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On the etiology of aesthetic chills: 
a behavioral genetic study
Giacomo Bignardi  1,3,4*, Rebecca Chamberlain3, Sofieke T. Kevenaar2, Zenab Tamimy2 & 
Dorret I. Boomsma2

Aesthetic chills, broadly defined as a somatic marker of peak emotional-hedonic responses, 
are experienced by individuals across a variety of human cultures. Yet individuals vary widely 
in the propensity of feeling them. These individual differences have been studied in relation to 
demographics, personality, and neurobiological and physiological factors, but no study to date has 
explored the genetic etiological sources of variation. To partition genetic and environmental sources 
of variation in the propensity of feeling aesthetic chills, we fitted a biometrical genetic model to data 
from 14,127 twins (from 8995 pairs), collected by the Netherlands Twin Register. Both genetic and 
unique environmental factors accounted for variance in aesthetic chills, with heritability estimated at 
0.36 ([0.33, 0.39] 95% CI). We found females more prone than males to report feeling aesthetic chills. 
However, a test for genotype x sex interaction did not show evidence that heritability differs between 
sexes. We thus show that the propensity of feeling aesthetic chills is not shaped by nurture alone, but 
it also reflects underlying genetic propensities.

Aesthetic chills1 are embodied emotional-hedonic responses evoked by, among others, experiences with music2, 
poetry3, videos4, beauty in nature or art5, or even by eloquent speeches6. They are frequently self-reported by 
individuals during peaks of hedonic7–9 and emotional experiences2,10–14, such as sadness and happiness12,15, being 
moved14, feeling touched10, and the sensation of awe6.

An extensive body of research has documented the physiological and neurobiological correlates of aesthetic 
chills, although sample sizes tend to be small. Chills occur with somatic manifestations (but see16), with par-
ticipants reporting sidewise sensation of thrills in the upper dorsal part of the neck, or in the spine and back5, 
shivers down the spine17, tingling sensations in the arm18, and more general diffuse bodily reactions10. Bodily 
reactions that are associated consistently across studies with concurrent dynamic peripheral changes, mainly by 
increases in phasic skin conductance, and changes in heart rate, and less consistently with drop in temperature 
or increase in respiratory rate, occur before, during and after chill onset2,8,9,13,19–23. Besides being associated with 
self-reported and somatic manifestations, aesthetic chills usually correlate with activity in brain regions that play 
a role in the representation of visceral and somatic states24, such as the bilateral insula (Ins)3,7,25 and the anterior 
cingulate cortex7, as well with several other brain regions that overlap with general reward mechanisms in the 
basal ganglia3,7,9,25, and in the orbitofrontal cortex7, plus other areas such as the supplementary motor area7,25, 
the thalamus, and the cerebellum7,22,25.

While most humans across cultures seem to have the capacity to experience aesthetic chills1, individuals vary 
widely in the intensity and frequency with which they experience them2,6,26,27. To date there is some evidence 
that demographic, personality and neurophysiological differences can account for some of this variation. For 
example, one study reports older individuals are more prone to report chills than younger ones28, and others 
suggest females are more prone to report chills than males15,29. It is worth noting however that results on the 
association between demographic factors are inconsistent across studies, with the vast majority reporting no 
significant effects of age21,30 or sex2,21,31–33.

Additional explanations for individual differences in the propensity of feeling chills come from studies on 
personality differences. Individuals who score higher on Openness to Experience (OE) tend to experience more 
chills, as measured both by self-report26,27,33–35 and physiological measures26. However, as for demographic cor-
relates, it is also worth noting that the consensus on the relationship between personality factors and chills is far 
from being unanimous, with some suggesting higher correlations between emotional-aesthetic components of OE 
and the propensity of feeling chills33, and others suggesting cognitive components of OE to play a bigger role26. 
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The picture is further complicated by few studies that suggest other aspects of personality play a role too4,13,21, 
but, contrary to the association with OE, such studies have rarely been replicated.

Variation in the frequency of experiencing chills has also been accounted for by functional brain differ-
ences. For example, data obtained from resting-state functional Magnetic Resonance Imaging (rs-fMRI) on 1000 
subjects indicates that individuals more prone to experiencing chills have enhanced connectivity between the 
network composed by the Ins and the cinglulate cortex (anterior and posterior cingo-opercular network) with 
ventral default network, by the latter network with the anterior visual and the posterior temporal networks, by 
the lateral and the dorsal default networks, and by a decrease in functional connectivity between the cerebellum 
and the somatomotor cortex36. Further, preliminary evidence obtained on small samples of individuals, suggests 
that the individual tendency of experiencing chills also correlates with structural brain differences, such as higher 
tract volume between the superior temporal gyrus and both the anterior insula and the medial prefrontal cortex20, 
and resting physiological arousal, such as higher resting state skin conductance level30.

