
ANALYSIS OF PHYSIOLOGICAL

SIGNALS USING MACHINE

LEARNING METHODS

Hooman Oroojeni Mohammad Javad

A thesis submitted in partial fulfilment

of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

Department of Computing

Goldsmiths, University of London

c© 2021 Hooman Oroojeni Mohammad Javad

Declaration of Authorship

I, Hooman Oroojeni Mohammad Javad hereby declare that this thesis and the work

presented in it is entirely my own. Where I have consulted the work of others, this

is always clearly stated.

Date: 28 July 2021

Acknowledgements

I would like to express my utmost gratitude to the following people who have made

this thesis possible through their support and valuable input:

Firstly and most importantly, I am indebted to my primary supervisor Dr Mihalis

A. Nicolaou, for his most valuable methodical guidance, comments, inspiration and

mentorship throughout the years.

Secondly, I am immensely grateful to my second supervisor Dr Mohammad Majid

al-Rifaie, for his technical expertise, encouragement, advice and for the many op-

portunities he gave me.

My friends, Dr Mohammad Ali Javaheri Javid, Asei Akanuma, and Dr Farzad

Parvinzamir for the many technical and valuable exchanges of thoughts at differ-

ent stages of my research work.

The department of computing, especially Dr Lahcen Ouarbya and Dr Aaron Gerow

for helping me through all the difficulties I faced during this period. Also, all my

former and current peers at Goldsmiths, especially those located in RHB329 lab for

their support, the many lengthy conversations and comments, especially Terence

Broad, Daniel Berio and Dr Prashant Aparajeya.

My friends Nadine Usta and Dima Fehmi for giving me their time and help in

proofreading my thesis.

Above all, I would like to thank all my family, especially my parents and my wife

Mira for their limitless support and love, which has enabled me to stay strong and

complete my research successfully.

Abstract

Technological advances in data collection enable scientists to suggest novel ap-

proaches, such as Machine Learning algorithms, to process and make sense of this

information. However, during this process of collection, data loss and damage can

occur for reasons such as faulty device sensors or miscommunication. In the context

of time-series data such as multi-channel bio-signals, there is a possibility of losing

a whole channel. In such cases, existing research suggests imputing the missing

parts when the majority of data is available.

One way of understanding and classifying complex signals is by using deep neural

networks. The hyper-parameters of such models have been optimised using the

process of backpropagation. Over time, improvements have been suggested to en-

hance this algorithm. However, an essential drawback of the backpropagation can

be the sensitivity to noisy data.

This thesis proposes two novel approaches to address the missing data challenge

and backpropagation drawbacks: First, suggesting a gradient-free model in order to

discover the optimal hyper-parameters of a deep neural network. The complexity of

deep networks and high-dimensional optimisation parameters presents challenges

to find a suitable network structure and hyper-parameter configuration. This thesis

proposes the use of a minimalist swarm optimiser, Dispersive Flies Optimisation

(DFO), to enable the selected model to achieve better results in comparison with

the traditional backpropagation algorithm in certain conditions such as limited

number of training samples. The DFO algorithm offers a robust search process

for finding and determining the hyper-parameter configurations. Second, imputing

whole missing bio-signals within a multi-channel sample. This approach comprises

two experiments, namely the two-signal and five-signal imputation models. The

first experiment attempts to implement and evaluate the performance of a model

mapping bio-signals from A to B and vice versa. Conceptually, this is an extension

to transfer learning using Cycle Generative Adversarial Networks (CycleGANs).

The second experiment attempts to suggest a mechanism imputing missing signals

in instances where multiple data channels are available for each sample. The capa-

0.0

bility to map to a target signal through multiple source domains achieves a more

accurate estimate for the target domain.

The results of the experiments performed indicate that in certain circumstances,

such as having a limited number of samples, finding the optimal hyper-parameters

of a neural network using gradient-free algorithms outperforms traditional gradient-

based algorithms, leading to more accurate classification results. In addition, Gen-

erative Adversarial Networks could be used to impute the missing data channels

in multi-channel bio-signals, and the generated data used for further analysis and

classification tasks.

5

Table of Contents

Acknowledgements 3

Abstract 4

Table of Contents 7

List of Figures 7

List of Tables 9

1 Introduction 11
1.1 Motivation . 12
1.2 Research Questions . 13
1.3 Scope and Objectives . 14
1.4 Contributions . 15
1.5 Structure of Thesis . 15

2 Machine Learning 17
2.1 Introduction . 17
2.2 Neural Networks . 17
2.3 Backpropagation . 21
2.4 Deep learning . 24
2.5 Generative Models . 25

2.5.1 Autoregressive Models . 26
2.5.2 Variational Autoencoders . 27
2.5.3 Reversible Flows . 27

2.6 Generative Adversarial Networks 28
2.6.1 Architecture-Variant GANs 29
2.6.2 Loss-Variant GANs . 30

2.7 Real-world Applications . 38
2.7.1 Related Work on Machine Learning for ECGs 40

2.8 Chapter Summary . 40

3 Swarm Intelligence for Machine Learning 41
3.1 Introduction . 41
3.2 Population Based Algorithms . 41

3.2.1 Ant Colony Optimisation 42
3.2.2 Particle Swarm Optimisation 42
3.2.3 Differential Evolution Algorithm 44
3.2.4 Genetic Algorithm . 45

6

3.2.5 Dispersive Flies Optimisation 47
3.3 Real-world applications . 49
3.4 Gradient-free Algorithms . 55
3.5 Chapter Summary . 59

4 Deep Neuroevolution for Bio-Signal Classification 61
4.1 Introduction . 61
4.2 Motivation . 61
4.3 Dataset Description . 62
4.4 Feature Selection . 64
4.5 DFO Experiments and Results . 67

4.5.1 Model Configuration . 70
4.5.2 DFO Configuration . 72

4.6 Chapter Summary . 76

5 Signal Imputation with Adversarial Networks 77
5.1 Introduction . 77
5.2 Motivation . 77
5.3 Methodology - Two-Signal Imputation 78

5.3.1 Multi-modal DAE Loss . 79
5.3.2 Adversarial Loss . 79
5.3.3 Cycle Consistency Loss . 80
5.3.4 Overall Loss . 81

5.4 Experiments and Results - Two-Signal Imputation 81
5.4.1 Model Setup . 82
5.4.2 Model Performance . 82

5.5 Methodology - Five-Signal Imputation 83
5.5.1 Adversarial Loss . 84
5.5.2 Domain Classification Loss 85
5.5.3 Reconstruction Loss . 85
5.5.4 Auto-encoder Loss . 86
5.5.5 Overall Loss . 88

5.6 Experiments and Results - Five-Signal Imputation 88
5.6.1 Model Setup . 89
5.6.2 Model Performance . 89
5.6.3 Classification Performance 91

5.7 Conclusion . 91
5.8 Chapter Summary . 93

6 Conclusions and Further Directions 94
6.1 Thesis Summary and Contributions 94
6.2 Future Directions . 96

Appendices 98

A List of Publications 99

Bibliography 100

7

List of Figures

1.1 The structure of this thesis. C represents contributions. 16
2.2 Schematic structure of CNNs.An insight in the Convoloutional Neu-

ral Networks [1]. 24
3.3 Sample update of xi, where i = 3 in a 2D space where the axes are

the dimensions (d1 and d2) in the 2D search space [2]. Used with
permission. 49

3.4 Hybrid Artificial Neural Network-Swarm Intelligence Model 56
4.5 Time courses for a false and a true ventricular tachycardia alarm

as two-dimensional correlogram. While the y-axis constitutes η, the
colour represents Si,fused(η) [3]. 67

4.6 Sample update of wi, where i = 3 in a 2D space. 69
4.7 To dynamically adjust the disturbance threshold (∆), a counter is

used to monitor improvements. Initially the counter is set to 50.
This value has been achieved experimentally. In each iteration,
when the fitness improves, the counter is set to 50; otherwise, it
is decreased by one. 69

4.8 An overview of the hybrid algorithm. Initially the the number of
Flies (agents), NN model, best neighbour vector, and NN parame-
ter vector is created. In the next step, the performance of each Fly
(agent) is gathered and evaluated. Based on the counter value, the
disturbance threshold, (∆) if there is an improvement in the fitness
function, the counter will be reset to 50 otherwise it will be reduced
by one. In the next step, based on a comparison between the ∆ and a
randomly-generated value for each parameter, each Fly’s parameter
will be updated and neighbour vector and the best Fly in the popu-
lation will be updated. The process of collecting Flies’ performance
will be repeated until either the maximum number of iterations is
reached or the target fitness value is reached. 71

4.9 Model 1: 5-fold cross validation mean accuracy over 3000 iterations.
Mean accuracy trend for standard DFO, updated DFO, dynamic
and constant disturbance threshold (∆). 73

4.10 Model 1: 5-fold cross validation mean Physionet score over 3000
iterations. Mean Physionet score trend for standard DFO, updated
DFO, with dynamic and constant disturbance threshold (∆). . . . 74

4.11 Model 1: 5-fold cross validation disturbance threshold (∆) trend.
Visualising ∆ trend, considering dynamic and constant disturbance
threshold (∆) over 3000 iterations. 75

5.12 The structure of two-lead imputation model. 82

8

5.13 Sample 1, a clear heartbeat used to impute lead II and V from each
other. The plots demonstrate the original signals, output of the cycle
and DAE. 83

5.14 Sample 2, a sample of abnormal heartbeat used to impute lead II
and V from each other. The plots demonstrate the original signals,
output of the cycle and DAE. 84

5.15 The multi-lead generator structure 89
5.16 photo-plethysmogram generated using the rest of available signals . 90

9

List of Tables

4.1 Subset of Physionet dataset (572 out of 750 recordings) which con-
tains the ECG leads II and V and PLETH signal. We used this
subset to ensure that we train the neural network models on identi-
cal leads and pulsatile waveform. 64

4.2 Dense Model Structure . 72
4.3 Convolution-Dense Model Structure 72
4.4 Accuracy and Physionet score over 5-fold cross validation for first

and fifth rank in Physionet challenge 2015, NN optimised with back-
propagation and adapted DFO algorithm with constant and dynamic
disturbance threshold (∆) . 76

5.5 Subset of Physionet dataset (648 out of 750 recordings) that contain
the ECG leads II and V and Photo-plethysmogram, Arterial blood
pressure, and Respiration signals. We used this subset to ensure
that we train the NN models on an identical set of signals. 78

5.6 The MSE results of generated Lead II and V using cycleGan and
DAE on the top of cycleGan. 83

5.7 List of target labels mapped in binary vector. 88
5.8 The MSE of generated signals with different sources. 90
5.9 Detailed information regarding the number samples used to evaluate

the classification performance. 91
5.10 The Accuracy and Physionet score obtained using the generated data

over 5-fold cross validation. The results are gathered using StarGAN
only and StarGAN with Auto Encoder. Comparison between the
results shows that using an auto-encoder on the top of StarGAN
improves the accuracy and the Physionet score. 91

5.11 Accuracy and Physionet score over five-fold cross validation for first
and fifth rank in Physionet challenge 2015, NN optimised with back-
propagation and adapted DFO algorithm with constant and dynamic
disturbance threshold (∆) along with results using generated samples. 92

10

1. Introduction

If there’s one thing that people love more than chocolate,

it’s science claiming that chocolate is good for you.

Leo Benedictus

According to the WHO, cardiovascular disease (CVD) is the number one cause

of death globally, with approximately 18 million deaths recorded annually [4]. As

such, the use of electrocardiogram (ECG) monitoring devices play a vital role in

diagnosis and control of CVDs. While technology has greatly aided the evolution of

these devices, there remain unexplored research opportunities for Machine Learn-

ing to further improve the efficacy of these devices. The accurate detection of false

alarms in ECG monitoring systems used in clinical settings, such as Intensive Care

Units (ICUs), is one area in which ML offers potential to providing obvious benefits

to both patients and the healthcare system. To clarify, false alarms occurring in

ECG monitoring devices may result in a range of negative outcomes, such as noise

disturbance, disruption of continuity of care, lack of sleep, all of which may impact

patients’ stress levels, and, more generally, compromise the quality of recuperative

care afforded in ICU settings. It is important to note that only an estimated 2 -

9% of the ECG monitoring device alarms are considered critical.

This study presents a novel architecture and optimisation approach that im-

putes missing bio-signals within a sample using Generative Adversarial Networks

(GANs) and suggests an alternative for neural network hyper-parameter optimisa-

tion. In this research, we deal mainly with arrhythmias, abnormalities in the heart

function which can occur in healthy and unhealthy subjects. The ICU is equipped

with ECG monitoring devices capable of detecting dangerous arrhythmias, namely

11

1.1 Motivation

asystole, extreme bradycardia, extreme tachycardia, ventricular tachycardia and

ventricular flutter/fibrillation. Arrhythmias are potentially fatal and in line with

AAMI guidelines, appropriate responses should be taken within 10 seconds of the

event’s commencement [5]. Triggering of the alarm when an arrhythmia occurs

could improve the chance of saving lives. Misconfigurations, defective wiring, staff

manipulation, and patient manipulation or movement may increase the false alarm

rate to as much as 86%. Clinically, 6% to 40% of the ICU alarms proved to be lower

priority incidents which did not require immediate responses [6]. False alarms stim-

ulate mental discomfort in patients [7] and may desensitise the reactions of clinical

staff, causing slower responses to triggered alarms [8]. True alarms which are rated

with high priority and require an urgent response make up only 2 - 9% of all ICU

alarms [9]; therefore, the detection and elimination of false alarms are important

areas for research.

1.1 Motivation

In the case of faulty ECG devices or patient manipulation, there is the possibility

of losing parts or the whole signal. The challenge of deciding to remove incomplete

samples or impute missing signals while a small number of samples are available

encouraged us to explore the possibility of imputing missing signals within a sample

through each of the two-signal and the five-signal imputation approaches. The

two-signal imputation approach is practical when only two signals are available for

each sample; otherwise, the five-signal imputation approach should be used. This

benefits from a single generator and discriminator model.

In the two-signal imputation approach, we use the CycleGAN to learn the cross-

domain relations between ECG signals while also using paired data in a denoising

auto-encoder (DAE) to learn between-view correspondences and denoise the sig-

nals generated by CycleGAN in order to improve their quality by learning a shared

representation from pairs (x, y). More specifically, the CycleGAN estimates and

maps the given lead II using lead V and vice versa by concentrating on domain

translation. The DAE extracts features from each view in belonging primary paral-

lel layers. Subsequently, the features are concatenated and fed to a stack of layers

to reduce the dimensions and form a shared representation tensor. Lastly, each

12

1.2 Research Questions

view is gathered through separate output layers. The reconstruction functions and

internal representations of each view provide the basic structure of the multi-view

data and are optimised jointly during the training process. On the other hand, the

five-signal approach uses the desired target domain label l to map a physiological

signal from one domain to the target domain.

Additionally, the hyper-parameter optimisation method improves the classification

performance and the generalisation capabilities in pattern recognition and regres-

sion tasks. The deep neural network structure, including the number of neurons,

layers and hyper-parameter configuration plays a significant role in the training

phase. Therefore, several network structures and hyper-parameter configurations

are exercised to train a network. These experiments may result in the derivation

of a set of models that generally have different performances on pattern recog-

nition tasks. It is relatively challenging to find a suitable network structure and

hyper-parameter configuration due to the complexity of deep networks and high-

dimensional optimisation parameters.

Moreover, the network classifier used to predict results on a high dimensional and

large-scale dataset has limitations, such as weak generalisation ability and instabil-

ity in the training phase. To answer the above issues and further enhance the perfor-

mance of deep networks in regression and pattern recognition tasks, the suggested

approach mainly aims to construct an efficient model with its hyper-parameters.

This approach offers a robust search process to determine the hyper-parameter

configuration by using Dispersive Flies Optimisation (DFO).

1.2 Research Questions

Q1: How can the Swarm Intelligence and Evolutionary Algorithms help improve

classification or regression tasks?

Q2: Would hybridisation of Swarm Intelligence and the Neural Networks tech-

niques help overcome some of the drawbacks of using these approaches individu-

ally?

Q3: How useful are Generative Adversarial Networks (GANs) to impute missing

signals? Furthermore, would the imputed signal improve the classification score?

13

1.3 Scope and Objectives

1.3 Scope and Objectives

This study builds upon foundations of machine learning and population-based

stochastic algorithms, where a dataset, including bio-signals used and multiple

deep-neural networks implemented, is evaluated for the classification task. Since

this dataset includes multiple channels of data for each sample and suffers from

random missing signals, two approaches have been taken:

• Approach1: Select the samples that contain the same leads and do not have

missing signals.

• Approach2: Attempt to include as many samples as possible and aim to

impute the missing signals.

By taking Approach1, a deep neural network is implemented and trained us-

ing the traditional method (backpropagation) and accordingly evaluated. Subse-

quently, a novel architecture and optimisation approach is explored to find the

optimal hyper-parameters of the model using the Dispersive Flies Optimisation

(DFO) algorithm. The results have been gathered and a comparison established to

compare the performance of the hybrid model using DFO versus backpropagation

algorithm.

By taking Approach2, the model is implemented to impute the missing sig-

nals while using multi-channel bio-signal samples. This objective is achieved using

GANs, which are analysed and explored. Two different setups to impute a signal

using two-signal and five-signal models have been implemented and the results re-

ported. Subsequently, the two methods used in Approach1 to find the optimal

hyper-parameters were utilised to gather the Physionet score (and accuracy) as a

measurement.

The feature selection and engineering were not set as an objective for this re-

search since the primary focus is on hyper-parameter optimisation and missing data

imputation. We utilise the feature set suggested by [10].

14

1.5 Structure of Thesis

1.4 Contributions

This thesis has made a number of contributions to the fields of computer science,

machine learning, and swarm intelligence. These contributions are listed below:

C1: A new approach is suggested to impute missing signals within five-signal sam-

ples.

C2: A new hybrid system is suggested to optimise neural network hyper-parameters.

C3: An update for the DFO mechanism is suggested, including dynamic distur-

bance threshold (∆) and population update equation.

1.5 Structure of Thesis

The structure of this thesis is organised as follows:

Chapter 2: Machine Learning

In this chapter, we review relevant research and literature in the field of Machine

Learning. This chapter comprises two sections, namely Machine Learning and

Generative Adversarial Networks (GANs). The first section offers a brief history

of Machine Learning elements such as neural networks and their associated com-

ponents. It then discusses deep learning and relevant applications. The second

section provides an insight into GAN models and belonging loss functions and

their real-world implemented applications.

Chapter 3: Swarm Intelligence for Machine Learning

In this chapter, we review relevant research and literature in Swarm Intelligence

algorithms and their implementation in real-world applications as well as litera-

ture on Swarm Intelligence for Machine Learning. In addition, it offers a review

of the approaches which have led to hybrid swarm-intelligence-machine-learning

algorithms.

Chapter 4: Deep Neuroevolution for Bio-Signal Classification

This chapter explains our approach, data selection, feature selection, proposed

hybrid algorithm, and results, along with a discussion of the results obtained.

Chapter 5: Signal Imputation with Adversarial Networks

This chapter explains our approach to impute missing signals using samples with

two and multiple leads to collect the results using the hybrid algorithm proposed

15

1.5 Structure of Thesis

C1

C2

C3

Experiments & Results

Machine Learning

Literature Review

Swarm Intelligence for
Machine Learning

Literature Review

Would hybridisation of Swarm
Intelligence and the Neural
Networks Techniques help
overcome some of the drawbacks of
using these approaches individually?

Question 2

How usefull are Generative
Adversarial Networks (GANs) to
improve missing signals?
Furthermore, would the imputed
signal improve the classification
score?

Question 3

How can Swarm Intelligence and
Evolutionary Algorithms help
improve classification or
regression tasks?

Question 1

Conclusion

Approach1

Hybrid Model
Chap.4 Deep Neuroevolution for

Bio-Signal Classification

Approach2

Imputation
Chap.5 Signal Imputation
with Adversarial Network

Figure 1.1: The structure of this thesis. C represents contributions.

in this chapter.

Chapter 6: Conclusion and Future Directions

This chapter summarises and synthesizes the thesis by discussing the results of the

experiments, exploring further applications of the developed models, highlighting

our contributions, and outlining directions for future research.

16

2. Machine Learning

2.1 Introduction

This chapter is formed to review the initial components of deep learning [11] and

Generative Adversarial Networks (GANs), given that this thesis focuses on utilising

this knowledge while performing experiments. The first section includes discussion

of the concepts of neural networks and deep neural networks along with their

components and elements. It also addresses various applications for each type. The

second section addresses the components of GANs, Loss-Variant and Architecture

models and their applications.

2.2 Neural Networks

A mathematical model comprising a series of synapses or computational units is

called an Artificial Neural Network (ANN). Synapses are artificial neurons inter-

connected by uni-directional communication channels. A specific numerical weight

determines the relative influence of each synapse. Concerning connectivity, a com-

mon approach is to form an acyclic-directed graph by combining a layered feed-

forward neural network with full connectivity between adjacent layers. This model

is referred to as a Recurrent Neural Network (RNN) when it exhibits loops. An

RNN will be identical to a feed-forward network if we unroll it over time and each

time stamp comprises a layer [12, 13]. Between layers, to ensure equivalence, the

weights need to have a specified value. In such circumstances, the challenge is that

the size of the obtained deep neural network becomes immense due to its expansion.

17

2.2 Neural Networks

This will add extra complexity to the training of the model. The research on RNNs

is currently a domain of interest as there have been remarkable improvements such

as research undertaken by [14], [15] and others.

Concerning ANNs, there are many studies on medical datasets. Some of the

examples of the usage of ANNs are: 1- [16] use of ANNs to diagnose a tumour by

applying Multi-Layer Perceptron (MLP) as a practical pattern recognition instru-

ment to differentiate between cancer patients and healthy ones. 2- [17] development

of the MLP method to assist in diagnosing patients with heart diseases based on

a decision support system. 3- [18] diagnosis of lower back pain and sciatica by

training an MLP network to recognise these conditions. The interested reader is

referred to [19] for more information.

Types of Parameters

The terms “parameters” and “weights” are often used interchangeably as they are

typically the central focus of many ANN researchers. However, while investigating

further to identify the components of a neural model, it is essential to define the

following terms:

Weight wij - the value controls the level of conduction of a synaptic signal

between two pairs of neurons (i, j).

Connection cij - It is possible to add or remove the synapses between neurons.

This can be achieved by the assignation of a zero or non-zero value to weight in a

fully connected network. This link between neurons is called a connection.

Neuron model ni - Neuron types change frequently, and those in the brain are

either inhibitory or excitatory [20], so when ANN weight polarity changes, this is

considered a change of neuron type. This type of change is not feasible in the brain,

but it is possible to transform a neural network model, with mixed synapses, into

a network that solely includes inhibitory or excitatory neurons [21]. The study

in [22] presents a variety of neuron types used in the nervous system such as Pyra-

midal Cells (PCs), Nest Basket Cells (NBCs), Small Basket Cells (SBCs), Large

Basket Cells (LBCs), Bi-Tufted Cells (BTCs) and Martinotti Cells (MCs). Each

of these types has specific properties; as such, it is possible to obtain interest-

ing results by combining several types. This combination can be implemented in

18

2.2 Neural Networks

the ANN context, such as in the case of Long-Short Term Memory (LSTM), [23]

which is a typical network element used frequently and successfully in handwriting

recognition [24].

Network model s - Usually, in the design stage, the number of neurons and

layers have fixed parameters. However, these properties can also be optimised to

minimise error, for instance, by using evolutionary genetic algorithms to construct

the network [25].

Learning

The process of discovering model parameters using a data-driven mechanism is

called learning. The process of learning, the classification of learning algorithms,

and relevant learning trends have been described here. Machine Learning tech-

niques are used to minimise the workload for humans by substituting it with ma-

chine computations for specific tasks. With a suitable algorithm, it is possible to

trade off the manual effort of designing solutions with the machine’s memory and

computational powers.

Traditionally, programmers have been principally responsible for developing al-

gorithms, but the length and complexity of the code produced has not increased

in linear correlation with the growth of the model needed, which has caused prob-

lems due to scarcity of processing time and available resources. On the other

hand, a relatively complex formula is used by Machine Learning techniques with-

out the traditional constraints rendered by the size of the problem. This increases

the potential for Machine Learning to reduce software development limitations.

The domain-specific expert-based solutions are being replaced by a data-driven

approach due to fast-changing demands from the IT industry. The domain-specific

models need extra design effort. The complexity of the problem is turned into val-

ues of neural network parameters, which are determined as a function of a training

set, thereby making direct programming redundant. Additionally, the training set

is precisely where the effort has shifted. Having rich training data and using proper

parameter tuning increases the quality of overall machine learning algorithms since

they are highly data-driven. The size of the training set has the most substantial

influence on output accuracy, although the quality of data also has a major impact

19

2.2 Neural Networks

on the results. As a result, the increase in hardware performance, and the quality

of training sets and machine-learned solutions, are improving. Speech recogni-

tion using large-scale deep neural networks has become very successful [26] and

can exceed solutions programmed by human experts; for example, a deep-learning

model achieved higher accuracy than solutions based on complex features such as

SIFT [27].

Learning Algorithms

This section summarises three well-known learning algorithm approaches, including

supervised and unsupervised learning and reinforcement learning.

Supervised

Supervised algorithms use labelled data sets for training. This method aims to

generalise the relationship between the data and the labels to the unknown samples.

The cost function is specified concerning the desired output. The learning process

utilises a gradient descent-based optimisation method to minimise the cost function.

One of the most popular methods for this purpose is called the backpropagation

algorithm [28]. This algorithm is a generalised delta rule that applies to the model

a collection of limitations. For instance, activation function of the nodes has to

be uniform and differentiable. Other general supervised algorithms can also be

used. However, they may not primarily be designed to be applied to an ANN, for

instance, simulated annealing [29].

Unsupervised learning

The labelling of data is a laborious and time-consuming task carried out after data

has been collected for a specific purpose to serve as an input to the learning al-

gorithm. This is the reason why most available data are generally not labelled.

Clustering and hidden Markov models (HMMs) are included in unsupervised ap-

proaches. They have proven to be useful in neural networks, mainly when combined

with supervised learning, specifically in deep learning [30, 31, 32]. From a biological

plausibility perspective, unsupervised clustering occurs in the mammalian brain’s

primary visual cortex, making it possible to generate localised receptive fields by

20

2.3 Backpropagation

using an unsupervised learning algorithm [33]. An equivalence between the expec-

tation maximisation algorithm (EM) and STDP is another type of connection to

biological models that applies under certain conditions[34]. The EM algorithm is a

statistical method, including separate specialised learning agents, discovering the

hidden relationships within complex input data.

Reinforcement

This learning approach is structured on the interactions between an agent and the

environment. The agent selects an activity from a probability distribution, which

produces a response from the environment that can be measured. The learning

aims to maximise the total reward function. An interesting result has been obtained

in [35], where applies these principles to ANNs. The input to the model is visible

to the screen and is supposed to learn to play several Atari2600 games. In the

same way that dopamine is used in the brain as a reward signal, providing hints to

synapses in reinforcement learning by saving the temporary weights, their changes

can also be seen as biologically plausible [36].

