
A Denotational Interprocedural Program Slicer

Lahcen Ouarbya, Sebastian Danicic & Mohamed Daoudi
Goldsmiths College

University of London
New Cross

London SE14 6NW
United Kingdom

Mark Harman
Brunel University

Uxbridge
Middlesex
UB8 3PH

United Kingdom

Chris Fox
University of Essex

Wivenhoe Park
Colchester
CO4 3SQ

United Kingdom

Keywords: Interprocedural, Program Slicing, side-effects, WSL

Abstract

This paper extends a previously developed intraproce-
dural denotational program slicer to handle procedures.
Using the denotational approach, slices can be defined in
terms of the abstract syntax of the object language with-
out the need of a control flow graph or similar intermediate
structure.

The algorithm presented here is capable of correctly
handling the interplay between function and procedure
calls, side-effects, and short-circuit expression evaluation.

The ability to deal with these features is required in re-
verse engineering of legacy systems, where code often con-
tains side-effects.

1 Introduction

Hausler [23] presents a denotational program slicer
for a very simple programming language without proce-
dures. This paper extends Hausler’s approach to a more
realistic programming language containing (possibly side-
effecting,but non-recursive) functions which can be called
both as expressions and as statements.

In program slicing, statements are deleted from a pro-
gram, leaving a resulting program called a slice. The slice
must preserve the effect of the original program on a set
of variables of interest, called the slicing criterion. Like
program optimising, slicing can be thought of as a trans-
formation that preserves certain semantic properties. Slic-
ing has many applications including reverse engineering
[8, 36], program comprehension [14, 22], software main-
tenance [7, 10, 15, 16], debugging [1, 29, 31, 42], testing
[4, 18, 19, 25, 26], component re–use [2, 9], program in-
tegration [6, 27], and software metrics [3, 30, 34]. There

are several surveys of slicing techniques, applications and
variations [5, 13, 20, 37].

Slicing across functions and function-calls is compli-
cated due to the problems of side-effects that can be gen-
erated by an expression [5, 20, 37]. Published approaches
[12, 28, 40, 41] do not explicitly mention how side-effects
are handled. The main contribution of this paper is to de-
scribe a denotational interprocedural slicing algorithm for
programs in the presence of side-effects. We only consider
end slicing. i.e. the slicing criterion is ��������� , where � is
the set of variable of interest and � is the end program point.
Slicing in the presence of side-effects is complicated be-
cause of the necessity to translate the slicing criterion into
and out of function calls.

int x, y, z; int x, z;

int f() 	 int f() 	
y= 1;
z =1; z = 1;
return z;
 return z;

main() 	 main() 	
x =f(); x = f();
printf("%d",z);
 printf("%d", z);

Original program �� Slice of �� w.r.t. �
Figure 1. Program ��� and its corresponding
slice w.r.t �

The slice of an assignment x = y; with respect to a
variable z is empty. The resulting slice of an assignment x
= f(); with respect to a variable z is not always empty
as there are two cases to consider: The first one is when
the function f is side-effect-free. In this case, the resulting

1

slice with respect to z is empty. However, if f contains
a side-effect on z, the assignment x =f(); is kept in
the slice but we must still slice the body of the function f
(keeping only the statements which affect the final value of
the variable z).
In Figure 1, the right most fragment shows the resulting
slice of the program � � with respect to z. The assignment
y = 1; in the body of the function f is deleted, because
it does not contribute the the final value of the variable z.

The rest of the paper is organised as follows: In Sec-
tion 2, we describe Hausler’s approach by defining his slicer
for a simple intraprocedural side-effect free language. The
main denotational algorithm for interprocedural slicing of
programs with side-effects is given in Section 3. In Sec-
tions 4 and 5, we briefly discuss our implementation and
related work. We conclude with Section 6 which gives di-
rections for future work.

2 Intraprocedural side-effect Free Slicing

In order to demonstrate the denotational approach intro-
duced by Hausler [23], in Figure 2, we give his definition
of an intraprocedural slicer for a simple notional language
consisting of loops, conditionals and assignments. This lan-
guage has no function calls and no side-effects. He uses
a functional notation where we define the slice directly in
terms of each syntactic category of the language rather than
first converting programs to control flow graphs as in [12].
Two functions are required:
��� � � ��� , the slice of program � with respect to the set of

variables � , which takes a statement � and a set of
variables � and returns the resulting slice of � with
respect to � .

