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Abstract 
This thesis focused on evaluating the capacity of models of human learning to 

encapsulate the action choices of a range of individuals performing probabilistic 

decision-making tasks.  

To do so, an extensible evaluation framework, Tinker Taylor py (TTpy), was 

developed in Python allowing models to be compared like-for-like across a range 

of tasks. TTpy allows models, tasks and fitting methods to be added or replaced 

without affecting the other parts of the simulation and fitting process.  

Models were drawn from the reinforcement learning literature along with a few 

similarly structured Bayesian learning models. The fitting assumed that the same 

model was used throughout a task to make all the choices. 

Using TTpy, significant uncertainty was found in parameter recovery for short, 

simple tasks across a range of models. This was traced back to significant overlap 

in the action sequences plausibly produced by different combinations of 

parameters. Replacing softmax with epsilon greedy, as the way of calculating the 

action choice probabilities, was found to improve parameter recovery in simulated 

data. 

Datasets from three existing unpublished probabilistic decision-making tasks were 

examined. These datasets were chosen as they contained information on 

extraversion for all their participants, their tasks were well established, and the 

tasks had a gains-only promotion focus. Only one of the three tasks provided 

models where most of the model participant fits had strong evidence that they 

were better fits than uniform random action choices.  

In light of the difficulties in parameter recovery for individual participants, the 

unusual step was taken of averaging the recovered parameters across a subset of 

the best performing and most consistently recovered models within the same 

family. A significant correlation was found between this learning rate parameter 

and the participant extraversion measure when the softmax parameter variance 

was taken into account. 
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1 OVERVIEW  

Agents learn from their environments: they update their beliefs about the world by 

integrating new environmentally-derived information with their prior knowledge 

(Piaget, 1937). How this is done will vary from agent to agent, with multiple factors 

coming into play, such as past experiences, risk aversiveness, sensitivity of senses 

and many others. The ability to describe this behaviour, and its variation across 

individuals would be a powerful tool for understanding not only how individuals 

take in information, but equally how they choose to react to their environment. To 

provide the clearest descriptions, providing a mathematical expression of it, allows 

us to represent the variations in learning across individuals by way of variations in 

model parameter values. By expressing the methods through which learning might 

occur in a mathematical form, these models can be tested to see both what their 

behaviour would be in different circumstances, and how they compare to real-

world behaviour. 

This thesis focuses on evaluating models of human learning for probabilistic 

decision-making tasks: tasks where participants learn from feedback or rewards 

resulting from specific actions and stimulus cues. The most frequent modelling 

approaches have focused on variations of reinforcement learning (Sutton & Barto, 

1998). However, some studies comparing the performance of models have shown 

Bayesian models to perform better (Stankevicius, Huys, Kalra, & Seriès, 2014). In 

this work, simple models from both approaches are evaluated and compared, with 

a focus on reinforcement learning methods. The capacity of these models to 

explain participant responses is evaluated for tasks with a range of different 

stimulus and action choice complexities. During their evaluation, issues were 

identified in recovering accurate model parameters from participant data. Some 

progress was made towards resolving these issues before a final evaluation of the 

models was made across the available datasets.  

To perform the model evaluations, a computational framework was built, written 

in the programming language Python (Oliphant, 2007), allowing like-for-like 

comparisons between the models. For this to be achieved, it was necessary to 
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describe a common set of features for both the models and the tasks the models 

would be fitted against. For the models, the core of these come from our 

understanding of the brain.  

1.1 BASIS FOR MODELS 

Learning from events involves numerous neurological systems: sensory, memory, 

motor and cognitive. Learning how to respond in a probabilistic decision-making 

task depends upon updating the predictions of action consequences. The phasic 

activity of midbrain dopaminergic neurons has been shown to resemble a Reward 

Prediction Error (RPE) signal (Schultz, 2000; Schultz, Dayan, & Montague, 1997; 

Schultz & Dickinson, 2000). An RPE signal is positive for unexpectedly large rewards 

and negative for unexpectedly small rewards, which in a dopaminergic neuron 

equates to a brief increase or decrease in the firing rate relative to the tonic level. 

When the synaptic strengths accurately encodes the expected reward from action 

consequences, the RPE signal is zero (Glimcher, 2011).  A detailed review of 

dopamine and reward can be found in Schultz (2015).  

Unfortunately, to date, within an individual the encoded value of a reward as it 

reaches the dopaminergic pathways cannot be directly measured, only inferred 

from observable behavioural choices (Schultz, 2016). These values can be shown to 

be subjective and transitive (Lak, Stauffer, & Schultz, 2014), allowing us to consider 

them to be consistent across the duration of a task for an individual, but 

preventing us from assuming that all individuals will treat them the same way.   

The RPE signal allows for more than just a simple updating of the action-

consequences. For example, the medial prefrontal cortex has separate excitatory 

and inhibitory pathways corresponding to positive and negative RPE (Matsumoto, 

Matsumoto, Abe, & Tanaka, 2007), suggesting that updating may differ for positive 

and negative consequences. Alongside predictions of action consequences, it is 

likely that the RPE is used to evaluate the level of uncertainty in the state of the 

environment (Behrens, Woolrich, Walton, & Rushworth, 2007). 
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Prior to the RPE signal, midbrain dopaminergic neurons can be seen to encode a 

salience signal (Schultz, 2016), before reward value has been fully assessed. The 

models examined here assume that salient stimulus cues, available actions and 

rewards have been identified and encoded before reaching the model. This allows 

us to focus on predicted action consequences, choice of actions and updating of 

an expected reward given an action.  

This updating of action consequences has been shown to vary between individuals 

(Smillie, Cooper, & Pickering, 2011) as well as experience changes as people age 

(Sojitra, Lerner, Petok, & Gluck, 2018). It is therefore preferable not to aggregate 

results across individuals. Furthermore, these differences can be related to 

phenotypes, a term I will use to refer to measurable properties of an individual that 

vary slowly, if at all (Pickering & Pesola, 2014). These may be genetic in origin, but 

not exclusively. Examples of phenotypes that have been examined in this context 

are tendency to jump to conclusions (Cafferkey, Murphy, & Shevlin, 2013; Moore & 

Sellen, 2006; Ziegler, Rief, Werner, Mehl, & Lincoln, 2008) and extraversion (Cooper, 

Duke, Pickering, & Smillie, 2014; Pickering & Pesola, 2014). 

Extraversion is associated with gregariousness, assertiveness, leadership, 

sociability, high life satisfaction and impulsiveness (Wilt & Revelle, 2016). This has 

been shown to be widely generalisable across cultures (McCrae & Allik, 2002). Links 

between extraversion and reward learning were first proposed by Gray (1970) and 

Reward  

(stimulus, object or event) 

Sensory 

component 

Value 

component 

Object 

identification 
Object 

detection 

Object 

valuation 

Decision, action 

and 

reinforcement 

Figure 1-1 Reward component breakdown, as described in Schultz (2016). The models 

discussed in this thesis only examine the final box “Decision, action and reinforcement” 
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later developed through several lenses, described in detail by Smillie (2013), such 

as incentive motivation (Depue & Collins, 1999) and reinforcement sensitivity 

theory (Smillie, Pickering, & Jackson, 2006). Extraversion is generally measured 

through the use of self-report questionnaires such as the Eysenck Personality 

Questionnaire, EPQ (H. J. Eysenck, 1975). Any assessment of the relationship 

between extraversion and reward learning are therefore harder to tease out, as 

extraversion is based on the outcomes rather than any possible inputs to reward 

learning (Smillie et al., 2006; Zuckerman, 2005). This is detailed in the review paper 

by Wacker & Smillie (2015). 