Beyond physiological correlates of chills, several psychological correlates, such as empathy31, modulation 
of negative affect21, and stress-related growth37 have been found in the past. For example, Johns et al.37 recently 
highlighted, in a moderately large sample, the relationship between proneness to feel aesthetic chills to the ten-
dency of approaching stressful events in a way that facilitates positive growth.

The etiological sources of variation in aesthetic chills, i.e., how much of the observed variation can be 
explained by genetic and environmental factors, is yet unknown. Such lack of knowledge about the etiology is not 
unique to aesthetic chills alone but is shared among many studies on aesthetics. To our knowledge, there are only 
a few empirical investigations addressing the etiological sources of variation underlying individual differences 
in aesthetic experiences/appraisal38–43, many of which specifically focused on narrow aspects of aesthetics (e.g., 
preferences). These studies applied the Classical Twin Model (CTM) to distinguish genetic from environmental 
influences. Two studies from the 1970’s (Barron38,39) focused on individual differences in aesthetic sensitivity 
–defined by the authors as the extent to which one individual’s aesthetic judgment is in line with the opinion of 
experts- for paintings and drawings in a small sample of twins. The authors found contradicting results, with 
non-trivial heritability estimates ranging from 55 to 67% in the first study39, and trivial estimates in the latter38. 
Most recent studies from Zietsch et al.43, Germine et al.41, and Sutherland et al.42 focused on aesthetic preferences 
for faces. Heritability estimates were 33% for specific preferences for dimorphic male traits43, and 22–30% for 
more general individual preferences for faces respectively. The only study we are aware of going beyond prefer-
ences, from Butkovic et al.40, found 40% of individual differences in flow proneness from music—a subjective, 
pleasurable, and fully absorbing experience—to be explained by genetic factors.

Here we aim to investigate whether genetic effects can account for individual differences in the propensity of 
feeling aesthetic chills. To partition genetic and environmental sources of variation, we fitted a biometric genetic 
model to twin data, exploring a genotype by sex interaction by testing for both quantitative and qualitative sex 
differences. This allowed to test for differences in the importance of genetic influences on aesthetic chills and to 
test whether the same genes are expressed in men and women. We analyzed Item 43 of OE, “Sometimes when I 
am reading poetry or looking at a work of art, I feel a chill or wave of excitement”44 as a proxy for the propensity 
of feeling chills. This item was selected, because explicitly asking individuals if they feel chills is a good indica-
tor of actual experienced chills measured in experimental settings11,25,26. For example, Colver and El-Alayli26 
found the subjective reports of the experience of chills correlate with chills measured by a combination of button 
presses and galvanic skin responses (r = 0.90). Kleipzig et al.25 found a modest correlation between self-reports 
of how often individuals experience shivers and report chills while undergoing fMRI (r = 0.63). Further, Item 43 
seems capable of tapping into individual differences which are highly shared among cultures, being the first or 
the second best predictor of OE1; to significantly correlate (r = 0.29) with chills measured by the co-occurrence 
of self-reported feelings and physiological changes26; and to capture neurophysiological differences between 
individuals36, by being significantly associated (0.09 ≤ r ≤ 0.11) with the strength of the functional connections 
between different resting state networks.