��� � � ��� , the needed set with respect to the set of variables,� , of program � . This is a function which returns
the set of variables, whose initial values affect the final
values of variables in � when � is executed.

In Figure 2, we define
��� � ����� and

��� � ���	� for side-effect
free programs in a case-by-case basis, in terms of the struc-
ture of the syntax. The key to understanding this algorithm
are rules (5) and (6). When slicing a sequence
 ���
�� with
respect to a set of variables � (the slicing criterion) first
the needed set � of
�� with respect to � is computed and
following this, the needed set of
 � with respect to � is
computed. In this way, the needed set ‘flows backwards’
through the program being transformed ‘as it goes’ (rule 5).
As the needed set ‘flows through’ each statement, the state-
ment is sliced (rule 6). Rules (1) - (4) are for slicing atomic
statements. For assignments, ����� , there are two cases for��� ����� � ��� : The first is when � is not in the set, � flow-
ing through ����� . In this case, the assignment is removed

First ������� E � � E
First !#"%$'&)(+*�&,� -.�/$1020102$3&4� "657-.�
Eval �8� E �9� E
Eval !:&;(<*=&,� -.�/2020101'&,� length !>&)(/�
temp ?�� V � Names � V
temp ?@!:AB$'C (D*EA9F
Temp G��8�V �6� Names �H�V �
Temp G !>&�$.C (<*

� temp ? !:&4� -.�/$%C (.$2010I01$ temp ? !:&4� JLKIMONQPSRB!:&;(>�/$%C9(>�
Temp T	�8�V �6� Names �VUW! V (
Temp T<!:&,$'C (+*

	 temp ? !:&4� -.�/$'C9('$2020102$ temp ? !:&,!:J#K2M6N�PSRB!>&)(3('$2C (

Rename �8�V �6�X�V�B� S � S
Rename !>& � $3&)YZ$'[<(<*\� & � �]&)YI�#[

where � &��,�]& Y �#[means for each " , substitute & �^� ":� by & Y � ":� in [

Figure 3. Auxiliary functions

and � ‘flows through’ unchanged. The second case is when
� is in � . We transform the set flowing through �_�H� by
removing � and adding all the variables referenced by the
expression � . In this case ���`� remains in the slice.

For conditionals (rules 7 and 8) we slice both the true and
false parts and keep the conditional if and only if either of
these slices is non-empty. The needed set of conditionals is
the union of the needed sets of its components together with
the variables referenced by the predicate. This corresponds
to control dependence [24].

For loops of the form a while �cb �
ed , the needed set of
variables is produced by repeatedly calculating the needed
set of variables of a if �cb �
ed and feeding this value back-
ward until there is no further change. This is expressed in
rule 9.

3 Interprocedural Slicing

In many languages, function calls can occur either as ex-
pressions or as a statements. Since such function calls may
have side-effects, we need to be able to slice expressions as
well as statements.

In this paper, the characteristics of the subroutines are
based on those in WSL [33]. In WSL, functions may have
both value and var parameters. Multiple return statements
are not allowed. The value returned by a function is give
by a single expression occurring at the end of the function’s
body. Our system cannot at present handle recursive func-
tions or multiple returns.

We consider function calls to be atomic and therefore
will remain in their entirety or be completely deleted. How-
ever, it is the bodies of the functions which can be simplified
in the case where at least one of their corresponding calls

2

� � S � UW! V (<�]UW! V (� � S � UW! V (<� S
Ref � E �]UW! V (The set of variables upon which the value of � depends 0

skip

!c-I(� ! skip $�� (� �
!���(� ! skip $�� (�

skip

Assignments

!���(� !:A *�KQ$	� (�
 � if A�� �
!���� 	IA
 (�� Ref !:K (if A �

!��Q(� !:A*�K�$�� (�
 skip if A�� �
A = K if A �

Sequences of statements

!���(� !>[���'[Y $�� (� � !/[�^$ � !/[Y $�� (c(3(
!���(� !/[���%[Y $�� (� � !/[�^$ � !>[Y $�� (c(�� � !>[Y $�� (

