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Abstract—Worldwide, it is forecasted that 131.5 million people
will suffer from dementia by 2050, and the annual cost of
care will increase from 818 billion USD in 2016 to 2 trillion
USD by 2030, with burgeoning social consequences. Given a
timely prediction of a dementia outcome in patients, appropriate
mitigating interventions can be applied to reduce risk. However
such prediction facilities need to be made available to wider
populations, and these facilities cannot rely on specialised, costly
and invasive testing (such as neuroimaging, cerebrospinal fluid
collection, etc which constitute important instruments used in
diagnosis), for interventions to have a meaningful quantitative
impact. Hence an emerging need exists for the wider application
of prognostic measures which can be deployed using lower cost
data sources such as longitudinal records routinely collected by
general practices. This paper proposes an efficient prediction
modelling approach to the risk of dementia, using CPRD data
collected from GP practices in UK, and based on machine
learning in particular the Gradient Boosting Machines model
combined with a survival model such as the Cox Proportional
Hazard, encapsulated in a semi-supervised learning and model
calibration methodology.

Index Terms—dementia risk, CPRD, primary care, prediction
modelling, machine learning, classification, gradient boosting
machines, Cox proportional hazards, model calibration

I. INTRODUCTION

In 2016 there were 47 million estimated dementia sufferers
worldwide, with a forecasted increase to 131.5 million by 2050
[18]. The cost of dementia estimated to 818 billion USD in
2016 is expected to increase to 2 trillion USD by 2030 [19].
For comparison, dementia has currently a health and social
care cost higher than cancer, stroke and chronic heart disease,
taken together.

Dementia diagnosis is problematic because there is currently
no standardized dementia test. Moreover, the diagnosing pro-
cedure is a highly specific task based on the different sub-types
of dementia [1]. Additionally, those who are diagnosed with
mild cognitive impairment (MCI), while having a substantially

higher risk of developing dementia [2], can either become
cognitively stable or return to a healthy cognitive state [3].
Such complexities have contributed to a large proportion of
people with dementia to go undiagnosed. The prevalence of
undetected dementia is high globally, according to [17] which,
based on reviewing 23 selected studies, concluded that the
pooled rate of undetected dementia was 61.7% (95% CI 55.0%
to 68.0%). Moreover, even with a successful dementia diagno-
sis, there is currently no cure [1]. As current thinking suggests
that about a third of dementia cases could be prevented, the
development of effective methods is crucial for early at-risk
identification and proactive interventions [4], [18].

Machine learning implementation in the healthcare sector
can provide an efficient means of using complex information
to accurately predict diagnoses. The size and convolution of
DNA sequences have been increasing in recent years; however,
supervised machine learning methods, like a Bayesian Hidden
Markov model, have been used to interpret DNA sequences
for cancer prediction [5]. With the goal of moving away
from a ‘one-size fits all’ approach to dementia prediction, the
inclusion of machine learning methods enables the utilization
of various data sources and predictive variables [9]. There
are hundreds of possible predictors, but they can generally
be categorized based on the following applicable models:
neuropsychological based models, health-based models, multi-
factorial models and genetic risk scores [9]. Such models have
been applied in various ways in relation to predicting demen-
tia. The use of magnetic resonance imaging, in combination
with multiplex neural networks, has been used to discriminate
healthy from progressive mild cognitive impairment patients
(pMCI), based on the structural atrophy of the brain because of
Alzheimer’s [6]. General practice patient records in UK have
been used to develop a risk score model for estimating how at
risk an individual may be of developing dementia [22]. Genetic
markers have been used to create a polygenic hazard score test



whose results indicate how likely a person is to developing the
Alzheimer’s type of dementia over the course of the study [7].
Positron emission tomography scans and the regional analysis
of the protein amyloid- β, have been used by a Random Forest
classifier to identify patients with age-related stable mild MCI
and pMCI [8]. Blood metabolites measurements data samples
can be used to predict Alzheimer’s dementia with powerful
predictive models such as XGBoost, at least as well as with
using the well-established but much more invasive to measure
biomarkers based on the cerebrospinal fluid (CSF) [16].