Methods
Participants.  The data were obtained from the Netherlands Twin Register (NTR), a longitudinal cohort 
established in 1987 by the department of Biological Psychology at the Vrije Universiteit Amsterdam. Data on 
the self-reported propensity of feeling aesthetic chills were collected by mailed surveys (see45 for details), col-
lected in 2004 (NTR survey 746) on 6760, in 2009 (NTR survey 847) on 10,176 and in 2013 on 9419 twins (survey 
1048). In all surveys, participant consent was obtained (after reading the consent form and study information, 
our institutional review board consider returning the survey as providing consent). Written informed consent 
was obtained from individuals when volunteering to become a participant in the NTR. The studies were in 
accordance with the declaration of Helsinki and were approved by the Central Ethics Committee on Research 
Involving Human Subjects of the VU University Medical Centre, Amsterdam, an Institutional Review Board 
certified by the U.S. Office of Human Research Protections (IRB number IRB00002991 under Federal-wide 
Assurance- FWA00017598; IRB/institute codes, NTR 03-180). For ANTR Survey 7: METC 03/181; for ANTR 
Survey 8: METC 2008/244; for ANTR Survey 10: METC 2012/433. After excluding 320 pairs, for which no data 
for the item 43 were available across surveys, and data from 5 twin pairs due to missing information on age for 
both twins, we analyzed data on 14,127 twins (9466 females), ranging from 14 to 97 years old, with mean age = 30 
(SD = 13). Our procedure for data selection when multiple surveys had been completed, is detailed below. Table 1 
shows the numbers of twins and the number of complete pairs (i.e., pairs in which both twins completed each 
survey) or incomplete pairs (i.e., pairs for which only one of the two twins completed the survey). Zygosity in 
same-sex pairs was based on genotyping for part of the sample and on survey information for others. In adult 
NTR participants, multiple surveys contain zygosity items (five items about resemblance and three items about 
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confusion by parents by parents and others) which were answered by the twins. In considering how well these 
items assess zygosity, we only included data from same-sex twins whose survey information had been completed 
before they received the results of their DNA tests. This resulted in a sample of 3512 twins. 60% of the data were 
randomly assigned to be in a training set and 40% in a testing set. The first available survey with zygosity items 
was originally analysed45. The outcomes of linear discriminant analysis of the training set were used to predict 
zygosity in the testing set (N = 1362). Zygosity prediction based on survey items was accurate in 95.9%. The item 
that distinguished best between MZ and DZ twins was “Were you each other’s spitting image as children?” (see 
Appendix. Zygosity in45 for details.) Test-reliability correlations for the twins who have completed more than one 
survey (N = 6923) were calculated for males and females separately. To avoid confounding effects due to familiar 
resemblances, data from one randomly selected twin per family were analyzed.

Materials.  Self-report of chills was obtained from the short version of the NEO-personality Five Factor 
Inventory (NEO-FFI44). The NEO-FFI consists of 60 items rated on a five-point scale (1–5, strongly disagree, 
disagree, neutral, agree and strongly agree). The Openness to Experience (OE) scale contains an item (43) 
“Sometimes when I am reading poetry or looking at a work of art, I feel a chill or wave of excitement” which was 
selected as a proxy for the propensity of experiencing aesthetic chills.

Procedures.  For 49% of participants, we had more than one survey. To maximize sample size, data from 
survey 7, 8 and 10 were merged into one data file by randomized selection of twin pairs per survey. The selec-
tion of pairs followed a number of criteria: (1) we prioritized complete answers from twin pairs, i.e., twin pairs 
were selected when both twins reported scores for the Item 43 on one of the surveys; (2) if one of the two twin’s 
response was missing for all three surveys, we randomly selected a survey with the response for the other twin; 
(3) if twins took part in different surveys, we randomly selected data for the pair from one of the complete sur-
veys. Of the reported combined sample size, 5132 were twin pairs who both completed the survey, of which 2790 
were MZ, 1306 were same-sex DZ (DZss), and 1036 were opposite-sex DZ (DZos) twin pairs.

Genetic analysis.  We analyzed the data using the CTM to estimate the proportion of variance explained by 
genetic and environmental factors. Within the CTM, the observed phenotypic variance (P) can be decomposed 
into additive genetic (A), dominance genetic (D), common environmental (C), or unique environmental (E) 
components49. The A component captures all additive effects of alleles across genetic loci, while the D compo-
nent captures non-additive and interactive effects of alleles at contributing genetic loci. For the environmental 
components, the C captures all environmental factors that are shared between twins. When twins are raised 
together, home-environment effects can be captured by C. The E component captures all factors that are non-
shared between twins nor explained by genetic factors. Thus, the E component captures all the unexplained 
unsystematic variance, comprising measurement errors.