Holroyd and Coles (2002) proposed that the RPE might modulate an 

electroencephalographic (EEG) signal from the medial frontal cortex ~200-300ms 

after a feedback event, known as feedback-related negativity (FRN). Potts et al. 

(2006) used a passive rewarding task to test this, where participants observed trials 

with a sequence of two cues followed by a reward. The first cue predicted the 

second cue 80% accurately and the second cue determined the reward 100% of 

the time. Both the first and second cues were of the same form: either a gold bar, 

the cue for a reward, or a lemon, the cue for no reward. Participants initially would 

be expected to show FRN when the reward is shown but, once the relationship 

between the second cue and the reward was established, the FRN would occur 

after the second cue is presented.   

By examining the FRN during this task, Potts et al. found that its response was 

consistent with the phasic dopamine cell firing after a reward prediction error of 

midbrain dopaminergic neurons (Schultz, 1998), with a positive response to 

unpredicted rewards and a negative response when a reward did not occur as 

predicted.  

The amplitude difference between the response to an unpredicted reward and the 

response to the absence of a predicted reward, known as a FRN difference wave or 

Reward Positivity, can be used as a measure of overall RPE magnitude, as 

decreases in the magnitude of the FRN difference waves correlate with decreases 

in errors in the reward predictions (Eppinger, Kray, Mock, & Mecklinger, 2008). 
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The link between the FRN difference waves and extraversion was examined by 

Smillie et al. (2011), who used the same passive task developed by Potts et al. 

(2006). They found that the FRN difference wave was stronger for high extraverts, 

more than one standard deviation above the mean score, than for low extraverts, 

also known as introverts, with scores more than one standard deviation below the 

mean.  

This result was strengthened by Cooper et al. (2014) who found a positive 

correlation (r=.36) between extraversion scores and the size of the Reward 

Positivity. These findings were consolidated in a subsequent study (Smillie et al., 

2019) replicating the previous study with a larger sample, 100 participants 

compared to 25, and once again finding a positive correlation (r=.26, p= .005), 

indicating that Reward Positivity may be at least partly modulated by extraversion. 

This in turn would suggest that extraversion could partly modulate the magnitude 

of the RPE.  

This thesis examined unpublished datasets of probabilistic reward learning tasks 

of varying complexity where a standard questionnaire measure of extraversion 

had been collected for each participant. This allowed an exploration of which 

aspect of RPE-based reinforcement learning might be related to extraversion. 
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1.2 CONSIDERATIONS FOR MODELLING HUMAN LEARNING BEHAVIOUR 

With the brain basis outlined above, it is possible to combine these with more 

computational considerations to produce our requirements for modelling the 

probabilistic decision-making tasks. Models of human learning can be evaluated by 

their capacity to reproduce the responses made by participants (Daw, 2011; Daw & 

Doya, 2006). In order to be able to identify learning within a participant’s actions, 

the tasks must repeatedly present similar, simple situations, allowing both the 

models and participants to build up an understanding of the underlying statistical 

structure of rewards. The tasks should also contain many potential choice 

sequences so that each participant can be uniquely identified by their choices. For 

the situations to be simple, they must be Markovian, i.e. independent of each 

other, such that the current stimulus cues and available actions completely 

capture the probabilities of different consequences for each action (Haykin, 2009). 

Any models that are to be considered ideally must be able to have their behaviour 

modified to span the range of human decision-making behaviour, such as those 

described in chapter 1.1. This would be achieved using parameters that can 

express this diversity of learning behaviour, while also modelling a given person’s 

behaviour accurately using the same parameter values across a range of tasks. For 

us to be able to compare models across tasks, we assume that any participant 

properties represented by model parameters are stable over short durations.  

The models must also be flexible in their design, allowing them to be applied to a 

variety of different types of tasks. Equally, models should also have the potential to 

be extendable, so that they can be applied to tasks of different levels of 

complexity; for example, tasks with a different number or type of stimuli, or where 

a reward is or is not provided. Any model must also be computationally feasible by 

brain-like systems. In this way, when the complexity of the task is increased there 

will be less chance of finding parts of the model parameter-space whose 

responses diverge from those provided by humans. This final requirement leads to 

the idea that the model should not only be able to represent the variation in 

human learning, but that the model parameters should be relatable to 
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phenotypes. From this, we are led to look for models that would be capable of 

being implemented in the brain and map to identifiable structures in the brain. 

Modifiable behaviour To represent the range of human decision-making behaviour 

Flexible design Adaptable to different stimuli and decisions 

Components map to 

brain-like structures 

To maximise the chance of mapping to human behaviour 

across different task complexities. 

Table 1-1: The core requirements for models to be considered along with its reason for 

inclusion. 

As the models will be compared to the decision-making performance of 

participants, the focus of the models will be on those that can provide action 

choices based on stimuli. Equally, to limit the complexity of these models, it was 

decided to limit the models to those that are model-free: models where only action 

values are learnt and not the structure of the task (Beierholm, Anen, Quartz, & 

Bossaerts, 2011; Hampton, Bossaerts, & O’Doherty, 2006). Both model-based and 

model-free are known to coexist (O’Doherty, Lee, & McNamee, 2015), with 

mechanisms in place to decide which takes priority at any given time (S. W. Lee, 

Shimojo, & O’Doherty, 2014) and there are indications that even for simple tasks 

model-based components are used in decision making (Dayan & Berridge, 2014). 

In addition to this, while it is plausible that multiple learning models are running in 

parallel in different brain systems, to reduce the complexity of the fitting it was 

assumed that each participant used only one learning model throughout their task 

run, but it was not necessary to assume that all participants used the same model. 

Having established these requirements, there are a wide range of models that 

could be considered: cognitive architectures (Sun, 2008), reinforcement learning 

(Sutton & Barto, 1998), Bayesian models (Jones & Love, 2011) and  

neural networks (J. X. Wang et al., 2018) among others. It was decided to focus on 

reinforcement learning models along with some Bayesian models that could be 

directly compared. 
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1.3 OUTLINE OF THESIS 

This project aimed to develop tools for comparing the performance of probabilistic 

decision-making models. The comparisons were performed with existing and to-

be-collected data gathered, from a series of probabilistic reasoning and learning 

tasks. The primary research question was to identify the most appropriate and 

powerful approach to modelling task performance, and its variation across 

individuals.  

The comparison of models across tasks and participants in an unbiased way, was 

achieved in two ways: by using comparison metrics that consider the different 

model complexities and by using consistent tools for all evaluations, modifying the 

setup as little as possible when moving from one evaluation to another. For this, a 

computational framework has been written in a way that allows a broad range of 

models, experiment tasks and evaluation methods to be swapped in or out 

without affecting the other parts. A unified way of interfacing the models to tasks 

was implemented and applied to a range of different models, allowing their 

different features to be compared more directly. This framework was implemented 

in accordance with the recommendations of Eglen et al. (2016). It is described in 

detail in chapter 2 along with the approaches used to fit the models to participant 

data. 

