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ABSTRACT 

 

Middle adulthood – the period of life between 40 and 60 years of age – is accompanied by important 

physical and emotional changes, as well as cognitive and neuronal ones. Nevertheless, middle age is 

often overlooked in neuroscience under the assumption that this is a time of relative stability, although 

cognitive decline, as well as changes in brain structure and function are well-established by the age of 

60. 

Here we characterized the middle-aged brain in the context of healthy younger and older adults by 

assessing resting-state electrophysiological and neuromagnetic activity in two different samples (N = 

179, 631). Alpha and beta oscillations – two key ageing signatures – were analyzed in terms of 

spectral power and burst events. While posterior alpha power and burst rate features changed linearly 

with age, similarly to behavioral measures, sensorimotor beta power and burst rate properties varied 

non-linearly, with inflection points during middle age. The findings suggest that ageing is 

characterized by distinct spatial and temporal brain dynamics, some critically arising in middle age. 
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1. INTRODUCTION 

Middle adulthood – the period of life from about 40 to 60 years old – is often a rich and active stage 

in most people’s lives, also accompanied by important cognitive and neuronal changes (Lachman, 

2004, 2015). Middle age is however often neglected in neuroscience on the account that more 

informative and larger changes are observable when comparing young to older adults (Lachman, 2010; 

Willis et al, 2010). Indeed, most studies of the ageing brain are dominated by cross-sectional 

investigations typically comparing only students (about 20 years old) and pensioners (about 60-80 

years old) (Craik & Bialystok, 2006), therefore assuming a linear trajectory of change, with 

performance in midlife expected to fall midway between young and old age. Non-linear trajectories of 

age change are rarely tested even when middle agers as part of the sample (Callaghan et al, 2014; 

Draganski et al, 2011). 

In contrast to these studies, cognitive decline is reported to start from mid-age, for instance in terms of 

impoverished processing speed, memory and executive functions (Ferreira et al, 2015; Gautam et al, 

2011; Park et al, 2014; Salthouse, 2009, 2011; Singh-Manoux et al, 2012; Zimprich and Mascherek, 

2010). These age-related behavioral changes parallel alterations in brain structure and function, 

especially in brain regions such as the prefrontal cortex, the medial temporal areas and the 

hippocampus. These areas show accelerated shrinkage (Raz et al, 2005, 2007, 2010; Fjell et al, 2009), 

and white matter decreases in volume (Ge et al., 2002) or myelin content starting in the fourth decade 

of life (Karolis et al, 2019), pointing to the importance of studying middle age for signaling later age-

related brain changes. 

A complementary approach to previous neuroimaging studies consists of using 

electroencephalography (EEG) or magnetoencephalography (MEG) to provide a more direct 

assessment of neurophysiological processes (Cohen, 2017). Neuronal oscillations in EEG/MEG 

signals can be linked to neurophysiological mechanisms, which is central to understanding age-related 

brain changes (Sherman et al, 2016, Law et al, 2019). Past M/EEG investigations comparing younger 

and older adults at rest showed negative correlations between alpha (8-13 Hz) oscillations and age in 
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occipito-parietal brain regions (Ishii et al 2017; Vlahou et al, 2015) or the reverse pattern in beta (13-

30 Hz) oscillatory activity in motor areas (Rossiter et al, 2014; Rondina et al, 2019).  

Alpha oscillations are known for supporting functional inhibitory mechanisms -including in the 

context of working memory processing- by suppressing task-irrelevant areas and in turns goal-

irrelevant stimuli and behavioral responses (Jensen & Mazaheri, 2010; Klimesch, 2012). Beta 

oscillations, on the other hand, are prominent in the basal ganglia and in cortical prefrontal and 

sensorimotor regions (Lundqvist et al, 2016; Schmidt et al, 2019). Although there is an ongoing 

debate regarding the functions of sensorimotor beta, growing evidence indicates that sensorimotor 

beta activity is enhanced in association with the maintenance of ongoing motor states, while it 

decreases during updates in motor plans and predictions (Hosaka et al, 2015; Tan et al, 2016, Sporn et 

al, 2019). 

New insights into the functional role of alpha and beta oscillations can be provided by complementing 

classical spectral power analysis (collapsing trial information) with the analysis of oscillation “bursts” 

in single trials (Feingold et al, 2015; Shin et al, 2017; Lundqvist et al, 2016). Brief oscillation bursts 

of ~50-100 ms duration are a central feature of physiological alpha and beta activity (Poil et al., 2008; 

Feingold et al, 2015; Torrecillos et al, 2018). In the case of beta bursts, their distribution is maximal in 

premotor-motor and basal ganglia areas (Feingold et al. 2015; Little et al., 2019). Neurological or 

psychiatric conditions can modulate spectral power and burst properties (Tinkhauser et al, 2017; 

Torrecillos et al, 2015; Sporn et al, 2020), yet it remains unclear whether healthy lifespan changes in 

neuronal oscillations also alter burst properties. 

