
Creating Ensembles of Generative Adversarial Network

Discriminators for One-class Classification

Mihai Ermaliuc1, Daniel Stamate1, George D. Magoulas2, Ida Pu1

1 Data Science & Soft Computing Lab, and

Department of Computing,

Goldsmiths, University of London

2 Department of Computer Science and Information Systems,

Birkbeck, University of London

Abstract. We introduce an algorithm for one-class classification based on binary

classification of the target class against synthetic samples. We use a process in-

spired by Generative Adversarial Networks (GANs) in order to both acquire syn-

thetic samples and to build the one-class classifier. The first objective is achieved

by leading the generator’s output into close vicinities of the target class region.

For the second objective, we obtain a one-class classifier by generating an en-

semble of discriminators obtained from the GAN’s training process. Our ap-

proach is tested on publicly available datasets producing promising results when

compared to other methods.

Keywords: One-Class Classification, Generative Adversarial Networks

1 Introduction

Classification is a major topic in machine learning, dealing with algorithms that learn

to assign pre-defined discrete values (categories, classes) to unseen objects (vectors),

based on a dataset of observed objects with known classes. From the perspective of the

number of classes involved, one could identify three categories. Two-class, or binary

classification, is arguably the most intensively studied with a wide range of methods

available. Given a dataset of observations from two classes, an algorithm will learn to

separate them by finding a decision boundary in the feature space that minimizes a cost

function. Secondly, when more than two classes exist, the so-called multi-class classi-

fication problem can be reduced to multiple binary classification problems [1]. Finally,

if the algorithm learns using observations from a single class only, we have one-class

classification (OCC). In this case the algorithm will also learn a decision boundary, this

time trying to separate the known class from everything else.

One-class classification stands out as different, more challenging and more versatile

than its binary or multi-class counterparts [2]. In the latter cases we have reasonably

balanced observations from two or more classes. This helps an algorithm identify those

feature values that are distinctive to each class and use them to find an optimal separa-

tion boundary between them. One downside of this is that the final product will only

2

distinguish between classes seen during the learning phase. If presented with observa-

tions coming from a new class, it would wrongly categorize them as one of the known

classes [3]. Conversely, in one-class classification we have information from one class

only and the algorithm therefore must learn a decision boundary that separates the

known class from the rest of the world. This allows it to work well regardless of what

classes of objects it is presented with at runtime. On the other hand, finding a decision

boundary becomes more difficult [2].

As categorized by [4], one-class classification methods fall into 3 large categories.

Density methods make assumptions on the probability density function (PDF) of the

known class and use a threshold value to accept or reject new samples. Reconstruction

methods learn a mapping of data to and from a latent space using the available target

class data. For new observations it is expected that the reconstruction error will be low

if the object belongs to the class, and high otherwise. Boundary methods estimate a

border around the observed single-class data and perform classification by evaluating

the distance from new observations to that border.

From a training data perspective, traditional algorithms like SVDD [5] perform rea-

sonably well on low-dimensional datasets but degrade or become intractable in higher

dimensions. With the advent of deep learning, reconstruction methods based on auto-

encoders have been researched intensively and they achieve relatively good results on

such datasets. Generative adversarial networks [6] have also been employed to improve

properties of the latent space in autoencoder-based methods [7] or as a means to train

the discriminator as a one-class classifier [8].

In this paper we propose an adversarial training framework for progressively build-

ing a one-class classifier. We employ a generative model to create out-of-class data in

a region as near to the in-class data space as possible. We then create a discriminator

that separates in-class from out-of-class data. In the next step we modify the generative

model to change its output region, while keeping close to the in-class space. We repeat

this several times and ensemble all obtained discriminators together. The resulting clas-

sifier achieves promising performance in one-class classification when compared to

other methods.

