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ABSTRACT

Although the idea of using Neural Networks technology for Financial Time Series prediction is an old
one, the abundance and availability of stock-price data, including high-frequency (intra-minute) data
has given an additional impetus to this fledgling field of study. Nevertheless, the study and applications
have focused on the hedge-funds and brokerage operations of investments banks and very little
academic attention has been devoted to the day-trading activity aiming at the accumulation of short-
term incremental gains — still considered as a retail activity, similar to betting. The purpose of this
research is precisely to investigate the possibility to use the sound time series smoothing techniques
of feedforward Neural Networks along with elementary but powerful Classification Neural Networks
techniques to produce a decision-aid system for intraday trading decisions. The basic design of the
study consisted in presenting a new typology of intraday patterns and apply it to the 126 trading days
of the first half of 2020 for the SP500 index, using intraday, minute-by-minute prices. While applying
this methodology generated questions for further research, the major finding of this study was that
when a price trend was soundly established during the first half of a trading day session, more often
than not (in 57 cases versus 31) the trend continued till the end of the trading day. This result, which
translates into the possibility for the trader to engage in short-term profitable trades, is non-trivial,
though needs more past data to be consolidated. Further research into the conditions prevailing in
other markets, before a trading day begins, could also prove useful.
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1. INTRODUCTION

Calibration of time-series models through filtering is a popular research area in econometrics
and financial engineering [Hamilton, 1994], [Pollock, 1999], [Kim and Nelson, 1999], [West
and Harrison, 1999], [Durbin and Koopman, 2001], [Harvey, 2001], [Shadbolt and Taylor,
2002], [Franses and Dijk, 2003], [Koop, 2006], [Harvey and Koopman, 2009] ], [Shumway and
Stoffer, 2011]. This research review reports preliminary investigations into processing financial
time series using non-linear neural networks treated with Kalman filters, which are more
powerful models than the popular econometric linear models.

The particular models studied here are based on Time-Delay Neural Networks (TDNN)
[Haykin, 2009] trained by Extended Kalman Filtering [Anderson and Moore, 1979], [Haykin,
2001], [Durbin and Koopman, 2001], [Harvey, 2002] which makes them proper dynamical
tools for time series modeling that explicitly account for the time parameter.

There are two major contributions in our research: 1) design of a Statistical TDNN (STDNN)
architecture and implementation of a robust backpropagation algorithm for its training
assuming the heavy-tailed Student-t distribution; and 2) formulation of a robust filtering
algorithm for sequential estimation of studentized STDNN. First, we develop a Statistical Time-
Delay Neural Network architecture (network topology) which extends the standard TDNN that
infers the mean of the targets with another secondary network that infers the variance. This
allows us to model not only the unknown data generating function but also simultaneously to
quantify the uncertainty of the output for each network input. Second, we develop a filtering
algorithm for robust sequential STDNN modeling of time series using the Student-t distribution.
The objective is to achieve improved modeling of noisy (real-world) time series with
sophisticated versions of non-linear neural networks. That is, instead of the widely used
Gaussian model for nonlinear regression we use a more flexible noise model based on the
Student-t-distribution. The parameters of the t-distribution such as the degrees of freedom are
also estimated online using an incremental Expectation Maximization (EM) algorithm
[McLachlan and Krishran, 1997],[ Neal and Hinton, 1995]. The adaptation of the degrees of
freedom of a t-distribution is of crucial importance because it helps to mitigate the effects of
outliers, and it helps to avoid inappropriate weight changes due to measurement defects.

Previous research [Briegel andTresp, 2000], [Ting et al., 2007], [Sarkka, 2013] reported some
experimental results using the t-distribution as a noise model and suggested that this may lead
to stable online learning algorithms and can outperform state-of-the art online learning methods
like the extended Kalman filter. Here we continue these ideas with further explorations into
robust learning of non-linear temporal neural networks, however we adopt directly the Student-
t distribution (that is, not its approximation) for learning all parameters and hyperparameters in
the model. More precisely, Section 2 presents a derivation of a robust backpropagation
algorithm for training extended STDNN, and Section 3 presents a robust filter for overcoming
the effects of outliers which is elaborated for the STDNN. A distinguishing characteristic of the
proposed approach is that all developed algorithms are fully incremental, that is they process
the data online immediately after their arrival in time. Section 4 deals with modelling financial



time series and the taking into account financial data. Section 5, constitutes the experimental
part of this study and proposes an intraday trading model based on Kalman Filter. Last, Section
6 hints to avenues of future research.

1.1. TIME SERIES MODELING

Time series have various applications in fields as diverse as clean energy production and finance
[Mills, 1991, 2002], [West and Harison, 1999], [Pollock, 1999], [Kim and Nelson, 1999],
[Shumway and Stoffer, 2000], [Chatfield, 2005], [Sarkka, 2013]. For example, time series
depicting wind movement are used by the electrical energy practitioners to fine-tune forecasts
of production.

This research focus on financial time series, which is an increasingly active area of research
[Taylor, 1986], [Franses and van Dijk, 2003], [Durbin and Koopman, 2001], [Mills, 2002],
[Tsay, 2005]. Specifically, we will try to analyze stock-market time series by taking advantage
of the contribution of neural networks in the field [Deboeck et al., 1994], [Zapranis and Refenes,
1999], [Shadbolt and Taylor, 2002], [McNelis, 2005], [Nikolaev and Iba, 2006].

Time-series modelling may be viewed as an inductive learning problem [Nikolaev and Iba,
2006]. The learning task is to identify the regularities among a given series of measurements
(points): ..., X¢, Xt 41, X¢42, ---., sSampled at discrete time intervals. The goal is to find out how
future points depend on points from the past. In the ideal case the behavior of the data generator
can be described by differential equations, but in practice knowledge of such mathematical
modelling is not available. This is why, efforts to discover plausible descriptions of the
unknown data source are made for the unknown parameters of a pre-selected model.

Here we use input vectors created from the given observations assuming embedding dimension
d, and delay time 7 [Takens, 1981], [Gershenfeed and Weigend, 1994]:

x=[x(t—1),x(t—21),..,x(t—(d—-171)] (1D

that is lagged, sliding window vectors from dt nearest previous points starting at point t. The
delay time is a positive number t>0, here in all experiments t is used. The dependent variable is
the immediate neighboring point to the start point y= f(x).

The Takens’ Theorem

A dynamical system can be described as a succession of states over increments of time. The
contribution of a theorem due to Takens [Takens, 1981] is that given a sufficient number of
observations we can reconstruct the dynamical system that has generated the series. Thus, one
can extract useful information about the phases of a dynamical system and try to make
predictions about future states [Weigend and Gershenfeld, 1994].

According to the Takens’ theorem vectors of past time series data contain sufficient information
to reconstruct the behavior of the unknown underlying system behavior. These vectors of
delayed components are supposed to be degrees of freedom of the system that could have
generated the time series. That is, the evolution of the system can be modelled by nonlinear
functions of delay vectors. A key issue is the embedding dimension, that is, the number of the



components in the vectors that have to be selected in order for the system to converge toward
its unknown yet original form.

While we know that each vector should include different information on the model, the
separating delay time is very important: should it be too short then it would be polluted by
noise; should it be too large, it becomes less informative, therefore less useful. Different
algorithms exist for calculating the optimal global embedding dimension [Abarbanel, 1996],
though the determination of the embedding dimension is still an active area of research.

1.2. NON-LINEAR VS. LINEAR MODELS

Linear time series models are straightforward to implement [Hamilton, 1994]. The penalty for
this convenience is that they may be entirely inappropriate for even moderately complicated
systems. Below we will present systems that are assumed to be linear and stationary.

Moving Average (MA) Models

The simplest model describing the relations between lagged exogenous inputs from an external
series and the current observations is the Moving Average (MA) model. A model which is a
combination of lagged inputs is called a Moving Average model. Formally, given vectors of a
predetermined number of points from an external series [u;_q, Us_y, ..., Us_y], the relation
between these input points and the given observations y, is defined by [Hamilton, 1994]:

N
Ve = Z bput_pn + by = byus_q + -+ byur_y + by (2)

n=1

where by, b,,..., by are the parameters (weights) in the model, N is the selected dimension, and
the dependent variable y, is different from the inputs, that is we have y; # u;.

This is a linear MA model in the parameters b which we are going to call here weights in
connectionist neural network parlance. In a general neural network model this relationship can
be nonlinear [Haykin, 2011].

The linear MA models are popular in econometrics and time series analysis, where they are also
viewed as smoothing filters [Durbin and Koopman, 2001]. Such filters are also known as finite
impulse response (FIR) filters [Weigend and Gershenfeld, 1994], because when the input
becomes zero after d-steps the output becomes also zero. The FIR filter is a memoryless model.

Autoregressive (AR) Models

Models that describe the relationship between previous (lagged) points from a series and the
next series point are called Autoregressive (AR) models. Let [y;_1,Vi—2, .., Ve—m] b€ the
vector from a selected number of points from the given series (for example using the Takens’
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theorem), and y, be the next point which serves as dependent variable. The linear AR model
describing the mapping between the dependent variable and the input is [Hamilton, 1994]:

M
Ve = Z WnYVt-m +Wo+ & (3)

m=1

where wy, w,,..., wy, are the weight parameters weights in the model, and &, is the noise term.
Usually the noise is assumed to be zero-mean independent Gaussian.

This AR model is also known by engineers as infinite impulse response (I1IR) [Weigend and
Gershenfeld, 1994] model because it continues to produce output even after the input
terminates, due to the effects from the noise &; which is crucial for the life of an AR model.

Autoregressive Moving Average (ARMA) Models

The most general time series models combine autoregressive and moving average parts together
into ARMA models. An ARMA(M,N) model is defined as follows [Hamilton, 1994]:

M N
Ve = z WimYt-m + z brut_n (4)
m=1 n=1

where m and n are respectively the orders of the submodels. That is m is the order of the AR
part and n is the order of the MA part.

The ARMA models are linear models which have found practical applications in various fields,
including time series analysis, econometrics and empirical finance [West and Harrison, 1999],
[Harvey and Koopman, 2009]. The inference of such models involves finding the order of the
model (that is the lagged dimension of each of the autoregressive and moving average parts)
and, next, estimation of the parameters. When searching for the model order one should be
careful not to choose an order larger than the dynamics of the underlying system, otherwise the
model will not forecast well. When learning the model weights one should avoid overfitting,
otherwise the inferred model will not generate useful predictions.

A problem arising in time series modelling is the choice between a linear or non-linear model
for the situation we want to represent [Franses and van Dijk, 2003], [McNelis, 2005], [Tsay,
2005]. Although the linear models feature clear, thoroughly studied properties and they are easy
to understand and implement, many practical data may not admit plausible representation by
them. Tests for nonlinearity should be applied to detect the inherent data characteristics, and if
inherent nonlinearities are found in the data nonlinear models should be selected.

Nonlinear Models

Stock-market time series are typically described by mathematical functions dependent on past
values. That is, prices at t will exert an influence on price at t+1. To capture such phenomena
we try to regress values of t on t-n.

An important learning problem when dealing with time series is how to choose between linear
and non-linear models for a task [Box and Jenkins, 1970]. Linear models are very popular in
econometrics and finance [Hamilton, 1994]. On the other hand, the theory of dynamical systems
indicates that even irregular series produced by deterministic dynamics often can be



reconstructed easily with the less popular nonlinear models. Various tests allow us to decide if
a linear / non-linear model is required for a specific modeling task [Nikolaev and Iba, 2006].

The popularity of linear models is due to a great degree to the sound theory behind them, but
they still need preprocessing to handle trends and seasonalities for example. Nonlinear models
are especially suitable for describing series with oscillations and stochastic effects.

The particular models studied here are Time-Delay Neural Networks (TDNN) [Clouse, Giles
Horne and Cottrell, 1997]. The name TDNN is selected in this research to denote a general class
of autoregressive nonlinear time series models, although various other notions have been also
used in similar research, namely: NNFIR [Wan, 1993], NARX [Lin, Horne, Tino, and Giles,
1996], TLFN [Haykin, 2009] and NARNN [Ngrgaard et al., 2000]. Common in all these
connectionist architectures is that they serve as temporal models, that is they process temporal
information. Temporal in this case means that the inputs are ordered in time. They are especially
adequate for describing time series, or, in other words, to capture time dependencies using a
tapped delay inputs. The tapped delay input line is considered a kind of memory that helps for
the proper temporal learning. The other kind of dynamic neural networks, namely the recurrent
networks are not considered in this study due to their well-known training difficulty arising
because of the vanishing with the time temporal gradient [Lin, Horne, Tino, and Giles, 1996].

It should be noted that our particular neural network is actually a subclass of TDNN corresponds
to the so-called Input Delay Neural Network (IDNN) [Clouse, Giles Horne and Cottrell, 1997].
Their distinguishing characteristic is that time-delayed signals from the inputs are only passed
to the hidden nodes, while the hidden node outputs are passed to the output in ordinary manner.
The most recent data passed to our TDNN play the role of a tapped delay line, which facilitates
the leaning of temporal relationships between the inputs. Another interesting feature of our
TDNN is that it can be easily treated as a dynamic state-space model, and trained with proper
sequential estimation algorithms. This is what makes them efficient for financial time series
processing. All these characteristics motivate our research into TDNN.

Financial Applications of Linear and Nonlinear Models

The linear models trained by Kalman filtering are very popular nowadays in economics and
finance [Hamilton, 1994], [Harvey, 2001], [Harvey and Koopman, 2009]. Such models have
been considered not only for traditional economic tasks, such as modeling inflation,
unemployment, risk management interest rate modeling [Kim and Nelson, 1999], consumption
[Durbin and Koopman, 2001], and portfolio selection [Nikolaev and Iba, 2006] but also recently
for the design of algorithmic trading strategies, pairs trading [Elliott et al., 2005] and statistical
arbitrage [Burgess, 1999], [Avellaneda, 2010] as well. These applications are mainly due to the
powerful representation potential of dynamic state space models, which can capture short-term
and long term movement characteristics, and also due to the flexibility of their training filters
which allow to accommodate efficiently the next data item arriving sequentially in time. .

Some well known economic applications of dynamic models include:

-interest rates modeling [Kim and Nelson, 1999]

-modeling inflation [Harvey and Koopman, 2009]

-modeling unemployment [Harvey and Koopman, 2009]

-risk management and volatility estimation [Kim and Nelson, 1999], [Danielsson, 2011]
-optimal asset allocation [Pitt and Shephard, 1999], [Aguilar and West, 2000]
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-modeling industrial sales [West and Harrison, 1999]
-tactical asset allocation [Zapranis and Refenes, 1999]
-yield curve arbitrage [Refenes et al., 1997]

Some well known applications of dynamic models for making trading algorithms include:

-pairs trading [Elliott et al., 2005]
-statistical arbitrage [Burgess, 1999], [Avellaneda, 2010], [Montana et. al. , 2009]
-option pricing [deFreitas et al., 2000], [Tino et al., 2001]
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1.3 PROCESSING FINANCIAL DATA

Our intention to conduct research into modeling financial time series respects the well known
Random Walk Hypothesis (RWH) [Malkiel, 1973], and Efficient market hypothesis [Fama,
1970], and goes further trying to describe trends in market movements without contradicting
these theories. The RWH states that stock market prices move in unpredictable way, and we
agree with that, that is we assume that prices have random behavior, ie the price
changes/increments are independent, but at the same time we believe that trends in short term
changes can be seen and they can be described functionally to a great degree. This directs our
attention to the use of concepts from the technical analysis for identification of price movement
direction, momentum and acceleration through various kinds of oscillators for example
[Kaufman, 2013]. We are modeling not the prices directly, but rather the changes in their
movements described by oscillators computed from given data.

The Efficient Market Hypothesis (EMH) [Fama, 1970] states that markets are rational and
accommodate fully any new information, so even if predictions are used for speculation they
will also be absorbed by the market and the price behavior will return back and will follow
random walk again. We agree to a great extent with the EMH as well, but we also believe that
short-term trends could be detected and could be exploited for the generation of trading signals
for scalping (that is for gaining profits from short-term price changes if captured properly). That
is why, our objective behind modeling the trends in oscillators from prices is primarily the
generation of useful trading signals that provide information about the direction of price
movements only in the near future.

Technical Analysis

Here we adopt concepts from the technical analysis [Murphy, 1999], [Brown, 2012], [Kaufman,
2013], [Pring, 2014] for extraction of trend patterns from financial price series. Of course we
are not going to use archetypal price patterns, but we will use proper technical indicators. The
technical indicators are price transformations that typically convert the nonstationary price
movement into tractable stationary signal which we believe can be modeled to a certain degree
of accuracy by contemporary non-linear neural network models. We intend to use different
technical indicators, like the RSI, the Williams% K, the DPO etc., in order to find out which of
them seem more amenable to learning and prediction using the STDNN network model.

Processing Returns on Prices

Most of the research in neural networks for financial modeling [Deboeck et al., 1994], [Zapranis
and Refenes, 1999], [Shadbolt and Taylor, 2002], [McNelis, 2005], [Nikolaev and Iba, 2006]
attempt to learn a nonlinear model of the returns on prices, so as to avoid direct processing of
nonstationary price series they preprocess them and convert into stationary.

The log-returns from a series of prices x; (1 <t < T) are computed as follows:
ly = logxy —logx,—y ()
where the assumption is that x; = x;_; +€;, &; ~N((Z),c72 ) is white noise.

It should be noted that various research efforts have been made to send as inputs to the neural
networks various variables generated by technical indicator transformation techniques, but as
given data there were still considered directly the returns from prices (these are commonly
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called neural network hybrids). We think that the returns on prices are unpredictable, and our
intention is to use as target output data produced by oscillators, like the RSI, the Williams%K,
and the DPO. That is why, we incorporate a special detrending layer in out proposed network.

A challenging problem remaining after data pre-processing are the remaining outliers. Large
amount of financial econometric research has been spent on handling outliers on financial time
series. It should be emphasized that our proposal for robust STDNN network training using
robust sequential estimation (or also called robust filtering) is applicable to any financial series.

Feeding detrended data as inputs to the STDNN can be envisioned as passing cleaned from
noise to certain extent price series, and simultaneously with that white enhanced trend
characteristics, such as relative trend strength, rate of change etc. Looking from the previous
angle these technical analysis transformations are also a kind of pre-processing techniques
(leading usually to stationary oscillating series).

When developing a neural network model for any financial series there are several design issues
that have to be addressed carefully: 1) how to select the input variables; 2) how to design the
neural network architecture, including the selection of the number of hidden nodes; 3) which
training filter to use, that is to find the particular training algorithm; 4) how to perform post-
processing after back testing, this involves eventual network pruning for overfitting avoidance.
The evaluation of the network performance is made here with various well known statistical
and econometric measures [Miazhynskaia et al., 2005], such as: NMSE, NMAE, HITs, etc.

1.4. AIMS AND OBJECTIVES

The main objective of this research is to investigate the application of novel STDNN models
and training algorithms for NN which facilitate the generation of useful trading signals from
financial price series. While most of the current work dedicated to generation of trading signals
exploits the possibility to predict returns with neural networks [Shadbolt and Taylor, 2002],
[McNelis, 2005], [Nikolaev and Iba, 2006], which forecasts produce the trading decisions, our
work is innovative in the sense that we attempt to forecast the evolution of technical indicators
(calculated over prices) such as Moving Averages, to take just the simpler ones (but still very
powerful).

While the theoretical part of this work focuses on Neural Networks smoothing of time series,
this serves a purpose: smoothed intraday time series are easier to fit into patterns that are
recognized by trader — might he be a human operator or a machine.

The study culminates with the proposal of a typology of intraday trading patterns (s. Empirical
Section) and their application against the 126 trading days of the first half 2020.

It is important to underscore the synergetic role of the two parts of this study: the theoretical
part reviews the latest NN technologies and provides a scientific background to the study of
trading patterns which otherwise would have been reduced to the rank of archetypal figures of
the so-called “technical” or “chartist” analysis that, while widely practiced, never managed to
establish itself as an academic field precisely because of the lack of underlying theory.