Conditionals

!��^(� ! if !�� ([� else [OYZ$�� (�
 � if
� !>[� $�� (<* � !/[OYZ$�� (<* skip� !/[�Q$�� (�� � !>[Y $�� (� Ref !�� (if
� !>[��$�� (!�* skip or

� !/[Y $�� ("�* skip

!�#�(� ! if !�� ([� else [Y $�� (�
 skip if
� !>[�^$�� (<* � !/[Y $�� (<* skip

if !�� (� !>[�^$�� (else � !>[Y $�� (if
� !>[�^$�� (!�* skip or

� !/[Y $�� (!�* skip

Whiles

!�$�(� ! while !�� ([$�� (�
fix %'&)(� ! if !�� ([else skip $*&+�,� (

!c-.-�(� ! while !�� ([$�� (�
 skip if
� !/[$�� (<* skip

while !�� (� !>[$ � ! while !�� ([$�� (c(if
� !/[$�� (!�* skip

Figure 2. Intraprocedural Slicer

remains in the slice.
Slicing across functions and functions-calls is compli-

cated by side-effects. An expression / can have side-effects
upon the set of variables of interest. Therefore we need to
work out,

��� / ���	� , the set of variables whose initial values
affect the final value of variables in � when / is executed
and the set, 0 � / � of variables whose initial values deter-
mine the outcome of the value of the expression / .

3.1 Slicing Expressions

The algorithm for slicing expressions is given in Fig-
ure 4. It shows how to work out

�
and 0 for different

types of expressions. We now consider each case in turn:

3.1.1 Slicing Compound Expressions

Since expressions can have side-effects, the order in which
expressions are evaluated has to be considered. Therefore
in order to determine 0 � / � and

��� / � ��� , for compound

expressions we need to know the order in which the sub-
expressions of / are evaluated. We assume sub-expressions
are evaluated form left to right. Slicing compound separated
expressions involves considering the three followings cases:

1. Comma operator separated expressions
Comma expressions are always evaluated from left to
right.

��� / ���	� and 0 � / � for comma expressions is
given by formulae (5) and (6).

2. Arithmetic operator separated expressions
Rules (7) and (8) in Figure 4 show

��� / ���	� and 0 � / �
for arithmetic operator separated expressions.

3. Boolean operator separated expressions
For Boolean expressions, the issue of side-effects is
complicated further by short circuit evaluation. In
evaluating the boolean expression

b � op
b � , it is pos-

sible that only
b � gets evaluated. In Figure 4, rules (9)

and (10) shows how to work out
�

and 0 of Boolean
operator separated expressions.

3

� � E � UW! V (+�VUW! V (� � E �VUW! V (� � Names �VUW! V (� � Names �VUW! V (
SideEffect � E � UW! V (<� 	��,$��

Constants
!c-I(� !��W$�� (� �
!���(� !�� (� �

Variables
!���(� !��W$�� (� �
!��Q(� !�� (� �

Comma Expressions
!���(� !����^$ � Y $�� (� � !����^$ � !�� Y $�� (3(
!���(� !�� � $ �eY^(� � !�� � (� � !�� � $ � !��eY^(c(

Arithmetic Expressions

!��^(� !�� � op �4Ye$�� (� � !c!�� � $��4Y ('$�� (
!�#�(� !���� op � Y (� � !c!�����$�� Y ('$�� (

Boolean Expressions

!�$�(� !���� op � Y $�� (� � !�����$�� (� � !�� ��$�� Y $�� (
!c-.-�(� !���� op � Y (� � !�����$�� Y (

Function Calls

!c-^-I(� !/C6!	��
���%$��
���� (.$�� (� � !	��
���3$+!����'� Temp T<!	��
���3$%C (c(� ��
��� � !�� � (

where

������������ ����������

�!�B* � !>["�c$ � !:KQ$�� (c(
[� * Rename !	�
���� �
��� $#�
���� Temp G !��
��� $%C (.$'[<(
[and K are the body and the return expression of C

� � *
%$ KK�&�K'&�! First !#"%$#�
��� (.$ � !��
��� � ":�#(c(if Temp G !��
��� $'C (1� ":� �!��
otherwise