2.3 Backpropagation

The supervised learning multi-layer feed-forward neural network algorithm was

proposed by Rumelhart, Hinton and Williams [37]. The oldest and most popular

version of this type of algorithm is Backpropagation Neural Network (BPNN)[38].

The main aim of supervised training is frequently updating the network weights in

order to minimise discrepancies between the actual outputs of that network and

relevant labels. This method calculates the gradient of a loss function with respect

to all the weights in the network. In an attempt to minimise the loss function, the

weights are then updated by the optimisation method that this gradient feeds into.

The basic equation of a backpropagation Algorithm is:

Wt+1 = Wt − η
∂J

∂Wt

(2.1)

where η is the learning rate and J and W represent loss function and model

parameters respectively.

21

2.3 Backpropagation

Components of Backpropagation Algorithm (BPA)

BPA uses the gradient descent learning rule to update model parameters. This

rule requires that parameters such as initial weights and biases, learning rate value

and the activation function are selected carefully. Without this this, slow net-

work convergence, a network error or even convergence failure may occur. These

shortcomings have led previous researchers to propose a range of variations in the

gradient descent BPNN algorithm in order to improve training efficiency [39].

• Activation Function: The activation function, or transfer function, is used

to transform the activation level of a unit (neuron) into an output signal.

This function is applied to the output nodes of each layer before it is fed to

the subsequent layer.

The activation function is used for two purposes. The first is to change the

unit into an active (near +1) one when the correct inputs are provided or an

inactive (near 0) one when the incorrect inputs are given. The second pre-

vents the NN from collapsing into a linear function by making the activation

non-linear. A few of the basic types of activation functions are the identity

function, the step function, and the sigmoidal function. As the input of these

functions changes, the output varies continuously but not linearly. On an-

other note, the sigmoid units are more similar to real neurons than linear or

threshold units.

• Learning rate coefficient (η): The learning rate coefficient determines

how to adjust the size of the weights at each iteration - the reason it influences

the convergence rate. Selecting a wrong coefficient may lead to a failure in

the convergence. For instance, if the learning rate is too fast or too slow, this

would damage the network convergence.

• Momentum Term (α): Adding momentum to the gradient equation can

enhance the convergence rate. This can be accomplished by adding a fraction

of the previous weights change to the current one. Rumelhart et al. [28]

introduced a commonly-used update rule, including this type of momentum

22

2.3 Backpropagation

term. The updating equation used by Rumelhart is defined as follows:

[∆W]t+1 = −η ∂J
∂W

+ α[∆W]t (2.2)

It is added to smooth out oscillation and increase convergence speed.

Proportional Factor (β):

The standard Backpropagation Algorithm (BP) usually utilises two-term pa-

rameters; Learning Rate α and Momentum Factor β, but sometimes a third

term called Proportional Factor is also added to increase the convergence

speed, and to escape from local minima.

• Cost Functions: The Backpropagation algorithm uses the Mean Squared

Error (MSE) cost function. There are some drawbacks to MSE that have

been observed, such as incorrect saturation and the tendency to be trapped

in the local minima, leading to slow convergence and poor performance. Also,

the squaring in MSE emphasises reducing the larger errors rather than the

smaller ones. To rectify this, research was conducted to find better cost

functions and as a result new ones were proposed such as the Bernoulli error

measure [40], New Modified cost function [40], Classification-Based (CB) cost

functions [41].

Backpropagation (BP) is a well-established neural network training algorithm as

it allows itself to learn and improve, thus achieving higher accuracy than other al-

gorithms [38], and it is well known for this reason. [42] worked on comparing genetic

and backpropagation algorithms through different problems such as Sin function,

Iris plant and Diabetes datasets and deduced that BPLA is faster than Genetic

Algorithms (GA) in terms of training speed as well as CPU time required. [43] has

proven that BPLA outperforms GA when experimenting on pattern recognition.

On the other hand, BP is used less frequently as it requires longer times to train

the network to achieve the best possible results. With larger datasets, BP suffers

from the local minima issue, yet some researchers like [44] suggested novel ideas

that would avoid the local minima problem in complex datasets by providing scope

to increase the speed of BPLA for this type of data.

23

2.4 Deep learning

Figure 2.2: Schematic structure of CNNs.An insight in the Convoloutional Neural Net-
works [1].

2.4 Deep learning

In recent years, a significant development in NN research has been Deep Learning

(DL), A fast algorithm which can be used in deep belief networks, as suggested by

[45]. For each layer, this algorithm uses layer-wise unsupervised learning. Combin-

ing supervised with unsupervised learning produced significant results, which has

made DL an active field of research. Currently, there are many DL applications;

examples include speech recognition [46] and large-scale feature detectors such as

the Google experiment [47]. A review of [48] offers a cogent historical analysis

of the advances in the field of DL. The automatic development of features for the

network through the usage of deep learning ensures there are fewer limitations for

backpropagation as the random initialisation of the weights is no longer a depen-

dency for the results. Backpropagation usage in a multi-layered network is not

efficient and does not yield good results when there are more than 1-2 hidden lay-

ers; this is because local minima are highly likely to occur in this scenario. DL

techniques have significantly improved big data analysis [49, 50]. The fields of

social media, cyber-security, and medical informatics have yielded enormous data

troves [51], and which are freely available to the public. From these datasets, DL

can extract high-level features and then create hierarchical representations [1].

Convolutional Networks

Convolutional Networks[52], also known as Convolutional Neural Networks or CNNs,

are types of NNs which are optimal for the processing of grid-like data. These data

24

2.5 Generative Models

are either one-dimensional, such as time series that take samples at regular inter-

vals or a two-dimensional grid of pixels such as image data. CNNs use convolution,

a type of linear operation [53, 1], which takes two functions with real value argu-

ments: s(t) = (x∗w)(t) where w is a function of valid probability density or kernel

and x refers to an input. s is the output which is referred to as a featuremap. In

machine learning, operations usually deal with multi-dimensional array parameters

(tensors) as input and kernel. For instance, if we use convolutions over a 2-D im-

age, considering input I and hidden layers kernel K, then we can define convolution

following the equation and schematic structure of CCNs presented in figure 2.2 [1]:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (2.3)

CNNs have had a significant effect on deep learning evolution as they represent a

successful application of ideas inspired by studying the brain. They are among the

primary deep models that perform well and have significant viability in commer-

cial applications, for instance reading bank cheques [54] and handwriting recog-

nition [55]. Various researchers applied Deep NNs to medical datasets. For in-

stance [56] offers a new automatic approach proposed to detect cerebral microbleeds

(CMBs) from magnetic resonance (MR) images by using 3D CNN. For example,

[57] proposes a CNN approach to classifying interstitial lung diseases (ILDs) while

[58] predicts neo-adjuvant chemotherapy using a CNN approach.

2.5 Generative Models

We can categorise machine learning implementations into Generative and Discrimi-

native models. Discriminative models learn mapping an input to the desired output

class; in addition, Generative models also learn the rule to generate the output from

the input. A Discriminative model estimates the hidden parameters of the model or

the conditional probability distribution of y conditioned on x: P (y|x).The Discrim-

inative model approximates the probability of y and P (y|x) although x is known

but does not have knowledge regarding marginal distribution of y and x indepen-

dent from the other variables(P (y) and P (x)). This model has the potential to

learn a map,f̂ , to offer an approximation of the distribution P (y|x), which defines

25

2.5 Generative Models

a boundary with an optimal split among available classes.

The Generative model estimates the joint probability distribution x and y, which

can be represented as P (y|x)p(x). This model has the ability to learn a map, f̂ , to

approximate the distribution P (y, x).

We can use Bayes’ theorem to calculate P (x|y) and P (y|x), while P (y, x) is

estimated, having the knowledge that the joint probability is symmetrical. After

moving around the P (x) and P (y) terms, we derive Bayes’ theorem:

P (x, y) = P (y, x)

P (x|y) = P (x, y)
P (y)

P (y|x) = P (y, x)
P (x) = P (x, y)

P (x)

P (x|y)P (y) = P (y|x)P (x)

P (y|x) = P (x|y)P (y)
P (x)

(2.4)

An advantage of Generative models is their ability to process and learn from

complex and big data by utilising a rather modest number of parameters. In addi-

tion, in contrast to Discriminative models, they can learn highly relevant features

from datasets without processing their labels. Such models have been applied to

different concepts, such as speech synthesis, model-based control, and image gen-

eration.

The most recent work in Generative models has focused on GANs and likelihood-

based methods, including auto-regressive models, Variational Auto-encoders (VAEs),

and flow-based models. The following sections describe likelihood-based models

and their variations. Later, I will describe the GAN framework in detail.

2.5.1 Autoregressive Models

This model estimates the conditional distribution of y with dependency on the

previous time-step or offered values of y. For instance, in audio composition, the

sample is estimated with consideration of previous audio samples and spectrograms.

The simplest form of an auto-regressive model with dependency on the previous

26

2.5 Generative Models

time-step and time-invariant bias term can be demonstrated as follows:

Yt = α +
p∑
i=1

βiYt−1 + εt, (2.5)

Models’ coefficients and bias are represented as β and α respectively. Yt−1 and εt
appear for previous time-step and white noise respectively. The current output is

explicitly dependent on the former output. Auto-regressive models use maximum

likelihood estimates as a training approach, which adds benefits of stability and

simplicity.

An example of auto-regressive models for image synthesis is PixelCNN [59], and

for audio synthesis WaveNet [60].

2.5.2 Variational Autoencoders

The aim of Auto-encoder models is to model the joint probability of the latent

variable and the observed data: where P (x, z) can be represented as P (x|z)P (z).

Using Bayes’ rule, we calculate the posterior probability of z given x; P (z|x) in eq.

2.6 since we are in favour of finding optimal z values that produce observed data:

P (x|z)P (z)
P (x) (2.6)

Variational auto-encoders are more straightforward to train and infer in parallel,

in comparison with auto-regressive models, although they are difficult to optimise.

An example of this model is Deep feature-consistent Variational auto-encoders to

generate images [61]. The images produced with models based on VAEs tend to

be blurry however.

2.5.3 Reversible Flows

Flow-based generative models are naturally reversible and a single model P with

a parameter Θ estimates PΘ(x|z) and PΘ(z|x).

Such an attribute of reversible flow models gives the means-precise log-likelihood

evaluation and latent variable inference in the absence of approximation. Reversible

flow models give impressive results in speech and image synthesis. A example

of speech synthesis is the work done by NVIDIA [62] and for image generation,

27

2.6 Generative Adversarial Networks

GLOW [63], which presents faces generated by a flow-based model. The process of

discovering model parameters using a data-driven mechanism is called learning.

2.6 Generative Adversarial Networks

Generative Adversarial Networks (GANs) are able to learn the distribution of data

and generate believable fake samples. Producing additional samples using GANs

can help create deeper NNs while avoiding overfitting the model [64]. One of the

main advantages of GANs is that, unlike other approaches that use approximation

methods to compute intractable functions or inference, such as VAEs, GANs do

not require an approximation method.

GANs are increasingly becoming an interesting area for the research commu-

nity [65, 66, 67, 68]. Many domains, such as semantic segmentation [69, 70,

71, 72, 73], computer vision [74, 75, 76, 77, 78, 79], natural language process-

ing [80, 81, 82, 83], and time series synthesis [84, 85, 86, 87, 88] have taken ad-

vantage of GANs. In comparison with other generative models, GANs have the

capability to handle sharp-estimated density functions, generating desired sam-

ples in an efficient way, with satisfactory compatibility with internal components

of the neural network [89]. Although researchers demonstrate successful scenar-

ios in the field of computer vision, GANs are hard to train [90, 91, 92, 93] and

evaluate [94, 95, 96, 97, 98, 99, 100].

Different GAN types are introduced in the literature for better performance, and

can be categorised into Architecture-variants and Loss-variants. In the following

sections I briefly discuss these.

The architecture of a GAN comprises two components: The Discriminator,

whose role is to distinguish between real and generated samples, and the Gen-

erator, which generates samples to fool the discriminator. The aim of a GAN is

to learn the distribution of generator Pg that approximates the distribution of real

data Pr. A GAN is optimised through considerations of joint loss function for

generator and discriminator:

min
G

max
D

EX∼Pr log[D(x)] + EZ∼PZ log[1−D(G(Z))]. (2.7)

28

2.6 Generative Adversarial Networks

GANs have a set of advantages that distinguish them from traditional deep gen-

erative models and enable them to achieve state-of-the art performance to produce

synthetic data. They can produce superior output; any generator model can be

trained, and latent variables can have any size [89].

2.6.1 Architecture-Variant GANs

Architecture variant GANs are introduced to help in data generation challenges

such as text-to-image generation [101], image completion [102], image-to-image

transfer [103], and image super-resolution [104]. In the following sections I offer

a review of this category of GANs in the context of improving sample quality,

training stability, and sample diversity improvement.

Fully-Connected GAN

In Fully-Connected GANs (FCGANs), fully-connected neural networks are used

to implement both generator and discriminator [65]. This model does not gener-

alise performance for complex image types, as results from some simple datasets

demonstrate [105, 106, 54].

Laplacian Pyramid of Adversarial Networks

This model aims to upscale images, i.e. achieve higher resolutions from images

with lower resolutions [107, 108].

Deep Convolutional GAN

This model uses de-convolutional neural networks in generator since they perform

well in spatial up-sampling and visualising the features for convolutional neu-

rons [109, 110]. This enables Deep-Convolutional GANs (DCGANs) to produce

higher resolution images.

Boundary Equilibrium GAN

This model uses an auto-encoder for discriminator and its loss function uses Wasser-

stein distance instead of directly matching distribution of data [111]. This approach

prevents the discriminator from winning easily against the generator at early stages

29

2.6 Generative Adversarial Networks

of training because of the discriminator’s loss modification. The generator can re-

construct data more easily for the auto-encoder since the generated data is close to

zero at the beginning and the generator has not yet learned the data at the early

stages.

Progressive GAN

This architecture takes advantage of using progressive neural networks [112] that

are able to retain prior knowledge due to the use of lateral connections to formerly-

learnt features. In this implementation, both generator and discriminator grow

throughout the training process while all parameters remain trainable. This train-

ing strategy makes the process of learning for both models more stable and results

in impressive and plausible samples [112, 113, 114].

Self-attention GAN

The main reason for this implementation is the limitation of CNNs in learning

multi-class image datasets because they are able to only capture local spatial in-

formation and possibly not cover adequate structure by receptive field. This may

cause a shift in key components of the image while generating it [115]. Self-attention

GANs (SAGANs) implement a self-attention procedure for the generator and dis-

criminator of the GAN. This algorithm shows improved performance on multi-class

image generation while tested on ImageNet datasets [116].

BigGAN

This architecture is based on SAGAN with a much bigger batch size and more

complex model and, as a result, this produces diverse and high quality images [114].

2.6.2 Loss-Variant GANs

Another approach to increase the performance of GANs is to explore possible im-

provements in the original loss function (see eq. 2.7). The original loss function

offers global convergence and optimisation, although it is likely to encounter in-

stability problems while training [65]. If the discriminator is optimised for any

30

2.6 Generative Adversarial Networks

generator, the global optimality is attained and therefore the derivative of the

discriminator in eq. 2.7 is zero. In summary we have

−Pr(x)
D(x) + Pg(x)

1−D(x) = 0

D∗(x) = Pr(x)
Pr(x) + Pg(x)

(2.8)

Where D∗(x) is the optimal discriminator, Pr(x) and Pg(x) are real data and

generated data distribution respectively. x serves as real and generated data. When

considering eq. 2.7 and 2.8, the loss function of the generator while the discrimi-

nator is optimised is as follows:

LG = Ex∼Pr log Pr(x)
1
2 [Pr(x) + Pg(x)] + Ex∼Pg log Pg(x)

1
2 [Pr(x) + Pg(x)] − 2 · log 2. (2.9)

The above equation (2.9) is related to Kukkback-Leibler (KL) divergence and

Jensen-Shannon (JS) divergence measurement metrics. Considering these metrics,

the loss function for the generator can be reformulated as

KL(p1 ‖ p2) = Ex∼p1 log p1

p2
,

JS(p1 ‖ p2) = 1
2KL(p1 ‖

p1 + p2

2) + 1
2KL(p2 ‖

p1 + p2

2),

LG = 2 · JS(pr ‖ pg)− 2 · log 2.

(2.10)

While training discriminator step-by-step, optimisation of generator becomes

equal to minimising JS divergence between pg and pr. The JS divergence causes

unstable training problems since discriminator often wins against generator.

If there is no overlap between pr and pg, JS divergence remains unchanged, and

if they have an overlap, it means the gradient of JS divergence for training the

generator is non-zero [117]. For instance, when discriminator is close to optimal,

the vanishing gradient will emerge for generator. It is highly likely that pr and pg
have poor overlap or do not overlap at all.

To avoid gradient vanishing, the original GANs paper [65] suggests minimising

31

2.6 Generative Adversarial Networks

−Ex∼pg log[D(x)] for training generator, although this approach will lead to mode-

dropping problems. The KL(p1 ‖ p2) with an optimal D∗ can be redefined as

follows

KL(pg ‖ pr) = Ex∼pg log pg(x)/(pr(x) + pg(x))
pr(x)/(pr(x) + pg(x)) ,

= Ex∼pg log 1−D ∗ (x)
D ∗ (x) ,

= Ex∼pg log[1−D ∗ (x)]− Ex∼pg log[D ∗ (x)].

(2.11)

In eq. 2.7 by switching the order of the two sides, the loss function for generator

will be

−Ex∼pg log[D ∗ (x)] = KL(pg ‖ pr)− Ex∼pg log[1−D ∗ (x)],

= KL(pg ‖ pr)− 2 · JS(pr ‖ pg) + 2 · log 2 + Ex∼px log[D ∗ (x)],

(2.12)

where in the updated loss function in eq. 2.12, the last two terms are constant

and the first terms advance the generated distribution towards real distribution

and the second terms aim to push in the opposite direction. Considering the

circumstances, this will lead to instability while training the generator. Also KL

divergence is a distribution measurement which is asymmetrical:

• Whenpg(x)→ 0, pr(x)→ 1, KL(pg ‖ pr)→ 0.

• Whenpg(x)→ 1, pr(x)→ 0, KL(pg ‖ pr)→ +∞.

Using the vanilla-loss function in eq. 2.7 results in vanishing gradient while

training generator and also using alternative loss function (eq. 2.12) will achieve

a mode-collapse problem. Modifying the model architecture will not solve such

obstacles. Instead, an alternative can be to redesign loss functions as loss-variant

GANs improve stability of training GANs.

32

2.6 Generative Adversarial Networks

Wasserstein GAN

Wasserstein GAN [118] uses earth-mover (EM) distance [119] as loss measure to

solve the above-mentioned problems. The EM distance is specified as follows

W (pr, pg) = inf
γ∈Π(pr,pg)

E(X,Y)∼γ ‖ X − Y ‖, (2.13)

where Π(pr, pg) is a collection of all joint distributions and pg and pr are marginals

of γ(X, y). EM, in comparison with JS and KL, has the capability to provide a

meaningful gradient while training the generator and show the distance even in

situations where pg and pr are not overlapping. WGAN has a smoother gradient

while training generator in comparison with original GAN, although it is hard to

control the infimum in eq. 2.13. Therefore Wasserstein distance can be estimated

as

max
w∼W

Expr [fw(x)]− Ez∼pz [fw(G(z))], (2.14)

where fw represents discriminator, z is the noise as input to the generator. The

discriminator aims to maximise eq. 2.14 by making the optimisation distance closer

to Wasserstein distance by using its parameters w. After optimising discriminator,

generator aims to minimise Wasserstein distance (eq. 2.13). Loss of the generator

is

−min
G

Ez∼pz [fw(G(z))], (2.15)

In contrast with the original GAN, Wasserstein GAN (WGAN) fits Wasserstein

distance in discriminator instead of binary classification and does not use sigmoid

in the last layer.

WGAN-GP

WGANs do not show exceptional generalisation on deeper models since belong-

ing parameters are localised at -0.01 and 0.01 due to parameter clipping, which

will reduce the modelling capability of discriminator significantly. Applying gradi-

ent penalty on discriminator to regulate ‖ f ‖L≤ K and update loss function of

33

2.6 Generative Adversarial Networks

discriminator as follows

LD = EXg∼pg [D(Xg)]− EXr∼pr [D(Xr)] + λEX̂∼pX̂ [(‖ 5X̂D(X̂) ‖2 −1)] (2.16)

where Xg and xr, are the data selected from distribution of generated pg and

real pr data. The last term in the above equation is the gradient penalty where px̂
are samples uniformly selected along straight lines between pairs of points sampled

from pr and pg. WGAN-GP performs in a more stable way during training and

trained parameters and have better distribution in comparison to WGAN [120].

Least Square GAN

To solve the vanishing gradient of generator, Least Square GAN (LSGAN) suggests

using the least square loss for discriminator rather than sigmoid cross entropy which

is originally used in original GAN [121] algorithm. The loss function is stated as

min
D
LD = 1

2EX∼pr [(D(X)− b)2] + 1
2Ez∼pz [(D(G(X))− a)2],

min
G
LG = 1

2Ez∼pz [(D(G(X))− c)2]
(2.17)

where a and b are the labels for generated and real samples respectively and c is

the label that the generator uses to fool the discriminator. This new approach en-

ables the decision boundary of the discriminator to penalise large errors obtained by

processing generated samples to help to push them towards the decision boundary.

Also the idea of penalising the samples that are far away from the decision bound-

ary can offer better gradient while updating generator and solving the vanishing

gradient issue.

f-GAN

The purpose of f-GAN is to train the model by applying f-divergence [122]. The

idea is to use probability distributions and calculate the difference Df (P ‖ Q)

between P and Q.

34

2.6 Generative Adversarial Networks

Unrolled GAN

This approach is suggested to solve the mode-collapse problem while training. The

idea is to add a gradient term to update the generator based on the way the

discriminator will respond [123]. Assuming an iterative procedure to find optimal

parameters of D, these parameters can be declared as fixed points.

θ0
D = θD,

θk+1
D = θkD + ηk

df(θG, θkD)
dθkD

)

θ∗D(θG) = lim
k→∞

θkD,

(2.18)

where θD and θG serve as parameters of discriminator and generator respectively.

The ηk represents the learning rate. The new loss function can be expressed as

follows, by unrolling for K a number of steps

fK(θG, θD) = f(θG, θKD (θG, θD)). (2.19)

The above replacement for loss can be used to update parameters of generator

and discriminator

θG ← θG − η
dfK(θG, θD)

dθG
,

θD ← θD + η
df(θG, θD)

dθD

(2.20)

The following term states the gradient to update generator

dfk(θG, θD)
dθG

= ∂f(θG, θKD (θG, θD))
θG

+ ∂f(θG, θKD (θG, θD))
∂θKD (θG, θD)

dθKD (θG, θD)
dθG

(2.21)

where the first term is the gradient of the vanilla GAN, the second term is the

reaction of discriminator while generator changes - meaning while generator tends

to collapse to one mode, discriminator increases the loss of generator.

35

2.6 Generative Adversarial Networks

Loss Sensitive GAN

The aim of this type of GAN is to minimise the designated margins between gen-

erated and real samples, resulting in generating close-to-reality samples. The Loss-

Sensitive GAN (LS-GAN) paper [124] claims that a non-parametric hypothesis,

which enables the discriminator to make decisions between generated and real

samples, is the reason for mode collapse and vanishing gradient. The ability of the

discriminator to classify is limited in LS-GAN. It is learned by loss function Lθ(x)

with parameters θ, assuming that real samples have lower loss that generated ones.

The loss function is composed as

Lθ(x) ≤ Lθ(G(x))−∆(x,G(z)), (2.22)

where ∆(x,G(z)) is the difference between generated and real samples’ margin

measuring. The above equation (2.22) implies that the real and generated samples

are separated leastwise by a margin of ∆(x,G(z)). The LS-GAN optimisation is

min
D
LD = Ex∼prLθ(x) + λEz∼pz

x∼pr

(∆(x,G(z)) + Lθ(x)− Lθ(G(z)),

min
G
LG = Ez∼pzLθ(G(z)),

(2.23)

where θ represents the parameters of discriminator and λ is a positive-balancing

parameter. In order to avoid over-fitting the generated and real samples in dis-

criminator, the term ∆(x,G(z) is added to LD in the above equation.

Mode Regularised GAN

This type of GAN suggests penalising missing modes in order to increase the chance

of solving the mode-collapse challenge [125]. The main idea is, instead of using

noise, utilising an encoder in order to produce a latent variable z for generator

(E(x) : x → z). In this method, reconstructing the encoder can add extra knowl-

edge to generator and therefore help the discriminator to easily distinguish between

the real and generated samples. The encoder ensures using correspondence between

x and z, which means samples generated by the generator cover various modes in

the space of x, therefore avoiding the mode-collapse problem. The loss function for

36

2.6 Generative Adversarial Networks

this architecture is stated as

LG = −Ez[log[D(G(z))]] + Ex∼pr [λ1d(x,G ◦ E(x)) + λ2 log[D(G(x))]],

LE = Ex∼pr [λ1d(x,G ◦ E(x)) + λ2 log[D(G(x))]],
(2.24)

where d is a geometric measurement that can be selected from various options

such as distance of features, for example Euclidean norm.

Geometric GAN

This architecture uses SVM separating hyper-plane which helps to avoid mode

collapse and achieve more stable training. In this method between two classes we

have high marginals [126].

Relativistic GAN

The aim of Relativistic GAN (RGAN) is to suggest a new cost function by modify-

ing the existing one, for instance using Integral Probability Metric (IPM) GANs [127,

128, 129]. In RGAN, discriminator considers how the real sample is more realistic

than generated samples. The new loss function is as follows

min
D

E(xr,xg)∼(pr,pg)[log(sigmoid(C(xr)− C(xg)))],

min
G

E(xr,xg)∼(pr,pg)[log(sigmoid(C(xg)− C(xr)))],
(2.25)

where C(x) is the layer which is non-transformed. If the loss function belongs to

IPMs, RGAN can be generalised to alternative kinds of GANs.The generalisation

of this architecture can be stated as

LD = E(xr, xg) ∼ (pr, pg)[f1(C(xr)− C(xg))] + E(xr, xg) ∼ (pr, pg)[f2(C(xg)− C(xr))],

LG = E(xr, xg) ∼ (pr, pg)[g1(C(xr)− C(xg))] + E(xr, xg) ∼ (pr, pg)[g2(C(xg)− C(xr))],

(2.26)

where g1(y) = f2(y) = y and g2(y) = f1(y) = −y.