Risk scores may be a very useful tool that can enable
primary care facilitators to have an estimation of how at-risk
an individual is of developing dementia. Once an individual
is identified with a large enough probability of developing
dementia, then proactive lifestyle interventions can be adopted
to curb the development of this disease. Proven methods, such
as those described in the Finnish Geriatric Intervention Study
to Prevent Cognitive Impairment and Disability (FINGER),
have illustrated how multidomain interventions (diet, exercise,
vascular monitoring and cognitive training) could improve
primary and secondary cognitive performance with age and
reduce the risk of dementia [10]. This can be further extrapo-
lated on with the advent of a mobile application that has users
provide their information and yields the resulting risk score
with intervention suggestions [11]. The focus on risk score
methodology development has resulted in a widespread effort
with more than 50 different dementia risk scores in 2010 [12].
However, a systematic review of these models has concluded
that no single method could be recommended for a generalized
screening procedure due to methodological weaknesses of the
existing studies, concerning in particular population biases and
lack of external validation [13]. This has spurred an emphasis
on analysing existing research to inform future work’s feature
selection, for instance, the inclusion of predictors such as
depression, anxiety, cognitive symptoms and others that are
positively associated with dementia [14]. A significant part of
such predictors can be retrieved from routine primary care data
records.

In this paper we used primary care data records of patients
in UK, available from the Clinical Practice Research Datalink
(CPRD) [39], to propose an efficient prediction modelling
approach to the risk of dementia based on machine learning, in
particular the Gradient Boosting Machines model, combined
with a survival model such as the Cox Proportional Hazard.
In our framework these models are encapsulated in a semi-
supervised learning procedure to make partial use also of a
fraction of our dataset which is unlabeled with a diagnosis due
mostly to censoring. We predict the risk of dementia occuring
within the 5 years following the year an individual formally
entered the study (their ”index year”), and being between 60
and 79 years of age.

The main lines of developing our prediction modelling
approach are:

• Working with noisy, highly dimensional data extracted
from CPRD [39], where the proportion of dementia

observations in uncensored data (patients who received
a diagnosis) is 1.5%.

• Using Cox Proportional Hazards [24] (Cox PH) and
Gradient Boosting Machines (GBM) [25], to obtain com-
parative results for the dementia risk prediction. Since
Cox PH is a much lesser computationally expensive
method when applied and compared to GBM on the
large CPRD data sample used in this study, comprising
1,126,079 rows and 595 variables in its pre-processed
form, we use the most important variables as indicated by
the Cox PH cheaper model to select features and simplify
the dataset before the application of the GBM method.

• Making use of (right) censored data (as patients who left
the study prematurely and hence who have an undefined
dementia outcome - comprising about 42.78% of the
data) in non-linear models to develop a semi-supervised
prediction modelling approach. We augment the training
set, over a number of iterations, with an optimum subset
of the censored observations which have been classified
by GBM, in the semi-supervised approach.

In the remainder of this paper, Section II discusses the
methodology that we propose, including the description of the
CPRD dataset and its preprocessing for the analysis, and our
prediction modelling approach based on Gradient Boosting
Machines, Cox Proportional Hazards and semi-supervised
learning. In Section III we present our prediction modelling
approach’s results, covering also the predictor importance,
and the resulting model calibration. Section IV concludes the
paper.

II. DATA AND METHODOLOGY

A. Clinical Practice Research Datalink (CPRD)

In this research we have used patient records from the Clin-
ical Practice Research Datalink CPRD [39], which provides
extracts of anonymised longitudinal patient data collected from
GP practices in the UK, encompassing 60 million patients.
Through CPRD, primary care information can be further
enriched and extended through linkages with other patient data
resources such as hospital records databases, but this latter
resource was not available nor intended to be used in this
study, as the latter focuses on medical data widely available
on the general population to be used to inform the computation
of the risk of dementia.

B. Description of the CPRD dataset

The dataset used in this study comprises 13,545,937 rows
representing between 6 and 18 years of longitudinal history,
plus the most recent predictor information known prior to the
earliest year, for each of 1,126,079 patients. There are 595
variables of which 18 are either for identification purposes or
are response variables, the remainder being predictors.

The predictors can be grouped as:
• A set for each of 52 “events” which can be reported by a

GP practice in a given year, and which relate either to a
medical condition or a prescribed medicine (e.g. angina,
aspirin). The main predictors for each event are concerned



with: (a) Is the event reported in this year? (b) Has the
event been reported in any previous years? (c) What is
the age of the patient when the event was first reported?