Potential models found in the existing literature were evaluated for their ease of 

generalisation. Those that looked promising were translated into a common 

mathematical form described in chapter 3. The models were then implemented 

within the Python framework and validated, if possible, against either other 

implementations of the same model or results from a published simulation. The 

implementation also involved modifying the models such that they could be 

applied to other, previously examined, experiments, allowing the model to be 

fitted to the data from those experiments. As data from new tasks became 

available, previously implemented models were extended to be compatible with 

any new task features and then fitted to any new data. Finally, comparisons could 

be made between models across experiments and data sets. The models in their 

final form are presented in chapter 3. 
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During this process, simulated participant datasets were generated with a few of 

the models to test the fitting process. This highlighted some issues with parameter 

recoverability, with causes found both in fitting procedures and the inherent 

recoverability of some models. Most notably, it was found that the use of a 

SoftMax function to estimate action choice probabilities results in a significant loss 

of information, hampering parameter recoverability. These issues were discussed 

in chapter 4.  

Datasets from various kinds of experiments were available for this project, both 

from previous student projects at Goldsmiths and student project data from our 

collaborators at other universities in Greenwich and Melbourne. Tasks were 

limited to gains only promotion focused tasks. A promotion-focus provides 

participants with a motivation to win points over the course of the experiment by 

providing potential higher payoffs. Gains only refers to participants receiving no 

losses as part of the task, just rewards and non-rewards. This avoids any need to 

disentangle possible mechanisms for reward and punishment processing (Schultz, 

2007).  

One task that was initially examined was the “beads tasks” (see Moore & Sellen, 

2006). In this task, participants are told about two jars, that contain white and black 

beads, for example, Jar A is 85% black and Jar B is 85% white. In each trial, the 

participant sees the colour of a bead drawn with replacement from one of the two 

jars. Participants must then indicate their confidence that the beads are drawn 

from jar A. This task essentially requires participants to compute the posterior 

expectation of a black bead given the series of beads displayed to date, with the 

confidence that the beads are drawn from jar A being a direct function of this 

expectation.  An initial exploration found that the information provided by 

participants during this task was insufficient to uniquely identify model parameters 

to participant responses. The fitting of this data was therefore abandoned.  

A task with a slightly more complex reward was subsequently examined. The Decks 

task is a modified version of the one used by Worthy, Maddox, & Markman (2007), 

and similar to the IOWA gambling task (Bechara, Damasio, Damasio, & Anderson, 

1994). Participants were presented each trial with two stimuli on a screen, one red 
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and one blue. These were said to be the top cards of two decks of cards 80 cards 

long. In each trialstep participants choose a deck to take a ‘card’ from. They are 

then shown the value of the card. Each card has a predetermined reward 

associated with it, whose value was between one and ten. The objective was to 

maximise the accumulated reward values. For this task, three sets of participant 

data were available. The results of this dataset are discussed in chapter 6. 

To evaluate the performance of models on tasks where the stimuli change, the 

Weather task was used, a task based on one described by Gluck & Bower (1988) 

and later adapted by Knowlton, Squire, & Gluck (1994). It asks participants to 

associate a series of cues with one of two outcomes. One to three cue cards, from 

a set of four cards, are presented to the participant in each trial. The participant 

must decide which one of the two possible outcomes the displayed cards are most 

likely associated with. Once the participant decides, they are then told if they were 

correct or not. The cues each have a probabilistic relationship with the two 

outcomes, with this version of the task having a novel probabilistic relationship, 

with the probability of an outcome varying depending on the combination of cues 

displayed. In the first phase of the task, the learning phase, participants are given 

feedback on whether their choice was correct. In the second phase, the testing 

phase, participants are not given any feedback. In total, there were 56 trials in the 

learning phase and 14 test phase trials, with equal numbers of each of the 14 cue 

combinations in each task phase. For this task, three sets of participant data were 

available. The results of model fitting for these datasets is discussed in chapter 8. 

For one of the Weather task datasets, participants were also asked to perform a 

final task, known as the Probabilistic Selection task, based on the task as described 

in Frank et al. (2007). For this task, participants are asked to learn the likelihood of 

being rewarded for six different actions, each given its own symbol. In the first 

phase of the task the actions are shown in three pairs with complementary reward 

probabilities that differ for each pair (80:20, 70:30, 60:40). Participants are asked to 

pick the most rewarding action, whereupon they are provided with a reward if 

there is one. In the second stage of the task, the participant is again shown pairs of 

symbols, but as well as repeating the original training pairs, there are novel pairs 
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made of symbols that were unpaired in the first stage. The participants are not 

given any rewards in this second stage. 

As the participants from this dataset are the same as one of the Weather task 

ones, a comparison was made between the parameters recovered from the 

Weather task fitting and the Probabilistic Selection task fitting. This comparison 

tested our assumption that the model parameters are associated with stable 

features of the participants. This is discussed in chapter 8.4. 

Both the Weather task and the Probabilistic Selection task have multiple phases, 

within which different models might dominate for a given individual (Frank et al., 

2007). The impact that selectively fitting might have on parameter recovery, 

irrespective of the model chosen is discussed in chapter 5. 

 

 Changing stimulus cues Static stimulus cues 

Changing actions  Probabilistic Selection task 

Constant actions Weather task Decks task 

Table 1-2 The tasks upon which the models were evaluated, classified by their use of 

static or varying stimulus cues and static or varying action choices.  
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2 THESIS METHODOLOGY 

To compare and evaluate the performance of learning models in identifying causal 

links across events, it is necessary to take the mathematical descriptions of 

proposed models and write them as computer code. This code will need to be 

written in such a way that the model implementation can be used to fit participant 

data and act as if it were a participant performing a task. Ideally, as the models are 

used to fit participant data from across a range of tasks, it would be best to 

implement each model only once. In this way, there are likely to be fewer mistakes 

in the single implementation of each model than in multiple implementations, 

thereby allowing us to trust our results more. However, it does require the model 

to be written in such a way that it can flexibly adapt to a range of task types, 

increasing the complexity of the model implementation. It also increases the 

complexity of the code surrounding the model, as it will need to act as an interface 

between the task and the model or the participant data being fitted and the model. 

This work will therefore need model’s to be implemented using a common 

structure and communicate with the tasks using a common interface. 

One solution is to write a framework into which models, tasks and participant data 

can be placed and interact in a consistent way (Eglen et al., 2016; Poldrack et al., 

2019). This can be done by writing a modular computer program such that the only 

parts that change are the ones that have been explicitly asked to change. This has 

two added benefits. As the models and tasks can be swapped without changing 

the rest of the program, both must use consistent methods to communicate with 

the rest of the program. While this does constrain their structures, it does 

encourage clarity and consistency in the way they are described in code. The other 

benefit is that by changing only small amounts of code each time, it becomes 

possible to clearly identify any differences between models or between tasks. This 

allows certainty in the information has been passed to and from the models.  
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2.1 DATA GENERATION AND ANALYSIS FRAMEWORK 

The framework used in this thesis, Tinker Taylor py (TTpy), is composed of a series 

of components, each designed to be modified independently of the others.  

• Task implementation 

• Model implementation 

• Participant data loading 

• Fitting method 

• Structure for running an experiment with a model 

• Structure for fitting models to participant data 

• Structure for organising and managing all outputs 

Figure 2-1 A diagram describing how the main components of the framework interact. 