To summarize, this study pursues three specific objectives:
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-(A) Provide an extensive review of existing NN technologies and their use for financial series
smoothing (Sections 1 to 4)

-(B) Propose an original typology of intraday trading patterns (Section 5)

-(C ) Test the possibility to apply (B) to a particular pattern of intraday time series, the
Ascending / Descending Trend and examine if useful trading signals can be generated.
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2. STATISTICAL TIME-DELAY NEURAL NETWORKS

Neural Networks (NN) are non-linear models [Hornik, 1989] which are suitable for time series
modeling [Weigend and Gershenfeld, 1994], [Pham and Liu, 1995], [Haykin, 1999], [Zapranis
and Refenes, 1999], [Ngrgaard et al., 2000], [Frances and Van Dijk, 2003], [McNelis, 2005],
[Nikolaev and Iba, 2006], [Haykin, 2009]. A neural network model is a universal approximator
as it can approximate any bounded continuous function up to a desired accuracy when enough
training data and hidden neurons are available [Hornik, 1989].

One problem however of traditional feed-forward neural networks for time series processing is
that the network model is static, i.e. there is no time dimension. The simplest way to render a
static neural network model suitable for temporal processing is to feed the time directly into the
network along with the inputs. That is why, here we accommodate the time into feed forward
architecture through a delay space embedding, also known as a sliding window or tapped delay
line. The sliding window widens the input space and orders information from the present to a
pre-specified distance back in time x; = [x;_q, X;—5, X;—3, ... | [Weigend et al., 1990].

Another problem of traditional feed-forward neural networks is that their specification typically
assumes normal, Gaussian noise distributions. The normal noise density however can not
approximate well practical time series data featuring higher skewness and excess kurtosis. In
order to achieve a better fit to the data one has to adopt heavy-tailed noise densities, like the
Student-t density for example.

Our research proposes a studentized statistical time-delay neural network (STDNN) which
learns time-dependent functions of each the mean and the variance of the data distribution. The
developments here include: 1) design of a STDNN network architecture (topology) with two
interdependent parts having separate output nodes: one that infers the mean and another that
infers the variance of the target distribution; 2) derivation of gradient vectors for updating all
weights in both parts of the topology using a special cost function for a heavy-tailed noise model
using directly the Student-t pdf; and 3) formulation of a robust backpropagation algorithm for
incremental (online) gradient-based training of both parts of STDNN. Thus, we arrive at an
algorithm that can learn not only from homoscedastic but also heteroskedastic time series.

Motivation for Developing Temporal Neural Networks

The traditional Multilayer Perceptron (MLP) network [Werbos, 1974], [Rumelhart et al., 1986]
and its temporal version Time-Delay Neural Network (TDNN) studied here, are flexible
nonlinear models that are suitable for time series modeling due to several reasons:

- they are universal approximators, which means that if the data can be represented by a
mathematical function it can be found by fitting such a network model;

- they are reliable to train, which means that their training will always converge to a
weight parameter vector, even if there are mild outliers and discrepancies in the data;

The MLP networks can be classified into two sorts based on the directional flow of information
within the network, namely “feedforward” and “recurrent” neural network models. In a
feedforward network, a processing element can send information only to units which it does
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not receive information from directly or indirectly resulting in a static mapping from its input
to its output space. Recurrent networks are suited for temporal tasks due to their intrinsic
memory resulting from the configuration of the network whereas feedforward networks are not
specifically designed for temporal processing because of their lack of internal memory. The
memory plays a key role in temporal sequence processing and thus architectural considerations
specifying network topology and the activation dynamics of the processing elements is essential
when dealing with temporal patterns. Therefore, we can either add memory to a feed-forward
network, or use recurrent neural networks (RNN) with inherent memory. Previous research in
our lab [Mirikitani, 2010] has found that not only RNN networks are difficult to train, but also
they lead to unstable learning performance and not excellent results on practical data.

We study here feed-forward TDNN networks, which implement non-linear functions given
time-series data. First, the TDNN network is a nonlinear autoregressive model which can
describe a large class of deterministic systems using finite length input windows with its hidden
weights that serve as the hidden states of the series dynamics. Second, the TDNN is a dynamic
states space model which is particularly suitable for time series modeling because it implements
a generative function of weights that capture various descriptive aspects of the series in addition
to the autoregressive information implicitly passed by the given input variables.

All these properties provide us an unambiguous motivation to use TDNN for financial time
series modelling. Essentially they suggest that if a model, of the unknown function that have
generated the given time series data, this model is learnable with TDNN. Further, we extend
the TDNN with an additional preprocessing layer of units for data detrending. Thus, possibly
non-stationary series are transformed into stationary series to enable their proper processing.

2.1. STATISTICAL TEMPORAL NETWORKS

2.1.1 Extended Temporal Networks

This research develops a Statistical Time-Delay Neural Network (STDNN) that learns both the
mean and the variance of the data distribution. Following a similar research into static
multilayer networks [Nix and Weigend, 1995], [Nikolaev and Iba, 2006] a secondary network
is added, after the preprocessing layer, to model the data variance. Thus, we have a primary
network that infers the mean and a secondary network which infers the variance. Both these
networks have MLP topologies.

The STDNN network is an adaptive nonlinear model whose components are:

-inputs passed to the network;

-processing units called neurons, each having an activation function (usually this is the
sigmoidal function) which have derivatives that are computed fast;

-connections between the neurons, each associated with a corresponding weight.

The ingredient MLP networks are feedforward in the sense that the signals are send forward
through the networks and there are no feedback signals from other neurons. Since this actually
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leads to static mappings, to make them temporal, time lags are added in order to allow for the
tracking of time dependencies. That is, when we pass time-delayed inputs we add to the overall
model a temporal dimension, and the flow of information in the architecture is still only in
forward direction. In other words, for processing temporal data the network is given a
(temporal) memory structure that takes into account past values from the time series. In each
layer of a feedforward network there is a row of neurons and between the layers there is a
connection represented by an adaptable weight. In our case we are concerned with auto-
regressive process, so there is a single output unit that produces the network output.

Output |

- expsgggtlal
weights V1
signals signals ul v
Hidden
Layer
weights
. Z . _3

Detrending signals ~¢.

layer

Inputs -
- 2 X3

Figure 1. Connectionist architecture of the feedforward STDNN network model.

2.1.2 The Feedforward STDNN Architecture

The STDNN produces a time-varying estimate of the error distribution around its mean.
While the primary TDNN output yields the mean: f; = E[y;|x;]), the secondary output node
yields the noise variance: s, = g7 assuming that it is not constant but dependent on the inputs.
Thus, the conditional probability density of the output errors is inferred as a function of the
input data. The STDNN architecture is given in Figure 1.

The neurons in feed-forward networks are organized into layers, namely the input, hidden and
output. The processing elements are usually fully connected to the units in the next layer. In
feedforward networks the information flows in one direction from the input layer to the output
layer. In each layer there is a row of neurons and between the layers, there are connections
each associated with an adaptable weight.

16



A neuron combines all of the input signals coming into the unit along with a bias value into a
weighted sum and performs a weighted summation of the inputs. The neuron output is a
function of the weighted sum passed through an activation function. The output is then passed
to other units in the next layers, or to the output of the network.

Let the given data be: {x;, y;}(t = 1..T), where x; is the input lagged vector:

Xe = [X¢—1, Xe—2) X¢—3) oo ] (6)

and y, is the given target (that is the next point in the series). This is a sliding window and its
delay embedding is of crucial importance: it orders the information at each step by including
new data and discarding old data.
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We elaborate a studentized version of the STDNN assuming that the noise comes from the
heavy-tailed Student-t distribution, that is we assume that the residuals are zero-mean with
studentized probability density r,~St(0, 6?,n) having variance (precision) o7 and degrees of
freedom n. This studentized STDNN is actually a kind of density neural network that learns
simultaneously two models of the mean and the variance of the data using the Student-t
probability density function.

Let the weights in the mean part of the network {w;;, w;} (i =1..d,j = 1..H), as well as
these in the variance network {vij,vj} (i=1..d,j=1..H),bearranged into vectors:

we = [wy, Wy, ws, ... ] (7)
vy = [v1, v, V3, .. ] (8

The formal model of the studentized STDNN neural network that we develop is:

Ve = f(xt!wt) + Tt e~ St(O' O-%, n) (9)

H d
fGewd =) wia (Z wi,-6<xt_i,p)> (10)
j=1 i=1
d d
st=¢ z v s (Z vith—i> (11)

i=1 i=1

where the second equation defines the model of mean, the third equation defines the model of
the variance, o denotes the sigmoid function, € denotes the exponential function, and & is a
detrending function with pre-defined period p. In order to simplify the notation sometimes we
will use s, instead of the instantaneous variance s?, and also f(x,,w,) instead of f,(x;, w.). The
sigmoid activation function o (k) is: a(k) = 1/(1 + e~¥).

Detrending Layer

A distinguishing feature of the proposed STDNN is that it uses a special common layer that
performs detrending of the data. Here we consider the following formulae:

7 = 8(x¢_y,p) = x¢—y — MA(x¢_;, p) (12)
Ve = 6(x¢,p) = x¢ — MA(x, p) (13)
where MA denotes moving average with period p: MA(x;,p) = Zlext_i. Both equations use

the same period for averaging.

Note that here both the inputs as well as the target values are detrended, this means that we
actually model the detrended series not the given series directly. An advantage of this approach
is that it enables us to handle non-stationary series, like these from financial prices for example.
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Primary Mean-TDNN Architecture

The j-th hidden neuron in the mean-network operates as follows:

d
ki = Z WijZe—i (14)
i=1

where w;; are the weights on connections toward the j-th neuron in the hidden layer, z,_; are
the detrended inputs, and the input index i ranges up to the selected embedding dimension d.

The j-th hidden unit output activation is computed through the activation function which is
typically a sigmoid o, so we have:

d
h] = O'(kj) =0 (z With—i> (15)

The output of the network f; is computed by weighted summation over the hidden node outputs
provided by the neurons in the hidden layer:

H
j=1
For auto-regressive problems typically a single output unit produces the network output f;.

Secondary Variance-TDNN Architecture

The output node of the secondary variance-network also accepts signals from the inputs through
the common detrending layer. The extension features full connectivity, that is, every detrended
input is passed along a corresponding link to every node in the additional hidden layer, whose
outputs are next passed to the second output node. The expanded topology has the same
sigmoidal activation functions as these in the original mean-part.

The additional hidden layer uses sigmoidal activation functions to filter out the weighted
summations of the incoming detrended signals:

d
Ui =0 (z vith_i> (17)

i=1
where z,_; are the signals from the detrending nodes, v;; are the weights on the connections to
the extended hidden nodes.

However, the secondary output node transforms the weighted summation by the exponential

function in order to guarantee production of positive values only:
H

st=¢ Z ViU (18)

j=1

where v; are the weights on connections feeding the second output node, u; are the outputs of
the H additional hidden nodes, and & denotes the exponential function.
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The secondary network is also an MLP with universal approximation capacity. Overall it has a
similar structure from the primary network, and has enough power to produce a good estimate
of the variance. The secondary network learns the model uncertainty of the primary network as
it reflects its performance by accepting its inputs through the detrending nodes.

2.2. TRAINING STUDENTIZED STDNN NETWORKS

2.2.1 Gradient-descent Network Training

Neural network training is a search problem. We are searching for the set of weights that will
cause the network model to achieve the lowest global error for a training set. If we have an
infinite amount of computation resources, we will try every possible combination of weights
and search for the one leading to the best global error. However, we do not have unlimited
computing resource, so we have to use some sort of shortcut. Each training method is a way of
finding an optimal set of weights without doing exhaustive search, which is computationally
impossible. That is why, we conduct guided search. The search in the space of weights is guided
by the error gradients with respect to the weights.

The gradient is the slope of the error function at a specified weight. The gradient is given by
the derivative of the cost function curve at that point. This curve tells us something about how
steep the error surface at the given weight. Used within a training technique, it provides insights
into how the weight should be adjusted for attaining a lower error. We compute the derivatives
of the cost function with respect to the weights in the network through a technique called
backpropagation [Werbos, 1974], [Rumelhart et al., 1986], [Werbos, 1994], [Haykin, 2009].

Studentized Training Criterion

Our research proposes robust training of STDNN with a studentized cost function, that is
assuming the Student-t probability distribution function as a training objective to derive weight
training equations for all the parameters in both parts of the network. This is important as in
practice real-world data are often corrupted by observational noise with non-normal
characteristics. Adopting a Student-t cost function allows us to handle data that come possibly
from heavy-tail distributions which have longer and thicker tails. Training the double, extended
STDNN network architecture means that actually we are going to infer online the time-varying
mean and time-varying variance of the data.

Our development of a studentized training algorithm for error mean and variance learning, relies
on two assumptions [Nix and Weigend, 1995]: 1) that the noise in the data obeys the Student-t
distribution, and 2) that the errors are statistically independent.

The coherent simultaneous training process of both the first and the second network parts aims
at maximization of the likelihood of all data points:

Cr = 1_[ Ds e lYe—1) (19)
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where p,(y:|Y;—) is the conditional Student-t probability density function of the data, and Y;_,
denotes all data arrived up to moment t-1.

We consider the following Student-t distribution formula:

(n+1)
_T((m+1)/2) e \ 2
ps(ytlyt—l) — \/ﬁstl"(n/Z) (1 + nStZ )

where s? is the precision, the model error is e, = y, — f;, the parameter n (n > 2) is the degree
of freedom of the Student-t distribution, and I'(-) denotes the Gamma function.

(20)

When the degree of freedom parameter n approaches infinity the model approaches the
Gaussian noise model, so this parameter n may serve as a knob for tuning the degree to which
the model accounts for the regularities in the observations. This parameter n can either be pre-
defined for simplicity, or found by optimization as explained in the next chapter. When the
parameter is fixed in advance we begin with n=100 to achieve the same fit as with the normal
distribution (just to calibrate the performance of the training algorithm), and next in the
experiments we use n=4-10 for practical work with heavy-tailed noise.

The training objective is maximization of the cost function Cr, which is usually performed by
minimization of its negative log-likelihood. Taking the negative log-likelihood of the cost
function we arrive at the following instantaneous criterion suitable for online training:

E, = —log Ce(y¢|Ye—1) = —logps (v Y1) (21)
— 1 r(n+1)+11 2 4 Liog(n) +1 r(n)+"+11 Lyl
T BTy ) TR TR TI0B ) T 0B\ T sz

where the constants are omitted.

The weight update rules for backpropagation training of the extended STDNN are obtained by
seeking the minimum of this negative log-likelihood criterion, that is, by differentiating this
negative log-likelihood criterion with respect to the weights, equating the resulted expression
to zero, and solving it for the free variables. This procedure is used for both the first STDNN
output generating the mean, as well as for the second network output generating the variance
as they are mutually interdependent.

Calculating the Gradients of the Cost Function

We will now explain how to calculate the gradient vector of the error derivatives with respect
to all weights in the neural network. It should be noted that here we obtain the analytical
temporal derivatives of the cost function with respect to the weights that take into account the
time, and are especially suitable for incremental (online) training. Although we next plug these
derivatives into the backpropagation training algorithm which iterates many times over the
same data, this possibility for incremental learning facilitates not only proper handling of time
series data, but also helps for doing accurate forecasting.

The training procedure involves the calculation of the partial derivative for the output error at
each output neuron with respect to its incoming weights. This can be accomplished using a
method based on the chain rule from calculus.
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The individual gradients are obtained by calculating partial derivatives of the instantaneous
cost with respect to each individual weight using the chain rule as follows:
0E, OE; 0f, OE. de, 0f;

ow, Of, 0w, 0e, 3f; 0w, 22)

0E, OE, 0s¢ _OE, Oe, 0s{
dv, 0ds? dv, Ode, ds?ow,

(23)

where the first equation is for the weights w, = [wy, w,, ws, ... ] in the network that produces
the mean f; = E[y;|x.], and the second is for the weights v, = [vy, v,, V3, ... ] for the part of
the network that produces the variance s?.

2.2.2 Training the Mean Network Part

Training the mean network requires us to find the derivative of the instantaneous cost with
respect to the output of the mean network part dE,/d f;. This derivative is obtained in two steps
by taking the derivative of the instantaneous cost with respect to the residual error dE;/de, and
next by taking the derivative of the residual error with respect to the output de;/df;. These two
steps can be summarized as follows:

0E, o[(n + 1) log(1+e2/(nsy)) /2]
ofy aft

- (n ; 1) <1 + etzl/(nst)> (fl_:) =D

B (n + 1> 2ei(nsy) 1
B 2 /ns, +efns;

(n+ e
= @4
ns: + e;
The output gradient vector g, = df;(x;, w;)/dw, contains the partial derivatives of the output
f: (x, we) with respect to each individual weight from the vector w, = [w;, w,, ws, ... ] in this
network part defined as follows:

_ 9 ft (e, we) _ Oft(xe, we) Of(xe, wy)

ow, ow;, 0w,

(25)

It

where each component is derived using the chain rule:
af: (e, wi) _ df; Oh;
ow; dh; dw,

The output derivative for the hidden-to-output connections in the mean network is:

o

(26)

= h

! (27)
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Then, the delta rule for training the hidden-to-output weights w; in the mean network becomes:

0E,
= r] —_—

ft
where w; are the hidden-to-output weights.
The derivatives of the input-to-hidden connections in the mean network are as follows:

Oft
a_hj = W; (29)
oh;
Wy hi(1—hy)ze;  (30)

Then, the delta rule for training the input-to-hidden connections in the mean network is:
E
t

where w;; are the input-to-hidden weights.

This formulation of the backpropagation algorithm for training the STDNN network do not
handle directly the given inputs, but rather their detrended versions as we are interested in
learning from time series that can be highly nonstationary, like financial prices for example.

2.2.3 Training the Variance Network Part

Let the second output network node that models the variance s2 has incoming connections from
the hidden nodes weighted by v; indexed by j, and the input-to-hidden weights be weighted by
v;; as given in Figure 1. The derivative of the considered instantaneous Student-t log-likelihood
with respect to the variance s? is obtained as follows:

1+ e?/(nstz))]
2

0E, _10logs; N g [(n +1) log
ds, 2 0s; ds?

1 n+1 1 ef\ (-1
2+ (o) () (7))

1 1 (n+1) &?
252 2st(1+e?/(nsP) n
1 1 (n+1)s?

2s; 2sP(n+e?/se)
1], m+1ef

= —|sfF — —

2527 (n+e?/s?)

Since the derivative of the exponential function is its value, the output derivative for the hidden-
to-output connections in the variance network is ds;/dv; = s.u;.

l (32)
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Then, the delta rule for training the hidden-to-output weights v; in the variance network is:

O,
Av; =17 a—&sfuj (33)

where 7 is the learning rate, and w; is the signal on its connection from the additional hidden

nodes. It has to be noted here that this rule uses the squared error e? produced at the output of
the first node when the original STDNN is estimated with the same input.

The derivatives of the input-to-hidden connections in the variance network are as follows:

0s?
a—uj = StZ'Uj (34)
ou;
J
_a‘l]ij = u](l — u]')Zt_i (35)

Then, the weights on the input-to-hidden connections in the variance network are updated by:
0E;
Avij=n a—Stsfvjuj(l — uj)zt_l- (36)

where v;; are the input-to-hidden weights.

2.2.4 Phases of the Training Process

The extended STDNN network is trained with a version of the backpropagation algorithm
which conducts gradient descent search in the weight space with the above learning equations.
The second volatility network however is a nonlinear MLP which suffers from the problem of
entrapment into suboptimal solutions. That is, the neural network training process may lead to
weights which cause an error that is not optimal, rather it is an acceptably good local minima.
In addition to this, the learning rules for the hidden to output node connections in both parts of
the STDNN network are mutually dependent on the detrending layer. Because of these reasons,
in order to avoid entrapment at suboptimal local optima on the error surface, the weight training
is subdivided into three phases.

In the first phase, the mean STDNN network is trained to minimize the cost function according
to the backpropagation technique, while the extended secondary variance part of the network is
not trained, rather its weight parameters are kept fixed. This stage should be performed with
only a subset of the training data so as to avoid eventual overfitting. The second phase uses a
different subset of the given data to train the extended variance part of the network, also aiming
at minimization of the cost function. This is implemented using the backpropagation algorithm
with the learning rule for the second output, and the corresponding learning rules. In the second
phase the weights in the mean part of the network remain unchanged. In the third phase the
training objective is to minimize the common log-likelihood criterion by training
simultaneously both parts of the STDNN network. During this third phase the weights in the
mean part and the weights in the variance part are tuned each with their particular learning rules.
The training proceeds until reaching the minimum of the log likelihood criterion; that is, until
attaining a satisfactory low error.
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Robust Incremental Bakpropagation Training of STDNN

The backpropagation algorithm performs a forward and backward pass through the network.
The forward pass feeds the inputs through the network and finally the output of the neural
network model. The backward pass calculates the error derivatives. We formulate the robust
backpropagation training algorithm for the extended studentized STDNN network as follows:

Incremental Bakpropagation Algorithm for Studentized STDNN

Initialization : Data {(x;,y:)}(t =1..T), initial weights set to small values,
learning rate T]=(ll,moving average period[):14
First Phase: Perform training of the mean network part only by BackPropagation

Second Phase: Perform training of the variance network only by BackPropagation

Third Phase: Perform simultaneous training of both network parts
Repeat

For each training example (X, V;) do

i) perform a forward pass through the mean network:
flowe) =X wy o(BE, wijze_;), where:z,_; = §(x¢_;,p)
perform a forward pass through the mean network:

St =0f = 3( i Vj 0(2?:1 vith—i))' where: z,_; = §(x;—, p)

ii) perform a backward pass through the mean network and compute.