The decomposition of the variance is possible because different genetic association exist for MZ and DZ twins. 
Since MZ twins derive from the same fertilized egg their genetic material is ~ 100% shared (but see50,51). MZ twins 
thus share 100% of both additive as well as dominance genetic effects. DZ twins, on the other hand, derive from 
two fertilized eggs and share only 50% on average of the additive genetic effects, and only 25% of the dominance 
genetic effects (see52). Thus, within the CTM, the correlation between the A component within MZ twin pairs is 
equal to 1, while within DZ twins is equal to 0.5. Similarly, the correlation between the D component within MZ 
twin pairs is also 1, while for DZ pairs is 0.25. Further, since the C component captures all shared environmental 
effects and the E component captures all non-shared effects, the correlation for both MZ and DZ twins are set to 
1 for the C component and 0 for the E component. As a consequence of these premises, when MZ twins resemble 
each other more than DZ twins on a given trait the heritability of such trait is considered to be non-trivial. Here, 
it is important to note that a model with four components cannot be statistically identified within the CTM, given 
that there is only enough information to estimate three components. Therefore only A, C and E or A, D, and E 
components can be estimated simultaneously52. A rule of thumb is to assess the twin correlations and fit an ACE 
model accordingly when the MZ correlation is not larger than twice the DZ correlation. In comparison, an ADE 
model is fitted when the MZ correlation is larger than double the DZ correlation. Components within a model 
(e.g., ACE) are then dropped (e.g., dropping C) to assess whether they contribute to phenotypic variation. If the 
model with fewer components (e.g., AE) fits the data as equally well as the model with more components, then 
the dropped component is evaluated to be not explaining any significant phenotypic variance.

To investigate sex differences in the etiology of the trait, we look into the difference in correlations between 
female, male, and opposite-sex twins. When the genotype affects phenotypic variation to the same extent in 

Table 1.   Sample (N) of monozygotic (MZ) and Dizygotic (DZ) twin pairs per survey. Combined sample is 
shown in bold. Number of complete pairs is shown between parentheses.

Survey N pairs MZ male MZ female DZ male DZ female DZ opposite sex

Survey 7 6195 931 2463 478 1137 1186

Survey 8 9100 1239 3242 747 1684 2188

Survey 10 8302 1161 2935 663 1505 2038

Combined 8995 (5132) 1279 (780) 2809 (2010) 813 (392) 1645 (914) 2449 (1036)
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men and women (no quantitative sex differences), we expect MZ male-male correlations to be equal to MZ 
female-female correlations and DZ male-male, and female-female correlations also to be similar. When there is 
no difference in the expression of the genes in men and women (no qualitative sex differences), we expect that 
the correlation in same-sex DZ twins is equal to that of opposite-sex DZ twins. Under the assumption of no sex 
effects, the amount of phenotypic variance is expected to be accounted for by a similar amount of A, D, C, and 
E, and similar genes are expected to influence phenotypic variation in both sexes53.

The models were specified in OpenMx version 2.17.254–56, in R-Studio, R version 3.6.2. Significance of the 
covariate (age), birth order effect and mean differences across zygosity were tested by a series of models nested 
inside the saturated model. The goodness of fit of the model was evaluated by 1) likelihood ratio, that is by the 
difference in minus twice the value of the log-likelihood (− 2LL) between the two models, which has a χ2 distri-
bution, with the degrees of freedom equal to the difference in the number of parameters, and by 2) the Akaike’s 
Information Criterion (AIC), by keeping the model with the lowest AIC as the best fitting model.

Genotype x sex interaction was tested for both quantitative sex differences (i.e., is the amount of variance in 
the propensity of feeling aesthetic chills accounted for by the same genetic effects across sexes?) and qualitative 
sex differences (i.e., are genes influencing variation in the propensity of feeling aesthetic chills the same in females 
and males?) in etiology. First, similarly to Vink et al.53, the significance of differences in means, variances, and 
covariances across sexes was tested by a series of models nested inside the saturated model. A sex-limitation 
model was evaluated to examine whether quantitative sources of etiological variation statistically differed between 
the sexes by constraining variance components to be equal for men and women. The goodness of the fit and the 
significance of the sub-models with variance components constrained to be equal across sexes were compared to 
the full model. Qualitative sex differences were tested by allowing genetic correlations (rg) between DZos to be 
freely estimated. The goodness of the fit and the significance were obtained by comparing the more parsimoni-
ous model in which rg within DZos was constrained to 0.5. Mean, standard deviations, 95% CI, and within twin 
pair correlations were estimated in a saturated model. A variance decomposition model was compared to the 
saturated model. Subsequently, we test nested models, which were obtained by constraining one of the genetic 
or environmental variance components to zero. Heritability estimates were obtained as the proportion of genetic 
variance over the phenotypic variance.