Oval framed components denote easily swappable parts. All parts can be modified. 

Users can perform a simulation without fitting any data and data from a simulated task 

can then be fitted, as denoted by the dotted line. 

These components have been created in such a way as to make it clear how to 

implement new versions that are compatible with all the existing components. 

While this makes each new component slightly more complicated to write, it allows 

existing components to interact with them immediately. 

The framework has been written in the open source, interpreted, programming 

language Python (Millman & Aivazis, 2011). Python has been chosen for its clarity, 

its large number of packages, its availability on most operating systems, its already 

widespread use for scientific modelling, including in Psychology, as well as my pre-

existing familiarity with the language. By writing the framework in Python any 

researchers who are interested in running it can be sure that it will be able to run 

on their computer. Also, when compared with other programming languages, they 

Task  

Simulation 

Data recorder  

Model 

Data fitting 

Participant data Fitting method 

Fit quality 
measure 
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are likely to have an easier time understanding and modifying the code regardless 

of whether they are programming novices or those used to write in other 

programming languages.  

The code has been made available on the website bitbucket.org 

(https://bitbucket.org/djhunt/pyHPDM) alongside documentation written 

both as comments in the code but also as a set of webpages. The documentation 

can also be found at https://pyhpdm.readthedocs.io. 

The framework relies heavily on the scientific python, SciPy, library of packages 

(Oliphant, 2007). The choice of Python allows access to a wide variety of libraries 

written with scientific data analysis in mind. The libraries are largely platform 

independent, allowing researchers using different computer systems to 

collaborate and validate each other’s work. They are also mature and well 

maintained, being regularly updated by many companies and volunteers. 

Documentation for the framework is incorporated into the code and is written in 

such a way as to be easily extracted into a set of searchable web pages using the 

Sphinx library (Brandl et al., 2018). Tests for the code, to verify that it works as 

expected, can be performed in two ways. Firstly, as models and experiments are 

implemented, the results from previous papers can be replicated. Secondly, formal 

tests can be implemented using the pytest library (Krekel, 2017). The framework 

has been written using Python version 2.7, as the later Python versions 3.* did not 

have all the necessary packages when this project was started. 

Before running a simulation or data fitting, each of the necessary components is 

initialised and these initialised components are then passed to the simulation/data 

fitting routine. To aid with replication, this initialisation and passing of components 

is typically written in a file that can be stored with the output. 

2.1.1 Keeping track of each simulation/fitting 

So that anyone using the framework can understand what happened during the 

running of the framework and the progress of the program, a set of recorder and 

displayer functions are provided in what is known in Python as a module. They 

manage the saving, storing, logging and displaying of data from all parts of the 

https://bitbucket.org/djhunt/pyHPDM
https://pyhpdm.readthedocs.io/
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framework. These functions are accessible through a recorder object (technically a 

class instance) that is initialised during the initialisation phase and then passed to 

the simulation or fitting modules. It is designed to provide a log of what went on 

during the simulation as well as record all the data and graphs that were 

produced. When correctly set up this provides, with very little user input, enough 

information to replicate the findings and enough detail to understand what went 

on during each task trial. 

The model data is recorded in such a way that it can be treated as if it were 

participant data. This allows simulated data to be generated and treated as test 

ideal participants. 

2.1.2 Task-model interactions 

A participant’s interaction with their environment in a repeated task can be 

thought of as being broken down into three components during each task trial, or 

trialstep: observation, action and consequences. This breakdown of a trialstep can 

equally be true for the interaction of a model designed to replicate the 

performance of a participant. To allow the models to be as general as possible, the 

interface for a model should be simple and flexible enough for a model to cope 

with trialsteps containing any combination of these three components, ideally 

without being explicitly told what to expect, e.g. without knowing if there will be 

consequences before an action is taken. In this way, the models will be able to 

learn from a range of response sets (Kirsch, Lynn, Vigorito, & Miller, 2004), such as 

classical and operant conditioning. 

Observations can be thought of as the state of the environment, including the 

state of any salient cues or indications of possible actions that can be taken. 

Consequences can be thought of as either a representation of a reward, which can 

be numerically represented for the model, or feedback as to what was the correct 

action to take, or simply as a change of state in the environment, denoted by a 

change in the salient cues. For the sake of simplicity, consequences that are a 

change in the salient environmental cues will be considered as the observation for 

the subsequent trialstep. Action is the active selection of a choice from a series of 
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explicitly signalled options. For a participant, the choices may be outlined before 

the start of a task if they do not change with each trialstep, at which point the only 

cue is one denoting when it is necessary to perform an action. We can examine all 

the possible combinations these elements would provide, as shown in Table 2-1. 

Here, the term “actionable” is used to refer to cues that signal that an action is 

available to be performed. Without these the model, or participant, would not 

know that an action was expected during the trialstep. 

Observation Action Consequences 

Stimulus   

Stimulus + 

actionable 
•  

Stimulus + 

actionable 
• Reward 

Stimulus  Reward 

  Feedback/Reward 

Actionable • Reward 

Actionable •  

Stimulus + 

actionable 
• Feedback 

Actionable • Feedback 

Table 2-1 The expanded list of all combinations of observations, actions and 

consequences that can occur in one trialstep. Two are greyed out as they cannot be 

distinguished from the others. 

Two have been greyed out, as they are not useful here. Feedback/Reward on its 

own is identical to a stimulus on its own and actions without a stimulus or 

consequences cannot be learnt from, so can be ignored.  

As we can consider feedback on what was the correct action to take as a form of 

reward, the term “reward” will be used to refer to both when no distinction needs 

to be made.  
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One difficulty that needed to be addressed when creating this interface, was when 

to update the model’s expectations of action consequences. As the models and the 

framework are designed for repeated tasks, where the task can be split into a 

sequence of similar trialsteps, the final moment in the sequence of events for the 

previous trialstep is the first moment of the first events in the following trialstep. 

With that in mind, by condensing the list found in Table , as shown in Table 2-2, it 

becomes clear that when there is a reward within a trialstep, the model 

expectations can be updated when the reward is provided. In the other two cases, 

the model expectations can be updated when the next observation occurs. 

Another issue to resolve is how to cope with observation-action pairs that stop 

getting rewards at the end, such as when there is a test phase in the task where no 

feedback is given to the participant. These need to be treated differently from 

tasks where the feedback is the next observation, i.e., the first or second rows in 

Table 2-2. To prevent this, a dummy feedback is provided, signifying that there 

were consequences, but that these are unknown. In this way, the model will not 

learn from the trialstep, but can still correctly understand the trialstep structure. 

Event combination Point at which model knows 

enough to update expectations Observation Action Consequences 

Stimuli   Next observation 

Stimuli + actionable •  Next observation 

Stimuli + actionable • Reward Consequences 

Stimuli  Reward Consequences 

Actionable • Reward Consequences 

Table 2-2 The event combinations for a trialstep and their respective expectation update 

times  

2.1.3 Task descriptions 

The aim of the way the tasks are structured is to be capable of simulating any 

repeated observational, action-response, observation-action-feedback or 

observation-reward tasks. To do so, each experiment task is written as its own 

module and relies on a task template. In programming terminology, the task class 
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inherits from a task class template. A task can provide stimuli, indicate which 

actions can be taken and provide rewards. Its behaviour can be varied either 

through some internal sequence generation or based on actions taken by a model. 