2 Related work

Generative Adversarial Networks (GANs) [6] sparked a lot of interest in adversarial

training, albeit they focused mostly on the creation of generative models. There is, how-

ever, significant work carried out on the classification side as well. To the best of our

knowledge, [9] and [10] are the first attempts to describe GANs use in semi-supervised

learning tasks. Given a dataset of K classes, the discriminator is trained as a (K+1)-

class classifier, where the extra class contains synthetic images. This can result in in-

creased classification performance compared to traditional classifiers, particularly

when the number of class samples is small. Regarding one-class classification, [8] uses

a pre-trained GAN for anomaly detection in medical images by comparing a query im-

age versus the closest similar image that can be obtained via the generative process. In

3

[7] an encoder-decoder novelty detection architecture is augmented with adversarial

training of generative processes to minimize pockets of out-of-class samples in the la-

tent space. The one-class classification algorithm proposed in [7], called OCGAN,

seeks to minimize the chances of drawing false positives from the latent space. Auto-

encoders learn to map the data manifold by looking at discrete samples drawn from it.

There is however an infinite number of paths to transition between any two such points

and these transitions may pass through points that do not belong to the manifold. Even

worse, these points may represent shapes that are out-of-class but occur in the real

world. A relevant example given by the authors of [7] is a transition between 2 shapes

representing digit 8 that passes through a shape representing digit 1. These cases will

normally be labelled by the system as belonging to the target class, hence they are false

positives.

To overcome the above issue, additional constraints are placed on the latent space of

the autoencoder to enforce the representation of in-class samples only. Firstly, the uni-

form distribution of the target data onto the latent space is enforced. This is done by

bounding the latent space between (-1, +1) and by training the encoder E in an adver-

sarial manner against a latent discriminator, using uniformly distributed data as the real

dataset. Secondly, it is enforced that the decoded version of samples drawn from the

latent space resemble the target dataset. This is done by training the decoder, D, adver-

sarially versus a visual discriminator and target data samples. Lastly, another mecha-

nism reduces regions from the latent space that produce out-of-class examples. Such

regions are actively searched for by using a discriminator to identify the most unlikely

samples drawn uniformly and decoded from the latent space, versus encoded-decoded

samples from the target data. Once this discriminator is trained, gradient descent is used

to find the zones.

3 A novel approach to one-class classification using GANs

3.1 Motivation

The problem of one-class classification can also be formulated as the classification of

the target class against everything else. While this idea is not challenged by any frame-

work to our knowledge, the focus so far has still been on the target class to inform the

build of a one-class classifier. We aim to shift this focus to the ‘everything else’ part

and we can do so by our choice of method: we generate out-of-class samples around

the in-class subspace, then we create our one-class classifier as a binary classifier be-

tween in-class and out-of-class samples (see Figure 1).

Generating the out-of-class samples is not trivial though. The quality of the model

depends on the quality of these samples. Intuitively, we would require them to reside

in the feature space as closely as possible to the real data manifold and surround it

completely, thus constraining the classifier to build a tight border around the in-class

space. To generate such samples, we turn to GANs and make use of one of their other-

wise undesirable characteristics – the difficulty to achieve convergence. GANs are ar-

guably the most successful generative models currently available, but tend to converge

only on very narrow ranges of hyperparameters, while in the general case they either

4

end up in mode collapse or cycle indefinitely through output from outside the real data

manifold [11]. Our hypothesis is that a non-converging GAN can still get close to that

manifold and thus might be used as a provider of good quality samples for our binary

classifier.

Figure 1. The top side illustrates the traditional process of building a one-class classifier, con-

sidering in-class data only. The bottom side illustrates our approach: we use the in-class samples
to derive out-of-class samples then we create the one-class classifier as a binary classifier.

Lastly, we consider using the GAN’s discriminator to build the classifier. The tradi-

tional recipe for successful GAN training is to train the generator and discriminator

alternatively for one step each. Also, the discriminator is supposed to provide only a

weak separation between generated and real data at any step, such that the generator

will be able to follow it easily. Moreover, the discriminator is being reused at each

training step by updating its current position. All these make sense since the discrimi-

nator’s role is to drive the generator’s output towards the real data and a crisp separation

between the two datasets would harm this goal by failing to provide the generator with

reliable gradients [12]. In other words, the discriminator’s border needs to pass through

or be close to the generated samples.

