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Abstract

Given a string T of length n over an alphabet ¥ C {1,2,... ,no(l)} of size o, we are to preprocess T' so that
given a range [, j], we can return a representation of a shortest string over X that is absent in the fragment
T[i]---T[j] of T. We present an O(n)-space data structure that answers such queries in constant time and
can be constructed in O(nlog, n) time.
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1. Introduction

Range queries are a classic data structure topic [59, 12, [I1]. In 1d, a range query ¢ = f(A,4,j) on an array
of n elements over some set U, denoted by A[l..n], takes two indices 1 <14 < j < n, a function f defined
over arrays of elements of U, and outputs f(A[i..j]) = f(Ald],..., A[j]). Range query data structures in 1d
can thus be viewed as data structures answering queries on a string in the internal setting, where U is the
considered alphabet.

Asking internal queries on a string has received much attention in recent years. In the internal setting, we
are asked to preprocess a string 1" of length n over an alphabet ¥ of size o, so that queries about substrings
of T can be answered efficiently. Note that an arbitrary substring of T' can be encoded in O(1) words of space
by the indices i, j of its occurrence as a fragment T'[i]--- T[j] = T[i .. j] of T. Data structures for answering
internal queries are interesting in their own sake, but also have numerous applications in the design of
algorithms and (more sophisticated) data structures in stringology. Because of these numerous applications,
we usually place particular emphasis on the construction time—other than on space/query-time tradeoffs,
which is the main focus in the classic data structure literature.

In data structures on strings it is typically assumed that the input alphabet is integer and polynomially
bounded, i.e., it is a subset of {1,2,... 7no(l)} where n is the length of the input string 7. The most widely-
used internal query is that of asking for the longest common prefiz of two suffixes T[i..n] and T'[j..n] of
T. The classic data structure for this problem [45] consists of the suffix tree of T' [25] and a lowest common
ancestor data structure [37] over the suffix tree. It occupies O(n) space, it can be constructed in O(n) time,
and it answers queries in O(1) time. In the word RAM model of computation with word size ©(logn) bits
the construction time is not necessarily optimal when the input alphabet is {1,2,...,0} and the string is
packed into O(n/log, n) machine words. A sequence of works [57) [49] [I3] has culminated in the recent
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optimal data structure of Kempa and Kociumaka [40]: it occupies O(n/log, n) space, it can be constructed
in O(n/log, n) time, and it answers queries in O(1) time.

Another fundamental problem in this setting is the internal pattern matching (IPM) problem. It consists
in preprocessing T' so that we can efficiently compute the occurrences of a substring U of T in another
substring V' of T'. For the decision version of the IPM problem, Keller et al. [39] presented a data structure
of nearly-linear size supporting sublogarithmic-time queries. Kociumaka et al. [44] presented a data structure
of linear size supporting constant-time queries when the ratio between the lengths of V' and U is bounded
by a constant. The O(n)-time construction algorithm of the latter data structure was derandomised in [42].
In fact, Kociumaka et al. [44], using their efficient IPM queries as a subroutine, managed to show efficient
solutions for other internal problems, such as for computing the periods of a substring (period queries,
introduced in [43]), and for checking whether two substrings are rotations of one another (cyclic equivalence
queries). Other problems that have been studied in the internal setting include string alignment [58, [18],
approximate pattern matching [21I], dictionary matching [20, 19], longest common substring [4], counting
palindromes [55], range longest common prefix [3], 1, 46 [34], the computation of the lexicographically minimal
or maximal suffix, and minimal rotation [6, 4I], as well as of the lexicographically kth suffix [7]. We refer
the interested reader to the Ph.D dissertation of Kociumaka [42], for a nice exposition.