Stimuli and rewards can have any number of components and can be 

instantaneous or have a duration, although this feature is never used in the tasks 

examined here. With this flexibility, it may be necessary to transform a stimulus or 

reward into a form that the model is expecting. To do so, task interface functions 

are used and are stored with each task. These are discussed further in chapter 

2.1.4. 

2.1.4 Model implementations 

Models are implemented in a similar way to the tasks: with a module based on a 

class template. The models are designed to receive stimuli, rewards and 

participant action choices, and use these to update their reward expectations and 

action choice probabilities. They can also make decisions based on these 

evaluations.  

Models have three parts split off from the core of the model: stimulus formatting, 

the decision making and the reward formatting. The motivation behind this is to 

separate the learning from the peculiarities of the task, allowing the model to be 

general and to be fitted into a range of different task types, even those the models 

were never designed for. The models looked at so far all explicitly or implicitly have 

these parts in a form that can be easily separated from the rest of the model. The 

stimulus formatting and the reward formatting are considered task-specific 

interface components. The decision making is much less likely to be task specific, 

but if a task requires an action only under certain circumstances this will need to 

be treated differently from those that expect an action for each trialstep. 

The reward component receives the feedback from the task, as well as the model’s 

chosen action. From this, the appropriate reward is constructed for the model. For 

example, as will be seen in chapter 3, some models need the rewards to be 

expressed in the range [0,1], while others can cope with arbitrary valued rewards. 

Others consider task feedback from one action to be useful in updating their 
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expectations for all the possible actions. Both requirements necessitate 

transformations in task feedback across different models. 

The stimulus processing component is designed to take the task stimulus and 

transform it into the form expected by the learning modules. For example, the 

stimulus cues might be arranged into the same representation found in the 

memory of the learning modules. As there are potentially multiple different ways 

of representing the stimulus data for a given model, care must be taken to retain 

as much of the initial information as possible when transforming it for a model. 

For example, for a task with two possible stimulus cues that are mutually exclusive, 

they could be represented as a binary digit, with 0 representing one cue and 1 the 

other. They could equally have multiple digits, all switching from 1 to 0 as the 

stimulus cue changed or have some digits that kept a constant value regardless of 

the cue currently available. Alternatively, the difference between the cues could be 

stored, represented by their presence separately, with one digit for each cue, so 

cue 1 could be represented by 10 and cue 2 by 01. It would also be possible to 

assign a random sequence of digits to represent a cue, as is done with Semantic 

pointers (Eliasmith, 2013). This allows other cues to be identified and incorporated 

without modifying the structure of the learning. It also allows for identification of 

relationships or similarities between cues to be learnt.  

Given the nature of the tasks being examined, the models implemented in the 

framework are passed stimuli with a distinct and binary digit for each possible 

stimulus cue in the task, with 1 representing the presence of the cue and 0 its 

absence. 

 Cue 1 Cue 2 

Binary 0 1 

Distinct 10 01 

Repeated 11 00 

Redundant 11 10 

Semantic pointers 010101011 110111011 

Table 2-3 Different representations for two mutually exclusive stimulus cues. 
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The decision component receives the data relevant for a decision and then returns 

a decision in the form of the action to be taken and structured information on how 

likely different actions were. The information needed to make the decision can be 

the last chosen action or the likelihoods of each action having the largest 

expectation of reward. The method used to make the decisions can include 

choosing randomly between the possible actions, weighted by their likelihoods, 

choosing the currently most likely action, or choosing an action only once one of 

the possible actions exceeds a certain threshold of likeliness. For the tasks 

examined in later chapters, the decision choices will be based, unless otherwise 

specified, on randomly choosing between the possible actions, weighted by their 

likelihoods.  

The core of the model has also been broken into a series of components, using the 

notion of a reward prediction error and inspired by similar breakdowns such as 

described by Schultz & Dickinson (2000) or Daw & Doya (2006) as shown in Figure 

2-3. The general breakdown used within the framework and in subsequent 

chapters can be seen in Figure 2-2. The stimulus affects the choice of next action 

as well as the expected reward for each action. As the choice of next action may be 

dependent on the expected reward for each action, the two sets of calculations 

may overlap. Once an action is chosen and its expected reward has been 

calculated, the feedback from this, equated as a reward, is compared to the 

Figure 2-2 A flow chart showing the general structure of the models. Here the stimulus 

transformation, reward transformation and decision components are ignored. 

Rectangular boxes are used to denote interactions with the model's environment and 

ovals internal components. Dotted lines denote the integration of the Reward Prediction 

Error (RPE) from the current trialstep into the model’s decision and prediction processes.  
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predicted reward. The result of this comparison, known as a reward prediction error 

(RPE) and often called a delta or δ, can then be used to update the values used to 

calculate the expected reward and the chosen action. These elements can be 

thought of as belonging to two broad categories: the actor and the critic. The actor 

chooses what action to take, based on the information it has. The critic evaluates 

how well reward predictions are matching up to actual rewards. In some models, 

an action is chosen based on the reward predictions, so  there is no clear 

distinction between the actor and critic.  

One final part that has been standardised across the models is the way in which 

the expected rewards are stored within each model. This is rarely explicitly 

discussed when presenting a model, so standardising this avoids adding another 

potential ‘feature’ to each model that could affect the performance. For most tasks, 

an expected reward will be stored for each action-stimulus cue pair, but this will 

2 

The three basic stages of many reinforcement learning accounts of learned decision-

making. (i) Predict the rewards expected for candidate actions (here a, b, c) in the current 

situation. (ii) Choose and execute one by comparing the predicted rewards. (iii) Finally, 

learn from the reward prediction error to improve future decisions. Numbers indicate the 

predicted action values, the obtained reward, and the resulting prediction error. 

 

(i) Evaluate actions 

Assess reward, delay, risk 

Striatum, frontal and parietal cortex 

Outside 

world 

(ii) Choose an action 

Biased towards richest options 

Same areas as (i) or downstream 

(iii) Learn from experience 

Compare predicted and actual reward  

Dopaminergic error signal 

   Situation from sensors 

 
a 

3 

b 

5

3 

c 

10 

Action to effectors 

c 

 

10 

Plasticity 

 

 

 

 

 

 

Action candidate 

 

Value 

Reward       12 

Prediction 

error 

Figure 2-3 An example of model breakdown, adapted from (Daw & Doya, 2006)  
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simplify for tasks where there is no variation in the stimuli, or no variation in the 

actions available for each trialstep, as shown in Table 2-4. This has been chosen as 

it is the simplest, memory efficient approach. 

Event combination What each stored 

expectation relates to Observation Action Consequences 

Stimuli   Stimulus 

Stimuli + 

actionable 
•  Stimulus cue, action pair 

Stimuli + 

actionable 
• Reward Stimulus cue, action pair 

Stimuli  Reward Stimulus 

Actionable • Reward Action 

Table 2-4 The event combinations for a trialstep and their respective expectation 

element meanings 

2.1.5 Data for fitting 

Data from past experiments can be imported and transformed into a common 

data format. Python has libraries to read most common data formats, including 

MATLAB .m files, XLSX, XLS and CSV. Tools were written using these libraries to 

transform the recorded data into a list of records, one for each participant.  