On the other hand, there is no such constraint related to the real samples. We could

therefore encourage the discriminator’s border not to pass through their space. This

would effectively make the discriminator a one-class classifier for our data with low

type-2 error (low number of false negatives) and presumably high type-1 error (high

number of false positives), while the discriminator would still be able to provide gradi-

ents to drive the generator. If we repeat this process throughout the model’s training

and we save the discriminator at each step then we end up with several classifiers, each

separating the real data from (hopefully) a different region of space. By combining

these classifiers together in an ensemble, we obtain our one-class classifier (see Figure

2). The next sub-section provides more details on the proposed algorithm named

GANOCC – which is a Generative Adversarial Network based algorithm for One-Class

Classification.

5

Figure 2. Illustration of our one-class classifier building process in a bidimensional feature

space. A is our target class, B is real data we are interested in separating from A (invisible during
training). A generative model creates a cloud of synthetic data C in a region near A. We build a
classifier (dotted lines) to separate C and A. We use the classifier to further train the generative
model so that it moves output past its border, and repeat. We combine all classifiers into a one-
class classifier (the thick central polygon)

4 The GANOCC Algorithm

The algorithm we propose here is based on the following components: a generative

model G, a variable number of discriminative models D and an ensemble C of all D

models, which forms our one-class classifier. Training is performed in an adversarial

framework inspired by GANs, but with some important changes. G is trained against

C, a 𝐷𝑘 is created at every epoch k and trained against G, then appended to the ensemble

C. The paragraphs below provide detailed explanations.

The generator’s role is to create synthetic samples. It is a vanilla DCGAN with trans-

pose convolutional layers as defined by [13]. Training is performed against C with the

objective to minimize:

ℒ𝐺 = −𝐸𝑧~𝑝𝑧
[log(𝐶(𝐺(𝑧)))]

For each training step, G will move its output into a new region of space. If we

perform only one such step per epoch though, that region will overlap significantly with

the previous region and only few novel samples will be generated. We try to reduce the

overlap by training at each epoch until the loss crosses below a threshold. In the exper-

iments reported in the next section, the threshold is 1.

The discriminators 𝐷𝑘 are created one for each epoch and trained to separate data

generated during the epoch from real data. Turning again to empirical observations,

simpler models tend to provide better results in the end. We settled for a neural network

6

with one hidden layer and 8 neurons with LeakyRelu activations while the output’s

activation function is the identity. We add the constraint that each 𝐷𝑘 must focus on

classifying the real data as positive with low rejection rate. This is implemented indi-

rectly by minimizing an objective function that places higher weight on the loss of pos-

itive samples:

ℒ𝐷𝑘
= −𝛼𝑑𝑎𝑡𝑎𝐸𝑥~𝑝𝑑𝑎𝑡𝑎

[log (𝜎(𝐷𝑘(𝑥)))] − 𝛼𝑧𝐸𝑧~𝑝𝑧
[log (1 − 𝜎(𝐷𝑘(𝐺(𝑧))))]

where 𝜎 is the sigmoid function while 𝛼𝑑𝑎𝑡𝑎 and 𝛼𝑧 are positive real numbers scaling

the influence of loss on in-class and out-of-class samples, respectively.

Training follows the same strategy as for the generative model G: at each epoch k

we train Dk until the loss on real data and synthetic data drops below a threshold. We

found 0.1 and 1, respectively, to be reasonable values in our experiments. The thresh-

olds for G and 𝐷𝑘 appear to be correlated. For instance, if we threshold 𝐷𝑘 but train G

for a single step/epoch then G will eventually be overpowered and stop making any

progress.

