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Abstract. This paper considers a swarm optimisation approach to few-
view tomographic reconstruction. DFOMAX, a high diversity swarm op-
timiser, demonstrably reconstructs binary images to a high fidelity, out-
performing a leading algebraic technique, differential evolution and parti-
cle swarm optimisation on four standard phantoms. The paper considers
the effectiveness of optimisers that have been developed for optimal low
dimensional performance and concludes that trial solution clamping on
the walls of the feasible search space is important for good performance.
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1 Introduction

Tomographic reconstruction (TR), which is the determination of the internal
structure of an opaque object from projected images cast by penetrating radi-
ation, is at the heart of all medical imaging and has widespread application,
for example: data compression and data security [24], image processing [35],
electron microscopy [14], crystal structure [9], angiography [15], nondestructive
testing of homogeneous objects [22], seismic tomography [30], astronomy [12]
and geometric, combinatorial and recreational mathematics [19].

Projection data is typically noisy due to the inherent randomness of radiation,
detector characteristics and, in medical applications, patient movement, and is
usually too sparse for a complete reconstruction. The number of projections
should be kept to an absolute minimum in medical contexts due to the damaging
effects of radiation. The few-view situation is particularly important where the
risk is too high, for example in imaging of children.

The standard tomographic numerical reconstruction technique has been, un-
til recently, filtered backprojection (FBP). This algorithm only requires a single
iteration but it depends on a large number of projections and is not suitable
for few-view imaging [21]. Algebraic Reconstruction Techniques (ART) [24] have
effectively replaced FBP in the last few years. ART is an iterative algorithms
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based on Kaczmarz’s method for solving linear system of equations [35]. ART is
applicable to the few-view scenario but can introduce artefacts due to overfitting
and has not been proven in large patient populations [20].

Compressed sensing (CS) holds potential for few-view imaging: exact recon-
struction is possible if the data can be transformed to a sparse representation [36].
However the sparse representation must be known, and the method involves re-
placing a non-convex problem with a tractable convex minimisation [13]. Itera-
tive statistical methods have also been applied to TR. These algorithms max-
imise the likelihood of parameters of an underlying statistical model. MLEM, and
an accelerated version known as OSEM, also suffer from overfitting, but noise
amplification can be reduced with MAP regularisation. Deep learning (DL), de-
spite its success in natural language and computer vision applications, is yet to
improve upon traditional analytical methods [28].

Optimisation techniques, and in particular population-based algorithms, are
complementary to analytical methods and hold promise for few-view problems
due to their resilience, relative lack of assumptions and ability to succeed where
analytical methods fail. Several metaheuristic algorithms have been applied to
TR, including harmony search [32], tabu search [26], simulated annealing [25],
memetics [16] and evolutionary algorithms [8]. Swarm algorithms have also been
trialled in binary reconstruction [29], geophysical reconstruction [37], electrical
capacitance and impedance tomography [38, 23] and surface reconstruction from
3D data [18]. An algorithm based on the movement of particles over a single
image, a pixel-swarm, has been developed for binary reconstruction [4].

The few-view TR problem is underdetermined, which indicates the lack of
unique solution. An optimisation might find an image of low loss but there is
no guarantee that this image is medically feasible. ART and other least-squares
methods tend to produce low norm, diffuse solutions with small pixel values.
Swarm algorithms make no assumption (such as low norm or sparsity) about
the nature of the solution and do not require convexity.

This paper reports on the application of swarm algorithms to few-view binary
TR. After an account of binary tomography and swarm algorithms, the feasibility
of high dimensional optimisation without any specific coping mechanism such as
subspace optimisation dimensional search is considered. Four swarm algorithms
are trialled on four standard phantoms and a suggestive mechanism for the
effectiveness of wall-clamping is proposed.

