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Abstract—This paper compares four existing distances and
similarity measures between partitions. The partition measures
considered in this paper are the Rand Index (RI), the
Adjusted Rand Index (ARI), the Variation of Information (VI)

and finally, the Normalised Variation of Information (NVI). This
work investigates the ability of these partition measures to capture
three predefined intuitions: the variation within randomly generated
partitions, the sensitivity to small perturbations and finally the
independence from the dataset scale . It has been shown that the
Adjusted Rand Index (ARI) performed well overall, regarding

these three intuitions.

Keywords—Clustering, comparing partitions, similarity measure,
partition distance, partition metric, similarity between partitions,
clustering comparison

I. INTRODUCTION

A large number of clustering algorithms has been studied
[1]. Many questions have arised as a result of this ex-

tensive research: how to compare the similarities between the
resulting partitions [2], [3], [4], [5], [6], [7], [8], [9], [10], how
to validate the clustering results [11], how to combine differ-
ent partitions to generate a better single partition [12], [13] and
how to use a clustering similarity measure for feature selection
in high dimensional datasets [14]. Having a distance or a
similarity measure on the space of partitions is beneficial in
answering such questions. In [15] Wagner et al. have proposed
a sub-division of such similarity measures between partitions
into three categories: in the first category, the measure is based
on counting of pair of elements classified in the same way in
both partitions, Rand Index (RI) similarity measure [16] is a
prominent example from this category. In the second category,
the measure is based on summation of set overlaps such
as Van Dongen-Measure [15]. Finally, in the third category,
the distance measure focuses on mutual information based
on the concept of entropy in information theory, an example
of this category is the Variation of Information (VI) distance
measure [18].

The main contribution of this paper is to introduce three ex-
perimental studies investigating several distance and similarity
measures in their ability to capture three intuitions : variation,
sensitivity and scalability of the dataset.

The rest of this paper is structured as follows: Sec-
tion II consists of an overview of the main existing par-
tition distance and similarity measures. The framework
used to compare these measures is introduced in Sec-
tion III. In Section IV an empirical study as well as
a result discussion has been conducted to compare the
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performance of four existing distance and similarity mea-
sures : Rand Index (RI), Adjusted Rand Index (ARI) and
the Normalised Variation of Information (NVI) under the
three experiments defined in Section III. Finally, a conclusion
and a direction of future work is given in Section V.

II. OVERVIEW OF EXISTING PARTITION DISTANCE
MEASURES

A. Definitions and Notations

Let X be a finite set containing N elements, |X| = N. A
partition C is a set {C1, ..., Ck} of non-empty disjoint subsets
of X such that their union equals X . We assume |Ci| > 0
for all i = 1, ..., k. Let C ′ = {C ′

1, ..., C
′
l} denote a second

partition of X . The confusion matrix M = (mij) of the pair
(C,C ′) is a k× l matrix whose ij-th entry equals the number
of elements in the intersection of the clusters Ci and C ′

j

mij =
∣∣Ci ∩ C ′

j

∣∣ , 1 ≤ i ≤ k and 1 ≤ j ≤ l (1)

The partition C ′ is a refinement of C (C is a coarsening of
C ′), if each class of C ′ is contained in a class of C. Hence,
by definition, C ′ has to satisfy the following equation:

∀C ′
j ∈ C ′,∃Ci ∈ C such that C ′

j ⊆ Ci (2)

The coarsest common refinement of the two partitions C,C ′

is represented by C × C ′ and it’s defined as follows :

C×C ′ = {Ci∩C ′
j | Ci ∈ C , C ′

j ∈ C ′ and Ci∩C ′
j ̸= ∅} (3)

The set of all unordered pairs of elements of X is the
disjoint union of the following four sets:
S11 is the set of pairs that are in the same class under C and
C’;
S00 is the set of pairs that are different clusters under C and
C ′;
S10 is the set of pairs that are in the same class under C, but
in different ones under C ′; and
S01 is the set of pairs that are in different clusters under C,
but in the same under C ′

The cardinality of the set Sij is represented by nij where

nij = |Sij | , i, j ∈ {0, 1}

The remaining of this section consists of a detailed descrip-
tion of some of the existing similarity and distance measures.
Rand Index (RI) [16], Adjusted Rand Index (ARI) [17],
the Variation of Information (VI) [18], and the Normalized
Variation of Information (NVI)[18].