Results
Descriptive statistics.  Test–retest reliability was obtained for data from surveys 7 and 8 (5 years apart), 
surveys 8 and 10 (4 years apart), and surveys 7 and 10 (9 years apart). Single-item reliability estimates range 
from r(1488) = 0.58 ([0.54,0.61] 95% CI) and r(578) = 0.61 ([0.56,0.66] 95% CI) between survey 7 and survey 
8 for female and male respectively, r(2118) = 0.58 ([0.55,0.60] 95% CI) and r(830) = 0.52 ([0.47,0.57] 95% CI) 
between survey 8 and survey 10 for female and male respectively, and r(1078) = 0.58 ([0.52,0.60] 95% CI) and 
r(410) = 0.51 ([0.44,0.58] 95% CI) between survey 7 and survey 10 for female and male respectively (all p < 0.001, 
after Bonferroni correction).

First−born Second−born

1 2 3 4 5 1 2 3 4 5

0

500

1000

1500

Item 43

N
um

be
r o

f t
w

in
s

Sex
female

male

Figure 1.   Distribution of item 43 “Sometimes when I am reading poetry or looking at a work of art, I feel a chill 
or wave of excitement”. The left panel shows the distribution for the first-born twin of the pair from female and 
male respectively. The right panel shows the distribution for the second-born twin of the pair from female and 
male respectively.
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The distribution of the item 43 scores is given in Fig. 1 for first and second born twins, separately by sex. 
Individuals scale point frequency on the 5 Likert-scale ranged from 21% (“strongly disagree”) to 4% (“strongly 
agree”), with the majority of individuals (75%) distributed within the three central scale points. The finding that 
21% of the firstborn twins do not report aesthetic chills in the combined survey is in line with some previous 
random-population sampling studies on chills2,5,17,18,32.

Biometric modelling.  Twin correlations from the saturated model, were r = 0.39 ([0.33,0.44] 95% CI) and 
r = 0.35 ([0.32,0.39] 95% CI) for MZ male and MZ female respectively, r = 0.07 ([0.00,0.16] 95% CI) and r = 0.21 
([0.14,0.27] 95% CI) for DZ male and DZ female respectively, and r = 0.14 ([0.08,0.19] 95% CI) for DZos (also 
see Fig. 2a). These correlations and CI suggested that an AE model to be most appropriate for describing these 
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Figure 2.   Phenotypic twin correlations. (a) Correlations (r) within twin pairs, error bars represent 95% CI. (b) 
Modified from Vink et al.53. The dashed line represents the expected slope for the relationship between DZss and 
DZos r when genotype x sex interaction effects on phenotypic variation are not present. The dot represents the 
observed DZos pair correlation versus the DZss pair correlation, extracted from the Sex:DZss same covariance 
model. The horizontal and vertical error bars represent the 95% CI for the DZos and the DZss 95% CI. MZ 
monozygotic, DZ dizygotic, m male, f female, ss same-sex, os opposite-sex.

Table 2.   Saturated model: Model-fitting results from five groups (MZ male, MZ female, DZ male, DZ female, 
DZos) model. In bold best-fitting model. In Italics models that showed deterioration of the fit. Models are 
reclusively nested starting from the most parsimonious model. For example, the “‘Birth order: same mean 
and variance model’ is nested from the most parsimonious ‘Birth order: Same mean’, while ‘Birth order: Same 
mean’ is not nested in the ‘Covariate: no age’ model, since removing the covariate results in a deterioration of 
the overall fit. MZ monozygotic, DZ dizygotic, ss same-sex, os opposite-sex.

Model -2LL df χ2 Δdf p AIC

Saturated model 43,163.60 14,101 NA – – 14,961.60

Covariate

No age 43,418.67 14,102 255.07 1  < 0.001 15,214.67

Birth order

Same mean 43,165.21 14,105 1.61 4 0.80 14,955.21

Same mean and variance 43,167.16 14,109 3.55 8 0.89 14,949.16

Zygosity

Same mean 43,169.35 14,113 5.75 12 0.92 14,943.35

Same mean and variance 43,170.22 14,117 6.62 16 0.98 14,936.22

Sex

Same mean 43,277.28 14,118 113.68 17  < 0.001 15,041.28

Same variance 43,170.24 14,118 6.64 17 0.99 14,934.24

MZ same covariance 43,171.43 14,119 7.823 18 0.98 14,933.43

DZss same covariance 43,177.14 14,120 13.54 19 0.81 14,937.14

DZ same covariance 43,177.53 14,121 13.93 20 0.83 14,935.53
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data. Table 2 shows the goodness of the fit comparison with the full saturated model. One the one hand, remov-
ing age as a covariate resulted in a deterioration of the model fit (-2LL = χ2(1) = 255.07, p < 0.001). On the other, 
removing birth order and subsequently zygosity mean and variance differences did not deteriorate the overall 
model fit (all p ≥ 0.80), indicating that mean and variance were not different across the first and the second-born 
and across zygosity. As expected, constraining mean scores to be equal across sexes resulted in a deterioration 
of the fit (− 2LL = χ2(17) = 113.68, p < 0.001), However, constraining variance to be equal across sexes, as well 
as constraining covariance to be equal across DZss and DZos, did not deteriorate the overall fit of the model 
(− 2LL = χ2(17) = 6.64, p = 0.99 and − 2LL = χ2(20) = 13.93, p = 0.83, respectively).