37

2.7 Real-world Applications

Spectral Normalisation GAN

The idea is to normalise weights in order to stabilise the process of training dis-

criminator. This method has the advantage of being easily applicable to already

implemented GANs and is computationally light. It has been stressed that discrim-

inator should be from the set of K-Lipshitz continuous functions [120, 118, 124],

which means the function does not change abruptly [130, 131, 132]. This gentle

behaviour of discriminator stabilises the training process. The goal of this im-

plementation is to apply spectral normalisation of each layer of discriminator to

control the Lipschitz constant. The spectral normalisation is stated as

¯WSN(W) = W

σ(W) , (2.27)

where W stands for weights belonging to each layer of discriminator and σ(W)

represents the weights Euclidean norm matrix.

2.7 Real-world Applications

There are many processes that are using DL in their data analysis. Some examples

of those that widely use it are:

• Speech recognition [133].

• Image processing such as handwriting classification [134].

• High-resolution remote-sensing scene classification [135].

• Single image super-resolution [136].

• Multi-category rapid serial visual presentation Brain Computer Interfaces

(BCI) [137].

• Domain adaptation for large-scale sentiment classification [138].

• Multi-task learning for NLP with an enhanced inference robustness [139, 140].

• Enhancement of the diagnostic accuracy of micro-calcifications by evaluating

the performance of deep learning method on a large dataset for its discrimi-

nation [141].

38

2.7 Real-world Applications

• Solves the challenges of body pat recognition using DL [142].

• Proposes an approach for a high-level latent and shared feature representation

from neuro-imaging modalities using DL for Alzheimer’s disease and Mild

Cognitive Impairment [143].

• An architecture of DL for automated basal cell carcinoma cancer detec-

tion [144].

Researchers applied GANs in diverse contexts. The following describes a sum-

mary of the most recent papers along with their applications in transfer learning:

• Text Generation:

– Textkd-gan [145].

• Image domain transfer:

– Small Datasets Image generation [146].

– TTUR - a two time-scale update rule for training GANs with SGD on

arbitrary GAN loss functions [147].

– Progressive Growing of GANS [112].

– Simultaneous Deep Transfer Across Domains and Tasks [148].

– Adversarial Discriminative Domain Adaptation (ADDA) [149].

– Transferring GANs: Generating images from limited data [150].

– Unsupervised Pixel-Level Domain Adaptation With Generative Adver-

sarial Networks [151].

– cGAN [152], proposes a model for the discriminator of cGANs.

• Video Processing:

– FutureGAN [153].

• HALI [154], A generative model that improves training stability and simplic-

ity.

• Mind2Mind [155], A method to directly train models’ external layers against

each other and bypass all the intermediate layers.

39

2.8 Chapter Summary

• Bi-directional Generative Adversarial Networks (BiGANs). [156] suggests a

mean to project data back into the latent space.

• Domain-Adversarial Neural Networks (DANNs) [157], proves domain discrim-

inability is another principle that is complimentary to robustness and can

improve cross-domain adaptation.

• Conditional Domain Adversarial Networks (CDANs), suggests novel approaches

to domain adaptation with multi-modal distributions [158].

• Label-efficient learning of transferable representations across domains and

tasks. [159] proposed a method to learn a representation that is transferable

across different domains and tasks in a data-efficient manner.

2.7.1 Related Work on Machine Learning for ECGs

In the field of cardiac arrhythmias, plenty of machine learning-based techniques is

reported in the literature. These approaches use algorithms such as ANNs [160,

161, 162, 163, 164, 165], Decision Trees [166], Support Vector Machine (SVM) [167,

168, 169, 170], Deep Learning [171, 172, 173], Fuzzy Systems [174], Deep Belief Net-

works [175], Linear Discriminant classifiers (LDC) [176], and Probabilistic Neural

Network (PNN) and Radial Basis Function Neural Network (RBF-NN) [177]. In

specific cases, a combination of swarm intelligence algorithms and neural networks

could achieve competitive results [178].

2.8 Chapter Summary

This chapter offered a review of current technologies in the field of Deep Learning

and Generative Adversarial Networks, their range of types, loss functions and real-

world applications. The next chapter covers multiple nature-inspired algorithms

and their applications in optimisation challenges. In addition, a detailed analysis

of the Dispersive Flies Optimisation (DFO) is provided. We used this algorithm

in chapters 4 and 5 for hybrid model experiments. The last section of this chapter

gives an overview of the gradient-free methods.

40

3. Swarm Intelligence for Machine

Learning

3.1 Introduction

In the previous chapter we looked at the gradient-based approaches used in Machine

Learning algorithms to discover the optimal parameters. However, research shows

the gradient-free methods could be promising solutions [179] if a problem can be

formulated as an optimisation challenge. As such, this chapter discusses a number

of swarm intelligence algorithms, and focuses on Dispersive Flies Optimisation

(DFO), one of the methods specifically selected for the experiments in this thesis.

3.2 Population Based Algorithms

Nature has always been a rich source of inspiration for scientists. Observations

have been triggering curious minds for centuries, leading to discoveries and break-

throughs in medicine, physics, astronomy and biology among many other fields.

More recently, researchers working in the field of computer science and machine

learning have likewise drawn inspiration from natural phenomena. From the chore-

ographed movements of birds, behaviours of foraging ants, to the convergence of

honey bees while searching for food, these manifestations of nature in action have

inspired novel developments in machine learning, offering up the potential to for-

mulate algorithms to solve different optimisation problems.

Genetic Algorithm [180], Particle Swarm Optimisation [181] and Ant Colony

41

3.2 Population Based Algorithms

Optimisation [182] techniques belong to the broader category of Swarm Intelligence

(SI). SI investigates collective intelligence and intends to model it by considering

individuals in a social context and observing interactions among others and with

their surrounding environment.

The following sections provide an overview of some of the existing SI techniques.

The algorithms introduced briefly in this section are variations of Ant Colony Op-

timisation (ACO), Particle Swarm Optimisation (PSO), Differential Evolution Al-

gorithm (DE), Genetic Algorithm (GA) and Dispersive Flies Optimisation (DFO).

As previously mentioned, the interactions among their population is one of the

characteristic features of the algorithms providing possibilities to achieve the final

aim of finding the optimal parameters.

3.2.1 Ant Colony Optimisation

The Ant Colony Optimisation (ACO) algorithm includes several steps. It is based

on a structure of dynamic memory which holds information about the quality of

previously obtained results [183, 184]. Each ant represents a candidate for the

solution to the problem. This algorithm includes a forward mode that enables

ants to construct their answers based on existing pheromone trails and heuristic

information used from the most recent generation. Ants switch to the backward

mode and update the shared pheromone table accordingly as soon as their forward

mode is complete. For instance, the better the quality of solution, the more the

pheromones are kept. ACO has two primary frameworks: evaporation-based [185,

186] and population-based [187]. The approaches that update the pheromones are

different for each of these frameworks. The evaporation-based framework applies

gradual pheromone trails reduction to eliminate prior poor decisions.

3.2.2 Particle Swarm Optimisation

Particle Swarm Optimisation (PSO), developed by Kennedy and Eberhart [181], is

a type of population-based optimisation algorithm. PSO is inspired by simulating

the choreography of birds flying or fish schooling in coordinated flocks and shoals.

Their behaviour shows robust synchronisation in flying, landing, and changes in

direction while hovering, although researchers were not able to find leaders in such

42

3.2 Population Based Algorithms

crowds [188]. The PSO algorithm includes a swarm of many particles. Each particle

signifies a point in a multi-dimensional space.

Each particle has a position ~x and personal best ~p attributes. The personal best

keeps the best position during optimisation. The neighbourhood best is the best-

found position within the whole population or local neighbourhood. Note that the

~x is related to the particles’ neighbourhood and experience of the particle.

Clerc-Kennedy PSO (PSO-CK) or constriction PSO is a standard particle-swarm

version. The position of each particle is defined by the combination of velocity and

its current position. Here is the updating equation for the velocity and position of

each particle:

vtid = χ
(
vt−1
id + c1r1

(
pid − xt−1

id

)
+ c2r2

(
gid − xt−1

id

))
(3.28)

xtid = vtid + xt−1
id (3.29)

where χ, the constriction factor, is set to 0.72984, which is proven to work well

in most cases [189]. The vt−1
id is the velocity of particle i in dimension d at time

step t − 1. The learning factors or acceleration constants related to personal and

neighbourhood are represented as c1,2 respectively. Both of these parameters are set

as constant. The r1,2 are random values used for the purpose of adding stochasticity.

These numbers are drawn from a uniform distribution on the unit interval U (0, 1).

The pid is the personal best position of particle xi in dimension d. Lastly, gid
represented as neighbourhood best.

In terms of PSO application on medical datasets, [190] proposed a method which

works based on Chan and Vese’s algorithm, which helps to achieve acceptable

segmentation performance, regardless of the early choice of the contour. The [191]

aimed to determine the possibility of using a radial-basis function neural network

based on PSO that is capable of identifying that Parkinsonian tremors are occurring

from local field potential signals. [192] presented an approach for human tremor

analysis by applying PSO. This study addressed Parkinson’s disease and essential

tremor.

43

3.2 Population Based Algorithms

3.2.3 Differential Evolution Algorithm

Differential Evolution (DE), first introduced by Storn and Price [193] is a kind

of evolutionary algorithm (EA). The DE is a simple global numerical optimiser

over continuous search spaces. This algorithm aims to search the space to find the

optimal parameter. The following definition defines the parameter vectors of the

population of this population-based stochastic algorithm:

~xgi =
[
xgi,1, x

g
i,2, ..., x

g
i,D

]
, i = 1, 2, ..., NP (3.30)

where g, D, and NP are the current generation, the problem space dimension, and

size of the population respectively. In the first generation, while g = 0, the ith

vector’s jth components are initialised as follows:

x0
i,j = xmin,d + r (xmax,d − xmin,d) (3.31)

where r is a random number picked from a uniform distribution of the unit interval

U (0, 1), and xmin, and xmax are the lower and upper bounds of the dth dimension

respectively. Evolutionary processes such as mutation, crossover and selection,

start after the initialisation of the population.

Mutation

The mutation operation is applied to the target vector xgi over every generation

g, which will result in the corresponding vector vgi (mutant vector). DE/best/1

variation of mutation approaches is as follows:

vgi = xgbest + F
(
xgr1 − x

g
r2

)
(3.32)

where r1 and r2 are distinct random integers selected from [1, NP]; in generation g,

xgbest and F = 0.5 are the vectors with the best fitness value and a positive control

parameter for constricting the different vectors respectively.

44

3.2 Population Based Algorithms

Crossover

Crossover is an operation to improve the population diversity by exchanging a few

components of vgi mutant vector with xgi target vector to generate ugi trial vector.

This process is as follows:

ugi,j =

vgi,j, if r ≤ CR or j = rd

xgi,j, otherwise

(3.33)

where r is a uniformly-distributed random number picked from range U (0, 1) and

rd is a randomly-generated integer from the range [1, D], which assures that at least

one component of the trial vector differs from the target vector. The CR = 0.5 is

also a control parameter which specifies the level of inheritance from vgi .

Selection

The selection process decides if the target or trial vectors, xgi or ugi , are allowed

to pass to the next generation g + 1. In a scenario with the aim of a solution of

minimalisation, the vector with the smaller fitness value is admitted to the next

generation:

xg+1
i =

ugi , if f (ugi) ≤ f (xgi)

xgi , otherwise

(3.34)

where f (x) is the fitness function.

3.2.4 Genetic Algorithm

In Genetic Algorithm (GA) [194, 195], the individuals are initialised randomly and

an object function is used to evaluate their fitness. Individuals have the probability

of being exposed to recombination pc or mutation pm in an iterative process. Arith-

metic crossover is used as recombination operator. The mutation operator used is

Cauchy mutation utilising an annealing scheme. Tournament selection [196] is used

to comb out the least fit individual.

The main reason why GA uses the Cauchy mutation operator instead of the

45

3.2 Population Based Algorithms

Gaussian mutation operator is that the thick tails of the Cauchy distribution allow

it to generate considerable changes and with greater frequency in comparison with

the Gaussian distribution. The Cauchy distribution is defined as follows:

C (x, α, β) = 1

βπ
(

1 +
(
x−α
β

)2
) (3.35)

where α ≤ 0, β > 0, −∞ < x < ∞. α and β are parameters that influence the

distribution mean and spread. As [195] suggested, all the solution parameters are

subject to mutation and the variance is scaled with 0.1× the range of the specific

parameter in question. An annealing scheme was applied to decrease the value β

as a function of the elapsed number of generations t while α = 0:

β (t) = 1
1 + t

(3.36)

As for the arithmetic crossover, the offspring is generated as a weighted mean

for each gene of the two parents:

offspringi = r × parent1i + (1− r)× parent2i (3.37)

where offspringi is the i’th gene of the offspring, and parent1i and parent2i refer

to the i’th gene of the two parents, respectively. The weight r is drawn from a

uniform distribution in the unit interval U (0, 1).

In the above-mentioned experiment, the probabilities of crossover and mutation

of the individuals is set to pc = 0.7 and pm = 0.9 respectively. The size of the

tournament’s selection is set to two, and the elitism, with an elite size of one, is

deployed to maintain the best-found solution in the population.

Regarding the application of genetic programming in medical data analysis, [197]

presented a majority-voting GP classifier for micro-array data classification. [198]

proposed a new technique by utilising the feature generated by GP to diagnose

breast cancer. [199] developed a detection approach for nodal metastasis from

molecular profiles of primary urothelial carcinoma tissues. Samples were run through

the GP, which utilises the N-fold cross-validation method to produce classifier in-

structions of limited complexity.

46

3.2 Population Based Algorithms

3.2.5 Dispersive Flies Optimisation

Dispersive flies optimisation (DFO) [200] belongs to the broad family of population-

based, swarm intelligence optimisers, which has been applied to various areas,

including medical imaging [201], diophantine equations [202], PID speed control

of DC motor [203], optimising machine learning algorithms [204, 205], training

deep neural networks [206], computer vision and quantifying symmetrical com-

plexities [207, 208], beer organoleptic optimisation [209, 210], and analysis of au-

topoiesis in computational creativity [211]. DFO is a minimalist, vector-stripped

swarm optimiser [212] whose exploration-exploitation balance and zone analyses

has also been studied in [213, 214].

Explaining the algorithm

Dispersive Flies Optimisation (DFO) [200] is an algorithm inspired by the swarm-

ing behaviour of flies hovering over food sources. The swarming behaviour of flies

is determined by several factors and the presence of a threat can disturb their con-

vergence on the marker (or the optimum value). Therefore, having considered the

formation of the swarms over the marker, the breaking or weakening of the swarms

is also noted in the proposed algorithm.

The swarming behaviour of the individuals in DFO consists of two tightly con-

nected mechanisms. One is the formation of the swarms and the other is its break-

ing or weakening. The position vector of a fly is defined as:

#»x ti =
[
xti0, x

t
i1, ..., x

t
iD−1

]
, i = 0, 1, ...,N-1 (3.38)

where i represents the ith individual, t is the current time step, D is the di-

mensionality of the problem space and N is the population size. For continuous

problems, xid ∈ R (or a subset of R), and in the discrete cases, xid ∈ Z (or a subset

of Z).

In the first iteration, t = 0, the ith vector’s dth component is initialised as:

x0
id = xmin,d + u (xmax,d − xmin,d) (3.39)

where u ∼ U (0, 1) is the uniform distribution between 0 and 1; xmin,d and xmax,d

47

3.2 Population Based Algorithms

Algorithm 1 Dispersive Flies Optimisation
1: procedure DFO (N,D, ~xmin, ~xmax, f)*
2: for i = 0→ N− 1 do . Initialisation
3: for d = 0→ D − 1 do
4: x0

id ← U(xmin,d, xmax,d)
5: end for
6: end for
7: while ! termination criteria do . Main DFO loop
8: for i = 0→ N− 1 do
9: ~xi.fitness← f(~xi)
10: end for
11: ~xs = arg min [f(~xi)], i ∈ {0, 1, 2, . . . , N − 1}
12: for i = 0→ N− 1 and i 6= s do . Update each fly
13: ~xin = arg min [f(~x(i−1)%N), f(~x(i+1)%N)]
14: for d = 0→ D − 1 do
15: if U(0, 1) < ∆ then . Using Disturbance Threshold
16: xt+1

id ← U(xmin,d, xmax,d)
17: else
18: u← U(0, 1)
19: xt+1

id ← xtind + u(xtsd − xtid) . Update equation
20: end if
21: end for
22: end for
23: end while
24: return ~xs
25: end procedure

* INPUT: N : swarm size, D: dimensions, ~xmin: lower bound, ~xmax: upper bound, f :
fitness function.

are the lower and upper initialisation bounds of the dth dimension, respectively.

On each iteration, components of the position vectors are independently up-

dated, taking into account:

• current fly’s position

• current fly’s best neighbouring individual (consider ring topology)

• best fly in the swarm

Therefore, the update equation is

xt+1
id = xtind + u(xtsd − xtid) (3.40)

where xtind is the position value of #»x ti’s best neighbouring individual in the dth

dimension at time step t, and xtsd is the value of the swarm’s best individual in the

dth dimension at time step t.

48

3.3 Real-world applications

x0x4

x1

x3

x5x2

x6

Best individual: xs, s = 5

Neighbours: xin
, in ∈ {2, 4}

Neighbourhood (ring topology)

Current individual: xi, i = 3

Best Neighbour: x2

Valid area for x3 at time t+1

Global optimum

Search space

Figure 3.3: Sample update of xi, where i = 3 in a 2D space where the axes are the
dimensions (d1 and d2) in the 2D search space [2]. Used with permission.

The algorithm is characterised by two main components: a dynamic rule for

updating the population’s position (assisted by a social-neighbouring network that

informs this update), and communication of the results of the best-found individual

to others.

As stated earlier, the swarm is disturbed for various reasons; one of the impacts

of such disturbances is the displacement of the individuals, which may in turn lead

to discovering better positions. To consider this eventuality, an element of stochas-

ticity is introduced to the update process. Based on this, individual components

of the population’s position vectors are reset if a random number generated from a

uniform distribution on the unit interval U (0, 1) is less than the disturbance thresh-

old, ∆. This guarantees a disturbance to the otherwise permanent stagnation over

a likely local minima.

Algorithm 1 summarises the DFO algorithm. Note that every time u is called, it

generates a new random number between 0 and 11. In this algorithm, each member

of the population is assumed to have two neighbours (i.e. ring topology).

3.3 Real-world applications

Researchers applied SI algorithms in diverse contexts. The following describes a

summary of the most recent papers along with their application:

• Food Industry

– Product selection in the beer-brewing process using swarm intelligence [215].
1The source code and some relevant resources can be downloaded from the following pages:

https://github.com/mohmaj/DFO,
http://doc.gold.ac.uk/mohammad/DFO/

49

https://github.com/mohmaj/DFO
http://doc.gold.ac.uk/mohammad/DFO/

3.3 Real-world applications

• Data Mining

– The possibility of using a group of incremental classification algorithms

for classifying the collected data streams pertaining to the Big Data

investigated [216].

– The applications of SI in the big data analytic and the big data analytic

techniques in SI are analysed [217].

• Medical Imaging

– Investigates particle swarm optimisation (PSO), Darwinian PSO and

Fractional Order Darwinian PSO to speed up the algorithm in medical

imaging applications concerned with volume reconstruction [218].

– Discusses the application of Stochastic Diffusion Search in detecting

areas of metastasis in bone scans and the identification of potential

micro-calcifications on the mammographs [219].

• Drug Design and Pharmaceuticals

– Reviews the chemical engineering applications of Multi-objective Opti-

misation (MOO). [220].

– Various EA techniques used in denovo drug design tools are surveyed

and analysed in detail, with particular emphasis on the computational

aspects. [221].

• Image Processing

– Proposes a new approach based on features of Genetic Algorithms for

gray-scale medical image protection [222].

– Suggests a multi-level thresholding segmentation method for grouping

the pixels of multi-spectral and hyper-spectral images into different ho-

mogeneous regions [223].

• Protein Folding

– Presents a genetic algorithm applied to the protein structure prediction

in a hydrophobic-polar model on a cubic lattice. The proposed genetic

50

3.3 Real-world applications

algorithm is extended with crowding, clustering, repair, local search and

opposition-based mechanisms [224].

– A simplified three-dimensional protein model was used in order to allow

for the fast development of a robust and efficient genetic algorithm-based

methodology. [225]

• Molecular Dynamics

– A quantum-classical algorithm for locating the global minimum on the

potential energy surface of a large molecule and simultaneously predict-

ing the associated electronic charge distribution is developed by inter-

facing classical PSO with a near-optimal unitary evolution scheme for

the trial of one-electron density matrix. [226]

– Presents a newly-developed publicly available genetic algorithm (GA)

for global-structure optimisation within atomic-scale modelling [227].

• Weather prediction

– An approach is proposed that builds an efficient and effective model for

heavy rain forecasting 6 hours ahead, based on past weather data [228].

– Presents a multi-objective optimisation model using Genetic Algorithm

(GA) and Artificial Neural Network (ANN) to quantitatively assess tech-

nology choices in a building retrofit project [229].

• Structural Optimisation

– In the empirical methods for reinforcement design of underground ex-

cavations, an even distribution of rock bolts is generally recommended.

The work represented in [230] proves that this design is not necessarily

optimal and shows how state-of-the-art reinforcement design could be

improved through topology optimisation techniques.

• Tomography

– Proposes an innovative Inverse Scattering (IS) technique for the simul-

taneous processing of multi-frequency (MF) ground-penetrating radar

(GPR) measurements [231].

51

3.3 Real-world applications

– Presents a method for reconstruction of EIT images based on FSS and

Non-Blind Search (NBS) [232].

– Uses two different multi-objective particle swarm optimisation approaches

to jointly invert synthetic cross-hole tomographic data sets comprising

radar and P-wave travel-times. [233].

• Robotics

– A survey to illustrate various algorithms that have been used to tackle

the challenges of imposed swarm-robotics tasks [234].

– Presents an extensive compilation of original articles on the cross-fertilisation

between ER and other research areas [235].

• Computational Fluid Dynamics

– Proposes a multi-objective optimisation methodology using a stochas-

tic optimisation algorithm, a Genetic Algorithm (GA) with ε-constraint

method, and a 2D axi-symmetric Computational Fluid Dynamics (CFD)-

based Fischer-Tropsch micro-channel reactor model [236].

– Presents an optimisation method suitable for improving the performance

of Archimedes screw axial rotary blood pumps. [237].

• Space applications

– Presents different combinations of geometrical dimensions of a rectan-

gular space radiator that have been estimated using an inverse method

[238].

– Designs an innovative ground-based automated planning and scheduling

system for multiple platforms [239].

• Financial Markets

– Proposes an integrated moving average rule for the European Union

Allowance (EUA) futures market and designs an approach to optimise

the weights of rules based on PSO and GAs [240].

52

3.3 Real-world applications

– Provides a meta-survey on state-of-the-art research and reports in the

literature of the field [241].

• Reservoir Optimisation in oil fields

– Applied and evaluated state-of-the-art, adaptive differential algorithms

(SHADE and jDE), and non-adaptive evolutionary algorithms (standard

DE, PSO) that have been tuned using standard black-box benchmark

functions as training instances [242].

– Presents a multi-objective method with robust optimisation methodol-

ogy by incorporating three dedicated objective functions [243].

• Energy Systems

– In this work, a mono- and multi-objective Particle Swarm Optimisation

(MOPSO) algorithm is coupled with EnergyPlus building energy sim-

ulation software to find a set of non-dominated solutions to enhance

building energy performance [244].

– Formulates an optimal power-flow problem by considering controllable

and uncontrollable distributed generators in power networks [245].

• Engineering Design

– Presents an effective hybrid cuckoo search and genetic algorithm (HC-

SGA) for solving engineering design optimisation problems involving

problem-specific constraints and mixed variables such as integer, dis-

crete and continuous variables [246].

– Aims to solve structural engineering design optimisation problems with

non-linear resource constraints [247].

• Manufacturing Sciences

– Presents batik production process optimisation using Particle Swarm

Optimisation (PSO) methods [248].

– Develops a novel Hybrid Optimisation Method (HRABC), based on ar-

tificial bee colony algorithm and the Taguchi method [249].

53

3.3 Real-world applications

• Scheduling

– Proposes an approach to address the dynamic-scheduling problem reduc-

ing energy consumption and make-span for flexible flow-shop scheduling

[250].

– Introduces the objective of minimising energy consumption into a typ-

ical production scheduling model, for instance the job-shop scheduling

problems, based on a machine-speed scaling framework [251].

• Vehicle Routing

– Presents a heterogeneous vehicle-routing problem used at a carton col-

lection depot, which can collaboratively pick the cartons up from several

carton factories to a collection depot and then from there to serve their

corresponding customers by using a heterogeneous fleet [252]

– Presents a survey of genetic algorithms that are designed for solving

multi-depot vehicle-routing problems [253]

• Micro Electro-Mechanical Systems

– Experimentally demonstrates light focusing through ZnO sample by con-

trolling binary amplitude optimisation using Genetic Algorithm [254].

– An investigation of non-linear probe behaviour in an atomic force mi-

croscope, caused by different excitation frequencies, was carried out as

well as an analysis and subsequent regulation using Particle Swarm Op-

timisation in combination with proportional-derivative control [255].

• Railway applications

– Provides a comprehensive review regarding the applications of Particle

Swarm Optimisation (PSO) in the railway domain [256].

– Studies the optimisation approach for the speed trajectory of a high-

speed train in a single section of track [257].

54

3.4 Gradient-free Algorithms

3.4 Gradient-free Algorithms

Gradient-based algorithms such as backpropagation are typically used to train

deep artificial neural networks (DNNs). Evolution strategies (ES) is a competitor

of backpropagation-based algorithms, for instance policy gradients and Q-learning

[258] on challenging deep reinforcement learning (RL) problems [259]. Since ES per-

forms stochastic gradient descent through a similar operation to a finite-difference

approximation of the gradient, it can be regarded as a gradient-based algorithm.

Recent researchers have suggested that non-gradient-based evolutionary algorithms

can perform on DNNs. For instance, [259] obtained the DNN weights with a

gradient-free and population-based Genetic algorithm (GA) which performs ad-

mirably on difficult deep-reinforcement learning problems. The problems discussed

in this paper were in the context of Atari game-playing and humanoid locomotion.

In their proposed implementation, big Deep GA networks including over four mil-

lion parameters are optimised. This paper suggests that gradient-based algorithms

are not the best option in all cases for tuning performance.