Here we assessed both the spectral power and burst properties of alpha and beta oscillations to capture 

dynamic changes in neuronal activity that were modulated by ageing. In our first study, EEG was 

recorded at rest in a group of middle agers as well as in younger and older healthy adults. We 

hypothesized (i) linear changes with age in alpha activity (Ishii et al 2017; Vlahou et al, 2015), and (ii) 

non-linear lifespan changes in beta activity, peaking in middle age. To assess the link between alpha 

oscillations and cognitive performance, we tested whether the hypothesized linear age-related changes 

in spectral power and bursts properties corresponded with changes in working memory performance, 

previously shown to modulate alpha activity (Jensen & Mazaheri, 2010; Klimesch, 2012). In a second 
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study, we analyzed a large open MEG dataset for age-related obtained from the Cam-CAN repository 

(Shafto et al, 2014; Taylor et al, 2017), aiming to replicate the results from our EEG dataset and to 

determine whether any non-linear age changes in sensorimotor beta activity were paralleled by a 

similar age-related non-linear modulation of sensorimotor task performance – as available in this 

dataset. 

 

2. METHODS 

2.1. EEG 

2.1.1 Participants 

A total of 179 healthy adults provided written consent and received monetary compensation to 

participate in this study which was approved by the local Ethics Committee at Goldsmiths, University 

of London. None of the participants had history of neurological or psychiatric disorders, was under 

regular medication, or showed major cognitive impairments assessed with the Mini-Mental State 

Examination (MMSE; Folstein et al, 1975; only for participants over 60 years). The sample was 

divided into 3 age groups: young (mean age 30 ± 5.2; age range 19–39; 61 participants; 41 females), 

middle age (mean age 48.2 ± 6.2; age range 40–60; 58 participants; 30 females), and older (mean age 

69.3 ± 5.5; age range 61–80; 60 participants; 36 females).  

2.1.2. Experimental design and procedure 

EEG signals were recorded in all 179 healthy participants during 5 minutes of wakeful rest (resting-

state EEG, rs-EEG) with eyes open. This was followed by a retro-cue working memory task (see 2.1.4 

and Borghini et al, 2018) in 163 of the total participants.  

Participants were seated 60 cm from a 21’’ CRT monitor in a darkened room. They were asked to keep 

their eyes open and focused on a white fixation cross (visual angle 6 degrees) which was programmed 

and run on ePrime software (Schneider et al, 2002), and displayed on a black screen. Following the rs-

EEG recording, participants who took part in the retro-cue proceeded to perform the task (see below). 

The retro-cue working memory task was programmed in MatLab® v.8.4 

(http://www.mathworks.co.uk) using the Cogent toolbox (http://www.vislab.ucl.ac.uk/cogent.php). 

2.1.3. EEG acquisition and preprocessing 
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EEG data were recorded using a 64 channel BioSemi Active Two amplifier system with 64 Ag/AgCl 

electrodes, sampled at 1024 Hz. The electrooculogram (EOG) was also recorded. Pre-processing was 

performed using EEGLAB toolbox v2019.0 for MATLAB ® (Delorme & Makeig, 2004) and built-in 

MATLAB (v. R2019b) function. The EEG signal was re-referenced to the average of two earlobe 

electrodes and down-sampled to 256 Hz. High-pass (0.5 Hz) and notch (49 - 51 Hz) filters were 

applied. The data were visually inspected to remove large muscle artifacts. An Independent 

Component Analysis (ICA; runica) was subsequently used to remove eye-blink and saccadic artifacts. 

Noisy channels were interpolated using spherical interpolation.  

2.1.4. Retro-cue working memory paradigm 

We used an established retro-cue working memory (WM) task providing a continuous rather than a 

binary measure of WM accuracy as well as source of errors (Borghini et al, 2018; Pertzov et al, 2013). 

Participants memorized a 1000 ms display of four arrow stimuli differing in color and orientation, 

followed by a 1000 ms delay during which a 100 ms retro-cue (valid, invalid or neutral) may or may 

not have been presented. A 3000 ms delay period then preceded the presentation of a randomly 

oriented arrow (the probe) of the same color as one of the arrows in the memory array. Participants 

used a continuous, analogue response to match it as closely as possible to the remembered orientation 

with a maximum response time of 3500 ms (see Supplementary Material and Figure S1). 

2.1.5. Behavioral Data analysis 

The analysis of performance followed the approach described by Borghini et al (2018; see 

Supplementary Material). The retro-cue task provides a measure of accuracy (recall precision) as well 

as the source of error, consisting of the probability of reporting a target item (pT), the probability of 

reporting a non-target item (pNT, a measure of mis-binding), random answer (pU) and Kappa (κ, an 

index of variability of the answer). 