Phenotypic correlations for DZss and DZos, extracted from the model in which covariance across sexes 
were constrained to be equal (Sex:DZss same covariance model), were r = 0.16 ([0.11,0.21] 95% CI) and r = 0.14 
([0.08,0.19] 95% CI) respectively. The pattern of correlations between DZss and DZos indicates an absence 
of evidence of genotype x sex interaction effects (see Fig. 2b). Table 3 shows the results for the sex limita-
tion models. The full AE model was fitted to data from males and females, with separate estimates for means 
and variance components. As expected, the mean scale point for item 43 was found to differ across sexes 
(− 2LL = χ2(1) = 106.32, p =  < 0.001). However, constraining DZos rg to be equal to 0.5 did not deteriorate the 
model fit (− 2LL = χ2(1) = 2.16, p = 0.14). This indicated etiological sources of variation to not qualitatively dif-
fer across sexes. Moreover, constraining variance components across sexes to be equal did not deteriorate the 
model fit (− 2LL = χ2(3) = 2.19, p = 0.53). This indicated etiological sources of variation to not quantitatively differ 
across sexes either.

Phenotypic correlations, obtained from the most parsimonious model Table 2, were r = 0.37 ([0.33, 0.40] 95% 
CI) within MZ and r = 0.15 ([0.11,0.19] 95% CI) within DZ twin pairs. Phenotypic correlations suggested once 
more the AE model as the most appropriate model to describe the data.

The final genetic univariate model fitting results and comparison are presented in Table 3. Constraining vari-
ance components A, and A and C to zero respectively deteriorated the model fit (all p ≤ 0.001). As expected, the 
final model AE (Fig. 3), with mean estimates adjusted for age (βage = 0.01) equal to 2.03 for males and 2.25 for 
females (SD = 1.13), was the most parsimonious well-fitting one (− 2LL = χ2(1) ≤ 0.001, p ≥ 0.999). As shown in 
Table 3, the heritability estimate for the propensity of feeling chills is 36% (A = 0.36 [0.33, 0.39] 95% CI), while the 
remaining 64% of the phenotypic variance (E = 0.64 [0.61, 0.67] 95% CI) can be accounted for by unsystematic 
effects, such as environmental experience unique to the individual and measurement errors.

Discussion
This research investigates and reports genetic and environmental sources of variation for the propensity of feel-
ing aesthetic chills. We analyzed the variance of the NEO-FFI Item 43: “Sometimes when I am reading poetry or 
looking at a work of art, I feel a chill or wave of excitement”, which is a proxy measurement for the propensity of 
feeling aesthetic chills. We found that 36% of the variance in feeling aesthetic chills can be explained by additive 
genetic factors and the remaining 64% by environmental sources of variation. If we consider these results in the 
view of the test–retest reliability, which we obtained for data from surveys 4, 5 and 9 years apart, which ranged 
from around 0.51–0.61, the environmental variance reflects to a substantial extent reliable non-genetic causes 
of individual differences.

A lack of shared environmental sources of variation in the propensity of feeling chills should not come as a 
surprise, given that variation in most of the psychological human traits investigated so far show no relationship 
with shared environmental effects57. Moreover, we confirmed, in the largest sample used to investigate the role of 
demographic factors on chills to date, that females and older individuals are more prone than males and younger 
individuals to experience aesthetic chills. This is in line with some of the results previously obtained from the 
general population15,28,29. Additionally, it is also important to note that the directionality of the sex effect as found 

Table 3.   Biometric model: model-fitting results for the sex limitation and the univariate models. In bold 
best-fitting models. In Italics models that showed deterioration of the fit. h2 heritability estimate; c2 shared 
systematic environment estimate, e2 unique unsystematic environmental estimate. The expected AE sex 
limitation model and the full univariate ACE model are tested against the full saturated model. Nested sex 
limitation and univariate models are tested against the expected AE and the full ACE respectively.