• Measurements of Body Mass Index (BMI), blood pres-
sures and cholesterol level for the year.

• Information about smoking status and living arrange-
ments for the year.

The response variables are demcase1, demcase3, demcase5,
and demcase10, indicating whether or not a patient was diag-
nosed with dementia within 1, 3, 5, or 10 years, respectively.
This work focuses on predicting dementia within 5 years,
hence only demcase5 is kept as response variable in the study.

Patients are grouped in 418 GP practices.

C. Data transformation and enhancement
In this study the CPRD data was used to predict the

risk of dementia occuring within 5 years. As the original
data comprised multiple records per patient, capturing the
longitudinal aspects of the data, for the purpose of this analysis
we flattened the data, including new variables devised via
transformations such as the following:

• Calculation of a new weighted sum predictor for event
type; acute events (e.g. stroke) are weighted higher later
in time, as opposed to chronic events (e.g. diabetes) which
are weighted equally over time.

• Mapping of weighted sums on to new predictors for
dementia comorbidities, and risk factors identified by
Public Health England in [26].

• Mapping of weighted sums and other predictors to a new
fraility predictor based on the Electronic Frailty Index
[27].

• Calculation of a new smoking severity predictor based on
weighted smoking history.

• Creation of 4 new predictors based on a longitudinal
analysis of patients’ living arrangements (latest value
known, mode, latest year recorded, number of missing
values).

• Devising new predictors counting missingness of values
in variables per patient (over years).

• Imputing missing values per patient via interpolation for
BMI, blood pressures and cholesterol level (i.e. horizonal
imputation).

• Devising new predictors capturing the change over time
for each of BMI, blood pressures and cholesterol level as
per methodology proposed in [28], based on minimum,
maximum, mean, variance, and velocity.

• Devising new predictors containing the means of number
of consultations per year and polypharmacy count per
year.

• Devising new predictors based on the mode (over time) of
categorical interpretations of several numeric predictors.

This process led to building 2 datasets with 508 variables
(12 of which were for identification or response purposes),
namely:

• An uncensored dataset containing 644,306 patients from
406 GP practices, of which 9,656 were positive cases

(i.e diagnosed dementia within the 5 years) and 634,650
controls.

• A censored dataset containing 481,773 patients from 406
GP practices, which left the study for which no diagnosis
was available (this is unlabelled data, part of which to use
in our semi-supervised approach).

D. Prediction models

As previously mentioned, the main two models that our
predictive modelling approach relies on are Cox Proportional
Hazards (Cox PH) [24] and Gradient Boosting Machines
(GBM) [25].

Cox PH is a form of survival based models and is used
to predict a probability of a hazard (e.g. dementia diagnosis)
occuring at time t, based on the number of survivors at
time t. In this regard it is able to use censored observations
in the model training. Cox PH models have linear decision
boundaries obtained through induced predictor coefficients,
in a similar manner to certain other forms of linear models,
and from which explicit risk factors can be obtained (hazard
ratios). The “proportionality” in Cox PH is based on the
assumption that predictor coefficients don’t vary over time.
The Cox PH hazard function h(t) can be written as:

h(t) = h0(t)e
(β0+β1x1+β2x2+...+βnxn) (1)

where h0(t) is the baseline hazard function, h(t) is the
hazard function, and {βi} are the intercept and predictor
coefficients computed by the partial likelihood maximisation
algorithm.

Stochastic Gradient Boosting Machines (GBM) [25] are
models built from aggregations of a sequence of decision trees,
each of which attempting to predict the residuals produced by
the previous tree. The effect of each tree on the model as a
whole is moderated by a learning rate.

f̂(x) =

M∑
m=1

λf̂m(x) (2)

where λ is the learning rate, f̂m is the prediction of the
mth tree, of the residual produced by the previous tree in the
sequence, and f̂ is the final prediction. For a classification
problem, as we have here, a logistic function is used to
transform final predictions into class probabilities.