2.1.6. Spectral power analysis 

The power spectral density was estimated by Welch’s periodogram with a Hamming window with a 

length of 1 s and a 50% overlap. Power was normalized into decibels (dB) with the mean power in the 

0.5 - 90 Hz band separately for each channel. 

2.1.7. Region and frequency of interest: comparison of young and older participants 
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To define spatial and spectral regions of interest for subsequent analyses, we ran two-sided cluster-

based permutation tests between young and older participants on the spectral power in the alpha (8–12 

Hz) and beta (13–30 Hz) bands, separately (1000 randomizations: Maris and Oostenveld, 2007). The 

algorithm implemented in the FieldTrip toolbox (Oostenveld et al, 2011) mitigates issues related to 

multiple comparisons by controlling the family-wise error rate (FWE). We extracted the electrodes 

and frequency bins from the identified significant clusters and used them for subsequent analyses of 

oscillatory activity (channel-average power, channel-average burst distribution slope τ – See 2.1.8) 

across the lifespan. Statistical analysis of spectral power was performed using FieldTrip v.20191127 

and built-in MATLAB functions. 

2.1.8. Burst analysis: Matching pursuit 

Burst detection was performed using the Matching Pursuit algorithm (MP, Mallat and Zhang, 1993) 

with Enhanced Matching Pursuit Implementation (empi, https://github.com/develancer/empi, Kuś et 

al, 2013). MP has high time-frequency resolution and provides detailed parametrization of the signal 

based on an iterative algorithm that decomposes the signal into linear combination of functions gi, 

selected from a pre-defined, redundant set (dictionary D) such that ||gi|| = 1. In each step n, the 

function g was selected to maximize the dot product with the residuals obtained in the preceding step, 

by subtracting function gn-1 from residuals Rn-1x. For details, see Supplementary Methods. 

We used the empi multichannel algorithm, which has a predefined, optimal dictionary of Gabor 

functions (Kuś et al, 2013), such that the signal x is represented as a set of well-defined Gabor 

functions. Detailed parametrization of this representation allowed the selection of specific structures 

of the signal in terms of amplitude, duration, position, frequency, energy, and phase. 

We set as criterion for burst detection an amplitude that exceeded the mean amplitude of the signal in 

each frequency band ± SD. To exclude short spikes and reduce noise, we chose bursts with width 

equal to at least two cycles of the band oscillation. An example of bursts selection using the MP 

algorithm is presented in Figure 1A. In the present study, we selected bursts in the high alpha (10-12 

Hz) and full beta (13-30 Hz) band because these frequency ranges were identified in the statistical 

comparison of young and older participants described in 2.1.7. Note that this approach was blind to 

any effects in middle age, which was of particular interest in our study. The quantitative and statistical 
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analyses of the burst events focused on the duration parameter. This was complemented by a 

qualitative description of the frequency distribution of bursts within the alpha and beta bands. 

2.1.9. Burst analysis: amplitude envelope 

Next, we used a complementary burst detection method based on the oscillations amplitude envelope 

(Poil et al, 2008; Tinkhauser et al, 2017) to replicate the results obtained with MP. We applied 

bandpass filters separately at 10-12 Hz and 13-30 Hz in the alpha and beta bands, respectively, in line 

with the relevant frequency ranges identified by the cluster-based permutation test conducted in young 

and older participants (See 2.1.7). Following past research (Sporn et al, 2020; Tinkhauser et al, 2017), 

we calculated the amplitude envelope of the oscillation of interest (beta or alpha range) using the 

Hilbert transform. We then used the 75% percentile of the amplitude envelope of the given oscillation 

band as threshold. A signal segment exceeding this threshold was detected as burst, but only if its 

duration was longer than two cycles of 20 Hz and 10 Hz oscillations for the beta and alpha band, 

respectively. Amplitude threshold crossings separated by less than two cycles were considered to 

pertain to the same burst. An exemplary selection of bursts using the envelope method is shown in 

Figure 1B.  