2 Binary tomographic reconstruction

Incident radiation is typically modelled by a projection matrix A ∈ Rm×n
≥0 where

m is the total number of rays (projections) and n is the number of pixels in the
reconstructed image. Suppose that b ∈ Rm is a vector of detector values. Then
the continuous/discrete reconstruction problem can be stated as:

find x

{
∈ Rn

∈ {0, 1, . . . , k − 1}n, k > 1
such that Ax = b.
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In the binary problem, k = 2 i.e. x ∈ {0, 1}n.
The equation Ax = b cannot be inverted if m < n: an approximate solution

y must be found. This trial solution is forward projected:

Ay = c

with a reconstruction error

e1(y) = ||b− c||1 (1)

An iterative scheme will produce a sequence of candidate solutions of decreasing
error but, due to underdetermination, low reconstruction error does not imply
faithfulness to the original object x∗. The proximity of y to x∗ can be measured:

e2 = ||y − x∗||1 (2)

In cases where x∗ is known, this reproduction error provides a test of the ability
of an algorithm to find a faithful reconstruction.

3 Swarm optimisation

An optimisation swarm, for real-space problems argmin f(x), where f : X → R
and X ⊂ Rn is the feasible search space, is a population of interacting ‘particles’.
Each particle position is a possible solution; particles move under each others’
influence in an attempt to improve the best found position. Particle interactions
might be mediated by current or historical positions of particles in a spatial or
social neighbourhood. Two swarm optimisers and differential evolution, a real-
space population algorithm that has much in common with swarms, are described
below.

PSO In particle swarm optimisation, particles i in a canonical PSO swarm
[34, 27, 33] of M particles are a triple (xi, vi, pi), representing position, velocity
and personal best (pbest), pi, of the best position they have achieved in the run,
as measured by the objective function f . Dynamical variables are updated by
the rule

vi(t+ 1) = wvi(t) + cu1 ◦ (ni(t+ 1)− xi(t))

+ cu2 ◦ (pi(t+ 1)− xi(t))

xi(t+ 1) = xi(t) + vi(t+ 1) (3)

where u1,2 ∼ U(0, 1) are uniform random variables in [0, 1]D and ◦ is the
Hadamard (entry-wise) product, ni is the pbest of the best neighbour in i’s
social network (an arbitrary choice is made in the case of a tie). The inertial
weight, w, and acceleration coefficients c, are two arbitrary (but constrained)
positive real parameters chosen to balance convergence and exploration and t
labels iteration. The pbests may be determined synchronously at the start of the
iteration or asynchronously on a particle-by-particle basis.
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Two social networks are common in PSO implementations: a global network
where particles have access to all pbests (GPSO) and a local ring (LPSO) net-
work where particles can only access ‘left’ and ‘right’ neighbours. LPSO has
slower information transport; this property inhibits convergence and favours
early exploration. LPSO is generally better at more complex multi-modal prob-
lems [10].

DE Differential evolution has many variants. We specify the DE/best/1 ver-
sion, which is considered competitive and robust [17].

Iterations begin with a determination of the current position, g of the best
particle. Then, for each particle i, indices j and k are selected such that i ̸= j ̸= k.
A random component r ∈ {1, 2 . . . n} is also selected. Component d of particle i
at xi is updated:

if u ∼ U(0, 1) < CR or d == r

yd = gd + F (xjd − xkd)

else

yd = xid (4)

where y is a trial position and the parameters CR ∈ [0, 1] and F ∈ [0, 2] are
known as the ‘cross-over rate’ and the ‘differential weight’. Then, after each
component of y has been set, i is conditionally moved:

x(t+ 1) = argmin∗(f(y), f(x(t)))

DFO Dispersive flies optimisation [1], is a slim PSO variant without memory
and velocity whose exploration and exploitation behaviour is studied in [2]. Up-
dates are based on instantaneous, rather than historical, position. In addition,
it incorporates component-wise particle jumps [11]. The best overall position
g(t+1) and best ring neighbours ni(t+1) are determined (with arbitrary choices
in the case of ties). Component d of all particles i other than the swarm best
(written xid) updates according to

if u ∼ U(0, 1) < ∆

xid(t+ 1) ∼ U(Xd)

else

xid(t+ 1) = nid(t+ 1) + ϕu1(gd(t+ 1)− xid(t)) (5)

where ∆ is a preset jump probability, U(Xd) is the uniform distribution along
axis d of the search space X, u1 ∼ U(0, 1) and ϕ ∈ [0,