Familiarising oneself with the SI algorithm to optimise the ANNs includes some

necessary steps regardless of which SI Algorithm is utilised. Since the hidden layer

and output layer weights require optimisation, they need to be traced as the vital

entity contingent on the SI approach. The problem area holds the synthesis of all

possible weight values for all layers. The search space with n-dimensions where

n is the collection of weights that need to be updated and optimised. The SI

approach is implemented, and the target function is dependent on the projection

accuracy of ANN. The weights are mapped onto the required procedure objective,

like a particle position in PSO. While calculating the fitness in SI, the weights

are allocated to the ANN, and its prophecy and accuracy are obtained. If the

fitness is the finest to date, then it will be recorded as the finest set of weights

and thus the finest result to date according to the SI Algorithm. The stages of an

ANN optimisation using SI algorithms are stated in Algorithm 2 and summarised

in Figure 3.4. In terms of the last work in the context SI-ML, [260] proposed

a technique that implements a swarm intelligence technique, Stochastic Diffusion

Search (SDS), to find the optimal feature subset. The work of [205] investigated

55

3.4 Gradient-free Algorithms

Initialise the
swarm

organisms with
random weight

values

Optimise ANN
using the swarm

properties as
weight

The prophecy
accuracy of the ANN
is provided back as
fitness value for the
objective function in
swarm intelligence

algorithm

Swarm intelligence
algorithms modify

the swarm with
updated weights
depends on the

fitness value

Figure 3.4: Hybrid Artificial Neural Network-Swarm Intelligence Model
(From [264])

the use of DFO to optimise the RBF kernel’s parameters to improve classifier

performance without changing the distribution of the dataset by applying data-

level solutions such as oversampling or undersampling the dataset. [261] proposes

a model which uses a swarm intelligence algorithm (Stochastic Diffusion Search or

SDS) to perform the undersampling of the majority classes in imbalanced datasets.

[262] proposes a swarm intelligence-based undersampling approach that reduces

the sizes of the majority class in a reliable, yet cheap computational way, using the

agents and partial evaluation of the majority instance, in which the individuals of

the swarm move through the solution space in search of the solution closest to the

model. [263] proposes a new approach to addressing imbalanced data by using a

combination of both data-level and algorithmic-level solutions.

Algorithm 2 ANN Swarm Intelligence Procedure
1: Define the ANN architecture - number of input, hidden and output neurons
2: Identify the fitness function which returns the error as difference of actual and
3: predicted output for the ANN.
4: Initiate a swarm of ‘x’ organisms with random weights of ‘n’ dimension where

n is
5: the total number of weights.
6: while required prediction accuracy is not obtained do
7: Find the fitness of each organism as defined in Step 2.
8: Update the best solution so far next iteration.
9: Update algorithm parameters for next iteration.
10: end while

56

3.4 Gradient-free Algorithms

Deep Neuroevolution

Evolution Strategies (ES) are procedures of heuristic search inspired by natural

evolution. ES is a category of algorithms for black-box optimisation [265, 266]. In

each iteration, the algorithm calculates and evaluates the objective function value

by using a perturbed population of parameter vectors. The parameter vectors with

the highest scores are utilised to prepare the population for the next iteration.

The algorithm repeats this process until it reaches the specified target fitness or is

fully optimised. Population representation, parameter mutation and update differ

depending on algorithm class [267]. The Covariance Matrix Adaptation Evolution

Strategy (CMA-ES) is the most widely known in the ES class [268]. It utilises full-

covariance multivariate Gaussian distribution to represent the population. CMA-

ES achieves remarkable results in resolving optimisation problems in low to medium

dimensions.

ES is flexible enough to be expanded to execute agents in parallel. In each

iteration, agents only communicate at the end of iterations by returning a single

scalar, which is their calculated fitness value and receive a parameter update. In

contrast with the policy gradient methods that agents require to exchange entire

gradients, ES requires exceedingly low bandwidth [267].

ES does not require value function approximations, whereas Reinforcement Learn-

ing (RL) requires multiple-function value updates upon a given policy improvement.

Following any significant change in policy, multiple iterations are necessary for value

function to compensate.

In [267], the authors used a version of ES which belongs to a class of Natural

Evolution Strategies (NES) [269, 270, 271, 272, 273, 274, 275], which is closely

related to the work of [276]. Let Θ denote parameters and F as the objective func-

tion. NES algorithms represent the population with a distribution over parameters

pψ(Θ). NES aims to maximize the average objective value EΘ∼pψF (Θ) over the

population with stochastic gradient ascent and uses the following estimator to take

gradient steps on ψ:

∇ψEΘ∼pψF (Θ) = EΘ∼pψ{F (Θ)∇ψlogpψ(Θ)} (3.41)

57

3.4 Gradient-free Algorithms

Considering the fact that pψ is factored Gaussian, the resulting gradient estima-

tor is also known as parameter-exploring policy gradients [276], zero-order gradient

estimation [277] or [278]. Algorithm 3 explains the final implementation of an ES

for training a model [267].

Algorithm 3 Evolution Strategies
Input:

1: for t=0,1,2,... do
2: Sample ε1, ...εn ∼ N (0, I)
3: Compute returns Fi = F (Θt + σεi) for i=1,...,n
4: Set Θt+1 ← Θt + α 1

nσ

∑n
n=1 Fiεi.

5: end for

The following researchers suggest the application of hybrid methods on medical

datasets: The GA-PSO hybrid method was proposed for use with gene selection

[279], Genetic algorithm and multilayer perceptron (GA-MLP), an enhanced GA

technique which works based on the theory of “most highly fit parents are most

likely to produce healthiest offspring” [280]. A new machine learning approach is

proposed by utilising the SVM-PSO method and cuckoo search [281, 282] to build

a rotation forest (RF) ensemble using 20 learners. Two clinical datasets, namely

lymphography and backache are used as benchmarks. A new technique was used

to find liver cancer by using the hybrid method of PSO-SVM [283, 284] used the

hybrid approach of PSO-SVM for the classification of tumours; [285] developed a

classification mode of SVM mitochondrial toxicity using the GA-CG-SVM scheme;

[286] formalised a robust gene selection method based on a hybrid among GA and

SVM to extract fully their respective merits for recognition of main feature genes

and for a complex biological phenotype. Some research has been done to combine

DL and EA [287] such that the optimal weights have been discovered using EA and

at the last step the model is trained using backpropagation. This study shows an

improvement in the results obtained by performing the training in two stages.

In summary, neuro-evolution [288, 289, 290] couples artificial neural networks

and evolutionary algorithms. In some cases, such as in evolutionary robotics [291,

292, 293] and artificial life [294, 295], the gradient information is difficult to obtain

or not available due to the complexity of the problem and the imbalance between

the number of samples and the number of parameters to be optimised. Recent work

58

3.5 Chapter Summary

shows NE can scale to derive the parameters of deep neural networks effectively

[267, 259].

Recent work also shows NE can scale to derive the parameters of deep neu-

ral networks effectively [267, 259], although it historically served in much smaller

networks that were limited to tens or hundreds of parameters. This was due to

limited computational resources while dealing with high dimensional data [296].

The difficulty is that DNNs create tension between weight disturbances applied

and speed of evolution. In the event that only a few weights are updated in each

iteration or generation, it would take a considerable number of generations to tune

all the weights. On the other hand, if many weights are updated, it might be

too drastic for the search to proceed systematically. Such concerns are addressed

in indirect encoding research [297], in which a compact genotype is expanded at

evaluation time into a larger neural-network phenotype. Researchers, such as [296]

explore perturbation in the space of an NN’s outputs rather than only in the space

of its parameters. This leads to two approaches to generate safer neural network

mutations, namely Safe Mutations through Rescaling (SM-R) and Safe Mutation

through Gradients (SM-G). In SM-R, a line search can rescale the magnitude of a

raw weight perturbation until it is deemed safe, which does not require the NN to

be differentiable (At the expense of several NN forward passes). In SM-G, When

the NN is differentiable, the sensitivity of the NN to consistent input patterns can

be calculated (at the expense of a backward pass). The assumption underlying

these approaches is that domain evaluation is expensive relative to NN evaluation,

for instance forward or backward NN propagation. Interestingly, both approaches

relate to effective mechanisms from deep learning, such as adaptive-learning rate

methods [298] or trust regions [299], although here there is clear motivation and set-

ting, for instance, SM-R and SM-G generate pure variation independent of reward,

unlike such deep learning methods.

3.5 Chapter Summary

This chapter addressed the concept of Swarm Intelligence and discussed a number of

different algorithms including PSO, DE, GA, DFO. Furthermore, the idea of hybrid

models has been discussed and elaborated upon. Multiple real-world examples

59

3.5 Chapter Summary

and implementation is provided for each algorithm. The next chapter explains our

proposed deep neuro-evoloution algorithm and compares the results obtained using

gradient-based and gradient-free approaches.

60

4. Deep Neuroevolution for

Bio-Signal Classification

4.1 Introduction

This chapter covers the first part of my research, exploring the possibility of us-

ing Swarm Intelligence to find the optimal parameters of deep neural networks,

known as Deep Neuroevolution, and compare its performance with gradient-based

algorithms. The structure of the suggested hybrid algorithm, the selected neu-

ral network models, dataset, and metrics used to measure the performance are

discussed. The gradient-free approach is implemented using the Dispersive Fly

Optimisation (DFO) algorithm. This hybrid model suggests further improvements

on the DFO’s update equation, a dynamic model to control and update the distur-

bance threshold (∆), and an improvement on the gathered results in contrast with

the gradient-based algorithms.

4.2 Motivation

The accurate detection of false alarms in medical Intensive Care Units (ICUs) is

of unquestionable benefit to both patients and the healthcare system. To clarify,

a false alarm in the ICU may result in a range of negative outcomes, such as noise

disturbance, disruption of continuity of care, lack of sleep, all of which may impact

patients’ stress levels, and, more generally, compromise the quality of recuperative

care. It is essential to note that only an estimated 2 - 9% of the alarms in the ICU

61

4.3 Dataset Description

are considered essential.

In this research, we deal mainly with arrhythmias, abnormalities in the heart

function which can occur in healthy and unhealthy subjects. The ICU is equipped

with monitoring devices capable of detecting dangerous arrhythmias, namely asys-

tole, extreme bradycardia, extreme tachycardia, ventricular tachycardia and ven-

tricular flutter/fibrillation. Arrhythmias are potentially fatal and in line with

AAMI guidelines, appropriate responses should be taken within 10 seconds of the

event’s commencement [5]. Triggering of the alarm when an arrhythmia occurs

could improve the chance of saving lives. Misconfigurations, defective wiring, staff

manipulation, and patient manipulation or movement may increase the false alarm

rate to as much as 86%. Clinically, 6% to 40% of the ICU alarms proved to be lower

priority incidents which did not require immediate responses [6]. False alarms stim-

ulate mental discomfort in patients [7] and may desensitise the reactions of clinical

staff, causing slower responses to triggered alarms [8]. True alarms which are rated

with high priority and require an urgent response make up only 2 - 9% of all ICU

alarms [9]; therefore, the detection and elimination of false alarms are important

areas for research.

Gradient-based learning algorithms such as backpropagation are used to train

Deep artificial Neural Networks (DNNs). As an alternative, this study aims to

evaluate the application of Dispersive Flies Optimisation (DFO) in order to find

the optimal weights of a given neural network. We evaluated the proposed gradient-

free method on a subset of the Physionet Challenge 2015 dataset [3]. The goal of

this challenge is to reduce the occurrences of false alarms with accurate detection of

the above-mentioned life-threatening arrhythmias. This goal is achieved by using

multi-modal input data such as respiration (RESP), arterial blood pressure (ABP)

and/or Photo-plethysmographs (PPGs).

4.3 Dataset Description

The Physionet Challenge 2015 [3] presented an opportunity for the participants

to present different approaches towards improving the classification accuracy of

true/false alarms. In this challenge, scoring was based on maximising True Positives

62

4.3 Dataset Description

(TP) and True Negatives (TN), while minimising False Negatives (FN) and False

Positives (FP). The scoring approach utilises an “err-on-the-safe side” approach,

where the suppression of a true alarm (false negative) is penalised much more than

events such as raising a false alarm. In other words, the fitness function used for this

task is defined and introduced by the organisers of the Physionet Challenge 2015 [3].

The conceptual motivation underlying this metric is to attempt to maximise TP

and TN while minimising FP and FN. The scoring weights FN more heavily than

the FP. This is described in the following equation,

Score = TP + TN

TP + TN + FP + 5FN . (4.42)

The Physionet 2015 challenge [3] offered a training dataset containing 750 publicly-

available recordings as well as 500 private records for the purpose of scoring. This

dataset consists of life-threatening arrhythmia alarm records that were collected

from four hospitals in the United States and Europe. The recordings were sourced

from devices designed by three major manufacturing companies of intensive care

monitor devices. Each recording is 5 minutes or 5 minutes 30 seconds long at 250Hz

and contains only one alarm. They are labelled ’true’ or ’false’ by a team of expert

annotators. The commencement of the event is not later than 10 seconds before

the end of the recordings.

In this challenge, participants could submit their code, which would be evaluated

according to two type of events: event 1 (Real-time) and event 2 (retrospective).

The aim of event 1 is to reduce the number of false alarms while no information is

available after sounding of the alarm. In contrast, the goal of event 2 is to reduce

the number of false alarms while an additional 30 seconds of data is available after

sounding of the alarm. All recordings have a sample rate of 250Hz and contain

two ECG leads and one or more pulsative waveforms (RESP, ABP or PPG). The

ECGs may contain noise and pulsatile channels may contain movement artefacts

and sensor disconnections. In this study, we focus on event 1 and trim all the data

from the end to obtain a consistent length of five minutes; we choose a subset of 572

records. These contain the ECG leads II and V and PLETH signals. This decision

is made to ensure that we train the neural network models on identical leads and

pulsatile waveform. In this subset, there are 233 True alarms and 339 False alarms.

63

4.4 Feature Selection

Disease Name True Alarm False Alarm
Asystole 17 77

Bradycardia 35 37
Tachycardia 90 4

Ventricular Flutter/Fibrillation 6 40
Ventricular Tachycardia 54 212

Table 4.1: Subset of Physionet dataset (572 out of 750 recordings) which contains the
ECG leads II and V and PLETH signal. We used this subset to ensure that we train the
neural network models on identical leads and pulsatile waveform.

In each n-fold, this dataset is divided into training, testing and validation, using

70% (400), 20% (114), and 10% (58) respectively. Table 4.1 describes the dataset.

4.4 Feature Selection

Since this research explores deep neuro-evolution rather than feature engineering,

we decided to utilise the feature set that [10] suggested, and focus on the hybrid

DFO-DeepNNs. The following explains the performed procedure to extract fea-

tures from the physionet dataset [3]:

The short-time auto-correlation (STA) function is a straightforward approach

to assess self-similarity. Let x(n) be a time-discrete signal and ωi(ν) = x(ni+ν) be

an analysis window with index i centred around ni. The following equation gives

a common definition of the STA for each lag η for a window of constant length L.

Note that for simplicity, the index is omitted in the following derivation:

SSTA(η) = 1
L

L
2−η∑
v=−L2

ω(ν)ω(ν + η) (4.43)

The ηopt is estimated as the interval between two heart beats and the analysis

window L is set to a window that contains only two heartbeats (L ≈ 2ηopt). In

the case where L � 2ηopt, an averaging over multiple beats will occur; whereas

L � 2ηopt, no estimation is possible. This can be fixed by introducing the lag-

64

4.4 Feature Selection

adaptive short time autocorrelation (LASTA).

SLASTA(η) = 1
η

η∑
v=0

ω(ν)ω(ν − η) (4.44)

LASTA ensures that the exact number of samples necessary for each candidate

,lag η, is considered [300]. The following is a modified version of the average

magnitude difference function (AMDF) used to assess self-similarity:

SAMDF (η) = (1
η

η∑
v=0
|ω(ν)− ω(ν − η)|)−1 (4.45)

This process also uses the lag-adaptive window and is inverted so that it assumes

larger values for lags that indicate more self-similarity [300]. The maximum ampli-

tude pairs (MAP) function considers the amplitude of the signal and accordingly

MAP is considered as an indirect peak-detection. The MAP is considered as the

third metric.

SMAP (η) = max
v∈{0,...,n}

(ω(ν) + ω(ν − η)) (4.46)

The maximum of all sums of sample pairs that are separated precisely η time

steps from each other is calculated. It was observed that the presented similarity

estimators exhibit a complementary noise characteristic and the results can be im-

proved by fusing the estimators based on a Bayesian approach [301], which reduces

to:

S̃fused(η) = SLASTA(η) · SAMDF (η) · SMAP (η). (4.47)

Furthermore, self-similarity is modality-independent and this concept can be

extended towards multiple channels and modalities:

Sfused(η) = S̃fused,ECG(η) · S̃fused,PPG(η) · ... (4.48)

Thus, for every window position i, the optimal interval can be obtained via:

ηi,opt = argmax
η

[Si,fused(η)] (4.49)

which is the ratio of the peak height to the area under the curve. It indicates

65

4.4 Feature Selection

the amount of self-similarity this window exhibits (e.g. if the estimated interval is

trustworthy).

In order to prepare the data for NN training, features are calculated in three

categories namely ECG, BP, and all other channels (PLETH or ABP, and ALL).

ECG: fusing only the available ECG signals (channels 1 and 2); BP: fusing only

on the available pressure-based cardiac signals, all channels named PLETH or

ABP; and ALL: fusing all cardiac-related signals such as all channels that are

not named RESP. 27 features extracted from interval estimation of the above-

mentioned categories are as follows:

(1− 3) min(ηi,opt) : Minimum optimal interval

(4− 6) max(ηi,opt) : Maximum optimal interval

(7− 9) mean(ηi,opt) : Mean optimal interval

(10− 12) ∑i ηi,opt : Sum optimal interval

(13− 15) mad(ηi,opt) : Median absolute deviation of optimal interval

(16− 18) std(ηi,opt) : Standard deviation optimal interval

(19− 21) std/mean(ηi,opt) : Standard deviation / Mean optimal interval

(22− 24) mean(Qi) : Mean peak height to area under curve ratio

(25− 27) median(Qi) : Median peak height to area under curve ratio

In addition to these 27 features derived from beat-to-beat interval estimations,

six features were determined by applying regular auto-correlation in a fixed window

in order to estimate the signals average rhythmicity in different interval ranges.

(28) High-frequency ECG: Relative maximum of the auto-correlation function of

all ECG signals. Evaluated for a lag of 0 - 2000 ms in a 16-second window before

the alarm. Set to zero if the corresponding delay is shorter than 200 ms, to exclude

artefacts.

(29) High-frequency BP: Similar to feature 28 using all available pressure-based

signals.

(30) Low-frequency ECG: similar to 28, yet set to zero if all corresponding lag is

shorter than 900 ms. The aim is to focus on slow rhythms.

(31) Low-frequency BP: Similar to 30, all available pressure-based signals used

instead.

(32) Average rhythmicity: Absolute maximum of the average of auto-correlations

of all cardiac-related signals. Evaluated for a lag of 0 - 1500 ms in a 5-second

66

4.5 DFO Experiments and Results

Figure 4.5: Time courses for a false and a true ventricular tachycardia alarm as
two-dimensional correlogram. While the y-axis constitutes η, the colour represents
Si,fused(η) [3].

window before the alarm. If the corresponding delay is shorter than 80 ms, values

set to zero to exclude artefacts.

(33) Peak rhythmicity: Similar to feature 32, yet calculates the absolute maximum

of maximums of all available auto-correlations.

Figure 4.1 draws a two-dimensional correlogram of two samples that diagnosed

ventricular tachycardia for comparison. These samples labelled as the True or

False alarm. The True alarm exhibits a relatively slow rhythm compared to the

false alarm at first but forms an oscillating rhythm approximately four seconds

before the alarm.

4.5 DFO Experiments and Results

As explained in section 3.2.5, the swarming behaviour of the individuals in DFO [200]

consists of two tightly-connected mechanisms; one is the formation of the swarms,

and the other is its breaking or weakening. In our study, we call the NN weights as

position. Algorithm 4 describes the adapted DFO for NN. The NN weights’ vector

of the population is defined as follows:

#»w t
i =

[
wti1, w

t
i2, ..., w

t
iD

]
, i = 0, 1, ...,N-1 (4.50)

67

4.5 DFO Experiments and Results

where i represents the ith individual, t is the current time step, and D is the

dimensionality of the problem space. In our study, D is the number of weights in

the given NN model. N is the number of individuals (population size) where in

this study N is set to 500. This value has been achieved empirically based on the

processing power, hardware limitations, and performance of the computer. For the

continuous problems, wid ∈ R, and in the discrete cases, wid ∈ Z (or a subset of

Z). In our study wid is a subset of R. In the first iteration, t = 0, the ith vector’s

dth component is initialised as:

w0
id = N (0, 1) (4.51)

where N denotes the Gaussian distribution. Therefore, the population is randomly

initialised with a set of weights for each in the search space.

In each iteration of the original DFO equation, the components of the NN weights

vectors are independently updated, taking into account the component’s value, the

corresponding value of the best neighbouring individual with the best Physionet

score (consider ring topology), and the value of the best individual in the whole

swarm. Therefore the update equation is:

wt+1
id = wtind + u(wtsd − wtid) (4.52)

where wtind is the weight (position) value of #»w t
i’s best neighbouring individual in

the dth dimension at time step t, wtsd is the value of the swarm’s best individual in

the dth dimension at time step t, and u = U(0, 1) is a random number generated

from the uniform distribution between 0 and 1. The update equation is illustrated

in Fig. 4.6 for when # »w3 is to be updated. In our study, we investigated several

extensions to improve the performance of the DFO for deep-network optimisation.

We update equation 4.52 by taking into account the corresponding value of the best

neighbouring individual and the value of the best in the whole swarm. Therefore,

the adapted update equation is as follows:

wt+1
id = wtind + u(wtsd − wtind) (4.53)

68

4.5 DFO Experiments and Results

Figure 4.6: Sample update of wi, where i = 3 in a 2D space.

Three main components characterise the algorithm: a dynamic rule for updating

the population’s position (assisted by a social-neighbouring network that informs

this update), and communication of the results of the best found individual to

others; a dynamic mechanism to regulate the disturbance threshold, ∆, in order to

control the behaviour of the population (explore or exploit) in the search space

(Figure 4.7). The exploration is achieved by increasing the ∆ (towards 1) and

exploitation is reached by decreasing the ∆ (towards 0).

Figure 4.7: To dynamically adjust the disturbance threshold (∆), a counter is used to
monitor improvements. Initially the counter is set to 50. This value has been achieved
experimentally. In each iteration, when the fitness improves, the counter is set to 50;
otherwise, it is decreased by one.

As stated earlier, the swarms are disturbed for various reasons. One of the

impacts of these disturbances is the displacement of the individuals, which may

lead to achieving a better Physionet score through the discovery of better weights

for the NN. To consider this eventuality, an element of stochasticity is introduced to

the update process. Based on this, the individual components of the population’s

weights’ vectors are reset if a random number, u is less than the ∆. This process

guarantees a disturbance to the otherwise permanent stagnation over the likely

local maxima. In the original DFO equation, the disturbance is done by updating

the parameter with a random number in the acceptable range of minimum and

maximum value. In our study, we changed this parameter’s update to correlate

with the current ∆ and the best neighbour, that is wt+1
id is sampled from a Gaussian

with mean set to wind and variance to ∆2. Figure . 4.11 demonstrates ∆ behaviour

in 3000 iterations.

Algorithm 4 summarises the adapted DFO algorithm.

In this algorithm, each member of the population is assumed to have two neigh-

69

4.5 DFO Experiments and Results

bours (i.e. ring topology).

Algorithm 4 Adapted DFO for Training
Input: population size N , model structure L, network weights #»wi, length of

weights vector D, loss function f().
1: ∆ = 1
2: while not converged do
3: #»ws = arg max [f(L(#»w i))], i ∈ {0, . . . , N − 1}
4: for i = 0→ N-1 and i 6= s do
5: #»w in = arg max [f(L(#»w i−1)), f(L(#»w i+1))]
6: for d = 0→ D-1 do
7: if U(0, 1) < ∆ then
8: wt+1

id ← N (wtind ,∆
2))

9: else
10: wt+1

id ← wtind + u(wtsd − wtind)
11: end if
12: end for
13: Dynamically update ∆ (see Section 4.5 and figure 4.7)
14: end for
15: end while

Output: Best agent’s weight vector, # »ws.

In summary, the DFO is a minimalist numerical optimiser over continuous search

spaces. Despite the algorithm’s simplicity, it is shown that the DFO outperforms

the standard versions of the well-known Particle Swarm Optimisation (PSO), Ge-

netic Algorithm (GA) as well as Differential Evolution (DE) algorithms on an

extended set of benchmarks over three performance measures of error, efficiency

and reliability [200]. It is shown that DFO is more efficient at 84.62% and more re-

liable in 90% of the 28 standard optimisation benchmarks used; furthermore, when

there exists a statistically significant difference, DFO converge to better solutions

in 71.05% of the problem set.

4.5.1 Model Configuration

In NN, forward-propagation includes a set of matrix operations, where parameters

include bias and weights that connect NN layers to each other. Our focus is to find

the optimal weights and biases of the whole network which provide the most accu-

rate classification for the given input. Depending on the type of neurons and input

shape in an NN, the shape of the output weights of that neuron varies. This study

uses two models: Model 1 uses four dense layers, and Model 2 uses one convolution

70

4.5 DFO Experiments and Results

Figure 4.8: An overview of the hybrid algorithm. Initially the the number of Flies
(agents), NN model, best neighbour vector, and NN parameter vector is created. In the
next step, the performance of each Fly (agent) is gathered and evaluated. Based on the
counter value, the disturbance threshold, (∆) if there is an improvement in the fitness
function, the counter will be reset to 50 otherwise it will be reduced by one. In the next
step, based on a comparison between the ∆ and a randomly-generated value for each
parameter, each Fly’s parameter will be updated and neighbour vector and the best Fly
in the population will be updated. The process of collecting Flies’ performance will be
repeated until either the maximum number of iterations is reached or the target fitness
value is reached.

71

4.5 DFO Experiments and Results

and four dense layers. Due to the complexity of search space and the challenge of

having very low number of samples (572), two shallow models with a small number

of neurons is selected. This approach helped to formulate a less complex target

function with fewer number of parameters to be optimised.

In model 1 of our study, the first layer is dense, with 64 neurons. In this layer,

the input shape is (-1, 33, 1) and the output weights are (1, 64) where 1 is the

third axis of the layer’s input shape, and 64 is the number of neurons in this layer:

[(-1, 33, 1) × (1, 64)] + (64) = (-1, 33, 64).

Model 2 includes a convolution as the first layer. This model has a similar input

shape (-1, 33,1). This layer has 32 neurons, and the shape of the connecting weights

to the next layer is (-1, 2, 1, 32), where 2 is the convolution window size, 1 is the

third axis of the input shape, and 32 is the number of neurons in the convolution

layer.

Layer Name No of Neurons Weights Shape Total Weights Bias
Dense 1 (Input) 64 (1, 64) 64 64

Dense 2 64 (64, 64) 4096 64
Dense 3 32 (2112, 32) 67584 32

Dense 4 (Output) 2 (32, 2) 64 2

Table 4.2: Dense Model Structure

Layer Name No of Neurons Weights Shape Total Weights Bias
Convolution 1 (Input) 32 (2, 1, 32) 64 32

Dense 2 (Input) 64 (32, 64) 2048 64
Dense 3 64 (64, 64) 4096 64
Dense 4 32 (1024, 32) 32768 32

Dense 5 (Output) 2 (32, 2) 64 2

Table 4.3: Convolution-Dense Model Structure

4.5.2 DFO Configuration

In our study, DFO is used to find the optimal weights in both NN models. The

numbers of parameters in model 1 and model 2 are 71970 and 39234 respectively.