The ensemble discriminator C is a composition of all 𝐷𝑘 models created during train-

ing. We consider the ideal-case composition to be:

𝐶(𝑥) = ∏ 𝑇𝑘(𝜎(𝐷𝑘(𝑥)))

𝑁𝐷

𝑘=1

where 𝑇𝑘 is a threshold function defined as:

𝑇𝑘(𝑥) = {
1, 𝑥 ≥ 𝑡𝑘

0, 𝑥 < 𝑡𝑘
 𝑤𝑖𝑡ℎ 𝑡𝑘𝜖(0,1)

and 𝑡𝑘 is the threshold value chosen such that

𝜎(𝐷𝑘(𝑥)) < 𝑡𝑘 , ∀ 𝑥 ∈ 𝑋𝑠 (𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 𝑑𝑎𝑡𝑎)

and

𝜎(𝐷𝑘(𝑥)) ≥ 𝑡𝑘 , ∀ 𝑥 ∈ 𝑋𝑟(𝑟𝑒𝑎𝑙 𝑑𝑎𝑡𝑎)

and 𝑁𝐷is the total number of iterations.

7

In other words, assuming that 𝐷𝑘 separates target data from synthetic data perfectly, we

could threshold 𝐷𝑘 and compose them such that a sample will be classified as out-of-

class if it has at least one 𝐷𝑘 classifying it as such. Conversely, a sample will be classi-

fied as in-class if all epoch discriminators 𝐷𝑘 will classify it as such. The disadvantage

of this formulation is that it does not allow the calculation of the AUC performance and

it only leads to a crisp classification. As such, we reformulate the aggregation of 𝐷𝑘

into the following formula which allows a soft classification framework:

𝐶(𝑥) = ∏ 𝜎(𝐷𝑘(𝑥))

𝑁𝐷

𝑘=1

which produced better results in our experiments but also introduced an undesired phe-

nomenon: 𝐷𝑘 now assigns a score in the (0,1) range and some versions of 𝐷𝑘 would

assign higher scores to real out-of-class data than to in-class data. This corresponds to

situations where the former lies further from the border than the latter (see Figure 3)

and negatively impacts the system’s performance by creating a slow and steady degra-

dation trend as more epoch discriminators are added. This paper does not propose a

solution for the issue, which is currently under investigation.

Figure 3. Simplified illustration of the effect of synthetic data position on the epoch dis-

criminator 𝑫𝒌. 𝑿𝒐, 𝑿𝒔 and 𝑿𝒓 are arbitrary points belonging to real out-of-class, synthetic and
real in-class regions, respectively. Left: synthetic data lies on the same side as out-of-class data

and 𝑫𝒌 assigns a higher score for 𝑿𝒓 than for 𝑿𝒐. Right: synthetic data lies opposite of real

out-of-class data and 𝑫𝒌 ends up assigning a higher score for 𝑿𝒐 than for 𝑿𝒓

8

5 Experiments

5.1 Evaluation method

We tested our strategy on public multi-class datasets. We select each class in turn as

the target class and consider all other classes to be novelty. The corresponding class

training set is used for training while for testing we create a balanced dataset from the

target class test set plus randomly chosen samples from other classes. Our performance

measure is AUC - the Area Under the ROC Curve for separation between the target and

novelty class. We also monitor how this measure evolves during training as more com-

ponents are added to C, as well as the individual AUCs of these components. We take

advantage of the work and extensive comparison performed by the authors of the

OCGAN model [7] and compare our algorithm’s performance with the figures pre-

sented by [7]. In our experiments, the number of iterations 𝑁𝐷 has been set to 250.

5.2 Results on the MNIST dataset

This dataset [14] contains 10 classes of handwritten digits in 60K sample grayscale

images of 28x28 pixels. We obtained a mean AUC of 0.9789 which is an insignificant

0.4% higher than OCGAN [7], and the best AUC on 5 out of 10 classes. Details on

AUC performance comparisons of our method GANOCC with OCGAN [7] and other

methods outperformed by the latter, are presented in Table 1.

