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Abstract

Technological advances in data collection enable scientists to suggest novel ap-
proaches, such as Machine Learning algorithms, to process and make sense of this
information. However, during this process of collection, data loss and damage can
occur for reasons such as faulty device sensors or miscommunication. In the context
of time-series data such as multi-channel bio-signals, there is a possibility of losing
a whole channel. In such cases, existing research suggests imputing the missing
parts when the majority of data is available.

One way of understanding and classifying complex signals is by using deep neural
networks. The hyper-parameters of such models have been optimised using the
process of backpropagation. Over time, improvements have been suggested to en-
hance this algorithm. However, an essential drawback of the backpropagation can
be the sensitivity to noisy data.

This thesis proposes two novel approaches to address the missing data challenge
and backpropagation drawbacks: First, suggesting a gradient-free model in order to
discover the optimal hyper-parameters of a deep neural network. The complexity of
deep networks and high-dimensional optimisation parameters presents challenges
to find a suitable network structure and hyper-parameter configuration. This thesis
proposes the use of a minimalist swarm optimiser, Dispersive Flies Optimisation
(DFO), to enable the selected model to achieve better results in comparison with
the traditional backpropagation algorithm in certain conditions such as limited
number of training samples. The DFO algorithm offers a robust search process
for finding and determining the hyper-parameter configurations. Second, imputing
whole missing bio-signals within a multi-channel sample. This approach comprises
two experiments, namely the two-signal and five-signal imputation models. The
first experiment attempts to implement and evaluate the performance of a model
mapping bio-signals from A to B and vice versa. Conceptually, this is an extension
to transfer learning using Cycle Generative Adversarial Networks (CycleGANS).
The second experiment attempts to suggest a mechanism imputing missing signals

in instances where multiple data channels are available for each sample. The capa-
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bility to map to a target signal through multiple source domains achieves a more
accurate estimate for the target domain.

The results of the experiments performed indicate that in certain circumstances,
such as having a limited number of samples, finding the optimal hyper-parameters
of a neural network using gradient-free algorithms outperforms traditional gradient-
based algorithms, leading to more accurate classification results. In addition, Gen-
erative Adversarial Networks could be used to impute the missing data channels
in multi-channel bio-signals, and the generated data used for further analysis and

classification tasks.
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1. Introduction

If there’s one thing that people love more than chocolate,
it’s science claiming that chocolate is good for you.

Leo Benedictus

According to the WHO, cardiovascular disease (CVD) is the number one cause
of death globally, with approximately 18 million deaths recorded annually [4]. As
such, the use of electrocardiogram (ECG) monitoring devices play a vital role in
diagnosis and control of CVDs. While technology has greatly aided the evolution of
these devices, there remain unexplored research opportunities for Machine Learn-
ing to further improve the efficacy of these devices. The accurate detection of false
alarms in ECG monitoring systems used in clinical settings, such as Intensive Care
Units (ICUs), is one area in which ML offers potential to providing obvious benefits
to both patients and the healthcare system. To clarify, false alarms occurring in
ECG monitoring devices may result in a range of negative outcomes, such as noise
disturbance, disruption of continuity of care, lack of sleep, all of which may impact
patients’ stress levels, and, more generally, compromise the quality of recuperative
care afforded in ICU settings. It is important to note that only an estimated 2 -

9% of the ECG monitoring device alarms are considered critical.

This study presents a novel architecture and optimisation approach that im-
putes missing bio-signals within a sample using Generative Adversarial Networks
(GANSs) and suggests an alternative for neural network hyper-parameter optimisa-
tion. In this research, we deal mainly with arrhythmias, abnormalities in the heart
function which can occur in healthy and unhealthy subjects. The ICU is equipped

with ECG monitoring devices capable of detecting dangerous arrhythmias, namely
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1.1 Motivation

asystole, extreme bradycardia, extreme tachycardia, ventricular tachycardia and
ventricular flutter/fibrillation. Arrhythmias are potentially fatal and in line with
AAMI guidelines, appropriate responses should be taken within 10 seconds of the
event’s commencement [5]. Triggering of the alarm when an arrhythmia occurs
could improve the chance of saving lives. Misconfigurations, defective wiring, staff
manipulation, and patient manipulation or movement may increase the false alarm
rate to as much as 86%. Clinically, 6% to 40% of the ICU alarms proved to be lower
priority incidents which did not require immediate responses [6]. False alarms stim-
ulate mental discomfort in patients [7] and may desensitise the reactions of clinical
staff, causing slower responses to triggered alarms [8]. True alarms which are rated
with high priority and require an urgent response make up only 2 - 9% of all ICU
alarms [9]; therefore, the detection and elimination of false alarms are important

areas for research.

1.1 Motivation

In the case of faulty ECG devices or patient manipulation, there is the possibility
of losing parts or the whole signal. The challenge of deciding to remove incomplete
samples or impute missing signals while a small number of samples are available
encouraged us to explore the possibility of imputing missing signals within a sample
through each of the two-signal and the five-signal imputation approaches. The
two-signal imputation approach is practical when only two signals are available for
each sample; otherwise, the five-signal imputation approach should be used. This
benefits from a single generator and discriminator model.

In the two-signal imputation approach, we use the CycleGAN to learn the cross-
domain relations between ECG signals while also using paired data in a denoising
auto-encoder (DAE) to learn between-view correspondences and denoise the sig-
nals generated by CycleGAN in order to improve their quality by learning a shared
representation from pairs (z,y). More specifically, the CycleGAN estimates and
maps the given lead /[ using lead V' and vice versa by concentrating on domain
translation. The DAE extracts features from each view in belonging primary paral-
lel layers. Subsequently, the features are concatenated and fed to a stack of layers

to reduce the dimensions and form a shared representation tensor. Lastly, each
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1.2 Research Questions

view is gathered through separate output layers. The reconstruction functions and
internal representations of each view provide the basic structure of the multi-view
data and are optimised jointly during the training process. On the other hand, the
five-signal approach uses the desired target domain label [ to map a physiological
signal from one domain to the target domain.

Additionally, the hyper-parameter optimisation method improves the classification
performance and the generalisation capabilities in pattern recognition and regres-
sion tasks. The deep neural network structure, including the number of neurons,
layers and hyper-parameter configuration plays a significant role in the training
phase. Therefore, several network structures and hyper-parameter configurations
are exercised to train a network. These experiments may result in the derivation
of a set of models that generally have different performances on pattern recog-
nition tasks. It is relatively challenging to find a suitable network structure and
hyper-parameter configuration due to the complexity of deep networks and high-
dimensional optimisation parameters.

Moreover, the network classifier used to predict results on a high dimensional and
large-scale dataset has limitations, such as weak generalisation ability and instabil-
ity in the training phase. To answer the above issues and further enhance the perfor-
mance of deep networks in regression and pattern recognition tasks, the suggested
approach mainly aims to construct an efficient model with its hyper-parameters.
This approach offers a robust search process to determine the hyper-parameter

configuration by using Dispersive Flies Optimisation (DFO).

1.2 Research Questions

Q1: How can the Swarm Intelligence and Evolutionary Algorithms help improve
classification or regression tasks?

Q2: Would hybridisation of Swarm Intelligence and the Neural Networks tech-
niques help overcome some of the drawbacks of using these approaches individu-
ally?

Q3: How useful are Generative Adversarial Networks (GANs) to impute missing

signals? Furthermore, would the imputed signal improve the classification score?

13



1.3 Scope and Objectives

1.3 Scope and Objectives

This study builds upon foundations of machine learning and population-based
stochastic algorithms, where a dataset, including bio-signals used and multiple
deep-neural networks implemented, is evaluated for the classification task. Since
this dataset includes multiple channels of data for each sample and suffers from

random missing signals, two approaches have been taken:

e Approachl: Select the samples that contain the same leads and do not have

missing signals.

e Approach2: Attempt to include as many samples as possible and aim to

impute the missing signals.

By taking Approachl, a deep neural network is implemented and trained us-
ing the traditional method (backpropagation) and accordingly evaluated. Subse-
quently, a novel architecture and optimisation approach is explored to find the
optimal hyper-parameters of the model using the Dispersive Flies Optimisation
(DFO) algorithm. The results have been gathered and a comparison established to
compare the performance of the hybrid model using DFO versus backpropagation

algorithm.

By taking Approach2, the model is implemented to impute the missing sig-
nals while using multi-channel bio-signal samples. This objective is achieved using
GANSs, which are analysed and explored. Two different setups to impute a signal
using two-signal and five-signal models have been implemented and the results re-
ported. Subsequently, the two methods used in Approachl to find the optimal
hyper-parameters were utilised to gather the Physionet score (and accuracy) as a

measurement.
The feature selection and engineering were not set as an objective for this re-

search since the primary focus is on hyper-parameter optimisation and missing data

imputation. We utilise the feature set suggested by [10].
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1.5 Structure of Thesis

1.4 Contributions

This thesis has made a number of contributions to the fields of computer science,
machine learning, and swarm intelligence. These contributions are listed below:
C1: A new approach is suggested to impute missing signals within five-signal sam-
ples.

C2: A new hybrid system is suggested to optimise neural network hyper-parameters.
C3: An update for the DFO mechanism is suggested, including dynamic distur-
bance threshold (A) and population update equation.

1.5 Structure of Thesis

The structure of this thesis is organised as follows:

Chapter 2: Machine Learning
In this chapter, we review relevant research and literature in the field of Machine
Learning. This chapter comprises two sections, namely Machine Learning and
Generative Adversarial Networks (GANs). The first section offers a brief history
of Machine Learning elements such as neural networks and their associated com-
ponents. It then discusses deep learning and relevant applications. The second
section provides an insight into GAN models and belonging loss functions and
their real-world implemented applications.

Chapter 3: Swarm Intelligence for Machine Learning
In this chapter, we review relevant research and literature in Swarm Intelligence
algorithms and their implementation in real-world applications as well as litera-
ture on Swarm Intelligence for Machine Learning. In addition, it offers a review
of the approaches which have led to hybrid swarm-intelligence-machine-learning
algorithms.

Chapter 4: Deep Neuroevolution for Bio-Signal Classification
This chapter explains our approach, data selection, feature selection, proposed
hybrid algorithm, and results, along with a discussion of the results obtained.

Chapter 5: Signal Imputation with Adversarial Networks
This chapter explains our approach to impute missing signals using samples with

two and multiple leads to collect the results using the hybrid algorithm proposed
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1.5 Structure of Thesis

@ Question 1

How can Swarm Intelligence and
Evolutionary Algorithms help
improve classification or
regression tasks?

Machine Learning Swarm Intelligence for

Literature Review Machine Learning

Literature Review

Experiments & Results |

@ Question 2

Would hybridisation of Swarm
Intelligence and the Neural

Hybrid Model

Chap.4 Deep Neuroevolution for
Bio-Signal Classification

Networks Techniques help
overcome some of the drawbacks of
using these approaches individually?

@ Question 3

Imputation

How usefull are Generative
Adversarial Networks (GANs) to
improve missing signals?
Furthermore, would the imputed
signal improve the classification
score?

Chap.5 Signal Imputation
with Adversarial Network

Conclusion

Figure 1.1: The structure of this thesis. C represents contributions.

in this chapter.

Chapter 6: Conclusion and Future Directions

This chapter summarises and synthesizes the thesis by discussing the results of the

experiments, exploring further applications of the developed models, highlighting

our contributions, and outlining directions for future research.
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2. Machine Learning

2.1 Introduction

This chapter is formed to review the initial components of deep learning [11] and
Generative Adversarial Networks (GANs), given that this thesis focuses on utilising
this knowledge while performing experiments. The first section includes discussion
of the concepts of neural networks and deep neural networks along with their
components and elements. It also addresses various applications for each type. The
second section addresses the components of GANs, Loss-Variant and Architecture

models and their applications.

2.2 Neural Networks

A mathematical model comprising a series of synapses or computational units is
called an Artificial Neural Network (ANN). Synapses are artificial neurons inter-
connected by uni-directional communication channels. A specific numerical weight
determines the relative influence of each synapse. Concerning connectivity, a com-
mon approach is to form an acyclic-directed graph by combining a layered feed-
forward neural network with full connectivity between adjacent layers. This model
is referred to as a Recurrent Neural Network (RNN) when it exhibits loops. An
RNN will be identical to a feed-forward network if we unroll it over time and each
time stamp comprises a layer [12, 13]. Between layers, to ensure equivalence, the
weights need to have a specified value. In such circumstances, the challenge is that

the size of the obtained deep neural network becomes immense due to its expansion.
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2.2 Neural Networks

This will add extra complexity to the training of the model. The research on RNNs
is currently a domain of interest as there have been remarkable improvements such
as research undertaken by [14], [15] and others.

Concerning ANNs, there are many studies on medical datasets. Some of the
examples of the usage of ANNs are: 1- [16] use of ANNs to diagnose a tumour by
applying Multi-Layer Perceptron (MLP) as a practical pattern recognition instru-
ment to differentiate between cancer patients and healthy ones. 2- [17] development
of the MLP method to assist in diagnosing patients with heart diseases based on
a decision support system. 3- [18] diagnosis of lower back pain and sciatica by
training an MLP network to recognise these conditions. The interested reader is

referred to [19] for more information.

Types of Parameters

The terms “parameters” and “weights” are often used interchangeably as they are
typically the central focus of many ANN researchers. However, while investigating
further to identify the components of a neural model, it is essential to define the
following terms:

Weight w;; - the value controls the level of conduction of a synaptic signal
between two pairs of neurons (i, j).

Connection ¢;; - It is possible to add or remove the synapses between neurons.
This can be achieved by the assignation of a zero or non-zero value to weight in a
fully connected network. This link between neurons is called a connection.

Neuron model n; - Neuron types change frequently, and those in the brain are
either inhibitory or excitatory [20], so when ANN weight polarity changes, this is
considered a change of neuron type. This type of change is not feasible in the brain,
but it is possible to transform a neural network model, with mixed synapses, into
a network that solely includes inhibitory or excitatory neurons [21]. The study
in [22] presents a variety of neuron types used in the nervous system such as Pyra-
midal Cells (PCs), Nest Basket Cells (NBCs), Small Basket Cells (SBCs), Large
Basket Cells (LBCs), Bi-Tufted Cells (BTCs) and Martinotti Cells (MCs). Each
of these types has specific properties; as such, it is possible to obtain interest-

ing results by combining several types. This combination can be implemented in
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2.2 Neural Networks

the ANN context, such as in the case of Long-Short Term Memory (LSTM), [23]
which is a typical network element used frequently and successfully in handwriting
recognition [24].

Network model s - Usually, in the design stage, the number of neurons and
layers have fixed parameters. However, these properties can also be optimised to
minimise error, for instance, by using evolutionary genetic algorithms to construct

the network [25].

Learning

The process of discovering model parameters using a data-driven mechanism is
called learning. The process of learning, the classification of learning algorithms,
and relevant learning trends have been described here. Machine Learning tech-
niques are used to minimise the workload for humans by substituting it with ma-
chine computations for specific tasks. With a suitable algorithm, it is possible to
trade off the manual effort of designing solutions with the machine’s memory and
computational powers.

Traditionally, programmers have been principally responsible for developing al-
gorithms, but the length and complexity of the code produced has not increased
in linear correlation with the growth of the model needed, which has caused prob-
lems due to scarcity of processing time and available resources. On the other
hand, a relatively complex formula is used by Machine Learning techniques with-
out the traditional constraints rendered by the size of the problem. This increases
the potential for Machine Learning to reduce software development limitations.
The domain-specific expert-based solutions are being replaced by a data-driven
approach due to fast-changing demands from the I'T industry. The domain-specific
models need extra design effort. The complexity of the problem is turned into val-
ues of neural network parameters, which are determined as a function of a training
set, thereby making direct programming redundant. Additionally, the training set
is precisely where the effort has shifted. Having rich training data and using proper
parameter tuning increases the quality of overall machine learning algorithms since
they are highly data-driven. The size of the training set has the most substantial

influence on output accuracy, although the quality of data also has a major impact
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2.2 Neural Networks

on the results. As a result, the increase in hardware performance, and the quality
of training sets and machine-learned solutions, are improving. Speech recogni-
tion using large-scale deep neural networks has become very successful [26] and
can exceed solutions programmed by human experts; for example, a deep-learning

model achieved higher accuracy than solutions based on complex features such as

SIFT [27].

Learning Algorithms

This section summarises three well-known learning algorithm approaches, including

supervised and unsupervised learning and reinforcement learning.

Supervised

Supervised algorithms use labelled data sets for training. This method aims to
generalise the relationship between the data and the labels to the unknown samples.
The cost function is specified concerning the desired output. The learning process
utilises a gradient descent-based optimisation method to minimise the cost function.
One of the most popular methods for this purpose is called the backpropagation
algorithm [28]. This algorithm is a generalised delta rule that applies to the model
a collection of limitations. For instance, activation function of the nodes has to
be uniform and differentiable. Other general supervised algorithms can also be
used. However, they may not primarily be designed to be applied to an ANN, for

instance, simulated annealing [29].