!c-^-^0 -I(� !>C ()� � !>C9(�)(^K2M+*-, K�!:PSK�,/.10�!	��
���3$%C9('$#��
���3$ � !/[� $�� � (c(
!c-.��(� !/C6!	�
��� $��
���� (.$�� (� � ! Eval !��
��� ('$)!�� � � Temp T !��
��� $%C (3(� ��

�	� � !2� � (
where

��� � � � * � !/[� $ � !:K � (c(
K � * Rename !��
���� �
��� $��
���� Temp G !	�
��� $'C ('$'K(
[� $ K and � � are defined above

!c-.� 0 -I(� !>C ()� � !>C9(�)(^K2M+*-, K�!:PSK�,/.10�!	��
���3$%C9('$#��
���3$ � !/[� $�� � (c(

!c-.��(SideEffect !>C6!���
���%$��
���� (.$�� (� ��� � � if
� !/[� $�� � (!�* skip or 3 " such that SideEffect !��
��� � ":�/$ � (where

[� and � � are defined in rule 11.� otherwise

Figure 4. Interprocedural Slicing of Expressions

4

3.1.2 Slicing Function Call Expressions

A function call expression is of the form � ��������� � �	����
 � ,
where

�	�����
and

�	����

are respectively the lists of actual

value and var parameters. A function definition is of the
form � ��� ����� � � ����
 �
 � � � , where

� �����
,
� ����

,
 and � are, re-
spectively, the lists of formal value and var parameter, the
body of the function and the the return expression1 of the
function.

Slicing a function call (Figure 4) involves computing
�

and 0 for the function call and slicing the corresponding
function definition.��� / � ��� for expression of form � �������� � �	����
 � is given
by formula (11) in Figure 4. Let
 and � be the body and the
return expression of the function � : First we tag every for-
mal value-parameter occurring in
 and then replace every
formal var-parameter occurring in
 by its corresponding
actual one. As a result of doing this, we get a new statement

�� . We then slice
�� with respect to

��� � � �	� to get � � .
In order to proceed, we remember that evaluating the actual
value-parameters of a function call can contain a side-effect.
Each element of � � which is not a tagged value parameter
can be affected by whole the list

� �����
. Every tagged el-

ement in � � can only be affected by the actuals evaluated
before it. This is captured by the ��� in Figure 4.

Rule (12) in Figure 4 computes 0 (E) for function calls.
It is almost identical to computing

��� / � ��� . The same
tagging occurs. The only difference is that, in this case,� �)� ���
�� � 0 � � �I� .

Each time a function call � �������� � �����
 � is encountered,
the body of its corresponding function definition has to be
sliced with respect to a set of variables � , taking into ac-
count the relationship between formal parameters and ac-
tual parameters. To be able to slice the function definition
� , a record, � � � � , is kept of all statements in the body of the
function f, needed at each of the corresponding calls. Dur-
ing slicing each time we come across a call to a function
� , � � � � is updated to reflect that parts of � ’s body that are
needed in the slice. Rules (11.1) and (12.1) in Figure 4 show
how � � � � is updated each time a function call is sliced.

3.2 Interprocedural Slicing of Statements

Before we can discuss the interprocedural slicing of
statements, we need to define how to ascertain whether an
expression / has a side-effect on a set of variables � (See
Rule 13 in Figure 4). If / does not contain a function call
it cannot have a side-effect on � . The only way that / can
side-effect an element of � is if at least one of the function
calls in / has a side-effect on an element of � . A func-
tion call has a side-effect on an element of � if and only if
when we tag the body (as described in Section 3.1.2) and

1We only consider functions with one return statement.

slice it with respect to � we do not get skip. The slice(
�

)
and needed set(

�
) with respect to set of variables � of each

form of statement is given in Figure 5.

3.2.1 Assignment Statements

Rules (1) and (2) in Figure 5 compute
��� ��� � � �	� and�

(x=e,V). we have three cases to consider

1. If � is not an element of � and � has no side-effect on� , then
��� �=�`� � ��� is just � . The assignment, in this

case is deleted.

2. If � is not an element of � and � may have a side-effect
on � , then

��� � �H� � ��� � ��� � � �	� . In this case the
assignment is kept in the slice.