√
3]. ϕ is invariably set to

1 and ∆ to 0.001 in published studies (e.g. [3, 6, 31, 7, 5]). The upper bound on ϕ
is derived from a convergence analysis for stochastic difference equations [11]).
DFOMAX will henceforth denote DFO with ϕ =

√
3. DFOMAX is expected to

have the maximum diversity since the particle update rule places the swarm on
the edge of divergence.

DFO uses both global and local strategies and formally, with its reliance
on instantaneous position, abandonment of particle memory and retention of
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a static communication network, interpolates between PSO and DE. Formal
comparison does not of course necessarily imply intermediate performance.

4 Constrained search in high dimensions

The TR problem is high dimensional: a modest 32 × 32 image has 1024 pixels,
therefore, the search space has 1024 dimensions. There is a question whether
the algorithms that have been developed for low dimensions (typically n = 30),
such as the three algorithms specified above, will adapt to the high dimensional
problem. There are further issues regarding boundaries and placement of global
optima.

The feasible search space for image reconstruction is X = [0, 255]n. A particle
might fly outside X and the algorithm must specify if any action is to be taken.
Particles may continue to move in X = Rn \X and are either evaluated (if f is
defined in X) or remain unevaluated. Alternatively, particles might be clamped
to the boundary ∂X i.e. xid = max(min(255, xid), 0). Furthermore, algorithms
might behave differently for problems with the global minimum in the interior
of X or on ∂X.

The five swarm algorithms defined above (DE, DFO, DFOMAX, GPSO and
LPSO) were tested on the Sphere problem, f(x) = x · x, with X = [0, 255]n and
with the global optimum at 128n (interior) and at 255n (boundary) in a range
of dimensions, n, and for clamped and freely moving particles (which are not
evaluated outside X. This problem, despite its unimodality and symmetry is far
from trivial in high dimensions and with optimum on bounds.

A swarm size of M = 100 was chosen for DE, DFO, DFOMAX and G/LPSO.
Particles were initialised in X with the uniform distribution and G/LPSO veloc-
ities were set to zero. The DFO jump probability ∆ was set to 0.001; G/LPSO
was run with w = 0.729844 and c = 1.49618 and the DE/best/1 parameters F
and CR were both set to 0.5.

Tables 1 - 4 report on median errors after 30 runs of 105 function evaluations
for each algorithm under different boundary conditions and placement of global
optimum.

Table 1 shows median errors for the sphere function with optimum in the cen-
tre of X and no boundary action where particles can move freely and are evalu-
ated everywhere. All algorithms struggle in higher dimensions where the swarms

have barely improved upon their initialised best value: Ef(x) = n
∫ 255

0
x2 dx

255 =
21675n ≈ 2× 107 (n = 1000). DFOMAX is very poor in lower dimensions, pre-
sumably because the ϕ-parameter promotes a very high diversity. Placing the
optimum at the corner of X (Table 2) does not change the picture; errors are
even higher in higher dimensions indicating that this is a harder problem for free
movement boundary conditions.

Tables 3 and 4 show the corresponding experiments with clamped swarms i.e.
particles straying outside X are immediately projected onto ∂X. Clamping has
no effect when the optimum is in the middle of the search space, but drastically
improves DFO, DFOMAX and LPSO performance for high dimensions when



6 al-Rifaie and Blackwell

Table 1: Sphere: Particles move freely and are evaluated everywhere, x∗ = 128n

Dimension DE DFO DFOmax GPSO LPSO

50 1.18e-17 7.53e-12 8.65e+02 3.63e-09 1.40e+00
100 2.26e-05 5.14e-04 3.46e+04 3.04e-01 1.83e+03
200 1.19e+02 1.21e+01 2.91e+05 4.87e+03 9.03e+04
300 5.76e+03 5.80e+02 6.62e+05 5.15e+04 4.70e+05