Unsupervised learning

The labelling of data is a laborious and time-consuming task carried out after data
has been collected for a specific purpose to serve as an input to the learning al-
gorithm. This is the reason why most available data are generally not labelled.
Clustering and hidden Markov models (HMMs) are included in unsupervised ap-
proaches. They have proven to be useful in neural networks, mainly when combined
with supervised learning, specifically in deep learning [30, 31, 32]. From a biological
plausibility perspective, unsupervised clustering occurs in the mammalian brain’s

primary visual cortex, making it possible to generate localised receptive fields by
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2.3 Backpropagation

using an unsupervised learning algorithm [33]. An equivalence between the expec-
tation maximisation algorithm (EM) and STDP is another type of connection to
biological models that applies under certain conditions[34]. The EM algorithm is a
statistical method, including separate specialised learning agents, discovering the

hidden relationships within complex input data.

Reinforcement

This learning approach is structured on the interactions between an agent and the
environment. The agent selects an activity from a probability distribution, which
produces a response from the environment that can be measured. The learning
aims to maximise the total reward function. An interesting result has been obtained
in [35], where applies these principles to ANNs. The input to the model is visible
to the screen and is supposed to learn to play several Atari2600 games. In the
same way that dopamine is used in the brain as a reward signal, providing hints to
synapses in reinforcement learning by saving the temporary weights, their changes

can also be seen as biologically plausible [36].

2.3 Backpropagation

The supervised learning multi-layer feed-forward neural network algorithm was
proposed by Rumelhart, Hinton and Williams [37]. The oldest and most popular
version of this type of algorithm is Backpropagation Neural Network (BPNN)([38].
The main aim of supervised training is frequently updating the network weights in
order to minimise discrepancies between the actual outputs of that network and
relevant labels. This method calculates the gradient of a loss function with respect
to all the weights in the network. In an attempt to minimise the loss function, the
weights are then updated by the optimisation method that this gradient feeds into.
The basic equation of a backpropagation Algorithm is:

oJ

Wi =Wy — U
t

(2.1)

where 7 is the learning rate and J and W represent loss function and model

parameters respectively.
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Components of Backpropagation Algorithm (BPA)

BPA uses the gradient descent learning rule to update model parameters. This
rule requires that parameters such as initial weights and biases, learning rate value
and the activation function are selected carefully. Without this this, slow net-
work convergence, a network error or even convergence failure may occur. These
shortcomings have led previous researchers to propose a range of variations in the

gradient descent BPNN algorithm in order to improve training efficiency [39].

e Activation Function: The activation function, or transfer function, is used
to transform the activation level of a unit (neuron) into an output signal.
This function is applied to the output nodes of each layer before it is fed to

the subsequent layer.

The activation function is used for two purposes. The first is to change the
unit into an active (near +1) one when the correct inputs are provided or an
inactive (near 0) one when the incorrect inputs are given. The second pre-
vents the NN from collapsing into a linear function by making the activation
non-linear. A few of the basic types of activation functions are the identity
function, the step function, and the sigmoidal function. As the input of these
functions changes, the output varies continuously but not linearly. On an-
other note, the sigmoid units are more similar to real neurons than linear or

threshold units.

e Learning rate coefficient ( 7 ): The learning rate coefficient determines
how to adjust the size of the weights at each iteration - the reason it influences
the convergence rate. Selecting a wrong coefficient may lead to a failure in
the convergence. For instance, if the learning rate is too fast or too slow, this

would damage the network convergence.

e Momentum Term ( « ): Adding momentum to the gradient equation can
enhance the convergence rate. This can be accomplished by adding a fraction
of the previous weights change to the current one. Rumelhart et al. [28]

introduced a commonly-used update rule, including this type of momentum
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term. The updating equation used by Rumelhart is defined as follows:

/ + a[AW]* (2.2)

t+1 _ 7Y

It is added to smooth out oscillation and increase convergence speed.

Proportional Factor (f):

The standard Backpropagation Algorithm (BP) usually utilises two-term pa-
rameters; Learning Rate o and Momentum Factor /3, but sometimes a third
term called Proportional Factor is also added to increase the convergence

speed, and to escape from local minima.

Cost Functions: The Backpropagation algorithm uses the Mean Squared
Error (MSE) cost function. There are some drawbacks to MSE that have
been observed, such as incorrect saturation and the tendency to be trapped
in the local minima, leading to slow convergence and poor performance. Also,
the squaring in MSE emphasises reducing the larger errors rather than the
smaller ones. To rectify this, research was conducted to find better cost
functions and as a result new ones were proposed such as the Bernoulli error
measure [40], New Modified cost function [40], Classification-Based (CB) cost

functions [41].

Backpropagation (BP) is a well-established neural network training algorithm as

it allows itself to learn and improve, thus achieving higher accuracy than other al-

gorithms [38], and it is well known for this reason. [42] worked on comparing genetic

and backpropagation algorithms through different problems such as Sin function,

Iris plant and Diabetes datasets and deduced that BPLA is faster than Genetic

Algorithms (GA) in terms of training speed as well as CPU time required. [43] has

proven that BPLA outperforms GA when experimenting on pattern recognition.

On the other hand, BP is used less frequently as it requires longer times to train

the network to achieve the best possible results. With larger datasets, BP suffers

from the local minima issue, yet some researchers like [44] suggested novel ideas

that would avoid the local minima problem in complex datasets by providing scope

to increase the speed of BPLA for this type of data.
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Figure 2.2: Schematic structure of CNNs.An insight in the Convoloutional Neural Net-
works [1].

2.4 Deep learning

In recent years, a significant development in NN research has been Deep Learning
(DL), A fast algorithm which can be used in deep belief networks, as suggested by
[45]. For each layer, this algorithm uses layer-wise unsupervised learning. Combin-
ing supervised with unsupervised learning produced significant results, which has
made DL an active field of research. Currently, there are many DL applications;
examples include speech recognition [46] and large-scale feature detectors such as
the Google experiment [47]. A review of [48] offers a cogent historical analysis
of the advances in the field of DL. The automatic development of features for the
network through the usage of deep learning ensures there are fewer limitations for
backpropagation as the random initialisation of the weights is no longer a depen-
dency for the results. Backpropagation usage in a multi-layered network is not
efficient and does not yield good results when there are more than 1-2 hidden lay-
ers; this is because local minima are highly likely to occur in this scenario. DL
techniques have significantly improved big data analysis [49, 50]. The fields of
social media, cyber-security, and medical informatics have yielded enormous data
troves [51], and which are freely available to the public. From these datasets, DL

can extract high-level features and then create hierarchical representations [1].

Convolutional Networks

Convolutional Networks[52], also known as Convolutional Neural Networks or CNNs,

are types of NNs which are optimal for the processing of grid-like data. These data
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are either one-dimensional, such as time series that take samples at regular inter-
vals or a two-dimensional grid of pixels such as image data. CNNs use convolution,
a type of linear operation [53, 1], which takes two functions with real value argu-
ments: s(t) = (z+w)(t) where w is a function of valid probability density or kernel
and x refers to an input. s is the output which is referred to as a featuremap. In
machine learning, operations usually deal with multi-dimensional array parameters
(tensors) as input and kernel. For instance, if we use convolutions over a 2-D im-
age, considering input I and hidden layers kernel K, then we can define convolution

following the equation and schematic structure of CCNs presented in figure 2.2 [1]:

S(i,4) = (1 K)(i,5) = 32 Y- 1 (m, n) K (i = m, j — ) (2.3)

CNNs have had a significant effect on deep learning evolution as they represent a
successful application of ideas inspired by studying the brain. They are among the
primary deep models that perform well and have significant viability in commer-
cial applications, for instance reading bank cheques [54] and handwriting recog-
nition [55]. Various researchers applied Deep NNs to medical datasets. For in-
stance [56] offers a new automatic approach proposed to detect cerebral microbleeds
(CMBs) from magnetic resonance (MR) images by using 3D CNN. For example,
[57] proposes a CNN approach to classifying interstitial lung diseases (ILDs) while
[58] predicts neo-adjuvant chemotherapy using a CNN approach.

2.5 Generative Models

We can categorise machine learning implementations into Generative and Discrimi-
native models. Discriminative models learn mapping an input to the desired output
class; in addition, Generative models also learn the rule to generate the output from
the input. A Discriminative model estimates the hidden parameters of the model or
the conditional probability distribution of y conditioned on x: P(y|z).The Discrim-
inative model approximates the probability of y and P(y|z) although z is known
but does not have knowledge regarding marginal distribution of y and x indepen-
dent from the other variables(P(y) and P(z)). This model has the potential to

learn a map, f , to offer an approximation of the distribution P(y|x), which defines

25



2.5 Generative Models

a boundary with an optimal split among available classes.

The Generative model estimates the joint probability distribution x and y, which

can be represented as P(y|z)p(z). This model has the ability to learn a map, f, to

approximate the distribution P(y, x).

We can use Bayes’ theorem to calculate P(z|y) and P(y|z), while P(y,z) is

estimated, having the knowledge that the joint probability is symmetrical. After

moving around the P(z) and P(y) terms, we derive Bayes’ theorem:

P(z,y) = Py, )

Plal) =T

P(ylr) = P]g(;;) :P]ﬁf;” (2.4)
P(zly)P(y) = P(y|z)P(z)

Plol) = TR

An advantage of Generative models is their ability to process and learn from
complex and big data by utilising a rather modest number of parameters. In addi-
tion, in contrast to Discriminative models, they can learn highly relevant features
from datasets without processing their labels. Such models have been applied to
different concepts, such as speech synthesis, model-based control, and image gen-
eration.

The most recent work in Generative models has focused on GANs and likelihood-
based methods, including auto-regressive models, Variational Auto-encoders (VAEs),
and flow-based models. The following sections describe likelihood-based models
and their variations. Later, I will describe the GAN framework in detail.

2.5.1 Autoregressive Models

This model estimates the conditional distribution of y with dependency on the
previous time-step or offered values of y. For instance, in audio composition, the
sample is estimated with consideration of previous audio samples and spectrograms.

The simplest form of an auto-regressive model with dependency on the previous
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time-step and time-invariant bias term can be demonstrated as follows:

P
Yi=a+ Zﬁz’Ytq + €ty (2.5)

i=1
Models’ coefficients and bias are represented as 8 and « respectively. Y;_; and ¢
appear for previous time-step and white noise respectively. The current output is
explicitly dependent on the former output. Auto-regressive models use maximum
likelihood estimates as a training approach, which adds benefits of stability and
simplicity.
An example of auto-regressive models for image synthesis is Pixel CNN [59], and

for audio synthesis WaveNet [60].

2.5.2 Variational Autoencoders

The aim of Auto-encoder models is to model the joint probability of the latent
variable and the observed data: where P(z,z) can be represented as P(z|z)P(z).
Using Bayes’ rule, we calculate the posterior probability of z given z; P(z|z) in eq.

2.6 since we are in favour of finding optimal z values that produce observed data:

Pt o6

Variational auto-encoders are more straightforward to train and infer in parallel,
in comparison with auto-regressive models, although they are difficult to optimise.
An example of this model is Deep feature-consistent Variational auto-encoders to

generate images [61]. The images produced with models based on VAEs tend to

be blurry however.

2.5.3 Reversible Flows

Flow-based generative models are naturally reversible and a single model P with
a parameter © estimates Pg(z|z) and Pg(z|x).

Such an attribute of reversible flow models gives the means-precise log-likelihood
evaluation and latent variable inference in the absence of approximation. Reversible
flow models give impressive results in speech and image synthesis. A example

of speech synthesis is the work done by NVIDIA [62] and for image generation,
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GLOW [63], which presents faces generated by a flow-based model. The process of

discovering model parameters using a data-driven mechanism is called learning.

2.6 Generative Adversarial Networks

Generative Adversarial Networks (GANs) are able to learn the distribution of data
and generate believable fake samples. Producing additional samples using GANs
can help create deeper NNs while avoiding overfitting the model [64]. One of the
main advantages of GANs is that, unlike other approaches that use approximation
methods to compute intractable functions or inference, such as VAEs, GANs do
not require an approximation method.

GANSs are increasingly becoming an interesting area for the research commu-
nity [65, 66, 67, 68]. Many domains, such as semantic segmentation [69, 70,
71, 72, 73], computer vision [74, 75, 76, 77, 78, 79], natural language process-
ing [80, 81, 82, 83], and time series synthesis [84, 85, 86, 87, 88| have taken ad-
vantage of GANs. In comparison with other generative models, GANs have the
capability to handle sharp-estimated density functions, generating desired sam-
ples in an efficient way, with satisfactory compatibility with internal components
of the neural network [89]. Although researchers demonstrate successful scenar-
ios in the field of computer vision, GANs are hard to train [90, 91, 92, 93] and
evaluate [94, 95, 96, 97, 98, 99, 100].

Different GAN types are introduced in the literature for better performance, and
can be categorised into Architecture-variants and Loss-variants. In the following
sections I briefly discuss these.

The architecture of a GAN comprises two components: The Discriminator,
whose role is to distinguish between real and generated samples, and the Gen-
erator, which generates samples to fool the discriminator. The aim of a GAN is
to learn the distribution of generator P, that approximates the distribution of real
data P.. A GAN is optimised through considerations of joint loss function for

generator and discriminator:

m&n max Ex.p. log|D(x)] + Ez.p, log[l — D(G(Z))]. (2.7)
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GANSs have a set of advantages that distinguish them from traditional deep gen-
erative models and enable them to achieve state-of-the art performance to produce
synthetic data. They can produce superior output; any generator model can be

trained, and latent variables can have any size [89].

2.6.1 Architecture-Variant GANs

Architecture variant GANs are introduced to help in data generation challenges
such as text-to-image generation [101], image completion [102], image-to-image
transfer [103], and image super-resolution [104]. In the following sections I offer
a review of this category of GANs in the context of improving sample quality,

training stability, and sample diversity improvement.

Fully-Connected GAN

In Fully-Connected GANs (FCGANSs), fully-connected neural networks are used
to implement both generator and discriminator [65]. This model does not gener-
alise performance for complex image types, as results from some simple datasets

demonstrate [105, 106, 54].

Laplacian Pyramid of Adversarial Networks

This model aims to upscale images, i.e. achieve higher resolutions from images
with lower resolutions [107, 108].

Deep Convolutional GAN

This model uses de-convolutional neural networks in generator since they perform

well in spatial up-sampling and visualising the features for convolutional neu-
rons [109, 110]. This enables Deep-Convolutional GANs (DCGANSs) to produce

higher resolution images.

Boundary Equilibrium GAN

This model uses an auto-encoder for discriminator and its loss function uses Wasser-
stein distance instead of directly matching distribution of data [111]. This approach

prevents the discriminator from winning easily against the generator at early stages
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of training because of the discriminator’s loss modification. The generator can re-
construct data more easily for the auto-encoder since the generated data is close to
zero at the beginning and the generator has not yet learned the data at the early

stages.

Progressive GAN

This architecture takes advantage of using progressive neural networks [112] that
are able to retain prior knowledge due to the use of lateral connections to formerly-
learnt features. In this implementation, both generator and discriminator grow
throughout the training process while all parameters remain trainable. This train-
ing strategy makes the process of learning for both models more stable and results

in impressive and plausible samples [112, 113, 114].

Self-attention GAN

The main reason for this implementation is the limitation of CNNs in learning
multi-class image datasets because they are able to only capture local spatial in-
formation and possibly not cover adequate structure by receptive field. This may
cause a shift in key components of the image while generating it [115]. Self-attention
GANs (SAGANSs) implement a self-attention procedure for the generator and dis-
criminator of the GAN. This algorithm shows improved performance on multi-class

image generation while tested on ImageNet datasets [116].

BigGAN

This architecture is based on SAGAN with a much bigger batch size and more

complex model and, as a result, this produces diverse and high quality images [114].

2.6.2 Loss-Variant GANs

Another approach to increase the performance of GANs is to explore possible im-
provements in the original loss function (see eq. 2.7). The original loss function
offers global convergence and optimisation, although it is likely to encounter in-

stability problems while training [65]. If the discriminator is optimised for any
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generator, the global optimality is attained and therefore the derivative of the

discriminator in eq. 2.7 is zero. In summary we have

(2.8)

Where D*(z) is the optimal discriminator, P,(x) and P,(z) are real data and
generated data distribution respectively. x serves as real and generated data. When
considering eq. 2.7 and 2.8, the loss function of the generator while the discrimi-

nator is optimised is as follows:

P, P,
EG = EINPT IOg 1 (a:) + Ewag IOg 1 g<x>

2Bl + Fyle) P+ B 2 B

The above equation (2.9) is related to Kukkback-Leibler (KL) divergence and
Jensen-Shannon (JS) divergence measurement metrics. Considering these metrics,

the loss function for the generator can be reformulated as

KL(py || p2) = Egp, log i;,

1 pitp 1 p1tp
JS(1 [ p2) = SEL(py || =) + 5 KL | =), (2.10)

Lo=2-JS(p, | pg) —2-log2.