E. Feature selection and data pre-processing

The approach was constrained by the need to create training
and test sets that were acceptable to the different technologies
underpinning the Cox PH and GBM models we deployed. For
example, GBM could handle missing values and categorical
variables but Cox PH could not. Feature selection and model
pre-processing were applied independently for each model
building iteration, within each Monte Carlo sample [29] (i.e.
each training and test set split).

We handled missing values in smoking and living ar-
rangements by assigning a specific string value indicating
missingness prior to dummification (one-hot encoding). All



predictors were scaled and centered by z-normalisation, and
we removed those which were highly correlated with other
predictors.

We used elastic net [30] regularized Cox PH to select
features for GBM, using cross validation to find the optimum
elastic net mixing parameter (α) and regularisation weight (λ),
based on best Area Under the Curve (AUC) [37], when the
model is applied to a large sample of the raw (i.e. before class
balancing) training set.

F. Class balancing
The data had very adverse class balance with only 1.5% of

uncensored patients having a dementia outcome. No benefit
(in terms of AUC on the test set) accrued from the various
over-sampling, under-sampling and mixed regimes (including
Synthetic Minority Oversampling Technique [36]) that were
tried; the most pragmatic approach was to use all dementia
outcomes in the training set, and sample the control obser-
vations such that the dementia cases constituted 10% overall,
broadly.

G. Model structure and content
Each Monte Carlo sample yielded an independent set of

results from 1 training and test set sample (from uncensored
data); hence model stability could be inferred from the vari-
ance in results metrics, and model performance from the
means.

For each sample, up to 4 attempts were made to incremen-
tally augment the training set with a selection from the set of
censored observations, which had been classified by the GBM
model built in each attempt. We used Positive Predicted Value
(PPV) and Negative Predicted Value (NPV) metrics (as per
Kuhn and Johnson [38]) to establish criteria for selection:

PPV =
Se× Pr

Se× Pr + (1− Sp)× (1− Pr)
(3)

NPV =
Sp× (1− Pr)

Pr × (1− Se) + Sp× (1− Pr)
(4)

where Sp is Specificity, Pr is prevalence (of the positive
class) in the population, Se is Sensitivity

The semi-supervised methodology followed the following
steps:

1) A penalised Cox PH model was built from the (class
balanced) training set

2) A GBM model was built using the same training set and
the predictors selected by the Cox PH model

3) The GBM model was used to make predictions on a
large sample of the current level of augmentation of
the training set prior to class balancing (call this the
“post procesing set”). The post processing set probabil-
ities were used to search for optimum PPV and NPV
thresholds, which were then used to select observations
from the censored data set

4) From the post processing set, a “high PPV” probability
threshold was found such that the number of observa-
tions with probabilities above that threshold was equal

to the number of correct dementia predictions in that
set, based on the Youden [32] threshold. The rationale
was that a good proportion of those above the high PPV
threshold would be correct

5) From the post processing set, a probability threshold
corresponding to the maximum PPV was obtained

6) An “optimum PPV” probability threshold was sought,
based on a scaled mid-point between the maximum PPV
and the high PPV (the optimum scaling factor was 0.9)

7) The number of observations with probabilities above
the optimum PPV threshold in the post processing set,
was multiplied by the ratio of control to dementia
observations in that set, to give an externally calibrated
number of eligible control cases, n

8) An “optimum NPV” probability threshold was set from
the nth highest probabilty in the post processing set

9) Classified observations from the censored set with prob-
abilities ≤ the optimum NPV threshold, and > the opti-
mum PPV threshold were moved from the the censored
set to augment the training set and repeat the process;
unless insufficient observations remained in the censored
set.

We used Youden’s method of determining a probability
discrimination threshold since this yields the point on the ROC
curve furthest from the main diagonal, which corresponds to
a random guess model.

Platt scaling [33] and isotonic [34] calibration models were
built on predicted post processing set probabilites from the
best performing Cox PH and GBM models in each training
set augmentation iteration. The calibration models redistribute
predicted probabilities according to observed probabilities (in
this case, dementia outcomes of 1 or 0), so as to to improve
their (external) calibration. In a well calibrated model the
probability distibution should reflect the population, e.g. a
probability of around 0.7 should apply to around 70% of
observations. For each best Cox PH and GBM result the
calibration model with a slope nearest to 1 was chosen; this
model was used to calibrate test set probabilities, from which
the final performance metrics could then be obtained.