In this work, we extend this line of research by investigating the following basic internal query, which, to
the best of our knowledge, has not been studied previously. Given a string T of length n over an alphabet
¥ C {1,2,...,n9W}, preprocess T so that given a range [i,j], we can return a shortest string over %
that does not occur in TTi..j]. The latter shortest string is also known as a shortest absent word in the
literature. We work on the standard unit-cost word RAM model with machine word-size w = ©(logn) bits.
We measure the space used by our algorithms and data structures in machine words, unless stated otherwise.
We assume that we have random access to 7" and so our algorithms return a constant-space representation
of a shortest string (a witness) consisting of a substring of 7" and a letter. A naive solution for this problem
precomputes a table of size O(n?) that stores the answer for every possible query [i,j]. Our main result is
the following theorem.

Theorem 1. Given a string T of length n over an alphabet ¥ C {1,2,... ,no(l)} of size o, we can construct
in O(nlog, n) time a data structure of size O(n) that, for any given query [a,b], can compute in O(1) time
a shortest string over ¥ that does not occur in Tla..b].

In an earlier conference version of the present paper [8], we have obtained a weaker result: a data
structure of size O((n/k) -loglog, n) that can answer queries in O(loglog, k) time, where k is a user-defined
parameter from [1,loglog, n]. Here, we remove the parameter, thus improving the result.

In the related range shortest unique substring problem, defined by Abedin et al. [2], the task is to construct
a data structure over T' to be able to answer the following type of online queries efficiently. Given a range
[i, 7], return a shortest string with exactly one occurrence (starting position) in [z, j]. Abedin et al. presented
a data structure of size O(nlogn) supporting O(log,, n)-time queries, where w = O(logn) is the word size.
Additionally, Abedin et al. [2] presented a data structure of size O(n) supporting O(y/nlog® n)-time queries,
where € is an arbitrarily small positive constant.

Our Techniques. For clarity of exposition, in this overview, we skip the time-efficient construction algorithms
of our data structures and only describe how to compute the length of a shortest absent word (without a
witness) in T'[a..b]; note that this length is at most log, n. Let us also note that the length of a shortest
absent word of T' can be computed in O(n) time using the suffix tree of T [25]. It suffices to traverse the
suffix tree of T recording the shortest string-depth ¢, where an implicit or explicit node has less than o
outgoing edges.

First approach: We precompute, for each position i and for each length j € [1,log, n], the starting
position of the shortest suffix of T[1..i] that contains an occurrence of each of the o/ distinct words of
length j. Then, a query for the length of a shortest absent word of T[a..b] reduces to a predecessor
query among the starting positions we have precomputed for position b. By maintaining these O(log, n)
starting positions in a fusion tree [32], we obtain a data structure of size O(nlog, n) supporting queries in
O(log,, logn) = O(1) time.



Second approach: We precompute, for each length j € [1,log, n], all minimal fragments of T' that contain
an occurrence of each of the distinct ¢/ words of length j. As these fragments are inclusion-free, we can
encode them using two n-bit arrays storing their starting and ending positions in 7', respectively. We thus
require O(n) words of space in total over all js. Observe that T'[a..b] does not have an absent word of
length j if and only if it contains a minimal fragment for length j; we can check this condition in O(1) time
after augmenting the computed bit arrays with succinet rank and select data structures [38]. Finally, due
to monotonicity (if T[a..b] contains all strings of length j + 1 then T contains all strings of length j), we
can binary search for the answer in O(loglog, n) time.

Third approach: We optimize the first approach by utilizing succinct fusion trees to store the sets of
size O(log, n) associated with positions of T, thus reducing the space on top of the sets to O(nlog, logn).
Instead of storing the O(log, n)-size sets explicitly, we compute their elements on demand using O(log, n)
select data structures, each occupying O(n) bits. This leads to an O(nlog, logn)-space solution. In order
to optimize it further, we rely on the following combinatorial observation: if the length of a shortest absent
word of a string X over ¥ is A, we need to append Q(c?~! - \) letters to X in order to obtain a string
with a shortest absent word of length A + d. (For intuition, think of | X| as a constant; then, we essentially
need to append the de Bruijn sequence of order d over ¥ to X in order to achieve the desired result.) This
observation allows us to lower the memory consumption by truncating all succinct fusion trees at positions
i that are not multiples of loglogn, by storing only their first O(logn/loglogn) entries. The total space
thus reduces to O(n) words. A query for the length of a shortest absent word of T[a..b] is performed by
first checking whether the answer is at most log n/loglogn, which is done using the (truncated) fusion tree
stored at b, and, if not, a query on T'[a..b] is performed, where b’ is the closest multiple of loglogn after b.
It can be shown using the combinatorial observation that the answer for T[a..b] is within an O(1)-length
range of the answer for T'[a..b] and it is computed by the data structure from the second approach.