2.1.10.  Slope of the burst distribution 

After detecting bursts with either method, we computed the slope of the distribution of burst rate 

against burst duration (Poil et al, 2008; Sporn et al, 2020) and assessed its modulation across the 

lifespan. In brief, a linear model was fitted to the distribution of burst rate per duration in log-log 

scales, separately for each channel and oscillation frequency band. The distribution was estimated in 

20 equally distanced bins on a logarithmic scale, in a time range up to 2000 ms and with a minimal 

burst duration of two cycles (See 2.1.8). The slope of the linear model fit is typically negative, 

denoting a more frequent presence of brief bursts than long bursts, corresponding with a normal 

physiological state (Poil et al, 2008; Feingold et al, 2015). The absolute value of the slope, termed τ, 

was used in subsequent analyses. Of note, decreasing values τ reflect a more frequent presence of long 

bursts, or a long-tailed burst distribution. We averaged τ across regions of interest specific for a given 

band (cluster effects, see 2.1.7). An outline of the analysis is presented in Figure 1. 
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Figure 1 reveals that burst detection with the above-mentioned methods differs qualitatively. The MP 

algorithm decomposed complex structures into separate Gabor functions with distinct frequencies. As 

a result, some bursts may overlap in time. By contrast, in the envelope method these structures may 

pertain to one burst if the constrains mentioned in Section 2.1.9 are fulfilled. Importantly, however, 

using both methods the τ slope coefficient correlated significantly across participants within the high 

alpha band (Spearman’s rank-order correlation, rs=0.55, p=0.00001), but not the beta band 

(Spearman’s rank-order correlation, rs=0.06, p=0.42). Despite the differences between burst-detection 

methods, we considered that both methods would reveal a consistent pattern of lifespan changes in τ. 

2.1.11. Statistical analysis: changes in neurophysiology across lifespan 

Statistical analysis focused on assessing whether neural properties in terms of oscillation power and τ 

(slope of the burst distribution) change linearly or nonlinearly across the lifespan. In addition, we 

investigated whether behavioral performance in the retro-cue working memory task may show a 

similar trend as the neural dynamics across the lifespan. We therefore fit polynomial models up to a 

third order to EEG power, τ, and working memory performance (averaged over retro-cue conditions); 

age was used as a predictor and sex as a variable of no interest. We used the likelihood ratio test in 

order to select the model that best explained the data. In the case a non-linear and quadratic winning 

model we extracted the local extremum, whereas we obtained the inflection point in the case of a 

winning cubic model. 

 

2.2. MEG 

2.2.1. Cam-CAN dataset 

Because modulation of sensorimotor beta oscillations has been consistently associated with changes 

in sensorimotor processing (Kilavic et al, 2013; Tan et al, 2016), we investigated whether any 

potential non-linear modulation of resting-state beta activity with age may correspond to non-linear 

changes in motor performance across the lifespan. Accordingly, in a second study we analyzed an 

open-access dataset acquired at the Cambridge Centre for Ageing and Neuroscience (Cam-CAN; 

Shafto et al, 2014; Taylor et al, 2017). The Cam-CAN dataset includes MEG data recorded during 
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wakeful rest and also during a simple cued-button pressing task in 631 subjects (age range 18-88, 

uniformly distributed and gender balanced).  

2.2.2. MEG recording and pre-processing 

The Cam-CAN MEG data were recorded using 306-channel Vectorview system (Elekta Neuromag, 

Helsinki), with sampling frequency of 1 kHz and band-pass filter of 0.03-330 Hz. Head position, EOG, 

and electrocardiogram (ECG) were continuously registered. The MEG recordings lasted 8 minutes 40 

seconds, both during eyes-closed wakeful resting state, and during sensorimotor performance. Noise 

reduction (using temporal signal space separation, tSSS, Taulu et al, 2005), reconstruction of missing 

or corrupted MEG channels, continuous head motion correction, and a transformation to a common 

head position were performed by the Cam-CAN group with MaxFilter (Taulu and Simola, 2006). 

We used FieldTrip (v 20191127) and MATLAB (R2019b) to apply a high-pass (0.5 Hz) and notch 

(49-51 Hz) filter to the MEG sensor signals, similarly to the EEG analysis in the first study. Fieldtrip 

was also used to remove artifacts related to eye blinks, saccades, and the heartbeat, using the FastICA 

algorithm (hyperbolic tangent) on the continuous data. An automated removal of ICs was 

implemented following Bardouille et al (2019). Subsequent analyses of MEG data focused on 

magnetometers (102 sensors) exclusively.  

2.2.3. Sensorimotor task 

In the sensorimotor task (Shafto et al, 2014), participants pressed a button with a right index finger 

after unimodal or bimodal audio/visual stimuli. The audio stimuli were 300 ms-binaural tones at one 

of three pre-selected frequencies (300, 600, or 1200 Hz, equal number of trials, pseudo-randomly 

ordered). The visual stimuli consisted of two checkerboards presented to the left and right of a central 

fixation for 34 ms. After a practice trial, participants completed 128 trials. In 120 of them, audio and 

visual stimuli were presented simultaneously (bimodal trial); in the remaining 8, only one stimulus 

was presented (unimodal trials). Bimodal and unimodal trials were randomly ordered, with an inter-

trial interval between 2 and 26 seconds. Here we analyzed response time (RT) changes in the task 

across the lifespan. 