While training discriminator step-by-step, optimisation of generator becomes
equal to minimising JS divergence between p, and p,. The JS divergence causes
unstable training problems since discriminator often wins against generator.

If there is no overlap between p, and p,, JS divergence remains unchanged, and
if they have an overlap, it means the gradient of JS divergence for training the
generator is non-zero [117]. For instance, when discriminator is close to optimal,
the vanishing gradient will emerge for generator. It is highly likely that p, and p,
have poor overlap or do not overlap at all.

To avoid gradient vanishing, the original GANSs paper [65] suggests minimising
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—E;p, log[D(x)] for training generator, although this approach will lead to mode-
dropping problems. The KL(p; || p2) with an optimal Dx can be redefined as

follows

1—Dx(x)

B (2.11)
By lo8 =5 )

= Eynp, log[l — D * (2)] = Egep, log[D * (2)].

In eq. 2.7 by switching the order of the two sides, the loss function for generator

will be

—Eyp, log[D * (x)] = KL(py || pr) — Egnp, log[l — D x (2)],

= KL(py || pr) —2-JS(pr || pg) +2 - log2 + Eynp, log[D * ()],
(2.12)

where in the updated loss function in eq. 2.12, the last two terms are constant
and the first terms advance the generated distribution towards real distribution
and the second terms aim to push in the opposite direction. Considering the
circumstances, this will lead to instability while training the generator. Also KL

divergence is a distribution measurement which is asymmetrical:

o Whenpy(z) — 0,p.(x) = 1, KL(p, || p.) = 0.

o Whenpy(x) — 1,p.(x) = 0, KL(p, || pr) = +00.

Using the vanilla-loss function in eq. 2.7 results in vanishing gradient while
training generator and also using alternative loss function (eq. 2.12) will achieve
a mode-collapse problem. Modifying the model architecture will not solve such
obstacles. Instead, an alternative can be to redesign loss functions as loss-variant

GANSs improve stability of training GANs.
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Wasserstein GAN

Wasserstein GAN [118] uses earth-mover (EM) distance [119] as loss measure to

solve the above-mentioned problems. The EM distance is specified as follows

W(prpg) = inf Exyy, || X =Y, (2.13)
YEIl(pr,pg)

where II(p,, py) is a collection of all joint distributions and p, and p, are marginals
of v(X,y). EM, in comparison with JS and KL, has the capability to provide a
meaningful gradient while training the generator and show the distance even in
situations where p, and p, are not overlapping. WGAN has a smoother gradient
while training generator in comparison with original GAN, although it is hard to
control the infimum in eq. 2.13. Therefore Wasserstein distance can be estimated

as

max B, [fu(@)] = Bop, [fu(G(2))]; (2.14)

where f,, represents discriminator, z is the noise as input to the generator. The
discriminator aims to maximise eq. 2.14 by making the optimisation distance closer
to Wasserstein distance by using its parameters w. After optimising discriminator,
generator aims to minimise Wasserstein distance (eq. 2.13). Loss of the generator

is

—minEvy. (£ (G()) (2.15)

In contrast with the original GAN, Wasserstein GAN (WGAN) fits Wasserstein
distance in discriminator instead of binary classification and does not use sigmoid

in the last layer.

WGAN-GP

WGANSs do not show exceptional generalisation on deeper models since belong-
ing parameters are localised at -0.01 and 0.01 due to parameter clipping, which
will reduce the modelling capability of discriminator significantly. Applying gradi-

ent penalty on discriminator to regulate || f ||, < K and update loss function of
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discriminator as follows

LD = Exyup, [D(Xy)] = Ex,p, [DX)] + AEx, [(| V2 D(X) [l2 =1)]  (2.16)

where X, and z,, are the data selected from distribution of generated p, and
real p,. data. The last term in the above equation is the gradient penalty where p;
are samples uniformly selected along straight lines between pairs of points sampled
from p, and p;. WGAN-GP performs in a more stable way during training and

trained parameters and have better distribution in comparison to WGAN [120].

Least Square GAN

To solve the vanishing gradient of generator, Least Square GAN (LSGAN) suggests
using the least square loss for discriminator rather than sigmoid cross entropy which

is originally used in original GAN [121] algorithm. The loss function is stated as

min L = JEx, [(D(X) = D) + 5B [(D(G(X)) — )],

min £ = ;EZNPZKD(G(X)) — o)

(2.17)

where a and b are the labels for generated and real samples respectively and c is
the label that the generator uses to fool the discriminator. This new approach en-
ables the decision boundary of the discriminator to penalise large errors obtained by
processing generated samples to help to push them towards the decision boundary.
Also the idea of penalising the samples that are far away from the decision bound-
ary can offer better gradient while updating generator and solving the vanishing

gradient issue.

f-GAN

The purpose of f-GAN is to train the model by applying f-divergence [122]. The
idea is to use probability distributions and calculate the difference D¢(P || Q)
between P and ().
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Unrolled GAN

This approach is suggested to solve the mode-collapse problem while training. The
idea is to add a gradient term to update the generator based on the way the
discriminator will respond [123]. Assuming an iterative procedure to find optimal

parameters of D, these parameters can be declared as fixed points.

0% = 0p,
df (0c;, 0%
gisrt — g 4 s Y06 05)) (2.18)

0%

where 0p and ¢ serve as parameters of discriminator and generator respectively.
The n* represents the learning rate. The new loss function can be expressed as

follows, by unrolling for K a number of steps

fx(0c,0p) = f(0c. 05 (0c. 0p)). (2.19)

The above replacement for loss can be used to update parameters of generator

and discriminator

dfk(0c,0p)
db¢ ’

df (0c,0p)
dfp

HG < QG —n
(2.20)
GD < 6D +n

The following term states the gradient to update generator

dfy(0c,0p)  Of(0c, 05 (0. 0p)) . f(0c, 05 (0c,0p)) dOX (0c,0p)

= 2.21
b O 90K (0c:, 0p) dfc (221)

where the first term is the gradient of the vanilla GAN, the second term is the
reaction of discriminator while generator changes - meaning while generator tends

to collapse to one mode, discriminator increases the loss of generator.
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Loss Sensitive GAN

The aim of this type of GAN is to minimise the designated margins between gen-
erated and real samples, resulting in generating close-to-reality samples. The Loss-
Sensitive GAN (LS-GAN) paper [124] claims that a non-parametric hypothesis,
which enables the discriminator to make decisions between generated and real
samples, is the reason for mode collapse and vanishing gradient. The ability of the
discriminator to classify is limited in LS-GAN. It is learned by loss function Lgy(x)
with parameters 6, assuming that real samples have lower loss that generated ones.
The loss function is composed as

Lo(z) < Lo(G(2)) — Az, G(2)), (2.22)

where A(z, G(2)) is the difference between generated and real samples’ margin
measuring. The above equation (2.22) implies that the real and generated samples

are separated leastwise by a margin of A(z,G(2)). The LS-GAN optimisation is

min Lp = E,, Lo(z) + AE,,, (A(z,G(2)) + Lo(x) — Lo(G(2)),
D
wpr (2.23)
mgn Lo=E,., Ly(G(2)),

where 0 represents the parameters of discriminator and \ is a positive-balancing
parameter. In order to avoid over-fitting the generated and real samples in dis-

criminator, the term A(z, G(z) is added to Lp in the above equation.

Mode Regularised GAN

This type of GAN suggests penalising missing modes in order to increase the chance
of solving the mode-collapse challenge [125]. The main idea is, instead of using
noise, utilising an encoder in order to produce a latent variable z for generator
(E(z) : © — z). In this method, reconstructing the encoder can add extra knowl-
edge to generator and therefore help the discriminator to easily distinguish between
the real and generated samples. The encoder ensures using correspondence between
x and z, which means samples generated by the generator cover various modes in

the space of x, therefore avoiding the mode-collapse problem. The loss function for
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this architecture is stated as

Lg = =E:[log[D(G(2))]] + Eanp, [Md(z, G 0 E(2)) + A2 log[D(G(2))]], (2.24)

Lp = By, [Md(z, G 0 E(z)) + A2 log|D(G(x))]],

where d is a geometric measurement that can be selected from various options

such as distance of features, for example Euclidean norm.

Geometric GAN

This architecture uses SVM separating hyper-plane which helps to avoid mode
collapse and achieve more stable training. In this method between two classes we

have high marginals [126].

Relativistic GAN

The aim of Relativistic GAN (RGAN) is to suggest a new cost function by modify-
ing the existing one, for instance using Integral Probability Metric (IPM) GANs [127,
128, 129]. In RGAN, discriminator considers how the real sample is more realistic

than generated samples. The new loss function is as follows

min B, o)~ (g, p,) [l0g(sigmoid(C(z,) — C(xy)))];
(2.25)

min B, o)~ (p, p,)[108(sigmoid(C(zy) — C(x,)))];

where C'(z) is the layer which is non-transformed. If the loss function belongs to
[PMs, RGAN can be generalised to alternative kinds of GANs.The generalisation

of this architecture can be stated as

Lp =E(zy, xg) ~ (pr, pg) [[1(C(2r) = Clg))] + Ewr, 29) ~ (pr, pg)[f2(C2g) = C(22))],

Le = E(x,,24) ~ (pr pg)[01(C(x,) — C(zy))] + E(2r, 249) ~ (Pry Dg)[92(C(4) — Cl2))],
(2.26)

where g1(y) = f2(y) = y and g2(y) = f1(y) = —v.
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Spectral Normalisation GAN

The idea is to normalise weights in order to stabilise the process of training dis-
criminator. This method has the advantage of being easily applicable to already
implemented GANs and is computationally light. It has been stressed that discrim-
inator should be from the set of K-Lipshitz continuous functions [120, 118, 124],
which means the function does not change abruptly [130, 131, 132]. This gentle
behaviour of discriminator stabilises the training process. The goal of this im-
plementation is to apply spectral normalisation of each layer of discriminator to

control the Lipschitz constant. The spectral normalisation is stated as

w

VV;‘N(W) = m,

(2.27)

where W stands for weights belonging to each layer of discriminator and o (W)

represents the weights Euclidean norm matrix.

2.7 Real-world Applications

There are many processes that are using DL in their data analysis. Some examples

of those that widely use it are:
e Speech recognition [133].
e Image processing such as handwriting classification [134].
e High-resolution remote-sensing scene classification [135].
e Single image super-resolution [136].

e Multi-category rapid serial visual presentation Brain Computer Interfaces

(BCI) [137].
e Domain adaptation for large-scale sentiment classification [138].
e Multi-task learning for NLP with an enhanced inference robustness [139, 140].

e Enhancement of the diagnostic accuracy of micro-calcifications by evaluating
the performance of deep learning method on a large dataset for its discrimi-

nation [141].
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e Solves the challenges of body pat recognition using DL [142].

e Proposes an approach for a high-level latent and shared feature representation
from neuro-imaging modalities using DL for Alzheimer’s disease and Mild

Cognitive Impairment [143].
e An architecture of DL for automated basal cell carcinoma cancer detec-

tion [144].

Researchers applied GANs in diverse contexts. The following describes a sum-

mary of the most recent papers along with their applications in transfer learning:
e Text Generation:
— Textkd-gan [145].
e Image domain transfer:

— Small Datasets Image generation [146].

— TTUR - a two time-scale update rule for training GANs with SGD on
arbitrary GAN loss functions [147].

— Progressive Growing of GANS [112].

— Simultaneous Deep Transfer Across Domains and Tasks [148].
— Adversarial Discriminative Domain Adaptation (ADDA) [149].
— Transferring GANs: Generating images from limited data [150].

— Unsupervised Pixel-Level Domain Adaptation With Generative Adver-
sarial Networks [151].

— ¢GAN [152], proposes a model for the discriminator of cGANS.
e Video Processing:
— FutureGAN [153].

e HALI [154], A generative model that improves training stability and simplic-
ity.

e Mind2Mind [155], A method to directly train models’ external layers against

each other and bypass all the intermediate layers.
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e Bi-directional Generative Adversarial Networks (BiGANs). [156] suggests a

mean to project data back into the latent space.

e Domain-Adversarial Neural Networks (DANNs) [157], proves domain discrim-
inability is another principle that is complimentary to robustness and can

improve cross-domain adaptation.

e Conditional Domain Adversarial Networks (CDANSs), suggests novel approaches

to domain adaptation with multi-modal distributions [158].

e Label-efficient learning of transferable representations across domains and
tasks. [159] proposed a method to learn a representation that is transferable

across different domains and tasks in a data-efficient manner.

2.7.1 Related Work on Machine Learning for ECGs

In the field of cardiac arrhythmias, plenty of machine learning-based techniques is
reported in the literature. These approaches use algorithms such as ANNs [160,
161, 162, 163, 164, 165], Decision Trees [166], Support Vector Machine (SVM) [167,
168, 169, 170], Deep Learning [171, 172, 173], Fuzzy Systems [174], Deep Belief Net-
works [175], Linear Discriminant classifiers (LDC) [176], and Probabilistic Neural
Network (PNN) and Radial Basis Function Neural Network (RBF-NN) [177]. In
specific cases, a combination of swarm intelligence algorithms and neural networks

could achieve competitive results [178].

2.8 Chapter Summary

This chapter offered a review of current technologies in the field of Deep Learning
and Generative Adversarial Networks, their range of types, loss functions and real-
world applications. The next chapter covers multiple nature-inspired algorithms
and their applications in optimisation challenges. In addition, a detailed analysis
of the Dispersive Flies Optimisation (DFO) is provided. We used this algorithm
in chapters 4 and 5 for hybrid model experiments. The last section of this chapter

gives an overview of the gradient-free methods.

40



3. Swarm Intelligence for Machine

Learning

3.1 Introduction

In the previous chapter we looked at the gradient-based approaches used in Machine
Learning algorithms to discover the optimal parameters. However, research shows
the gradient-free methods could be promising solutions [179] if a problem can be
formulated as an optimisation challenge. As such, this chapter discusses a number
of swarm intelligence algorithms, and focuses on Dispersive Flies Optimisation

(DFO), one of the methods specifically selected for the experiments in this thesis.

3.2 Population Based Algorithms

Nature has always been a rich source of inspiration for scientists. Observations
have been triggering curious minds for centuries, leading to discoveries and break-
throughs in medicine, physics, astronomy and biology among many other fields.
More recently, researchers working in the field of computer science and machine
learning have likewise drawn inspiration from natural phenomena. From the chore-
ographed movements of birds, behaviours of foraging ants, to the convergence of
honey bees while searching for food, these manifestations of nature in action have
inspired novel developments in machine learning, offering up the potential to for-
mulate algorithms to solve different optimisation problems.

Genetic Algorithm [180], Particle Swarm Optimisation [181] and Ant Colony
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Optimisation [182] techniques belong to the broader category of Swarm Intelligence
(SI). SI investigates collective intelligence and intends to model it by considering
individuals in a social context and observing interactions among others and with
their surrounding environment.

The following sections provide an overview of some of the existing SI techniques.
The algorithms introduced briefly in this section are variations of Ant Colony Op-
timisation (ACO), Particle Swarm Optimisation (PSO), Differential Evolution Al-
gorithm (DE), Genetic Algorithm (GA) and Dispersive Flies Optimisation (DFO).
As previously mentioned, the interactions among their population is one of the
characteristic features of the algorithms providing possibilities to achieve the final

aim of finding the optimal parameters.

3.2.1 Ant Colony Optimisation

The Ant Colony Optimisation (ACO) algorithm includes several steps. It is based
on a structure of dynamic memory which holds information about the quality of
previously obtained results [183, 184]. Each ant represents a candidate for the
solution to the problem. This algorithm includes a forward mode that enables
ants to construct their answers based on existing pheromone trails and heuristic
information used from the most recent generation. Ants switch to the backward
mode and update the shared pheromone table accordingly as soon as their forward
mode is complete. For instance, the better the quality of solution, the more the
pheromones are kept. ACO has two primary frameworks: evaporation-based [185,
186] and population-based [187]. The approaches that update the pheromones are
different for each of these frameworks. The evaporation-based framework applies

gradual pheromone trails reduction to eliminate prior poor decisions.