B. Rand Index (RI)

In [16] Rand proposed, Rand Index (RI), an index of
similarity between two partitions, C and C’, based on pairs
of elements of the set X , where X a finite set of all elements.
The RI similarity measure calculates the fraction of the pairs
classified simultaneously in the same class (n11) and those
classified in different class under both partitions (n00) to the
total number of pairs.

Considering the notations given in Section II-A, the
Rand Index similarity measure is given as below :

RI(C,C ′) =
n00 + n11

n11 + n10 + n01 + n00
(4)

where ni,j is defined in SectionII-A

C. Adjusted Rand Index (ARI)

The Rand Index (RI) as a similarity measure has some
drawbacks: in the case of two randomly generated partitions,
its expected value is not constant. To overcome this limi-
tation, Hurbert and Arabie [17] proposed a new similarity
index measure, called the Adjusted Rand Index (ARI). The
ARI similarity index can be computed as follows:
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∑
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where ai =
∑

j nij , bj =
∑

i nij and ni,j is defined above
in Section II-A.

D. Variation of Information

Meila et. al proposed a new measure
based on the entropy between two partitions,
called Variation of Information (VI) [18]. Given two
partitions C and C ′ on the element of X , the VI distance
measure between and C and C ′, VI(C,C ′), is defined as
follow:

[box=]equation VI(C, C’) = H(C) + H(C’) - 2I(C, C’)
Where:
H(C) represents the marginal entropy, defined as follow :

H(C) =

k∑
i=1

P (i)log2P (i)

with P (i) being the probability that an element belongs to
class Ci, calculated as:

P (i) =
|Ci|
n

The term I(C,C ′) represents the mutual information be-
tween C and C ′ defined as follows:

I(C,C ′) = H(C) +H(C ′)−H(C × C ′) (6)

Therefore, the mutual information, I(C,C ′), can rewritten
as follows:

I(C,C ′) =

k∑
i=1

l∑
j=1

P (i, j)log2
P (i, j)

P (i)P (j)
(7)

Where

P (i, j) =

∣∣Ci ∩ C ′
j

∣∣
n

is the probability that an element belongs to class Ci in C and
to class C ′

j in C ′ is

E. Normalised Variation of Information (NVI)

The Normalised Variation of Information (NVI) is a dis-
tance measure defined by Free et al. in [12]. Given two
partitions C and C ′, The NVI distance between C and C ′ is
defined as follows:

NVI(C,C ′) =
H(C) +H(C ′)− 2I(C,C ′)

H(C) +H(C ′)
(8)

By defining Precision and Recall as follows :

Precision =
I(C,C‘)

H(C)
and Recall =

I(C,C‘)

H(C‘)

FMeasure, defined to be the evenly weighted, harmonic
mean of the Precision and the Recall can be formulated as
follows:

FMeasure(C,C
′) = 2

1
Precision+ 1

Recall

= 2 I(C,C‘)
H(C)+H(C′)

= 1− 2NVI(C,C‘)

(9)

Therefore, NVI(C,C ′) can be written in terms the
Fmeasure(C,C

′) as follows:

NVI(C,C ′) =
1− FMeasure(C,C

′)

2
(10)

III. FRAMEWORK OF THE STUDY

We expect a good distance to be less sensitive to small per-
turbations, more sensitive to large variations and less impacted
by the scale of data. Which can be expressed by the following
three intuitions

• Does the distance capture the variation in case of ran-
domly generated partitions? This intuition tries to capture
either the distance measure uses its range or it takes only
few values

• Is the distance sensitive to small perturbations? This
intuition tries to capture the stability of the measure to
small perturbation within the data

• Is the distance independent of the scale of the dataset?
This intuition tries to measure the ability of the distance
measure to capture the ”shape” of the data independently
of the size of the dataset

One of the main objectives of this paper is to investigate
how the distance and the similarity measures discussed above
perform in capturing these three intuitions.