0E,  (n+1)e

of; ns; + e}

J0E;
Awj = Fh where: hj = o ZWijzt_i

OE,
Awjj=n ijh (1 h)zt i
t
perform a backward pass through the variance network
2
JE, 1 &2 (n+ 1ef
T o2 |t T 2 2
s,  2sf (n+ef/(nsf))
d
O,
Av, =1 FR ——siuj, where:u; =0 Zvijzt_i
St n
=1

oE,
o — 2 . . — . .
Avij=n s stv]uj(l uj)zt_l
t
iii) update all weights by the computed changes:
Uj =Uj+AVj, vij =vij+Avij

until the termination condition is satisfied
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Our research found that the problems of this double STDNN architecture are that it is slow to
train and rather unstable. This occurs not only because the two outputs are dependent on each
other, but also because the gradient-descent backpropagation training algorithm is slow, that is
it features slow convergence. These features make the extended STDNN developed here not
very useful for incremental online training applications.
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3 ROBUST RECURSIVE ESTIMATION OF STDNN

In this chapter we focus on the development of heavy-tail non-linear network models and
corresponding robust incremental learning algorithms for highly accurate modeling of time
series. First, we simplify the network architecture, and second develop a robust recursive
estimation algorithm for all its parameters and noise hyperparameters based on Kalman filtering
[Harvey, 2001], [Haykin, 2001], [Shumway and Stoffer, 2011], [Grewal and Andrews, 2014]
and the Expectation Maximization (EM) framework [Dempster, Laird and Rubin, 1977],
[McLachlan and Krishnan, 1997]. Although these theoretical developments have no direct
practical translation, they provide the theoretical grounding of the methods used in the empirical
work carried out at the end of this paper.

The Extended Kalman Filter (EKF) is a sequential inference algorithm that is also highly
recommended for training neural networks on time series [Haykin, 2001]. The advantage of
EKF is that it provides a second-order training algorithm which leads to better results than
simply using the first-order backpropagation algorithm. However, the traditional EKF is
sensitive to outliers and a lot of research has been dedicated to robustifying its performance
using heavy-tailed noise distributions [Briegel and Tresp, 2000], [Thing and al., 2007], [Sarkké&
and Hartikainen, 2013]. Although often contemporary variational inference techniques has been
applied [Piche et al., 2012], [Sarkka and Hartikainen, 2013] they involve approximating the
Studen-t density and using its approximation rather than the density directly.

The EKF is used in the framework of the Expectation Maximisation (EM) algorithm [Dempster,
Laird and Rubin, 1977], [McLachlan and Krishnan, 1997] for finding estimates of the unknown
model parameters given measurement data. The EM helps us to learn all parameters as well as
noise hyperparameters simultaneously during training. In order to achieve a fully incremental
training of STDNN here we follow the incremental EM [Neal and Hinton, 1998].

This chapter develops a simplified STDNN that keeps only the mean part of the statistical
network architecture, while replacing the whole variance part just by a single node. Thus, we
still design an STDNN model that infers the mean and variance of the target distribution, in
which we do not have a special model for the variance but rather we re-estimate it at each time
step with a suitable formula. Overall, the STDNN remains a non-linear model for the mean
learnable with a corresponding time varying variance. Next, we formulate a robust filter for
faster and more accurate convergence of the network training process. The filter implements a
second-order training method, which features faster convergence than the simple gradient-
descent backpropagation. The robust filter is elaborated using partial results from chapter 2,
namely the studentized error derivatives. These are the studentized error derivatives that allow
us to avoid the detrimental effects of outliers on the weight updates.

3.1. EXPECTATION MAXIMIZATION ALGORITHM

The EM algorithm is one of the main operational tools for time series modeling [Shumway and
Stoffer, 1982, 2011]. The EM alternates between estimating the unknown weight parameters
and the hidden noise hyperparameters. There are two algorithmic components in this algorithm:
E-Step and M-Step. The model parameters are computed via Kalman filtering and smoothing
during the E-Step. Once the model parameters have been found in the E-Step, their likelihood
function is computed next, and finally the hyperparameters are updated during the
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maximization step in the M-Step. The EM is a proper algorithm which ensures convergence
while searching for the mode of the complete-data likelihood.

The EM algorithm maximizes the complete-data (joint) log likelihood by alternating the two
steps, and adapts iteratively the parameters and the hyperparameters until convergence. The
complete-data log likelihood function is given by:

lOgL(Wl:Tryl:TIQﬁR) = logfp(wl:T' yl:TlQ'R) dWl:T (37)

E-step: Calculate the expected log-likelihood of the complete data conditioned at the current
hyperparameters:

EIIlogp(Wl;T; yl:TlQ’R)Il (38)

and learn the network weights given the noises. Learning of the weights involves differentiation
of the expected log-likelihood with respect to the parameters and solving after equating the first
derivative to zero:

wg = argmmejlx Eflogp(W1.r|y1:r, @, R)] (39)
Here we are going to use Kalman filtering and smoothing for weights estimation.

M-Step: Calculate the new values of the parameters Q and R (while keeping the weights
unchanged) by optimization as follows (ie maximize with respect to the hyperparameters):

(QNEW, RNEW) = aqrg max Elogp(Wy.r, y1.71Q, R)] (40)

We start the iterations with plausible values of the parameters and the hyperparameters.

The EM algorithm is particularly suited for models with latent variables like the STDNN. In
our model the weights are the hidden (latent) variables in the dynamic state-space model. The
use of the EM requires to interpret STDNN as a dynamic state-space model, and process it using
the sequential inference framework.

3.2 SEQUENTIAL BAYESIAN INFERENCE

The task of the recursive (online) nonlinear STDNN estimation is to infer the values of the
network weights along with the arrival of the observations. This motivates us to adopt the
sequential Bayesian inference framework [Tanizaki, 1996], [Sarkk&, 2013] and handle the
variables of interest using their probability distributions. The task of Bayesian training is to
compute the posterior probability (and its moments) of the weights at each time instant using
all past measurements and next updating it to accommodate the new observation.

Given the data the objective is to determine p(w;|y;). The solution to this learning problem is
found by recursive inference which filters the posterior distribution of the latent weights. This
process can be represented probabilistically using the Bayes rule as follows [Tanizaki, 1996]:

PWelyre—1) = fP(Wt|Wt—1) P(We_q|y1e—1)dwe_y (41)
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PWelyie-1) = CTp@elw)pWely1.e-1) (42)

where the normalizing constant is C = [p(yilwe) p(We|y1.e-1)dw,, the density
p(W¢|y1..—1) is the weights prior (predictive distribution), p(w;|y;.+) is the weights posterior
(filtering distribution), and p(y,|w,) is the data likelihood.

It should be noted that the weights posterior p(w;|y,..) cannot be obtained analytically for
this nonlinear STDNN model directly. This difficulty however can be alleviated through
linearization with the neural network derivatives as will be shown below.

3.2.1 Linear Kalman Filtering
The Kalman filter [Harvey, 2001], [Haykin, 2001], [Durbin and Koopman, 2001], [Shumway
and Stoffer, 2011], [Grewal and Andrews, 2014] has been originally developed for parameter
estimation in linear models. The Kalman filter is a minimum mean-square (variance) estimator
of the state of a linear dynamical system. The Kalman filter for linear models is defined using
two equations:

- process equation that defines the evolution of the weights with time;

- measurement equation that defines the observable in terms of the weights.
Formally, a linear dynamical state-space model can be described in the following way:

Dynamic Linear Model
we=wi1+¢q  q:~N(0,Q) (43)
Ve = Gwy + 1 r.~N(0,R) (44)
where q; and r; are independent, zero-mean Gaussian noises with covariances Q and R.

The standard Kalman filter provides equations for updating the model weight parameters with
the arrival of each next data tuple, so as to accommodate the new information in the parameters.
Thus, the model becomes a better descriptor of the data and it evolves sequentially in time. The
standard Kalman filter consists of the following equations [Haykin, 2001]:

State-Transition Equation Wiy = W4 (45)
Error Covariance Pr=P_,+Q (46)
Kalman Gain K, = P G[GP7GT + R]_1 (47)
State Update we = wg + Ky — ft) (48)
Error Covariance Update P, = (I -K,G)P; (49)

where Q and R are the corresponding state and measurement noise covariances.

3.2.2 Derivation of the Kalman Filter

Here we explain these equations with a derivation of the Kalman filter which we make
following relevant research [West and Harrison, 1999], [Sarkk&, 2013] and expand on it by
showing its components in detail. The estimation of the weight posterior via sequential filtering
involves two steps: first, time updating during which we calculate the weight prior, and, second,
measurement updating during which we compute the posterior using the obtained prior.

The Bayesian filtering framework relies on the assumption that the weights evolution forms a
Markov chain [Sarkka, 2013], that is the current weight vector depends only on the last weight
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vector and it is independent from anything before that: p(W¢|Wy.t—1, Y1.6-1) = p(We|lwi_1).
That is, the weights distribution depends only on the most recent probability density.

That is why, the time updating equation is:

pWelye-1) = fP(Wt|Wt—1)P(Wt—1|3’1:t—1)th—1 (50)
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Calculating the Weight Prior

This predictive distribution is typically considered Gaussian, whose mean and variance are
derived as follows:

PWely1.e-1) = N(thwt_;pt_) (51)
where the predicted mean is:
Wi = E[welyy.e-1] (52)

= E[we_1 + qely1e-1]
= Ewe_qlyr.e-1] + E[qe|y1.e-1]

= W1
and the covariance matrix is:
pt_ = Cov[wlyi.t-1] (53)
= Covwi_1|y1.-1] + Covlqelyy.t-1]
=P_1+Q

Note also that these moments follow from the properties of the multivariate Gaussian
distribution [Von Mises, 1964], [Rasmussen and Williams, 2006].

Calculating the Weight Posterior

The derivation of the weight posterior distribution is facilitated by the well-known lemma from
multivariate analysis which states that the product of two Gaussians leads also to a Gaussian
distribution, that is we have:

PWe, yelyi.e-1) = pelw)p(Welys.e—1) (54)

In order to find its moments we apply the properties of the normal distribution to this joint
density.

The moments of this density can be found as follows [West and Harrison, 1999],[Sarkka, 2013]:

POt Wely1ie-1) =N<|‘;’j| (mt,m) (55)

where:
| we
f(xe, we)
Pr P g
Pt_gt gtpt_g\é + R

mg

V, =

that is, the predicted mean w; is estimated during the time updating step along the predicted
covariance matrix P;.

Therefore, in order to obtain the weight posterior moments we just have to explain how to
compute the remaining quantities of interest.
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The characteristics of the measurement distribution can be found in an analogous way:

pYelyie-1) =N (J’t|f(xt"7‘7t_)» (gtpt_§£ + Rt)) (56)
where the mean and its covariance are computed as follows:
Elyelyse—1] = ETf (e, w)l + Elrelyr:e-11 (57)
= f(xt; 171\/t_)
Covl[yelyi:e—1] = §eCovlwel|y1.e-11g¢ + Covlrlyr.e—11  (58)
= gtﬁt_g£ +R
There remains finally to find the equation for the cross variance off-diagonal
component: Cov[wy, y] of the posterior covariance matrix:

Cov[weYelyre-1] = Covlwy, f(xe we) + 1e|y1:e-1]
= Elw¢|y1.c-11g: + 0
= P g, (59)
Having thus found the moments of the joint distribution, p(y;, w:|y1..—1) One can obtain the

conditional p(w;|y;..) according to a well known lemma for multivariate Gaussians, which
states that for the jointly Gaussian variables w and y with moments:

MR AP B CD

the conditional w|y is also Gaussian with moments:

wly ~N ((,uw +BCY(y - ,uy)) ,(A— BC‘lB’)>
Having these properties applying them to the joint leads to the following posterior:
pWely1.e) = N(thwt' pt)
where the mean vector and the covariance matrix are computable recursively.

Note that here we explained one particular version of the derivation of the Kalman filter for
linear models, but other derivations of the Kalman filter are also available [Maybeck, 1979],
[Harvey, 2001], [Durbin and Koopman, 2001].

3.2.3 Extended Kalman Filtering of STDNN

The STDNN is actually a kind of state-space model whose weights represent the hidden,
unobserved state of the dynamical system that describes the evolution of the given
measurements, which can be formulated with a couple of equations as follows:

Process (transition) equation

Wy = Wi q + qt, q:~N(0,Q) (61)
Measurement equation
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e = f(xe,we) + 1, 1:~N(O,R) (62)
where the noises q; and r; are assumed to be Gaussian with unknown variances.

These noises are considered independent (we say that the neural network function f (x;, w;) is
driven by measurement, that is observational noise).

The STDNN under development is a non-linear temporal model that requires to define an
Extended Kalman Filter for it. The EKF is an application of the Kalman filter to nonlinear
dynamical models like our STDNN network after linerarizing the network through the output
gradient with respect to the states. The equations of the KF are convertible to an EKF for the
studied here nonlinear STDNN model. This is possible through linearization of the neural
network model using the vector g, of weight derivatives computed by the backprop algorithm.

The gradient g, is a vector of derivatives of the neural network output with respect to each
weight w;; , that is:

. Of (W)

gt = —aWt_,ij

which is evaluated with the backpropagation algorithm. It measures the sensitivity of the
network output to local changes in each of the weights, with which linearization of the
measurement model is achieved (using a first-order Taylor series expansion).

The Extended Kalman Filter (EKF) operating over the linearized version of the model through
derivatives is defined as follows [Shumway and Stoffer, 1982], [Haykin, 2001]:

We = Weq (64)
ﬁt_=ﬁt—1+Q (65)
. Ofi(x, Wp)

§e=——"—= (66)

dx;
S (A A Al -1
K. = P; 3.(§.Pr gt + R) (67)
We = Wi + K (ye — O, W7))  (68)
P, = pt_(l - th,t) (69)
where g, is the estimated gradient of the output error with respect to the weights vector.
One disadvantage of EKF is that because it is based on a local linear approximation, it may not
work well on problems with considerable non-linearities. Therefore a research strategy could

consist of finding appropriate outlier removal methods so that one can keep only the advantage
while reducing the disadvantage.

3.3. ROBUST STDNN FILTERING

The Gaussian Kalman filter however is quite sensitive to moderate and large outliers in the
training seres (and even sometime unreliable). Even one large outlier can cause untypical
weight updates and lead to distortion in the model. Distortion here means a deviation of the
model from the true unknown mapping and its assumed form. Special robustification is
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necessary in order to prevent the learning from such undesirable effects on the model by
detecting large outliers and decreasing their influence on the weight updating process.

This motivates us to conduct research into formulation of a Kalman filter robust to outliers. One
strategy is to use a modified cost function for optimization which limits the effects of outliers
in a monotonic fashion. Thus, the impact of outliers can be reduced during training. We propose
to use directly the Student-t pdf for describing the target distribution (which was introduced in
Chapter 2), and elaborate a robust filter according to the approximate conditional mean filtering
approach suggested by Masreliez [1978]. Using the long-tail Student-t density makes the error
less heavily influenced by large outliers.

The formulae leading to outlier resistance are obtained by taking the derivative of the error
function which vyields the so called score function ¥ (e;), that actually helps to decrease
gradually the impact of large errors (caused obviously by outliers). The novelty is in the use of
a studentized score function for reducing the effects of the outliers. Actually we already showed
our own derivation of this studentized score function in chapter 2. The score function for filter
robustification is a partial result from the network gradient-based training equations. What
remains is to obtain also the derivative of the score function, and to clarify how to plug this
score function into the filter.

The robust filter is formulated as follows:

Wy =Weq (70)

Pr=P_1+0Q (71)
Ofe(xe, W)

i, = ——— = 72

It %, (72)

er =y — f(xe, Wy) (73)

Wy = Wy + Pt_gtlp()’t) (74)

P, = Py — P g’ (y) GiPr (75)
where: Y(y,) = (=0 logps(ye|Ye—1) /0e.)(0e./df;) Is the so called score function and
Y'(y.) = 0P(e,)/de, is its derivative.

We already showed a similar derivation of the score in Chapter 2 (where it has been obtained
as a partial result necessary for training the STDNN by robust backpropagation), which we
repeat here for clarity:

dlogps(yelYe-1) %
de; dy;

Y =—

d [(n + 1) log (1+etz/(nst2 )) /2] de,
B dey a_yt

- ("‘; 1) <1 + e,_?/l(nst2 )) <"25? )

B (n + 1) 2e;(nsy) 1
2 /ns?+e?ns?
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n+1e
_mADe oo
nsy + ef

where n is the degree of freedom parameter of the Student-t distribution.

What remains is to find the derivative of this score function. The derivative of the score function
is obtained as follows:
(n+ 1) (nsf —ef)

(ns? + e?)?

(n+1) (n—e?/s?)?

Ttesy’ % 77)

Yy =

One can check the validity of our equations by replacing the Student-t assumption with the
Gaussian assumption for the observations, and realize that our equation then become identical
to these of the Kalman filter. Our robust EKF actually downweights the large residuals, thus
reducing their effect when updating the weights.

3.4. THE RTS SMOOTHING ALGORITHM

The sequential learning of TDNN models from time series requires to evaluate the likelihood
with the complete data, so after the forward pass we perform a backward smoothing pass from
the series end down to the beginning. The sequential estimation process involves filtering
during which we estimate the hidden weights (states) given the data arrived up to the current
moment, and after that smoothing backwards from the current moment in reverse to the
beginning of the series. Thus, improved estimates of the posterior density p(w;|y,.r) using
subsequently arrived information, not available during the forward pass are obtained.

After smoothing we obtain improved averaged values of the learned weights. This is because
when we filter in forward manner the model weights are learned only from incomplete partial
information available only up to the particular moment in time, and when we return backwards
and re-evaluate the model we actually update the weights further using the unseen before
information (from the future).

In scientific parlance the purpose of Bayesian smoothing is to compute the marginal posterior
distribution of the weights after receiving all data. The smoother is conditioned on the complete
data, that is on available training data. The smoothing equations are derived from the integral
of the following joint distribution [Tanizaki, 1996]:

pWelysr) = jP(Wt' Wi |Y1r) AWeyq = fp(Wt|Wt+1'yl:T)p(Wt+1|y1:T) AWegq (78)
which follows from the Markovian property of the hidden states. The resulted smoothed
posterior p(w;|y;.7) is assumed here Gaussian.

We consider the Rauch-Tung-Striebel (RTS) type algorithm [Harvey, 2001], [Haykin, 2001],
[Durbin and Koopman, 2001], for computing the smoothed weight posterior defined by the
following recursive equations [Shumway and Stoffer, 1982], [Ghahramani and Hinton, 1996]:
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Je-1 = 131:—1(131:_)_1 (79)

Wi_y = Weq + Jeo (W — W) (80)

PLy =Py +]ea (Pl = P )iy (81)
where the recursions begin with W] = Wy and P} = P; .

One has to compute also the cross-covariances defined as follows [Shumway and Stoffer,
1982], [Ghahramani and Hinton, 1996]:

PtT—Lt—z =P,_Ji_, +]t—1(ptT,t—1 - pt—1)]£—1 (82)

which starts with the initial condition P ,_, = (I — K, §,)PF-1.

3.5. INCREMENTAL PARAMETER ESTIMATION

The task of learning all model weight parameters and noise hyperparameters together can be
accomplished simultaneously during training using the EM algorithm [Dempster, Laird and
Rubin, 1977], [McLachlan and Krishnan, 1997]. After filtering and smoothing of the weights
it suggests to compute estimates of the noise hyperparameters. Having specified a modified
STDNN with one mean output network there remains to derive equations for finding the
measurement noise variance R, = o2 as well as the process noise variance Q. Note here that
we are interested in estimating a time-varying output noise R, so we are going to make an
incremental version of the EM algorithm [Neal and Hinton, 1998]. Thus, our STDNN model
will still remain a kind of density neural network that is trained in an online manner.