Model minus2LL df χ2 Δdf p AIC h2 c2 e2

Sex limitation model

AE 43,177.56 14,119 – – – 14,939.56 – – –

AE: mean 43,282.44 14,120 104.88 1  < 0.001 15,042.44 – – –

AE: DZos rg 43,179.72 14,120 2.16 1 0.14 14,939.72 – – –

AE: variance 43,179.75 14,122 2.19 3 0.53 14,935.75 – – –

Univariate biometric model fitting

Saturated model 43,163.60 14,101 – – – 14,961.60 – – –

ACE 43,179.75 14,121 16.14 20 0.71 14,937.75 .36 .00 .64

AE 43,179.75 14,122  < 0.001 1  > 0.999 14,935.75 .36 – .64

CE 43,222.81 14,122 43.07 1  < 0.001 14,978.81 – .30 .70

E 43,621.39 14,123 441.64 2  < 0.001 15,375.39 – – 1
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in this study was also consistent, as far as we know, with all of the studies that reported non-significant trends 
toward females reporting more frequent chills than males2,31,33.

We would like to note that, although apparently consistent with the separation call phenomena proposed by 
Panksepp15, our results are only partially supporting his hypothesis. Panksepp argued that chills are a geneti-
cally influenced trait that “resonate with ancient emotional circuits that establish internal social values”15, and 
that they probably evolved over time from a need for physical closeness induced by the separation between a 
mother and her infant. Such mother-infant relationships should have produced an enhanced selective propensity 
of experiencing chills in females. Our findings that variation in chills is influenced by genetic factors, and that 
females are more prone to experience chills, therefore partially support this hypothesis. However, our findings 
that no qualitative, nor quantitative, genotype x sex interaction effects affect variation in propensity on aesthetic 
chills do not support the separation-call hypothesis. Indeed, in line with results on a majority of other human 
traits53,58, our results are consistent with the hypothesis that the same genetic sources of variation in males and 
females influence variation in the propensity of feeling aesthetic chills.

We believe our results bring into focus questions that go beyond the descriptive nature of this study. Williams 
et al.36 argued that the enhanced connectivity between sensory and salience/default networks as found in their 
study, based on resting-state fMRI data of 1000 subjects from the Human Connectome Project (HCP), indicates 
that individuals who are more prone to experience chills from art and poetry, as measured by the item 43, are 
also individuals that can better integrate sensory information with internal emotional experiences. Moreover, 
preliminary evidence on a small sample recently indicated that augmenting sensory signals that mimic the physi-
cal experience of aesthetic chills can enhance individual social-affective cognition (e.g., empathy and pleasure;59).

Yet, how can one reinterpret such results in light of our present findings? Is it environmental exposure over 
one’s own lifetime to art and poetry that is causally shaping the connectivity as seen in Williams et al.36 or is it 
more a priori predisposition that makes individuals better at integrating sensory information with their internal 
states, or alternatively more sensitive to bottom-up somatosensory signals, that makes them more likely to reach 
such peaks of emotional-hedonic experiences? Clearly, further genetic informative studies, such as cross-trait 
cross-twin studies displaying both proneness of feeling chills and, for example, functional or structural brain 
metrics, are needed to answer these questions. However, our finding that approximately one-third of the variance 
in the propensity of feeling chills can be explained by genetic influences sheds some light on such questions.

Further, it is important to consider the limitations of our study. As other studies investigating complex traits 
in large samples60,61, we were constrained by what measurements were available. This reduced the complexity 
of the variation in the propensity to feel aesthetic chills to variation in a single item. Additionally, it is worth 
noting that the NEO-FFI item 43 explicitly asks for the propensity of feeling chills, or wave of excitement, only 
from art or poetry. As such, Item 43 neglects the possibility of drawing any distinction between different types 
of chills25,62,63 and omits many other possible causes of chills. This limited our capacity to obtain a more nuanced 
estimate of aesthetic chills. For example, although a previous study found the item 43 to be correlated with the 