Three experiments are conducted, to compare the behaviour
of several partition indices and distance measures, RI [16]
, ARI [17], VI [18] and NVI [12], with respect to the



predefined intuitions above.

In all the three experiments, the mean value of each of the
considered measures in this paper as well as its coefficient
of variation (standard deviation over the mean) are calculated.
These three experiments are described in details in Section
IV.

IV. EXPERIMENTAL COMPARATIVE STUDY

In this section a detailed explanation of each of the three
experiments discussed in this work is given. The result for
each experiment are discussed and the performance of the
algorithms: RI [16] , ARI [17], VI [18] and NVI [12]
are compared compared against each other.

A. First Experiment - Variation within Randomly Generated
Partitions

The purpose of this first experiment is to compare RI, ARI,
VI and NVI in their ability to capture the data dispersion
in the case of randomly generated partitions. The experiment
was conducted as follows :

• First, two partitions of 10 000 elements were generated,
over the same dataset, with the same predefined number
of clusters.

• The distance between the two partitions was then calcu-
lated using each the distance measure discussed in this
paper (RI, ARI, VI and NVI) .

• This process was repeated 30 times. The mean, the
standard deviation and the standard deviation over the
mean were then calculated for each distance measure.

• This experiment was repeated for each
of the following number of clusters:
10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500,
1000,1500, 2000 and 3000

Fig. 1. The Mean value of each distance for each number of clusters.

Figure 1 shows the calculated mean value of each distance
measure with respect to the number of clusters. This figure

shows that RI, which is a similarity index, approaches
the value 1 (its upper bound) as the number of clusters
increases. This means that the partitions tend to be considered
as similar as the number of clusters increases substantially,
which is undesirable for two randomly generated partitions.
This unexpected behaviour can be explained in Equation 11
where the value n00 (number of pairs different clusters and C
and C ′) increases and becomes a dominant term:

RI(C,C ′) =
n00 + n11

n11 + n10 + n01 + n00
→ n00

n00
→ 1 (11)

Unlike in the case of Rand Index (RI) where the index
approaches the value 1 for large number of clusters, this
undesirable behaviour, has been corrected in the case of
Adjusted Rand Index (ARI). However, as it is shown in

Figure 1 the ARI takes negative values, which is not
desirable for a similarity measure. Figure 1 also shows that in
the case of Variation of Information (VI) , the mean value
increases with the number of clusters and starts decreasing
when the number clusters exceeds 100. However, this initial
increase observed in the case of VI has disappeared
when Normalised Variation of Information (NVI) is used
instead.

Fig. 2. The SD/MEAN value of each distance for each number of clusters

Figure 2 shows how the coefficient of variance, standard
deviation over the mean, varies with respect to the number of
clusters. The Figure shows that the ARI captures better
the variation in randomly generated clusters. Whereas, the
remaining measures, VI, NVI, and RI are less sensitive
to this variation.

B. Second Experiment -Robustness to Small Perturbations

The main purpose of this experiment is to measure how
sensitive is a distance to small perturbations. We expect a good
distance to be less sensitive to small perturbations. To achieve
small perturbations, the experiment was conducted as follow :



• First, one partition of 10 000 elements is generated,
• Then, a new partition is generated from the first partition

by re-affecting randomly one data point to a new class.
• The distance between the two partitions is then calculated

using each distance measure considered in this paper:
RI, ARI, VI and NVI.

• This process is repeated 30 times. The mean, the standard
deviation over the mean is then calculated for each
distance measure.