3. If � is an element of � , then to compute
��� � � � � ���

we remove � from � and add in all the variables affect-
ing the final value of � . In this case, the assignment is
kept in the slice.

3.2.2 Conditionals

Rule (3) and (4) in Figure 5 compute the needed set and
the slice for an if statement. First we slice both the true
and the false parts with respect to � . Again there are three
cases to consider:

1. If the slices of both subcomponents are empty and
b

as no side-effect on � , then the whole if statement is
deleted and the needed set of variables is just � .

2. If the slices of both subcomponents are empty and
b

may have a side-effect on � , then the needed set of
variables is

���cb � ��� and the resulting slice is just
if

�cb � In this case the needed set of variables is���cb � �	� .

3. If either of the slices of the subcomponents
are not empty, then the resulting slice is
if

�cb � ���
 � � ���
else

���
 � ���	� , and the needed
set of variables is

���
 � ���	��� ���
 � � �	��� 0 �3b �

3.2.3 Loops

Interprocedural slicing of loops is similar to the intrapro-
cedural case. The while loop can be deleted in the case
where neither the predicate nor the body affect the set of
variables � . In the case either the predicate or the body af-
fects � we must consider the affect of the predicate on the
set of variables, � as well as the variables that determine
the value of the predicate (rules 5 and 6).

5

Assignments

!c-I(� !:A *�KQ$	� (� ��� � � if A�� ����� SideEffect !:KQ$�� (� !:KQ$�� (if A�� ��� SideEffect !:KQ$�� (� !:KQ$�� ��	IA
 (�� � !:K (if A � A �
!���(� !:A *�K4$�� (�
 skip if A � ����� SideEffect !:KQ$�� (

A *=K otherwise

Conditionals

!��Q(� ! if !�� ([� else [OYZ$�� (� ��� � � if
� !/[�����	�
�� $�� (+* skip �� SideEffect !�� $�� (� !�� $�� (if
� !/[�����	�
�� $�� (+* skip � SideEffect !�� $ � (� !�� $ � !>[� $�� (�� � !>[6YZ$�� (3(� � !�� (if
� !/[� ���	�
�� $�� ("�* skip

!���(� ! if !�� ([� else [Y $�� (�
 skip if
� !/[�����	�
�� $�� (+* skip ��� SideEffect !�� $�� (

if !�� (� !/[�^$�� (else � !>[Y $�� (otherwise

Whiles

!���(� ! while !�� ([$�� (�
 � if � SideEffect !�� $�� (�� � !/[$�� (<* skip

fix % &)(� ! if !�� ([$*&+��! � !�� $ � (� � !�� (3(otherwise

!���(� ! while !�� ([$�� (�
 skip if � SideEffect !��W$�� (�� � !>[$�� (+* skip

while !�� (� !/[$ � ! while !�� ([$�� (c(otherwise

Expression Statements
!��^(� !:KQ$ � ((See Figure 4)

!�#�(� !:KQ$ � (�
 skip if � SideEffect !��W$��Z(
K otherwise

Function Definitions

!c-^-I(� !/C6!	��
���%$��
���� $.[$3K ($�� (� ��� � skip if there is no call to the function C the slice

C6!��
���� $%C�� *QJ/$ � !>C9('$.K(otherwise

where � !/C (is defined in Figure ��0
Figure 5. Interprocedural Slicing of Statements

6

3.2.4 Slicing Expression Statements

To compute the needed set of an expression statement we
just use the rules for calculating

�
for expressions given

in Figure 4.
To compute

�
for expression statements, we simply keep

the expression statement in the slice if and only if it may
have a side-effect on � . This function is defined in Figure 5.

3.2.5 Slicing Function Definitions

To slice a function definition we simply take the union of
the slices of the function definition corresponding to each
call to it (Rule 11 in Figure 5). If there is no call then the
function definition will not be included.