3.2.2 Particle Swarm Optimisation

Particle Swarm Optimisation (PSO), developed by Kennedy and Eberhart [181], is
a type of population-based optimisation algorithm. PSO is inspired by simulating
the choreography of birds flying or fish schooling in coordinated flocks and shoals.
Their behaviour shows robust synchronisation in flying, landing, and changes in

direction while hovering, although researchers were not able to find leaders in such

42



3.2 Population Based Algorithms

crowds [188]. The PSO algorithm includes a swarm of many particles. Each particle
signifies a point in a multi-dimensional space.

Each particle has a position & and personal best p attributes. The personal best
keeps the best position during optimisation. The neighbourhood best is the best-
found position within the whole population or local neighbourhood. Note that the
¥ is related to the particles’ neighbourhood and experience of the particle.

Clerc-Kennedy PSO (PSO-CK) or constriction PSO is a standard particle-swarm
version. The position of each particle is defined by the combination of velocity and
its current position. Here is the updating equation for the velocity and position of

each particle:

Via = X (Ufcfl +an (pid - xﬁ(}l) + CoTa (gid — x‘;gl)) (3.28)

Thy = vy + iy’ (3.29)

where y, the constriction factor, is set to 0.72984, which is proven to work well
in most cases [189]. The v};' is the velocity of particle i in dimension d at time
step t — 1. The learning factors or acceleration constants related to personal and
neighbourhood are represented as c; » respectively. Both of these parameters are set
as constant. The r; o are random values used for the purpose of adding stochasticity.
These numbers are drawn from a uniform distribution on the unit interval U (0, 1).
The p;q is the personal best position of particle x; in dimension d. Lastly, g¢iq
represented as neighbourhood best.

In terms of PSO application on medical datasets, [190] proposed a method which
works based on Chan and Vese’s algorithm, which helps to achieve acceptable
segmentation performance, regardless of the early choice of the contour. The [191]
aimed to determine the possibility of using a radial-basis function neural network
based on PSO that is capable of identifying that Parkinsonian tremors are occurring
from local field potential signals. [192] presented an approach for human tremor
analysis by applying PSO. This study addressed Parkinson’s disease and essential

tremor.
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3.2.3 Differential Evolution Algorithm

Differential Evolution (DE), first introduced by Storn and Price [193] is a kind
of evolutionary algorithm (EA). The DE is a simple global numerical optimiser
over continuous search spaces. This algorithm aims to search the space to find the
optimal parameter. The following definition defines the parameter vectors of the

population of this population-based stochastic algorithm:
¥ = |ad) aly, o alp] i=1,2,.,NP (3.30)

where g, D, and N P are the current generation, the problem space dimension, and
size of the population respectively. In the first generation, while g = 0, the i

vector’s j* components are initialised as follows:

ZE?J = Tmin,d +r (-rmax,d - xmin,d) (331)
where r is a random number picked from a uniform distribution of the unit interval
U (0,1), and Zin, and Z,,q, are the lower and upper bounds of the d*" dimension
respectively. Evolutionary processes such as mutation, crossover and selection,

start after the initialisation of the population.

Mutation

The mutation operation is applied to the target vector zf over every generation
g, which will result in the corresponding vector v{ (mutant vector). DE/best/1

%

variation of mutation approaches is as follows:
v =x), + F (:Eil - x%) (3.32)

where 7 and 75 are distinct random integers selected from [1, N PJ; in generation g,
zj., and F = 0.5 are the vectors with the best fitness value and a positive control

parameter for constricting the different vectors respectively.
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Crossover

Crossover is an operation to improve the population diversity by exchanging a few
components of v/ mutant vector with zJ target vector to generate u trial vector.
This process is as follows:
vl if < CR orj=ry
W = (3.33)

g

z; ;, otherwise

where r is a uniformly-distributed random number picked from range U (0, 1) and
rq is a randomly-generated integer from the range [1, D], which assures that at least

one component of the trial vector differs from the target vector. The CR = 0.5 is

g

7

also a control parameter which specifies the level of inheritance from v

Selection

The selection process decides if the target or trial vectors, x7 or u!, are allowed
to pass to the next generation g + 1. In a scenario with the aim of a solution of
minimalisation, the vector with the smaller fitness value is admitted to the next

generation:
i, i f (uf) < f (27)
It = (3.34)

otherwise

where f (x) is the fitness function.

3.2.4 Genetic Algorithm

In Genetic Algorithm (GA) [194, 195], the individuals are initialised randomly and
an object function is used to evaluate their fitness. Individuals have the probability
of being exposed to recombination p. or mutation p,, in an iterative process. Arith-
metic crossover is used as recombination operator. The mutation operator used is
Cauchy mutation utilising an annealing scheme. Tournament selection [196] is used
to comb out the least fit individual.

The main reason why GA uses the Cauchy mutation operator instead of the
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Gaussian mutation operator is that the thick tails of the Cauchy distribution allow
it to generate considerable changes and with greater frequency in comparison with

the Gaussian distribution. The Cauchy distribution is defined as follows:
1
r—Q 2

where a < 0, § > 0, —00 < & < o0. « and [ are parameters that influence the

C(z,a,p) = (3.35)

distribution mean and spread. As [195] suggested, all the solution parameters are
subject to mutation and the variance is scaled with 0.1 x the range of the specific
parameter in question. An annealing scheme was applied to decrease the value

as a function of the elapsed number of generations ¢t while o = 0:

B(t) = —— (3.36)

As for the arithmetic crossover, the offspring is generated as a weighted mean

for each gene of the two parents:

offspring, = r x parentl, + (1 — r) x parent2; (3.37)

where offspring; is the ’th gene of the offspring, and parentl, and parent2; refer
to the i'th gene of the two parents, respectively. The weight r is drawn from a
uniform distribution in the unit interval U (0, 1).

In the above-mentioned experiment, the probabilities of crossover and mutation
of the individuals is set to p. = 0.7 and p,, = 0.9 respectively. The size of the
tournament’s selection is set to two, and the elitism, with an elite size of one, is
deployed to maintain the best-found solution in the population.

Regarding the application of genetic programming in medical data analysis, [197]
presented a majority-voting GP classifier for micro-array data classification. [198]
proposed a new technique by utilising the feature generated by GP to diagnose
breast cancer. [199] developed a detection approach for nodal metastasis from
molecular profiles of primary urothelial carcinoma tissues. Samples were run through
the GP, which utilises the N-fold cross-validation method to produce classifier in-

structions of limited complexity.
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3.2.5 Dispersive Flies Optimisation

Dispersive flies optimisation (DFO) [200] belongs to the broad family of population-
based, swarm intelligence optimisers, which has been applied to various areas,
including medical imaging [201], diophantine equations [202], PID speed control
of DC motor [203], optimising machine learning algorithms [204, 205], training
deep neural networks [206], computer vision and quantifying symmetrical com-
plexities [207, 208], beer organoleptic optimisation [209, 210], and analysis of au-
topoiesis in computational creativity [211]. DFO is a minimalist, vector-stripped
swarm optimiser [212] whose exploration-exploitation balance and zone analyses

has also been studied in [213, 214].

Explaining the algorithm

Dispersive Flies Optimisation (DFO) [200] is an algorithm inspired by the swarm-
ing behaviour of flies hovering over food sources. The swarming behaviour of flies
is determined by several factors and the presence of a threat can disturb their con-
vergence on the marker (or the optimum value). Therefore, having considered the
formation of the swarms over the marker, the breaking or weakening of the swarms
is also noted in the proposed algorithm.

The swarming behaviour of the individuals in DFO consists of two tightly con-
nected mechanisms. One is the formation of the swarms and the other is its break-

ing or weakening. The position vector of a fly is defined as:

Th= |2l 2l x|, i=0,1,, N (3.38)

where ¢ represents the i*" individual, ¢ is the current time step, D is the di-
mensionality of the problem space and N is the population size. For continuous
problems, z;4 € R (or a subset of R), and in the discrete cases, x;; € Z (or a subset
of Z).

In the first iteration, t = 0, the i*" vector’s d'" component is initialised as:

‘T?d = Zmin,d +u (xmax,d - xmin,d) (339)

where u ~ U (0,1) is the uniform distribution between 0 and 1; Zyinag and Tmax.d
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Algorithm 1 Dispersive Flies Optimisation

1: procedure DFO (N, D, Zwin, Tmax, f)*

2 fortr=0—- N—1do > Initialisation
3 ford=0—D—-1do

4: x?d <~ U(«Tmin,dv xmax,d)

5: end for

6 end for

7 while ! termination criteria do > Main DFO loop
8 fori=0—- N—1do

9: Z; fitness « f(Z;)

10: end for

11: Zs =argmin [f(7;)], i€{0,1,2,...,N—1}

12: fori=0— N—1andi# s do > Update each fly
13: T, = arg min [f(Z,-1)%n), f(Zar1)%n)]

14: ford=0— D —-1do

15: if U(0,1) < A then > Using Disturbance Threshold
16: azﬁz{l — U(Zmin,d, Tmax,d)

17: else

18: u<+ U(0,1)

19: attl wh g+ u(ely —xly) > Update equation
20: end if
21: end for
22: end for
23: end while
24: return I,

25: end procedure

* INPUT: N: swarm size, D: dimensions, Tmin: lower bound, Fpax: upper bound, f:
fitness function.

are the lower and upper initialisation bounds of the d** dimension, respectively.
On each iteration, components of the position vectors are independently up-

dated, taking into account:

e current fly’s position
e current fly’s best neighbouring individual (consider ring topology)

e best fly in the swarm

Therefore, the update equation is
vl = g+ u(aly — w) (3.40)

where z! , is the position value of Z’s best neighbouring individual in the d*®
dimension at time step ¢, and z*, is the value of the swarm’s best individual in the

d™ dimension at time step t.
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L, Search space
O Global optimum
® Current individual: x;, i = 3
Best individual: x;, s =5
® Neighbours: x, . i, € {2, 4}
® Best Neighbour: x,
1~ Neighbourhood (ring fopology)

Valid area for x; af fime t+1

Figure 3.3: Sample update of x;, where i = 3 in a 2D space where the axes are the
dimensions (dy and da) in the 2D search space [2]. Used with permission.

The algorithm is characterised by two main components: a dynamic rule for
updating the population’s position (assisted by a social-neighbouring network that
informs this update), and communication of the results of the best-found individual
to others.

As stated earlier, the swarm is disturbed for various reasons; one of the impacts
of such disturbances is the displacement of the individuals, which may in turn lead
to discovering better positions. To consider this eventuality, an element of stochas-
ticity is introduced to the update process. Based on this, individual components
of the population’s position vectors are reset if a random number generated from a
uniform distribution on the unit interval U (0, 1) is less than the disturbance thresh-
old, A. This guarantees a disturbance to the otherwise permanent stagnation over
a likely local minima.

Algorithm 1 summarises the DFO algorithm. Note that every time u is called, it
generates a new random number between 0 and 1'. In this algorithm, each member

of the population is assumed to have two neighbours (i.e. ring topology).

3.3 Real-world applications

Researchers applied SI algorithms in diverse contexts. The following describes a

summary of the most recent papers along with their application:

e Food Industry

— Product selection in the beer-brewing process using swarm intelligence [215].

!The source code and some relevant resources can be downloaded from the following pages:
https://github.com/mohmaj/DFO,
http://doc.gold.ac.uk/mohammad/DF0/
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3.3 Real-world applications

e Data Mining

— The possibility of using a group of incremental classification algorithms
for classifying the collected data streams pertaining to the Big Data
investigated [216].

— The applications of SI in the big data analytic and the big data analytic
techniques in SI are analysed [217].

e Medical Imaging

— Investigates particle swarm optimisation (PSO), Darwinian PSO and
Fractional Order Darwinian PSO to speed up the algorithm in medical

imaging applications concerned with volume reconstruction [218].

— Discusses the application of Stochastic Diffusion Search in detecting
areas of metastasis in bone scans and the identification of potential

micro-calcifications on the mammographs [219].
e Drug Design and Pharmaceuticals

— Reviews the chemical engineering applications of Multi-objective Opti-

misation (MOO). [220].

— Various EA techniques used in denovo drug design tools are surveyed
and analysed in detail, with particular emphasis on the computational

aspects. [221].
e Image Processing

— Proposes a new approach based on features of Genetic Algorithms for

gray-scale medical image protection [222].

— Suggests a multi-level thresholding segmentation method for grouping
the pixels of multi-spectral and hyper-spectral images into different ho-

mogeneous regions [223].
e Protein Folding

— Presents a genetic algorithm applied to the protein structure prediction

in a hydrophobic-polar model on a cubic lattice. The proposed genetic
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algorithm is extended with crowding, clustering, repair, local search and

opposition-based mechanisms [224].

— A simplified three-dimensional protein model was used in order to allow
for the fast development of a robust and efficient genetic algorithm-based

methodology. [225]
e Molecular Dynamics

— A quantum-classical algorithm for locating the global minimum on the
potential energy surface of a large molecule and simultaneously predict-
ing the associated electronic charge distribution is developed by inter-
facing classical PSO with a near-optimal unitary evolution scheme for

the trial of one-electron density matrix. [226]

— Presents a newly-developed publicly available genetic algorithm (GA)

for global-structure optimisation within atomic-scale modelling [227].
e Weather prediction

— An approach is proposed that builds an efficient and effective model for

heavy rain forecasting 6 hours ahead, based on past weather data [228].

— Presents a multi-objective optimisation model using Genetic Algorithm
(GA) and Artificial Neural Network (ANN) to quantitatively assess tech-

nology choices in a building retrofit project [229].
e Structural Optimisation

— In the empirical methods for reinforcement design of underground ex-
cavations, an even distribution of rock bolts is generally recommended.
The work represented in [230] proves that this design is not necessarily
optimal and shows how state-of-the-art reinforcement design could be

improved through topology optimisation techniques.
e Tomography

— Proposes an innovative Inverse Scattering (IS) technique for the simul-
taneous processing of multi-frequency (MF) ground-penetrating radar

(GPR) measurements [231].
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— Presents a method for reconstruction of EIT images based on FSS and

Non-Blind Search (NBS) [232].

— Uses two different multi-objective particle swarm optimisation approaches
to jointly invert synthetic cross-hole tomographic data sets comprising

radar and P-wave travel-times. [233].
e Robotics
— A survey to illustrate various algorithms that have been used to tackle
the challenges of imposed swarm-robotics tasks [234].
— Presents an extensive compilation of original articles on the cross-fertilisation
between ER and other research areas [235].

e Computational Fluid Dynamics

— Proposes a multi-objective optimisation methodology using a stochas-
tic optimisation algorithm, a Genetic Algorithm (GA) with e-constraint
method, and a 2D axi-symmetric Computational Fluid Dynamics (CFD)-

based Fischer-Tropsch micro-channel reactor model [236].
— Presents an optimisation method suitable for improving the performance
of Archimedes screw axial rotary blood pumps. [237].

e Space applications

— Presents different combinations of geometrical dimensions of a rectan-
gular space radiator that have been estimated using an inverse method

[238].

— Designs an innovative ground-based automated planning and scheduling

system for multiple platforms [239].
e FFinancial Markets

— Proposes an integrated moving average rule for the Furopean Union
Allowance (EUA) futures market and designs an approach to optimise

the weights of rules based on PSO and GAs [240].
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— Provides a meta-survey on state-of-the-art research and reports in the

literature of the field [241].
e Reservoir Optimisation in oil fields

— Applied and evaluated state-of-the-art, adaptive differential algorithms
(SHADE and jDE), and non-adaptive evolutionary algorithms (standard
DE, PSO) that have been tuned using standard black-box benchmark

functions as training instances [242].
— Presents a multi-objective method with robust optimisation methodol-
ogy by incorporating three dedicated objective functions [243].

e Energy Systems

— In this work, a mono- and multi-objective Particle Swarm Optimisation
(MOPSO) algorithm is coupled with EnergyPlus building energy sim-
ulation software to find a set of non-dominated solutions to enhance

building energy performance [244].
— Formulates an optimal power-flow problem by considering controllable
and uncontrollable distributed generators in power networks [245].

e Engineering Design

— Presents an effective hybrid cuckoo search and genetic algorithm (HC-
SGA) for solving engineering design optimisation problems involving
problem-specific constraints and mixed variables such as integer, dis-

crete and continuous variables [246].
— Aims to solve structural engineering design optimisation problems with
non-linear resource constraints [247].

e Manufacturing Sciences

— Presents batik production process optimisation using Particle Swarm

Optimisation (PSO) methods [248].

— Develops a novel Hybrid Optimisation Method (HRABC), based on ar-
tificial bee colony algorithm and the Taguchi method [249].
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e Scheduling

— Proposes an approach to address the dynamic-scheduling problem reduc-
ing energy consumption and make-span for flexible flow-shop scheduling
[250].