Other Related Work. Let us recall that a string S that does not occur in T is called absent from T, and
if all its proper substrings appear in T it is called a minimal absent word of T. It should be clear that
every shortest absent word is also a minimal absent word. Minimal absent words (MAWSs) are used in many
applications [56], 52| 28] [35] [14], [51], 24] and their theory is well developed [48], 27, 29], also from an algorithmic
and data structure point of view [47, 22| [0l 17, 16}, 5l B3, 10, 23]. For example, it is well known that, given
two strings X and Y, one has X =Y if and only if X and Y have the same set of MAWSs [48].

Paper Organization. Section [2| provides some preliminaries. The first approach is detailed in Section
and the second one in Section[4] Section [f] provides the combinatorial foundations for the third approach,
which is detailed in Section [6] The material of Sections [3H] essentially repeats the conference version of our
paper [§]; the main difference and novelty is in Section @

2. Preliminaries

An alphabet ¥ is a finite nonempty set whose elements are called letters. A string (or word) S = S[1..n]
is a sequence of length |S| = n over . The empty string ¢ is the string of length 0. The concatenation of
two strings S and T is the string composed of the letters of S followed by the letters of T'. It is denoted by
S - T or simply by ST. The set of all strings (including ¢) over ¥ is denoted by ¥*. The set of all strings
of length k > 0 over X is denoted by X*. For 1 < i < j < n, S[i] denotes the ith letter of S, and the
fragment S[i.. j] denotes an occurrence of the underlying substring P = S[i] - - - S[j]. We say that P occurs
at (starting) position ¢ in S. A string P is called absent from S if it does not occur in S. A substring S|i. . j]
is a suffix of S'if j =n and it is a prefix of S if 1 = 1.

The following proposition is straightforward (as explained in Section .

Proposition 1. Let T be a string of length n over an alphabet ¥ C {1,2,... ,no(l)}. A shortest absent
word of T' can be computed in O(n) time.

Given an array A of n items taken from a totally ordered set, the range minimum query RMQ4 (4, 1) =
argmin A[k] (with 1 < ¢ < k <r < n) returns the position of the minimal element in A[£..r]. The following
result is known.



Theorem 2 ([I1, BI]). Let A be an array of n integers. A data structure of size 2n + o(n) bits can be
constructed in O(n) time supporting RMQs on A in O(1) time without the need to store and access A itself.

We make use of rank and select data structures constructed over bit vectors. For a bit vector H we define
rank, (i, H) = |{k € [1,4] : H[k] = q}| and select,(i, H) = min{k € [1,n] : ranky(k, H) = i}, for ¢ € {0,1}.
The following result is known.

Theorem 3 ([38, 50]). Let H be a bit vector of n bits. A data structure of o(n) additional bits can be
constructed in O(n) time supporting rank and select queries on H in O(1) time.

The static predecessor problem consists in preprocessing a set Y of integers, over an ordered universe
U, so that, for any integer « € U one can efficiently return the predecessor pred(x) := max{y € Y : y < z}
of x in Y. The successor problem is defined analogously: upon a queried integer x € U, the successor
min{y € Y : y > z} of z in Y is to be returned. Willard and Fredman designed the fusion tree data
structure for this problem [32]. In the dynamic variant of the problem, updates to Y are interleaved with
predecessor and successor queries. Patragcu and Thorup [53] presented a dynamic version of fusion trees,
which, in particular, yields an efficient construction of this data structure.