400 3.51e+04 4.53e+03 1.12e+06 2.41e+05 1.09e+06
500 8.78e+04 1.79e+04 1.54e+06 1.62e+06 1.63e+06
600 1.62e+05 4.52e+04 2.12e+06 2.08e+06 2.14e+06
700 2.65e+05 9.31e+04 2.61e+06 2.48e+06 2.53e+06

800 3.64e+05 1.64e+05 3.15e+06 2.94e+06 3.02e+06
900 5.01e+05 2.58e+05 3.71e+06 3.43e+06 3.45e+06
1000 6.47e+05 3.80e+05 4.27e+06 3.84e+06 3.83e+06

Table 2: Sphere: Particles move freely and are evaluated everywhere, x∗ = 255n

Dimension DE DFO DFOMAX GPSO LPSO

50 1.81e-17 3.43e-11 1.67e+03 6.67e-09 7.13e+00
100 1.21e-04 2.25e-03 1.19e+05 1.47e+00 8.72e+03
200 8.03e+02 5.81e+01 1.08e+06 3.82e+04 4.10e+05
300 6.13e+04 2.59e+03 2.54e+06 2.95e+05 1.55e+06

400 2.53e+05 2.19e+04 4.21e+06 8.70e+05 3.18e+06
500 6.58e+05 8.36e+04 5.94e+06 1.67e+06 5.04e+06
600 1.17e+06 2.17e+05 7.68e+06 2.65e+06 7.28e+06
700 1.88e+06 4.38e+05 9.78e+06 3.70e+06 9.45e+06

800 2.69e+06 7.65e+05 1.17e+07 5.00e+06 1.21e+07
900 3.53e+06 1.18e+06 1.37e+07 6.54e+06 1.49e+07
1000 4.52e+06 1.70e+06 1.59e+07 8.63e+06 1.70e+07

the optimum is placed at the corner of X. Setting ϕ to its maximum value is
advantageous at n = 1000; in this case the larger diversity is aiding search.

The Sphere problem offers some clues to the relationship between large n
performance, optimum placement and boundary conditions but is different in
several important respects from the reconstruction problem fTR(x) = ||b−Ax||1.

fTR has an infinity of solutions lying on the (n−m) dimensional hyperplane
{x : Ax = b}, a rather extreme multimodality. A found exact solution might
not equate to the original image, x∗, i.e. zero reconstruction error (e1) does
not ensure zero reproduction error (e2). Level sets of fTR are flat in n − m
dimensions; the Sphere’s level sets are curved in n dimensions. High-n curvature
renders update unlikely because the interior of the level set has a much smaller
volume than the exterior. However level set flatness will remain problematic in
few-view TR because the topography remains curved in m ≈ n-dimensions.

A dummy TR problem was devised in order to test if the Sphere results might
generalise. The five algorithms were trialled on a uniform phantom x∗ = 25532×32

under free movement and clamping. The solution hyperplane intersects with
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Table 3: Sphere: Particles are clamped to X= [0, 255]D, x∗ = 128n

Dimension DE DFO DFOMAX GPSO LPSO

50 6.29e-18 9.37e-12 1.01e+02 2.59e-09 9.09e-01
100 2.01e-05 4.54e-04 9.40e+03 1.64e+04 1.00e+03
200 1.55e+02 1.21e+01 1.43e+05 7.05e+04 3.72e+04
300 1.01e+04 5.32e+02 4.41e+05 1.89e+05 1.57e+05

400 5.22e+04 4.40e+03 8.40e+05 3.37e+05 3.53e+05
500 1.31e+05 1.66e+04 1.28e+06 5.31e+05 5.81e+05
600 2.33e+05 4.38e+04 1.77e+06 7.66e+05 8.31e+05
700 3.49e+05 8.89e+04 2.27e+06 1.01e+06 1.09e+06