— Introduces the objective of minimising energy consumption into a typ-
ical production scheduling model, for instance the job-shop scheduling

problems, based on a machine-speed scaling framework [251].
e Vehicle Routing

— Presents a heterogeneous vehicle-routing problem used at a carton col-
lection depot, which can collaboratively pick the cartons up from several
carton factories to a collection depot and then from there to serve their

corresponding customers by using a heterogeneous fleet [252]
— Presents a survey of genetic algorithms that are designed for solving
multi-depot vehicle-routing problems [253]
e Micro Electro-Mechanical Systems
— Experimentally demonstrates light focusing through ZnO sample by con-
trolling binary amplitude optimisation using Genetic Algorithm [254].

— An investigation of non-linear probe behaviour in an atomic force mi-
croscope, caused by different excitation frequencies, was carried out as
well as an analysis and subsequent regulation using Particle Swarm Op-

timisation in combination with proportional-derivative control [255].
e Railway applications

— Provides a comprehensive review regarding the applications of Particle

Swarm Optimisation (PSO) in the railway domain [256].

— Studies the optimisation approach for the speed trajectory of a high-

speed train in a single section of track [257].
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3.4 Gradient-free Algorithms

Gradient-based algorithms such as backpropagation are typically used to train
deep artificial neural networks (DNNs). Evolution strategies (ES) is a competitor
of backpropagation-based algorithms, for instance policy gradients and Q-learning
[258] on challenging deep reinforcement learning (RL) problems [259]. Since ES per-
forms stochastic gradient descent through a similar operation to a finite-difference
approximation of the gradient, it can be regarded as a gradient-based algorithm.
Recent researchers have suggested that non-gradient-based evolutionary algorithms
can perform on DNNs. For instance, [259] obtained the DNN weights with a
gradient-free and population-based Genetic algorithm (GA) which performs ad-
mirably on difficult deep-reinforcement learning problems. The problems discussed
in this paper were in the context of Atari game-playing and humanoid locomotion.
In their proposed implementation, big Deep GA networks including over four mil-
lion parameters are optimised. This paper suggests that gradient-based algorithms

are not the best option in all cases for tuning performance.

Familiarising oneself with the SI algorithm to optimise the ANNs includes some
necessary steps regardless of which SI Algorithm is utilised. Since the hidden layer
and output layer weights require optimisation, they need to be traced as the vital
entity contingent on the SI approach. The problem area holds the synthesis of all
possible weight values for all layers. The search space with n-dimensions where
n is the collection of weights that need to be updated and optimised. The SI
approach is implemented, and the target function is dependent on the projection
accuracy of ANN. The weights are mapped onto the required procedure objective,
like a particle position in PSO. While calculating the fitness in SI, the weights
are allocated to the ANN, and its prophecy and accuracy are obtained. If the
fitness is the finest to date, then it will be recorded as the finest set of weights
and thus the finest result to date according to the SI Algorithm. The stages of an
ANN optimisation using SI algorithms are stated in Algorithm 2 and summarised
in Figure 3.4. In terms of the last work in the context SI-ML, [260] proposed
a technique that implements a swarm intelligence technique, Stochastic Diffusion

Search (SDS), to find the optimal feature subset. The work of [205] investigated
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Figure 3.4: Hybrid Artificial Neural Network-Swarm Intelligence Model
(From [264])

the use of DFO to optimise the RBF kernel’s parameters to improve classifier
performance without changing the distribution of the dataset by applying data-
level solutions such as oversampling or undersampling the dataset. [261] proposes
a model which uses a swarm intelligence algorithm (Stochastic Diffusion Search or
SDS) to perform the undersampling of the majority classes in imbalanced datasets.
[262] proposes a swarm intelligence-based undersampling approach that reduces
the sizes of the majority class in a reliable, yet cheap computational way, using the
agents and partial evaluation of the majority instance, in which the individuals of
the swarm move through the solution space in search of the solution closest to the
model. [263] proposes a new approach to addressing imbalanced data by using a

combination of both data-level and algorithmic-level solutions.

Algorithm 2 ANN Swarm Intelligence Procedure

Define the ANN architecture - number of input, hidden and output neurons
Identify the fitness function which returns the error as difference of actual and
predicted output for the ANN.
Initiate a swarm of ‘x’ organisms with random weights of ‘n’ dimension where
n is
the total number of weights.
while required prediction accuracy is not obtained do
Find the fitness of each organism as defined in Step 2.
Update the best solution so far next iteration.
Update algorithm parameters for next iteration.
10: end while
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Deep Neuroevolution

Evolution Strategies (ES) are procedures of heuristic search inspired by natural
evolution. ES is a category of algorithms for black-box optimisation [265, 266]. In
each iteration, the algorithm calculates and evaluates the objective function value
by using a perturbed population of parameter vectors. The parameter vectors with
the highest scores are utilised to prepare the population for the next iteration.
The algorithm repeats this process until it reaches the specified target fitness or is
fully optimised. Population representation, parameter mutation and update differ
depending on algorithm class [267]. The Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) is the most widely known in the ES class [268]. It utilises full-
covariance multivariate Gaussian distribution to represent the population. CMA-
ES achieves remarkable results in resolving optimisation problems in low to medium
dimensions.

ES is flexible enough to be expanded to execute agents in parallel. In each
iteration, agents only communicate at the end of iterations by returning a single
scalar, which is their calculated fitness value and receive a parameter update. In
contrast with the policy gradient methods that agents require to exchange entire
gradients, ES requires exceedingly low bandwidth [267].

ES does not require value function approximations, whereas Reinforcement Learn-
ing (RL) requires multiple-function value updates upon a given policy improvement.
Following any significant change in policy, multiple iterations are necessary for value
function to compensate.

In [267], the authors used a version of ES which belongs to a class of Natural
Evolution Strategies (NES) [269, 270, 271, 272, 273, 274, 275], which is closely
related to the work of [276]. Let © denote parameters and F as the objective func-
tion. NES algorithms represent the population with a distribution over parameters
py(©). NES aims to maximize the average objective value Eeg.,, F'(©) over the
population with stochastic gradient ascent and uses the following estimator to take

gradient steps on :

ViEop, F(O) = Eory, {F(0)Vylognu(©)} (3.41)
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Considering the fact that p, is factored Gaussian, the resulting gradient estima-
tor is also known as parameter-exploring policy gradients [276], zero-order gradient
estimation [277] or [278]. Algorithm 3 explains the final implementation of an ES
for training a model [267].

Algorithm 3 Evolution Strategies
Input:
1: for t=0,1,2,... do
2: Sample €1, ...e, ~ N(0,1)
3: Compute returns F; = F(O; + o¢;) for i=1,...,n
4: Set Opy1 <+ Oy + a% n_ Fie.
5: end for

The following researchers suggest the application of hybrid methods on medical
datasets: The GA-PSO hybrid method was proposed for use with gene selection
[279], Genetic algorithm and multilayer perceptron (GA-MLP), an enhanced GA
technique which works based on the theory of “most highly fit parents are most
likely to produce healthiest offspring” [280]. A new machine learning approach is
proposed by utilising the SVM-PSO method and cuckoo search [281, 282] to build
a rotation forest (RF) ensemble using 20 learners. Two clinical datasets, namely
lymphography and backache are used as benchmarks. A new technique was used
to find liver cancer by using the hybrid method of PSO-SVM [283, 284] used the
hybrid approach of PSO-SVM for the classification of tumours; [285] developed a
classification mode of SVM mitochondrial toxicity using the GA-CG-SVM scheme;
[286] formalised a robust gene selection method based on a hybrid among GA and
SVM to extract fully their respective merits for recognition of main feature genes
and for a complex biological phenotype. Some research has been done to combine
DL and EA [287] such that the optimal weights have been discovered using EA and
at the last step the model is trained using backpropagation. This study shows an

improvement in the results obtained by performing the training in two stages.

In summary, neuro-evolution [288, 289, 290] couples artificial neural networks
and evolutionary algorithms. In some cases, such as in evolutionary robotics [291,
292, 293] and artificial life [294, 295], the gradient information is difficult to obtain
or not available due to the complexity of the problem and the imbalance between

the number of samples and the number of parameters to be optimised. Recent work
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shows NE can scale to derive the parameters of deep neural networks effectively
[267, 259].

Recent work also shows NE can scale to derive the parameters of deep neu-
ral networks effectively [267, 259], although it historically served in much smaller
networks that were limited to tens or hundreds of parameters. This was due to
limited computational resources while dealing with high dimensional data [296].
The difficulty is that DNNs create tension between weight disturbances applied
and speed of evolution. In the event that only a few weights are updated in each
iteration or generation, it would take a considerable number of generations to tune
all the weights. On the other hand, if many weights are updated, it might be
too drastic for the search to proceed systematically. Such concerns are addressed
in indirect encoding research [297], in which a compact genotype is expanded at
evaluation time into a larger neural-network phenotype. Researchers, such as [296]
explore perturbation in the space of an NN’s outputs rather than only in the space
of its parameters. This leads to two approaches to generate safer neural network
mutations, namely Safe Mutations through Rescaling (SM-R) and Safe Mutation
through Gradients (SM-G). In SM-R, a line search can rescale the magnitude of a
raw weight perturbation until it is deemed safe, which does not require the NN to
be differentiable (At the expense of several NN forward passes). In SM-G, When
the NN is differentiable, the sensitivity of the NN to consistent input patterns can
be calculated (at the expense of a backward pass). The assumption underlying
these approaches is that domain evaluation is expensive relative to NN evaluation,
for instance forward or backward NN propagation. Interestingly, both approaches
relate to effective mechanisms from deep learning, such as adaptive-learning rate
methods [298] or trust regions [299], although here there is clear motivation and set-
ting, for instance, SM-R and SM-G generate pure variation independent of reward,

unlike such deep learning methods.

3.5 Chapter Summary

This chapter addressed the concept of Swarm Intelligence and discussed a number of
different algorithms including PSO, DE, GA, DFO. Furthermore, the idea of hybrid

models has been discussed and elaborated upon. Multiple real-world examples
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3.5 Chapter Summary

and implementation is provided for each algorithm. The next chapter explains our
proposed deep neuro-evoloution algorithm and compares the results obtained using

gradient-based and gradient-free approaches.
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4. Deep Neuroevolution for

Bio-Signal Classification

4.1 Introduction

This chapter covers the first part of my research, exploring the possibility of us-
ing Swarm Intelligence to find the optimal parameters of deep neural networks,
known as Deep Neuroevolution, and compare its performance with gradient-based
algorithms. The structure of the suggested hybrid algorithm, the selected neu-
ral network models, dataset, and metrics used to measure the performance are
discussed. The gradient-free approach is implemented using the Dispersive Fly
Optimisation (DFO) algorithm. This hybrid model suggests further improvements
on the DFO’s update equation, a dynamic model to control and update the distur-
bance threshold (A), and an improvement on the gathered results in contrast with

the gradient-based algorithms.

4.2 Motivation

The accurate detection of false alarms in medical Intensive Care Units (ICUs) is
of unquestionable benefit to both patients and the healthcare system. To clarify,
a false alarm in the ICU may result in a range of negative outcomes, such as noise
disturbance, disruption of continuity of care, lack of sleep, all of which may impact
patients’ stress levels, and, more generally, compromise the quality of recuperative

care. It is essential to note that only an estimated 2 - 9% of the alarms in the ICU
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are considered essential.

In this research, we deal mainly with arrhythmias, abnormalities in the heart
function which can occur in healthy and unhealthy subjects. The ICU is equipped
with monitoring devices capable of detecting dangerous arrhythmias, namely asys-
tole, extreme bradycardia, extreme tachycardia, ventricular tachycardia and ven-
tricular flutter/fibrillation. Arrhythmias are potentially fatal and in line with
AAMI guidelines, appropriate responses should be taken within 10 seconds of the
event’s commencement [5]. Triggering of the alarm when an arrhythmia occurs
could improve the chance of saving lives. Misconfigurations, defective wiring, staff
manipulation, and patient manipulation or movement may increase the false alarm
rate to as much as 86%. Clinically, 6% to 40% of the ICU alarms proved to be lower
priority incidents which did not require immediate responses [6]. False alarms stim-
ulate mental discomfort in patients [7] and may desensitise the reactions of clinical
staff, causing slower responses to triggered alarms [8]. True alarms which are rated
with high priority and require an urgent response make up only 2 - 9% of all ICU
alarms [9]; therefore, the detection and elimination of false alarms are important
areas for research.

Gradient-based learning algorithms such as backpropagation are used to train
Deep artificial Neural Networks (DNNs). As an alternative, this study aims to
evaluate the application of Dispersive Flies Optimisation (DFO) in order to find
the optimal weights of a given neural network. We evaluated the proposed gradient-
free method on a subset of the Physionet Challenge 2015 dataset [3]. The goal of
this challenge is to reduce the occurrences of false alarms with accurate detection of
the above-mentioned life-threatening arrhythmias. This goal is achieved by using
multi-modal input data such as respiration (RESP), arterial blood pressure (ABP)
and/or Photo-plethysmographs (PPGs).

4.3 Dataset Description

The Physionet Challenge 2015 [3] presented an opportunity for the participants
to present different approaches towards improving the classification accuracy of

true/false alarms. In this challenge, scoring was based on maximising True Positives
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(TP) and True Negatives (TN), while minimising False Negatives (FN) and False
Positives (FP). The scoring approach utilises an “err-on-the-safe side” approach,
where the suppression of a true alarm (false negative) is penalised much more than
events such as raising a false alarm. In other words, the fitness function used for this
task is defined and introduced by the organisers of the Physionet Challenge 2015 [3].
The conceptual motivation underlying this metric is to attempt to maximise TP
and TN while minimising FP and FN. The scoring weights FN more heavily than
the FP. This is described in the following equation,
TP+TN

_ . 4.42
Seore = b TN - FP+5EN (442)

The Physionet 2015 challenge [3] offered a training dataset containing 750 publicly-
available recordings as well as 500 private records for the purpose of scoring. This
dataset consists of life-threatening arrhythmia alarm records that were collected
from four hospitals in the United States and Europe. The recordings were sourced
from devices designed by three major manufacturing companies of intensive care
monitor devices. Each recording is 5 minutes or 5 minutes 30 seconds long at 250Hz
and contains only one alarm. They are labelled ’true’ or false’ by a team of expert
annotators. The commencement of the event is not later than 10 seconds before
the end of the recordings.

In this challenge, participants could submit their code, which would be evaluated
according to two type of events: event 1 (Real-time) and event 2 (retrospective).
The aim of event 1 is to reduce the number of false alarms while no information is
available after sounding of the alarm. In contrast, the goal of event 2 is to reduce
the number of false alarms while an additional 30 seconds of data is available after
sounding of the alarm. All recordings have a sample rate of 250Hz and contain
two ECG leads and one or more pulsative waveforms (RESP, ABP or PPG). The
ECGs may contain noise and pulsatile channels may contain movement artefacts
and sensor disconnections. In this study, we focus on event 1 and trim all the data
from the end to obtain a consistent length of five minutes; we choose a subset of 572
records. These contain the ECG leads II and V and PLETH signals. This decision
is made to ensure that we train the neural network models on identical leads and

pulsatile waveform. In this subset, there are 233 True alarms and 339 False alarms.
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Disease Name True Alarm | False Alarm
Asystole 17 7
Bradycardia 35 37
Tachycardia 90 4
Ventricular Flutter/Fibrillation 6 40
Ventricular Tachycardia 54 212

Table 4.1: Subset of Physionet dataset (572 out of 750 recordings) which contains the
ECG leads II and V and PLETH signal. We used this subset to ensure that we train the
neural network models on identical leads and pulsatile waveform.

In each n-fold, this dataset is divided into training, testing and validation, using

70% (400), 20% (114), and 10% (58) respectively. Table 4.1 describes the dataset.

4.4 Feature Selection

Since this research explores deep neuro-evolution rather than feature engineering,
we decided to utilise the feature set that [10] suggested, and focus on the hybrid
DFO-DeepNNs. The following explains the performed procedure to extract fea-
tures from the physionet dataset [3]:

The short-time auto-correlation (STA) function is a straightforward approach
to assess self-similarity. Let x(n) be a time-discrete signal and w;(v) = z(n; +v) be
an analysis window with index i centred around n;. The following equation gives
a common definition of the STA for each lag n for a window of constant length L.

Note that for simplicity, the index is omitted in the following derivation:

Nl

Ssraln) = 7 & wlww(v+1) (4.43)

Nl

The 7oy is estimated as the interval between two heart beats and the analysis
window L is set to a window that contains only two heartbeats (L ~ 21,y ). In
the case where L > 2n,,, an averaging over multiple beats will occur; whereas

L < 27p, no estimation is possible. This can be fixed by introducing the lag-
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adaptive short time autocorrelation (LASTA).