Theorem 4 ([32, 53]). Let Y be a set of at most n w-bit integers. A data structure of size O(n) can be
constructed in O(nlog, n) time supporting insertions, deletions, and predecessor queries on'Y in O(log,, n)
time.

We also use a succinct version of the (static) fusion tree that utilizes only O(nlogw) bits on top of a
read-only array Y of length n (in contrast, the fusion tree from Theorem 4| uses O(nw) bits). In this data
structure there is no need to store the array Y explicitly, ¥ can be “emulated” by computing its elements
on demand in O(1) time.

Theorem 5 ([36, [15]). Let Y be a read-only array of at most n w-bit integers. A data structure of size
O(nlogw) bits can be constructed in O(nlog,, n) time supporting predecessor queries on the elements of
Y in O(log, n) time, provided a table computable in o(2¥) time and independent of the array has been
precomputed.

If [U| = O(n), then, after an O(n)-time preprocessing, we can answer predecessor queries over the integer
unverse U in O(1) time as follows. For each y € Y, we set the yth bit of an initially all-zeros |U|-size bit
vector. We then preprocess this bit vector as in theorem [3] Then, a predecessor query for any integer = can
be answered in O(1) time due to the following readily verifiable formula: pred(x) = select; (ranky (x)).

The main problem considered in this paper is formally defined as follows.

INTERNAL SHORTEST ABSENT WORD (ISAW)

Input: A string 7' of length n over an alphabet ¥ C {1,2,...,2°M} of size 0 > 1.

Output: Given integers a and b, with 1 < a < b < n, output a shortest string in ¥* with no occurrence
in Tla..b].

If a = b then the answer is trivial. So, in what follows we assume that a < b. Let us also remark that the
output (shortest absent word) can be represented in O(1) space using: either a range [i,j] C [1,n] and a
letter av of ¥, such that the shortest string in X* with no occurrence in Tla..b] is T[i..j]a; or simply a
range [4, j] € [1,n] such that the shortest string in ¥* with no occurrence in T'a..b] is T[i.. j].

Example 1. Given the string T' = abaabaaabbabbbaaab and the range [a,b] = [8,14] (shown in red), the
only shortest absent word of T'[8..14] is Ti..j] =T[7..8] = aa.
3. O(nlog, n) Space and O(1) Query Time

Let T be a string of length n. We define Sr(j) as the function counting the cardinality of the set of
length-j substrings of T'. This is known as the substring complezity function [26, [54]. Note that Sr(j) < n,
for all 7. We have the following simple fact.
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Fact 6. The length £ of a shortest absent word of a string T of length n over an alphabet of size o is equal
to the smallest j for which St(j) < o7 and hence { € [1, |log, n|].

We denote the set of shortest absent words of T by SAWr. Recall that, by Proposition [l a shortest
absent word of T' can be computed in O(n) time. We denote the length of the shortest absent words of T by
0. By Fact[6] ¢ < |log, n]. Since ¢ is an upper bound on the length of the answer for any ISAW query on T,
in what follows, we consider only lengths in [1, ¢ —1]. Let one such length be denoted by j. By constructing
and traversing the suffix tree of 7', we can assign to each T[i..i + j — 1] its lexicographic rank in 7. The
time required for each length j is O(n), since the suffix tree of T' can be constructed within this time [25].
Thus, the total time for all lengths j € [1,£ — 1] is O(nlog, n) by Fact [6]

We design the following warm-up solution to the ISAW problem. For all j € [1,¢ — 1] we store an array
RNK; of n integers such that RNK;[i] is equal to the lexicographic rank of T'[i..i+j — 1] in X7. Then, given
a range [a,b], in order to check if there is an absent word of length j in T'[a..b] we only need to compute
the number of distinct elements in RNK;[a..b—j+1]. It is folklore that using a persistent segment tree, we
can preprocess an array A of n integers in O(nlogn) time so that upon a range query [a,b] we can return
the number of distinct elements in Afa..b] in O(logn) time. Thus, we could use this tool as a black box for
every array RNK; resulting, however, in Q(logn)-time queries. We improve upon this solution as follows.