Table 1. AUCs on the MNIST dataset by our method versus OCGAN and other methods

which are outperformed by OCGAN. Compared to the latter, we get better results on 5/10 clas-

ses and achieve a minor performance improvement overall, mostly due to scores on digits 2 and
8.

 0 1 2 3 4 5 6 7 8 9 MEAN

OCSVM [15] 0.988 0.999 0.902 0.950 0.955 0.968 0.978 0.965 0.853 0.955 0.9513

KDE [1] 0.885 0.996 0.710 0.693 0.844 0.776 0.861 0.884 0.669 0.825 0.8143

DAE [16] 0.894 0.999 0.792 0.851 0.888 0.819 0.944 0.922 0.740 0.917 0.8766

VAE [17] 0.997 0.999 0.936 0.959 0.973 0.964 0.993 0.976 0.923 0.976 0.9696

PixCNN [18] 0.531 0.995 0.476 0.517 0.739 0.542 0.592 0.789 0.340 0.662 0.6183

GAN [8] 0.926 0.995 0.805 0.818 0.823 0.803 0.890 0.898 0.817 0.887 0.8662

AND [19] 0.984 0.995 0.947 0.952 0.960 0.971 0.991 0.970 0.922 0.979 0.9671

AnoGAN [8] 0.966 0.992 0.850 0.887 0.894 0.883 0.947 0.935 0.849 0.924 0.9127

DSVDD [20] 0.980 0.997 0.917 0.919 0.949 0.885 0.983 0.946 0.939 0.965 0.9480

OCGAN [7] 0.998 0.999 0.942 0.963 0.975 0.980 0.991 0.981 0.939 0.981 0.9750

GANOCC 0.996 0.997 0.969 0.97 0.976 0.975 0.986 0.977 0.961 0.982 0.9789

5.3 Results on the CIFAR-10 dataset

This is also a 10-classes images dataset [21] containing 50K samples of 32x32 res-

olution and 3 color channels. Images are real-world photos of objects in that class. It is

a more difficult set than MNIST not only due to its higher dimensionality but also be-

cause of the various backgrounds surrounding the subjects. This is reflected in the

9

AUCs we obtained, which are significantly lower than for the MNIST dataset. Never-

theless, our algorithm achieves a mean AUC of 0.742, which is a significant 13% in-

crease when compared to OCGAN.

Table 2. AUCs on the CIFAR10 dataset, our method versus OCGAN and other methods

which are outperformed by OCGAN. Compared to the latter, we get better results on 6/10 clas-
ses and a significant 13% higher mean AUC

6 Discussion

In this paper we introduce a Generative Adversarial Network - based algorithm for one-

class classification called GANOCC, that turns the problem into a binary classification

problem making use of a generative model to create counter-samples. We use a modi-

fied adversarial training algorithm where the generator provides the counter-samples

while the discriminators are progressively collected into the one-class classifier model.

Our experiments show that the method surpasses the OCGAN model [7] which in turn

is superior to other methods illustrated in Tables 1 and 2, and achieves significant im-

provements on real-world pictures. The same experiments also reveal some interesting

aspects, which we discuss here.

Firstly, the authors of OCGAN [7] notice the relatively poor performance of all re-

construction-based methods on classes whose features significantly overlap those of

other classes. Two relevant examples are digits 2 and 8 from the MNIST dataset – many

other digits can be represented as a cut of digit 8, such as digits 3 and 9. Both their own

and other results seem to be in line with this observation. The reason for this is, accord-

ing to authors, that the latent space for complex digits will inherently learn to represent

simpler digits as well. For our method though, this is exactly the setup where it tends

to outperform all others. We assume this to be an effect of the same cause: during train-

ing, the generator will learn to output images that resemble distorted versions of the

original digit and those simpler ones will be among them. Therefore, the discriminator

will focus on separating them from the real data and produce higher performance in the

end. This is empirically supported by results on MNIST, where our model outperforms

OCGAN with the largest margin precisely on digits 2 and 8 (see Table 1).