4 The Implementation

The implementation of our slicing algorithm was
achieved using a language called WSL [33]. WSL is both
the language that the slicer was written as well as the ob-
ject language to be sliced. The reason for our choice is that
WSL has a built in WSL parser that can be called from within
a WSL program as well as a whole transformation system
which is useful for the simplification of slices. Transfor-
mations were not a major design criterion of most pop-
ular programming languages, they are difficult to trans-
form. However, WSL (wide spectrum language) and trans-
formation theory form the basis of the ’Maintainer’s Assis-
tant’tool [39] used for analysing programs by transforma-
tions. WSL is also the basis of the FermaT transformation
system [38]. The FermaT transformation system applies
correctness-preserving transformations to programs written
in WSL language. It is an industrial-strength engine with
many applications in program comprehension and language
migration, it has been used in migration IBM assembler to
C and to COBOL [32]. Low-level programming constructs
and high-level abstract specifications are both included in
WSL language; hence the transformation of a program from
abstraction specification to a detailed implementation can
be expressed in a single language. The syntax and seman-
tics of WSL are described in [33].

5 Related Work

Hausler [23] presents a denotational program slicer for a
very simple programming language without procedures.

The System Dependence Graph SDG, [35] approach
contains a program dependence graph for each procedure
in the program. The SDG contains additional nodes to
model procedure calls and parameter passing. Parameters
are passed by value-result and access to global variables is
achieved via additional parameters of the procedure:

� Call-site nodes represent the call site.

� Actual-in and actual-out represent the input and output
parameters at the call sites. They are control dependent
on the call site node.

� Formal-in and formal-out represent the input and out-
put parameters at the called procedure, they are control
dependent on the procedure entry node.

In order to link the call site with the program dependence
graph of its corresponding procedure, additional edges have
been introduced:

� Call edges link the call-site nodes with the procedure
entry node.

� Parameter-in edges link the actual-in with the formal-
in nodes.

� Parameter-out edges link the formal-out with the
actual-out nodes

� Summary edges represent the transitive dependence
due to the calls.

Interprocedural slicing using SDG is implemented as reach-
ability over the the SDG.

CodeSurfer [17] is a commercial interprocedural slicing
tool based on reachability problem over SDG. In order to
slice a program � using with respect to a program point
p and a variable x, CodeSurfer highlights all codes of the
program � that affect the value of the variable of interest
x at the program point p.

5.1 Advantages of Our Approach

The advantage of the denotational approach is that slic-
ing can be expressed as mathematical transformations on
abstract syntax without the need to introduce intermediate
structures such as control flow graphs. Such definitions are
highly amenable both to correctness proof and implementa-
tion in the functional style.

Our algorithm not only returns an executable program,
but also produces variable dependence information which
is very useful in comprehension and testing [21].

6 Conclusion and Future Work

In this paper we have denotationally defined an algo-
rithm for the interprocedural slicing of program with side-
effects. Slicing across functions and function-calls is com-
plicated due to the problems of side-effects that can be gen-
erated by an expression. This is the first published algorithm

7

to address this problem. As a proof of concept, we have im-
plemented the slicer for a large subset of the language WSL.
Our slicer is written in WSL.

Future work will attempt to prove correctness of the
slicer and extend it to handle other features. These include
programs with local scope, multiple return statements and
recursive functions which are not handled at present.

References

[1] AGRAWAL, H., DEMILLO, R. A., AND SPAFFORD, E. H.
Debugging with dynamic slicing and backtracking. Software
Practice and Experience 23, 6 (June 1993), 589–616.

[2] BECK, J., AND EICHMANN, D. Program and interface slic-
ing for reverse engineering. In IEEE/ACM

�������
Conference

on Software Engineering (ICSE’93) (1993), IEEE Computer
Society Press, Los Alamitos, California, USA, pp. 509–518.

[3] BIEMAN, J. M., AND OTT, L. M. Measuring functional
cohesion. IEEE Transactions on Software Engineering 20, 8
(Aug. 1994), 644–657.

[4] BINKLEY, D. W. The application of program slicing to re-
gression testing. In Information and Software Technology
Special Issue on Program Slicing, M. Harman and K. Gal-
lagher, Eds., vol. 40. Elsevier, 1998, pp. 583–594.

[5] BINKLEY, D. W., AND GALLAGHER, K. B. Program slic-
ing. In Advances of Computing, Volume 43, M. Zelkowitz,
Ed. Academic Press, 1996, pp. 1–50.

[6] BINKLEY, D. W., HORWITZ, S., AND REPS, T. Program in-
tegration for languages with procedure calls. ACM Transac-
tions on Software Engineering and Methodology 4, 1 (1995),
3–35.