We employ a range minimum query (RMQ) data structure [I1] over a slight modification of RNK;. For
each j, we have an auxiliary procedure checking whether all strings from ¥/ occur in T[a..b] or not (i.e.,
it suffices to check whether any lexicographic rank is absent from the corresponding range). Similar to the
previous solution, we rank the elements of ¥/ by their lexicographic order. We append RNK; with all integers
in [1,07]. Let this array be APP;. By Fact @ we have that |APP;| < 2n. Then, we construct an array
PRE; of size |APP;|: PRE;[:] stores the position of the rightmost occurrence of APP;[i] in APP;[1..¢ — 1]
(or 0 if such an occurrence does not exist). This can be done in O(n) time per j by sorting the list of pairs
(T[i..i+j —1],4), for all 4, using the suffix tree of T to assign ranks for T[¢..7 + j — 1] and then radix sort
to sort the list of pairs.

We now rely on the following fact.

Fact 7. St 4)(j) = 0 if and only if min{ PRE;[i] : i € [b — j + 2,|PRE;|]} > a.

Proof. If the smallest element in PRE;[b — j 4+ 2..|PRE;|], say PRE;[k], is such that PRE;[k] > a, then all
ranks of elements in ¥/ occur in APP;[a..b—j+1]. This is because all elements (ranks) in ¥/ occur at least
once after b — j + 2 (due to appending all integers in [1,07] to RNK;), thus all must have a representative
occurrence after b — j + 2. Inspect Figure 1| for an illustration. (The opposite direction is analogous.) O

The following two examples illustrate the construction of arrays RNK;, APP;, and PRE; as well as fact

Example 2 (Construction). Let T' = abaabaaabbabbbaaab and ¥ = {a,b}. The set SAWy of shortest
absent words of T' over X, each of length ¢ = 4, is {aaaa, abab, baba, bbbb}. Arrays RNK;, APP;, and PRE;,
for all j € [1,£ — 1], are as depicted in Table[l] For instance, RNK3[15] = APP3[15] = 1 denotes that the
lexicographic rank of aa in %2 is 1; and PRE3[15] = 7 denotes that the previous rightmost occurrence of aa
is at position 7.



Table 1: Arrays RNK;, APP;, and PRE; in Example@

7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T a b a a b a a a b b a b b b a a a b

RNK; {1t 2 ¢ 1 2 1 1 1 2 2 1 2 2 2 1 1 1 2

APP; |1 2 1 1 2 1 1 1 2 2 1 2 2 2 1 1 1 2 1 2

PRE; O 0 1 3 2 4 6 7 5 9 8 10 12 13 11 15 16 14 17 18

RNK; |2 3 &1 2 3 1 1 2 4 3 2 4 4 3 1 1 2

APP, (2 3 1 2 3 1 1 2 4 3 2 4 4 3 1 1 2 1 2 3 4

PRE, |[O 0 0 1 2 3 6 4 0 5 8 9 12 10 7 15 11 16 17 14 13

RNKs; |3 5 2 3 5 1 2 4 7 6 4 8 7 5 1 2

APP; |3 5 2 3 5 1 2 4 7 6 4 8 7 5 1 2 1 2 3 4 5 6 7 8

PRE; |/O 0 0 1 2 0 3 0 0 O 8 0 9 5 6 7 15 16 4 11 14 10 13 12
Example 3 (Fact [7). Let [a,b] = [7,11] and j = 2 (see Example [2). The smallest element in

{PRE2[11],...,PRE2[21]} is PRE3[15] = 7 > a = 7, which corresponds to rank APP3[15] = 1. Indeed
all other ranks 2, 3,4 have at least one occurrence within APP,[7..11] = 1,2,4, 3, 2.