 PLANE CAR BIRD CAT DEER DOG FROG HORSE SHIP TRUCK MEAN

OCSVM [15] 0.630 0.440 0.649 0.487 0.735 0.500 0.725 0.533 0.649 0.508 0.5856

KDE [1] 0.658 0.520 0.657 0.497 0.727 0.496 0.758 0.564 0.680 0.540 0.6097

DAE [16] 0.411 0.478 0.616 0.562 0.728 0.513 0.688 0.497 0.487 0.378 0.5358

VAE [17] 0.700 0.386 0.679 0.535 0.748 0.523 0.687 0.493 0.696 0.386 0.5833

PixCNN [18] 0.788 0.428 0.617 0.574 0.511 0.571 0.422 0.454 0.715 0.426 0.5506

GAN [8] 0.708 0.458 0.664 0.510 0.722 0.505 0.707 0.471 0.713 0.458 0.5916

AND [19] 0.717 0.494 0.662 0.527 0.736 0.504 0.726 0.560 0.680 0.566 0.6172

AnoGAN [8] 0.671 0.547 0.529 0.545 0.651 0.603 0.585 0.625 0.758 0.665 0.6179

DSVDD [20] 0.617 0.659 0.508 0.591 0.609 0.657 0.677 0.673 0.759 0.731 0.6481

OCGAN [7] 0.757 0.531 0.640 0.620 0.723 0.620 0.723 0.575 0.820 0.554 0.6566

GANOCC 0.778 0.649 0.655 0.658 0.769 0.677 0.810 0.697 0.840 0.709 0.7420

10

Secondly, in our experiments the generator acts as a resource that gets exhausted as

training progresses. In every experiment we noticed how the system improves sharply

during the first steps, followed by a steady performance decay afterwards. We assume

this is because, in our implementation, the generator eventually reaches an area where

it creates samples that share more latent features with the in-class data than with the

out-of-class data and this leads to the creation of discriminators on the “wrong side”

(see Figure 3 right). A better control of the generator’s output seems to be the key here

to drive performance higher.

7 Conclusions and future work

We presented a novel one-class classification method based on binary classification of

the target class against synthetic samples generated via adversarial training. We used a

modified GAN training framework to create synthetic samples and provide the building

blocks for our classifier. The generator is responsible for the creation of synthetic out-

of-class data and is driven by the discriminators in various regions of the feature space

that attempt to not overlap the real data manifold. We do not reuse discriminators but

create a randomly initialized discriminator for each training epoch. Discriminators are

progressively collected and combined in a multiplicative model. Experiments show that

our method surpasses a similarly purposed recent method OCGAN [7] on two widely

used benchmark datasets MNIST and CIFAR10, which in turn compares favorably with

other methods for one-class classification as illustrated above by Tables 1 and 2. The

most important contributions of this paper are: (1) introducing a classification training

algorithm that behaves differently and does not match output with the traditional mod-

els, and (2) our approach achieves an overall favorable score when compared to other

density and reconstruction-based methods on real-world images (see Tables 1 and 2).

Future work concerns the application of our new method and the study of its poten-

tial on other complex datasets including non-image data. In particular we plan to ex-

plore the application of an adapted form of the GANOCC algorithm on a large, and rich

and complex clinical dataset formed of routine primary care records collected in UK,

called CPRD (Clinical Practice Research Datalink https://www.cprd.com/), for predict-

ing risk of dementia. This future work is to build on our ongoing research of using

Machine Learning and Statistical Learning for building a tool for predicting risk of

dementia. This condition, which has higher health and societal care costs compared to

cancer, stroke and chronic heart disease taken together, represents a challenging to pre-

dict class within the primary care records data. The mentioned risk prediction problem

could benefit of exploring novel and promising one-class classification techniques, in-

cluding the GANOCC algorithm proposed here.