Figure 3.   Best fitting AE biometric model. Final model with parameters Pf, Pm, β0, and latent factors A and 
E. The Squares represent twin (T) 1 and 2 observed phenotypes (P) in aesthetic chills. The triangle represents 
the mean estimates. The circles represent the additive genetic (A) and the environmental (E) factors, with 
their associated (unstandardized) variance. The arrows pointing to the square represent the genetic and 
environmental path coefficients. These were constrained at 1 and the variance of the latent factors was estimated. 
The double arrows across the variance component A represent the expected covariance within MZ and within 
DZ twin pairs. P = grand means for females (f;Pf = 2.25) or males (m; Pm = 2.03); the regression for age is 
βage = 0.01.
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number of chills experienced from music26, further studies are still needed to claim that etiological sources of 
variation influence the propensity of feeling chills from music specifically. Moreover, even though the test–retest 
reliability for the item 43 may be considered good for a single item, it was not perfect. However, if this had any 
impact on our results it was through increasing the measurement error, which by definition is included in the 
estimate for the unsystematic environmental sources of variation. As such, our estimates on the effect of addi-
tive genetic variation should be considered to be, at worst, a lower bound for the real effect of genetic influence 
on the propensity of aesthetic chills. Another consideration is that the study of the etiology of a trait detached 
from any personality background represents a rather unorthodox approach to etiological studies. Our approach 
is motivated by the specific interest to what item 43, as highlighted above, pertains to be, that is, variation in 
the proneness to aesthetic chills and not by its relative weight on OE. Although not common, such an approach 
(i.e., biologically informative analysis at the item level) has found support in recent literature36,60,64. For example, 
Franic et al.64 showed, in a partially overlapping sample to the one used in this study, the role of independent 
genetic contribution on the variation of single items by finding evidence against the hypothesis of personality 
factors as full mediators of genetic effects. Further, Williams et al.36, while exploring the association of Item 43 
with the strength of the functional connections between different resting-state networks, found that an item 
being part of a broader personality factor can be more strongly associated with variability in a biological trait of 
interest than a personality factor itself.

Finally, it is important to note that it would be premature to reach any conclusions regarding the putative 
mechanisms underlying the genetic factors influencing aesthetic chills on the basis of the findings of this study 
alone. Some theoretical work makes predictions regarding biological mechanisms that might contribute to the 
experience of aesthetic chills. For example, under the knowledge-instinct theoretical perspective, positive chills 
emerge when the similarity between sensory information and the a priori mental representation of such infor-
mation is maximized, a phenomenon that has been attributed to the modulation of the activity in the neural 
circuitry playing a role in the experience of chills, mainly via opioidergic or/and dopaminergic transmission65 
(with contradictory evidence either supporting5 or not supporting the first66 and more consistent evidence sup-
porting the second9,67, respectively). It would be tempting to speculate on the role that genes coding for proteins 
playing in such neuromodulatory mechanisms have on the genetic variation as found in this research. However, 
the recent past taught us that heritability estimates from twin studies are usually explained by thousands, if not 
hundreds of thousands of tiny genetic effects, even for traits for which the causal chain from genes to behavior 
seems to be shorter than expected (see for example68,69).We thus warn against any speculation on single putative 
causes, and thus call for further genetic informative studies. Genome wide association and functional annotation 
studies would be especially useful in exploring the whole genome in order to inspect which genetic variations 
can be associated with variation in the propensity of aesthetic chills, and to inspect whether genetic variations 
associated with the propensity of feeling chills are enriched in brain tissue or elsewhere in the body. Further, 
although our study focused solely on the propensity of feeling aesthetic chills, its relationship with any other 
item is not uninteresting per se. For example, item 43 shares its etiology with other OE (e.g., “Intrigued by pat-
terns in art and nature”) and non-OE (e.g., “Goes to pieces under stress” and reverse coded “Rarely fearful or 
anxious”, “Seldom sad or depressed”) personality items, making it an interesting candidate for further descriptive 
associations studies.

Conclusion
Aesthetic chills are a somatic marker of peak emotional hedonic responses. Previous inconsistent evidence sug-
gested that demographic, and somewhat more consistent evidence has suggested that personality and neurobio-
logical factors, can account for part of the observed variation in feeling chills. Here, we confirmed that females 
are more prone than males, even if to a small degree, to experience aesthetic chills and that older individuals 
tend to report experiencing chills more than younger ones. Critically, we revealed that genetics play a role in 
the individual differences in the propensity of feeling chills, thus indicating that the tendency of experiencing 
hedonic peaks of emotional reactions to art and poetry is not shaped by nurture alone, but is also influenced by 
genetic predispositions, as thousands of other human traits are57.

Data availability
The data that support the findings of this study are available from Netherlands Twin Register (NTR; www.​tweel​
ingen​regis​ter.​org) but restrictions apply to the availability of these data, which were used under license for the 
current study, and so are not publicly available. Readers interested in having access to the data can consult 
Ligthart et al.45. The code used to analyze the data is available at https://​github.​com/​giaco​mobig​nardi/​h2-​aesth​
etic-​chills.
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