To apply Fact |7, we construct an RMQ data structure over PRE;. By Theorem it takes O(n) time and
space and answers RMQs in O(1) time. This results in O(nf) = O(nlog, n) preprocessing time and space
for all j.

For querying, let us observe that o7 — S7la. 4)(j), for any T, a,b and increasing j, is non—decreasing. We
can thus apply binary search on j to find the smallest length j such that Sz, 4(j) < o/. This results
in O(log¢) = O(loglog, n) query time. We obtain the following proposition (retrieving a witness shortest
absent word is detailed later).

Proposition 2. Given a string T of length n over an alphabet ¥ C {1,2,...,n0(1)} of size o, we can
construct a data structure of size O(nlog, n) in O(nlog,n) time, so that if query [a,b] is given, we can
compute a shortest string over ¥ that does not occur in Tla..b] in O(loglog, n) time.

We further improve the query time via employing fusion trees as follows. We create a 2d array FTR[1..¢—
1][1..n] of integers, where

FTR[j][¢] = min{PRE,[i — j + 2], ..., PRE;[|PRE,|]},

for all j € [1,£—1] and ¢ € [1, n|. Intuitively, FTR[][¢] is the rightmost index of T" such that T[FTR[j][¢] . . ]
contains all strings of length j over X.

Array FTR can be constructed in O(nf) = O(nlog, n) time by scanning each array PRE; from right
to left maintaining the minimum. Within the same complexities we also maintain satellite information
specifying the index k € [i — j + 2, |PRE,|] where the range minimum FTR[j][¢] came from in the sub-array
PRE;[i — j + 2..|PRE;|]. We then construct n fusion trees, one for every collection of ¢ — 1 integers in
FTR[L..¢ — 1][i]. This takes total preprocessing time and space O(nf) = O(nlog, n) by Theorem {4l Given
the range query [a,b], we need to find the smallest j € [1,¢ — 1] such that FTR[j][b] < a. By Theorem
we find where the predecessor of a lies in FTR[1..¢ —1][b] in O(log,, ¢) time, where w is the word size; this
time cost is O(1) since w = O(logn).

We finally retrieve a witness shortest absent word as follows. If there is no j < £ such that FTR[j][] < a,
then we output any shortest absent word of length ¢ of T" arbitrarily. If such a j < £ exists, by the definition
of FTR[j], we output T[FTR[j][b] .. FTR[j][b] + j — 1] if FTR[j][b] > 0 or T[k..k + j — 1] if FTR[j][6] = 0,
where £ is the index of PRE;, where the minimum came from. Inspect the following illustrative example.

Example 4 (Querying). We construct array FTR for T from Example For a given [a,b] we look up
column b, and find the topmost entry whose value is less than a. If all entries have values greater than or
equal to a, we output any element from SAW arbitrarily.

If [a,b] = [3,14] then no entry in column b = 14 is less than ¢ = 3, which means the length of the
shortest absent word is 4; we output one from {aaaa, abab, baba, bbbb} arbitrarily. If [a,b] = [5,14] then
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) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
T a b a a b a a a b b a b b b a a a b
FTRLH 0O 1 2 2 4 5 5 5 8 8 10 11 11 11 14 14 14 17
FW_R[Z} o 0o o o o 0o 0 00 5 77 7 7T T T 11 11 13
FTRFﬂ 0O 0 0 0 0 00O O OO O O 0O 4 4 4 4 4

FTR[3][14] = 4 < 5 so the length of a shortest absent word of T'[5..14] is 3; a shortest absent word is
T[FTR[3][14]..FTR[3][14] +3 - 1] =T[4..6] = aba.

If [a,b] = [7,9], FTR[2][9] = 0 < 7 so the length of a shortest absent word is 2; a shortest absent word is
Tlk..k+j—1]=TI[9..10] = bb because FTR[2][9] = min{PRE,[9],...,PRE3[|PREz|]} = PRE2[9] = 0 tells
us that the minimum in this range came from index k& = 9.