The number of parameters is the sum of the number of weights and biases from all

the layers (see Tables 4.2 and 4.3).

72

4.5 DFO Experiments and Results

In our study, each member of the population (Fly or agent) has a set of parame-

ters representing the weights (including biases) of the NN model. These parameters

are initialised according to Eq. 4.51. Once all the parameters of each agent are ini-

tialised and loaded onto the NN model, the fitness (score) of each agent calculates

the mean Physionet score using 5-fold cross-validation. After each iteration, each

agent’s best neighbour, and the best agent in the swarm are identified. The best

agent holds the highest Physionet score amongst the population. An overview of

this hybrid model is provided in figure 4.8

Before updating each component, a value u is sampled from a uniform distri-

bution U(0, 1). If u is less than ∆, the component is updated with the agent’s

best neighbour as focus (µ), therefore, wt+1
id ← N (wtind ,∆

2). Otherwise, the

agent’s component is updated with the focus of the best agent in the swarm

wt+1
id ← wtind + u(wtsd − wtind).

5-
fo

ld
 M

ea
n

 A
cc

u
ra

cy

0.7

0.75

0.8

0.85

0.9

0.95

Iteration
0 500 1,000 1,500 2,000 2,500 3,000

=0, Study 5
Random Search, Study 4
Dynamic , Study 2
Dynamic , Study 3

Figure 4.9: Model 1: 5-fold cross validation mean accuracy over 3000 iterations. Mean
accuracy trend for standard DFO, updated DFO, dynamic and constant disturbance
threshold (∆).

We implemented a mechanism to control the value of ∆. In the first phase or

the parameter optimisation, to manage the algorithm towards exploration, ∆ to

set to 1; this process continues until there is no improvement in 50 iterations2 (see

figure 4.11). Afterwards, ∆ is set to zero, allowing the agents to converge to
2Note that 50 is an experimentally suggested value and further studies are required to find a

theoretically optimal value.

73

4.5 DFO Experiments and Results

5-
fo

ld
 M

ea
n

 P
h

ys
io

n
et

 S
co

re

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Iteration
0 500 1,000 1,500 2,000 2,500 3,000

=0, Study 5
Random Search, Study 4
Dynamic , Study 2
Dynamic , Study 3

Figure 4.10: Model 1: 5-fold cross validation mean Physionet score over 3000 iterations.
Mean Physionet score trend for standard DFO, updated DFO, with dynamic and constant
disturbance threshold (∆).

the best location they can find. Once again, if no improvement is noticed in the

Physionet score in 50 iterations, ∆ is increased by a random number between 0

and the experimental value of 0.5 (∆← ∆ + U(0, 0.5)). The algorithm is then set

to run. If there is an improvement followed by a 50 iteration state of idleness, ∆ is

then set to 0 again to exploit the recent finding. Alternatively (i.e. if there is no

improvement) after the permitted idle time-frame, ∆ is incremented further. In a

situation when ∆ > 1, ∆ is set to U(0, 1), and the process continues as explained

above until the termination points, which is 3, 000 iterations. Figure 4.9 and 4.10

demonstrate trend of improvement in accuracy and Physionet score over iterations.

In this experiment, we compared 5-fold cross-validation of the first and fifth rank

in the Physionet challenge 2015 with our designed NN models (see Table 4.4). The

optimal weights of our models are calculated through both backpropagation and

gradient-free algorithms. Model 1 consists of four dense layers and Model 2 consists

of a convolution layer and four dense layers (see Table 4.2 & 4.3).

As a benchmark, we calculated the accuracy and Physionet scores of [302] and

[10]. They achieved the accuracy and the Physionet scores of (87.24%, 85.50%) and

(87.78%, 80.09%) respectively. We investigated various implementations of DFO

as well as random search. The DFO’s modified version for Model 1 & 2 achieved

74

4.5 DFO Experiments and Results

0

0.2

0.4

0.6

0.8

1

Iteration
0 500 1,000 1,500 2,000 2,500 3,000

=0, Study 5
Dynamic , Study 2
Dynamic , Study 3

Figure 4.11: Model 1: 5-fold cross validation disturbance threshold (∆) trend. Visual-
ising ∆ trend, considering dynamic and constant disturbance threshold (∆) over 3000
iterations.

the highest score among the other results (see Table 4.4). Their accuracy and

Physionet scores are ((91.91%, 86.77%) and (91.88%, 86.81%) respectively. The

behaviour of DFO, while having a constant ∆ value of 0, and Random Search is

also investigated. Their accuracy and the Physionet scores are (73.89%, 51.53%)

and (84.16, 68.03) respectively. The models optimised via neuroevolution with

DFO outperforming both (i) the networks trained by backpropagation, as well as

(ii) the winning entries of the Physionet challenge. The reason for poor perfor-

mance of backpropagation in contrast with the hybrid model can be justified by

the fact that that backpropagation is performing function minimisation, in which

we can apply the chain rule of derivatives at each layer because they are function

compositions. First order optimisation is looking at the gradient and moving in a

downhill direction (minimum error) by some fixed-step size, by which it is possible

that we end up at the local minima or saddle point instead of global minima in our

parameter search space [303, 304].

75

4.6 Chapter Summary

Author Method Mean Accuracy Physionet Score
By [10] SVM, BCTs, DACs 87.24% (+/- 2) 85.50% (+/- 3)
By [302] Fuzzy Logic 87.78% (+/- 4) 80.09% (+/- 8)
Our Study 1 Dense Network, Backpropagation 87.70% (+/- 3) 75.35% (+/- 7)
Our Study 2 Dense NN, Standard DFO, Dynamic ∆, using

Eq. 4.52
90.02% (+/- 3) 79.23% (+/- 5)

Our Study 3 Dense NN, Adapted DFO, Dynamic ∆,
using Eq. 4.53

91.91% (+/- 4) 86.77% (+/- 4)

Our Study 4 Dense NN, Random Search 84.16% (+/- 3) 68.03% (+/- 5)
Our Study 5 Dense NN, Standard DFO, ∆ = 0 (i.e. no

disturbance)
73.89% (+/- 2) 51.53% (+/- 4)

Our Study 6 Conv-Dense NN 88.21% (+/- 3) 76.34% (+/- 6)
Our Study 7 Conv-Dense NN, Adapted DFO, Dy-

namic ∆
91.88% (+/- 2) 86.81% (+/- 4)

Our Study 8 Conv-Dense NN, Random Search 75.63% (+/- 8) 52.37% (+/- 9)

Table 4.4: Accuracy and Physionet score over 5-fold cross validation for first and fifth
rank in Physionet challenge 2015, NN optimised with backpropagation and adapted DFO
algorithm with constant and dynamic disturbance threshold (∆)

4.6 Chapter Summary

In summary, we have presented a method for training neural networks based on

neuroevolution, by utilising the DFO algorithm in a gradient-free, population-based

scheme. We evaluated our approach to the problem of detecting false alarms in

ICUs using the Physionet dataset. The results obtained show that the proposed

method outperforms (i) backpropagation-trained networks with the same or similar

architecture, as well as (ii) the winning entries of the Physionet challenge. We also

addressed the possibility of imputing missing signals while having two or five signals

for each sample. Later, the imputed signals using the five-signal method were used

for the purpose of classification to discover the model’s hyper-parameters using the

hybrid model discussed in this chapter.

76

5.Signal Imputation with

Adversarial Networks

5.1 Introduction

In the previous chapter, the possibility of using gradient-free in place of gradient-

based algorithms was explored in conditions of a limited number of samples. This

was due to a smaller number of samples (572 out of 750) with the same type of

bio-signal data. In this chapter, we aim to use Generative Adversarial Networks

(GANs) to impute those missing bio-signals. This enables us to include more

samples (738 out of 750) in the task of reducing false Arrhythmia alarm events in

the ICU.

5.2 Motivation

In this research we conducted two separate studies to evaluate the quality of an

imputed missing signal from another signal and also to impute five signals in in-

stances of samples from multiple channels. Later, we used the imputed samples to

train the model described in chapter 3.5 to evaluate the effect of imputed samples

on accuracy and the Physionet score.

As mentioned in the previous chapter, each signal has a length of 82,500 data

points with a frequency of 250hz, equating to a recording with a length of 5 min-

utes 30 seconds. The recording includes two leads of ECG(II and V) and max-

imum two pulsatile waveforms (arterial blood pressure waveform [’ABP’], respi-

77

5.3 Methodology - Two-Signal Imputation

ration [’RESP’], photo-plethysmogram [’PLETH’]). In this chapter, we consider

using a window size of 250 (equivalent to one second) to slice the signals to ensure

the inclusion of at least one complete pulsation of the heart (heartbeat) at each

window. Therefore, each signal is separated into 300 samples with 250 length. See

table 5.5 for detailed information about total number of each channels within the

dataset used.

Table 5.5: Subset of Physionet dataset (648 out of 750 recordings) that contain the
ECG leads II and V and Photo-plethysmogram, Arterial blood pressure, and Respiration
signals. We used this subset to ensure that we train the NN models on an identical set of
signals.

Lead
II

Lead
V

Arterial blood pressure Respiration Photoplethysmogram Total samples

648 648 289 243 572 648

5.3 Methodology - Two-Signal Imputation

The idea for our first approach is inspired from an imputation method that uses

Generative Adversarial Networks (GANs) for missing view problems [305]. In

this method we combine CycleGAN [103] and a multi-modal Denoising Auto-

Encoder(DAE), and use it to generate ECG leads II and V from each other. A

DAE is utilised and trained to operate on a generated signal by CycleGAN, and

reconstruct a repaired signal [306]. We use the CycleGAN to learn cross-domain re-

lations between ECG signals and from paired data in a DAE to learn between-view

correspondences. Additionally, we denoise the signals generated by CycleGAN to

improve their quality by learning a shared representation from pairs (x, y). The

CycleGAN consists of GXY , GY X , DXY , and DY X , representing generators and

discriminators of the model respectively.

The mapping between domain space II and V is addressed as GIIV : II → V

and GV II : V → II.

DAE : II × V → II × V .

In this approach, The CycleGAN estimates and maps given II using V and vice

versa by concentrating on domain translation. Considering the complex structure

of this method, there are four loss functions to consider. In order to produce an

equation for overall loss function minimisation, the adversarial loss, multi-modal

78

5.3 Methodology - Two-Signal Imputation

DAE loss, cycle consistency loss, and overall loss will be explained and then applied.

5.3.1 Multi-modal DAE Loss

The DAE extracts features from each view in their primary parallel layers. Later,

the features are concatenated and fed to a stack of layers to reduce the dimensions

and form a shared representation tensor. Lastly, each view is gathered through

separate output layers. The reconstruction function and inner representation of

each view which creates the basic structure of the multi-view data is optimised

jointly during the training process. Considering the original pair from the dataset

(II, V) and the CycleGAN mappings GIIV : II → V and GV II : V → II, the

inputs to the DAE will be two pairs of (II,GIIV) and (V,GV II), which are the

reconstructed leads II and V. The objective function is as follows:

LDEA(DAE,GIIV , GV II) =

E(II,V)∼P(data)((II,V))[‖ DEA(II,GIIV (II))− (II, V) ‖2
2]+

E(II,V)∼P(data)((II,V))[‖ DEA(GV II(V), V)− (II, V) ‖2
2]

(5.54)

5.3.2 Adversarial Loss

Assuming projection of lead II and V are shown as PII(II, V) = II and PV (II, V) =

V ; The II part or V part are taken from the pair (II, V), and the adversarial

loss of the combined functions, PII ◦ DAE(GIIV (II), II) : II → V and PII ◦

DAE(GV II(V), V) : V → II, is as follows:

LVDEAGAN(DAE,GIIV , DV) =

E(V)∼Pdata(V)[log(DV (V))]+

E(II)∼Pdata(II)[log(1−DV (PV ◦DAE(II,GIIV (II)))],

(5.55)

79

5.3 Methodology - Two-Signal Imputation

and

LIIDEAGAN(DAE,GV II , DII) =

E(II)∼Pdata(II)[log(DII(II))]+

E(V)∼Pdata(V)[log(1−DII(PII ◦DAE(GV II(V)))].

(5.56)

As it can be understood from the above equations, the adversarial loss takes

effect on the GAN as well as the DAE. The loss function in eq.5.55 measures vari-

ations between the output of the complex function PV ◦ DAE(II,GIIV (II)) and

the observed lead V and the loss represented in eq.5.56 computes the difference be-

tween the output of the complex function PII ◦DAE(GV II(V)) and the observed

lead II. The discriminators DII and DV are responsible for discriminating between

real and generated signals using the above-mentioned complex functions. To op-

timise the proposed model, at the final stage of training, following the standard

GAN mechanism, which solves the minmax challenge, we target optimisation of

minDAE,GIIVmaxDV LVDEAGAN and minDAE,GV IImaxDIILIIDEAGAN respectively for

DAE, GII , DV and DAE, GV , DII networks.

5.3.3 Cycle Consistency Loss

The aim is to enable the adversarial network to map the input ECG lead back

to itself by passing it through the two generators GIIV and GV II . This is done

by minimising the cycle consistency loss and GAN loss simultaneously. The cycle

consistency loss function guarantees that the mapping function can map an input

to the aimed output. To increase the probability of the desired outcome of the

mapping function, we use the cycle consistency loss function as follows [103]:

LCY C(GIIV , GV II) =

E(II)∼Pdata(II)[‖ GV II ◦GIIV (II)− II ‖1]+

E(V)∼Pdata(V)[‖ GIIV ◦GV II(V)− V ‖1]

(5.57)

The cycle consistency loss function has been used in DualGAN [307], Disco-

80

5.4 Experiments and Results - Two-Signal Imputation

GAN [308], and CycleGAN [103].

5.3.4 Overall Loss

The overall loss function utilises all the above-mentioned losses and is formulated

as follows:

L(DAE,GIIV , GV II , DII , DV) =

λDAELDAE(DAE,GIIV , GV II)+

λCY CLCY C(GIIV , GV II)+

LIIDAEGAN(DAE,GV II , DII)+

LVDAEGAN(DAE,GIIV , DV)

(5.58)

The hyper-parameters λCY C and λDAE are then used to balance different terms

in the objective function. In the above equation, LCY C and LDAE do not use

the correspondence in pairs, because the LCY C loss will measure the full-cycle

projection of signal II or V to itself and the LDAE loss uses the samples that have

been randomly generated.

We solve the minmax challenge by finding the optimal parameters for the model’s

generatorsGII andGV , discriminatorsDII andDV , and the denoising auto-encoder

DAE as follows:

min
DAE,GIIV ,GV II

max
DII ,DV

L(DAE,GIIV , GV II , DII , DV) (5.59)

5.4 Experiments and Results - Two-Signal Impu-

tation

In this experiment, we use a pair of signals (leads II and V) and aim to generate

one lead from another. To apply the idea, we implemented a model by extending

the image domain transfer idea (VIGAN). This includes two sets of discriminators

DIIV , DV II and generators GIIV , GV II and a denoising autoencoder DAE. In the

following sections we discuss model setup and evaluate the quality of the generated

leads.

81

5.4 Experiments and Results - Two-Signal Imputation

5.4.1 Model Setup

This model consists of two generators which include a stack of four 1D Conv and

two 1D De-CONV layers and two dense layers on the top. The generator GIIV ,

inputs lead II and maps lead V and the generator GV II , inputs lead V and maps

it to lead II; both have been configured with ADAM optimiser and the learning

rate set to 2e−4. The discriminators DIIV and DV II include a stack of three layers

of 1D-CONV and a dense layer at the top. In these models, the learning rate has

been set to 2e− 4.

The denoising auto-encoder DAE includes eleven dense layers and accepts two

leads II and V , one of which is real while the other is generated as inputs and

outputs two denoised signals. The optimiser is set as ADAM with 2e − 3 as the

learning rate.

Figure 5.12: The structure of two-lead imputation model.

5.4.2 Model Performance

After setting up the model, first we trained DAE using the real II and V leads

where the denoising auto-encoder learns both the signal domains and is able to

map the input signals to corresponding domains. Later, we trained the GIIV and

DIIV and GIIV and DIIV alternately where the discriminators learn to distinguish

between real and generated signals (maximisation), and the generators learn to map

the input signals from one domain to another. Table 5.6 demonstrates the results

82

5.5 Methodology - Five-Signal Imputation

achieved using two generators with discriminators and also adding a denoising auto-

encoder at the top. Two sample outputs considering two pairs of different input

leads II and V , CycleGAN , and CycleGAN with DAE are shown in fig. 5.13 and

5.14.

The following plots represents the full cycle of generating each lead and the

output of DAE:

Figure 5.13: Sample 1, a clear heartbeat used to impute lead II and V from each other.
The plots demonstrate the original signals, output of the cycle and DAE.

We have evaluated the performance of the model by calculating the MSE of the

actual and generated TEST signals.

Lead Cycle MSE DAE MSE
II 0.0009 0.0007
V 0.0022 0.0008

Table 5.6: The MSE results of generated Lead II and V using cycleGan and DAE on the
top of cycleGan.

5.5 Methodology - Five-Signal Imputation

This section explains our suggested model consisting of an auto-encoder and only

one generator G and discriminator D; it uses the desired target domain label l to

map a physiological signal from one domain to the target domain. Considering

the available dataset, we built a model to map between leads II and V , blood

83

5.5 Methodology - Five-Signal Imputation

Figure 5.14: Sample 2, a sample of abnormal heartbeat used to impute lead II and V
from each other. The plots demonstrate the original signals, output of the cycle and DAE.

pressure(BP), photo-plethysmogram(PLETH), and respiration(RESP) signals.

The generator and discriminator are demonstrated as follows:

G(X, l)→ Y, where X and Y ∈ {II, V, BP,RESP, PLETH},

D : X → {Dsource(X), Dlabel(X)},
(5.60)

where Dsource is the probability distribution over the source signal and Dlabel(X)

represents the probability distribution of the target domain label.

5.5.1 Adversarial Loss

Adversarial loss is calculated to distinguish the generated signal from the real signal

considering projection of the input signals X and target label l as PY (X, l) = Y

where XandY ∈ {II, V, BP,RESP, PLETH} and l represents the target signal

name. Each target signal can be projected through four other signals. For in-

stance, lead II can be generated through PII(V, l = II) = II, PII(BP, l = II) =

II, PII(RESP, l = II) = II, PII(PLETH, l = II) = II. We use an auto-encoder

to reconstruct the target signal using the four generated signals with the same

target label.

84

5.5 Methodology - Five-Signal Imputation

The generator G, generates a signal while conditioned on the target label l and

input signal X and the discriminator D aims to identify real and fake signals. The

discriminator tries to maximise the objective and the generator tries to minimise

it. The adversarial loss is formulated as follows:

Ladv =EX [Dsource(X)]−

EX,l[Dsource(G(X, l))]−

λgpEX̂ [(‖ OX̂Dsource(X̂) ‖2 −1)2],

(5.61)

where λgp has been set to 10 and X̂ represents a straight line between each pair

of real and generated signals that has been uniformly sampled.

5.5.2 Domain Classification Loss

This loss is used to measure the optimisation process of generator G and discrim-

inator D while training them to map input signals and target labels to the target

signals. The D aims to minimise belonging objective to classify a given real signal

to belonging domain label. The G aims to generate signals to be categorised as

a member the target domain. The above-mentioned objectives are formulated as

follows:

Lfakeclass = EX,l[− logDclass(l′|X)]

Lrealclass = EX,l′ [− logDclass(l|G(X, l))]
(5.62)

5.5.3 Reconstruction Loss

This loss function is used to confirm the model is able to map the input signal to

itself by passing it through the G with relevant target labels l and l′. Using the

adversarial and classification loss functions does not guarantee that we are able

to map the generated signal to the original signal, although they enable the G to

learn to map the input to the target signal. To tackle this problem, reconstruction

has been calculated. This will measure the difference between the input signal X

85

5.5 Methodology - Five-Signal Imputation

and the regenerated signal G(G(X, l), l′):

Lrec = EX,l,l′ [‖ X −G(G(X, l), l′) ‖1] (5.63)

5.5.4 Auto-encoder Loss

Given that there are five different signals, and each can be used as an input signal

fed to the G, we can therefore generate one signal through four other signals. The

mapping considering multi-lead projection can be demonstrated as follows:

PII ◦ A(G(V, II), G(BP, II), G(RESP, II), G(PLETH, II)) :

{V,BP,RESP, PLETH} → II,
(5.64)

PV ◦ A(G(II, V), G(BP, V), G(RESP, V), G(PLETH, V)) :

{II, BP,RESP, PLETH} → V,
(5.65)

PBP ◦ A(G(II, BP), G(V,BP), G(RESP,BP), G(PLETH,BP)) :

{II, V, RESP, PLETH} → BP,
(5.66)

PRESP ◦ A(G(II, RESP), G(V,RESP), G(BP,RESP), G(PLETH,RESP)) :

{II, V, BP, PLETH} → RESP,

(5.67)

PPLETH◦A(G(II, PLETH),

G(V, PLETH), G(BP,PLETH), G(RESP, PLETH)) :

{II, V, BP,RESP} → PLETH

(5.68)

Considering different mapping from multiple sources for the same destination

signal, we use an auto-encoder A to extract features from each view in separate

86

5.5 Methodology - Five-Signal Imputation

initial parallel layers. The calculated features are combined into a tensor and

fed into a stack of layers to form a shared representation tensor. The output

layer produces a signal with dimensions identical to the original signal X. The

reconstruction function and inner representation of the view that establishes the

basic structure of the multi-sourced-view data are optimised jointly during the

training process. Considering the target label l and original signal from the data

set X, Y ∈ {II, V, BP,RESP, PLETH} and the model’s mappings G(X, l)→ Y ,

the inputs to the A will be five sets mentioned in eq. 5.64, 5.65, 5.66, 5.67, and

5.68, which are the reconstructed leads II and V , BP , RESP , and PLETH.

The objective function is formulated as follows:

LA(A,GII,l, GV,l, GBP,l, GRESP,l, GPLETH,l) =

E(X,l=II)∼P(data)((X,l=II))[‖ A(GV,l(V, l),

GBP,l(BP, l)), GRESP,l(RESP, l)), GPLETH,l(PLETH, l))− II ‖2
2]+

E(X,l=V)∼P(data)((X,l=V))[‖ A(GII,l(II, l),

GBP,l(BP, l)), GRESP,l(RESP, l)), GPLETH,l(PLETH, l))− V ‖2
2]+

E(X,l=BP)∼P(data)((X,l=BP))[‖ A(GII,l(II, l),

GV,l(V, l)), GRESP,l(RESP, l)), GPLETH,l(PLETH, l))−BP ‖2
2]+

E(X,l=RESP)∼P(data)((X,l=RESP))[‖ A(GII,l(II, l),

GV,l(V, l)), GBP,l(BP, l)), GPLETH,l(PLETH, l))−RESP ‖2
2]+

E(X,l=PLETH)∼P(data)((X,l=PLETH))[‖ A(GII,l(II, l),

GV,l(V, l)), GBP,l(BP, l)), GRESP,l(RESP, l))− PLETH ‖2
2]

(5.69)

87

5.6 Experiments and Results - Five-Signal Imputation

5.5.5 Overall Loss

The Overall objective function considering the generator G, discriminator D, and

auto-encoder A is formulated as follows:

L(A,GX,l, D) =λALA(A,GII,l, GV,l, GBP,l, GRESP,l, GPLETH,l)+

λrecLrec(X, l, l′)+

λfakeLfakeclass(D,X, l, l′)+

λrealLrealclass(G,X, l, l′)+

λadvLadv(G,D, l, X̂)

(5.70)

5.6 Experiments and Results - Five-Signal Impu-

tation

In this experiment, we implemented a model that shares the generator and discrimi-

nator between multiple signal domains. This experiment is an adaptation extension

to the StarGAN model [309], which is proposed for style transfer between domains.

In our model, we added an auto-encoder on the top of the proposed StarGAN,

which accepts a collection of the specific signals along with a target label, in order

to produce a target signal. The difference between this approach and the previous

approch (two-signal imputation) is the use of a shared model structure instead of

the implementation of separate models for each signal generation.

This approach simplifies the process of training, including calculating loss and

updating weights. To specify the expected (target) signal while training or predict-

ing using the shared generator, we concatenate the input signal with the expected

target label as input to the generator. The discriminator also produces two out-

puts, namely a binary judgement to distinguish between real and fake signals and

a classifier of real signals to its corresponding domain.

Signal Name II V Blood Pressure Respiration Photoplethysmogram
Label 00001 00010 00100 01000 10000

Table 5.7: List of target labels mapped in binary vector.

88

5.6 Experiments and Results - Five-Signal Imputation

Figure 5.15: The multi-lead generator structure

Since we can generate a signal through the other four signals, we will have four

generated signals with the same label. We added an auto-encoder on top of the

model to combine the generated signal with identical labels.

5.6.1 Model Setup

This approach includes a generator G, discriminator D, and an auto-encoder D.

The G includes a stack of six layers of 2D CONV and three 2D De-CONV layers

which accept an input signal X along with a target label l. This model has one

output, which is the generated target signal. The D consists of a stack of five layers

of 1D CONV, which receives a signal as an input and outputs the target label l′ and

a decision on generated or real signal Y . Both G and D benefit from the ADAM

optimiser with learning rate of 2e− 4. The auto-encoder A includes a stack of ten

dense layers and enables us to combine the generated signals for the same domain

- having the same target label l - with different source signals, in order to produce

the target signal.

5.6.2 Model Performance

After setting up the model, we trained the G and D alternatively, where the dis-

criminator learns to distinguish between real and generated signals considering the

target label l, and output the target label l′ , and the generator learns to map

89

5.6 Experiments and Results - Five-Signal Imputation

Figure 5.16: photo-plethysmogram generated using the rest of available signals

the input signals along with the target label l from one domain X to another Y .

Table 5.7 lists the target labels and their corresponding binary vectors fed into

the generator along with the source signal X. After training for 100 epochs, the

generated signals are evaluated before and after passing through the A. The re-

sults are shown in table 5.8. Analysing the results, the model shows very poor

performance in terms of generating missing respiration signals due to a lack of re-

lationship between the heartbeat and respiration rate. Within the dataset, there

are plenty of samples with similar bio-signals, but with different respiration rates.

In the following section we evaluate the performance of the same model discussed

in chapter 4.5 using the new partially-generated samples. We have removed the

respiration signal from all samples since their quality is very low.

Source of Generated Signal
Lead II Lead V Respiration Blood P. Pleth. AE Output

Lead II - 0.0009 4695356 0.0795 0.0148 0.0011
Lead V 0.0007 - 4225240 0.0708 0.0170 0.0052

Respiration 7482491 6665219 - 4181521 5871420 8765679
Blood P. 0.0310 0.0207 4610502 - 0.0540 0.03333

Pleth. 0.0034 0.0065 4883125 0.0752 - 0.0039

Table 5.8: The MSE of generated signals with different sources.