3.5.1 The Complete-Data Likelihood

The EM algorithm searches for the maximum of the cost E[logp(w;.r, y1.71Q, R)]. The
algorithm alternates between expectation and maximization steps. The likelihood cost has to be
computed with the completed data, so we perform a forward filtering following by a backward
smoothing pass. The approximation to the full data density is computed via filtering of the
dynamic state-space STDNN model. The likelihood of the complete data, assuming as stated
before uncorrelated state and measurement noises, and normal Gaussian weight density
p(w¢|w¢_;) and Student-t observation density ps(y:|ws, R;) = ps (¥ |Ye—q) is:

T T
pir, yirl QR = pwo) | [ pwelwe) | [ srelwe RO (83)
t=1 t=1

which is used in the complete-data log likelihood function log L(wy.1, v1.71Q, Ry).

The ingredient densities are defined in the following way:

1 1 )
p(wo) = ——exp |~ 5 (wo — W)'E " (wy — ) (84)
2n 2 |X|2
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p(Welwe_q,Q) = 1 €Xp [— =W = we)' Q7w — Wt—l)] (85)

27TZIQI2

(n+1)

elwe, R )_F((n+1)/2)< +(yt—ft)2>_ 2
P e e R T (n/2) nR,

where R, = o7 is the precision, n (n > 2) is the degree of freedom parameter of the Student-t
distribution, and I'(+) is the Gamma function.

(86)
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Taking the logarithm of this complete-data likelihood we obtain the logarithmic joint posterior:

T
T 1
logp(Wi.r, y1.71Q,R) = ——108|Q| - z [i (we — Wt—l)lQ_l(Wt - Wt—l)]

ZI logR; + 1log<1+ tn_th) )l (87)

t
where the terms from the initialization and the terms from the degree of freedom parameter are
omitted for clarity (since they do not affect the derivations of the equations for training of the
hyperparameters demonstrated below).

Taking the expectation of this logarithm of the complete-data likelihood yields:

T T
1 +1 — f)?
Ellogp(Wy.r, y1.7|Q, R = — Ez logR; — Z IE Iln log <1 + %)]ﬂ
t=1 t=1

T -1
~5logQ - Z |5 E10w = we @ we = we 1| (89)

Next, we take the derivative of this expected log-likelihood equate it to zero, and solve it for
hyperparameters Q and R;.

3.5.2 Estimating the Process Noise Variance
The process noise variance hyperparameter is estimated in batch (offline) manner. After
differentiation with respect to the noise hyperparameter Q we get:

OE[logp(Wyr, ¥1.7|Q,RII (T —-1) 1 ' '
20 = > —E(A—ZBT+CT) (89)

Q= (A-BC™,B™) (90)

(T-1)

where we have used the following matrices:

C= ) Pha+wl, )] OD
t=1
B = Z[P te+1 T We f(wi_y)' ] (92)
A= Z (PT +wl (w!)'] (93)

t=1

where the prime symbol * denotes the transpose of a vector.

38



3.5.3 Estimating the Measurement Noise Variance

Let assume that the overall measurement variance is R = (1/T) X1, R,. After differentiation
with respect to the noise hyperparameter R we get:

0E[logp(wy.r, y1.71Q, Ry)] _
oR B

(n+1)log
OR;

1+ etz/(nRt))]]
2

1 < dlogR; iaE[[

243 R,

=1 t=1

Rt

1 N 1 (n+ 1E[e?]]
2R,  2RZ (n+ef/Ry) |

< 1 [R N (n+ 1)E[[et2]]') 94)

L\ 2RZTTT (n+eZ/R) |

1l
[y

After equating to zero and solving we arrive at the following equation:

v (n+1)

R=2) —
Tt_1 (n+e?/Ry)

[gtﬁt_§£ + ()’t — fxe, Wt))z] (95)

which obviously is tailored to our STDNN neural network using the weight gradient g.

This formula clearly shows that the error is actually downweighted by the multiplier
(n+1)/(n+e?/R.). Thus, large outliers are treated in such a way that they do not have
practically any effect on the updating of the weights, that is large outliers are effectively
weighted down. A similar formula has been already suggested for offline estimation of neural
networks [Briegel and Tresp, 2000], but here however we are willing to develop an online
estimation algorithm for temporal networks.

Since we aim at design of a fully incremental training algorithm for the STDNN, we proceed
by implementing an iterative version of this formula for recursive estimation of the
measurement noise variance hyperparameter R, at every time step.

t-1
1 n+1) P 2
R, = ?(Z R; + (n + etZ/Rt—l) [gtpt gt + (Yt — fxe, Wt)) ]) (96)

where the current noise R; is approximated inside the formula roughly by the last value R;_;.

It should be noted that this iterative recalculation of the output noise can be made also using a
forgetting rate as often done in the field of signal processing.
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3.6. ALTERNATIVE ROBUST FILTERS

We are interested in handling outliers in order to process accurately real-time financial data are
contaminated by noise and spikes. Our intention is to develop robust training procedures that
identify correct models without, that is with less influence by the noise. Proper handling of
noise allows to identify more precisely the underlying model. This is especially useful for
STDNN which are highly nonlinear models sensitive to noise.

Recent previous research [Briegel and Tresp, 2000], [Thing and al., 2007], [Sarkka and
Hartikainen, 2013] investigated the use of heavy-tailed distributions that help to describe
adequately noisy data when training online on time series. We are going further and employ a
more general but still very flexible noise model by representing the heavy-tail Student-t
distribution as a mixture of Gaussians [McLaghlan and Peel, 1997]. This enables us to derive
training equations for the TDNN weights and the parameters of the noise.

Currently state-space modeling using Student-t Noise distributions is a hot topic [Solin & S&rkka,
2015]. Moreover, our crucial problem in modeling practical financial time series is to handle
effectively the outlier so as to achieve accurate results and forecasts.

Robust Sequential Ttaining of MLP

This is one of the first approaches to handle properly outliers through the use of the Student-t
distribution when training sequentially MLP neural networks was proposed by [Briegel and
Tresp, 2000]. The authors replace the Gaussian noise assumption with the Student-t distribution
in the formulation of the error model, and arrive at concrete formulae for learning the network
weights as well as the distributional parameters degrees of freedom and scale factor. It should
be noted that the formulae that they have derived affect the weights without much distortion
when an outlier occurs in the data, and so contribute for careful training and stable learning
performance. Otherwise, it is well known that additive measurement outliers lead to instability
in sequential learning especially from time series data.

Since even the popular Kalman filter is not robust to outliers, the authors plug the heavy-tail
noise model to elaborate an outlier robust Fisher scoring learning algorithm. This is an
algorithm that directly infers the posterior mean weights (and their covariances) at every time
step, which is especially developed for sequential estimation. Actually the work of Briegel and
Tresp [2000] develops a version of the Fisher scoring algorithm for robust sequential estimation
of feed-forward neural networks on time series. One criticism, however, to their approach is
that it is rather computationally expensive because of the use of matrix inversions, which
prevented it from widespread use, in other words it seems suitable mainly for very small size
impractical networks.

Outlier Robust Kalman Filtering

The research conducted by Ting [Ting and al., 2007], proposed yet another outlier robust
Kalman filter equipped with an EM algorithm for re-estimation of the hyperparameters. In this
sense it also performs automatic computation of the noise parameters in the dynamic model. It
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is faster than the approach of Briegel and Tresp [2000] because it performs recursive
computation of the inverse weight covariance matrix during robust sequential filtering.
However, the approach of [Ting and al. [2007] does not apply a heavy-tailed distribution for
the output noise, rather it elaborates a version of weighted regression, therefore it does not use
a properly defined probabilistic dynamic model that can inherently cope with eventual outliers
in the data. This remains a stable strategy for removing outliers by weighting them with respect
to summary data statistics and handling them in an efficient manner. Although these weights
associated with the data points are given a flat Gamma distribution to account for various data
characteristics, they still remain a good but not entirely probabilistic approach to weighted
regression which makes the Kalman filter useful for robust sequential processing of time series.

The remaining problem in this research is how to control the magnitude of the weights so as to
impact deliberately the effect from the undesired and harmful outliers.

Variational Bayesian Filtering

Our developments will be similar to the most recent approach using the t-Student distribution
in place of the Gaussian for robust sequential estimation of dynamic models called filtering by
variational Bayesian approximations [Piché et al., 2012], [Sarkka and Hartikainen, 2013]. Its
distinguishing characteristic is that it approximates the weights posterior distribution (including
the mean and the variance) at each step using the variational Bayesian technique. It obtains the
posterior in an efficient manner using factoring through simpler distributions for all of the
model parameters. The possibility to deal with outliers comes from the use of an independent
Inverse-Gamma representation of the Gaussian noise distribution.

The authors derive corresponding formulae for the weights as well as for the hyperparameters
of the probabilistic model. However in their adaptive filtering algorithm the effect of the outliers
seem still not entirely controllable as their magnitude can not be tackled with completely in an
automatic way. In this sense their approach seems to be for online learning only without full
capabilities for outlier accommodation. We are going to continue the research on this approach
and extend it to accommodate more accurately the outliers, thus making a really robust
approach to sequential filtering for practical real-world time series.
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4 MODELING FINANCIAL TIME SERIES

4.1. TIME SERIES PREDICTION

Many potential applications of neural networks involve processing of data arriving sequentially
in time. The goal is to predict the next value a short time ahead into the future. Techniques
based on feed-forward networks can be applied directly to such problems provided the data is
appropriately pre-processed first.

Consider for simplicity a single variable x. One common approach is to sample x at regular
intervals to generate a series of discrete values x;_4, x;, x;+; and so on. We can take a set of d
such values x;_441, ..., X; and use the next value x,, ; as the target for the output of the network.

Once the network has been trained, it can be given a set of observed values x;_;.4, ...., x; and
used to make prediction for x;,, . This is called one-step-ahead prediction. If the predictions
themselves are passed again to the inputs of the network, then predictions can be made at future
points x;.,, and so on. This is called multi-step ahead prediction, and is typically characterized
by a rapidly increasing divergence between the predicted and observed values, due to the
accumulation of errors. One drawback with this technique is the need to choose the time
increment between successive inputs, and this may require some empirical optimization.
Another problem is that the time series may show an underlying trend, such as a steadily
increasing value, with more complex structure superimposed.

The predictability of a time series can be studied from a static perspective using statistical tests
such as [Nikolaev and Iba, 2006]:

1) tests for autoregressive behavior- applying autocorrelation tests, like the Box-Pierce Q-
statistic and the Ljung-Box Q-statistic, to the given series helps to realize whether the future
series data depend on the past, that is such tests provide statistically significant evidence that
the series is predictable;

2) tests for nonstationarity- such tests allow us to find out whether there is a nonstationary
component in a series, for example using unit root tests such as the Dickey-Fuller (DF) test;

3) tests for random walk behavior- in order to find out if a series is uncorrelated, measurements
can be made to see whether the series contains random increments. Random behavior in a time
series can be examined using variance-ratio tests for deviations from random walk;

4) tests for nonlinearity- motivation for discarding linear models can be obtained by tests for
nonlinearity that check whether the data contain evidence for nonlinear signal dependence. This
can be done using the Brock-Dechert-Sheinkman (BDS) test.

The predictability of a time series can also be investigated from a dynamical system perspective
[Abarbanel, 1996] using invariant series properties, such as the Lyapunov spectrum and the
correlation dimension. These dynamic properties characterize the sensitivity of the series to the
initial conditions and they quantify the uncertainty about the future series behavior. Positive
Lyapunov exponents and noninteger correlation dimension indicate that the series is chaotic.
When the time series is chaotic it is difficult to infer stable forecast from different starting
points. All these statistical and dynamic tests for time series are available from general-purpose
and specialized software tools.

42



In this thesis we adopt several statistical and econometric measures to estimate the
performance of the studied robust TDNN neural networks [Miazhynskaia et al., 2005].

4.2. PREFORMANCE MEASURES

Normalized Mean Squared Error (NMSE)
The Normalized Mean Square Error (NMSE) is defined as follows:

_ 2?:1(% — f(xe, Wt))z
NMSE = \/ =1 — ye-1)? S

which relates the mean square error of the model to the mean square error of the naive model.
Normalized Mean Absolute Error (NMAE)
The Normalized Mean Absolute Error (NMAE) is defined as follows:

T_ T'Z _f.Z
NMAE = =1l ~ 7| (98)

T 2 2
=11 — 124

where the return is . = y, — y;_4, and respectively #. = f(x;, W) — f(Xt—1, We—1)-
Hits (HR)

The ability of the model to predict increases and decreases in returns can be investigated with
the help of the Hit Rate (HR) defined as follows:

T
1
HR = TZ 0, (99)
t=1

where:

9, = {1, (F2(xe, W) =12 —18) 2 0
E g, otherwise

which is a measure of how often the model gives the correct direction of change of volatility.
HR € (0,1), where a value of 0.5 indicates that the model is not better than a random
predictor generating a random sequence of up and down moves with equal probability.

Weighted Hit Rate (WHR)
The Weighted Hit Rate (WHR) is defined as follows:

wiig = 2=l Ce B0 — 1) G = relire — i (100)
=11 — 14l
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4.3. REAL-WORLD FINANCIAL SERIES: The S&P500 Index

The main practical objective in this research is to investigate the usefulness of robust STDNN
for analysis of some properly preprocessed financial time series. More precisely, the intention
Is to use S&P500 price series so as to generate useful trading signals. The price series is going
to be converted into indicator series (RSl etc.), and then the STDNN will be applied to forecast
the future evolution of the indicator series. We are going to study whether STDNN can be useful
for the prediction of indicator series, obtained from prices, for efficient trading.

Below we take as an example, the evolution of the daily closing prices of the US stock-market
index Standard & Poors 500 (SP500) over a period of one month. It is extracted from Yahoo
finance and will serve as dataset for the illustrations presented in this report.

There are several advantages in our choice of the S&P500 index series:

-data exist since 1952;

-although the composition of the index is not known at any particular point in time data about
prices are widely available for this benchmark index;

-because the index is composed of the 500 major US corporates it reflects the broader stock-
market and is less sensible to idiosyncratic movements of particular stocks;

-it is a widely used index with high liquidity.

We are going to process daily closing S&P500 prices because:

-it is common in financial research
-it is necessary for me as a practical trader to generate trading daily signals.

This research will deal with daily data, that is closing values of the S&P500 index.

S&P 500

W S&P500
2,000

1400

1,000
B0

600

400

200

Yaheo! 1
198 190 1968 1970 1975 190 1965 190 196 2000 2005 2010

150
Biolume

100

Billions

a0

00

Figure 2: Daily closing prices of SP500 index recorded from 1952 to 2014.

44



(source: http://finance.yahoo.com/)

4.4 TECHNICAL ANALYSIS FOR TRADING

Nowadays computerized trading uses technical indicators to assist for finding and predicting trends in
financial time series of prices [Kaufman, 1998]. The main reason for this is the common belief that
although prices are unpredictable (theoretically it is considered that they follow a random walk, like a
geometric Browian motion) we can identify trends in them. That is why, here we will use technical
indicators not only as inputs, but also to try to predict their future evolution. The objective is to help the
automatic generation of trading signals (i.e. we do not forecast the evolution of prices directly).

The popular indicators that we are going to use are: the RSI, the Williams%K, the DPO [Murphy,
1999], [Brown, 2012], [Kaufman, 2013], [Pring, 2014]. Previous research has found that these are
among the fastest oscillators that react fast to the changing trend in financial services series of prices.
This is important because they help a trader to react fast in a timely manner and are therefore very useful.
Because these indicators are : (a) widely used and (b) are synergetic (and ideally should be used
together) as one is better for detecting reversals and the other for detecting momentum.

The problem we find with their application to SP500 is that they are wildly fluctuating and contain a lot
of noise that prevent their useful prediction. We intend to use TDNN to smooth them as much as possible
in order to facilitate their accurate modeling, and so to make them useful for decision modeling.

Relative Strength Index (RSI)

Our research will focus on modeling the evolution of the RSI index [Murphy, 1999]. This is a
well-known and widely accepted momentum indicator which allows us to generate trading
signals. However the problem is that any RSI series is usually quite noisy (because of the
inherent noise in price series) which makes it less useful for successful trading.

We are going to model and smooth the RSI curve in order to generate useful trading signals
(coming directly from the network output). The usefulness of this approach is that we will
forecast the future evolution of the RSI indicator and so will facilitate the generation of trading
signals. Our objective using a robust filtering technique to smooth the RSI series which will be
modeled by a dynamic TDNN model. That is, with the TDNN we intend to build a flexible non-
linear representation of the RSI series, which will be further smoothed through robust filtering.
Our approach will be applied to S&P500 series using TDNN trained by an EKF following the
continued interest in filtering algorithms for financial time series.

RSI Definition. The RSI is a widespread indicator of momentum and of possibility of reversal.
The definition of RSI can be found in any standard book on Technical analysis although it may
come in many varieties, with as common denominator the ratio of days up versus days down.
If we define the average gain over a period by G and the average losses by L, then the basic
formula for RSl is:

RSI, =100 — 100/(1 + 2£2y) (101)
L(x¢)

where x; (1 < t < T) denotes the price at time t.

The RSI is a price-following oscillator that ranges between 0 and 100. A popular method of
analyzing the RSI is to look for a divergence in which the security is making a new high, but
the RSl is failing to surpass its previous high. This divergence is an indication of an impending
reversal. When the RSI then turns down and falls below its most recent trough, it is said to have
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completed a "failure swing." The failure swing is considered a confirmation of the impending
reversal. Prices usually correct and move in the direction of the RSI.

One problem we have found when applied to real S&P500 prices is that these gains and losses
are actually fluctuating and lead to a lot of noise in the RSI, giving rise to unstable signals. That
is why, we intend to smooth the RSI through a TDNN. Our preliminary research found that on
daily S&P500 price an ideal timeframe of 5 days. Obviously the fewer the days of calculation
the more volatile the index becomes.

RSI Trading Strategies. Out of the many possible and practiced trading strategies we chose to
focus here on a strategy that is relative simple but helps to illustrate the significant potential
contribution of TDNN in generate trading signals when combined with technical indicators.

An empirical rule of thumb in momentum trading is that when a “short” (say 5-session) Moving
Average crosses with a “long” one (say 14 —session) this is an indication of an upward trend.
Moreover when we choose a “low RSI” area, say below 30, we can relatively safely claim that
the issue (here the S&P500) is oversold, as explained above.

The combination of the above two approaches would generate useful trading signals in periods
where the market has fallen and is on it is bouncing back.

Williams %K Oscillator

In technical analysis, the Williams %K is a momentum oscillator measuring overbought and
oversold levels [Murphy, 1999]. It is used to determine market entry and exit points. The
Williams %K produces values from 0 to -100, a reading over 80 usually indicates a stock is
oversold, while readings below 20 suggests a stock is overbought.

Williams%K, is a technical analysis oscillator showing the current closing price in relation to
the high and low of the past N days (for a given period N). Its purpose is to tell whether a stock
or commodity market is trading near the high or the low, or somewhere in between, of its recent
trading range.

max(x;, N) — x;

%WK, =100 102
WK x max(xg, N) — min(x¢, N) (102)

where x; is the closing price of the period, max(x;, N) is the highest closing price of the period,
min(x;, N) is the lowest closing price of the period N.

The oscillator is on a negative scale, from —100 (lowest) up to 0 (highest), inverse of the more
common 0 to 100 scale found in many technical analysis oscillators. A value of —100 means
the close today was the lowest low of the past N days, and 0 means today's close was the highest
high of the past N days.

The Williams %K provides insights into the weakness or strength of a stock. It's used in various
capacities including overbought/oversold levels, momentum confirmations and providing trade
signals. To use the Williams %K effectively we must understand how it works, its trading
applications, as well as its strengths and limitations.

Definition of Williams%K. The %K is very similar to the Stochastic Oscillator. The only
difference between the two indicators is how they’re scaled. The %K fluctuates between 0 and
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-100, while the Stochastic moves between 0 and 100. The Stochastic also has a moving average
applied to it so it can be used for “crossover” signals. The Williams %K only has one line by
default, although a moving average can be applied to it to give all the functionality of the
Stochastic. The indicator was developed by Larry Williams, and shows how the current price
compares to the highest price over the look back period. Typically the look back is 14 periods;
on a weekly chart that is 14 weeks, on an hourly chart 14 hours.