1 n
Spasra(n) = — Y wv)w(v —n) (4.44)
v=0
LASTA ensures that the exact number of samples necessary for each candidate
Jag n, is considered [300]. The following is a modified version of the average

magnitude difference function (AMDF') used to assess self-similarity:

Sapr(i) = (3 Z W) — wlv — ) (4.45)

This process also uses the lag-adaptive window and is inverted so that it assumes
larger values for lags that indicate more self-similarity [300]. The maximum ampli-
tude pairs (MAP) function considers the amplitude of the signal and accordingly
MAP is considered as an indirect peak-detection. The MAP is considered as the

third metric.

Sarar(n) = max (w(v) +w(v —n)) (4.46)

ve{0,...,n}

The maximum of all sums of sample pairs that are separated precisely n time
steps from each other is calculated. It was observed that the presented similarity
estimators exhibit a complementary noise characteristic and the results can be im-
proved by fusing the estimators based on a Bayesian approach [301], which reduces

to:

Stusea(n) = Srasta(n) - Sanrpr(n) - Sarap(n). (4.47)

Furthermore, self-similarity is modality-independent and this concept can be

extended towards multiple channels and modalities:

Sfused(n) = 5~¢fused,ECG("7) : gfused,PPG(U) Cees (448)

Thus, for every window position ¢, the optimal interval can be obtained via:

Miopt = AT gMaz]Si rusea(n)] (4.49)
n

which is the ratio of the peak height to the area under the curve. It indicates
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the amount of self-similarity this window exhibits (e.g. if the estimated interval is
trustworthy).

In order to prepare the data for NN training, features are calculated in three
categories namely ECG, BP, and all other channels (PLETH or ABP, and ALL).
ECG: fusing only the available ECG signals (channels 1 and 2); BP: fusing only
on the available pressure-based cardiac signals, all channels named PLETH or
ABP; and ALL: fusing all cardiac-related signals such as all channels that are
not named RESP. 27 features extracted from interval estimation of the above-
mentioned categories are as follows:

1 —3) min(n; opt) : Minimum optimal interval
4 —6) max(n; opt) : Mazimum optimal interval
7 —9) mean(n; opt) : Mean optimal interval

10 — 12) 32 Miopt + Sum optimal interval

(
(
(
(
(13 — 15) mad(n;opt) : Median absolute deviation of optimal interval
(16 — 18) std(nipt) : Standard deviation optimal interval
(19 — 21) std/mean(n; opt) = Standard deviation | Mean optimal interval
(22 — 24) mean(Q;) : Mean peak height to area under curve ratio
(25 — 27) median(Q;) : Median peak height to area under curve ratio

In addition to these 27 features derived from beat-to-beat interval estimations,
six features were determined by applying regular auto-correlation in a fixed window
in order to estimate the signals average rhythmicity in different interval ranges.
(28) High-frequency ECG: Relative maximum of the auto-correlation function of
all ECG signals. Evaluated for a lag of 0 - 2000 ms in a 16-second window before
the alarm. Set to zero if the corresponding delay is shorter than 200 ms, to exclude
artefacts.
(29) High-frequency BP: Similar to feature 28 using all available pressure-based
signals.
(30) Low-frequency ECG: similar to 28, yet set to zero if all corresponding lag is
shorter than 900 ms. The aim is to focus on slow rhythms.
(31) Low-frequency BP: Similar to 30, all available pressure-based signals used
instead.
(32) Average rhythmicity: Absolute maximum of the average of auto-correlations

of all cardiac-related signals. Evaluated for a lag of 0 - 1500 ms in a 5-second
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Figure 4.5: Time courses for a false and a true ventricular tachycardia alarm as
two-dimenstonal correlogram.  While the y-axis constitutes n, the colour represents

Si,fused(n) [3] .

window before the alarm. If the corresponding delay is shorter than 80 ms, values
set to zero to exclude artefacts.

(33) Peak rhythmicity: Similar to feature 32, yet calculates the absolute maximum
of maximums of all available auto-correlations.

Figure 4.1 draws a two-dimensional correlogram of two samples that diagnosed
ventricular tachycardia for comparison. These samples labelled as the True or
False alarm. The True alarm exhibits a relatively slow rhythm compared to the
false alarm at first but forms an oscillating rhythm approximately four seconds

before the alarm.

4.5 DFO Experiments and Results

As explained in section 3.2.5, the swarming behaviour of the individuals in DFO [200]
consists of two tightly-connected mechanisms; one is the formation of the swarms,
and the other is its breaking or weakening. In our study, we call the NN weights as
position. Algorithm 4 describes the adapted DFO for NN. The NN weights’ vector

of the population is defined as follows:
@ = [why, wh, wlp], i=0,1,., NI (4.50)
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where 7 represents the *" individual, ¢ is the current time step, and D is the
dimensionality of the problem space. In our study, D is the number of weights in
the given NN model. N is the number of individuals (population size) where in
this study N is set to 500. This value has been achieved empirically based on the
processing power, hardware limitations, and performance of the computer. For the
continuous problems, w;,; € R, and in the discrete cases, w;q € Z (or a subset of
7). In our study wy, is a subset of R. In the first iteration, ¢t = 0, the i*" vector’s

d™ component is initialised as:
wgy = N (0, 1) (4.51)

where N denotes the Gaussian distribution. Therefore, the population is randomly
initialised with a set of weights for each in the search space.

In each iteration of the original DFO equation, the components of the NN weights
vectors are independently updated, taking into account the component’s value, the
corresponding value of the best neighbouring individual with the best Physionet
score (consider ring topology), and the value of the best individual in the whole
swarm. Therefore the update equation is:

wit = wfnd + u(wiy — wly) (4.52)

where w! s the weight (position) value of @;’s best neighbouring individual in

d
the d* dimension at time step ¢, w, is the value of the swarm’s best individual in
the d'" dimension at time step ¢, and u = U(0, 1) is a random number generated
from the uniform distribution between 0 and 1. The update equation is illustrated
in Fig. 4.6 for when w3 is to be updated. In our study, we investigated several
extensions to improve the performance of the DFO for deep-network optimisation.
We update equation 4.52 by taking into account the corresponding value of the best
neighbouring individual and the value of the best in the whole swarm. Therefore,
the adapted update equation is as follows:

wit' = w!  +u(wl, —w! ) (4.53)

7:'n.d ind
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Figure 4.6: Sample update of w;, where i = 3 in a 2D space.

Three main components characterise the algorithm: a dynamic rule for updating
the population’s position (assisted by a social-neighbouring network that informs
this update), and communication of the results of the best found individual to
others; a dynamic mechanism to regulate the disturbance threshold, A, in order to
control the behaviour of the population (explore or exploit) in the search space
(Figure 4.7). The exploration is achieved by increasing the A (towards 1) and
exploitation is reached by decreasing the A (towards 0).

Fitness has not Improved

Fitness has Improved
and counter==

and counter==0 Fitness Improved

Fitness has not Improved
and counter==0

—{ A=1 - ~( A=0
Fitness has not Improved
and counter==

Figure 4.7: To dynamically adjust the disturbance threshold (A), a counter is used to
monitor improvements. Initially the counter is set to 50. This value has been achieved
experimentally. In each iteration, when the fitness improves, the counter is set to 50;
otherwise, it is decreased by one.

Fitness has Improved
and counter==

As stated earlier, the swarms are disturbed for various reasons. One of the
impacts of these disturbances is the displacement of the individuals, which may
lead to achieving a better Physionet score through the discovery of better weights
for the NN. To consider this eventuality, an element of stochasticity is introduced to
the update process. Based on this, the individual components of the population’s
weights’ vectors are reset if a random number, u is less than the A. This process
guarantees a disturbance to the otherwise permanent stagnation over the likely
local maxima. In the original DFO equation, the disturbance is done by updating
the parameter with a random number in the acceptable range of minimum and
maximum value. In our study, we changed this parameter’s update to correlate
with the current A and the best neighbour, that is w!j* is sampled from a Gaussian
with mean set to w;, , and variance to A?. Figure . 4.11 demonstrates A behaviour
in 3000 iterations.

Algorithm 4 summarises the adapted DFO algorithm.

In this algorithm, each member of the population is assumed to have two neigh-
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bours (i.e. ring topology).

Algorithm 4 Adapted DFO for Training
Input: population size N, model structure L, network weights wj;, length of
weights vector D, loss function f().
- A=1
2: while not converged do

33 W, =argmax [f(L(W;))], i€{0,...,N—1}
4: for i =0— N-1and i # s do

: W;, = arg max [f(L(W;-1)), f(L(Wit1))]

6: for d =0 — D-1 do

7 if U(0,1) < A then

8: wiyt — N(w! | A?))

9: else

10: wiyt — wh +u(wly, —wl )

11: end if

12: end for

13: Dynamically update A (see Section 4.5 and figure 4.7)

14: end for
15: end while

Output: Best agent’s weight vector, w,.

In summary, the DFO is a minimalist numerical optimiser over continuous search
spaces. Despite the algorithm’s simplicity, it is shown that the DFO outperforms
the standard versions of the well-known Particle Swarm Optimisation (PSO), Ge-
netic Algorithm (GA) as well as Differential Evolution (DE) algorithms on an
extended set of benchmarks over three performance measures of error, efficiency
and reliability [200]. It is shown that DFO is more efficient at 84.62% and more re-
liable in 90% of the 28 standard optimisation benchmarks used; furthermore, when
there exists a statistically significant difference, DFO converge to better solutions

in 71.05% of the problem set.

4.5.1 Model Configuration

In NN, forward-propagation includes a set of matrix operations, where parameters
include bias and weights that connect NN layers to each other. Our focus is to find
the optimal weights and biases of the whole network which provide the most accu-
rate classification for the given input. Depending on the type of neurons and input
shape in an NN, the shape of the output weights of that neuron varies. This study

uses two models: Model 1 uses four dense layers, and Model 2 uses one convolution
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Initialisation
- Create Flies
- Initialise Flies parameters
- NN model definition
- Create the best neighbours vector

¥

Flies Exploration/ Exploitation
- Collect Flies performance

¥

Disturbance Threshold
Configurator
- Update the A
- Update the counter (Patience)

v

Flies Performance Evaluation
- Update parameters for the next
iteration
- ldentify the best Fly

- Update the best neighbours vector

End
Report the results

Figure 4.8: An overview of the hybrid algorithm. Initially the the number of Flies
(agents), NN model, best neighbour vector, and NN parameter vector is created. In the
next step, the performance of each Fly (agent) is gathered and evaluated. Based on the
counter value, the disturbance threshold, (A) if there is an improvement in the fitness
function, the counter will be reset to 50 otherwise it will be reduced by one. In the next
step, based on a comparison between the A and a randomly-generated value for each
parameter, each Fly’s parameter will be updated and neighbour vector and the best Fly
in the population will be updated. The process of collecting Flies’ performance will be
repeated until either the mazimum number of iterations is reached or the target fitness
value is reached.
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and four dense layers. Due to the complexity of search space and the challenge of
having very low number of samples (572), two shallow models with a small number
of neurons is selected. This approach helped to formulate a less complex target

function with fewer number of parameters to be optimised.

In model 1 of our study, the first layer is dense, with 64 neurons. In this layer,
the input shape is (-1, 33, 1) and the output weights are (1, 64) where 1 is the
third axis of the layer’s input shape, and 64 is the number of neurons in this layer:
[(-1, 33, 1) x (1, 64)] + (64) = (-1, 33, 64).

Model 2 includes a convolution as the first layer. This model has a similar input
shape (-1, 33,1). This layer has 32 neurons, and the shape of the connecting weights
to the next layer is (-1, 2, 1, 32), where 2 is the convolution window size, 1 is the

third axis of the input shape, and 32 is the number of neurons in the convolution

layer.
Layer Name No of Neurons | Weights Shape | Total Weights | Bias
Dense 1 (Input) 64 (1, 64) 64 64
Dense 2 64 (64, 64) 4096 64
Dense 3 32 (2112, 32) 67584 32
Dense 4 (Output) 2 (32, 2) 64 2
Table 4.2: Dense Model Structure

Layer Name No of Neurons | Weights Shape | Total Weights | Bias

Convolution 1 (Input) 32 (2,1, 32) 64 32

Dense 2 (Input) 64 (32, 64) 2048 64

Dense 3 64 (64, 64) 4096 64

Dense 4 32 (1024, 32) 32768 32

Dense 5 (Output) 2 (32, 2) 64 2

Table 4.3: Convolution-Dense Model Structure

4.5.2 DFO Configuration

In our study, DFO is used to find the optimal weights in both NN models. The
numbers of parameters in model 1 and model 2 are 71970 and 39234 respectively.

The number of parameters is the sum of the number of weights and biases from all

the layers (see Tables 4.2 and 4.3).
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In our study, each member of the population (Fly or agent) has a set of parame-
ters representing the weights (including biases) of the NN model. These parameters
are initialised according to Eq. 4.51. Once all the parameters of each agent are ini-
tialised and loaded onto the NN model, the fitness (score) of each agent calculates
the mean Physionet score using 5-fold cross-validation. After each iteration, each
agent’s best neighbour, and the best agent in the swarm are identified. The best
agent holds the highest Physionet score amongst the population. An overview of
this hybrid model is provided in figure 4.8

Before updating each component, a value u is sampled from a uniform distri-
bution U(0,1). If u is less than A, the component is updated with the agent’s

best neighbour as focus (u), therefore, wij' <+ N(w! ,A?). Otherwise, the

7;nd7
agent’s component is updated with the focus of the best agent in the swarm

t+1 t t t
Wiy wi A u(wly —wp ).
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Figure 4.9: Model 1: 5-fold cross validation mean accuracy over 3000 iterations. Mean
accuracy trend for standard DFO, updated DFO, dynamic and constant disturbance
threshold (A).

We implemented a mechanism to control the value of A. In the first phase or
the parameter optimisation, to manage the algorithm towards exploration, A to

set to 1; this process continues until there is no improvement in 50 iterations® (see

figure 4.11). Afterwards, A is set to zero, allowing the agents to converge to

2Note that 50 is an experimentally suggested value and further studies are required to find a
theoretically optimal value.
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Figure 4.10: Model 1: 5-fold cross validation mean Physionet score over 3000 iterations.
Mean Physionet score trend for standard DFO, updated DFO, with dynamic and constant
disturbance threshold (A ).

the best location they can find. Once again, if no improvement is noticed in the
Physionet score in 50 iterations, A is increased by a random number between 0
and the experimental value of 0.5 (A «+— A + U(0,0.5)). The algorithm is then set
to run. If there is an improvement followed by a 50 iteration state of idleness, A is
then set to 0 again to exploit the recent finding. Alternatively (i.e. if there is no
improvement) after the permitted idle time-frame, A is incremented further. In a
situation when A > 1, A is set to U(0, 1), and the process continues as explained
above until the termination points, which is 3,000 iterations. Figure 4.9 and 4.10
demonstrate trend of improvement in accuracy and Physionet score over iterations.
In this experiment, we compared 5-fold cross-validation of the first and fifth rank
in the Physionet challenge 2015 with our designed NN models (see Table 4.4). The
optimal weights of our models are calculated through both backpropagation and
gradient-free algorithms. Model 1 consists of four dense layers and Model 2 consists
of a convolution layer and four dense layers (see Table 4.2 & 4.3 ).