90

5.7 Conclusion

5.6.3 Classification Performance

We generated samples using the method discussed in section 5.6. Detailed infor-

mation regarding the type of disease and alarm type is offered in table 5.9. The

total number of samples is 738, which comprises 444 and 294 samples with the

False and True alarm label respectively. Later we followed the same steps dis-

cussed in sections 4.4 and 4.5 to select features and calculate the Physionet score.

Both approaches using backpropagation and DFO have been used to optimise the

model separately and the results obtained are demonstrated in table 5.10, and a

comparison results table with our past experiments and benchmarks are addressed

in table 5.11.
Disease Alarm Type No. of Samples
Asystole False 96
Asystole True 22

Bradycardia False 42
Bradycardia True 46
tachycardia False 9
tachycardia True 131

Ventricular flutter fib False 51
Ventricular flutter fib True 6
Ventricular tachycardia False 246
Ventricular tachycardia True 89

Total False Alarm Samples 444
Total True Alarm Samples 294

Table 5.9: Detailed information regarding the number samples used to evaluate the clas-
sification performance.

Method TP FP TN FN Mean Accuracy Physionet Score
Exp 2, Backpropagation, (Star-
GAN with AE)

262 32 417 27 91.98 80.02

Exp 2, Adapted DFO using
Eq. 4.53 (StarGAN with AE)

265 29 429 15 94.01 86.96

Exp 3, Backpropagation (Star-
GAN only)

260 34 413 31 91.19 78.07

Exp 3, Adapted DFO using Eq.
4.53(StarGAN only)

264 30 425 19 93.36 84.64

Table 5.10: The Accuracy and Physionet score obtained using the generated data over
5-fold cross validation. The results are gathered using StarGAN only and StarGAN with
Auto Encoder. Comparison between the results shows that using an auto-encoder on the
top of StarGAN improves the accuracy and the Physionet score.

5.7 Conclusion

In this chapter we explored the possibility of imputing missing signals within a

sample through a two-signal and a multi-signal imputation approach. The two-

signal imputation approach is useful where we have only two signals for each sample.

91

5.7 Conclusion

Author Method Mean Accuracy Physionet Score
By [10] SVM, BCTs, DACs 87.24% (+/- 2) 85.50% (+/- 3)
By [302] Fuzzy Logic 87.78% (+/- 4) 80.09% (+/- 8)
Our Study 1 Dense Network, Backpropagation 87.70% (+/- 3) 75.35% (+/- 7)
Our Study 2 Dense NN, Standard DFO, Dynamic ∆, using

Eq. 4.52
90.02% (+/- 3) 79.23% (+/- 5)

Our Study 3 Dense NN, Adapted DFO, Dynamic ∆, using
Eq. 4.53

91.91% (+/- 4) 86.77% (+/- 4)

Our Study 4 Dense NN, Random Search 84.16% (+/- 3) 68.03% (+/- 5)
Our Study 5 Dense NN, Standard DFO, ∆ = 0 (i.e. no

disturbance)
73.89% (+/- 2) 51.53% (+/- 4)

Our Study 6 Conv-Dense NN 88.21% (+/- 3) 76.34% (+/- 6)
Our Study 7 Conv-Dense NN, Adapted DFO, Dynamic ∆ 91.88% (+/- 2) 86.81% (+/- 4)
Our Study 8 Conv-Dense NN, Random Search 75.63% (+/- 8) 52.37% (+/- 9)
Our Study 9 Exp 2, Backpropagation 91.98% (+/- 3) 80.02% (+/- 3)
Our Study 10 Exp 2, Adapted DFO using Eq. 4.53 94.01% (+/- 3) 86.96% (+/- 2)

Table 5.11: Accuracy and Physionet score over five-fold cross validation for first and
fifth rank in Physionet challenge 2015, NN optimised with backpropagation and adapted
DFO algorithm with constant and dynamic disturbance threshold (∆) along with results
using generated samples.

Otherwise multiple models should be implemented, which will include multiple

generators and discriminators. This will make the training process complicated

and cumbersome. In this experiment we used ECG leads II and V signals to

train two sets of two generators GIIV and GV II and discriminators DIIV and DV II

along with a denoising auto-encoder AED. Using this approach, we could impute

the lead V from lead II with MSE = 0.0007 and lead II from lead V with

MSE = 0.0008 (see table 5.6). By imputing the missing signals, we were able to

improve the accuracy over models trained without this data augmentation strategy.

The results are reported in table 5.11.

In our second experiment, we explored the possibility of imputing multiple miss-

ing signals of a sample using a model consisting of a single generator G, discrimina-

torD and auto-encoder A. This model is able to impute lead II, V , Bloodpressure,

photo − plethysmogram, and Respiration signal with MSE = 0.0011, 0.0052,

0.03333, 0.0039, and 8765679. All the signals except respiration have been imputed

with high similarity. The model was not able to find any relationship between the

respiration rate and other bio-signals. Therefore, we removed the respiration signal

in the feature selection classification performance process. Using the imputation

method suggested in experiment 2, we were able to consider extra samples in our

classification model (738).

To classify imputed samples, we have already explored multiple models and trained

them using backpropagation and DFO approaches. Their calculated accuracy

92

5.8 Chapter Summary

and Physionet scores are described in table 5.10. Using the DFO to find the

optimal weights of the model, we recorded the highest accuracy = 94.01 and

Physionet = 86.96. A complete comparison including our previous experiments

and benchmarks are presented in table 5.11. By analysing the results gathered

in table 5.10, we observe a significant reduction (44%) in the number of False

Negatives while using the DFO algorithm in place of the backpropagation method.

5.8 Chapter Summary

In summary, we have presented a method for training neural networks based on

neuroevolution, by utilising the DFO algorithm in a gradient-free, population-based

scheme. We evaluated our approach to the problem of detecting false alarms in

ICUs by using the Physionet dataset. The results obtained show that the proposed

method outperforms (i) backpropagation-trained networks with the same or similar

architecture, as well as (ii) the winning entries of the Physionet challenge. Addi-

tionally, we addressed the possibility of imputing missing signals while having two

or five signals for each sample and later, the imputed signals using the five-signal

method used for classification purpose and two approaches used for discovering

the model’s hyper-parameters. The results demonstrate a significant improvement

while using an adapted DFO algorithm to train the model.

93

6. Conclusions and Further

Directions

This thesis suggests a novel approach to impute missing bio-signals and dis-

cover optimal hyper-parameters for a deep neural network. Two approaches have

been taken: Approach1, using only available samples and Approach2 includ-

ing samples with missing signal channels and imputing them using a GAN model.

Both approaches culminated in the implementation of a deep neural network for

classification and subsequent training using backpropagation and gradient-free al-

gorithms. The results have been collected and evaluated using defined measures.

This chapter revisits the contributions and research questions that have been ex-

plored and the experiments conducted to these ends. The last section addresses

possible approaches to be taken forward from this point.

6.1 Thesis Summary and Contributions

In summary, we have presented a method for training neural networks based on

neuroevolution, by utilising the DFO algorithm in a gradient-free, population-based

scheme. We evaluated our approach to the problem of detecting false alarms in

ECG monitoring systems by using the Physionet dataset. The results obtained

show that the proposed method outperforms (i) backpropagation-trained networks

with the same or similar architecture, as well as (ii) the winning entries of the Phy-

sionet challenge. We compared five-fold cross-validation of the first and fifth rank

in the Physionet challenge 2015 with our designed NN models (see Table 4.4). The

optimal weights of our models are calculated through both backpropagation and

94

6.1 Thesis Summary and Contributions

gradient-free algorithms. Model 1 consists of four dense layers and Model 2 consists

of a convolution layer and four dense layers (see Table 4.2 & 4.3). As a benchmark,

we calculated the accuracy and Physionet scores of [302] and [10]. They achieved

accuracy and Physionet scores of (87.24%, 85.50%) and (87.78%, 80.09%) respec-

tively. We investigated various implementations of DFO against Random Search

as benchmark. The DFO’s modified version for Model 1 & 2 achieved the high-

est score among the other results (see Table 4.4). Their accuracy and Physionet

scores are (91.91%, 86.77%) and (91.88%, 86.81%) respectively. The behaviour of

DFO, while having a constant ∆ value of 0, and Random Search has also been

investigated. Their accuracy and the Physionet scores are (73.89%, 51.53%) and

(84.16, 68.03) respectively. The models optimised via neuroevolution with DFO

outperform both (i) the networks trained by backpropagation, and (ii) the winning

entries of the Physionet challenge.

In the second part of this study, we explored the possibility of imputing missing

signals within a sample through two-signal and five-signal imputation approach.

The Two-signal imputation approach is useful when we have only two signals for

each sample. Otherwise, the multiple model should be implemented, which includes

multiple generators and discriminators. However, this can make the training pro-

cess complicated and cumbersome. In this experiment, we used ECG leads II and

V signals to train two sets of two generators GIIV and GV II and discriminators

DIIV and DV II along with a denoising auto-encoder AED. Using this approach,

we could impute the lead V from lead II withMSE = 0.0007 and lead II from lead

V with MSE = 0.0008 (see table 5.6). In our second experiment, we explored the

possibility of imputing multiple missing signals of a sample using a model consisting

of a single generator G, discriminator D and auto-encoder A. This model is able

to impute lead II, V , Blood pressure, Photo− plethysmogram, and Respiration

signals with MSE = 0.0011, 0.0052, 0.03333, 0.0039, and 8765679. All the signals,

with the exception of respiration were imputed with high similarity. The model was

not able to find any relationship between the respiration rate and other bio-signals.

For this reason, we removed the respiration signal in the feature selection classifica-

tion performance process. Using the imputation method suggested in experiment

2, we were able to consider extra samples in our classification model (738). To clas-

sify imputed samples, we have already explored multiple models and trained them

95

6.2 Future Directions

using backpropagation and DFO approaches. Their calculated accuracy and Phys-

ionet score are described in table 5.10. Using the DFO to find the optimal weights

of the model, we recorded the highest accuracy = 94.01 and Physionet = 86.96. A

complete comparison including our previous experiments and benchmarks are pre-

sented in table 5.11. By analysing the results gathered in table 5.10, we observe a

significant reduction (44%) in the number of False Negatives by using DFO instead

of a backpropagation method.

6.2 Future Directions

Moving forwards, there are several approaches with potential for further investiga-

tion:

• expand the gradient-free experiments to evaluate the possibility of having

an algorithm that is able to suggest an optimal model including number and

type of layers for a given dataset, while measuring the performance of separate

populations for each network and optimising them separately.

• investigate the possibility of hybrid backpropagation and gradient-free opti-

misation methods which will include alternate training between them. Be-

coming trapped in a local minima is a major weakness of gradient-base al-

gorithms. However, combining a stochastic approach with the above men-

tioned algorithm to tackle the challenges could possibly improve the overall

performance. Although there has been some research suggesting a two stage

model [287], it would be interesting to observe the behaviour of a model based

on alternation between DFO and gradient-based models.

• recent years have seen significant improvements in embedded computing with

offering higher processing power, nano form factor, and having the capa-

bility of running machine learning algorithms (TinyML) [310, 311]. Vari-

ous low-footprint micro-controller devices such as Arduino [311], Raspberry

Pi [312] and Nvidia Jetson Nano [313] are available for prototyping and test-

ing concepts. Their applications in forecasting and anomaly detection, image

recognition, and audio recognition are very well explored. However, there

96

6.2 Future Directions

is a research gap in using the generative adversarial models on the micro-

controller with limited resources. Investigating the possibility of using the

multi-lead generative model in sound generation, for instance, multi-channel

audio-signal imputation used in hearing-aid devices, can be considered an-

other expansion of this research.

97

Appendices

98

A List of Publications

Conference Papers and Book Chapters

1. H. M. J. Oroojeni, M. M. Al-Rifaie, and M. A. Nicolaou, "Deep neuroevolu-

tion: training deep neural networks for false alarm detection in intensive care

units," in 2018 26th European Signal Processing Conference (EUSIPCO).

IEEE, 2018, pp. 1157–1161.

https://ieeexplore.ieee.org/document/8552944

2. H. M. J. Oroojeni, J. Oldfield, and M. A. Nicolaou, "Detecting early Parkin-

son’s disease from keystroke dynamics using the tensor-train decomposition,"

in 2019 27th European Signal Processing Conference (EUSIPCO). IEEE,

2019, pp. 1–5.

https://ieeexplore.ieee.org/document/8902562

3. M. M. al-Rifaie, H. M. J. Oroojeni, and M. Nicolaou, “Dispersive flies optimi-

sation: Modifications and application,” inSwarm Intelligence Algorithms.CRC

Press, 2020, pp. 145–161.

https://doi.org/10.1201/9780429422607

99

https://ieeexplore.ieee.org/document/8552944
https://ieeexplore.ieee.org/document/8902562
https://doi.org/10.1201/9780429422607

Bibliography

[1] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A survey of
deep neural network architectures and their applications,” Neurocomputing,
vol. 234, pp. 11–26, 2017. 8, 24, 25

[2] M. M. al-Rifaie, “Dispersive flies optimisation: A tutorial,” Swarm Intelli-
gence Algorithms, pp. 135–147, 2020. 8, 49

[3] G. D. Clifford, I. Silva, B. Moody, Q. Li, D. Kella, A. Shahin, T. Kooistra,
D. Perry, and R. G. Mark, “The physionet/computing in cardiology chal-
lenge 2015: reducing false arrhythmia alarms in the icu,” in Computing in
Cardiology Conference (CinC), 2015. IEEE, 2015, pp. 273–276. 8, 62, 63,
64, 67

[4] W. team. (2020) World health organisation cardiovascular diseases. [Online].
Available: www.who.int/health-topics/cardiovascular-diseases/#tab=tab_1
11

[5] A. for the Advancement of Medical Instrumentation et al., “Cardiac monitors,
heart rate meters, and alarms,” American National Standard (ANSI/AAMI
EC13: 2002) Arlington, VA, pp. 1–87, 2002. 12, 62

[6] S. T. Lawless, “Crying wolf: false alarms in a pediatric intensive care unit.”
Critical care medicine, vol. 22, no. 6, pp. 981–985, 1994. 12, 62

[7] S. Parthasarathy and M. J. Tobin, “Sleep in the intensive care unit,” Intensive
care medicine, vol. 30, no. 2, pp. 197–206, 2004. 12, 62

[8] M.-C. Chambrin, “Alarms in the intensive care unit: how can the number of
false alarms be reduced?” Critical Care, vol. 5, no. 4, p. 184, 2001. 12, 62

[9] C. L. Tsien and J. C. Fackler, “Poor prognosis for existing monitors in the
intensive care unit,” Critical care medicine, vol. 25, no. 4, pp. 614–619, 1997.
12, 62

[10] C. H. Antink and S. Leonhardt, “Reducing false arrhythmia alarms using
robust interval estimation and machine learning,” in Computing in Cardiology
Conference (CinC), 2015. IEEE, 2015, pp. 285–288. 14, 64, 74, 76, 92, 95

[11] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no.
7553, pp. 436–444, 2015. 17

[12] M. L. Minski and S. A. Papert, “Perceptrons: an introduction to computa-
tional geometry,” MA: MIT Press, Cambridge, 1969. 17

100

www.who.int/health-topics/cardiovascular-diseases/##tab=tab_1

[13] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal rep-
resentations by error propagation,” California Univ San Diego La Jolla Inst
for Cognitive Science, Tech. Rep., 1985. 17

[14] D. CireşAn, U. Meier, J. Masci, and J. Schmidhuber, “Multi-column deep
neural network for traffic sign classification,” Neural networks, vol. 32, pp.
333–338, 2012. 18

[15] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep re-
current neural networks,” in Acoustics, speech and signal processing (icassp),
2013 ieee international conference on. IEEE, 2013, pp. 6645–6649. 18

[16] P. Seidel, A. Seidel, and O. Herbarth, “Multilayer perceptron tumour di-
agnosis based on chromatography analysis of urinary nucleosides,” Neural
Networks, vol. 20, no. 5, pp. 646–651, 2007. 18

[17] H. Yan, Y. Jiang, J. Zheng, C. Peng, and Q. Li, “A multilayer perceptron-
based medical decision support system for heart disease diagnosis,” Expert
Systems with Applications, vol. 30, no. 2, pp. 272–281, 2006. 18

[18] D. G. Bounds, P. J. Lloyd, B. Mathew, and G. Waddell, “A multilayer per-
ceptron network for the diagnosis of low back pain,” in Proc. IEEE Int. Conf.
on Neural Networks, vol. 2, 1988, pp. 481–489. 18

[19] F. Piccialli, V. Di Somma, F. Giampaolo, S. Cuomo, and G. Fortino, “A
survey on deep learning in medicine: Why, how and when?” Information
Fusion, vol. 66, pp. 111–137, 2021. 18

[20] P. Strata and R. Harvey, “Dale’s principle,” Brain research bulletin, vol. 50,
no. 5-6, pp. 349–350, 1999. 18

[21] C. Parisien, C. H. Anderson, and C. Eliasmith, “Solving the problem of
negative synaptic weights in cortical models,” Neural computation, vol. 20,
no. 6, pp. 1473–1494, 2008. 18

[22] S. L. Hill, Y. Wang, I. Riachi, F. Schürmann, and H. Markram, “Statistical
connectivity provides a sufficient foundation for specific functional connectiv-
ity in neocortical neural microcircuits,” Proceedings of the National Academy
of Sciences, vol. 109, no. 42, pp. E2885–E2894, 2012. 18

[23] J. Schmidhuber and S. Hochreiter, “Long short-term memory,” Neural Com-
put, vol. 9, no. 8, pp. 1735–1780, 1997. 19

[24] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and J. Schmid-
huber, “A novel connectionist system for unconstrained handwriting recog-
nition,” IEEE transactions on pattern analysis and machine intelligence,
vol. 31, no. 5, pp. 855–868, 2009. 19

[25] C. Ferreira, “Designing neural networks using gene expression program-
ming,” in Applied soft computing technologies: The challenge of complexity.
Springer, 2006, pp. 517–535. 19

101

[26] A.-r. Mohamed, G. E. Dahl, and G. Hinton, “Acoustic modeling using deep
belief networks,” IEEE Transactions on Audio, Speech, and Language Pro-
cessing, vol. 20, no. 1, pp. 14–22, 2012. 20

[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in neural information pro-
cessing systems, 2012, pp. 1097–1105. 20

[28] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations
by back-propagating errors,” nature, vol. 323, no. 6088, p. 533, 1986. 20, 22

[29] L. Chen and K. Aihara, “Chaotic simulated annealing by a neural network
model with transient chaos,” Neural networks, vol. 8, no. 6, pp. 915–930,
1995. 20

[30] H. Ghimatgar, K. Kazemi, M. S. Helfroush, K. Pillay, A. Dereymaker,
K. Jansen, M. De Vos, and A. Aarabi, “Neonatal eeg sleep stage classifi-
cation based on deep learning and hmm,” Journal of Neural Engineering,
vol. 17, no. 3, p. 036031, 2020. 20

[31] A. Gong, C. Chen, and M. Peng, “Human interaction recognition based on
deep learning and hmm,” IEEE Access, vol. 7, pp. 161 123–161 130, 2019. 20

[32] S.-A. Grönroos, S. Virpioja, P. Smit, and M. Kurimo, “Morfessor flatcat: An
hmm-based method for unsupervised and semi-supervised learning of mor-
phology,” in Proceedings of COLING 2014, the 25th International Conference
on Computational Linguistics: Technical Papers, 2014, pp. 1177–1185. 20

[33] B. A. Olshausen and D. J. Field, “Natural image statistics and efficient cod-
ing,” Network: computation in neural systems, vol. 7, no. 2, pp. 333–339,
1996. 21

[34] B. Nessler, M. Pfeiffer, L. Buesing, and W. Maass, “Bayesian computa-
tion emerges in generic cortical microcircuits through spike-timing-dependent
plasticity,” PLoS computational biology, vol. 9, no. 4, p. e1003037, 2013. 21

[35] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv
preprint arXiv:1312.5602, 2013. 21

[36] H. Z. Shouval, S. S.-H. Wang, and G. M. Wittenberg, “Spike timing depen-
dent plasticity: a consequence of more fundamental learning rules,” Frontiers
in Computational Neuroscience, vol. 4, p. 19, 2010. 21

[37] R. A. Jacobs, “Increased rates of convergence through learning rate adapta-
tion,” Neural networks, vol. 1, no. 4, pp. 295–307, 1988. 21

[38] R. Chaudhary, H. Patel, and M. Scholar, “A survey on backpropagation algo-
rithm for neural networks,” International Journal for Technological Research
in Engineering, vol. 2, 2015. 21, 23

[39] S. Solanki and H. Jethva, “Modified back propagation algorithm of feed for-
ward networks,” International Journal of Innovative Technology and Explor-
ing Engineering, vol. 2, no. 6, pp. 131–134, 2013. 22

102

[40] M.-Y. Chow, P. Goode, A. Menozzi, J. Teeter, and J. Thrower, “Bernoulli
error measure approach to train feedforward artificial neural networks for
classification problems,” in Neural Networks, 1994. IEEE World Congress on
Computational Intelligence., 1994 IEEE International Conference on, vol. 1.
IEEE, 1994, pp. 44–49. 23

[41] M. Rimer and T. Martinez, “Classification-based objective functions,” Ma-
chine Learning, vol. 63, no. 2, pp. 183–205, 2006. 23

[42] Z.-G. Che, T.-A. Chiang, Z.-H. Che et al., “Feed-forward neural networks
training: a comparison between genetic algorithm and back-propagation
learning algorithm,” International Journal of Innovative Computing, Infor-
mation and Control, vol. 7, no. 10, pp. 5839–5850, 2011. 23

[43] C. U. Joy, “Comparing the performance of backpropagation algorithm and
genetic algorithms in pattern recognition problems,” International Journal
of Computer Information Systems, vol. 2, no. 5, pp. 7–52, 2011. 23

[44] B. Choi, J.-H. Lee, and D.-H. Kim, “Solving local minima problem with
large number of hidden nodes on two-layered feed-forward artificial neural
networks,” Neurocomputing, vol. 71, no. 16-18, pp. 3640–3643, 2008. 23

[45] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
deep belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.
24

[46] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-trained
deep neural networks for large-vocabulary speech recognition,” IEEE Trans-
actions on audio, speech, and language processing, vol. 20, no. 1, pp. 30–42,
2012. 24

[47] Q. V. Le, “Building high-level features using large scale unsupervised learn-
ing,” in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE In-
ternational Conference on. IEEE, 2013, pp. 8595–8598. 24

[48] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural
networks, vol. 61, pp. 85–117, 2015. 24

[49] L. Deng, “A tutorial survey of architectures, algorithms, and applications for
deep learning,” APSIPA Transactions on Signal and Information Processing,
vol. 3, 2014. 24

[50] M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya, R. Wald,
and E. Muharemagic, “Deep learning applications and challenges in big data
analytics,” Journal of Big Data, vol. 2, no. 1, p. 1, 2015. 24

[51] N. Zeng, Z. Wang, H. Zhang, W. Liu, and F. E. Alsaadi, “Deep belief net-
works for quantitative analysis of a gold immunochromatographic strip,” Cog-
nitive Computation, vol. 8, no. 4, pp. 684–692, 2016. 24

[52] Y. LeCun et al., “Generalization and network design strategies,” Connection-
ism in perspective, pp. 143–155, 1989. 24

103

[53] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning. MIT
press Cambridge, 2016, vol. 1. 25

[54] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998. 25, 29

[55] P. Y. Simard, D. Steinkraus, J. C. Platt et al., “Best practices for convo-
lutional neural networks applied to visual document analysis.” in ICDAR,
vol. 3, 2003, pp. 958–962. 25

[56] Q. Dou, H. Chen, L. Yu, L. Zhao, J. Qin, D. Wang, V. C. Mok, L. Shi, and
P.-A. Heng, “Automatic detection of cerebral microbleeds from mr images via
3d convolutional neural networks,” IEEE transactions on medical imaging,
vol. 35, no. 5, pp. 1182–1195, 2016. 25

[57] M. Anthimopoulos, S. Christodoulidis, L. Ebner, A. Christe, and
S. Mougiakakou, “Lung pattern classification for interstitial lung diseases
using a deep convolutional neural network,” IEEE transactions on medical
imaging, vol. 35, no. 5, pp. 1207–1216, 2016. 25

[58] P.-P. Ypsilantis, M. Siddique, H.-M. Sohn, A. Davies, G. Cook, V. Goh, and
G. Montana, “Predicting response to neoadjuvant chemotherapy with pet
imaging using convolutional neural networks,” PloS one, vol. 10, no. 9, p.
e0137036, 2015. 25

[59] A. van den Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves, and
K. Kavukcuoglu, “Conditional image generation with pixelcnn decoders,” in
NIPS, 2016. 27

[60] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A generative
model for raw audio,” arXiv preprint arXiv:1609.03499, 2016. 27

[61] X. Hou, L. Shen, K. Sun, and G. Qiu, “Deep feature consistent variational
autoencoder,” in 2017 IEEE Winter Conference on Applications of Computer
Vision (WACV). IEEE, 2017, pp. 1133–1141. 27

[62] D. P. Kingma and P. Dhariwal, “Glow: Generative flow with invertible 1x1
convolutions,” in Advances in Neural Information Processing Systems, 2018,
pp. 10 215–10 224. 27

[63] R. Prenger, R. Valle, and B. Catanzaro, “Waveglow: A flow-based generative
network for speech synthesis,” CoRR, vol. abs/1811.00002, 2018. [Online].
Available: http://arxiv.org/abs/1811.00002 28

[64] A. Aggarwal, M. Mittal, and G. Battineni, “Generative adversarial network:
An overview of theory and applications,” International Journal of Informa-
tion Management Data Insights, p. 100004, 2021. 28

[65] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in
neural information processing systems, 2014, pp. 2672–2680. 28, 29, 30, 31

104

http://arxiv.org/abs/1811.00002

[66] M.-Y. Liu and O. Tuzel, “Coupled generative adversarial networks,” in Ad-
vances in neural information processing systems, 2016, pp. 469–477. 28

[67] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved techniques for training gans,” in Advances in neural
information processing systems, 2016, pp. 2234–2242. 28

[68] M. O. Turkoglu, W. Thong, L. Spreeuwers, and B. Kicanaoglu, “A layer-
based sequential framework for scene generation with gans,” arXiv preprint
arXiv:1902.00671, 2019. 28

[69] W. Zhu, X. Xiang, T. D. Tran, and X. Xie, “Adversarial deep struc-
tural networks for mammographic mass segmentation,” arXiv preprint
arXiv:1612.05970, 2016. 28

[70] P. Luc, C. Couprie, S. Chintala, and J. Verbeek, “Semantic segmentation
using adversarial networks,” arXiv preprint arXiv:1611.08408, 2016. 28

[71] H. Dong, S. Yu, C. Wu, and Y. Guo, “Semantic image synthesis via ad-
versarial learning,” in Proceedings of the IEEE International Conference on
Computer Vision, 2017, pp. 5706–5714. 28