We obtain the following result.

Theorem 8. Given a string T of length n over an alphabet ¥ C {1,2,... ,no(l)} of size o, we can construct
a data structure of size O(nlog, n) in O(nlog, n) time, so that if query [a,b] is given, we can compute a
shortest string over X that does not occur in T[a..b] in O(1) time.

4. O(n) Space and O(loglog, n) Query Time

Definition 1 (Order-j Fragment). Given a string T over an alphabet of size o and an integer j, V is called
an order-j fragment of T if and only if V is a fragment of T and Sy (j) = o7. V is further called a minimal
order-j fragment of T if Sy(j) < 07 and Sz(j) < 07 for U =V[1..|V| 1] and Z = V[2..|V]].

In particular, minimal order-j fragments are pairwise not included in each other. The following fact
follows directly.

Fact 9. Given a string T of length n over an alphabet of size o and an integer j we have O(n) minimal
order-j fragments. Moreover, an arbitrary fragment F of T has Sr[j] = o7 if and only if it contains at least
one of these minimal fragments.

For each j € [1,log, n], we consider all minimal order-j fragments T, separately. We encode the minimal
order-j fragments of T using two bit vectors SP; and EP;, standing for starting positions and ending
positions. Inspect the following example.

Example 5. We consider T' from Example 2] and j = 2.

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
T a b a a b a a a b b a b b b a a a b
APP, |2 3 1 2 3 1 1 2 4 3 2 4 4 3 1 1 2 1 2 3 4
PREb |O 0 0 1 2 3 6 4 0 5 8 9 12 10 7 15 11 16 17 14 13
SP, o o o0 o 1 o1 0o 0 O 1 01 O O O 0 O
EP, o o o0 o o o o0 o0 o0 1 1 0 O O O 1 0 1
For instance, SP3[13] = 1 and EP3[18] = 1 denote the minimal order-2 fragment V = T[13..18] =

bbaaab.

We construct a rank and select data structure on SP; and EP;, for all j € [1,¢ — 1] supporting O(1)-time
queries. The overall space is O(n) by Theorem [3| and Fact [6]

Let us now explain how this data structure enables fast computation of absent words of length j. Given
a range [a,b], by Fact [0} we only need to find whether T'[a..b] contains a minimal order-j fragment. We
can do this in O(1) time using one rank and two select queries: ¢ = rank;(a —1,SP;) + 1; and select, (¢, SP;)
and selecty (¢, EP;). The select queries return the starting and ending positions, respectively, of the leftmost
minimal order-j fragment that is located after the position @ — 1; it remains to check whether this minimal
order-j fragment is inside [a, b].



Example 6. We consider T, SPy and EPs from Example [5| Let [a,b] = [5,14]. We have ¢ = ranky(a —
1,SP2) + 1 = ranky(4,SP2) + 1 = 1, select;(¢,SP2) = select;(1,5P2) = 5 < b = 14 and select; (¢,EP3) =
selecty (1, EP3) = 10 < b = 14, which means T'[5, 14] contains a minimal order-2 fragment.

Let us now describe a time-efficient construction of SP; and EP;. We use arrays PRE; and APP; of T,
which are constructible in O(n) time (see Section . Recall that PRE;[i] stores the starting position of the
rightmost occurrence of rank APP;[i] in APP;[1..7 — 1] (or O if such an occurrence does not exist). We
apply Fact m as follows. We start with all bits of SP; and EP; unset. Then, for each b € [1,n| for which
PRE;[b—j+1] < min{PRE;[:] : i € [b—j+2,|PRE,||} = a, we set the bth bit of SP; and the ath bit of EP;.
This can be done on-line in a right-to-left scan of PRE; in O(n) time.