Moreover, as ongoing research work, we look also into investigating why our algo-

rithm behaves differently from traditional classifiers and what is its full potential for

extension and for further applicability.

11

References

[1] C. Bishop, "Pattern recognition and machine learning," Springer, 2006.

[2] D. Tax, "One-class classification. Concept-learning in the absence of

counter-examples," Delft University of Technology, 2001.

[3] S. Khan and M. Madden, "One-class classification: Taxonomy of study and

review of techniques.," The Knowledge Engineering Review 29(3), pp. 345-

374, 2014.

[4] O. Mazhelis, "One-Class Classifiers: A Review and Analysis of Suitability

in the Context of Mobile-Masquerader Detection" Revue Africaine de la

Recherche en Informatique et Mathématiques, pp. 29-48, 2007.

[5] D. M. J. Tax and R. P. W. Duin, "Support Vector Data Description,"

Machine Language, pp. 45-66, 2004.

[6] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S.

Ozair, A. Courville and Y. Bengio, "Generative Adversarial Networks,"

ARXIV 1406.2661, 2014.

[7] P. Perera, R. Nallapati and B. Xiang, "One-Class Novelty Detection Using

GANs With Constrained Latent Representations," The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pp. 2898-2906, 2019.

[8] T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-Erfurth and G. Langs,

"Unsupervised Anomaly Detection with Generative Adversarial Networks to

Guide Marker Discovery," Niethammer M. et al. (eds) Information Processing

in Medical Imaging. IPMI 2017. Lecture Notes in Computer Science, vol

10265. , 2017.

[9] T. Salimans, I. Goodfellow, W. Zaremba, A. Radford and X. Chen,

"Improved Techniques for Training GANs," ARXIV 1606.03498, 2016.

[10] A. Odena, "Semi-Supervised Learning with Generative Adversarial

Networks," arxix:1606.01583, 2016.

[11] M. Arjovsky and L. Bottou, "Towards Principled Methods for Training

Generative Adversarial Networks," in ICLR, 2017.

[12] M. Arjovsky, S. Chintala and L. Bottou, "Wasserstein Generative

Adversarial Networks," in Proceedings of the 34th International Conference

on Machine Learning, 2017.

[13] A. Radford, L. Metz and S. Chintala, "Unsupervised Representation

Learning with Deep Convolutional Generative Adversarial Networks," in

ICLR, 2017.

[14] Y. LeCun, C. Cortes and C. Burges, "The MNIST Database of Handwritten

Digits," http://yann.lecun.com/exdb/mnist/.

[15] B. Scholkopf, R. Williamson, A. Smola, J. Shawe-Taylor and J. Platt,

"Support Vector Method for Novelty Detection," NIPS, vol. 12, pp. 582-588,

1999.

12

[16] R. Hadsell, S. Chopra and Y. Lecun, "Dimensionality reduction by learning

an invariant mapping," in 10.1109/CVPR.2006.100, 2006.

[17] D. Kingma and M. Welling, "Auto-encoding variational bayes," in ICLR.

[18] A. van den Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves and

K. Kavukcuoglu, "Conditional Image Generation with PixelCNN Decoders,"

in NeurIPS, 2016.

[19] D. Abati, A. Porello, S. Calderara and R. Cucchiara, "Autoregressive

Novelty Detectors," ArXIV, no. 1807.01653, 2019.

[20] L. Ruff, R. Vandermeulen, N. Goernitz, L. Deecke, S. A. Siddiqui, A.

Binder, A. Muller and M. Kloft, "Deep one-class classification," in
Proceedings of the 35th International Conference on Machine Learning, 2018.

[21] A. Krizhevsky, "Learning Multiple Layers of Features from Tiny Images,"

University of Toronto.

[22] A. Odena, J. Buckman, C. Olsson, T. T. Brown, C. Olah, C. Raffel and I.

Goodfellow, "Is Generator Conditioning Causally Related to GAN

Performance?," arXiv:1802.08768, 2018.