As a benchmark, we calculated the accuracy and Physionet scores of [302] and
[10]. They achieved the accuracy and the Physionet scores of (87.24%, 85.50%) and
(87.78%, 80.09%) respectively. We investigated various implementations of DFO

as well as random search. The DFO’s modified version for Model 1 & 2 achieved
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Figure 4.11: Model 1: 5-fold cross validation disturbance threshold (A) trend. Visual-
ising A trend, considering dynamic and constant disturbance threshold (A) over 3000
iterations.

the highest score among the other results (see Table 4.4). Their accuracy and
Physionet scores are ((91.91%, 86.77%) and (91.88%, 86.81%) respectively. The
behaviour of DFO, while having a constant A value of 0, and Random Search is
also investigated. Their accuracy and the Physionet scores are (73.89%, 51.53%)
and (84.16, 68.03) respectively. The models optimised via neuroevolution with
DFO outperforming both (i) the networks trained by backpropagation, as well as
(ii) the winning entries of the Physionet challenge. The reason for poor perfor-
mance of backpropagation in contrast with the hybrid model can be justified by
the fact that that backpropagation is performing function minimisation, in which
we can apply the chain rule of derivatives at each layer because they are function
compositions. First order optimisation is looking at the gradient and moving in a
downbhill direction (minimum error) by some fixed-step size, by which it is possible
that we end up at the local minima or saddle point instead of global minima in our

parameter search space [303, 304].
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Author Method Mean Accuracy | Physionet Score

By [10] SVM, BCTs, DACs 87.24% (+/- 2) 85.50% (+/- 3)

By [302] Fuzzy Logic 87.78% (+/- 4) 80.09% (+/- 8)

Our Study 1 Dense Network, Backpropagation 87.70% (+/- 3) 75.35% (+/- 7)

Our Study 2 Dense NN, Standard DFO, Dynamic A, using | 90.02% (+/- 3) 79.23% (+/- 5)
Eq. 4.52

Our Study 3 Dense NN, Adapted DFO, Dynamic A, | 91.91% (4/- 4) 86.77% (+/- 4)
using Eq. 4.53

Our Study 4 Dense NN, Random Search 84.16% (+/- 3) 68.03% (+/- 5)

Our Study 5 Dense NN, Standard DFO, A = 0 (i.e. no | 73.89% (+/- 2) 51.53% (+/- 4)
disturbance)

Our Study 6 Conv-Dense NN 88.21% (+/- 3) 76.34% (+/- 6)

Our Study 7 Conv-Dense NN, Adapted DFO, Dy- | 91.88% (+4/- 2) 86.81% (+/- 4)
namic A

Our Study 8 Conv-Dense NN, Random Search 75.63% (+/- 8) 52.37% (+/- 9)

Table 4.4: Accuracy and Physionet score over 5-fold cross validation for first and fifth
rank in Physionet challenge 2015, NN optimised with backpropagation and adapted DFO
algorithm with constant and dynamic disturbance threshold (A)

4.6 Chapter Summary

In summary, we have presented a method for training neural networks based on
neuroevolution, by utilising the DFO algorithm in a gradient-free, population-based
scheme. We evaluated our approach to the problem of detecting false alarms in
ICUs using the Physionet dataset. The results obtained show that the proposed
method outperforms (i) backpropagation-trained networks with the same or similar
architecture, as well as (ii) the winning entries of the Physionet challenge. We also
addressed the possibility of imputing missing signals while having two or five signals
for each sample. Later, the imputed signals using the five-signal method were used
for the purpose of classification to discover the model’s hyper-parameters using the

hybrid model discussed in this chapter.
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5.Signal Imputation with

Adversarial Networks

5.1 Introduction

In the previous chapter, the possibility of using gradient-free in place of gradient-
based algorithms was explored in conditions of a limited number of samples. This
was due to a smaller number of samples (572 out of 750) with the same type of
bio-signal data. In this chapter, we aim to use Generative Adversarial Networks
(GANSs) to impute those missing bio-signals. This enables us to include more
samples (738 out of 750) in the task of reducing false Arrhythmia alarm events in
the ICU.

5.2 Motivation

In this research we conducted two separate studies to evaluate the quality of an
imputed missing signal from another signal and also to impute five signals in in-
stances of samples from multiple channels. Later, we used the imputed samples to
train the model described in chapter 3.5 to evaluate the effect of imputed samples
on accuracy and the Physionet score.

As mentioned in the previous chapter, each signal has a length of 82,500 data
points with a frequency of 250hz, equating to a recording with a length of 5 min-
utes 30 seconds. The recording includes two leads of ECG(II and V) and max-

imum two pulsatile waveforms (arterial blood pressure waveform [ABP’|, respi-
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5.3 Methodology - Two-Signal Imputation

ration RESP’], photo-plethysmogram [PLETH’]). In this chapter, we consider
using a window size of 250 (equivalent to one second) to slice the signals to ensure
the inclusion of at least one complete pulsation of the heart (heartbeat) at each
window. Therefore, each signal is separated into 300 samples with 250 length. See
table 5.5 for detailed information about total number of each channels within the

dataset used.

Table 5.5: Subset of Physionet dataset (648 out of 750 recordings) that contain the
ECG leads II and V and Photo-plethysmogram, Arterial blood pressure, and Respiration
signals. We used this subset to ensure that we train the NN models on an identical set of
signals.

Lead | Lead | Arterial blood pressure | Respiration | Photoplethysmogram | Total samples
II A%
648 648 289 243 572 648

5.3 Methodology - Two-Signal Imputation

The idea for our first approach is inspired from an imputation method that uses
Generative Adversarial Networks (GANs) for missing view problems [305]. In
this method we combine CycleGAN [103] and a multi-modal Denoising Auto-
Encoder(DAE), and use it to generate ECG leads II and V from each other. A
DAE is utilised and trained to operate on a generated signal by CycleGAN, and
reconstruct a repaired signal [306]. We use the CycleGAN to learn cross-domain re-
lations between ECG signals and from paired data in a DAE to learn between-view
correspondences. Additionally, we denoise the signals generated by CycleGAN to
improve their quality by learning a shared representation from pairs (z,y). The
CycleGAN consists of Gxy, Gyx, Dxy, and Dy, representing generators and
discriminators of the model respectively.

The mapping between domain space II and V is addressed as Gy : [ — V
and Gyrr:V — I1.
DAE : Il xV =11 xV.
In this approach, The CycleGAN estimates and maps given I using V' and vice
versa by concentrating on domain translation. Considering the complex structure
of this method, there are four loss functions to consider. In order to produce an

equation for overall loss function minimisation, the adversarial loss, multi-modal
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5.3 Methodology - Two-Signal Imputation

DAE loss, cycle consistency loss, and overall loss will be explained and then applied.

5.3.1 Multi-modal DAE Loss

The DAE extracts features from each view in their primary parallel layers. Later,
the features are concatenated and fed to a stack of layers to reduce the dimensions
and form a shared representation tensor. Lastly, each view is gathered through
separate output layers. The reconstruction function and inner representation of
each view which creates the basic structure of the multi-view data is optimised
jointly during the training process. Considering the original pair from the dataset
(I1,V) and the CycleGAN mappings Gy : Il — V and Gy : 'V — I1, the
inputs to the DAE will be two pairs of (I1,Gryv) and (V, Gyyr), which are the

reconstructed leads II and V. The objective function is as follows:

Lppa(DAE,Grrv,Gyrr) =
E(11,v)~pdatayrrvplll DEAIL, Gy (1)) — (I1,V) |51+

E(11.v)~pdatay ity || DEA(Gy(V),V) = (IL V) |[3]
(5.54)

5.3.2 Adversarial Loss

Assuming projection of lead IT and V are shown as P;;(11,V) = Il and P, (I1,V) =
V; The II part or V part are taken from the pair (I1,V), and the adversarial
loss of the combined functions, P;; o DAE(Grpv(I1),1I) : II — V and Py o
DAE(Gy(V),V):V — I1, is as follows:

ﬁEEAGAN(DAE7 GHV; DV) -

EW)~Paa(v)[log(Dy (V)] +
E(r1)~Phora(anlog(l — Dy (Py o DAE(IT, Grrv(I11)))],
(5.55)
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and

EIDIEAGAN(DAE’ GVII? DII) -
E(11)~Paara (1 [l0g(Drr (11))]+

EW)~Piua(vy[l0g(1 = Dr1(Prr o DAE(Gy1r(V)))]-
(5.56)

As it can be understood from the above equations, the adversarial loss takes
effect on the GAN as well as the DAE. The loss function in eq.5.55 measures vari-
ations between the output of the complex function Py o DAE(II, Gy (I1)) and
the observed lead V' and the loss represented in eq.5.56 computes the difference be-
tween the output of the complex function P;; o DAE(Gy (V) and the observed
lead 1. The discriminators D;; and Dy are responsible for discriminating between
real and generated signals using the above-mentioned complex functions. To op-
timise the proposed model, at the final stage of training, following the standard
GAN mechanism, which solves the minmax challenge, we target optimisation of

. 1% . 11 3
MINDAE.G v MATDy Lhpacay a0d MiNpag ay,,MaTp,, Lppacan respectively for

DAE, G[], DV and DAE, Gv, D][ networks.

5.3.3 Cycle Consistency Loss

The aim is to enable the adversarial network to map the input ECG lead back
to itself by passing it through the two generators Gy and Gyy;. This is done
by minimising the cycle consistency loss and GAN loss simultaneously. The cycle
consistency loss function guarantees that the mapping function can map an input
to the aimed output. To increase the probability of the desired outcome of the

mapping function, we use the cycle consistency loss function as follows [103]:

Leve(Grv,Gvir) =
E (11~ Paara(rn) | Gvir 0 Grrv(IT) — 1T [|1]+ (5.57)

E(V)diam(v)[” GIIV ° GVII(V) -V Hl]

The cycle consistency loss function has been used in DualGAN [307], Disco-
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GAN [308], and CycleGAN [103].

5.3.4 Overall Loss

The overall loss function utilises all the above-mentioned losses and is formulated

as follows:

L(DAE,Girv,Gyrr, Dir, Dy) =
ApaeLpae(DAE, Grrv, Gvir)+
AevoLeyo(Grv, Gvrr)+ (5.58)
Lo apcan(DAE, Gy, Dir)+

LY apcan(DAE,Grv, Dy)

The hyper-parameters Acyc and Apag are then used to balance different terms
in the objective function. In the above equation, Loye and Lpar do not use
the correspondence in pairs, because the Loye loss will measure the full-cycle
projection of signal I1 or V to itself and the Lpap loss uses the samples that have
been randomly generated.

We solve the minmax challenge by finding the optimal parameters for the model’s
generators Gy and Gy, discriminators Dy and Dy, and the denoising auto-encoder

DAE as follows:

max L:(DAE, G]]\/,GV]],D[],Dv) (559)

min
DAE,Gr1v,Gvir Dir,Dv

5.4 Experiments and Results - Two-Signal Impu-
tation

In this experiment, we use a pair of signals (leads II and V) and aim to generate
one lead from another. To apply the idea, we implemented a model by extending
the image domain transfer idea (VIGAN). This includes two sets of discriminators
Dirv, Dy and generators Gy, Gy and a denoising autoencoder DAFE. In the
following sections we discuss model setup and evaluate the quality of the generated

leads.
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5.4.1 Model Setup

This model consists of two generators which include a stack of four 1D Conv and
two 1D De-CONV layers and two dense layers on the top. The generator Gy,
inputs lead /1 and maps lead V' and the generator Gy, inputs lead V' and maps
it to lead II; both have been configured with ADAM optimiser and the learning
rate set to 2e —4. The discriminators Dy and Dy include a stack of three layers
of 1D-CONV and a dense layer at the top. In these models, the learning rate has
been set to 2e — 4.

The denoising auto-encoder DAFE includes eleven dense layers and accepts two
leads I1 and V', one of which is real while the other is generated as inputs and
outputs two denoised signals. The optimiser is set as ADAM with 2e — 3 as the

learning rate.

Lead Il

Lead V [
' Generated Lead Il

G1 G2

Generated Lead V

D1 D2

Lead V Generated Lead Il Generated Lead V Lead Il

AE AE

Generated Lead Il Generated Lead V

Figure 5.12: The structure of two-lead imputation model.

5.4.2 Model Performance

After setting up the model, first we trained DAFE using the real I] and V leads
where the denoising auto-encoder learns both the signal domains and is able to
map the input signals to corresponding domains. Later, we trained the Gy and
Dirv and Gy and Dypy alternately where the discriminators learn to distinguish
between real and generated signals (maximisation), and the generators learn to map

the input signals from one domain to another. Table 5.6 demonstrates the results
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5.5 Methodology - Five-Signal Imputation

achieved using two generators with discriminators and also adding a denoising auto-
encoder at the top. Two sample outputs considering two pairs of different input
leads I1 and V', C'ycleGAN, and CycleGAN with DAFE are shown in fig. 5.13 and
5.14.

The following plots represents the full cycle of generating each lead and the
output of DAE:

Original Cycle Qutput AE Output
1.0 1 7 7

0.8 1 b b

0.6 1 1
0.4 1 1
0.2 1 (— 1

1.0~ R R

Lead Il

0.8 1 1
0.6 - 1 b

0.4 F'_ _

0.2 A b b

Lead V

0 100 200 o0 100 200 O 100 200
Figure 5.13: Sample 1, a clear heartbeat used to impute lead II and V from each other.
The plots demonstrate the original signals, output of the cycle and DAFE.

We have evaluated the performance of the model by calculating the MSE of the
actual and generated TEST signals.

Lead | Cycle MSE | DAE MSE
I 0.0009 0.0007
A% 0.0022 0.0008

Table 5.6: The MSE results of generated Lead II and V using cycleGan and DAE on the
top of cycleGan.

5.5 Methodology - Five-Signal Imputation

This section explains our suggested model consisting of an auto-encoder and only
one generator G and discriminator D; it uses the desired target domain label [ to
map a physiological signal from one domain to the target domain. Considering

the available dataset, we built a model to map between leads I/ and V', blood
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Original Cycle Output AE Output
0.6 . .

0.5 7 b b

Lead Il
o
ey
1
1
i

bl A AN VA

0.3 1 1

Lead V

T T T T T T
0 100 200 0 100 200 0 100 200

Figure 5.14: Sample 2, a sample of abnormal heartbeat used to impute lead II and V
from each other. The plots demonstrate the original signals, output of the cycle and DAE.

pressure(BP), photo-plethysmogram(PLETH), and respiration(RESP) signals.

The generator and discriminator are demonstrated as follows:

G(X,l) =Y, where X andY € {II,V,BP, RESP,PLETH}, (5.60)
5.60
D: X — {Dsource(X)7 Dlabel(X)}7

where Dggyree i the probability distribution over the source signal and Dygper(X)

represents the probability distribution of the target domain label.

5.5.1 Adversarial Loss

Adversarial loss is calculated to distinguish the generated signal from the real signal
considering projection of the input signals X and target label [ as Py (X,l) =Y
where XandY € {II,V,BP,RESP,PLETH} and [ represents the target signal
name. Each target signal can be projected through four other signals. For in-
stance, lead II can be generated through P;;(V,l = II) = I1, P;(BP,l = II) =
11, P (RESP,l=11)=1I,P;(PLETH,l =1II)=II. We use an auto-encoder
to reconstruct the target signal using the four generated signals with the same

target label.
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5.5 Methodology - Five-Signal Imputation

The generator GG, generates a signal while conditioned on the target label [ and
input signal X and the discriminator D aims to identify real and fake signals. The
discriminator tries to maximise the objective and the generator tries to minimise

it. The adversarial loss is formulated as follows:

Eadv :]EX [Dsource(X)]_
EX,Z [Dsource(G(X7 l))}_ (561)

ApBs[(I V 5 Dsource(X) l|l2 =1)%],

where )\, has been set to 10 and X represents a straight line between each pair

of real and generated signals that has been uniformly sampled.

5.5.2 Domain Classification Loss

This loss is used to measure the optimisation process of generator G' and discrim-
inator D while training them to map input signals and target labels to the target
signals. The D aims to minimise belonging objective to classify a given real signal
to belonging domain label. The G aims to generate signals to be categorised as
a member the target domain. The above-mentioned objectives are formulated as

follows:

ﬁfake = EX,Z[_ log Dclass(l/’Xﬂ

class

(5.62)
rrea EX,Z’[_ log DCZQSS(HG(Xa l))]

class

5.5.3 Reconstruction Loss

This loss function is used to confirm the model is able to map the input signal to
itself by passing it through the G with relevant target labels [ and I’. Using the
adversarial and classification loss functions does not guarantee that we are able
to map the generated signal to the original signal, although they enable the G to
learn to map the input to the target signal. To tackle this problem, reconstruction

has been calculated. This will measure the difference between the input signal X
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and the regenerated signal G(G(X,1),l'):

Lree =Ex vl X — G(G(X,1),1) ||1] (5.63)

5.5.4 Auto-encoder Loss

Given that there are five different signals, and each can be used as an input signal
fed to the G, we can therefore generate one signal through four other signals. The

mapping considering multi-lead projection can be demonstrated as follows:

Pyo A(G(V,11),G(BP,II),G(RESP,1I),G(PLETH, II)) :

(5.64)

{V,BP,RESP,PLETH} — II,
Py o A(G(I1,V),G(BP,V),G(RESP,V),G(PLETH,V)) : 5.5
5.65

{II, BP,RESP,PLETH} —V,
Pgpo A(G(11, BP),G(V, BP),G(RESP, BP),G(PLETH, BP)) : 5.0
5.66

{II,V,RESP,PLETH} — BP,

Presp o A(G(II, RESP),G(V, RESP),G(BP, RESP), G(PLETH, RESP)) :
{II,V,BP,PLETH} — RESP,
(5.67)

PPLETHOA(G(II, PLETH),
G(V,PLETH),G(BP,PLETH),G(RESP, PLETH)) : (5.68)
{I1,V,BP, RESP} - PLETH

Considering different mapping from multiple sources for the same destination

signal, we use an auto-encoder A to extract features from each view in separate
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initial parallel layers. The calculated features are combined into a tensor and
fed into a stack of layers to form a shared representation tensor. The output
layer produces a signal with dimensions identical to the original signal X. The
reconstruction function and inner representation of the view that establishes the
basic structure of the multi-sourced-view data are optimised jointly during the
training process. Considering the target label [ and original signal from the data
set X,Y € {II,V,BP,RESP, PLETH?} and the model’s mappings G(X,l) — Y,
the inputs to the A will be five sets mentioned in eq. 5.64, 5.65, 5.66, 5.67, and
5.68, which are the reconstructed leads /I and V., BP, RESP, and PLETH.

