discs as the area of their intersection divided by the area of
the smaller disk. We then discard any new terminal disk if there
is a pre-existing CSF with a smaller disk radius and for which the
degree of overlap is greater than a user-defined threshold, which
we empirically set to 0.98 (Fig. 29c).
Once we have identified the CSFs for a given outline, we compute
a pair of tangents for each concave CSF (§4.2.2). To evaluate the
tangents, we compute a tangent cover along each support segment,
fromwhich we keep the first tangents next to the ends of the contact
region. We use “sleeve fitting” [Zhao and Saalfeld 1997] for this
purpose. The more recent “alpha thick segments” technique [Faure
et al. 2009] could also be used.

B ASSOCIATION FIELDS
Our association fields are adapted from Ernst et al. [2012]. Themodel
predicts the conditional link probability of one oriented element
relative to another. The link probability 𝛼 is given by the product
𝐴𝜙𝐴𝑑 of an angular and a radial component. The angular component
parameterizes deviations from perfect cocircularity and deviations
from zero curvature with the product of two vonMises distributions,
analogs of Gaussian distributions with a circular support. Given two
orientations 𝜙𝑖 , 𝜙 𝑗 and planar positions (𝑥𝑖 , 𝑦𝑖), (𝑥 𝑗 , 𝑦 𝑗) the angular
component simplifies to:

𝐴𝜙 =
𝐶

4
cosh ©« 1

𝜎2
𝛽

cos (𝛽/2) + 1
𝜎2
𝜃

cos (𝜃 − 𝛽/2)ª®¬ , (15)

with 𝛽 = 𝜙 𝑗 −𝜙 𝑗 , 𝜃 = tan−1
((
𝑦 𝑗 − 𝑦𝑖

)
/
(
𝑥 𝑗 − 𝑥𝑖

))
−𝜙𝑖 , and 𝜎𝜃 = 0.27

and 𝜎𝛽 = 0.47 the spread parameters for cocircularity and curva-
ture.3 We use the spread parameter values that were experimentally

3This equation corrects a typographic error in the original paper

(a) (b) (c)

Fig. 29. Overlapping disks along a spiral segment. (a) the segment in red
between the contact regions of the two CSFs is a spiral. However its local
medial axis has two branches producing two terminal disks, shown in gray.
(b) Without filtering, the left disk produces an additional CSF, since it is
slightly more salient than the other disk. (c)However, the disk fully encloses
the previously identified one so it is discarded. This results in the spiral
segment not producing any new CSF.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: January 2022.

20 • Daniel Berio, Frederic Fol Leymarie, Paul Asente, and Jose Echevarria

(a) (b) (c)

(d) (e) (f)

Fig. 30. Structural adjustment steps for a stylized letter “A”. (a) Unstylized
stroke spines after segmentation. (b) Schematization can corrupt topological
relations among strokes. (c)We reestablish these by shifting strokes that
are covered by a single T-junction or branching Y-junction. Note that the
triangular part of the “A” is covered by two T-junctions, so it is not adjusted.
(d) A second adjustment step reconnects all stroke endpoints. (e) Using the
schematized stroke as a control polygon for a smoothing method can also
corrupt the incidence relations among strokes. (f) A last adjustment step
moves the non-smoothed polygon endpoints (the middle section of the "A")
so they terminate at the intersection with the smoothed strokes.

found to be optimal by Ernst et al. [2012]. The constant 𝐶 is a nor-
malization factor derived from the von Mises distribution, with:

𝐶 = 𝜋2𝐼0
(
1/𝜎2𝑎

)
𝐼0

(
1/𝜎2

𝑏

)
, (16)

where 𝐼0 is the modified-Bessel function of the first kind with order
0. We also divide 𝐴𝜙 by 0.602, so it falls in the [0, 1] range, which
facilitates parameter setting in our application-driven use case.
For the task of grouping closely-spaced oriented elements, Ernst
et al. [2012] express the radial component as an exponential function
that decays with distance. Again, we opt for a formulation that
facilitates parameter tuning and express the component with a
Gaussian decay:

𝐴𝑑 = exp
(
𝑑2/

(
2𝜎2

𝑑

))
, (17)

with 𝑑 the distance between the two positions and 𝜎𝑑 a distance-
spread.We set 𝜎𝑑 to twice the maximumM𝐼

+ radius when computing
good continuation for links (Section 7.2), and to the distance be-
tween the tangent origins when computing tangent origins during
Y-junction interpretation (Section 7.3.2).

C STRUCTURAL ADJUSTMENTS
The schematization and smoothing procedures discussed in Section
9.2 modify stroke geometry, which can corrupt the structural rela-
tions between strokes. However, junctions provide the necessary
information for rectifying these relations.