800 5.40e+05 1.52e+05 2.77e+06 1.29e+06 1.36e+06
900 6.51e+05 2.37e+05 3.28e+06 1.54e+06 1.65e+06
1000 8.53e+05 3.49e+05 3.82e+06 1.87e+06 1.90e+06

Table 4: Sphere: Particles are clamped to X= [0, 255]D, x∗ = 255n

Dimension DE DFO DFOMAX GPSO LPSO

50 3.23e-27 0.00e+00 0.00e+00 0.00e+00 0.00e+00
100 4.80e-25 0.00e+00 0.00e+00 2.60e+05 0.00e+00
200 3.64e-11 0.00e+00 0.00e+00 9.75e+05 0.00e+00
300 4.96e-06 0.00e+00 0.00e+00 1.85e+06 0.00e+00

400 2.68e-03 0.00e+00 0.00e+00 2.96e+06 0.00e+00
500 2.53e-01 0.00e+00 0.00e+00 4.00e+06 0.00e+00
600 4.34e+00 0.00e+00 0.00e+00 4.97e+06 0.00e+00
700 3.26e+04 0.00e+00 0.00e+00 6.08e+06 0.00e+00

800 6.53e+04 0.00e+00 0.00e+00 7.51e+06 0.00e+00
900 1.31e+05 2.29e-08 0.00e+00 8.49e+06 0.00e+00
1000 2.00e+05 5.69e+01 0.00e+00 9.88e+06 0.00e+00

X = [0, 255]1024 at a single point (a corner) so the problem is unimodal in
X. Tables 5 and 6 report on e1,2 under the above experiment settings and for
m = 6, 8, 16, 32. Free movement performance is poor for all algorithms and for
all numbers of projections m. The reproduction error even exceeds the maximum
value of 261120 = 32×32×255 in some instances, indicating that best positions
lie outsideX. Clamping tells a different story: both errors are improved and DFO
and DFOMAX find the corner optimum corresponding to the original phantom.
We see that clamping can play an important role in TR, rendering even high-n
problems tractable.

5 Reconstructions

Four standard binary TR test phantoms, as depicted in the leftmost column of
Fig. 1, were chosen for the algorithm trials. Two sizes, 32×32 and 64×64 and 6,
8, 16 and 32 projections (few-view scenarios) were tested. Phantom imaging was



8 al-Rifaie and Blackwell

Table 5: Uniform 32 × 32 phantom: particles move freely and are evaluated
everywhere

e1 DE DFO DFOMAX GPSO LPSO

m = 6 27512 36946 229072 61075 194348
m = 8 52050 62997 331839 107265 285517
m = 16 188214 181379 781586 348052 674266
m = 32 472357 381192 1618504 847332 1444595

e2 DE DFO DFOMAX GPSO LPSO

m = 6 287601 423121 529438 139996 150539
m = 8 281366 388361 509529 141577 150056
m = 16 245387 318266 472701 137075 153196
m = 32 211071 228996 433595 144072 151037

Table 6: Uniform 32× 32 phantom, clamped particles
e1 DE DFO DFOMAX GPSO LPSO

m = 6 25000 0 0 434558 30689
m = 8 33865 0 0 586305 39757
m = 16 73463 0 0 1163191 83098
m = 32 137865 0 0 2316471 176054

e2 DE DFO DFOMAX GPSO LPSO

m = 6 4612 0 0 77392 5865
m = 8 4737 0 0 77775 5610
m = 16 5006 0 0 77902 5865
m = 32 4804 0 0 77647 6120

conducted by the ASTRA tomography toolbox3 using parallel geometry with
the number of rays set to 32 and 64 for the the 32 × 32 and 64 × 64 phantoms
respectively.

Six algorithms were chosen, including the five swarm (DE is considered here
as a pseudo-swarm) algorithms from the previous section and SIRT, an algebraic
reconstruction algorithm from the toolbox. A previous examination (paper under
review) with the same experiment set-up confirmed that SIRT was the superior
algebraic algorithm. In addition, random search (RS) was used as a control
because the swarm algorithms rely on extensive sampling. All data from DE,
DFO, G/LPSO, SIRT and RS experiments are taken from a recent paper (under
review).