Note that a requirement was for models to be able to
generalize across GP practices (which vary in record keeping
procedure and coding, and in demographic and other factors),
hence entire GP practices were allocated either to training or
test sets.

H. Model tuning

Cox PH models were tuned using elastic net mixing pa-
rameter, α, values of 0, 0.25, 0.5, 0.75 and 1, where the
regularization penalty for an estimated coefficient, β̂, in the
penalized partial maximum likelihood algorithm (“partial”
because the baseline hazard function, h0(t), is excluded from
consideration in Cox regression), is defined as:

1− α
2

λβ̂2 + αλ|β̂| (5)



Thus with α = 1 regularization is entirely L1 (Lasso)
and with α = 0 regularization is entirely L2 (Ridge); L1
conferring the ability to shrink coefficients to 0 and thus reduce
dimensionality.

For a given value of α, the inner cross validation process
computed and selected from a range of regularization weights,
choosing a value for λ that maximised partial likelihood .

The best Cox PH model was selected based on the highest
AUC when applied to the post processing set.

GBM models were tuned by finding the smallest log loss
in a random search of 25 models in a hyperparameter space
of 348 models, using 3 fold cross validation. The variable
hyperparameters were: learning rate (0.01, 0.005, 0.1, 0.3),
learning rate annealing factor (0.99, 1), maximum tree depth
2, 5, 10), row sampling rate (0.1, 0.4, 0.632, 1.0), column
sampling rate (0.1, 0.3,0.7, 1.0).

I. Hardware and software

Models were built and evaluated using parallel processing
(wherever possible) on a data analytics cluster of 11 servers
with Xeon processors and 832GB RAM. The software was
predominantly R using packages: tidyverse, survival, glmnet,
h2o, calibration, pROC.

III. RESULTS

All results were obtained from a held-out test set which
was not exposed to any model training processes. Cox PH and
GBM results given are from the same Monte Carlo iteration
sample and hence are directly comparable.

A. Predictor importance

Since it is not meaningful to estimate coefficient standard
errors for penalized models, we have not used hypothesis
testing to validate these results; however since all predictors
were scaled and centered it is reasonable to use the (abso-
lute) magnitude of an induced coefficient as an indicator of
importance for Cox PH, as given in table I.

For GBM, predictor importance is determined by the impact
to the model’s squared error each time the predictor is used
for a split; importance is shown as a fraction or percentage as
per table II.

B. Discrimination and calibration

Tables III and IV give model performance metrics for Cox
PH and GBM; we have included the Kappa statistic to give
a measure of distance from expectation, and observe that this
is low due to the unfavourable balance of dementia cases to
controls. The final in both tables III and IV gives calibration
slope and intercept; note that the column headings ”LCI”
and ”RCI” denote left and right 95% confidence interval
boundaries.

TABLE I
TOP 20 COX PH COEFFICIENTS

predictor mean sd
yb-age 0.9851 0.0217
add-age 0.1400 0.0285
YC-0-bmi-cat.normal 0.1226 0.0063
frailty 0.1068 0.0209
bmi-velocity-mode -0.1057 0.0056
diabetes-age 0.1053 0.0272
dna-sum 0.0937 0.0166
YC-0-bpr-cat.normal 0.0771 0.0063
Resid-shelter-care-home 0.0724 0.0076
bmi-min -0.0704 0.0036
antichol-sum 0.0680 0.0083
diabetes-cat-age.x-60-plus -0.0625 0.0184
tca-age -0.0614 0.0227
stroke-chronic 0.0589 0.0091
headinj-chronic 0.0530 0.0071
hyperten-sum -0.0516 0.0184
diastolicmeandi-l20-mode.myNA 0.0487 0.0223
ae-sum 0.0473 0.0028
h2rec-sum -0.0471 0.0123
bpr-cat-mode.normal 0.0465 0.0274