2.2.4. MEG spectral power and bursts detection: amplitude envelope method 
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Analysis of MEG data followed the same steps as for EEG data. Changes in spectral power across the 

lifespan were assessed by first averaging the normalized spectral power (in dB) across the sensors 

pertaining to a cluster of significant differences between older and young participants.  

Due to memory requirements, MP could not be used on the large Cam-CAN dataset as it exceeded our 

technical capability during the Covid-19 pandemic. Instead, the analysis of alpha and beta-band burst 

distributions in the MEG signal was completed with the amplitude-envelope method (Poil et al, 2008; 

Tinkhauser et al, 2017). As noted in 2.1.10, the two burst extraction methods differ slightly as the MP 

is an approximation rather than a transformation method, unlike the amplitude-envelope method 

(Schönwald et al, 2012). In addition, MP may identify separate burst events that are merged into one 

in the amplitude-envelope method. Despite these differences, however, the polynomial model fitting 

procedure showed consistent findings in the lifespan modulation of the burst-distribution exponent τ 

in the EEG and MEG datasets.  

FIGURE 1 ABOUT HERE 

3. RESULTS 

3.1. Changes in EEG oscillation properties across lifespan 

3.1.1. Linear changes in alpha band properties across lifespan 

The analysis of differences between young and older participants in normalized alpha (8–12 Hz) 

power spectral density revealed one significant, positive cluster in the high alpha band (10–12 Hz, 

cluster-based permutation test, p=0.022). This effect reflected significantly higher alpha power in 

young participants compared to older adults, with the most pronounced difference between groups 

over the posterior region (Figure 2A). For subsequent analyses, we defined as region of interest the 

electrodes in this significant cluster within the high alpha band. A detailed parametrization of bursts in 

the MP method allowed us to assess the distribution of bursts per frequency (Figure 2B). This 

distribution was shifted towards lower frequencies in older participants because of a higher ratio of 

bursts in 8–9 Hz relative to younger and middle-aged adults. Like in young participants, the middle-

agers’ distribution was centered around 10 Hz, although its tail was longer. Middle-aged participants 

had a noticeable higher ratio of high alpha bursts (11–12 Hz) than younger and older. 
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High alpha power in the posterior 10-12 Hz cluster decreased linearly across the lifespan (best model: 

linear, p=0.0054, R2=0.058), which converged with a linear increase of the exponent τ of high alpha 

bursts in the same cluster (MP method, best model: linear, p=0.016, R2=0.046, also for the amplitude-

envelope method, best model: linear, p=1.43·10-4, R2=0.096, see Figure S2). This suggests that with 

age, the ratio of long bursts within the high alpha band declines as does high alpha power (Figure 2 

C–D). 

FIGURE 2 ABOUT HERE 

 

3.1.2. Nonlinear changes in beta band parameters across the lifespan 

The cluster-based permutation test showed significant differences in beta power between younger and 

older adults in the full 13-30 Hz range, and in one negative cluster at central electrodes (p=0.001). 

Younger participants had significantly lower beta power than older adults (Figure 3A). The burst 

analysis showed that the largest proportion of beta bursts was in the low beta range (13–20 Hz) 

(Figure 3B). Within this frequency range, qualitative differences between older participants and the 

other two groups were most visible, with older adults exhibiting more beta bursts (13-17 Hz). In 

middle-aged adults we observed a higher ratio of bursts within 21–22 Hz than in young and older 

adults (Figure 3B). 

The averaged beta power in the significant central cluster varied non-linearly across the lifespan 

(Figure 3C and E; best model: quadratic, p=5.4·10-10, R2 =0.23). The initial increase in beta power 

during youth slowed in middle age and reached its maximum around the age of 60, and slowly 

decreased in older age. The slope of the burst distribution, τ, extracted with the MP method also 

changed in a non-linear fashion (Figure 3D and F; best model: cubic, p=0.0073, R2 =0.042). At a 

younger age, τ was high (short-tailed distribution, with a steeper ratio of brief bursts relative to long 

bursts) and decreased gradually until the age of 30. An increase in τ was then observed in middle age, 

followed by a steep decline of τ (long-tailed distribution, including more frequent long beta bursts) 

after the age of 60. These results were not observed using the amplitude-envelope method (all models 
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not significant). Crucially, changes in both beta power and τ (extremum and inflection point) occurred 

within or close to middle age.  

FIGURE 3 ABOUT HERE 

3.2. MEG changes across lifespan 

3.2.1. Alpha band 

In the MEG dataset, cluster-based permutation tests showed significant differences in normalized 

alpha power between young (N = 160) and older (N = 255) participants (p = 0.001). Young 

participants had higher alpha power than older participants within 10-12 Hz in a region of midline and 

occipital sensors (Figure 4A-B). Using those sensors and frequency range, we then established that 

the best model fit to explain the changes in alpha power across the lifespan was linear, demonstrating 

a significant drop in alpha power with age (Figure 4C; p = 4x10-11, R2 = 0.11).  