[72] Z. Qiu, Y. Pan, T. Yao, and T. Mei, “Deep semantic hashing with generative
adversarial networks,” in Proceedings of the 40th International ACM SIGIR
Conference on Research and Development in Information Retrieval. ACM,
2017, pp. 225–234. 28

[73] N. Souly, C. Spampinato, and M. Shah, “Semi supervised semantic segmen-
tation using generative adversarial network,” in Proceedings of the IEEE In-
ternational Conference on Computer Vision, 2017, pp. 5688–5696. 28

[74] G. K. Dziugaite, D. M. Roy, and Z. Ghahramani, “Training generative neu-
ral networks via maximum mean discrepancy optimization,” arXiv preprint
arXiv:1505.03906, 2015. 28

[75] L. Ma, X. Jia, Q. Sun, B. Schiele, T. Tuytelaars, and L. Van Gool, “Pose
guided person image generation,” in Advances in Neural Information Pro-
cessing Systems, 2017, pp. 406–416. 28

[76] C. Vondrick, H. Pirsiavash, and A. Torralba, “Generating videos with scene
dynamics,” in Advances In Neural Information Processing Systems, 2016, pp.
613–621. 28

[77] C. Yang, X. Lu, Z. Lin, E. Shechtman, O. Wang, and H. Li, “High-resolution
image inpainting using multi-scale neural patch synthesis,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 6721–6729. 28

[78] A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with auxil-
iary classifier gans,” in Proceedings of the 34th International Conference on
Machine Learning-Volume 70. JMLR. org, 2017, pp. 2642–2651. 28

105

[79] C. Lassner, G. Pons-Moll, and P. V. Gehler, “A generative model of people in
clothing,” in Proceedings of the IEEE International Conference on Computer
Vision, 2017, pp. 853–862. 28

[80] W. Fedus, I. Goodfellow, and A. M. Dai, “Maskgan: better text generation
via filling in the_,” arXiv preprint arXiv:1801.07736, 2018. 28

[81] Z. Yang, J. Hu, R. Salakhutdinov, and W. W. Cohen, “Semi-supervised
qa with generative domain-adaptive nets,” arXiv preprint arXiv:1702.02206,
2017. 28

[82] Z. Dai, Z. Yang, F. Yang, W. W. Cohen, and R. R. Salakhutdinov, “Good
semi-supervised learning that requires a bad gan,” in Advances in neural
information processing systems, 2017, pp. 6510–6520. 28

[83] N. Jetchev, U. Bergmann, and R. Vollgraf, “Texture synthesis with spatial
generative adversarial networks,” arXiv preprint arXiv:1611.08207, 2016. 28

[84] C. Donahue, J. McAuley, and M. Puckette, “Synthesizing audio with gener-
ative adversarial networks,” arXiv preprint arXiv:1802.04208, vol. 1, 2018.
28

[85] K. G. Hartmann, R. T. Schirrmeister, and T. Ball, “Eeg-gan: Generative
adversarial networks for electroencephalograhic (eeg) brain signals,” arXiv
preprint arXiv:1806.01875, 2018. 28

[86] C. Esteban, S. L. Hyland, and G. Rätsch, “Real-valued (medical)
time series generation with recurrent conditional gans,” arXiv preprint
arXiv:1706.02633, 2017. 28

[87] D. Li, D. Chen, B. Jin, L. Shi, J. Goh, and S.-K. Ng, “Mad-gan: Multivariate
anomaly detection for time series data with generative adversarial networks,”
in International Conference on Artificial Neural Networks. Springer, 2019,
pp. 703–716. 28

[88] E. Brophy, Z. Wang, and T. E. Ward, “Quick and easy time series generation
with established image-based gans,” arXiv preprint arXiv:1902.05624, 2019.
28

[89] Z. Wang, Q. She, and T. E. Ward, “Generative adversarial networks: A
survey and taxonomy,” arXiv preprint arXiv:1906.01529, 2019. 28, 29

[90] J. Kossaifi, L. Tran, Y. Panagakis, and M. Pantic, “Gagan: Geometry-aware
generative adversarial networks,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 878–887. 28

[91] Q. Dai, Q. Li, J. Tang, and D. Wang, “Adversarial network embedding,” in
Thirty-Second AAAI Conference on Artificial Intelligence, 2018. 28

[92] N. Kodali, J. Abernethy, J. Hays, and Z. Kira, “On convergence and stability
of gans,” arXiv preprint arXiv:1705.07215, 2017. 28

[93] Y. Li, A. Schwing, K.-C. Wang, and R. Zemel, “Dualing gans,” in Advances
in Neural Information Processing Systems, 2017, pp. 5606–5616. 28

106

[94] A. Borji, “Pros and cons of gan evaluation measures,” Computer Vision and
Image Understanding, vol. 179, pp. 41–65, 2019. 28

[95] Q. Xu, G. Huang, Y. Yuan, C. Guo, Y. Sun, F. Wu, and K. Weinberger, “An
empirical study on evaluation metrics of generative adversarial networks,”
arXiv preprint arXiv:1806.07755, 2018. 28

[96] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved training of wasserstein gans,” in Advances in neural information
processing systems, 2017, pp. 5767–5777. 28

[97] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“Gans trained by a two time-scale update rule converge to a local nash equi-
librium,” in Advances in Neural Information Processing Systems, 2017, pp.
6626–6637. 28

[98] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola, “A
kernel two-sample test,” Journal of Machine Learning Research, vol. 13, no.
Mar, pp. 723–773, 2012. 28

[99] Z. Wang, G. Healy, A. F. Smeaton, and T. E. Ward, “Use of neural signals to
evaluate the quality of generative adversarial network performance in facial
image generation,” arXiv preprint arXiv:1811.04172, 2018. 28

[100] Z. Wang, Q. She, A. F. Smeaton, T. E. Ward, and G. Healy, “Neuroscore: A
brain-inspired evaluation metric for generative adversarial networks,” arXiv
preprint arXiv:1905.04243, 2019. 28

[101] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee, “Gener-
ative adversarial text to image synthesis,” arXiv preprint arXiv:1605.05396,
2016. 29

[102] S. Iizuka, E. Simo-Serra, and H. Ishikawa, “Globally and locally consistent
image completion,” ACM Transactions on Graphics (ToG), vol. 36, no. 4, p.
107, 2017. 29

[103] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proceedings of
the IEEE international conference on computer vision, 2017, pp. 2223–2232.
29, 78, 80, 81

[104] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang et al., “Photo-realistic single image
super-resolution using a generative adversarial network,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2017, pp.
4681–4690. 29

[105] J. M. Susskind, A. K. Anderson, and G. E. Hinton, “The toronto face
database,” Department of Computer Science, University of Toronto, Toronto,
ON, Canada, Tech. Rep, vol. 3, 2010. 29

[106] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from
tiny images,” Citeseer, Tech. Rep., 2009. 29

107

[107] E. L. Denton, S. Chintala, R. Fergus et al., “Deep generative image models
using a laplacian pyramid of adversarial networks,” in Advances in neural
information processing systems, 2015, pp. 1486–1494. 29

[108] P. Burt and E. Adelson, “The laplacian pyramid as a compact image code,”
IEEE Transactions on communications, vol. 31, no. 4, pp. 532–540, 1983. 29

[109] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learn-
ing with deep convolutional generative adversarial networks,” arXiv preprint
arXiv:1511.06434, 2015. 29

[110] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional
networks,” in European conference on computer vision. Springer, 2014, pp.
818–833. 29

[111] J. Zhao, M. Mathieu, and Y. LeCun, “Energy-based generative adversarial
network,” arXiv preprint arXiv:1609.03126, 2016. 29

[112] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of gans for
improved quality, stability, and variation,” arXiv preprint arXiv:1710.10196,
2017. 30, 39

[113] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for
generative adversarial networks,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 4401–4410. 30

[114] A. Brock, J. Donahue, and K. Simonyan, “Large scale gan training for high
fidelity natural image synthesis,” arXiv preprint arXiv:1809.11096, 2018. 30

[115] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in
neural information processing systems, 2017, pp. 5998–6008. 30

[116] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-attention genera-
tive adversarial networks,” arXiv preprint arXiv:1805.08318, 2018. 30

[117] M. Arjovsky and L. Bottou, “Towards principled methods for training gen-
erative adversarial networks,” arXiv preprint arXiv:1701.04862, 2017. 31

[118] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” arXiv preprint
arXiv:1701.07875, 2017. 33, 38

[119] Y. Rubner, C. Tomasi, and L. J. Guibas, “The earth mover’s distance as a
metric for image retrieval,” International journal of computer vision, vol. 40,
no. 2, pp. 99–121, 2000. 33

[120] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved training of wasserstein gans,” in Advances in neural information
processing systems, 2017, pp. 5767–5777. 34, 38

[121] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. Paul Smolley, “Least
squares generative adversarial networks,” in Proceedings of the IEEE Inter-
national Conference on Computer Vision, 2017, pp. 2794–2802. 34

108

[122] S. Nowozin, B. Cseke, and R. Tomioka, “f-gan: Training generative neural
samplers using variational divergence minimization,” in Advances in neural
information processing systems, 2016, pp. 271–279. 34

[123] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein, “Unrolled generative ad-
versarial networks,” 2016. 35

[124] G.-J. Qi, “Loss-sensitive generative adversarial networks on lipschitz densi-
ties,” arXiv preprint arXiv:1701.06264, 2017. 36, 38

[125] T. Che, Y. Li, A. P. Jacob, Y. Bengio, and W. Li, “Mode regularized gener-
ative adversarial networks,” arXiv preprint arXiv:1612.02136, 2016. 36

[126] J. H. Lim and J. C. Ye, “Geometric gan,” arXiv preprint arXiv:1705.02894,
2017. 37

[127] A. Jolicoeur-Martineau, “The relativistic discriminator: a key element miss-
ing from standard gan,” arXiv preprint arXiv:1807.00734, 2018. 37

[128] B. K. Sriperumbudur, K. Fukumizu, A. Gretton, B. Schölkopf, and G. R.
Lanckriet, “On integral probability metrics,\phi-divergences and binary clas-
sification,” arXiv preprint arXiv:0901.2698, 2009. 37

[129] A. Müller, “Integral probability metrics and their generating classes of func-
tions,” Advances in Applied Probability, vol. 29, no. 2, pp. 429–443, 1997.
37

[130] T. Donchev and E. Farkhi, “Stability and euler approximation of one-sided
lipschitz differential inclusions,” SIAM journal on control and optimization,
vol. 36, no. 2, pp. 780–796, 1998. 38

[131] L. Armijo, “Minimization of functions having lipschitz continuous first partial
derivatives,” Pacific Journal of mathematics, vol. 16, no. 1, pp. 1–3, 1966. 38

[132] A. Goldstein, “Optimization of lipschitz continuous functions,” Mathematical
Programming, vol. 13, no. 1, pp. 14–22, 1977. 38

[133] H. Lee, P. Pham, Y. Largman, and A. Y. Ng, “Unsupervised feature learning
for audio classification using convolutional deep belief networks,” in Advances
in neural information processing systems, 2009, pp. 1096–1104. 38

[134] I.-J. Kim and X. Xie, “Handwritten hangul recognition using deep convo-
lutional neural networks,” International Journal on Document Analysis and
Recognition (IJDAR), vol. 18, no. 1, pp. 1–13, 2015. 38

[135] F. Hu, G.-S. Xia, J. Hu, and L. Zhang, “Transferring deep convolutional
neural networks for the scene classification of high-resolution remote sensing
imagery,” Remote Sensing, vol. 7, no. 11, pp. 14 680–14 707, 2015. 38

[136] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using deep
convolutional networks,” IEEE transactions on pattern analysis and machine
intelligence, vol. 38, no. 2, pp. 295–307, 2016. 38

109

[137] R. Manor and A. B. Geva, “Convolutional neural network for multi-category
rapid serial visual presentation bci,” Frontiers in computational neuroscience,
vol. 9, p. 146, 2015. 38

[138] X. Glorot, A. Bordes, and Y. Bengio, “Domain adaptation for large-scale
sentiment classification: A deep learning approach,” in Proceedings of the
28th international conference on machine learning (ICML-11), 2011, pp. 513–
520. 38

[139] R. Collobert and J. Weston, “A unified architecture for natural language
processing: Deep neural networks with multitask learning,” in Proceedings
of the 25th international conference on Machine learning. ACM, 2008, pp.
160–167. 38

[140] N. D. Lane and P. Georgiev, “Can deep learning revolutionize mobile sens-
ing?” in Proceedings of the 16th International Workshop on Mobile Comput-
ing Systems and Applications. ACM, 2015, pp. 117–122. 38

[141] J. Wang, X. Yang, H. Cai, W. Tan, C. Jin, and L. Li, “Discrimination of
breast cancer with microcalcifications on mammography by deep learning,”
Scientific reports, vol. 6, p. 27327, 2016. 38

[142] Z. Yan, Y. Zhan, Z. Peng, S. Liao, Y. Shinagawa, S. Zhang, D. N. Metaxas,
and X. S. Zhou, “Multi-instance deep learning: Discover discriminative local
anatomies for bodypart recognition,” IEEE transactions on medical imaging,
vol. 35, no. 5, pp. 1332–1343, 2016. 39

[143] H.-I. Suk, S.-W. Lee, D. Shen, A. D. N. Initiative et al., “Hierarchical feature
representation and multimodal fusion with deep learning for ad/mci diagno-
sis,” NeuroImage, vol. 101, pp. 569–582, 2014. 39

[144] A. A. Cruz-Roa, J. E. A. Ovalle, A. Madabhushi, and F. A. G. Osorio, “A
deep learning architecture for image representation, visual interpretability
and automated basal-cell carcinoma cancer detection,” in International Con-
ference on Medical Image Computing and Computer-Assisted Intervention.
Springer, 2013, pp. 403–410. 39

[145] M. A. Haidar and M. Rezagholizadeh, “Textkd-gan: Text generation us-
ing knowledge distillation and generative adversarial networks,” in Canadian
Conference on Artificial Intelligence. Springer, 2019, pp. 107–118. 39

[146] A. Noguchi and T. Harada, “Image generation from small datasets via batch
statistics adaptation,” in Proceedings of the IEEE International Conference
on Computer Vision, 2019, pp. 2750–2758. 39

[147] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“Gans trained by a two time-scale update rule converge to a local nash equi-
librium,” in Advances in neural information processing systems, 2017, pp.
6626–6637. 39

[148] E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko, “Simultaneous deep transfer
across domains and tasks,” in Proceedings of the IEEE International Confer-
ence on Computer Vision, 2015, pp. 4068–4076. 39

110

[149] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial discriminative
domain adaptation,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 7167–7176. 39

[150] Y. Wang, C. Wu, L. Herranz, J. van de Weijer, A. Gonzalez-Garcia, and
B. Raducanu, “Transferring gans: generating images from limited data,” in
Proceedings of the European Conference on Computer Vision (ECCV), 2018,
pp. 218–234. 39

[151] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krishnan, “Unsu-
pervised pixel-level domain adaptation with generative adversarial networks,”
in Proceedings of the IEEE conference on computer vision and pattern recog-
nition, 2017, pp. 3722–3731. 39

[152] T. Miyato and M. Koyama, “cgans with projection discriminator,” arXiv
preprint arXiv:1802.05637, 2018. 39

[153] S. Aigner and M. Körner, “Futuregan: Anticipating the future frames of
video sequences using spatio-temporal 3d convolutions in progressively grow-
ing gans,” arXiv preprint arXiv:1810.01325, 2018. 39

[154] M. I. Belghazi, S. Rajeswar, O. Mastropietro, N. Rostamzadeh, J. Mitro-
vic, and A. Courville, “Hierarchical adversarially learned inference,” arXiv
preprint arXiv:1802.01071, 2018. 39

[155] Y. Frégier and J.-B. Gouray, “Mind2mind: transfer learning for gans,” arXiv
preprint arXiv:1906.11613, 2019. 39

[156] J. Donahue, P. Krähenbühl, and T. Darrell, “Adversarial feature learning,”
arXiv preprint arXiv:1605.09782, 2016. 40

[157] H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, and M. Marchand,
“Domain-adversarial neural networks,” arXiv preprint arXiv:1412.4446,
2014. 40

[158] M. Long, Z. Cao, J. Wang, and M. I. Jordan, “Domain adaptation with
randomized multilinear adversarial networks,” ArXiv, vol. abs/1705.10667,
2017. 40

[159] Z. Luo, Y. Zou, J. Hoffman, and L. F. Fei-Fei, “Label efficient learning of
transferable representations acrosss domains and tasks,” in Advances in Neu-
ral Information Processing Systems, 2017, pp. 165–177. 40

[160] R. J. Martis, U. R. Acharya, C. M. Lim, K. Mandana, A. K. Ray, and
C. Chakraborty, “Application of higher order cumulant features for cardiac
health diagnosis using ecg signals,” International journal of neural systems,
vol. 23, no. 04, p. 1350014, 2013. 40

[161] İ. Güler and E. D. Übeylı, “Ecg beat classifier designed by combined neural
network model,” Pattern recognition, vol. 38, no. 2, pp. 199–208, 2005. 40

[162] C. Kamath, “Ecg beat classification using features extracted from teager en-
ergy functions in time and frequency domains,” IET signal processing, vol. 5,
no. 6, pp. 575–581, 2011. 40

111

[163] O. T. Inan, L. Giovangrandi, and G. T. Kovacs, “Robust neural-network-
based classification of premature ventricular contractions using wavelet trans-
form and timing interval features,” IEEE transactions on Biomedical Engi-
neering, vol. 53, no. 12, pp. 2507–2515, 2006. 40

[164] S. Banerjee and M. Mitra, “Ecg beat classification based on discrete wavelet
transformation and nearest neighbour classifier,” Journal of medical engi-
neering & technology, vol. 37, no. 4, pp. 264–272, 2013. 40

[165] F. A. Elhaj, N. Salim, A. R. Harris, T. T. Swee, and T. Ahmed, “Arrhythmia
recognition and classification using combined linear and nonlinear features of
ecg signals,” Computer methods and programs in biomedicine, vol. 127, pp.
52–63, 2016. 40

[166] J. Park and K. Kang, “Pchd: Personalized classification of heartbeat types
using a decision tree,” Computers in biology and medicine, vol. 54, pp. 79–88,
2014. 40

[167] R. J. Martis, U. R. Acharya, and L. C. Min, “Ecg beat classification using
pca, lda, ica and discrete wavelet transform,” Biomedical Signal Processing
and Control, vol. 8, no. 5, pp. 437–448, 2013. 40

[168] M. T. Nguyen, A. Shahzad, B. Van Nguyen, and K. Kim, “Diagnosis of shock-
able rhythms for automated external defibrillators using a reliable support
vector machine classifier,” Biomedical Signal Processing and Control, vol. 44,
pp. 258–269, 2018. 40

[169] S. Raj and K. C. Ray, “Automated recognition of cardiac arrhythmias us-
ing sparse decomposition over composite dictionary,” Computer methods and
programs in biomedicine, vol. 165, pp. 175–186, 2018. 40

[170] W. Yang, Y. Si, D. Wang, and B. Guo, “Automatic recognition of arrhythmia
based on principal component analysis network and linear support vector
machine,” Computers in biology and medicine, vol. 101, pp. 22–32, 2018. 40

[171] S. L. Oh, E. Y. Ng, R. San Tan, and U. R. Acharya, “Automated diagnosis
of arrhythmia using combination of cnn and lstm techniques with variable
length heart beats,” Computers in biology and medicine, vol. 102, pp. 278–
287, 2018. 40

[172] G. Sannino and G. De Pietro, “A deep learning approach for ecg-based heart-
beat classification for arrhythmia detection,” Future Generation Computer
Systems, vol. 86, pp. 446–455, 2018. 40

[173] A. Isin and S. Ozdalili, “Cardiac arrhythmia detection using deep learning,”
Procedia computer science, vol. 120, pp. 268–275, 2017. 40

[174] S. Raj, K. C. Ray, and O. Shankar, “Cardiac arrhythmia beat classifica-
tion using dost and pso tuned svm,” Computer methods and programs in
biomedicine, vol. 136, pp. 163–177, 2016. 40

112

[175] S. M. Mathews, C. Kambhamettu, and K. E. Barner, “A novel application
of deep learning for single-lead ecg classification,” Computers in biology and
medicine, vol. 99, pp. 53–62, 2018. 40

[176] M. Llamedo and J. P. Martínez, “An automatic patient-adapted ecg heart-
beat classifier allowing expert assistance,” IEEE Transactions on Biomedical
Engineering, vol. 59, no. 8, pp. 2312–2320, 2012. 40

[177] Z.-E. H. Slimane and A. Naït-Ali, “Qrs complex detection using empirical
mode decomposition,” Digital Signal Processing, vol. 20, no. 4, pp. 1221–
1228, 2010. 40

[178] S. Shadmand and B. Mashoufi, “A new personalized ecg signal classification
algorithm using block-based neural network and particle swarm optimiza-
tion,” Biomedical Signal Processing and Control, vol. 25, pp. 12–23, 2016.
40

[179] A. Beznosikov, A. Sadiev, and A. Gasnikov, “Gradient-free methods for
saddle-point problem,” arXiv preprint arXiv:2005.05913, 2020. 41

[180] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA,
1989. 41

[181] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proceed-
ings of the IEEE International Conference on Neural Networks, vol. IV. Pis-
cataway, NJ: IEEE Service Center, 1995, pp. 1942–1948. 41, 42

[182] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” Compu-
tational Intelligence Magazine, IEEE, vol. 1, no. 4, pp. 28–39, 2006. 42

[183] M. Derigo and T. Stutzle, Ant Colony Optimization. The MIT Press, 2004.
42

[184] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a
colony of cooperating agents,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), vol. 26, no. 1, pp. 29–41, 1996. 42

[185] T. Stutzle and H. Hoos, “Max-min ant system and local search for the trav-
eling salesman problem,” in Evolutionary Computation, 1997., IEEE Inter-
national Conference on. IEEE, 1997, pp. 309–314. 42

[186] M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperative learn-
ing approach to the traveling salesman problem,” IEEE Transactions on evo-
lutionary computation, vol. 1, no. 1, pp. 53–66, 1997. 42

[187] M. Guntsch and M. Middendorf, “Applying population based aco to dy-
namic optimization problems,” in International Workshop on Ant Algorithms.
Springer, 2002, pp. 111–122. 42

[188] F. Heppner and U. Grenander, “A stochastic nonlinear model for coordi-
nated bird flocks.” American Association for the Advancement of Science,
Washington, DC(USA)., 1990. 43

113

[189] D. Bratton and J. Kennedy, “Defining a standard for particle swarm opti-
mization,” in Proc of the Swarm Intelligence Symposium. Honolulu, Hawaii,
USA: IEEE, 2007, pp. 120–127. 43

[190] D. Mandal, A. Chatterjee, and M. Maitra, “Robust medical image segmen-
tation using particle swarm optimization aided level set based global fitting
energy active contour approach,” Engineering Applications of Artificial In-
telligence, vol. 35, pp. 199–214, 2014. 43

[191] D. Wu, K. Warwick, Z. Ma, M. N. Gasson, J. G. Burgess, S. Pan, and T. Z.
Aziz, “Prediction of parkinson’s disease tremor onset using a radial basis
function neural network based on particle swarm optimization,” International
journal of neural systems, vol. 20, no. 02, pp. 109–116, 2010. 43

[192] R. C. Eberhart and X. Hu, “Human tremor analysis using particle swarm
optimization,” in Evolutionary Computation, 1999. CEC 99. Proceedings of
the 1999 Congress on, vol. 3. IEEE, 1999, pp. 1927–1930. 43

[193] R. Storn and K. Price, “Differential evolution - a simple and efficient adaptive
scheme for global optimization over continuous spaces,” 1995, tR-95-012,
[online]. Available: http://www.icsi.berkeley.edu/ storn/litera.html. 44

[194] R. Thomsen, “Flexible ligand docking using evolutionary algorithms: investi-
gating the effects of variation operators and local search hybrids,” Biosystems,
vol. 72, no. 1-2, pp. 57–73, 2003. 45

[195] J. Vesterstrom and R. Thomsen, “A comparative study of differential evo-
lution, particle swarm optimization, and evolutionary algorithms on numer-
ical benchmark problems,” in Evolutionary Computation, 2004. CEC2004.
Congress on, vol. 2, 2004, pp. 1980–1987. 45, 46

[196] T. Back, D. B. Fogel, and Z. Michalewicz, Handbook of evolutionary compu-
tation. IOP Publishing Ltd., 1997. 45

[197] T. K. Paul and H. Iba, “Prediction of cancer class with majority voting ge-
netic programming classifier using gene expression data,” IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics (TCBB), vol. 6, no. 2,
pp. 353–367, 2009. 46

[198] H. Guo and A. K. Nandi, “Breast cancer diagnosis using genetic programming
generated feature,” Pattern Recognition, vol. 39, no. 5, pp. 980–987, 2006. 46

[199] A. P. Mitra, A. A. Almal, B. George, D. W. Fry, P. F. Lenehan, V. Pagliarulo,
R. J. Cote, R. H. Datar, and W. P. Worzel, “The use of genetic programming
in the analysis of quantitative gene expression profiles for identification of
nodal status in bladder cancer,” BMC cancer, vol. 6, no. 1, p. 159, 2006. 46

[200] M. M. al-Rifaie, “Dispersive flies optimisation,” in Proceedings of the 2014
Federated Conference on Computer Science and Information Systems, ser.
Annals of Computer Science and Information Systems, M. P. M. Ganzha,
L. Maciaszek, Ed., vol. 2. IEEE, 2014, pp. pages 529–538. 47, 67, 70

114

[201] M. M. al-Rifaie and A. Aber, “Dispersive flies optimisation and medical imag-
ing,” in Recent Advances in Computational Optimization. Springer, 2016,
pp. 183–203. 47

[202] B. Lazov and T. Vetsov, “Sum of three cubes via optimisation,” arXiv
preprint arXiv:2005.09710, 2020. 47

[203] B. B. Acharya, S. Dhakal, A. Bhattarai, and N. Bhattarai, “PID speed control
of dc motor using meta-heuristic algorithms,” Int J Pow Elec & Dri Syst
ISSN, vol. 2088, no. 8694, pp. 86–94. 47

[204] H. Alhakbani, “Handling class imbalance using swarm intelligence techniques,
hybrid data and algorithmic level solutions,” Ph.D. dissertation, Goldsmiths,
University of London, London, United Kingdom, 2018. 47

[205] H. A. Alhakbani and M. M. al Rifaie, “Optimising svm to classify imbalanced
data using dispersive flies optimisation,” in 2017 Federated Conference on
Computer Science and Information Systems (FedCSIS). IEEE, 2017, pp.
399–402. 47, 55

[206] H. Oroojeni, M. M. al-Rifaie, and M. A. Nicolaou, “Deep neuroevolution:
Training deep neural networks for false alarm detection in intensive care
units,” in European Association for Signal Processing (EUSIPCO) 2018.
IEEE, 2018, pp. 1157–1161. 47