[7] CANFORA, G., CIMITILE, A., DE LUCIA, A., AND

LUCCA, G. A. D. Software salvaging based on condi-
tions. In International Conference on Software Maintenance
(ICSM’96) (Victoria, Canada, Sept. 1994), IEEE Computer
Society Press, Los Alamitos, California, USA, pp. 424–433.

[8] CANFORA, G., CIMITILE, A., AND MUNRO, M. RE Y : Re-
verse engineering and reuse re-engineering. Journal of Soft-
ware Maintenance : Research and Practice 6, 2 (1994), 53–
72.

[9] CIMITILE, A., DE LUCIA, A., AND MUNRO, M. Identi-
fying reusable functions using specification driven program
slicing: a case study. In Proceedings of the IEEE Inter-
national Conference on Software Maintenance (ICSM’95)
(Nice, France, 1995), IEEE Computer Society Press, Los
Alamitos, California, USA, pp. 124–133.

[10] CIMITILE, A., DE LUCIA, A., AND MUNRO, M. A specifi-
cation driven slicing process for identifying reusable func-
tions. Software maintenance: Research and Practice 8
(1996), 145–178.

[11] DANICIC, S. Dataflow Minimal Slicing. PhD thesis, Uni-
versity of North London, UK, School of Informatics, Apr.
1999.

[12] DANICIC, S., HARMAN, M., AND SIVAGURUNATHAN, Y.
A parallel algorithm for static program slicing. Information
Processing Letters 56, 6 (Dec. 1995), 307–313.

[13] DE LUCIA, A. Program slicing: Methods and applica-
tions. In

��� �
IEEE International Workshop on Source Code

Analysis and Manipulation (Florence, Italy, 2001), IEEE
Computer Society Press, Los Alamitos, California, USA,
pp. 142–149.

[14] DE LUCIA, A., FASOLINO, A. R., AND MUNRO, M. Un-
derstanding function behaviours through program slicing. In�	�
�

IEEE Workshop on Program Comprehension (Berlin,
Germany, Mar. 1996), IEEE Computer Society Press, Los
Alamitos, California, USA, pp. 9–18.

[15] GALLAGHER, K. B. Evaluating the surgeon’s assistant: Re-
sults of a pilot study. In Proceedings of the International
Conference on Software Maintenance (Nov. 1992), IEEE
Computer Society Press, Los Alamitos, California, USA,
pp. 236–244.

[16] GALLAGHER, K. B., AND LYLE, J. R. Using program slic-
ing in software maintenance. IEEE Transactions on Software
Engineering 17, 8 (Aug. 1991), 751–761.

[17] GRAMMATECH INC. www.grammatech.com /prod-
ucts/codesurfer/codesurfer.html, 1999.

[18] GUPTA, R., HARROLD, M. J., AND SOFFA, M. L. An ap-
proach to regression testing using slicing. In Proceedings
of the IEEE Conference on Software Maintenance (Orlando,
Florida, USA, 1992), IEEE Computer Society Press, Los
Alamitos, California, USA, pp. 299–308.

[19] HARMAN, M., AND DANICIC, S. Using program slicing to
simplify testing. Software Testing, Verification and Reliabil-
ity 5, 3 (Sept. 1995), 143–162.

[20] HARMAN, M., AND HIERONS, R. M. An overview of pro-
gram slicing. Software Focus 2, 3 (2001), 85–92.

[21] HARMAN, M., HIERONS, R. M., AND DANICIC, S. The re-
lationship between program dependence and mutation anal-
ysis. In Mutation Testing for the New Century (proceedings
of Mutation 2000) (San Jose, California, USA, Oct. 2001),
W. E. Wong, Ed., Kluwer, pp. 5–13.

[22] HARMAN, M., HIERONS, R. M., DANICIC, S.,
HOWROYD, J., AND FOX, C. Pre/post conditioned slicing.
In IEEE International Conference on Software Maintenance
(ICSM’01) (Florence, Italy, Nov. 2001), IEEE Computer So-
ciety Press, Los Alamitos, California, USA, pp. 138–147.