In this cluster of sensors and within 10-12 Hz, the slope of the alpha-band burst distribution also 

changed linearly with age (Figure 4D; p = 4x10-30, R2 = 0.19). As in the EEG analysis, the slope 

τ increased linearly with age, suggesting that long-duration bursts were less frequent in older 

participants, and more frequent in young ones.  

FIGURE 4 ABOUT HERE 

3.2.2. Beta band 

Converging with the EEG spectral power results, older participants had increased beta power within 

13-30 Hz relative to younger ones (p=0.001, cluster-based permutation test). This contrast effect 

spread centrally (Figure 5A). When averaging beta power within this central cluster, changes in beta 

power across the lifespan were best described by a non-linear function, also consistent with the EEG 

results (Figure 5B; quadratic fit, p=1 x 10-7, R2=0.10). The maximum of the quadratic fit was found at 

the age of 58 (Figure 5E, also converging with the EEG results showing a maximum at 63 years old). 

A cubic function was the best model explaining the modulation of the burst distribution slope, τ, with 

age (Figure 5C; p=0.0057, R2=0.13). At a younger age, τ decreased steeply, reverting to a slow 

increase during middle age and followed by an increase-to-decrease transition in older participants 

(transition at 78 years old; Figure 5E). The lowest slope values of the burst distribution occurred in 
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middle age, suggesting that long-duration beta bursts were more frequent in this age group than in the 

elderly or young population. 

FIGURE 5 ABOUT HERE 

3.3. Behavioral changes across lifespan 

3.3.1. Working Memory Performance 

Mean performance across the three retro-cue conditions was analyzed. Recall precision, the 

probability of reporting the correct item (pT), and variability of the answers (κ) declined linearly as a 

function of age (precision, p = 2.6·10-5, R2 = 0.13; pT, p = 0.04, R2 = 0.04; κ, p = 0.02, R2 = 0.05, 

Figure S3 A-C; note that a decrease in κ indicates increased variability of the answer). As predicted, 

the decline in retro-cue working memory performance mirrored the age-related linear changes 

observed in the alpha band. 

3.3.2. Sensorimotor task performance 

An analysis of the mean and variance of response times (RT) in the sensorimotor task across the 

lifespan indicated that both RT mean and variance increased with age. Unlike beta activity measures, 

however, this increase was linear and significant only for the RT variance index, which assesses the 

variation of timing performance within the experimental session (p = 4x10-6, R2 = 0.08, Figure S3 D).  

FIGURE 6 ABOUT HERE 

 

DISCUSSION 

This study investigated the middle-aged brain in the context of younger and older adults by assessing 

electrophysiological and neuromagnetic responses in alpha and beta oscillations during rest. Neural 

oscillatory activity was examined in terms of two features – spectral power and burst events. In 

addition, the possible association between these measures and cognitive and sensorimotor 

performance was explored. The analysis of spectral power and burst properties based on two 

complementary methods demonstrated consistent results corresponding to lifespan changes in alpha 

and beta oscillatory activity in two independent datasets. While alpha power and the slope of the alpha 

burst distribution changed linearly with age, primarily in posterior brain regions, sensorimotor beta 

oscillatory power and the burst distribution slope varied non-linearly across the lifespan. These 
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findings suggest that the brain undergoes distinct ageing processes characterized by different spatial 

and temporal dynamics, some critically arising in middle age. 

 

As predicted, alpha power declined linearly with age and more strongly in occipital clusters. This 

finding is in line with observations that physiological aging corresponds to gradual changes in spectral 

power profile, with a pronounced amplitude decrease in alpha power (Ishii et al, 2017; Rossini et al, 

2007; Vlahou et al, 2014). Previous results on this linear age-related decrease in alpha power stemmed 

primarily from binary comparisons of younger and older adults (e.g., Ishii et al 2017; Rossini et al, 

2007; Vlahou et al, 2015). Our data extend this evidence, supporting that alpha oscillatory activity 

declines with age also when middle agers are included in the sample.  

Complementing the alpha power results, the analysis of burst events in the alpha band showed that the 

burst distribution exponents, τ, also changed linearly with age. Thus, young adults had more frequent 

long-duration alpha bursts than older participants, providing further support for linear changes in 

alpha activity across the lifespan. Brief alpha bursts are a normal physiological feature of resting state 

activity (Poil et al, 2008). The distribution of burst duration values typically exhibits a power-law 

decay, which is a hallmark of scale-free temporal dynamics in human brain oscillations (Poil et al, 

2008; Roberts et al, 2015). Compared to beta (and gamma) bursts, alpha bursts have received 

considerably less attention, and thus our study offers novel insight into the lifespan changes of 

physiological alpha bursts at rest.  