The most common use for the Williams %K is for overbought and oversold readings and
momentum confirmations and failures. A security is overbought when the indicator is above -
20, and the security is oversold if the indicator is below -80. The labels are misleading,
overbought doesn’t necessarily mean the price is going to drop soon, and oversold doesn’t mean
the price is due for a rally. Prices always reverse at some point, but the overbought and oversold
don’t tell us when this will occur. Overbought simply means the price is trading near the top of
the 14 day range. Oversold means the price is trading near the bottom of the 14 range.

Traders do use overbought and oversold levels to monitor reversals though. If the indicator is
overbought (above -20) and then falls below -50, traders take this as a sign that the price is
moving lower. If the price was oversold (below -80) and rallies above -50 traders take this is a
sign the price is moving higher. False signals or late signals occur frequently if these signals
are traded unfiltered. Use the price trend to filter the signals.

Detrended Price Oscillator (DPO)

DPO is an oscillator that strips out price trends in an effort to estimate the length of price cycles
from peak to peak, or trough to trough. Unlike other oscillators, such as the Stochastic or
MACD, detrended price is not a momentum indicator. It highlights peaks and troughs in price,
which are used to estimate entry and exit points in line with the historical cycle. The detrended
price oscillator formula considered here is:

DPO(x:, p) = x; — MA(x, ) (103)
where MA denotes moving average with period p: MA(x;,p) = Zlext_i.

The cycles are created because the indicator is displaced back in time. The chart below shows
the indicator does not appear at the far right of the chart, and is therefore not a real-time
indicator. The historical peaks and troughs in the indicator provide approximate windows of
time when it is favorable to look for entries and exits, based on other indicators or strategies.

5. EXPERIMENTAL SECTION

Study of day trading is still in its early stages. As the authors have the honesty to admit: “The choice of
the 33 variables used in this study was based on experts knowledge and supported by a vast literature
in the area. However, we recognize this approach is adhoc, and the literature is certainly missing more
systematic ways to address this specific feature selection problem. As a future research direction, we
plan to study the effect of a number of indicators in the network learning, as well as the relevant
amount of historical data that should be considered in the inputs of the network (i.e. information
regarding the previous 1, 2, 5 or 10 days, for instance).” [Martinez et al., 2014]
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The theoretical part of this thesis can be understood as a toolbox for applications in the domain of
financial prediction.

There is a reason why all the above methods are individually taken not good enough: they simply don’t
work well enough, at least taken individually.

Though by combining some of those methods, and adapt them, they can nevertheless synergetically
produce limited (but above average ) results in a particular context.

NN: time series and classification
Daytrading is not enough studied.

Usually professionals observe the opening of the session and intervene towards the end of the
session.

BACKTESTING vs REAL-TIME TESTING

A characteristic of modern quantitative research in finance is that Back-testing has not delivered its
promises. Systematically models that have been back tested with past data underperform when
confronted with real time data.

It has now become standard practice to test models with real time data, as this has now become
possible with the availability of intraday data, diffused mainly through market participants.

JUDGMENTAL vs “QUANT” the best of two worlds: aim for a decision-aid system not for an automatic
system. Moreover, only strong signals should be traded.

5.1. METHODOLOGY OF OUR EMPIRICAL WORK

The methodology followed here consists of tracing the workflow of a typical day trader and
proposing a decision-aid system grounded in theory exposed earlier in this study.

Here an integrated process will be proposed structured around four pillars.

Data collection, Intraday

preview, time-series Classification
cleaning, Smoothing
pre-formatting, using Kalman of patterns

Filter

analysis




Intraday data, smoothing, then classification, then test for forecasting

5.2. STAGE A: DATA

Stage A is an often disregarded part in modelling.
The least-square line is produced here.

A New York Stock Exchange trading day lasts 6h30 (from 14h30 to 21h00) that is 390 minutes, which
give 390 data points per day. Multiplied by 126 trading days, that gives 49 920 data points that have
to be inspected one by one. This put un upper limit to this time consuming task.

5.3. STAGE B: SMOOTHING SERIES

We are going to use intraday data to examine the possibility to forecast intraday data
KALMAN FILTER MODEL FOR INTRADAY DATA
Below we propose an intraday trading model inspired from Kalman Filter.

The model is based on intraday data (1 minute to 30 minute) of the SP500 for the day of the
14" of February 2020.

The purpose of this model is to provide forecasts that will be used for trading, every 30 minutes
in a typical trading day for the SP500, starting at 14h30 UK time and closing at 21h00
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KF Forecast
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KF for smoothing

5.4. STAGE C: PATTERN CLASSIFICATION FOR DECISION-AID

Here we are the core of our topic

A question of critical importance both for the practitioner and for the student of markets is to detect
how a stock price is behaving at a certain point (and its neighborhood) in time, namely is it “trending”
or is it bound-ranged.

If the market seems to follow a trend, upwards or downwards, and if the trend seems well established
it is then highly likely that the trader will follow that trend (“jump on the trend”, ie “buy” — when the
trend seems ascending). On the other hand if the trader believes that the market is “ranging”, ie
oscillating, with more or less regularity, then it is more profitable to trade very short term (minutes or
hours at most) entering and exiting when the price seems to be near the high/low of the session -
provided of course that the patterns present some regularity.

Let us present a decision tree of the patterns of a trading day, and define each term:

H#TRENDING: when tested at regular intervals P2>P1, at t2>t1. On the whole the price must be clearly
heading to a direction:

-TRENDING / Upwards: that is an overall ascending trend

" TRENDING / Upwards / Trend Confirmation: the trend is confirmed and more rarely
accelerated

" TRENDING / Upwards / Trend Reversal: the trend is reversed

-TRENDING / Downwards: an overall descending trend
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" TRENDING / Downwards/ Trend Confirmation

1 TRENDING / Downwards / Trend Reversal

H#RANGING: the price is range bound. Formally, if the price is not trending then it is ranging.
-RANGING / Mean Reversal Patterns

-RANGING / Random Patterns: the chart is “unreadable” (and un-tradable at stage D)(“the
market is going nowhere”)
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Let us now take cases, from our database in Appendix II:

Cases of TRENDING

Here is a case of an Ascending Trend

June 15, 2020 / TRENDING / Ascending
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And here is a case of a Descending Trend
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January 31 / TRENDING / Descending
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Cases of a price RANGING

June 18, 2020 / RANGING / Reversals
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Case of range-bound, random behavior
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May 13, 2020 / RANGING / Random
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5.5. STAGE D: ACTUAL DECISION-MAKING

There are two complicating factors that make forecasting difficult:

-More often than not we do not encounter pure forms. Worse, pure forms can be misleading. Take the
case
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June 11, 2020 / TRENDING / Descending (+ Trend Reversal)
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-When it comes to decision-making the trader has to decide on incomplete information

February 25, 2020 / TRENDING / Trend Reversal

3300

3250

3200

3150

3100

3050

3000

00:TO:€C
00:5¥:T¢
00:0€:T¢
00:00:T¢
00:5¥:0¢
00:0€:0¢
00:ST:0¢
00:00:0¢
00:S¥:6T
00:0¢:6T
00:ST:6T
00:00:6T
00:5¥:8T
00:0¢€:8T
00:ST:8T
00:00:8T
00:S¥:LT
00:0¢:LT
00:ST:LT
00:00:LT
00:5¥:9T
00:0¢:9T
00:ST:9T
00:00:9T
00-9¥:9T
00-:0¢:ST
00-ST:ST
00:00:ST
00:S7:vT
00:0¢:vT
00-ST-¥T
00:00:vT
00-S¥-€T
00:0¢:€T

57



5.5.1. A combination of elementary patterns
Usually there is some kind of combination of the elementary outcomes presented above.

June 9, 2020 / TRENDING / RANGING / Ascending / Reversals
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5.5.2. Decision under incomplete information

A day-trader must decide within the time frame of the day. He has to decide usually at the second half
of the day, when enough data have come in to shape a pattern
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March 27, 2020 / TRENDING / Ascending (+Trend Reversal)
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Unreadable (this market is going nowhere)

June 16, 2020 / RANGING / Random
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Untradable
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March 13, 2020 / RANGING / random
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5.6. Our main empirical result

Trend is more often confirmed than reversed
Out of the 126 trading days of the first half 2020, there were 88 TRENDING days and 38 RANGING days.
Of the 88 TRENDING days, in 57 days the trend was confirmed whereas in 31 days it was reversed.

This is a non trivial result although it needs confirmation.

6. FURTHER RESEARCH

III

Provide a scientific basis to the so-called “chartist” or “technical” analysis is an
underdeveloped area of finance. Time series analysis, even when focusing on stock prices
usually stop short of delving into the specificities of trading data, especially intraday data
which experience constant growth stemming from the rise of intraday trading activity.

Below we propose a research project, using intraday trading data, that would complete the
research carried above.

SPECIFICATIONS FOR A RESEARCH PROJECT IN INTRADAY TRADING

There was a saying in Wall Street that when “everything goes down, the only thing that increases is
the correlation between markets”. Moreover, under the combined pressure of the forces of
globalization and of the rise of Asiatic stock exchanges, correlation between markets has increased to
the intraday level between international markets, offering new intraday trading opportunities. By the
time NYSE opens (at 14h30 UK time), there have been several hours of trading going on in Hong Kong
and Shangai (opening at 3am UK time) as well as in London, Paris and Frankfort (opening around 8am
UK time). Ceteris paribus, it is frequently observed that the daily % change of closing prices of US index
will be situated somewhere (usually at mid-distance) between the “Asiatic” (say Chinese) and
European Index closing price. (s. for example attached the daily performance of the Dow , 0,54%,
compared to European and Asian markets at close of Friday 7/2/20).

An intraday trading strategy that could yield decent returns would therefore be to construct a simple
model with inputs the closing price (at 10am UK time) of Chinese markets, regularly (say, every 30 or
15 minutes) updated with the evolution of the European markets (till their closing at 4 or 5p0m UK time,
while the US remains open till 9 pm UK time) and output a regularly updated forecast of the US closing
price. All other things equal (ie without any significant “local”, ie US, event) trading opportunities will
arise when the US price diverges intra-session from the forecasted US closing price.
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Requirements:

1.

Source data from Bloomberg or other source: ideally connect directly to the Bloomberg page
(s.below) at 3am and start inputing prices from Asiatic data; then connect to European markets
between 7 and 8 am. [Alternatively, simply use historic data available on these markets,
available eg at Yahoo finance, imported to Matlab]

Produce an average of the Asiatic markets [let us choose just Honk Kong and Shangai for our
purpose] and update that as new prices arrive every say 30 minutes

Repeat (2) for European markets [let us take the average of FTSE, CAC and DAX]

Produce and average of (2) and (3) [this average will include only (2) from 3am to 8am, then
(2) and (3) from 8am on]

IM

Use (4) to determine the “system model” of the Kalman Filter

Use (5) to produce a regularly updated Kalman filter estimate of the expected closing % change
of the US index [choose the DOW or the SP500]

INPUT DATA: https://www.bloomberg.com/markets/stocks

Bloomberg Terminal.

NAME VALUE NET CHANGE % CHANGE 1 MONTH
29,102.51 -277.26 -094%  +0.97%
INDU:IND
DOW JONES INDUS. AVG
3,327.71 -18.07 -054% +1.91%
SPX:IND
S&P 500 INDEX
9,520.51 -51.64 -054% +3.72%
CCMP:IND
NASDAQ COMPOSITE INDEX
13,931.93 -103.02 -0.73% -0.19%
NYA:IND
NYSE COMPOSITE INDEX
17,655.49 -102.00 -0.57%  +2.44%

SPTSX:IND
S&P/TSX COMPOSITE INDEX

Europe, Middle East & Africa
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1 YEAF
+15.92%

+22.89Y

+30.45Y

+13.34Y

+12.93%


https://www.bloomberg.com/markets/stocks
https://www.bloomberg.com/quote/INDU:IND
https://www.bloomberg.com/quote/INDU:IND
https://www.bloomberg.com/quote/INDU:IND
https://www.bloomberg.com/quote/INDU:IND
https://www.bloomberg.com/quote/SPX:IND
https://www.bloomberg.com/quote/SPX:IND
https://www.bloomberg.com/quote/SPX:IND
https://www.bloomberg.com/quote/SPX:IND
https://www.bloomberg.com/quote/CCMP:IND
https://www.bloomberg.com/quote/CCMP:IND
https://www.bloomberg.com/quote/CCMP:IND
https://www.bloomberg.com/quote/CCMP:IND
https://www.bloomberg.com/quote/NYA:IND
https://www.bloomberg.com/quote/NYA:IND
https://www.bloomberg.com/quote/NYA:IND
https://www.bloomberg.com/quote/NYA:IND
https://www.bloomberg.com/quote/SPTSX:IND
https://www.bloomberg.com/quote/SPTSX:IND
https://www.bloomberg.com/quote/SPTSX:IND
https://www.bloomberg.com/quote/SPTSX:IND
https://www.bloomberg.com/markets/stocks/world-indexes/europe-africa-middle-east

NAME

SX5E:IND

Euro Stoxx 50 Pr

UKX:IND

FTSE 100 INDEX

DAX:IND

DAX INDEX

CAC:IND

CAC 40 INDEX

IBEX:IND

IBEX 35 INDEX
Asia Pacific

NAME

NKY:IND

NIKKEI 225

TPX:IND

TOPIX INDEX (TOKYO)

HSIIIND

HANG SENG INDEX

SHSZ300:IND
CSI 300 INDEX

AS51:IND

S&P/ASX 200 INDEX

MXAP:IND
MSCI AC ASIA PACIFIC

VALUE
3,798.49

7,466.70

13,513.81

6,029.75

9,811.00

NET CHANGE % CHANGE 1 MONTH

-7.03 -0.18% +0.24%

-38.09 -0.51% -1.60%

-61.01 -0.45% +0.23%

-8.43 -0.14% -0.12%

-0.30 0.00% +2.48%
VALUE NET CHANGE % CHANGE 1 MONTH
23,827.98 -45.61 -0.19% -0.09%
1,732.14 -4.84 -0.28% -0.17%
27,404.27 -89.43 -0.33% -4.31%
3,899.87 +0.09 +0.00% -6.32%
7,022.58 -26.62 -0.38% +1.35%
169.69 -0.99 -0.58% -1.95%
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1 YEAR
+21.14%

+5.59%

+23.90%

+21.53%

+10.77%

1 YEAR
+17.19%

+12.52%

-1.94%

+20.09%

+15.67%

+9.57%


https://www.bloomberg.com/quote/SX5E:IND
https://www.bloomberg.com/quote/SX5E:IND
https://www.bloomberg.com/quote/SX5E:IND
https://www.bloomberg.com/quote/SX5E:IND
https://www.bloomberg.com/quote/UKX:IND
https://www.bloomberg.com/quote/UKX:IND
https://www.bloomberg.com/quote/UKX:IND
https://www.bloomberg.com/quote/UKX:IND
https://www.bloomberg.com/quote/DAX:IND
https://www.bloomberg.com/quote/DAX:IND
https://www.bloomberg.com/quote/DAX:IND
https://www.bloomberg.com/quote/DAX:IND
https://www.bloomberg.com/quote/CAC:IND
https://www.bloomberg.com/quote/CAC:IND
https://www.bloomberg.com/quote/CAC:IND
https://www.bloomberg.com/quote/CAC:IND
https://www.bloomberg.com/quote/IBEX:IND
https://www.bloomberg.com/quote/IBEX:IND
https://www.bloomberg.com/quote/IBEX:IND
https://www.bloomberg.com/quote/IBEX:IND
https://www.bloomberg.com/markets/stocks/world-indexes/asia-pacific
https://www.bloomberg.com/quote/NKY:IND
https://www.bloomberg.com/quote/NKY:IND
https://www.bloomberg.com/quote/NKY:IND
https://www.bloomberg.com/quote/NKY:IND
https://www.bloomberg.com/quote/TPX:IND
https://www.bloomberg.com/quote/TPX:IND
https://www.bloomberg.com/quote/TPX:IND
https://www.bloomberg.com/quote/TPX:IND
https://www.bloomberg.com/quote/HSI:IND
https://www.bloomberg.com/quote/HSI:IND
https://www.bloomberg.com/quote/HSI:IND
https://www.bloomberg.com/quote/HSI:IND
https://www.bloomberg.com/quote/SHSZ300:IND
https://www.bloomberg.com/quote/SHSZ300:IND
https://www.bloomberg.com/quote/SHSZ300:IND
https://www.bloomberg.com/quote/SHSZ300:IND
https://www.bloomberg.com/quote/AS51:IND
https://www.bloomberg.com/quote/AS51:IND
https://www.bloomberg.com/quote/AS51:IND
https://www.bloomberg.com/quote/AS51:IND
https://www.bloomberg.com/quote/MXAP:IND
https://www.bloomberg.com/quote/MXAP:IND
https://www.bloomberg.com/quote/MXAP:IND
https://www.bloomberg.com/quote/MXAP:IND
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APPENDIX |

Below we propose an intraday trading model inspired from Kalman Filter.

The model is based on intraday data (1 minute to 30 minute) of the SP500 for the day of the
14" of February 2020.

The “system model” in Kalman Filter parlance is provided here by averaging 1 minute, and 5,
10 and 15 minute Moving Averages, to produce a forecast, updated every minute and valid for
each 30 minute period.

NB: measurements are supposed to be exact here, so measurement errors are irrelevant here.
And the intraday price of the index is supposed to follow a Gaussian with 0 mean, consistent
with standard financial theory.