[207] M. M. al-Rifaie, A. Ursyn, R. Zimmer, and M. A. J. Javid, “On symmetry,
aesthetics and quantifying symmetrical complexity,” in International Con-
ference on Evolutionary and Biologically Inspired Music and Art. Springer,
2017, pp. 17–32. 47

[208] P. Aparajeya, F. F. Leymarie, and M. M. al-Rifaie, “Swarm-based identifi-
cation of animation key points from 2d-medialness maps,” in Computational
Intelligence in Music, Sound, Art and Design, A. Ekárt, A. Liapis, and M. L.
Castro Pena, Eds. Cham: Springer International Publishing, 2019, pp. 69–
83. 47

[209] M. M. al-Rifaie and M. Cavazza, “Beer organoleptic optimisation: Utilising
swarm intelligence and evolutionary computation methods,” in Proceedings of
the 2020 Genetic and Evolutionary Computation Conference Companion, ser.
GECCO ’20. New York, NY, USA: Association for Computing Machinery,
2020, pp. 255–256. 47

[210] M. M. al-Rifaie and M. Cavazza, “Beer Organoleptic Optimisation: Utilising
Swarm Intelligence and Evolutionary Computation Methods,” arXiv e-prints,
p. arXiv:2004.03438, Apr. 2020. 47

[211] M. M. al-Rifaie, F. F. Leymarie, W. Latham, and M. Bishop, “Swarmic
autopoiesis and computational creativity,” Connection Science, pp. 1–19,
2017. [Online]. Available: http://dx.doi.org/10.1080/09540091.2016.1274960
47

115

http://dx.doi.org/10.1080/09540091.2016.1274960

[212] M. M. al-Rifaie, “Perceived simplicity and complexity in nature,” in AISB
2017: Computational Architectures for Animal Cognition, University of Bath,
Bath, U.K., 2017, pp. 299–305. 47

[213] M. M. al-Rifaie, “Investigating knowledge-based exploration-exploitation bal-
ance in a minimalist swarm optimiser,” in 2021 IEEE Congress on Evolution-
ary Computation (CEC), 2021, pp. 2273–2280. 47

[214] M. M. al-Rifaie, “Exploration and exploitation zones in a minimalist
swarm optimiser,” Entropy, vol. 23, no. 8, 2021. [Online]. Available:
https://www.mdpi.com/1099-4300/23/8/977 47

[215] M. M. al Rifaie and M. Cavazza, “Beer organoleptic optimisation: Utilising
swarm intelligence and evolutionary computation methods,” arXiv preprint
arXiv:2004.03438, 2020. 49

[216] S. Fong, R. Wong, and A. V. Vasilakos, “Accelerated pso swarm search feature
selection for data stream mining big data,” IEEE transactions on services
computing, vol. 9, no. 1, pp. 33–45, 2016. 50

[217] S. Cheng, Q. Zhang, and Q. Qin, “Big data analytics with swarm intelli-
gence,” Industrial Management & Data Systems, vol. 116, no. 4, pp. 646–666,
2016. 50

[218] M. H. Ryalat, D. Emmens, M. Hulse, D. Bell, Z. Al-Rahamneh, S. Laycock,
and M. Fisher, “Evaluation of particle swarm optimisation for medical image
segmentation,” in International Conference on Systems Science. Springer,
2016, pp. 61–72. 50

[219] M. M. al Rifaie, A. Aber, R. Sayers, E. Choke, and M. Bown, “Deploying
swarm intelligence in medical imaging,” in Bioinformatics and Biomedicine
(BIBM), 2014 IEEE International Conference on. IEEE, 2014, pp. 14–21.
50

[220] G. P. Rangaiah, Multi-objective optimization: techniques and applications in
chemical engineering. World Scientific, 2016, vol. 5. 50

[221] R. V. Devi, S. S. Sathya, and M. S. Coumar, “Evolutionary algorithms for de
novo drug design–a survey,” Applied Soft Computing, vol. 27, pp. 543–552,
2015. 50

[222] N. K. Pareek and V. Patidar, “Medical image protection using genetic algo-
rithm operations,” Soft Computing, vol. 20, no. 2, pp. 763–772, 2016. 50

[223] P. Ghamisi, M. S. Couceiro, F. M. Martins, and J. A. Benediktsson,
“Multilevel image segmentation based on fractional-order darwinian particle
swarm optimization,” IEEE Transactions on Geoscience and Remote sensing,
vol. 52, no. 5, pp. 2382–2394, 2014. 50

[224] B. Bošković and J. Brest, “Genetic algorithm with advanced mechanisms
applied to the protein structure prediction in a hydrophobic-polar model and
cubic lattice,” Applied Soft Computing, vol. 45, pp. 61–70, 2016. 51

116

https://www.mdpi.com/1099-4300/23/8/977

[225] F. L. Custódio, H. J. Barbosa, and L. E. Dardenne, “A multiple minima
genetic algorithm for protein structure prediction,” Applied Soft Computing,
vol. 15, pp. 88–99, 2014. 51

[226] R. Shukla, D. Ray, K. Sarkar, M. Kumar Dixit, and S. Prasad Bhattacharyya,
“Flying onto global minima on potential energy surfaces: A swarm intelli-
gence guided route to molecular electronic structure,” International Journal
of Quantum Chemistry, vol. 117, no. 5, 2017. 51

[227] L. B. Vilhelmsen and B. Hammer, “A genetic algorithm for first principles
global structure optimization of supported nano structures,” The Journal of
chemical physics, vol. 141, no. 4, p. 044711, 2014. 51

[228] J. Lee, S. Hong, and J.-H. Lee, “An efficient prediction for heavy rain from
big weather data using genetic algorithm,” in Proceedings of the 8th Interna-
tional Conference on Ubiquitous Information Management and Communica-
tion. ACM, 2014, p. 25. 51

[229] E. Asadi, M. G. da Silva, C. H. Antunes, L. Dias, and L. Glicksman, “Multi-
objective optimization for building retrofit: A model using genetic algorithm
and artificial neural network and an application,” Energy and Buildings,
vol. 81, pp. 444–456, 2014. 51

[230] T. Nguyen, K. Ghabraie, and T. Tran-Cong, “Applying bi-directional evolu-
tionary structural optimisation method for tunnel reinforcement design con-
sidering nonlinear material behaviour,” Computers and Geotechnics, vol. 55,
pp. 57–66, 2014. 51

[231] M. Salucci, L. Poli, N. Anselmi, and A. Massa, “Multifrequency particle
swarm optimization for enhanced multiresolution gpr microwave imaging,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 3, pp.
1305–1317, 2017. 51

[232] V. A. Barbosa, R. R. Ribeiro, A. R. Feitosa, V. L. Silva, A. D. Rocha,
R. C. Freitas, R. E. Souza, and W. P. Santos, “Reconstruction of electrical
impedance tomography using fish school search, non-blind search, and genetic
algorithm,” International Journal of Swarm Intelligence Research (IJSIR),
vol. 8, no. 2, pp. 17–33, 2017. 52

[233] H. Paasche and J. Tronicke, “Nonlinear joint inversion of tomographic data
using swarm intelligence,” Geophysics, vol. 79, no. 4, pp. R133–R149, 2014.
52

[234] L. Bayındır, “A review of swarm robotics tasks,” Neurocomputing, vol. 172,
pp. 292–321, 2016. 52

[235] P. A. Vargas, E. A. Di Paolo, I. Harvey, and P. Husbands, The horizons of
evolutionary robotics. MIT Press, 2014. 52

[236] J. Na, K. S. Kshetrimayum, U. Lee, and C. Han, “Multi-objective optimiza-
tion of microchannel reactor for fischer-tropsch synthesis using computational
fluid dynamics and genetic algorithm,” Chemical Engineering Journal, vol.
313, pp. 1521–1534, 2017. 52

117

[237] H. Yu, G. Janiga, and D. Thévenin, “Computational fluid dynamics-based
design optimization method for archimedes screw blood pumps,” Artificial
organs, vol. 40, no. 4, pp. 341–352, 2016. 52

[238] R. Das, “Parameter estimation of a space radiator using differential evo-
lution algorithm,” in Contemporary Computing (IC3), 2016 Ninth Interna-
tional Conference on. IEEE, 2016, pp. 1–6. 52

[239] C. Iacopino, P. Palmer, N. Policella, A. Donati, and A. Brewer, “How ants
can manage your satellites,” Acta Futura, vol. 9, pp. 57–70, 2014. 52

[240] X. Liu, H. An, L. Wang, and X. Jia, “An integrated approach to optimize
moving average rules in the eua futures market based on particle swarm
optimization and genetic algorithms,” Applied Energy, vol. 185, pp. 1778–
1787, 2017. 52

[241] A. Ponsich, A. L. Jaimes, and C. A. C. Coello, “A survey on multiobjective
evolutionary algorithms for the solution of the portfolio optimization prob-
lem and other finance and economics applications,” IEEE Transactions on
Evolutionary Computation, vol. 17, no. 3, pp. 321–344, 2013. 53

[242] C. Aranha, R. Tanabe, R. Chassagne, and A. Fukunaga, “Optimization of
oil reservoir models using tuned evolutionary algorithms and adaptive differ-
ential evolution,” in Evolutionary Computation (CEC), 2015 IEEE Congress
on. IEEE, 2015, pp. 877–884. 53

[243] E. Yasari, M. R. Pishvaie, F. Khorasheh, K. Salahshoor, and R. Kharrat,
“Application of multi-criterion robust optimization in water-flooding of oil
reservoir,” Journal of Petroleum Science and Engineering, vol. 109, pp. 1–11,
2013. 53

[244] N. Delgarm, B. Sajadi, F. Kowsary, and S. Delgarm, “Multi-objective opti-
mization of the building energy performance: A simulation-based approach
by means of particle swarm optimization (pso),” Applied Energy, vol. 170,
pp. 293–303, 2016. 53

[245] Q. Kang, M. Zhou, J. An, and Q. Wu, “Swarm intelligence approaches to
optimal power flow problem with distributed generator failures in power net-
works,” IEEE Transactions on Automation Science and Engineering, vol. 10,
no. 2, pp. 343–353, 2013. 53

[246] G. Kanagaraj, S. Ponnambalam, N. Jawahar, and J. M. Nilakantan, “An
effective hybrid cuckoo search and genetic algorithm for constrained engi-
neering design optimization,” Engineering Optimization, vol. 46, no. 10, pp.
1331–1351, 2014. 53

[247] H. Garg, “Solving structural engineering design optimization problems using
an artificial bee colony algorithm,” J Ind Manag Optim, vol. 10, no. 3, pp.
777–794, 2014. 53

[248] I. Soesanti and R. Syahputra, “Batik production process optimization using
particle swarm optimization method,” Journal of Theoretical and Applied
Information Technology, vol. 86, no. 2, p. 272, 2016. 53

118

[249] A. R. Yildiz, “A new hybrid artificial bee colony algorithm for robust optimal
design and manufacturing,” Applied Soft Computing, vol. 13, no. 5, pp. 2906–
2912, 2013. 53

[250] D. Tang, M. Dai, M. A. Salido, and A. Giret, “Energy-efficient dynamic
scheduling for a flexible flow shop using an improved particle swarm opti-
mization,” Computers in Industry, vol. 81, pp. 82–95, 2016. 54

[251] R. Zhang and R. Chiong, “Solving the energy-efficient job shop schedul-
ing problem: a multi-objective genetic algorithm with enhanced local search
for minimizing the total weighted tardiness and total energy consumption,”
Journal of Cleaner Production, vol. 112, pp. 3361–3375, 2016. 54

[252] B. Yao, B. Yu, P. Hu, J. Gao, and M. Zhang, “An improved particle swarm
optimization for carton heterogeneous vehicle routing problem with a col-
lection depot,” Annals of Operations Research, vol. 242, no. 2, pp. 303–320,
2016. 54

[253] S. Karakatič and V. Podgorelec, “A survey of genetic algorithms for solving
multi depot vehicle routing problem,” Applied Soft Computing, vol. 27, pp.
519–532, 2015. 54

[254] Z. Liu, B. Zhang, Q. Feng, Z. Chen, C. Lin, and Y. Ding, “Focusing light
through strongly scattering media by a controlling binary amplitude opti-
mization using genetic algorithm,” in Fifth International Conference on Op-
tical and Photonics Engineering. International Society for Optics and Pho-
tonics, 2017, pp. 1 044 927–1 044 927. 54

[255] C.-T. Hsieh, H.-T. Yau, C.-C. Wang, and Y.-S. Hsieh, “Particle swarm opti-
mization used with proportional–derivative control to analyze nonlinear be-
havior in the atomic force microscope,” Advances in Mechanical Engineering,
vol. 8, no. 9, p. 1687814016667271, 2016. 54

[256] Q. Wu, C. Cole, and T. McSweeney, “Applications of particle swarm opti-
mization in the railway domain,” International Journal of Rail Transporta-
tion, vol. 4, no. 3, pp. 167–190, 2016. 54

[257] W. ShangGuan, X.-H. Yan, B.-G. Cai, and J. Wang, “Multiobjective opti-
mization for train speed trajectory in ctcs high-speed railway with hybrid
evolutionary algorithm,” IEEE Transactions on Intelligent Transportation
Systems, vol. 16, no. 4, pp. 2215–2225, 2015. 54

[258] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learn-
ing,” in International Conference on Machine Learning, 2016, pp. 1928–1937.
55

[259] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and J. Clune,
“Deep neuroevolution: Genetic algorithms are a competitive alternative for
training deep neural networks for reinforcement learning,” arXiv preprint
arXiv:1712.06567, 2017. 55, 59

119

[260] H. Alhakbani and M. M. al Rifaie, “Feature selection using stochastic dif-
fusion search,” in Proceedings of the Genetic and Evolutionary Computation
Conference. ACM, 2017, pp. 385–392. 55

[261] H. A. Alhakbani and M. M. Al-Rifaie, “Exploring feature-level duplications
on imbalanced data using stochastic diffusion search,” inMulti-Agent Systems
and Agreement Technologies. Springer, 2016, pp. 305–313. 56

[262] H. A. Alhakbani and M. M. al Rifaie, “A swarm intelligence approach in
undersampling majority class,” in International Conference on Swarm Intel-
ligence. Springer, 2016, pp. 225–232. 56

[263] M. M. Al-Rifaie and H. A. Alhakbani, “Handling class imbalance in direct
marketing dataset using a hybrid data and algorithmic level solutions,” in
SAI Computing Conference (SAI), 2016. IEEE, 2016, pp. 446–451. 56

[264] N. Kayarvizhy, S. Kanmani, and R. Uthariaraj, “Ann models optimized using
swarm intelligence algorithms,” WSEAS Transactions on Computers, vol. 13,
no. 45, pp. 501–519, 2014. 56

[265] I. Rechenberg, “Evolutionsstrategie: Optimierung technischer systeme nach
prinzipien der biologischen evolution,” Ph.D. dissertation, Technical Univer-
sity of Berlin, Department of Process Engineering, 1971. 57

[266] H.-P. Schwefel, Numerische Optimierung von Computer-Modellen mittels
der Evolutionsstrategie: mit einer vergleichenden Einführung in die Hill-
Climbing-und Zufallsstrategie. Birkhäuser, 1977. 57

[267] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, “Evolution strate-
gies as a scalable alternative to reinforcement learning,” arXiv preprint
arXiv:1703.03864, 2017. 57, 58, 59

[268] N. Hansen and A. Ostermeier, “Completely derandomized self-adaptation in
evolution strategies,” Evolutionary computation, vol. 9, no. 2, pp. 159–195,
2001. 57

[269] D. Wierstra, T. Schaul, J. Peters, and J. Schmidhuber, “Natural evolution
strategies,” in Evolutionary Computation, 2008. CEC 2008.(IEEE World
Congress on Computational Intelligence). IEEE Congress on. IEEE, 2008,
pp. 3381–3387. 57

[270] D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters, and J. Schmidhu-
ber, “Natural evolution strategies.” Journal of Machine Learning Research,
vol. 15, no. 1, pp. 949–980, 2014. 57

[271] S. Yi, D. Wierstra, T. Schaul, and J. Schmidhuber, “Stochastic search us-
ing the natural gradient,” in Proceedings of the 26th Annual International
Conference on Machine Learning. ACM, 2009, pp. 1161–1168. 57

[272] Y. Sun, D. Wierstra, T. Schaul, and J. Schmidhuber, “Efficient natural evo-
lution strategies,” in Proceedings of the 11th Annual conference on Genetic
and evolutionary computation. ACM, 2009, pp. 539–546. 57

120

[273] T. Glasmachers, T. Schaul, and J. Schmidhuber, “A natural evolution strat-
egy for multi-objective optimization,” in International Conference on Parallel
Problem Solving from Nature. Springer, 2010, pp. 627–636. 57

[274] T. Glasmachers, T. Schaul, S. Yi, D. Wierstra, and J. Schmidhuber, “Expo-
nential natural evolution strategies,” in Proceedings of the 12th annual con-
ference on Genetic and evolutionary computation. ACM, 2010, pp. 393–400.
57

[275] T. Schaul, T. Glasmachers, and J. Schmidhuber, “High dimensions and heavy
tails for natural evolution strategies,” in Proceedings of the 13th annual con-
ference on Genetic and evolutionary computation. ACM, 2011, pp. 845–852.
57

[276] F. Sehnke, C. Osendorfer, T. Rückstieß, A. Graves, J. Peters, and J. Schmid-
huber, “Parameter-exploring policy gradients,” Neural Networks, vol. 23,
no. 4, pp. 551–559, 2010. 57, 58

[277] Y. Nesterov and V. Spokoiny, “Random gradient-free minimization of convex
functions,” Université catholique de Louvain, Center for Operations Research
and Econometrics (CORE), Tech. Rep., 2011. 58

[278] J. C. Spall, “Simultaneous perturbation stochastic approximation,” Intro-
duction to Stochastic Search and Optimization: Estimation, Simulation, and
Control, pp. 176–207, 2003. 58

[279] S. Li, X. Wu, and M. Tan, “Gene selection using hybrid particle swarm
optimization and genetic algorithm,” Soft Computing, vol. 12, no. 11, pp.
1039–1048, 2008. 58

[280] F. Ahmad, N. A. M. Isa, Z. Hussain, and M. K. Osman, “Intelligent medical
disease diagnosis using improved hybrid genetic algorithm-multilayer percep-
tron network,” Journal of medical systems, vol. 37, no. 2, p. 9934, 2013. 58

[281] X. Liu and H. Fu, “Pso-based support vector machine with cuckoo search
technique for clinical disease diagnoses,” The Scientific World Journal, vol.
2014, 2014. 58

[282] I. Mandal, “Svm-pso based feature selection for improving medical diagnosis
reliability using machine learning ensembles 1,” 2012. 58

[283] H. Jiang, F. Tang, and X. Zhang, “Liver cancer identification based on pso-
svm model,” in Control Automation Robotics & Vision (ICARCV), 2010 11th
International Conference on. IEEE, 2010, pp. 2519–2523. 58

[284] Q. Shen, W.-M. Shi, W. Kong, and B.-X. Ye, “A combination of modified
particle swarm optimization algorithm and support vector machine for gene
selection and tumor classification,” Talanta, vol. 71, no. 4, pp. 1679–1683,
2007. 58

[285] H. Zhang, Q.-Y. Chen, M.-L. Xiang, C.-Y. Ma, Q. Huang, and S.-Y. Yang,
“In silico prediction of mitochondrial toxicity by using ga-cg-svm approach,”
Toxicology in Vitro, vol. 23, no. 1, pp. 134–140, 2009. 58

121

[286] L. Li, W. Jiang, X. Li, K. L. Moser, Z. Guo, L. Du, Q. Wang, E. J. Topol,
Q. Wang, and S. Rao, “A robust hybrid between genetic algorithm and
support vector machine for extracting an optimal feature gene subset,” Ge-
nomics, vol. 85, no. 1, pp. 16–23, 2005. 58

[287] Y. Sun, G. G. Yen, and Z. Yi, “Evolving unsupervised deep neural networks
for learning meaningful representations,” IEEE Transactions on Evolutionary
Computation, vol. 23, no. 1, pp. 89–103, 2018. 58, 96

[288] X. Yao, “Evolving artificial neural networks,” Proceedings of the IEEE,
vol. 87, no. 9, pp. 1423–1447, 1999. 58

[289] D. Floreano, P. Dürr, and C. Mattiussi, “Neuroevolution: from architectures
to learning,” Evolutionary Intelligence, vol. 1, no. 1, pp. 47–62, 2008. 58

[290] J. Lehman and R. Miikkulainen, “Neuroevolution,” Scholarpedia, vol. 8, no. 6,
p. 30977, 2013. 58

[291] A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret, “Robots that can adapt
like animals,” Nature, vol. 521, no. 7553, p. 503, 2015. 58

[292] J. Bongard, V. Zykov, and H. Lipson, “Resilient machines through continuous
self-modeling,” Science, vol. 314, no. 5802, pp. 1118–1121, 2006. 58

[293] S. Nolfi and D. Floreano, “Evolutionary robotics,” 2000. 58

[294] C. G. Langton et al., Artificial life. Addison-Wesley Publishing Company
Redwood City, CA, 1989. 58

[295] M. A. Bedau, J. S. McCaskill, N. H. Packard, S. Rasmussen, C. Adami, D. G.
Green, T. Ikegami, K. Kaneko, and T. S. Ray, “Open problems in artificial
life,” Artificial life, vol. 6, no. 4, pp. 363–376, 2000. 58

[296] J. Lehman, J. Chen, J. Clune, and K. O. Stanley, “Safe mutations for deep
and recurrent neural networks through output gradients,” arXiv preprint
arXiv:1712.06563, 2017. 59

[297] K. O. Stanley and R. Miikkulainen, “A taxonomy for artificial embryogeny,”
Artificial Life, vol. 9, no. 2, pp. 93–130, 2003. 59

[298] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014. 59

[299] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust re-
gion policy optimization,” in International Conference on Machine Learning,
2015, pp. 1889–1897. 59

[300] C. H. Antink, H. Gao, C. Brüser, and S. Leonhardt, “Beat-to-beat heart
rate estimation fusing multimodal video and sensor data,” Biomedical optics
express, vol. 6, no. 8, pp. 2895–2907, 2015. 65

[301] C. Brüser, S. Winter, and S. Leonhardt, “Robust inter-beat interval estima-
tion in cardiac vibration signals,” Physiological measurement, vol. 34, no. 2,
p. 123, 2013. 65

122

[302] F. Plesinger, P. Klimes, J. Halamek, and P. Jurak, “False alarms in intensive
care unit monitors: detection of life-threatening arrhythmias using elemen-
tary algebra, descriptive statistics and fuzzy logic,” in Computing in Car-
diology Conference (CinC), 2015. IEEE, 2015, pp. 281–284. 74, 76, 92,
95

[303] M. Gori and A. Tesi, “On the problem of local minima in backpropagation,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14,
no. 1, pp. 76–86, 1992. 75

[304] Y. H. Zweiri, J. F. Whidborne, and L. D. Seneviratne, “A three-term back-
propagation algorithm,” Neurocomputing, vol. 50, pp. 305–318, 2003. 75

[305] C. Shang, A. Palmer, J. Sun, K.-S. Chen, J. Lu, and J. Bi, “Vigan: Missing
view imputation with generative adversarial networks,” in 2017 IEEE Inter-
national Conference on Big Data (Big Data). IEEE, 2017, pp. 766–775.
78

[306] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, “Stacked
denoising autoencoders: Learning useful representations in a deep network
with a local denoising criterion,” Journal of machine learning research,
vol. 11, no. Dec, pp. 3371–3408, 2010. 78

[307] Z. Yi, H. Zhang, P. Tan, and M. Gong, “Dualgan: Unsupervised dual learning
for image-to-image translation,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2849–2857. 80

[308] T. Kim, M. Cha, H. Kim, J. K. Lee, and J. Kim, “Learning to discover cross-
domain relations with generative adversarial networks,” in Proceedings of the
34th International Conference on Machine Learning-Volume 70. JMLR. org,
2017, pp. 1857–1865. 81

[309] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo, “Stargan: Uni-
fied generative adversarial networks for multi-domain image-to-image trans-
lation,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 8789–8797. 88

[310] R. David, J. Duke, A. Jain, V. J. Reddi, N. Jeffries, J. Li, N. Kreeger,
I. Nappier, M. Natraj, S. Regev et al., “Tensorflow lite micro: Embedded
machine learning on tinyml systems,” arXiv preprint arXiv:2010.08678, 2020.
96

[311] P. Warden and D. Situnayake, Tinyml: Machine learning with tensorflow lite
on arduino and ultra-low-power microcontrollers. O’Reilly Media, 2019. 96

[312] V. Gonzalez-Huitron, J. A. León-Borges, A. Rodriguez-Mata, L. E. Amabilis-
Sosa, B. Ramírez-Pereda, and H. Rodriguez, “Disease detection in tomato
leaves via cnn with lightweight architectures implemented in raspberry pi 4,”
Computers and Electronics in Agriculture, vol. 181, p. 105951, 2021. 96

[313] S. Cass, “Nvidia makes it easy to embed ai: The jetson nano packs a lot
of machine-learning power into diy projects-[hands on],” IEEE Spectrum,
vol. 57, no. 7, pp. 14–16, 2020. 96

123

	Acknowledgements
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	Motivation
	Research Questions
	Scope and Objectives
	Contributions
	Structure of Thesis

	2 Machine Learning
	Introduction
	Neural Networks
	Backpropagation
	Deep learning
	Generative Models
	Autoregressive Models
	Variational Autoencoders
	Reversible Flows

	Generative Adversarial Networks
	Architecture-Variant GANs
	Loss-Variant GANs

	Real-world Applications
	Related Work on Machine Learning for ECGs

	Chapter Summary

	3 Swarm Intelligence for Machine Learning
	Introduction
	Population Based Algorithms
	Ant Colony Optimisation
	Particle Swarm Optimisation
	Differential Evolution Algorithm
	Genetic Algorithm
	Dispersive Flies Optimisation

	Real-world applications
	Gradient-free Algorithms
	Chapter Summary

	4 Deep Neuroevolution for Bio-Signal Classification
	Introduction
	Motivation
	Dataset Description
	Feature Selection
	DFO Experiments and Results
	Model Configuration
	DFO Configuration

	Chapter Summary

	5 Signal Imputation with Adversarial Networks
	Introduction
	Motivation
	Methodology - Two-Signal Imputation
	Multi-modal DAE Loss
	Adversarial Loss
	Cycle Consistency Loss
	Overall Loss

	Experiments and Results - Two-Signal Imputation
	Model Setup
	Model Performance

	Methodology - Five-Signal Imputation
	Adversarial Loss
	Domain Classification Loss
	Reconstruction Loss
	Auto-encoder Loss
	Overall Loss

	Experiments and Results - Five-Signal Imputation
	Model Setup
	Model Performance
	Classification Performance

	Conclusion
	Chapter Summary

	6 Conclusions and Further Directions
	Thesis Summary and Contributions
	Future Directions

	Appendices
	A List of Publications
	Bibliography