Alpha oscillations are mainly generated by cortico-cortical and thalamo-cortical neuronal networks 

(Duchanova and Christov 2014). These networks modulate the cholinergic system of the basal 

forebrain, which is important for regulating high-level cognitive abilities such as attention and 

memory (Ishii er al, 2017). Linear age-related changes are reported in structures supporting thalamo-

cortical connections such as the thalamus (Pfefferbaum et al, 2013), and in alpha-source posterior 

brain regions (Babiloni et al, 2006; Hindriks & van Putten, 2013; Ishii et al 2017). Cognitive 

processes relying on these regions, like the retrieval of information, as well as attention are also 

characterized by linear age-related changes (Steriade and Llinas, 1988; Brunia, 1999). The age-related 

linear changes we observed in alpha power and τ exponents are therefore consistent with and 
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complement previously reported evidence of linear changes in alpha oscillatory activity (power) in 

young vs older adults (Babiloni et al, 2006; Haegens et al 2014). Interestingly, the linear changes in 

alpha-band activity that we observed corresponded to linear changes in working memory performance. 

An open question for future research is whether alpha burst events may be a more sensitive marker of 

individual differences in performance of cognitive and working memory tasks than classical occipital 

alpha power. 

 

A novel result revealed by our data was the non-linear trajectory of beta oscillatory activity across the 

lifespan, which we obtained independently in the EEG and MEG datasets. Beta power exhibited a 

quadratic age-related trajectory: an initial increase in beta power in younger adults slowed during 

middle age, reached its maximum at around the age of 60, and was then followed by a slow decrease 

in older age. The exponents τ of the beta burst distribution also changed non-linearly with age, albeit 

in a decreasing fashion and following a cubic function. At a younger age τ was greater, indicating a 

higher ratio of brief beta bursts. This was followed by a gradual drop in τ, reaching minimum values 

in middle age at 46, and then slowly increasing again, until 78, when the exponents exhibited a final 

slow decay trend. Thus, across both our EEG and MEG datasets middle age and, to a lesser extent, 

older age, were associated with a more frequent presence of long-duration beta bursts, resembling 

pathological findings in neurological disorders, such as in Parkinson’s disease (Lofredi et al, 2019; 

Tinkhauser et al, 2017). Critically, our results indicate that middle age is the period of life when the 

most salient changes in both beta power and burst exponents τ occurred, suggesting that important 

physiological transformations take place in midlife. 

 

Brief oscillation bursts are considered a healthy feature of beta oscillatory activity in motor cortical 

areas and in the basal ganglia (Feingold et al, 2015; Little et al, 2019; Poil et al, 2008). A longer 

duration of beta bursts, however, is an indication of pathological beta rhythms, as shown in the basal 

ganglia and motor cortex of Parkinson’s disease patients (Lofredi et al, 2019; Tinkhauser, 2017). The 

occasional presence of longer bursts can also disrupt performance in healthy adults, when occurring 

before behaviorally relevant cues (Little et al, 2019; Jones, 2016) or during feedback processing 
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(Sporn et al., 2020). Future work should address whether the exacerbated presence of longer bursts at 

rest in our middle-aged participants is maintained during task performance, and whether it accounts 

for alterations in behavior and cognition relative to young and old participants.  

 

There is an ongoing debate regarding the functional role of beta oscillations, with some proposals 

arguing for different types of beta rhythms across different brain regions having different functions 

(Spitzer and Haegens, 2017; Schmidt et al., 2019). Regarding sensorimotor beta, the classic findings 

are that it is attenuated during movement and exhibits phasic increases at the end of the action, a 

phenomenon termed beta rebound and linked to inhibitory GABAergic activity (see Kilavik et al, 

2013). More recent work emphasizes its dynamic and parametric nature: flexible moment-to-moment 

modulations in beta activity contribute to maintaining/updating motor states and predictions through 

increases/ decreases in power and burst rate, respectively (Hosaka et al, 2015; Tan et al, 2016; Sporn 

et al, 2020). Thus, increased beta activity and burst rate in cortical-basal ganglia circuits may stabilize 

motor and also working memory representations –maintaining predictions during ongoing behavior 

(Bastos et al, 2020; Leventhal et al, 2014; Lundqvist et al, 2016, 2018; Tan et al, 2016; Spitzer and 

Haegens, 2017).    