Time | “9% | MASmin | MA10min | MA15min | Average KF
Imin 1,5,10,15
14:30:00 3378
14:31:00 3377
14:32:00 3378
14:33:00 3378
14:34:00 3378 | 3377,8
14:35:00 3378 | 3377,8
14:36:00 3374 | 33772
14:37:00 3375 | 33766
14:38:00 3375 | 3376,0
14:39:00 3375 | 33754 | 33766
14:40:00 3375 | 3374,8 3376,3
14:41:00 3375 | 33750| 3376,1
14:42:00 3375 | 33750 | 33758
14:43:00 3375 | 33750| 33755
14:44:00 3374 | 33748 3375,1 3376,0 3375,0
14:45:00 3376 | 33750 | 33749 3375,9 3375,4 | 3375,0
14:46:00 3376 | 33752 3375,1 3375,8 3375,5 | 3375,4
14:47:00 3376 | 33754 3375,2 3375,7 3375,6 | 3375,5
14:48:00 3376 | 33756 3375,3 3375,5 3375,6 | 3375,6
14:49:00 3375 | 33758 3375,3 3375,3 3375,4 | 3375,6
14:50:00 3374 | 33754 3375,2 3375,1 3374,9 | 3375,4
14:51:00 3373 | 33748 3375,0 3375,0 3374,5 | 3374,9
14:52:00 3375 | 33746 3375,0 3375,0 3374,9 | 3374,5
14:53:00 3375 | 33744 | 33750 3375,0 3374,9 | 3374,9
14:54:00 3374 | 33742 3375,0 3374,9 3374,5 | 3374,9
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14:55:00 3373 3374,0 3374,7 3374,8 3374,1 | 3374,5
14:56:00 3372 3373,8 3374,3 3374,6 3373,7 | 3374,1
14:57:00 3373 3373,4 3374,0 3374,5 3373,7 | 3373,7
14:58:00 3373 3373,0 3373,7 3374,3 3373,5 | 3373,7
14:59:00 3372 3372,6 3373,4 3374,2 3373,1 | 3373,5
15:00:00 3374 3372,8 3373,4 3374,1 3373,6 | 3373,1
15:01:00 3373 3373,0 3373,4 3373,9 3373,3 | 3373,6
15:02:00 3372 3372,8 3373,1 3373,6 3372,9 | 3373,3
15:03:00 3374 3373,0 3373,0 3373,5 3373,4 | 3372,9
15:04:00 3373 3373,2 3372,9 3373,3 3373,1 | 3373,4
15:05:00 3372 3372,8 3372,8 3373,2 3372,7 | 3373,1
15:06:00 3372 3372,6 3372,8 3373,1 3372,6 | 3372,7
15:07:00 3372 3372,6 3372,7 3372,9 3372,6 | 3372,6
15:08:00 3372 3372,2 3372,6 3372,7 3372,4 | 3372,6
15:09:00 3373 3372,2 3372,7 3372,7 3372,6 | 3372,4
15:10:00 3372 3372,2 3372,5 3372,6 3372,3 | 3372,6
15:11:00 3371 3372,0 3372,3 3372,5 3372,0 | 3372,3
15:12:00 3370 3371,6 3372,1 3372,3 3371,5 | 3372,0
15:13:00 3369 3371,0 3371,6 3372,1 3370,9 | 3371,5
15:14:00 3371 3370,6 3371,4 3372,0 3371,3 | 3370,9
15:15:00 3372 3370,6 33714 33719 3371,5 | 3371,3
15:16:00 3372 3370,8 3371,4 3371,8 3371,5 | 3371,5
15:17:00 3372 3371,2 33714 3371,8 3371,6 | 3371,5
15:18:00 3373 3372,0 33715 3371,7 3372,1 | 3371,6
15:19:00 3374 3372,6 3371,6 3371,8 3372,5 | 3372,1
15:20:00 3374 3373,0 3371,8 33719 3372,7 | 3372,5
15:21:00 3375 3373,6 3372,2 3372,1 3373,2 | 3372,7
15:22:00 3375 3374,2 3372,7 3372,3 3373,6 | 3373,2
15:23:00 3374 3374,4 3373,2 3372,5 3373,5 | 3373,6
15:24:00 3374 3374,4 3373,5 3372,5 3373,6 | 3373,5
15:25:00 3374 3374,4 3373,7 3372,7 3373,7 | 3373,6
15:26:00 3374 3374,2 3373,9 3372,9 3373,7 | 3373,7
15:27:00 3375 3374,2 3374,2 3373,2 3374,2 | 3373,7
15:28:00 3375 3374,4 3374,4 3373,6 3374,4 | 3374,2
15:29:00 3375 3374,6 3374,5 3373,9 3374,5 | 3374,4
15:30:00 3375 3374,8 3374,6 3374,1 3374,6 | 3374,5
15:31:00 3375 3375,0 3374,6 3374,3 3374,7 | 3374,6
15:32:00 3375 3375,0 3374,6 3374,5 3374,8 | 3374,7
15:33:00 3375 3375,0 3374,7 3374,6 3374,8 | 3374,8
15:34:00 3375 3375,0 3374,8 3374,7 3374,9 | 3374,8
15:35:00 3375 3375,0 3374,9 3374,7 3374,9 | 3374,9
15:36:00 3376 3375,2 3375,1 3374,8 3375,3 | 3374,9
15:37:00 3375 3375,2 3375,1 3374,8 3375,0 | 3375,3
15:38:00 3374 3375,0 3375,0 3374,8 3374,7 | 3375,0
15:39:00 3375 3375,0 3375,0 3374,9 3375,0 | 3374,7
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15:40:00 3375 3375,0 3375,0 3374,9 3375,0 | 3375,0
15:41:00 3375 3374,8 3375,0 3375,0 3375,0 | 3375,0
15:42:00 3375 3374,8 3375,0 3375,0 3375,0 | 3375,0
15:43:00 3374 | 3374,8 3374,9 3374,9 3374,7 | 3375,0
15:44:00 3374 | 3374,6 3374,8 3374,9 3374,6 | 3374,7
15:45:00 3374 | 3374,4 3374,7 3374,8 3374,5 | 3374,6
15:46:00 3375 33744 3374,6 3374,8 3374,7 | 3374,5
15:47:00 3376 | 3374,6 3374,7 3374,9 3375,0 | 3374,7
15:48:00 3376 | 3375,0 3374,9 33749 3375,2 | 3375,0
15:49:00 3376 | 3375,4 3375,0 3375,0 3375,4 | 3375,2
15:50:00 3377 3376,0 3375,2 3375,1 3375,8 | 3375,4
15:51:00 3377 3376,4 3375,4 3375,2 3376,0 | 3375,8
15:52:00 3377 3376,6 3375,6 3375,3 3376,1 | 3376,0
15:53:00 3377 3376,8 3375,9 3375,5 3376,3 | 3376,1
15:54:00 3376 | 3376,8 3376,1 3375,6 3376,1 | 3376,3
15:55:00 3377 3376,8 3376,4 3375,7 3376,5 | 3376,1
15:56:00 3377 3376,8 3376,6 3375,9 3376,6 | 3376,5
15:57:00 3377 3376,8 3376,7 3376,0 3376,6 | 3376,6
15:58:00 3377 3376,8 3376,8 3376,2 3376,7 | 3376,6
15:59:00 3377 3377,0 3376,9 3376,4 3376,8 | 3376,7
16:00:00 3377 3377,0 3376,9 3376,6 3376,9 | 3376,8
16:01:00 3377 3377,0 3376,9 3376,7 3376,9 | 3376,9
16:02:00 3377 3377,0 3376,9 3376,8 3376,9 | 3376,9
16:03:00 3377 3377,0 3376,9 3376,9 3376,9 | 3376,9
16:04:00 3377 3377,0 3377,0 3376,9 3377,0 | 3376,9
16:05:00 3377 3377,0 3377,0 3376,9 3377,0 | 3377,0
16:06:00 3377 3377,0 3377,0 3376,9 3377,0 | 3377,0
16:07:00 3377 3377,0 3377,0 3376,9 3377,0 | 3377,0
16:08:00 3376 | 3376,8 3376,9 3376,9 3376,6 | 3377,0
16:09:00 3376 | 3376,6 3376,8 3376,9 3376,6 | 3376,6
16:10:00 3376 | 3376,4 3376,7 3376,8 3376,5 | 3376,6
16:11:00 3377 3376,4 3376,7 3376,8 3376,7 | 3376,5
16:12:00 3377 3376,4 3376,7 3376,8 3376,7 | 3376,7
16:13:00 3378 3376,8 3376,8 3376,9 3377,1 | 3376,7
16:14:00 3378 3377,2 3376,9 3376,9 3377,3 | 3377,1
16:15:00 3378 3377,6 3377,0 3377,0 3377,4 | 3377,3
16:16:00 3378 3377,8 3377,1 3377,1 3377,5 | 3377,4
16:17:00 3378 3378,0 3377,2 3377,1 3377,6 | 3377,5
16:18:00 3379 3378,2 3377,5 3377,3 3378,0 | 3377,6
16:19:00 3379 3378,4 3377,8 3377,4 3378,2 | 3378,0
16:20:00 3378 3378,4 3378,0 3377,5 3378,0 | 3378,2
16:21:00 3378 3378,4 3378,1 3377,5 3378,0 | 3378,0
16:22:00 3378 3378,4 3378,2 3377,6 3378,1 | 3378,0
16:23:00 3378 3378,2 3378,2 3377,7 3378,0 | 3378,1
16:24:00 3378 3378,0 3378,2 3377,9 3378,0 | 3378,0
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16:25:00 3377 3377,8 3378,1 3377,9 3377,7 | 3378,0
16:26:00 3377 3377,6 3378,0 33779 3377,6 | 3377,7
16:27:00 3377 3377,4 3377,9 3377,9 3377,6 | 3377,6
16:28:00 3377 3377,2 3377,7 33779 3377,4 | 3377,6
16:29:00 3377 3377,0 3377,5 3377,8 3377,3 | 3377,4
16:30:00 3376 3376,8 3377,3 3377,7 3376,9 | 3377,3
16:31:00 3377 3376,8 3377,2 3377,6 3377,2 | 3376,9
16:32:00 3377 3376,8 3377,1 3377,5 3377,1 | 3377,2
16:33:00 3377 3376,8 3377,0 33774 3377,1 | 3377,1
16:34:00 3377 3376,8 3376,9 3377,3 3377,0 | 3377,1
16:35:00 3377 3377,0 3376,9 3377,2 3377,0 | 3377,0
16:36:00 3377 3377,0 3376,9 3377,1 3377,0 | 3377,0
16:37:00 3377 3377,0 3376,9 3377,1 3377,0 | 3377,0
16:38:00 3377 3377,0 3376,9 3377,0 3377,0 | 3377,0
16:39:00 3377 3377,0 3376,9 3376,9 3377,0 | 3377,0
16:40:00 3377 3377,0 3377,0 3376,9 3377,0 | 3377,0
16:41:00 3378 3377,2 3377,1 3377,0 3377,3 | 3377,0
16:42:00 3378 3377,4 3377,2 3377,1 3377,4 | 3377,3
16:43:00 3377 3377,4 3377,2 3377,1 3377,2 | 33774
16:44:00 3377 3377,4 3377,2 3377,1 3377,2 | 3377,2
16:45:00 3377 3377,4 3377,2 3377,1 3377,2 | 3377,2
16:46:00 3377 3377,2 3377,2 3377,1 3377,1 | 3377,2
16:47:00 3377 3377,0 3377,2 3377,1 3377,1 | 3377,1
16:48:00 3377 3377,0 3377,2 3377,1 3377,1 | 3377,1
16:49:00 3375 3376,6 3377,0 3377,0 3376,4 | 3377,1
16:50:00 3375 3376,2 3376,8 3376,9 3376,2 | 3376,4
16:51:00 3375 3375,8 3376,5 3376,7 3376,0 | 3376,2
16:52:00 3375 3375,4 3376,2 3376,6 3375,8 | 3376,0
16:53:00 3375 3375,0 3376,0 3376,5 3375,6 | 3375,8
16:54:00 3375 3375,0 3375,8 3376,3 3375,5 | 3375,6
16:55:00 3375 3375,0 3375,6 3376,2 3375,5 | 3375,5
16:56:00 3376 3375,2 3375,5 3376,1 3375,7 | 3375,5
16:57:00 3376 3375,4 3375,4 3375,9 3375,7 | 3375,7
16:58:00 3376 3375,6 3375,3 3375,9 3375,7 | 3375,7
16:59:00 3375 3375,6 3375,3 3375,7 3375,4 | 3375,7
17:00:00 3375 3375,6 3375,3 3375,6 3375,4 | 3375,4
17:01:00 3376 3375,6 3375,4 3375,5 3375,6 | 3375,4
17:02:00 3376 3375,6 3375,5 3375,5 3375,6 | 3375,6
17:03:00 3375 3375,4 3375,5 3375,3 3375,3 | 3375,6
17:04:00 3374 3375,2 3375,4 3375,3 3375,0 | 3375,3
17:05:00 3375 3375,2 3375,4 3375,3 3375,2 | 3375,0
17:06:00 3374 3374,8 3375,2 3375,2 3374,8 | 3375,2
17:07:00 3373 3374,2 3374,9 3375,1 3374,3 | 3374,8
17:08:00 3373 3373,8 3374,6 3374,9 3374,1 | 3374,3
17:09:00 3373 3373,6 3374,4 3374,8 3374,0 | 3374,1
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17:10:00 3374 | 3373,4| 33743 3374,7 3374,1 | 3374,0
17:11:00 3373 | 3373,2| 33740| 33745 3373,7 | 3374,1
17:12:00 3373 | 33732 3373,7 | 33743 3373,6 | 3373,7
17:13:00 3373 | 33732 | 33735 3374,1 3373,5 | 3373,6
17:14:00 3373 | 33732 3373,4| 33740 3373,4 | 3373,5
17:15:00 3373 | 3373,0| 33732 3373,9 3373,3 | 33734
17:16:00 3373 | 3373,0| 33731 3373,7 3373,2 | 3373,3
17:17:00 3373 | 3373,0| 33731 3373,5 3373,1 | 3373,2
17:18:00 3373 | 3373,0| 33731 3373,3 3373,1 | 3373,1
17:19:00 3373 | 3373,0| 33731 3373,3 3373,1 | 3373,1
17:20:00 3372 | 3372,8| 3372,9| 33731 3372,7 | 3373,1
17:21:00 3371 | 3372,4| 3372,7| 33729 3372,2 | 3372,7
17:22:00 3370 | 3371,8| 33724 | 33727 3371,7 | 3372,2
17:23:00 3371 | 3371,4| 33722 3372,5 3371,8 | 3371,7
17:24:00 3371 | 3371,0| 33720| 33724 3371,6 | 3371,8
17:25:00 3371 | 3370,8| 3371,8| 33722 3371,5 | 33716
17:26:00 3371 | 3370,8| 33716| 33721 3371,4 | 3371,5
17:27:00 3372 | 3371,2| 33715 3372,0 3371,7 | 3371,4
17:28:00 3371 | 3371,2| 33713 3371,9 3371,3 | 3371,7
17:29:00 3372 | 33714 | 33712 3371,8 3371,6 | 3371,3
17:30:00 3372 | 33716| 33712 3371,7 3371,6 | 33716
17:31:00 3372 | 3371,8| 33713 3371,7 3371,7 | 33716
17:32:00 3372 | 3371,8| 33715 3371,6 3371,7 | 3371,7
17:33:00 3371 | 3371,8| 33715 3371,5 3371,4 | 3371,7
17:34:00 3372 | 3371,8| 33716| 33714 3371,7 | 3371,4
17:35:00 3372 | 3371,8| 3371,7| 33714 3371,7 | 3371,7
17:36:00 3372 | 3371,8| 3371,8| 33715 3371,8 | 3371,7
17:37:00 3372 | 3371,8| 3371,8| 33716 3371,8 | 3371,8
17:38:00 3372 | 33720| 3371,9| 33717 3371,9 | 3371,8
17:39:00 3373 | 33722 | 33720| 33718 3372,3 | 3371,9
17:40:00 3373 | 33724 | 33721 3371,9 3372,4 | 3372,3
17:41:00 3373 | 33726 | 33722 3372,1 3372,5 | 3372,4
17:42:00 3372 | 33726 | 33722 3372,1 3372,2 | 3372,5
17:43:00 3372 | 33726 | 33723 3372,1 3372,3 | 3372,2
17:44:00 3372 | 3372,4| 33723 3372,1 3372,2 | 3372,3
17:45:00 3371 | 3372,0| 33722 3372,1 3371,8 | 3372,2
17:46:00 3372 | 3371,8| 33722 3372,1 3372,0 | 3371,8
17:47:00 3371 | 33716| 33721 3372,0 3371,7 | 3372,0
17:48:00 3370 | 3371,2| 3371,9| 33719 3371,3 | 3371,7
17:49:00 3371 | 3371,0| 3371,7| 33719 3371,4 | 3371,3
17:50:00 3371 | 3371,0| 33715 3371,8 3371,3 | 3371,4
17:51:00 3370 | 33706 | 33712 3371,7 3370,9 | 3371,3
17:52:00 3370 | 3370,4| 3371,0| 33715 3370,7 | 3370,9
17:53:00 3370 | 3370,4| 3370,8| 33714 3370,7 | 3370,7
17:54:00 3370 | 3370,2| 33706 | 33712 3370,5 | 3370,7
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17:55:00 3369 3369,8 3370,4 3370,9 3370,0 | 3370,5
17:56:00 3369 3369,6 3370,1 3370,7 3369,8 | 3370,0
17:57:00 3369 3369,4 3369,9 3370,5 3369,7 | 3369,8
17:58:00 3370 | 3369,4 3369,9 3370,3 3369,9 | 3369,7
17:59:00 3370 | 3369,4 3369,8 3370,2 3369,9 | 3369,9
18:00:00 3370 | 3369,6 3369,7 3370,1 3369,9 | 3369,9
18:01:00 3370 | 3369,8 3369,7 3370,0 3369,9 | 3369,9
18:02:00 3371 3370,2 3369,8 3370,0 3370,3 | 3369,9
18:03:00 3370 | 3370,2 3369,8 3370,0 3370,0 | 3370,3
18:04:00 3371 3370,4 3369,9 3370,0 3370,3 | 3370,0
18:05:00 3372 3370,8 3370,2 3370,1 3370,8 | 3370,3
18:06:00 3371 3371,0 3370,4 3370,1 3370,6 | 3370,8
18:07:00 3371 3371,0 3370,6 3370,2 3370,7 | 3370,6
18:08:00 3369 3370,8 3370,5 3370,1 3370,1 | 3370,7
18:09:00 3368 3370,2 3370,3 3370,0 3369,6 | 3370,1
18:10:00 3368 3369,4 3370,1 3369,9 3369,4 | 3369,6
18:11:00 3370 | 3369,2 3370,1 3370,0 3369,8 | 3369,4
18:12:00 3370 | 3369,0 3370,0 3370,1 3369,8 | 3369,8
18:13:00 3370 | 3369,2 3370,0 3370,1 3369,8 | 3369,8
18:14:00 3370 | 3369,6 3369,9 3370,1 3369,9 | 3369,8
18:15:00 3370 | 3370,0 3369,7 3370,1 3369,9 | 3369,9
18:16:00 3368 3369,6 3369,4 3369,9 3369,2 | 3369,9
18:17:00 3368 3369,2 3369,1 3369,7 3369,0 | 3369,2
18:18:00 3368 3368,8 3369,0 3369,6 3368,9 | 3369,0
18:19:00 3368 3368,4 3369,0 3369,4 3368,7 | 3368,9
18:20:00 3368 3368,0 3369,0 3369,1 3368,5 | 3368,7
18:21:00 3368 3368,0 3368,8 3368,9 3368,4 | 3368,5
18:22:00 3368 3368,0 3368,6 3368,7 3368,3 | 3368,4
18:23:00 3369 3368,2 3368,5 3368,7 3368,6 | 3368,3
18:24:00 3369 3368,4 3368,4 3368,8 3368,7 | 3368,6
18:25:00 3369 3368,6 3368,3 3368,9 3368,7 | 3368,7
18:26:00 3369 3368,8 3368,4 3368,8 3368,8 | 3368,7
18:27:00 3370 | 3369,2 3368,6 3368,8 3369,2 | 3368,8
18:28:00 3370 | 3369,4 3368,8 3368,8 3369,3 | 3369,2
18:29:00 3369 3369,4 3368,9 3368,7 3369,0 | 3369,3
18:30:00 3369 3369,4 3369,0 3368,7 3369,0 | 3369,0
18:31:00 3369 3369,4 3369,1 3368,7 3369,1 | 3369,0
18:32:00 3369 3369,2 3369,2 3368,8 3369,1 | 3369,1
18:33:00 3370 | 3369,2 3369,3 3368,9 3369,4 | 3369,1
18:34:00 3370 | 3369,4 3369,4 3369,1 3369,5 | 3369,4
18:35:00 3371 3369,8 3369,6 3369,3 3369,9 | 3369,5
18:36:00 3370 | 3370,0 3369,7 3369,4 3369,8 | 3369,9
18:37:00 3371 3370,4 3369,8 3369,6 3370,2 | 3369,8
18:38:00 3371 3370,6 3369,9 3369,7 3370,3 | 3370,2
18:39:00 3370 | 3370,6 3370,0 3369,8 3370,1 | 3370,3
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18:40:00 3370 | 3370,4 3370,1 3369,9 3370,1 | 3370,1
18:41:00 3370 | 3370,4 3370,2 3369,9 3370,1 | 3370,1
18:42:00 3370 | 3370,2 3370,3 3369,9 3370,1 | 3370,1
18:43:00 3370 | 3370,0 3370,3 3369,9 3370,1 | 3370,1
18:44:00 3371 3370,2 3370,4 3370,1 3370,4 | 3370,1
18:45:00 3370 | 3370,2 3370,3 3370,1 3370,2 | 3370,4
18:46:00 3370 | 3370,2 3370,3 3370,2 3370,2 | 3370,2
18:47:00 3370 | 3370,2 3370,2 3370,3 3370,2 | 3370,2
18:48:00 3370 | 3370,2 3370,1 3370,3 3370,1 | 3370,2
18:49:00 3369 3369,8 3370,0 3370,2 3369,8 | 3370,1
18:50:00 3370 | 3369,8 3370,0 3370,1 3370,0 | 3369,8
18:51:00 3369 3369,6 3369,9 3370,1 3369,6 | 3370,0
18:52:00 3370 | 3369,6 3369,9 3370,0 3369,9 | 3369,6
18:53:00 3369 3369,4 3369,8 3369,9 3369,5 | 3369,9
18:54:00 3369 3369,4 3369,6 3369,8 3369,5 | 3369,5
18:55:00 3369 3369,2 3369,5 3369,7 3369,4 | 3369,5
18:56:00 3368 3369,0 3369,3 3369,6 3369,0 | 3369,4
18:57:00 3368 3368,6 3369,1 3369,5 3368,8 | 3369,0
18:58:00 3368 3368,4 3368,9 3369,3 3368,7 | 3368,8
18:59:00 3368 3368,2 3368,8 3369,1 3368,5 | 3368,7
19:00:00 3370 | 3368,4 3368,8 3369,1 3369,1 | 3368,5
19:01:00 3370 | 3368,8 3368,9 3369,1 3369,2 | 3369,1
19:02:00 3370 | 3369,2 3368,9 3369,1 3369,3 | 3369,2
19:03:00 3370 | 3369,6 3369,0 3369,1 3369,4 | 3369,3
19:04:00 3370 | 3370,0 3369,1 3369,2 3369,6 | 3369,4
19:05:00 3370 | 3370,0 3369,2 3369,2 3369,6 | 3369,6
19:06:00 3370 | 3370,0 3369,4 3369,3 3369,7 | 3369,6
19:07:00 3370 | 3370,0 3369,6 3369,3 3369,7 | 3369,7
19:08:00 3371 3370,2 3369,9 3369,4 3370,1 | 3369,7
19:09:00 3371 3370,4 3370,2 3369,5 3370,3 | 3370,1
19:10:00 3371 3370,6 3370,3 3369,7 3370,4 | 3370,3
19:11:00 3371 3370,8 3370,4 3369,9 3370,5 | 3370,4
19:12:00 3370 | 3370,8 3370,4 3370,0 3370,3 | 3370,5
19:13:00 3370 | 3370,6 3370,4 3370,1 3370,3 | 3370,3
19:14:00 3369 3370,2 3370,3 3370,2 3369,9 | 3370,3
19:15:00 3368 3369,6 3370,1 3370,1 3369,4 | 3369,9
19:16:00 3365 3368,4 3369,6 3369,7 3368,2 | 3369,4
19:17:00 3366 | 3367,6 3369,2 3369,5 3368,1 | 3368,2
19:18:00 3366 | 3366,8 3368,7 3369,2 3367,7 | 3368,1
19:19:00 3366 | 3366,2 3368,2 3368,9 3367,3 | 3367,7
19:20:00 3367 3366,0 3367,8 3368,7 3367,4 | 3367,3
19:21:00 3367 3366,4 3367,4 3368,5 3367,3 | 3367,4
19:22:00 3367 3366,6 3367,1 3368,3 3367,3 | 3367,3
19:23:00 3369 3367,2 3367,0 3368,2 3367,9 | 3367,3
19:24:00 3369 3367,8 3367,0 3368,1 3368,0 | 3367,9
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19:25:00 3370 | 3368,4 3367,2 3368,0 3368,4 | 3368,0
19:26:00 3371 3369,2 3367,8 3368,0 3369,0 | 3368,4
19:27:00 3371 3370,0 3368,3 3368,1 3369,3 | 3369,0
19:28:00 3371 3370,4 3368,8 3368,1 3369,6 | 3369,3
19:29:00 3371 3370,8 3369,3 3368,3 3369,8 | 3369,6
19:30:00 3371 3371,0 3369,7 3368,5 3370,0 | 3369,8
19:31:00 3370 | 3370,8 3370,0 3368,8 3369,9 | 3370,0
19:32:00 3370 | 3370,6 3370,3 3369,1 3370,0 | 3369,9
19:33:00 3372 3370,8 3370,6 3369,5 3370,7 | 3370,0
19:34:00 3372 3371,0 3370,9 3369,9 3370,9 | 3370,7
19:35:00 3373 33714 3371,2 3370,3 3371,5 | 3370,9
19:36:00 3373 3372,0 33714 3370,7 3371,8 | 3371,5
19:37:00 3374 | 33728 3371,7 3371,1 3372,4 | 3371,8
19:38:00 3374 | 3373,2 3372,0 3371,5 3372,7 | 3372,4
19:39:00 3374 | 3373,6 3372,3 3371,8 3372,9 | 3372,7
19:40:00 3373 3373,6 3372,5 3372,0 3372,8 | 3372,9
19:41:00 3372 3373,4 3372,7 3372,1 3372,5 | 3372,8
19:42:00 3372 3373,0 3372,9 3372,1 3372,5 | 3372,5
19:43:00 3372 3372,6 3372,9 3372,2 3372,4 | 3372,5
19:44:00 3372 3372,2 3372,9 3372,3 3372,3 | 3372,4
19:45:00 3372 3372,0 3372,8 3372,3 3372,3 | 3372,3
19:46:00 3371 3371,8 3372,6 3372,4 3372,0 | 3372,3
19:47:00 3371 3371,6 3372,3 3372,5 3371,8 | 3372,0
19:48:00 3372 3371,6 3372,1 3372,5 3372,0 | 3371,8
19:49:00 3371 3371,4 3371,8 3372,4 3371,7 | 3372,0
19:50:00 3371 3371,2 3371,6 3372,3 3371,5 | 3371,7
19:51:00 3371 3371,2 3371,5 3372,1 3371,5 | 3371,5
19:52:00 3371 3371,2 33714 33719 3371,4 | 3371,5
19:53:00 3371 3371,0 3371,3 3371,7 3371,3 | 3371,4
19:54:00 3370 | 3370,8 3371,1 3371,5 3370,8 | 3371,3
19:55:00 3370 | 3370,6 3370,9 3371,3 3370,7 | 3370,8
19:56:00 3371 3370,6 3370,9 3371,2 3370,9 | 3370,7
19:57:00 3371 3370,6 3370,9 3371,1 3370,9 | 3370,9
19:58:00 3371 3370,6 3370,8 3371,1 3370,9 | 3370,9
19:59:00 3371 3370,8 3370,8 3371,0 3370,9 | 3370,9
20:00:00 3370 | 3370,8 3370,7 3370,9 3370,6 | 3370,9
20:01:00 3371 3370,8 3370,7 3370,9 3370,8 | 3370,6
20:02:00 3371 3370,8 3370,7 3370,9 3370,8 | 3370,8
20:03:00 3371 3370,8 3370,7 3370,8 3370,8 | 3370,8
20:04:00 3370 | 3370,6 3370,7 3370,7 3370,5 | 3370,8
20:05:00 3370 | 3370,6 3370,7 3370,7 3370,5 | 3370,5
20:06:00 3370 | 3370,4 3370,6 3370,6 3370,4 | 3370,5
20:07:00 3371 3370,4 3370,6 3370,6 3370,7 | 3370,4
20:08:00 3371 3370,4 3370,6 3370,6 3370,7 | 3370,7
20:09:00 3371 3370,6 3370,6 3370,7 3370,7 | 3370,7
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20:10:00 3371 3370,8 3370,7 3370,7 3370,8 | 3370,7
20:11:00 3370 | 3370,8 3370,6 3370,7 3370,5 | 3370,8
20:12:00 3368 3370,2 3370,3 3370,5 3369,7 | 3370,5
20:13:00 3368 3369,6 3370,0 3370,3 3369,5 | 3369,7
20:14:00 3369 3369,2 3369,9 3370,1 3369,6 | 3369,5
20:15:00 3369 3368,8 3369,8 3370,1 3369,4 | 3369,6
20:16:00 3369 3368,6 3369,7 3369,9 3369,3 | 3369,4
20:17:00 3368 3368,6 3369,4 3369,7 3368,9 | 3369,3
20:18:00 3368 3368,6 3369,1 3369,5 3368,8 | 3368,9
20:19:00 3368 3368,4 3368,8 3369,4 3368,7 | 3368,8
20:20:00 3368 3368,2 3368,5 3369,3 3368,5 | 3368,7
20:21:00 3369 3368,2 3368,4 3369,2 3368,7 | 3368,5
20:22:00 3370 | 3368,6 3368,6 3369,1 3369,1 | 3368,7
20:23:00 3370 | 3369,0 3368,8 3369,1 3369,2 | 3369,1
20:24:00 3371 3369,6 3369,0 3369,1 3369,7 | 3369,2
20:25:00 3370 | 3370,0 3369,1 3369,0 3369,5 | 3369,7
20:26:00 3370 | 3370,2 3369,2 3369,0 3369,6 | 3369,5
20:27:00 3371 3370,4 3369,5 3369,2 3370,0 | 3369,6
20:28:00 3371 3370,6 3369,8 3369,4 3370,2 | 3370,0
20:29:00 3371 3370,6 3370,1 3369,5 3370,3 | 3370,2
20:30:00 3371 3370,8 3370,4 3369,7 3370,5 | 3370,3
20:31:00 3371 3371,0 3370,6 3369,8 3370,6 | 3370,5
20:32:00 3371 3371,0 3370,7 3370,0 3370,7 | 3370,6
20:33:00 3372 3371,2 3370,9 3370,3 3371,1 | 3370,7
20:34:00 3372 3371,4 3371,0 3370,5 3371,2 | 3371,1
20:35:00 3372 3371,6 3371,2 3370,8 3371,4 | 3371,2
20:36:00 3373 3372,0 3371,5 3371,1 3371,9 | 3371,4
20:37:00 3374 | 3372,6 3371,8 3371,3 3372,4 | 33719
20:38:00 3373 3372,8 3372,0 3371,5 3372,3 | 3372,4
20:39:00 3374 | 3373,2 3372,3 3371,7 3372,8 | 3372,3
20:40:00 3374 | 3373,6 3372,6 3372,0 3373,1 | 3372,8
20:41:00 3374 | 3373,8 3372,9 3372,3 3373,2 | 3373,1
20:42:00 3374 | 3373,8 3373,2 3372,5 3373,4 | 3373,2
20:43:00 3374 | 3374,0 3373,4 3372,7 3373,5| 3373,4
20:44:00 3374 | 3374,0 3373,6 3372,9 3373,6 | 3373,5
20:45:00 3374 | 3374,0 3373,8 3373,1 3373,7 | 3373,6
20:46:00 3374 | 3374,0 3373,9 3373,3 3373,8 | 3373,7
20:47:00 3374 | 3374,0 3373,9 3373,5 3373,8 | 3373,8
20:48:00 3375 3374,2 3374,1 3373,7 3374,2 | 3373,8
20:49:00 3376 | 3374,6 3374,3 3373,9 3374,7 | 3374,2
20:50:00 3376 | 3375,0 3374,5 3374,2 3374,9 | 3374,7
20:51:00 3376 | 3375,4 3374,7 3374,4 3375,1 | 3374,9
20:52:00 3376 | 3375,8 3374,9 3374,5 3375,3 | 3375,1
20:53:00 3377 3376,2 3375,2 3374,8 3375,8 | 3375,3
20:54:00 3377 3376,4 3375,5 3375,0 3376,0 | 3375,8
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20:55:00 3377 | 3376,6 3375,8 3375,2 3376,2 | 3376,0