The objective function is formulated as follows:

L (A, Grry,Gvi, Gpi, Grespy, GprerHi) =
E(x1=11)~Pdata)((x =11 [[| A(Gva(V. 1),
Gppi(BP,1)),Grespi(RESP,)), Gpreru(PLETH, 1)) — I1 H§]+
E(x1=v)~Pdata) (x1=v) | A(Grri(I1,1),
Gppi(BP,1)),Grespi(RESP,1)), Gprpru (PLETH, 1)) — V |3+
E(x1=BP)~Pdata)(x1=BP) || A(Grri(11,1), (5.69)
Gv,(\V,1)),Grespi (RESP,1)),Gprern (PLETH, 1)) — BP H§]+
E(x1=rESP)~Pdata)(x1=rEsP) ||| A(Grri(11,1),
Gvi(V,1)),Gepi(BP,1)),Gpreru(PLETH,1)) — RESP |)5]+
E(x=pLETH)~Pdata) (X 1=PLETH) || A(Grri(11,1),

Gv.(V,1)),Gppi(BP,1)), Grespi(RESP,1)) — PLETH |)3]
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5.5.5 Overall Loss

The Overall objective function considering the generator GG, discriminator D, and

auto-encoder A is formulated as follows:

L(A,Gx,1,D) =AaLa(A, G114, Gvi, Geri, Gresey, Grrerm)+
)\T‘BCETGC(X) la l/)+
AfakeLlmea(D, X, 1,1+ (5.70)

class

Mreat L5 (G X 11T+

class

Aadvﬁadv(Gy D7 la X)

5.6 Experiments and Results - Five-Signal Impu-
tation

In this experiment, we implemented a model that shares the generator and discrimi-
nator between multiple signal domains. This experiment is an adaptation extension
to the StarGAN model [309], which is proposed for style transfer between domains.
In our model, we added an auto-encoder on the top of the proposed StarGAN,
which accepts a collection of the specific signals along with a target label, in order
to produce a target signal. The difference between this approach and the previous
approch (two-signal imputation) is the use of a shared model structure instead of
the implementation of separate models for each signal generation.

This approach simplifies the process of training, including calculating loss and
updating weights. To specify the expected (target) signal while training or predict-
ing using the shared generator, we concatenate the input signal with the expected
target label as input to the generator. The discriminator also produces two out-
puts, namely a binary judgement to distinguish between real and fake signals and

a classifier of real signals to its corresponding domain.

Signal Name II Vv Blood Pressure | Respiration | Photoplethysmogram
Label 00001 | 00010 00100 01000 10000

Table 5.7: List of target labels mapped in binary vector.
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Lead Il Lead V

Generator

Blood Pressure Photoplethysmogram

Respiration

Figure 5.15: The multi-lead generator structure

Since we can generate a signal through the other four signals, we will have four
generated signals with the same label. We added an auto-encoder on top of the

model to combine the generated signal with identical labels.

5.6.1 Model Setup

This approach includes a generator GG, discriminator D, and an auto-encoder D.
The G includes a stack of six layers of 2D CONV and three 2D De-CONYV layers
which accept an input signal X along with a target label [. This model has one
output, which is the generated target signal. The D consists of a stack of five layers
of 1D CONV, which receives a signal as an input and outputs the target label I’ and
a decision on generated or real signal Y. Both G and D benefit from the ADAM
optimiser with learning rate of 2e — 4. The auto-encoder A includes a stack of ten
dense layers and enables us to combine the generated signals for the same domain
- having the same target label [ - with different source signals, in order to produce

the target signal.

5.6.2 Model Performance

After setting up the model, we trained the G and D alternatively, where the dis-
criminator learns to distinguish between real and generated signals considering the

target label [, and output the target label I’ , and the generator learns to map
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Blood Pressure | 10000 Lead Il | 10000 Lead V' | 10000 Respiration | 10000

Generated
Photoplethysmogram
signal

Figure 5.16: photo-plethysmogram generated using the rest of available signals

the input signals along with the target label [ from one domain X to another Y.
Table 5.7 lists the target labels and their corresponding binary vectors fed into
the generator along with the source signal X. After training for 100 epochs, the
generated signals are evaluated before and after passing through the A. The re-
sults are shown in table 5.8. Analysing the results, the model shows very poor
performance in terms of generating missing respiration signals due to a lack of re-
lationship between the heartbeat and respiration rate. Within the dataset, there
are plenty of samples with similar bio-signals, but with different respiration rates.
In the following section we evaluate the performance of the same model discussed
in chapter 4.5 using the new partially-generated samples. We have removed the

respiration signal from all samples since their quality is very low.

Source of Generated Signal
Lead II | Lead V | Respiration | Blood P. | Pleth. | AE Output
Lead IT - 0.0009 4695356 0.0795 0.0148 0.0011
Lead V 0.0007 - 4225240 0.0708 0.0170 0.0052
Respiration | 7482491 | 6665219 - 4181521 | 5871420 8765679
Blood P. 0.0310 0.0207 4610502 - 0.0540 0.03333
Pleth. 0.0034 0.0065 4883125 0.0752 - 0.0039

Table 5.8: The MSE of generated signals with different sources.
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5.7 Conclusion

5.6.3 Classification Performance

We generated samples using the method discussed in section 5.6. Detailed infor-
mation regarding the type of disease and alarm type is offered in table 5.9. The
total number of samples is 738, which comprises 444 and 294 samples with the
False and True alarm label respectively. Later we followed the same steps dis-
cussed in sections 4.4 and 4.5 to select features and calculate the Physionet score.
Both approaches using backpropagation and DFO have been used to optimise the
model separately and the results obtained are demonstrated in table 5.10, and a
comparison results table with our past experiments and benchmarks are addressed

in table 5.11.

Disease Alarm Type | No. of Samples
Asystole False 96
Asystole True 22
Bradycardia False 42
Bradycardia True 46
tachycardia False 9
tachycardia True 131
Ventricular flutter fib False 51
Ventricular flutter fib True 6
Ventricular tachycardia False 246
Ventricular tachycardia True 89
Total False Alarm Samples 444
Total True Alarm Samples 294

Table 5.9: Detailed information regarding the number samples used to evaluate the clas-

sification performance.

Method TP | FP TN | FN | Mean Accuracy | Physionet Score
Exp 2, Backpropagation, (Star- | 262 32 417 27 91.98 80.02

GAN with AE)

Exp 2, Adapted DFO using | 265 | 29 429 | 15 94.01 86.96

Eq. 4.53 (StarGAN with AE)

Exp 3, Backpropagation (Star- | 260 34 413 31 91.19 78.07

GAN only)

Exp 3, Adapted DFO using Eq. | 264 | 30 425 19 93.36 84.64
4.53(StarGAN only)

Table 5.10: The Accuracy and Physionet score obtained using the generated data over
5-fold cross validation. The results are gathered using StarGAN only and StarGAN with
Auto Encoder. Comparison between the results shows that using an auto-encoder on the
top of StarGAN improves the accuracy and the Physionet score.

5.7 Conclusion

In this chapter we explored the possibility of imputing missing signals within a
sample through a two-signal and a multi-signal imputation approach. The two-

signal imputation approach is useful where we have only two signals for each sample.
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Author Method Mean Accuracy | Physionet Score
By [10] SVM, BCTs, DACs 87.24% (+/- 2) 85.50% (+/- 3)
By [302] Fuzzy Logic 87.78% (+/- 4) 80.09% (+/- 8)
Our Study 1 Dense Network, Backpropagation 87.70% (+/- 3) 75.35% (+/- 7)
Our Study 2 Dense NN, Standard DFO, Dynamic A, using | 90.02% (+/- 3) 79.23% (+/- 5)
Eq. 4.52
Our Study 3 Dense NN, Adapted DFO, Dynamic A, using | 91.91% (+/- 4) 86.77% (+/- 4)
Eq. 4.53
Our Study 4 Dense NN, Random Search 84.16% (+/- 3) 68.03% (+/- 5)
Our Study 5 Dense NN, Standard DFO, A = 0 (i.e. no | 73.89% (+/- 2) 51.53% (+/- 4)
disturbance)
Our Study 6 Conv-Dense NN 88.21% (+/- 3) 76.34% (+/- 6)
Our Study 7 Conv-Dense NN, Adapted DFO, Dynamic A 91.88% (+/- 2) 86.81% (+/- 4)
Our Study 8 Conv-Dense NN, Random Search 75.63% (+/- 8) 52.37% (+/- 9)
Our Study 9 Exp 2, Backpropagation 91.98% (+/- 3) 80.02% (+/- 3)
Our Study 10 Exp 2, Adapted DFO using Eq. 4.53 94.01% (4/- 3) 86.96% (+/- 2)

Table 5.11: Accuracy and Physionet score over five-fold cross wvalidation for first and
fifth rank in Physionet challenge 2015, NN optimised with backpropagation and adapted
DFO algorithm with constant and dynamic disturbance threshold (A) along with results
using generated samples.

Otherwise multiple models should be implemented, which will include multiple
generators and discriminators. This will make the training process complicated
and cumbersome. In this experiment we used ECG leads Il and V signals to
train two sets of two generators Gy and Gy yy and discriminators Dy and Dy gy
along with a denoising auto-encoder AED. Using this approach, we could impute
the lead V' from lead /I with MSE = 0.0007 and lead II from lead V with
MSE = 0.0008 (see table 5.6). By imputing the missing signals, we were able to
improve the accuracy over models trained without this data augmentation strategy.
The results are reported in table 5.11.

In our second experiment, we explored the possibility of imputing multiple miss-
ing signals of a sample using a model consisting of a single generator G, discrimina-
tor D and auto-encoder A. This model is able to impute lead 11, V', Bloodpressure,
photo — plethysmogram, and Respiration signal with MSE = 0.0011, 0.0052,
0.03333, 0.0039, and 8765679. All the signals except respiration have been imputed
with high similarity. The model was not able to find any relationship between the
respiration rate and other bio-signals. Therefore, we removed the respiration signal
in the feature selection classification performance process. Using the imputation
method suggested in experiment 2, we were able to consider extra samples in our
classification model (738).

To classify imputed samples, we have already explored multiple models and trained

them using backpropagation and DFO approaches. Their calculated accuracy
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and Physionet scores are described in table 5.10. Using the DFO to find the
optimal weights of the model, we recorded the highest accuracy = 94.01 and
Physionet = 86.96. A complete comparison including our previous experiments
and benchmarks are presented in table 5.11. By analysing the results gathered
in table 5.10, we observe a significant reduction (44%) in the number of False

Negatives while using the DFO algorithm in place of the backpropagation method.

5.8 Chapter Summary

In summary, we have presented a method for training neural networks based on
neuroevolution, by utilising the DFO algorithm in a gradient-free, population-based
scheme. We evaluated our approach to the problem of detecting false alarms in
ICUs by using the Physionet dataset. The results obtained show that the proposed
method outperforms (i) backpropagation-trained networks with the same or similar
architecture, as well as (ii) the winning entries of the Physionet challenge. Addi-
tionally, we addressed the possibility of imputing missing signals while having two
or five signals for each sample and later, the imputed signals using the five-signal
method used for classification purpose and two approaches used for discovering
the model’s hyper-parameters. The results demonstrate a significant improvement

while using an adapted DFO algorithm to train the model.
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6. Conclusions and Further

Directions

This thesis suggests a novel approach to impute missing bio-signals and dis-
cover optimal hyper-parameters for a deep neural network. Two approaches have
been taken: Approachl, using only available samples and Approach2 includ-
ing samples with missing signal channels and imputing them using a GAN model.
Both approaches culminated in the implementation of a deep neural network for
classification and subsequent training using backpropagation and gradient-free al-
gorithms. The results have been collected and evaluated using defined measures.
This chapter revisits the contributions and research questions that have been ex-
plored and the experiments conducted to these ends. The last section addresses

possible approaches to be taken forward from this point.

6.1 Thesis Summary and Contributions

In summary, we have presented a method for training neural networks based on
neuroevolution, by utilising the DFO algorithm in a gradient-free, population-based
scheme. We evaluated our approach to the problem of detecting false alarms in
ECG monitoring systems by using the Physionet dataset. The results obtained
show that the proposed method outperforms (i) backpropagation-trained networks
with the same or similar architecture, as well as (ii) the winning entries of the Phy-
sionet challenge. We compared five-fold cross-validation of the first and fifth rank
in the Physionet challenge 2015 with our designed NN models (see Table 4.4). The

optimal weights of our models are calculated through both backpropagation and
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gradient-free algorithms. Model 1 consists of four dense layers and Model 2 consists
of a convolution layer and four dense layers (see Table 4.2 & 4.3 ). As a benchmark,
we calculated the accuracy and Physionet scores of [302] and [10]. They achieved
accuracy and Physionet scores of (87.24%, 85.50%) and (87.78%, 80.09%) respec-
tively. We investigated various implementations of DFO against Random Search
as benchmark. The DFO’s modified version for Model 1 & 2 achieved the high-
est score among the other results (see Table 4.4). Their accuracy and Physionet
scores are (91.91%, 86.77%) and (91.88%, 86.81%) respectively. The behaviour of
DFO, while having a constant A value of 0, and Random Search has also been
investigated. Their accuracy and the Physionet scores are (73.89%, 51.53%) and
(84.16, 68.03) respectively. The models optimised via neuroevolution with DFO
outperform both (i) the networks trained by backpropagation, and (ii) the winning
entries of the Physionet challenge.

In the second part of this study, we explored the possibility of imputing missing
signals within a sample through two-signal and five-signal imputation approach.
The Two-signal imputation approach is useful when we have only two signals for
each sample. Otherwise, the multiple model should be implemented, which includes
multiple generators and discriminators. However, this can make the training pro-
cess complicated and cumbersome. In this experiment, we used ECG leads IT and
V signals to train two sets of two generators Gy and Gy and discriminators
Dy and Dy along with a denoising auto-encoder AED. Using this approach,
we could impute the lead V' from lead I1 with M SE = 0.0007 and lead I from lead
V with MSE = 0.0008 (see table 5.6). In our second experiment, we explored the
possibility of imputing multiple missing signals of a sample using a model consisting
of a single generator GG, discriminator D and auto-encoder A. This model is able
to impute lead 11, V', Blood pressure, Photo — plethysmogram, and Respiration
signals with MSE = 0.0011,0.0052,0.03333,0.0039, and 8765679. All the signals,
with the exception of respiration were imputed with high similarity. The model was
not able to find any relationship between the respiration rate and other bio-signals.
For this reason, we removed the respiration signal in the feature selection classifica-
tion performance process. Using the imputation method suggested in experiment
2, we were able to consider extra samples in our classification model (738). To clas-

sify imputed samples, we have already explored multiple models and trained them

95



6.2 Future Directions

using backpropagation and DFO approaches. Their calculated accuracy and Phys-
ionet score are described in table 5.10. Using the DFO to find the optimal weights
of the model, we recorded the highest accuracy = 94.01 and Physionet = 86.96. A
complete comparison including our previous experiments and benchmarks are pre-
sented in table 5.11. By analysing the results gathered in table 5.10, we observe a
significant reduction (44%) in the number of False Negatives by using DFO instead
of a backpropagation method.

6.2 Future Directions

Moving forwards, there are several approaches with potential for further investiga-

tion:

e expand the gradient-free experiments to evaluate the possibility of having
an algorithm that is able to suggest an optimal model including number and
type of layers for a given dataset, while measuring the performance of separate

populations for each network and optimising them separately.

e investigate the possibility of hybrid backpropagation and gradient-free opti-
misation methods which will include alternate training between them. Be-
coming trapped in a local minima is a major weakness of gradient-base al-
gorithms. However, combining a stochastic approach with the above men-
tioned algorithm to tackle the challenges could possibly improve the overall
performance. Although there has been some research suggesting a two stage
model [287], it would be interesting to observe the behaviour of a model based

on alternation between DFO and gradient-based models.

e recent years have seen significant improvements in embedded computing with
offering higher processing power, nano form factor, and having the capa-
bility of running machine learning algorithms (TinyML) [310, 311]. Vari-
ous low-footprint micro-controller devices such as Arduino [311], Raspberry
Pi [312] and Nvidia Jetson Nano [313] are available for prototyping and test-
ing concepts. Their applications in forecasting and anomaly detection, image

recognition, and audio recognition are very well explored. However, there
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6.2 Future Directions

is a research gap in using the generative adversarial models on the micro-
controller with limited resources. Investigating the possibility of using the
multi-lead generative model in sound generation, for instance, multi-channel
audio-signal imputation used in hearing-aid devices, can be considered an-

other expansion of this research.
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