Schematization adjustment. Schematization [Dwyer et al. 2008] is
applied to each stroke separately. This can corrupt the topology
of stylized glyph, making it difficult to apply intersection-based
adjustments to the stroke endpoints. While a correct topology could
be imposed with constraint solving algorithms [Nöllenburg 2014],
we observe that this issue mostly affects strokes such as the lower-
left serif in Fig. 30b, which has another stroke ending within it.
This configuration can be detected by counting the number of T-
junctions and branching Y-junctions along a stroke. If, for a given
stroke, only one such junction exists, we translate the stroke by
𝒑′ − 𝒑, where 𝒑 is the original endpoint of the incident stroke and
𝒑′ is the endpoint after schematization (Fig. 30c). After executing

this procedure, we can shift the stroke endpoints to the closest
intersection of the end-tangents with the opposite stroke (Fig. 30d).

Smoothed stroke adjustment. Smoothing also can corrupt the adja-
cency relations between strokes. This is especially likely to occur
when using a simplified or schematized spine as an input for a
stylized smoothing method such as the one by Berio et al. [2017]
(Fig. 30e). To adjust these configurations, we perform a first smooth-
ing pass on each stroke. We then adjust the end-vertices of the
spines used as an input to the smoothing methods, so that the non-
smoothed spines are incident to the smoothed ones (Fig. 30f).

D LIST OF SYMBOLS

Main symbols
𝒙 Outline point – §4.1
𝑓 Fork (degree-3 medial axis vertex) – §4.1
𝒕 Tangent – §4.2.2
𝒏 Inward normal at CSF – §4.2.2
𝒙𝑐 CSF extremum – §4.2
𝒚 Medial axis point – §4.1
𝝋𝑖 𝑗 Flow of a link for the concavity pair (𝑐𝑖 , 𝑐 𝑗) – §5.1
𝝅 Protruding direction of a branch – §5.1
𝑝 Scalar product of 𝝋𝑖 𝑗 and 𝝅– §5.1
𝐹 A set of forks – §6
𝑟 Disk radius of medial axis vertex – §4.4.1
𝒚𝑓 Fork’s position – §7.3.3
𝑟𝑓 Fork disk radius – §7.3.3
𝑑𝑓 , 𝑑𝑒 Radius-weighted distances – §4.4.1
𝑠𝑓max Max geodesic length from a fork alongM𝐼 – §4.4.1
𝜎𝑑 Spread parameter for𝜓 – §5.3 & §B
𝑏 Medial axis branch – §4.1
𝑐 CSF – §4.2
𝜂 Link – §5
𝐶 A set of concave CSFs – §5.1
𝛾 Junction – §6
𝐻 A set of valid links (also 𝐻𝑓) – §7
𝐽𝑓 Set of candidate junctions of a fork – §7.3.5
𝐵 A set of branches – §7.3.7

Objects/Structures
M𝐼 Interior medial axis – §4.1
M𝐸 Exterior medial axis – §4.1
S Stroke graph – §6.2
H Graph of valid links and concavities - §7
Q Planar map used to construct stroke areas – §8.2

Saliency/significance measures
𝛽 (𝑏, 𝑓) Salience of branch 𝑏 protruding from fork 𝑓 – §4.1.2
𝜔 (𝜂) Link salience – §5.2
𝜓 Good continuation – §5.2, §5.3 & §B
Λ Junction evaluation measure – §7.3
𝑤 (𝑐, 𝑓) Significance of a concavity with respect to a fork 𝑓 – §7.3.3
ΛI Measure of coverage – §7.3 & §7.3.1
Λ𝜓 Measure of smoothness – §7.3 & §7.3.2
Λ𝑤 Measure of concavity significance – §7.3 & §7.3.3
Λ𝜂 Measure of link salience – §7.3

Thresholds and Tolerances
𝜏𝛽 Branch saliency threshold – §4.1.2
𝛽min Branch saliency lower bound – §7.3.5
𝜆L Maximum concavity radius multiplier for L-junctions – §7.3.5
𝑟ℎ Maximum CSF radius, divided by glyph height – §4.2.1

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: January 2022.

	Abstract
	1 Introduction
	1.1 Motivation

	2 Related Work
	3 Overview
	4 Shape Analysis: Outline & Axial Features
	4.1 Medial Axes
	4.2 Curvilinear Shape Features (CSFs)
	4.3 CSF-based Ligatures
	4.4 Mapping Concavities to Forks via Sectors

	5 Pairing Concavities with Links
	5.1 Assigning Branches and Forks to Links
	5.2 Link salience
	5.3 Good continuation () for links

	6 Junctions
	6.1 Junction types
	6.2 From junctions to strokes

	7 Junction identification
	7.1 Step 1: Identify protuberances
	7.2 Step 2: Identify half-junctions
	7.3 Step 3: Identify other junctions
	7.4 Step 4: Convert T-junction pairs to half-junctions

	8 Stroke Reconstruction
	8.1 Strokes
	8.2 Stroke areas

	9 Results and discussion
	9.1 Segmentation quality
	9.2 Stylization and animation
	9.3 Implementation details

	10 Conclusion
	References
	A CSF Computations
	B Association fields
	C Structural adjustments
	D List of symbols