Example 7. We consider 7', SPy and EP5 from Example [5] We start by setting b = n = 18 and scan PREs
from right to left: we have a = 13 because min{PRE;[i] : ¢ € [18,21]} = 13. This gives fragment T'[13..18],
which is minimal since PREz[b — 1] = PRE3[17] < 13. Then we set b =n — 1 = 17 and have a = 11 because
min{PRE[é] : ¢ € [17,21]} = 11. This gives fragment 7'[11..17], which is not minimal since PRE3[b — 1] =
PRE3[16] > 11. Then we set b = n — 2 = 16 and have a = 11 because min{PREs[¢] : i € [16,21]} = 11. This
gives fragment T[11..16], which is minimal since PRE3[b — 1] = PRE3[15] < 11 .

Lemma 1. SP; and EP; can be constructed in O(n) time.

For all j, the construction time is O(nf) = O(nlog, n) by Theorem [3] Lemma [I, and Fact [6] All the
arrays SP; and EP; in total occupy O(nf) = O(nlog, n) bits of space, which is O(n) space when measured
in ©(logn)-bit machine words. We obtain the following lemma.

Lemma 2. Given a string T of length n over an alphabet ¥ C {1,2, ... ,no(l)} of size o, we can construct
a data structure of size O(n) in O(nlog, n) time, so that if query (j,[a,b]) is given, we can check in O(1)
time whether there is any string in X7 that does not occur in Tla..b], and if so return such a string.

We can now apply Lemmausing binary search on j to find the smallest length j such that Spp,. 4)(j) <
oJ. This results in O(log ) = O(loglog, n) query time by Fact @ It should now be clear that when we find
the j corresponding to the length of a shortest absent word, we can output the length-; suffix of the leftmost
minimal order-j fragment starting after a. Note that outputting this suffix is correct by the definition of
minimal order-j fragments.

Example 8. We consider T', SPy and EP5y from Example Let [a,b] = [2,7]. The length of a shortest
absent word of T[2..7] is 2. We output bb, which is the length-2 suffix of the leftmost minimal order-2
fragment T'[5..10] = baaabb starting after a = 2.

We obtain the following result.

Theorem 10. Given a string T of length n over an alphabet ¥ C {1,2,. .., no(l)} of size o, we can construct
a data structure of size O(n) in O(nlog, n) time, so that if query [a,b] is given, we can compute a shortest
string over X that does not occur in Tla..b] in O(loglog, n) time.

5. Combinatorial Insights

A positive integer p is a period of a string S if S[i] = S[i + p] for all i € [1,|S| — p]. We refer to the
smallest period as the period of the string. Let us state the periodicity lemma, one of the most elegant
combinatorial results on strings.

Lemma 3 (Periodicity Lemma (weak version) [30]). If a string S has periods p and q such that p+q < |5,
then ged(p, q) is also a period of S.

Lemma 4. If all strings in {UW : U € ¥} for W # ¢ occur in some string S, then |S| > |W| - o* /4.



Proof. Let p be the period of W, and let a € ¥ be such that the period of aW is also p. All strings ZbW
for a letter b # a and Z € ¥~ must occur in S. Let A = {UW : U € ©*}\ {ZaW : Z € ¥¥~1}, and note
that it is of size 0% — 0*~1 > ¥ /2. The following claim immediately implies the statement of the lemma.

Claim. Leti and j be starting positions of occurrences of different strings UW, VW € A in S, respectively.
Then, we have |j —i| > |W|/2.

Proof. Let us assume, without loss of generality, that j > i. Further, let us assume towards a contradiction
that j — ¢ < |W|/2. Then, j —i is a period of W and p+ j — ¢ < |W| since p < j — i. Therefore, due to the
periodicity lemma (Lemma [3]), j — ¢ must be divisible by the period p of W. Hence, V ends with the letter
a and VW ¢ A, a contradiction. O

This concludes the proof of this lemma. O

Lemma 5. If a shortest absent word of a string X is of length A\, then the length of a shortest absent word
of XY isin [A\, A+ max{10,4 + log,(]Y|/N)}].

Proof. Let W and W’ be shortest absent words of X and XY, respectively. Further, let d = |W’| — |W|. In
order to have d > 0, a