Each participant’s record would be stored as a dictionary, which is a collection of 

labelled bits of data. The data stored in these collections can be things as simple as 

the participant ID to a list of all of responses for the task. Currently, all the data is 

imported before the fitting of any participants begins. 

Data from simulated participants can be read in using the same methods as those 

of real participants. 

2.1.6 Fitting models to data 

Fitting takes the sequence of events experienced by the participant and drives the 

model through them with a range of different parameter values. For each 

parameter combination a fit quality measure is used to transform this model 
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experience into an assessment of how well the model, with the specific parameter 

values, would have mimicked the same reactions to the task as the participant. The 

lower the value the function returns, the better the fit and the closer the current 

model and its parameters are to describing the participant data (Akaike, 1974). 

To provide the events experienced by the participant, the fitting process needs all 

the variables used to make the varying state experienced by the participant, as well 

as the responses of the participant. To evaluate how well a model fits these 

actions, we will also need to specify which variables processed by the model we 

want to use for its evaluation. The varying state experienced by the participant is 

composed of any stimuli, possible valid actions for the trialstep, the participant 

actions and any subsequent feedback. We can extract the data necessary for this 

from the recorded participant data. In certain tasks some of these will not change, 

such as the stimuli. These can be marked as being unchanging.  

 Changing stimulus cues Static stimulus cues 

Changing actions  Probabilistic Selection 

Constant possible actions 
Biased coins 

Weather 
Decks 

Table 2-5 Examples of the tasks examined in this thesis and if they have varying stimuli 

and varying possible actions. This table ignores any counterbalancing that may occur 

with the presentation of the actions and cues to the participant. The tasks are described 

in detail in chapter 4.2 for the Biased coins task, chapter 6 for the Decks task, chapter 7 

for the Probabilistic Selection task and chapter 8 for the Weather task. 

If some trials are not considered representative, then these can be excluded from 

the fitting process. For example, the initial trialsteps in a task may be considered to 

not be representative of how the participant reacts to a task, as the participant 

may need some time to get used to the task. 

As participant data for probabilistic decision-making tasks is inherently noisy, we 

would like any fit quality measure to be able to provide similar fit qualities for 

similarly likely action sequences and the same model parameters. This will allow us 

to minimise one source of error in identifying model parameters associated with 
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participants from one single sequence of actions in a task. To what degree this is 

possible will be addressed in chapter 4. 

2.1.6.1 Making the model “walk in the participant’s shoes” 

During the fitting, we wish to identify the model parameters that maximise the 

likelihood that the model would have taken the same action as the participant at 

each trialstep. To do so, the model performs the task with a numerical 

representation of the salient environmental information that the participant 

experiences: stimulus cues and possible actions it can take, followed by any 

feedback. The model is also constrained such that when it needs to make a choice, 

it makes its own choice, and then this choice is overruled such that it continues 

using the same action choice that the participant took in that trialstep. The 

performance of the model is then evaluated using a fit quality function based on 

the likelihood of the participant’s actual choices for the model, with the specified 

parameters.  

2.1.6.2 Fitting method 

When choosing the fitting method to use, only those that were implemented in 

well tested, maintained and documented codebases were considered. This was 

done to minimise the chance of there being any mistakes in their implementation, 

but also to increase the chance that they had been properly optimised to run as 

fast as possible. As the framework used for comparing the models is written in 

Update 

Start 

Choose 

Reward 

Stimulus & valid 

Participant action 

Reward 

External environment Model Participant override 

Figure 2-4 An overview of one trialstep in a task simulation during model fitting. 

The model is fed the external environment, using the same trial components as 

when the participant performed the task. Once the model has chosen an action it 

has its action overwritten with that of the participant. 
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Python, the SciPy Python libraries were used to provide implementations of the 

fitting algorithms. From these, two were investigated further; gradient descent and 

evolutionary fitting.  

Traditionally, gradient descent methods have been used for fitting participant data 

to models (Sutton & Barto, 1998). These rely on calculating the direction of 

maximum gradient and following it until reaching a minimal point. SciPy provides 

suitable constrained fitters such as L-BFGS-B (Byrd, Lu, Nocedal, & Zhu, 1994), 

truncated Newton algorithm (Nash, 1984) and Sequential Least SQuares 

Programming (SLSQP) (Kraft, 1988). These provide similar results but tend to get 

into difficulties with different fits. The default fitting method has therefore been to 

try each fit using all the appropriate fitting algorithms provided. The best-fit 

parameters are then returned.  

Figure 2-5 An example of a two-parameter space where a gradient descent search will 

not always find the global minimum. Here a function has its result shown as a 

position in the vertical axis. The function value is also shown as a colour scale, with 

dark purple being the lowest values and bright yellow the highest. There are two 

minima in the bounded region shown here with the one closer to the viewer being the 

lower of the two. By starting in some locations, the higher of the two minima will be 

found, but not the lower, global minimum. The two example trajectories, marked in 

black, show potential trajectories from two close starting points resulting in two 

different solutions. 
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Gradient decent methods have an inherent difficulty as they only follow one path 

through the parameter space. This makes their view of a complex parameter space 

narrow and may mean they miss a global minimum, as they identified a local 

minimum. One solution to this is to run the fit multiple times from different 

starting points. To increase the chance of finding the correct fit, a grid of starting 

parameters is used (Daw, 2011). Another issue is that gradient descent methods 

inherently require the fit quality to vary across the parameter space in a 

continuous way as well as requiring the gradient to also be continuous. This limits 

the tasks they can be used for. 

An alternative approach to fitting is to use evolutionary algorithms (Salomon, 

1998). They have the advantage that they make very few assumptions about the 

problem being optimised and can be used for fitting functions that are not locally 

smooth or, as often in our case, there are many local minima. The underlying idea 

is to iteratively sample a pre-chosen section of the parameter space, homing in on 

the best minima found. In each iteration, a set of points is randomly chosen from 

the parameter space, with the choice of locations weighted by the fit measure 

values of all previously selected places. In so doing, future points are more likely to 

be chosen clustered around previously identified areas with a good fit quality. New 

sets of points are generated until the variance between all points in the last round 

is below a specified threshold. As multiple potential solutions are looked at 

simultaneously, they share their information, and consequently it takes less time 

to perform the search than with gradient descent.  

SciPy Python libraries have an implementation of an evolutionary algorithm based 

on differential evolution (Storn & Price, 1997). The implementation does not allow 

you to specify the initial fitting parameters, only the limits of the parameter space. 

You can also specify that a grid of initial parameters is used, covering the 

parameter space. 

Unless specified, the fits in this study are performed with the evolutionary 

algorithm.  
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2.2 FIT QUALITY MEASURE 

The aim for the fit quality is to capture in one value how well a model with specific 

parameters can characterise the behaviour of a participant performing a specific 

task. In so doing, we can draw from methods that have been designed to select a 

model from a range of models, as well as methods for representing how well a 

model represents a dataset (Burnham & Anderson, 2004).  