Particles were clamped to [0, 255] in each dimension and swarms and RS were
run for 100,000 function evaluations. Swarm parameter settings were identical
to those of Section 4 experiments. All algorithms with randomisation were run
30 times on each problem.

3 https://www.astra-toolbox.com
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Phantom DE DFO DFOMAX GPSO LPSO SIRT RS

Fig. 1: Phantoms 1− 4 (top to bottom) and sample reconstructions by the algo-
rithms, with phantom size of 32× 32 and 6 projections.

6 Results

Fig. 2 depicts algorithm reconstructions for each of the eight problems. Recon-
struction improves in all cases with increased projections and for the smaller
phantom. The extreme few-view case (64× 64,m = 6) is very challenging. SIRT
produces blurred images and swarm reconstructions are sharper but contain
pepper noise. GPSO is particularly bad, with reconstructions that are hardly
better than random search. Otherwise, DFO and DFOMAX appear to be the
best performers.

Table 7 confirms these visual findings. DFO and DFOMAX find exact repro-
ductions for phantoms 1, 2 and 3 of size n = 322 at 32 projections and phantoms
1 and 3 at m = 16. DFOMAX recovers the 322 phantom 3 at all projections,
and in all the runs. Reconstruction of the 642 is more difficult because of the
extreme few-view scenario.

Wilcoxon rank tests of algorithm performance (e1 and e2) were conducted
at α = 0.05. The results of the 32 problems is reported in Table 8. SIRT dom-
inates the rankings for e1 but produces significantly worse reproductions (e2)
than all algorithms apart from GPSO and RS. DFOMAX is the top reproduc-
tion performer, beating DE, GPSO and SIRT in each problem; DFOMAX also
returned better reconstruction errors (e1) than DE and GPSO. Setting DFO’s
ϕ to

√
3 and thereby ensuring maximum diversity without explosion improves

DFO in this setting (beating DFO 25 times and 26 times for reconstruction and
reproduction error respectively).

The results of the preliminary trials on optimum-on-corner-Sphere and the
uniform phantom are confirmed for these phantoms. It seems that clamping
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Size: 32× 32 Size: 64× 64

Phantom DE DFO DFOMAX GPSO LPSO SIRT RS Phantom DE DFO DFOMAX GPSO LPSO SIRT RS

6 projections 6 projections

Phantom DE DFO DFOMAX GPSO LPSO SIRT RS Phantom DE DFO DFOMAX GPSO LPSO SIRT RS

8 projections 8 projections

Phantom DE DFO DFOMAX GPSO LPSO SIRT RS Phantom DE DFO DFOMAX GPSO LPSO SIRT RS

16 projections 16 projections

Phantom DE DFO DFOMAX GPSO LPSO SIRT RS Phantom DE DFO DFOMAX GPSO LPSO SIRT RS

32 projections 32 projections

Fig. 2: Reconstructed phantoms
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Table 7: Rounded median reproduction error, e2, for each problem and each
algorithm. Lighter shading indicates the proximity of the reconstructions to the
phantoms. The largest error in phantoms of sizes 322 and 642 are 255× 322 and
255× 642 respectively.

DE DFO DFOMAX GPSO LPSO SIRT RS

Phantom 1, size = 322, m = 6 24360 11392 9462 90896 17006 52254 123172
m = 8 18306 4250 0 88231 12444 53452 122473
m = 16 10800 0 0 87185 8898 42305 123530
m = 32 8646 0 0 87993 8540 27998 122754

Size = 642, m = 6 210940 207107 169545 435764 154123 246054 506638
m = 8 193099 191829 151688 432352 137348 241197 507789
m = 16 172757 171379 130625 430594 117964 179971 507951
m = 32 163515 160018 117159 430219 109999 150775 507091

Phantom 2, size = 322, m = 6 39667 27905 27878 93150 28901 75948 122240
m = 8 35209 22588 22280 92225 22997 71291 122429
m = 16 17269 785 0 90415 8816 52369 122056
m = 32 11701 0 0 87261 7921 30212 122628