20:56:00 3378 | 3377,0 3376,2 3375,5 3376,7 | 3376,2

20:57:00 3377 | 3377,2 3376,5 3375,7 3376,6 | 3376,7

20:58:00 3378 | 3377,4 3376,8 3375,9 3377,0 | 3376,6

20:59:00 3378 | 3377,6 3377,0 3376,2 3377,2 | 3377,0
APPENDIX II

TRADING DAYS for the first half 2020
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June 30, 2020 / TRENDING / Ascending
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June 29, 2020 / TRENDING / Ascending
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June 26, 2020 / TRENDING / Descending

3080

o
O
o
on

3020

3000

2980

2960

00:90:0¢
00:vS:6T
00:¢v:6T
00-0¢-6T
00-8T-6T
00:90:6T
00:7S:8T
00:¢¥:8T
00-0€:8T
00-8T-8T
00:90:8T
00-7S-LT
00:¢v:LT
00-0€:LT
00-8T-LT
00-90-£LT
00-75:9T
00:¢v:9T
00-0€:9T
00-8T-9T
00:90:9T
00-75:ST
00:¢P:ST
00-0€:9T
00-8T-9T
00-90-9T
00-7S-¥T
00:¢rvT
00-0€-¥T
00-8T-¥T
00-90-7T
00-7S-€T
00:¢r:eT
00-0€°€T

80



June 25, 2020 / TRENDING / Ascending
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June 24, 2020 / TRENDING / Trend Reversal
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June 23, 2020 / TRENDING / Trend Reversal
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June 22, 2020 / TRENDING / RANGING/ Ascending /

Reversals
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June 19, 2020 / TRENDING / Descending
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June 18, 2020 / RANGING / Reversals
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June 17, 2020 / RANGING / Reversals (+ Random)
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June 15, 2020 / TRENDING / Ascending
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June 12, 2020 / RANGING / Reversals

3100

o
9]
o
o

3060

3040

3020

3000

2980

2960

2940

2920

00:90:0¢
00-75-6T
00-¢v-6T
00-0€-6T
00:8T:6T
00:90:6T
00-75-8T
00-¢v-8T
00-0€:8T
00:8T:8T
00:90:8T
00-7S-LT
00-¢v-LT
00-0€:LT
00:8T:LT
00:90:LT
00-75:9T
00-¢v-9T
00-0€:9T
00:8T:9T
00:90:9T
00-75-ST
00-¢p-ST
00-0€:9T
00:8T:ST
00:90:ST
00-7S-¥T
00-¢v-vT
00-0€-¥T
00:8T¥T
00:90:vT
00-7S-€T
00-¢r-€T
00-0€:€T

85



June 11, 2020 / TRENDING / Descending (+ Trend Reversal)
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00-€5:9T
00-0%:9T
00-£¢:ST
00-¥T:ST
00:TO:ST
00:87:vT
00:S€:vT
00-¢¢:vT
00:60:¥7T
00-9S5°€T
00-Ev-€T
00-0€:€T

June 10, 2020 / RANGING / Random (+ Reversals)

3230

o
~N
(o]
o

3210

3200

3190

3180

3170

3160

00-75-0¢
00:T¥:0¢
00:€T:0¢
00:00:0¢
00:Lv-61
00-v€-61
00-T¢-61
00:80:6T
00:55:8T
00:¢v:81
00:6¢:81
00-9T-81
00-€0-81
00-0S-LT
00:LELT
00:vC:LT
00:TT:LT
00-85:91
00:9%-91
00-¢€:91
00-6T-91
00:90:91
00:€5:ST
00-:0%:ST
00-£¢:9T
00-¥T-9T
00-TO-9T
00:8v7-¥1
00:SEvT
00:¢evi
00:60:¥1
00-95:€T
00-€v-€1
00-0¢€:€1

86



June 9, 2020 / TRENDING / RANGING / Ascending / Reversals

3225

o
~N
o
o

3215

3210

3205

3200

3195

3190

3185

3180

3175

00-vS:0¢
00:T¥:0¢
00:€T:0¢
00:00:0¢
00-L¥-6T
00-ve6T
00:TC:6T
00:80:6T
00-95:8T
00-¢v:8T
00-6¢:8T
00:9T:8T
00-€0:8T
00-0S:LT
00-£€LT
00-vC: LT
00:TT:LT
00-8S:9T
00-9%:9T
00-¢€9T
00:6T:9T
00:90:9T
00-€5:9T
00-0%:9T
00-£¢:ST
00-¥T:ST
00:TO:ST
00:87:¥T
00-S€vT
00-¢evT
00:60:¢T
00-9S:€T
00-EV-€ET
00-0€:€T

June 8, 2020 / TRENDING / Ascending

3240

o
[22]
(V]
[a2]

3220

3210

3200

3190

3180

3170

00-75-0¢
00:T¥:0¢
00:€T:0¢
00:00:0¢
00-Lv-61
00-v€-61
00:T¢6T
00:80:61
00:95:81
00-¢v-81
00-6¢:81
00:9T:8T
00:€0:81
00-:0S:LT
00-£€:LT
00-v¢-LT
00:TT:LT
00-85:91
00:9%:91
00-¢€:91
00:6T:91
00:90:91
00-€G:9T
00-0t-91
00:£¢:9T
00:7T:ST
00:10:ST
00:8¥-¥1
00-9€-¥1
00-¢¢-v1
00:60:¥71
00-9G:€T
00-€v-€1
00-0€:€T

87



June 5, 2020 / RANGING / Random

3220

3210

cseses

3200

3190 --o------------o--co.-o

3180

3170

3160

3150

00:90:0¢
00-75-6T
00-¢v-61
00-0¢-61
00:8T:6T
00:90:6T
00-75-8T
00:¢v:8T
00:0¢:8T
00-8T-8T
00-90-8T
00:7SLT
00-¢v-LT
00-0€-LT
00-8T-LT
00:90:LT
00-75:9T
00-¢v-9T
00-0€:91
00:8T:9T
00:90:9T
00-75-9T
00:¢P:ST
00:0¢€:ST
00-8T-ST
00-90-9T
00:7SvT
00-¢v-v1
00-0€-¥T
00-8T-¥T
00:90:vT
00-7S-€T
00-¢r-€T
00-0€:€T

June 4, 2020 / RANGING / Reversals

3140

3130

o
~N
—
[a2]

3110

3100

3090

3080

3070

00:7S:0¢
00:T¥:0¢
00:-€T:0¢
00:00:0¢
00:Lv:6T
00-vE:6T
00:T¢:6T
00:80:6T
00-95:8T
00-¢v:8T
00-6¢:8T
00-9T:8T
00-€0-8T
00-0S°LT
00-£€LT
00-vC: LT
00-TT:LT
00-85:9T
00:5¥:9T
00:¢€:9T
00:6T:9T
00:90:9T
00-€5:ST
00:0%:ST
00-£¢:ST
00-7T:ST
00-TO:ST
00:87:¥T
00-S€VT
00-¢CvT
00-60-vT
00-9S5°€T
00-Ev-€T
00-0€:€T

88



June 3, 2020 / TRENDING / Ascending

3135

3130

3125

3120

3115

3110

3105

3100

3095

3090

3085

3080

00-¥S:0¢
00:T¥:0¢
00:-€T:0¢
00-00-0¢
00:Lv:6T
00-v€6T
00-T¢6T
00:80:6T
00-95:8T
00-¢v-8T
00:6¢:8T
00:9T:8T
00-€0-8T
00:0S:LT
00-£€LT
00-vC: LT
00:TT:LT
00-85:9T
00-9%:9T
00-¢e:9T
00-6T:9T
00-90-9T
00-€5:GT
00-0%:ST
00-£¢:ST
00-7T:ST
00-TO:ST
00-87-vT
00:S€vT
00-¢CvT
00-60-vT
00:9S:€T
00-EV-€ET
00-0€:€T

June 2, 2020 / TRENDING / RANGING / Ascending /

Reversals

3085

o
Q0
o
[32]

3075

3070

3065

3060

3055

3050

3045

3040

3035

00-75-0¢
00:T¥:0¢
00:€T:0¢
00:00:0¢
00-Lv-6T
00-ve-61
00-T¢-6T
00:80:6T
00:55:8T
00:¢P:8T
00:6¢:8T
00-9T-8T
00-€0-8T
00-05-LT
00:L€LT
00:vC:LT
00:TTLT
00-85:9T
00-9%:91
00-¢€:91
00-6T-9T
00:90:9T
00-€5:9T
00-0%-ST
00-£¢:ST
00-¥T-9T
00-TO-ST
00:87-¥1T
00:5€vT
00:¢evt
00:60:vT
00-95-€T
00-€v-€T
00-0€-€T

89



June 1, 2020 / TRENDING / Ascending

3065

o
O
o
o

3055

3050

3045

3040

3035

3030

3025

3020

3015

3010

00:75:0¢
00:1¥:0¢
00:€T:0¢
00:00:0¢
00:L¥:61
00:vE61
00:T¢61
00:80:61
00:95:81
00-¢v-81
00-6¢-81
00-9T-81
00-€0-81
00-:0S:LT
00-£€:LT
00-v¢-LT
00-TT-LT
00-85:91
00:5%:91
00:¢€9T
00:6T:91
00:90:91
00-€5:9T
00:0%:ST
00:£¢:ST
00:¥T:ST
00:TO:ST
00:8¥-¥1
00-9€-¥1
00-¢¢-v1
00-60-7T
00-9G9:€T
00-€v-€1
00-0€:€T

May 29, 2020 / TRENDING / Trend Reversal

3070

3060

o
N
o
[32]

3040

3030

3020

3010

3000

2990

2980

2970

00:90:0¢
00-7S:61
00-¢v-61
00:0¢:61
00-8T-61
00-90-61
00-75:81
00-¢v-81
00-0€:81
00:8T:8T
00:90:8T
00:7S LT
00:¢v:LT
00:0¢:LT
00-8T:LT
00-90:£T
00-75:91
00-¢v-91
00-:0€:91
00-8T-91
00-90-91
00-75:91
00:¢v:ST
00:0€:ST
00:8T:ST
00:90:ST
00-7S-¥1
00-¢v-v1
00-0€-¥1
00-8T-¥1
00-90-¥1
00-7S-€T
00-¢v-€1
00-0¢€:€1

90



May 28, 2020 / TRENDING / Trend Reversal

3080

3070

3060

cecscsescsesesesssssscscsssescsccscscscscsccscscscscsccccocolle

3050

3040

3030

3020

3010

3000

00-¥S-0¢
00:T¥:0¢
00:-€T:0¢
00-00-0¢
00:Lv:6T
00-veE6T
00:TC:6T
00:80:6T
00-95:8T
00:¢¥:8T
00-6¢:8T
00:9T:8T
00-€0:8T
00-0S5:LT
00:£€LT
00-vC:LT
00:TT:LT
00-85:9T
00-9%:9T
00-¢e:9T
00-6T:9T
00:90:9T
00-€5:9T
00-0%:9T
00:£¢:ST
00-¥T-9T
00:TO:ST
00:87:¥1T
00-S€VT
00:¢e:vt
00-60-¥T
00:99:€T
00-EV-€ET
00-0€:€T