[23] HAUSLER, P. A. Denotational program slicing. In ���
��

, An-
nual Hawaii International Conference on System Sciences,
Volume II (Jan. 1989), pp. 486–495.

[24] HECHT, M. S. Flow Analysis of Computer Programs. Else-
vier, 1977.

[25] HIERONS, R. M., HARMAN, M., AND DANICIC, S. Us-
ing program slicing to assist in the detection of equivalent
mutants. Software Testing, Verification and Reliability 9, 4
(1999), 233–262.

8

[26] HIERONS, R. M., HARMAN, M., FOX, C., OUARBYA, L.,
AND DAOUDI, M. Conditioned slicing supports partition
testing. Software Testing, Verification and Reliability (Mar.
2002). to appear.

[27] HORWITZ, S., PRINS, J., AND REPS, T. Integrating non–
interfering versions of programs. ACM Transactions on Pro-
gramming Languages and Systems 11, 3 (July 1989), 345–
387.

[28] HORWITZ, S., REPS, T., AND BINKLEY, D. W. Interpro-
cedural slicing using dependence graphs. In ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation (Atlanta, Georgia, June 1988), pp. 25–46. Pro-
ceedings in SIGPLAN Notices, 23(7), pp.35–46, 1988.

[29] KAMKAR, M. Interprocedural dynamic slicing with appli-
cations to debugging and testing. PhD Thesis, Department of
Computer Science and Information Science, Linköping Uni-
versity, Sweden, 1993. Available as Linköping Studies in
Science and Technology, Dissertations, Number 297.

[30] LAKHOTIA, A. Rule–based approach to computing module
cohesion. In Proceedings of the

��� ���
Conference on Soft-

ware Engineering (ICSE-15) (1993), pp. 34–44.

[31] LYLE, J. R., AND WEISER, M. Automatic program bug
location by program slicing. In �

��
International Confer-

ence on Computers and Applications (Peking, 1987), IEEE
Computer Society Press, Los Alamitos, California, USA,
pp. 877–882.

[32] M.WARD. Assembler to c migration using the fermat
transformation system. Internation Conference on Software
Maintainance (August 1999).

[33] M.WARD, H. . A multiple backtracking algorithm. Journal
of Symbolic Computation, 1 (1994), 1–40.

[34] OTT, L. M., AND THUSS, J. J. Slice based metrics for es-
timating cohesion. In Proceedings of the IEEE-CS Interna-
tional Metrics Symposium (Baltimore, Maryland, USA, May
1993), IEEE Computer Society Press, Los Alamitos, Cali-
fornia, USA, pp. 71–81.

[35] S.HORWITZ, T. R., AND D.BINKLEY. Interprocedural slic-
ing using dependance graphs. ACM Trans. Program. Lang.
Syst 12, 1 (Jan. 1990), 26–60.

[36] SIMPSON, D., VALENTINE, S. H., MITCHELL, R., LIU,
L., AND ELLIS, R. Recoup – Maintaining Fortran. ACM
Fortran forum 12, 3 (Sept. 1993), 26–32.

[37] TIP, F. A survey of program slicing techniques. Journal of
Programming Languages 3, 3 (Sept. 1995), 121–189.

[38] WARD, M. Assembler to c migration using the fermat trans-
formation system. In IEEE International Conference on
Software Maintenance (ICSM’99) (Oxford, UK, Aug. 1999),
IEEE Computer Society Press, Los Alamitos, California,
USA.

[39] WARD, M., CALLISS, F. W., AND MUNRO, M. The main-
tainer’s assistant. In Proceedings of the International Con-
ference on Software Maintenance 1989 (1989), IEEE Com-
puter Society Press, Los Alamitos, California, USA, p. 307.

[40] WEISER, M. Program slices: Formal, psychological, and
practical investigations of an automatic program abstraction
method. PhD thesis, University of Michigan, Ann Arbor, MI,
1979.

[41] WEISER, M. Program slicing. IEEE Transactions on Soft-
ware Engineering 10, 4 (1984), 352–357.

[42] WEISER, M., AND LYLE, J. R. Experiments on slicing–
based debugging aids. Empirical studies of programmers,
Soloway and Iyengar (eds.). Molex, 1985, ch. 12, pp. 187–
197.

9