Size = 642, m = 6 251333 243877 210000 438343 190386 308809 507088
m = 8 237651 230159 196678 436555 170015 280526 506604
m = 16 189399 188739 151242 428432 120831 241244 504912
m = 32 171271 171116 128279 430698 109442 181168 504911

Phantom 3, size = 322, m = 6 14213 697 0 84787 17259 61049 122377
m = 8 17187 2302 0 88102 20912 65759 121866
m = 16 12000 0 0 86317 18689 40385 122053
m = 32 10536 0 0 85807 18903 31715 121947

Size = 642, m = 6 173616 161874 126078 425212 156488 243334 504370
m = 8 181518 166219 134297 423937 159573 297473 504085
m = 16 178099 158374 121136 421260 160890 219134 505120
m = 32 175900 155551 117687 424702 149612 141821 504338

Phantom 4, size = 322, m = 6 54862 48549 48357 93915 52286 106043 123660
m = 8 58459 51857 54111 94987 56592 101792 122876
m = 16 48886 37014 37679 95115 44677 90408 123858
m = 32 40083 17595 11636 94222 38095 60032 123279

Size = 642, m = 6 251265 231391 226598 437839 244786 369251 472486
m = 8 261236 242350 244098 443354 253149 402474 471607
m = 16 252098 225371 222921 442305 244071 378158 473273
m = 32 242980 212200 202150 440890 231698 250803 473312
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Table 8: Algorithms comparison based on e1 and e2. The numbers indicate sta-
tistically significant wins for the algorithm in the left hand column versus the
algorithm in the top row. Total number of problems are 32: 4 phantoms (1,2,3,4)
× 2 sizes (322, 642) × 4 projections (6,8,16,32)

e1 DE DFO DFOMAX GPSO LPSO SIRT RS

DE NA 0 0 32 4 0 32

DFO 32 NA 6 32 23 5 32

DFOMAX 32 25 NA 32 24 9 32

GPSO 0 0 0 NA 0 0 32

LPSO 24 8 7 32 NA 0 32

SIRT 32 27 23 32 32 NA 32

RS 0 0 0 0 0 0 NA

e2 DE DFO DFOMAX GPSO LPSO SIRT RS

DE NA 0 0 32 4 30 32

DFO 29 NA 1 32 18 30 32

DFOMAX 32 26 NA 32 22 32 32

GPSO 0 0 0 NA 0 2 32

LPSO 27 11 8 32 NA 31 32

SIRT 2 2 0 30 1 NA 32

RS 0 0 0 0 0 0 NA

ameliorates the curse of high dimension in cases where the desired optimum is
on the boundary of the search space. The results for DFO and DFOMAX are
very promising considering the few-view conditions and the high dimensionality
of the problems. The apparent feasibility of a conversion of reconstruction into
an optimisation problem is surprising where the swarm is moving in the space
of all possible 322 or 642 binary images.

7 Discussion

The results of all trials indicate the importance of imposing clamping in cases
where the desired optimum lies on a corner of the search space. This finding can
be supported by considering a model algorithm optimising Sphere.

The model algorithm is assumed to produce trial points with spherical sym-
metry. In particular, trials are generated in a ball of radius r with probability 1

2
about a centre x. For the Sphere problem, x lies on a hyperspherical level set of
radius R. All points within the level set have lower function value; a trial point
is accepted if it lies in the n-ball of radius R which we can assume is centred at
O. If Pu is the relative volume of intersection of the trial ball Bn(x, r) with the
ball of points with lower function value Bn(O,R), i.e.

Pu =
vol(Bn(x, r) ∩Bn(O,R))

vol(Bn(x, r))
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then the probability of updating in a single trial is Pu

2 . Fig. 3 illustrates three
possibilities for three different search radii. The geometry is depicted in Fig. 4.