TABLE II
TOP 20 GBM PREDICTOR IMPORTANCES

predictor mean sd
yb-age 0.3260 0.2104
add-age 0.0589 0.0129
antihyp-age 0.0456 0.0199
aspirin-age 0.0362 0.0108
ssri-age 0.0307 0.0272
bmi-min 0.0263 0.0039
nsaids-age 0.0253 0.0169
homev-sum 0.0246 0.0078
Resid-shelter-care-home 0.0222 0.0176
consultcount-mean 0.0180 0.0067
pulsepress-velocity-max-abs 0.0165 0.0083
frailty 0.0158 0.0078
hyperten-age 0.0149 0.0130
polypcount-mean 0.0145 0.0094
stroke-chronic 0.0135 0.0065
diastolic-min 0.0133 0.0105
dna-sum 0.0121 0.0027
tca-age 0.0112 0.0044
diabetes-age 0.0095 0.0019
antichol-sum 0.0093 0.0061

TABLE III
COX PH PERFORMANCE METRICS

metric mean sd LCI RCI
AUC 0.8242 0.0050 0.8145 0.8339
Youden 0.0143 0.0009 0.0126 0.0160
Sensitivity 0.7890 0.0186 0.7526 0.8254
Specificity 0.7193 0.0148 0.6903 0.7483
Accuracy 0.7204 0.0143 0.6923 0.7485
PPV 0.0417 0.0014 0.0388 0.0445
NPV 0.9955 0.0003 0.9949 0.9961
Kappa 0.0517 0.0024 0.0470 0.0565
C-intercept 0.0004 0.0005 -0.0006 0.0013
C-slope 1.0220 0.0481 0.9276 1.1163



TABLE IV
GBM PERFORMANCE METRICS

metric mean sd LCI RCI
AUC 0.8273 0.0050 0.8174 0.8371
Youden 0.0143 0.0007 0.0129 0.0158
Sensitivity 0.7412 0.0463 0.6504 0.8319
Specificity 0.7642 0.0324 0.7007 0.8277
Accuracy 0.7638 0.0313 0.7025 0.8251
PPV 0.0468 0.0041 0.0388 0.0548
NPV 0.9948 0.0006 0.9936 0.9960
Kappa 0.0611 0.0072 0.0469 0.0753
C-intercept 0.0038 0.0019 0.0001 0.0074
C-slope 0.7959 0.1292 0.5426 1.0492

IV. DISCUSSION AND CONCLUSION

We proposed an efficient prediction modelling approach to
the risk of dementia based on Gradient Boosting Machines
(GBM) and Cox Proportional Hazard. While GBM algorithm
offers its own method of ranking predictor variables according
to their importance, it is very computationally intensive and
less time-efficient when applied to our large routine primary
care records dataset which, after pre-processing, had 1,126,079
rows and 595 variables. As such, we chose to combine the
application of GBM with a less computationally intensive
method such as Cox Proportional Hazards (Cox PH) with a
two-fold purpose: (1) We use the most important variables
selected by Cox PH, with the GBM method, and (2) We
compare the performance of the predictions achieved by the
GBM and Cox PH models.

As our whole dataset contained a large proportion of pa-
tients who didn’t receive a diagnosis (42.78%), we used part
of these censored patients to augment our training dataset by
enhancing our models with a semi-supervised learning proce-
dure in which GBM and Cox PH are encapsulated. Moreover,
we calibrated our prediction models using Platt scaling and
isotonic calibration. Our approach led to comparable AUC
performances as described in [22].

As ongoing work, the approach we proposed here is cur-
rently extended with developing predictive models based on
the XGBoost algorithm which is an optimised extension of
GBM and hence suitable to be applied on large datasets such
as CPRD that we used in this study. Due to the large volume
of computation the analyses on CPRD require, XGBoost may
be a better candidate algorithm which can make use also
of the GPU hardware technologies. Another extension we
currently focus on is making use of the large volume of
data and developping deep learning models using also GPU
faster hardware technologies, with (a) the use of autoencoders
as an unsupervised learning tool to learn new features and
reduce data dimensionality; (b) building optimised prediction
models as standard deep feed-forward neural networks, and (c)
using a state of the art algorithm GANOCC proposed in [15]
and based on Generative Adversarial Networks - a modern
concept in deep learning nowadays. GANOCC is a one-class
classification method working well also on highly imbalanced
datasets, as it is the case of CPRD used in this study.

Another direction of ongoing work is the investigation of
the distribution of dementia outcomes amongst patients with
similar medical histories, involving patient clustering, as a
means of gaining insights into the contribution that certain
groups of predictors may have on the prediction of risk of
dementia.
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