To assess the model response, we use as our basis Maximum Likelihood Estimation 

of the probability that the model, for a set of parameters, would provide the same 

response as a participant. To calculate this, for each action of the participant takes, 

𝑐𝑡, a likelihood can be calculated that the model would have taken the same action, 

p(𝑐𝑡). For a sequence of T actions taken by the participant,  𝑐1, 𝑐2⋯𝑐𝑇 = C, the 

combined likelihood of such a sequence for a given model is:  

p(𝑐1) ∗ 𝑝(𝑐2) ∗ ⋯∗ 𝑝(𝑐𝑇) =∏𝑝(𝑐𝑡)

𝑇

𝑡=1

 

2.1 

By taking the log of this, the product of these probabilities can be transformed into 

a sum: 

ℒ = log2 (∏𝑝(𝑐𝑡)

𝑇

𝑡=1

) =∑log2(𝑝(𝑐𝑡))

𝑇

𝑡=1

 

2.2 

Here, log2 is the base two logarithm, chosen to allow us to interpret the value more 

easily. The conventional method of representing these equations is to present 

them in the base of e. Changing to a representation in base 2 does not change the 

overall results. Only the magnitude of the fit values is changed, not their relative 

sizes. The effect of using base 2 is that when the model only had a 0.5 probability 

of choosing the action that the participant chose, p(𝑐𝑡) = 0.5, then log2(0.5) = −1. 

For a p(𝑐𝑡) = 1, then log2(1) = 0. For a  p(𝑐𝑡) = 0, then log2(0) = −∞. The more 

likely the model would be to take the same actions as the participant, the closer to 

zero the overall values are.  
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A more common form for this, and the one that will be used from now on 

multiplies this by a factor of -2, which provides some benefits in later calculations 

and makes all the values positive: 

f = −2∑log2(𝑝(𝑐𝑡))

𝑇

𝑡=1

= −2ℒ 

2.3 

For this, more likely the model would be to take the same actions as the 

participant, the closer to zero the overall values are and the better fitting the 

model is. An example of what these sequences might provide is shown in Table 

2-6. In this case, model 2, with an f = 11.39, is the better model. 

  𝑡 f 

Participant 

actions 𝑐𝑡 
0 1 1 1 0 1 1 1   

Random p(𝑐𝑡) 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 16.00 

Model 1 p(𝑐𝑡) 0.50 0.56 0.60 0.63 0.35 0.70 0.71 0.72 12.48 

Model 2 p(𝑐𝑡) 0.50 0.91 0.95 0.95 0.05 1.00 1.00 1.00 11.39 

Table 2-6 An example of how the fit quality values can vary across different models for 

the same sequence of actions. Here, model 2 matches the participant's actions best. 

It is important to understand if the parameters providing the best fit found by the 

fitting process are significantly better than random. Using the structure above, we 

can describe the likelihood estimate for the pure random model by assuming that 

for a trialstep, t , each action available 𝑑𝑡 ∈ 𝒟𝓉, has equal probability of being 

chosen: 

p(𝑑𝑡) =
1

‖𝒟𝑡‖
 

with ‖𝒟𝑡‖ being the number of different actions available at time t. When this is 

used in equation 2.3: 

𝑓rand = −2∑log2 (
1

‖𝒟𝑡‖
)

𝑇

𝑡=1

 

As T and 𝒟𝑡 do not depend on the model, this will be constant when fitting a model 

to a set of data. 
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To compare these two we begin by calculating the likelihood of the sequence of 

actions C being created by the model we are testing, 𝐻mod, rather than being a 

random sequence, 𝐻rand (Kass & Raftery, 1995).  

For 𝐻mod the probability of 𝐻mod given that the participant has performed the 

sequence of actions C, is called the posterior probability. From Bayes’ theorem, this 

is defined as: 

p(𝐻mod|𝐶) =
𝑝(𝐶|𝐻mod)𝑝(𝐻mod)

𝑝(𝐶)
 

Where p(𝐶|𝐻mod) is the model’s marginal likelihood, the likelihood that for a given 

model, the sequence of actions C would be taken. p(𝐻mod) is the model’s prior 

probability. As we are only considering these two options as being the only 

options:  

p(𝐻rand) +  p(𝐻mod) =  1 

From which we can rewrite the above equation’s denominator as: 

p(𝐻mod|𝐶) =
𝑝(𝐶|𝐻mod)𝑝(𝐻mod)

𝑝(𝐶|𝐻mod)𝑝(𝐻mod) + 𝑝(𝐶|𝐻rand)𝑝(𝐻rand)
 

By structuring p(𝐻rand|𝐶) in the same way, we can now compare the two 

probabilities: 

𝑝(𝐻mod|𝐶)

𝑝(𝐻rand|𝐶)
=
𝑝(𝐶|𝐻mod)𝑝(𝐻mod)

𝑝(𝐶|𝐻rand)𝑝(𝐻rand)
 

From which we can define the Bayes factor as a likelihood ratio of the prior and 

posterior odds (Kass & Raftery, 1995): 

ℬ =
𝑝(𝐶|𝐻mod)

𝑝(𝐶|𝐻rand)
=
𝑝(𝐻mod|𝐶)𝑝(𝐻rand)

𝑝(𝐻rand|𝐶)𝑝(𝐻mod)
 

2.4 

As the model has parameters, we can treat the probability of the data given to the 

model as a function of those parameters, θ: 

𝑝(𝐶|𝐻mod) = ∫𝑝(𝐶|𝜃, 𝐻mod)𝑝(𝜃|𝐻mod)𝑑𝜃 

2.5 
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Which is also the probability of that sequence of actions prior to any data being 

collected. We can also break down this probability as the product of probabilities 

of actions for each trialstep: 

p(𝐶|𝐻mod) =∏𝑝(𝑐𝑡|𝑐𝑡−1,⋯ 𝑐1, 𝐻mod)

𝑇

𝑡=0

 

This is similar to equation 2.1, but in this case the probability that an action is 

taken in a given trialstep is explicitly shown to have a dependence on the 

previously chosen actions. By taking the log, we can rephrase this in the form of  

the likelihood estimate for both hypotheses: 

−2 log2(𝑝(𝐶|𝐻)) = −2∑log2 𝑝(𝑐𝑡|𝑐𝑡−1,⋯ 𝑐1, 𝐻mod)

𝑇

𝑡=0

= 𝑓 

2.6 

From this, we can also define a fit quality difference (Raftery, 1995):  

Δ𝑓 =  𝑓rand − 𝑓mod 

2.7 

We use an approximation of the probability that the data was produced by a given 

model, p(𝐶|𝐻mod), known as the Schwarz Bayesian information criterion, but more 

commonly called the BIC (Raftery, 1995; Schwarz, 1978), to evaluate the fit quality 

of the model. This uses a Taylor series expansion to approximate the Bayes factor. 

If we assume that the model parameters are independent, the result is that the 

model’s maximum likelihood estimation is corrected by the number of parameters 

in the model, Θ = ‖𝜃‖, and the log of the number of trials, T. 

𝑓mod ≅ 𝐵𝐼𝐶𝑚𝑜𝑑 =  Θ log2(𝑇) − 2∑log2(𝑝(𝑐𝑡))

𝑇

𝑡=1

 

From this, an equivalent to the fit quality difference defined in equation 2.7 can be 

expressed as: 

𝐵𝐼𝐶𝑑𝑖𝑓𝑓 = 𝐵𝐼𝐶𝑟𝑎𝑛𝑑  −  𝐵𝐼𝐶𝑚𝑜𝑑  

Where 𝐵𝐼𝐶𝑟𝑎𝑛𝑑 = 𝑓rand as the number of parameters in the random model, Θ = 0. 