 

Of note, in our study, the region of interest for the beta power and burst analyses was obtained from 

the contrast analysis of old and young groups, which revealed widespread differences at central and 

anterior electrode regions, a pattern consistent with previous reports (Hari & Salmelin, 1997; Crone et 

al, 1998).  These differences were obtained at rest. Accordingly, the functional significance of the 

non-linear changes in resting-state beta power and burst exponents with age needs to be specified in 

future work. This could also shed light on our finding that the independent measure of sensorimotor 

performance in the MEG dataset changed linearly with age. Along this line, a recent analysis of the 

CamCan dataset during sensorimotor task performance revealed a linear decrease with age in 

sensorimotor beta rebound (Bardouille et al, 2019). Exclusively linear models were tested in that 

study. Our findings suggest that comparing different polynomial models to explain lifespan changes in 
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beta oscillatory activity (power and bursts) during task performance will be a necessary step to clarify 

whether alterations in beta dynamics are most pronounced in middle-age.   

 

This evidence of specific beta oscillations changes during midlife complements the scarce data on this 

age group. For instance, past studies showed that relative to younger and older adults, middle age is 

associated with increased strength (about 10%) of the phase synchronization between beta and alpha 

oscillations (Nikulin and Brismar, 2006). Middle age also corresponds to reduced power and centre 

frequency for both slow and fast gamma (Murty et al, 2019), and early work indicated reduced 

variability of ERP amplitude and of cortical coupling in middle age, which reflect increased 

homogeneity in the way the brain responds (Dustman et al, 1990; 1993). Middle age is also thought to 

reflect the optimal balance between inhibition and excitation, set between development and decline 

(Kosseva et al, 2002; Nikulin and Brismar, 2006; Rossini et al, 2007). Late middle age has been 

associated to increased homogeneity, which is thought to reflect a shift in the excitatory-inhibitory 

balance towards reduced inhibition (Dustman et al, 1993). Our results of non-linear trajectory of age-

related changes in beta activity complement these observations and reinforce the view that middle age 

signals important cortical changes relative to younger and older ages. 
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FIGURE CAPTIONS 

Figure 1. Methods: Matching Pursuit and Amplitude-envelope burst detection. (A) Example of 

the reconstruction of beta oscillation (grey) and detected bursts (green) in an exemplary participant in 

C3 channel using the matching pursuit algorithm (MP). Asterisks mark the centre of the burst. (B) 

Example of beta oscillation (grey) and detected bursts (green) in the same participant and channel as 

(A) but using the amplitude-envelope method. Asterisks mark the centre of the burst. (C) Distribution 

of beta bursts per duration in log-log scale in the same participant and channel as (A-B) using the MP 

method. For each channel, the slope (τ) was extracted. (D) Distribution of beta bursts per duration in 

log-log scale in the same participant and channel as (A-C) using the amplitude-envelope method. For 

each channel, the slope, τ, was extracted. 

 
 
Figure 2. Changes of alpha oscillation across lifespan. (A) In posterior cluster (black dots) young 

participants showed significantly higher power in the high alpha band relative to older participants. (B) 

Distribution of bursts per frequency in the three age groups (mean and standard error of the mean). (C) 

Linear decrease of power in high alpha band across lifespan. (D) Linear increase of τ of high alpha 

bursts across the lifespan extracted with MP method. 

 

Figure 3. Changes of beta oscillation across the lifespan. (A) In central clusters (black dots) 

younger participants showed significantly lower power in the beta band compared to older adults. (B) 

Distribution of bursts per frequency in the three age groups (mean and standard error of the mean). (C) 

Significant, non-linear changes across lifespan in beta power. (D) Significant, non-linear changes of τ 

of beta bursts across lifespan. (E) Analysis of the model fitted to changes in beta power. Black lines 

mark age group ranges. The asterisk indicates the maximum of the function. (F) Analysis of the model 

fitted to changes in beta τ. Black lines mark age group ranges. Stars indicate maximum, minimum, 

and inflection point. 
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Figure 4. Changes of alpha oscillation across lifespan. (A) In midline-posterior cluster (black dots) 

younger participants showed significantly higher power in the high alpha band relative to older 

participants. (B) Normalized spectral power density for young, middle age and older participants. (C) 

Linear decrease of power in high alpha band across lifespan. (D) Linear increase of τ of high alpha 

bursts across the lifespan. 

 

Figure 5 Changes of beta oscillation across lifespan. (A) In central clusters (black dots) younger 

participants showed significantly lower power in the beta band than older adults. (B) Significant, non-

linear changes across lifespan in beta power. (D) Significant, non-linear changes of τ of beta bursts 

across lifespan. (E) Analysis of the model fitted to changes in beta power. Black lines mark age group 

ranges. The asterisk indicates the maximum of the function. (F) Analysis of the model fitted to 

changes in beta τ. Black lines mark age group ranges. Stars indicate maximum, minimum, and 

inflection point.
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