The update region Bn(x, r)∩Bn(O,R) in the leftmost diagram of Fig. 3 is an
n-dimensional lens. The length of the major axis, a, of this lens is R sinϕ (Fig. 4).

a is larger than the minor axes for ϕ ∈ (0, π). From Fig. 4, sinϕ = ρ
√
1− ρ2

4 ,

and, with ρ = r
R ,

Pu <
(R sinϕ)n

rn
=

(
1− ρ2

4

)n
2

(ρ < 1)

For ρ ≥ 1, middle and rightmost diagrams of Fig. 3, Bn(x, r) ∩ Bn(O,R) is
covered by a ball of radius R, so

Pu ≤ ρ−n (ρ ≥ 1)

Hence limn→∞ Pu = 0 for all scenarios in which ρ > 0. The pathology of high
dimensions is manifest as a varnishing update probability for spherically sym-
metric search on the Sphere function; for example, in 1000 dimensions and ρ = 1

2 ,
the chances of finding a better trial position are less than 10−14.

The above conclusions is valid for unconstrained search. Clamping at a wall
significantly increases the update probability. Fig. 5 depicts wall clamping for
optimisation of the Sphere with optimum at a corner. A trial landing in region A
will be projected onto the edge of the search box and into the update region.
Furthermore, a particle that has been repositioned on the wall will have a sig-
nificantly greater chance of updating (because region A is a half-space) at the
next iteration. The effective augmentation of the update region by clamping is
a possible mechanism for the evident improved performance of all swarm algo-
rithms for corner problems (although it does not explain the superiority of this
pair over PSO and DE).

r

R

Fig. 3: Three configurations of the update region Bn(x, r) ∩Bn(O,R)
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r

R ϕ

Fig. 4: Geometry of the lens-shaped
update region

A

Wall

Fig. 5: Advantageous effect of clamping

8 Conclusions

This paper establishes that swarm search algorithms developed for optimisation
in low dimensions (n ∼ 30) can transfer to reconstruction problems in higher di-
mension (n = 1024−4096) providing that particles are clamped to the walls of the
search space. Experiments with four standard phantoms under few-view condi-
tions demonstrate good reconstructions when compared to the original phantom
for two swarm optimisers: DFO and DFOMAX. The latter is a diversity boosted
version of the former and offers superior performance. The higher diversity pos-
sibly encourages motion outside the search space; particles are clamped back
to the search space wall, effectively increasing update probability. Theoretical
arguments based on an idealised optimiser support this picture.

DFOMAX reconstructions are comparable to SIRT, the best algebraic tech-
nique for the problems under consideration. DFOMAX can achieve sharper and
higher fidelity reconstructions in the few-view regime. Further tuning of DFO
to this problem set (swarm size and jump probability remain fixed at optimal
settings for low dimensional problems) is important in the light of these findings.
An extension of these trials to discrete tomography is also of interest.
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M.L. (eds.) Computational Intelligence in Music, Sound, Art and Design. pp. 69–
83. Springer International Publishing, Cham (2019)

8. Batenburg, K.J., Kosters, W.A.: Solving nonograms by combining relaxations. Pat-
tern Recognition 42(8), 1672–1683 (2009)

9. Batenburg, K.J., Palenstijn, W.J.: On the reconstruction of crystals through dis-
crete tomography. In: International Workshop on Combinatorial Image Analysis.
pp. 23–37. Springer (2004)

10. Blackwell, T., Kennedy, J.: Impact of communication topology in particle swarm
optimization. IEEE Transactions on Evolutionary Computation 23(4), 689–702
(2019)

11. Blackwell, T.: A study of collapse in bare bones particle swarm optimization. IEEE
Transactions on Evolutionary Computation 16(3), 354–372 (2011)

12. Butala, M., Hewett, R., Frazin, R., Kamalabadi, F.: Dynamic three-dimensional
tomography of the solar corona. Solar Physics 262(2), 495–509 (2010)

13. Candes, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete
and inaccurate measurements. Communications on pure and applied mathematics
59(8), 1207–1223 (2006)

14. Carazo, J.M., Sorzano, C., Rietzel, E., Schröder, R., Marabini, R.: Discrete to-
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