May 27, 2020 / TRENDING / Trend Reversal

3060

o
<
o
]

3020

3000

2980

2960

2940

2920

00-75-0¢
00:T¥:0¢
00-€T-0¢
00:00:0¢
00-Lv-6T
00-7€-6T
00-T¢6T
00:80:6T
00:55:8T
00-¢-8T
00:6¢:8T
00-9T-8T
00-€0:8T
00:0S:LT
00-£€LT
00:vC:LT
00-TT-LT
00-85:9T
00:5¥7:9T
00-¢€9T
00:6T:9T
00-90-9T
00-€5:ST
00-0%-ST
00-£¢:ST
00:vT:ST
00-TO-ST
00:87:¥7T
00-9€¥T
00-¢¢vT
00:60:7T
00-95-€T
00:-€v:€T
00-0€:€T

91



May 26, 2020 / TRENDING / RANGING / Descending /

Reversal (+Random)

3030

3020

3010

3000

2990

2980

2970

00:75:0¢
00:T¥:0¢
00-€T-0¢
00-00:0¢
00-L¥'6T
00-v€6T
00-T¢6T
00-80-6T
00-95:8T
00:¢¥:8T
00:6¢:8T
00-9T:8T
00-€0:8T
00-0S°LT
00:L€:LT
00-vC: LT
00-TT-LT
00-85:9T
00:5¥:9T
00:¢€:9T
00-6T:9T
00:90:9T
00-€5:9T
00:0%:ST
00-£¢:ST
00-¥T-9T
00-TO:ST
00:8¥:171T
00-S€VT
00-¢evT
00-60-¥T
00:99:€T
00:€v:€ET
00-0€:€T

May 25, 2020 / Corrupt Data

2996

2994

2992

2990

2988

2986

2984

2982

00:00:L1
00-75:91
00:817:91
00-¢v-91
00:9€:91
00:0€:91
00-7¢:91
00-8T-91
00-¢T-91
00:90:9T
00:00:91
00-75:ST
00:8%:91
00-¢v-91
00-9¢€:91
00:0€:ST
00-7¢:ST
00-8T:9T
00-¢T-91
00-90:-9T
00:00:ST
00:7S¥1
00:8¥-¥1
00-¢v-v1
00-9€-¥1
00-0€-¥1
00:vCvi
00:8T-¥1
00-¢T-¥1
00-90-¥1
00-:00-¥T
00:7S:€T
00:87:€T
00-¢v-€1
00-9¢€:€1
00-0€:€1

92



May 22, 2020 / TRENDING / RANGING / Ascending /

Reversals

2960

n
N
[e)]
o~

2950

2945

2940

2935

2930

2925

2920

00:90:0¢
00-75-6T
00-¢v-61
00:0¢:6T
00-8T-6T
00:90:6T
00-75-8T
00-¢v-8T
00:0¢:8T
00-8T-8T
00:90:8T
00-7S-LT
00-¢v-LT
00:0¢:LT
00-8T-LT
00-90-LT
00-75:9T
00-¢v-9T
00:0€:9T
00-8T-9T
00-90-9T
00-75:ST
00-¢v-ST
00:0€:ST
00-8T-ST
00-90-9T
00:7SvT
00-¢v-vT
00:0€:vT
00-8T-¥T
00-90-¥T
00:7S:€ET
00-¢r-€T
00-0€:€T

May 21, 2020 / TRENDING / Descending

2980

o
~
[e)]
o~

2960

2950

2940

2930

2920

2910

00:7S:0¢
00:1¥:0¢
00:€T:0¢
00:00:0¢
00:Lv-61
00-v€-61
00-T¢-61
00-80-61
00-9G:81
00-¢v-81
00-6¢:81
00-9T-81
00-€0-81
00-05:LT
00-£€:LT
00-¥¢:LT
00-TT-LT
00-85:91
00:9%7:91
00:¢e91
00:6T:91
00:90:91
00:€S:ST
00:0%:ST
00:£¢:ST
00:7T:ST
00:T0:ST
00:87:¥1T
00:SE¥T
00-¢¢-vi
00-:60-¥1
00-9G:€1
00-ev-€1
00-0€:€T

93



May 20, 2020 / RANGING / Reversals

2985

2980

n
~
[%)]
(o]

secececccsesesesesecscscscscne

2970

2965

2960

2955

2950

2945

00:75:0¢
00:T¥:0¢
00:€T:0¢
00:00:0¢
00-Lv-6T
00-ve6T
00-T¢6T
00-80-6T
00-95:8T
00-¢v-8T
00-6¢:8T
00-9T-8T
00-€0-8T
00-0S5°LT
00-L€LT
00-¥C:LT
00-TT-LT
00-85:9T
00-S17:9T
00-¢e:9T
00:6T:9T
00:90:9T
00-€5:GT
00:0%:ST
00:L¢:ST
00:vT:ST
00:TO:ST
00:87:171T
00:5€vT
00-¢evT
00-60-¥T
00-95°€T
00-€-€T
00-0€:€T

May 19, 2020 / RANGING / Random

2970

o
O
[<)]
o~

2950

2940

2930

2920

2910

2900

2890

00-¥5:0¢
00:T¥:0¢
00:-€T:0¢
00-00-0¢
00-L¥'6T
00-v€:6T
00:T¢:6T
00:80:6T
00-95:8T
00:¢¥:8T
00:6¢:8T
00-9T:8T
00-€0-8T
00:0S:LT
00:L€:LT
00-vC:LT
00-TT-LT
00-85:9T
00:5¥:9T
00-¢e:9T
00-6T:9T
00-90-9T
00-€5:GT
00-0%:ST
00-£¢:9T
00-¥T:ST
00:TO:ST
00:87:¥1T
00-9€vT
00-¢evT
00:60:¥7T
00:99:€T
00-Ev-€ET
00-0€:€T

94



May 18, 2020 / TRENDING / Trend reversal

2980

2970

o
O
()]
~N

2950

2940

2930

2920

2910

00:75:0¢
00:T¥:0¢
00:€T:0¢
00:00:0¢
00-L¥'6T
00-veE6T
00-T¢6T
00-80-6T
00-95:8T
00-¢v-8T
00-6¢:8T
00-9T:8T
00-€0-8T
00-0S°LT
00-£€LT
00-vC:LT
00-TT:LT
00-8S:9T
00:97:9T
00-¢e:9T
00-6T:9T
00:90:9T
00-€5:ST
00:0%:ST
00:£¢:ST
00-¥T:ST
00:TO:ST
00:8¥:171T
00:S€:vT
00-¢evT
00-60-vT
00-9S°€T
00-Ev-€T
00-0€:€T

May 15, 2020 / TRENDING / RANGING / Ascending /

Reversals (+ Random)

2870

o
O
o]
o~

2850

2840

2830

2820

2810

2800

2790

00:vS:6T
00-¢v-6T
00:0¢:6T
00:8T:6T
00-90-6T
00-75:8T
00-¢-8T
00:0¢:8T
00:8T:8T
00-90-8T
00-7S:LT
00:¢v:LT
00-0€:LT
00:8T:LT
00-90-LT
00-75:9T
00:¢v:9T
00-0€:9T
00:8T:9T
00:90:9T
00-75-ST
00:¢v:ST
00-0€:9T
00-8T-ST
00:90:ST
00-¥S¥T
00-¢v-v1
00-0€¥T
00-8T-¥T
00:90:¥T
00-¥S-€T
00-¢r-€T
00:0¢:€T

95



May 14, 2020 / TRENDING / Ascending

2880

2860

2840

2820

2800

2760

2740

2720

00-75-0¢
00:T¥:0¢
00-€T-0¢
00:00:0¢
00-Lv-6T
00-7€-6T
00-T¢6T
00:80:6T
00:55:8T
00-¢-8T
00:6¢:8T
00-9T-8T
00-€0:8T
00:0S:LT
00-£€LT
00:vC:LT
00-TT-LT
00-85:9T
00:5¥7:9T
00-¢€9T
00:6T:9T
00-90-9T
00-€5:ST
00-0%-ST
00-£¢:ST
00:vT:ST
00-TO-ST
00:87:7T
00-9€¥T
00-¢¢vT
00:60:¥7T
00-95-€T
00:-€v:€T
00-0€:€T

May 13, 2020 / RANGING / Random

2880

o
O
0
o~

2840

2820

2800

2780

2760

2740

00:75:0¢
00:T¥:0¢
00-€T-0¢
00:00:0¢
00:Lv:6T
00-ve-6T
00-T¢'6T
00:80:6T
00-95:8T
00-¢v-8T
00:6¢:8T
00-9T:8T
00-€0:8T
00:0S:LT
00-L€LT
00-v¢:LT
00:TT:LT
00-85:9T
00-97:9T
00-¢e:9T
00-6T:9T
00-90-9T
00-€5:ST
00:0%:ST
00-£¢:ST
00-vT:ST
00:TO:ST
00-87-¥T
00-S€VT
00:¢e:vt
00-60-¥T
00-95:€T
00:-€v:€T
00-0€:€T

96



May 12, 2020 / TRENDING / Descending

2960

o
[N
()]
~N

2900

2880

2860

2840

2820

2800

2780

00-75-0¢
00-Tv-0¢
00-€T-0¢
00-00-0¢
00-Lv-6T
00-ve-6T
00-T¢-6T
00-80-6T
00-95-8T
00-¢v-8T
00-6¢-8T
00-9T-8T
00-€0-8T
00-05-LT
00-£€:LT
00-vC-LT
00-TT-LT
00-85:9T
00-9%-9T
00-¢€:9T
00-6T-9T
00-90-9T
00-€5-9T
00-0t-ST
00-£¢:9T
00-¥T-9T
00-TO-ST
00-87-¥T
00-9€-¥T
00-¢¢-vT
00-60-¥T
00-95-€T
00-€v-€T
00-0€-€T

May 11, 2020 / TRENDING / Trend Reversal

2950

o
<
(<]
o~

2930

2920

2910

2900

2890

2880

00-75-0¢
00:1¥:0¢
00:-€T-0¢
00:00:0¢
00:Lv-61
00-v€-61
00:T¢61
00:80:61
00:95:81
00:¢¥:81
00:6¢:81
00-91:81
00:€0:8T
00-:0S:LT
00-£€:L1
00-v¢:LT
00-TT-LT
00:85:91
00:S¥7:91
00-¢€:91
00:6T:91
00:90:91
00-€G:9T
00:0%:ST
00:£¢:ST
00-¥T-91
00:T0:ST
00:8¥-¥1
00:9€-71
00:¢evi
00-60-7T
00:9S:€T
00-€v:€1
00-0¢€:€T

97



May 8, 2020 / TRENDING / Ascending

2935

2930

2925

2920

2915

2910

2905

2900

2895

2890

2885

00-95°6T
00-7¥-6T
00-c€-6T
00:cc6T
00:TT:6T
00-00-6T
00:67:8T
00:8¢:8T
00-£¢:8T
00:9T:8T
00-S0-8T
00-¥S-LT
00:€v:LT
00-¢e:LT
00-T¢LT
00:0T:LT
00:65:9T
00-817-:91
00:£€:9T
00:9¢:91
00-9T-9T
00:70:9T
00-€5-9T
00-¢p-ST
00:T€:ST
00-0¢:9T
00-60-9T
00:85:¥T
00-Lv-¥T
00-9¢€-¥T
00-S¢:¥T
00-¥T-¥T
00:€0:vT
00:¢s:€T
00-Tt-€T
00:0¢:€T

May 7, 2020 / RANGING / Random

2905

o
o
(%]
o~

2895

2890

2885

2880

2875

2870

2865

2860

00:7S:0¢
00:T¥:0¢
00-€T-0¢
00-00-0¢
00-Lv-61
00-v€-61
00-T¢:61
00:80:61
00:55:8T
00:¢¥:8T
00-6¢:81
00-9T-81
00-€0-8T
00-:0S:LT
00:LE:LT
00:vC:LT
00:TT:LT
00-85:91
00:97:91
00-¢€:91
00-6T:91
00:90:91
00:€5:ST
00:0%:ST
00:£¢:ST
00-¥T-91
00-TO-9T
00:8¥-¥1
00-S€-¥1
00:¢evi
00:60:¥T
00:9S:€T
00-ev-€1
00-0¢€:€1

98



May 6, 2020 / TRENDING / RANGING / Descending /

Random

2900

2890

2880

2870

2860

2850

2840

2830

2820

2810

00-75-0¢
00:1¥:0¢
00:€T-0¢
00-00-0¢
00:Lv-61
00:7€61
00:T¢61
00:80:61
00-9G:81
00:¢¥:81
00:6¢:81
00-9T:81
00-€0-81
00:0S:LT
00:L€LT
00-v¢:LT
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May 4, 2020 / TRENDING / RANGING / Ascending / Random
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00-vC:LT
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April 30, 2020 / RANGING / Random (+ Reversals)
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April 29, 2020 / TRENDING / Ascending
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00:¢v:8T
00:6¢:8T
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00-¥C: LT
00-TT-LT
00-85:9T
00-S17:9T
00-ce:9T
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April 28, 2020 / TRENDING / Trend reversal
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00:6¢:8T
00:9T:8T
00-€0:8T
00-0S°LT
00:LELT
00-v¢:LT
00-TT-LT
00-8S:9T
00:5¥:9T
00-¢e9T
00-6T:9T
00:90:9T
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00-£¢:ST
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April 27,2020 / TRENDING / Ascending (+ Trend Reversal)
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00-¥¢:LT
00-TT-LT
00-85:91
00-9%:91
00-¢€:91
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00:T0:ST
00:8¥7-71
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00-€v-€1
00-0€:€T

102



April 24, 2020 / TRENDING / Ascending (+ Trend Reversal)
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April 23, 2020 / TRENDING / Descending
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April 22, 2020 / TRENDING / Ascending
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00:T0:ST
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April 21, 2020 / RANGING / Reversals
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April 20, 2020 / TRENDING / Trend Reversal
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April 17,2020 / RANGING / TRENDING / Reversals / Trend
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April 16, 2020 / RANGING / Reversals (+ breakout)
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April 15, 2020 / RANGING / Reversals
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April 14, 2020 / TRENDING / Ascending
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April 13, 2020 / TRENDING / Trend Reversal
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April 9, 2020 / RANGING / Reversals
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April 8, 2020 / TRENDING / Ascending
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April 7, 2020 / TRENDING / Descending
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00-85:9T
00-9%7:9T
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00:6T:9T
00:90:9T
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April 6, 2020 / TRENDING / Ascending
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April 3, 2020 / TRENDING / Descending (+ Trend Reversal)
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April 2, 2020 / TRENDING / RANGING / Ascending / Reversals
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April 1, 2020 / TRENDING / Descending
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00:L€LT
00-¥¢:LT
00-TT-LT
00:85:9T
00-9t7:9T
00-¢€9T
00:6T:9T
00-90-9T
00-€5:9T
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00-£¢:ST
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March 31, 2020 / TRENDING / Descending

2640

o
o
Yol
o~

2580

2560

2540

2520

00:-€5:0¢
00-0%:0¢
00:€T:0¢
00:00:0¢
00-L¥'6T
00-ve:6T
00-T¢6T
00:80:6T
00-95:8T
00:¢¥:8T
00-:6¢:8T
00:9T:8T
00-€0:8T
00-0S5°LT
00:LELT
00-vC:LT
00:TT:LT
00-8S:9T
00:5¥:9T
00-¢e:9T
00:6T:9T
00:90:9T
00-€5:9T
00:0%:ST
00-£¢:ST
00-¥T:ST
00-TO-ST
00:8¥:1T
00-SEVT
00:¢e:vt
00-60:7T
00-9S5°€T
00:-€v:€T
00-0€:€T

111



March 30, 2020 / TRENDING / Ascending
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00-TT-LT
00-85:9T
00-9%7:9T
00:¢e:9T
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00:90:9T
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00-0%-ST
00:L¢:ST
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00:87:v1T
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March 26, 2020 / TRENDING / Ascending
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March 24, 2020 / TRENDING / Ascending
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March 20, 2020 / TRENDING / Desending
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March 18, 2020 / TRENDING / Trend Reversal
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March 16, 2020 / TRENDING / Trend Reversal
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March 12, 2020 / TRENDING / Descending (+ 1 false

breakout)
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March 10, 2020 / RANGING / Random
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March 6, 2020 / RANGING / Reversals
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March 4, 2020 / TRENDING / Ascending

3140

o
N
—
o

3100

3080

3060

3020

3000

2980

00:00:€¢
00-s%°T¢
00:0¢:T¢
00-00-T¢
00-s%:0¢
00-0¢€:0¢
00:5T:0¢
00-00-0¢
00-St-6T
00-0€°6T
00:sT:6T
00-00-6T
00:57:8T
00-0€:8T
00:ST:8T
00-00-8T
00:S¥:LT
00-0€:LT
00:ST:LT
00-00-£LT
00:5¥:9T
00-0€:9T
00:ST:9T
00-00-9T
00:5¥:ST
00-0€:9T
00:ST:ST
00-00-ST
00:S5¥:vT
00-0€-¥T
00:ST:¥T
00-00-¥T
00:S¥:€T
00:0¢:€T

March 3, 2020 / TRENDING / Descending

3150

o
n
o
on

3000

2950

2900

00-05°T¢
00-S9€°T¢
00:590°T¢
00:05:0¢
00:5€:0¢
00:0¢:0¢
00:50:0¢
00:0S:6T
00-S€°6T
00-0¢:6T
00-50-6T
00-0S:8T
00-9€:8T
00:0¢:8T
00:50:8T
00:0S:LT
00:S€:LT
00:0¢:LT
00-S0-LT
00-05:9T
00-9€:9T
00-0¢:9T
00-90:9T
00-0S:ST
00-9€:9T
00:0¢:ST
00:00:ST
00:S¥:v1T
00-0€vT
00-ST-¥T
00-00-¥T
00-S¥-€T
00-0¢:€T

121



March 2, 2020 / TRENDING / Ascending
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February 27, 2020 / TRENDING / RANGING / Trend reversal

/ Reversals
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February 25, 2020 / TRENDING / Trend Reversal
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February 21, 2020 / TRENDING / Descending
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February 12, 2020 / TREDING / Ascending Trend

3385

o
o0
o
on

3375

3370

3365

3360

00-95°T¢
00:T¥:T¢
00:¢T:1¢
00-85:0¢
00-v¥-0¢
00:0€:0¢
00:9T:0¢
00-¢0-0¢
00:8v:6T
00-v€6T
00-0¢:6T
00:90:6T
00-¢S:8T
00-8€:8T
00:v¢:8T
00-:0T:8T
00-9SLT
00:¢v:LT
00:8¢:LT
00-¥T:LT
00-00-£LT
00:9%:9T
00-¢e:9T
00-8T-9T
00:70:9T
00-05:9T
00-9¢€:9T
00:¢¢:ST
00-80:9T
00-¥SvT
00:0%:¥T
00:9¢:vT
00-¢T¥T
00-8S-€T
00:v¥:€T
00-0€:€T

February 11, 2020 / TRENDING / RANGING / Trend reversal

/Reversals /

3380

3375

o
~
o™
(a2

3365

3360

3355

3350

3345

3340

00-95°T¢
00:T¥:T¢
00-¢T:T¢
00-85-0¢
00:v¥:0¢
00-0¢€-0¢
00:9T:0¢
00:¢0:0¢
00-87-61
00:v€61
00-0¢-61
00:90:61
00-¢S:81
00-8€:81
00:7¢:81
00-0T-8T
00:9S:/T
00-¢v-LT
00-8¢:LT
00:7T:LT
00-00-£T
00:9%:91
00:¢e91
00-8T-91
00:70:91
00-05:9T
00:9¢:ST
00-¢¢:ST
00-80-9T
00:7S¥T
00-0t-¥1
00:9¢:¥1
00-¢T-¥1
00-85:€T
00:7P:€T
00-0¢€:€T

128



February 10, 2020 / TRENDING / Ascending
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February 6, 2020 / RANGING / Reversals
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February 4, 2020 / TRENDING / Trend Reversal
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January 16, 2020 / TRENDING / Ascending
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January 14, 2020 / RANGING / Reversals
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January 2, 2020 / TRENDING / Reversal
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