Fig. 3. The Mean value of different measures with respect to the number of
clusters.

The Figure 3 shows that all the measures discussed in the paper
succeeded to capture the closeness of partitions: The mean
value of similarity index for both RI and ARI approach
the value 1 whereas, the remaining distance measures: NVI,
VI approach the value 0, which is expected for a distance
measure in the case of close partitions.

Figure 4 shows the variation of the coefficient of variance,
standard deviation over the mean, with respect to the number
of clusters. This figures shows also that, compared to the
other studied measures, the ARI is less sensible to small
perturbations. Whereas, the remaining distance measures ,
VI and NVI are more sensitive to small perturbations
within the generated partitions.

C. Third Experiment - Sensitivity to the size of the dataset

This third experiment focuses on comparing the sensitivity
of the VI, RI, ARI and NVI, when the size of the dataset
is doubled. In other words, given a dataset, if we consider
a pair of partitions and measure their distances and replace
in the underlying dataset each element by 2 elements, will
the distance between the new generated pair of partitions be
different ?

Fig. 4. The SD/MEAN values for different measure with respect to different
number of clusters.

This experiment is conducted as follows:

• First, 2 partitions of 10000 elements, are generated ran-
domly with the same number of clusters

• The distance between the 2 partitions are calculated, for
all the distance measures considered in this paper

• Then 2 new partitions are generated from the 2 previous
partitions by duplicating each element in the dataset

• The distance between the 2 new partitions is then cal-
culated, for all the distance measures considered in this
paper

• Then, the mean, standard deviation and standard deviation
over the mean of the measured distances are calculated

• The following number of clusters were
considered: 10, 20, 30, 40, 50, 60, 70, 80,
90, 100, 200, 300, 400, 500, 1000, 1500, 2000, 3000

We then generate 2 new partitions from the 2 previous
partitions by duplicating each element in the dataset and
recalculating their distances, using the four partition measures
discussed in this paper. The mean, standard deviation and
standard deviation over the mean of the measured distances
are then calculated. The following number of clusters were
considered:
10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 1000,
1500, 2000 and 3000

In Figure 5, the standard deviation over the mean, with
respect the number of clusters for each distance measure is
shown.

The Figure shows that the VI and NVI are less sensible
to the scale of the dataset, whereas ARI, and RI are more
sensitive.



Fig. 5. Comparison between the SD/mean values

V. CONCLUSION AND FUTURE WORK

A. Conclusion

In this paper a comparison between RI,
ARI, VI and NVI, has been conducted via an empirical
study given in Section IV. This empirical study consists of
three experiments and the results of these experiments are
summarised as follows:

• The first experiment in Section IV-A shows that
ARI captures better the variation in the case of ran-
domly generated partitions.

• The second experiment given in Section IV-B demon-
strates that ARI is less sensitive to small perturbations.

• Finally, the third and final experiment discussed in Sec-
tion IV-C shows the VI and NVI are less sensitive
to the scale of the data.

In conclusion, the results of these experiments show that
ARI, performs well in capturing the intuitions defined earlier.

VI. LIMITATIONS AND FUTURE WORK

In one hand, the current work have been conducted under
several assumptions such as predefined dataset size of 10 000
points. Also, the distance and similarity measures are calcu-
lated between partitions having the same number of clusters
i.e. 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500 ,
1000, 1500, 2000 and 3000 partitions. In addition, the exper-
iments realised were focused on measuring the ability of the
distance and similarity measures to capture three main intu-
itions regarding the variation, the sensitivity and the scalability
of the dataset.

Future work can evaluate other intuitions that a “good”
distances can have, such as independence of the distance
measure from the dataset size, from the number of clusters
and from the cluster sizes.

On the other hand, this paper focus was on measuring the
mean, and the standard deviation over the mean. Future work
can be extended to capture other properties of the distance

measures by examining other statistical such as kurtosis and
and skewness of the distance measures distributions.
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