The model with the highest posterior probability is the one that minimizes 𝐵𝐼𝐶𝑚𝑜𝑑. 

As Θ is constant for the same model and Θ log2(𝑇) is constant for the same task, 
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when fitting a model to a task Θ log2(𝑇)will be a constant. By taking the log of the 

Bayes factor in equation 2.4: 

−2log2(ℬ) = −2 log2 (
𝑝(𝐶|𝐻mod)

𝑝(𝐶|𝐻rand)
) 

Expanding out the log: 

−2log2(ℬ) = −2 log2(𝑝(𝐶|𝐻mod)) + 2 log2(𝑝(𝐶|𝐻rand)) 

Where the right-hand side can be recognised as being in the form of the likelihood 

estimates in equation 2.6, combined to form the fit quality difference defined in 

equation 2.7: 

2log2(ℬ) =  Δ𝑓  

This can also be expressed as: 

ℬ =  2
Δ𝑓
2  

2.8 

When examining the response of more than one participant’s performance, a 

Group Bayes Factor (GBF) can be used to provide a crude measure of the relative 

explanatory performance of two models for the 𝒩 participants action sequences 

(Klaas E. Stephan, Marshall, Penny, Friston, & Fink, 2007). The GBF is the product of 

the Bayes factors for each participant: 

GBF =∏ℬ𝓃

𝒩

𝓃=1

 

2.9 

The probability associated with this Bayes factor can be calculated as an odds 

ratio. Using equation 2.4 and considering the prior probabilities for the two models 

to be equal: 

ℬ =
𝑝(𝐻mod|𝐶)

𝑝(𝐻rand|𝐶)
 

As these are the only two models being considered,  p(𝐻mod|𝐶) = 1 −  p(𝐻rand|𝐶) 

(Kass & Raftery, 1995), so: 

ℬ =
𝑝(𝐻mod|𝐶)

1 − 𝑝(𝐻mod|𝐶)
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This can be rearranged to show that: 

p(𝐻mod|𝐶) =  
1

1 + ℬ−1
 

While a Bayes factor is more informative than a BIC value, a Bayes factor increases 

as the evidence for a model grows. For us to use a minimisation fitting technique, 

such as those described in chapter 2.1.6.2, a modified version will need to be used.  

The simplest is to invert equation 2.8: 

ℬ−1 =  2
−Δ𝑓
2  

As we will be using the same Bayes factor criteria across all comparisons, the ℬ we 

will use as a threshold will be a constant, ℬ𝑚𝑖𝑛. We can therefore express this as an 

inequality, describing a parameter fit that is sufficiently different from random.  

1 > ℬ𝑚𝑖𝑛2
−Δ𝑓
2  

To allow us to evaluate easily across tasks, we wish to transform the inverted 

Bayes factor into a form that is independent of the number of trials being 

evaluated. To do so, we used a variation of the pseudo-𝑅2 described by Frank, 

Moustafa, Haughey, Curran, & Hutchison (2007). They evaluated their models using 

a pseudo-𝑅2 of the form: 

𝑅2 =
−Δ𝑓

𝑓rand
=
𝑓mod − 𝑓rand

𝑓rand
=  

𝑓mod
𝑓rand

− 1 

By transforming the Bayes factor in equation 2.8 to use this ratio we find: 

ℬ
−2
𝑓rand =  2

−Δ𝑓
𝑓rand = 2

(
𝑓mod
𝑓rand

−1)
 

2.10 

As before, this can be expressed this as an inequality, describing a parameter fit 

that is sufficiently different from random.  

1 >  ℬ𝑚𝑖𝑛

2
𝑓rand2

(
𝑓mod
𝑓rand

−1)
 

When BIC approximations are used, this becomes: 

1 >  ℬ𝑚𝑖𝑛

2
𝐵𝐼𝐶𝑟𝑎𝑛𝑑2

(
𝐵𝐼𝐶𝑚𝑜𝑑
𝐵𝐼𝐶𝑟𝑎𝑛𝑑

−1)
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Raftery (1995), considers a Bayes factor greater than1 20 as suggesting strong 

evidence for a model, and roughly equivalent to a probability of 0.95, although R. 

Wetzels et al. (2011) suggest that a Bayes factor of 20 is much stricter than this. 

Substituting the value of ℬ𝑚𝑖𝑛 = 20 for the minimum Bayes factor that we will 

accept, we can now minimize the data using a normalised Bayes factor of: 

𝑓ℬ =  ℬ𝑚𝑖𝑛

2
𝐵𝐼𝐶𝑟𝑎𝑛𝑑2

(
𝐵𝐼𝐶𝑚𝑜𝑑
𝐵𝐼𝐶𝑟𝑎𝑛𝑑

−1)
 

2.11 

In this form, a fit quality of 1 or below is equivalent to a ℬ of ℬ𝑚𝑖𝑛 or higher. This 

can be rearranged by substituting equation 2.10 in to provide the ℬ𝑚𝑖𝑛 value 

corresponding to the 𝑓ℬ value: 

ℬ =  ℬ𝑚𝑖𝑛𝑓ℬ

−𝐵𝐼𝐶𝑟𝑎𝑛𝑑
2  

As 𝐵𝐼𝐶𝑟𝑎𝑛𝑑 is the same across participants for the experiments examined here, the 

value of ℬ can be calculated once the fitting has been completed.  

One issue that we are not addressing here is that for the BIC to work, the statistical 

model must be regular, which is defined as a model whose mapping from model 

parameters to a probability distribution is one-to-one and whose Fisher 

information matrix is positive definite. Models that violate one or both conditions 

are called singular. Singular models cannot be approximated by a normal 

distribution, forcing us to look elsewhere for our assessment of model fit (Friel, 

McKeone, Oates, & Pettitt, 2017). One suggested alternative is the Widely 

Applicable Bayesian Information Criterion, WBIC (Watanabe, 2012), which is a 

generalisation of the BIC for all singular statistical models. However, it is common 

for modellers to use the BIC without considering this aspect. 

 

1 Due to the way in which they are defined, Bayes factors are the same irrespective of the 

base used for the exponents and logarithms. Therefore, ℯ can be used in the place of 2 and 

logℯ = ln in the place of log2 without affecting the choice of threshold Bayes factor. 
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2.3 PARTICIPANT DATA 

The participant data discussed in chapters 6, 7 and 8 were collected as part of 

other research projects and repurposed for this thesis. The ethical approval for 

collecting the participant data analysed in this thesis was deemed as sufficient and 

approved by the Goldsmiths Psychology department Board of Ethics. 

2.4 DATA ANALYSIS 

The participant behavioural data is initially assessed using task-specific measures 

to test that the participants have responded to the task manipulations and, if 

possible, these are comparable to prior published examples where the task was 

used.  

Once participant data has been fitted, the models will be compared using several 

criteria. The simplest of these is the number of successful fits. Any fits that reach 

the parameter boundaries are considered failed fits, as a boundary fit removes a 

parameter from the model, transforming it into a simpler model, with the 

exception of the upper bounds of  β, σ𝛼 and σ𝜆, which have been arbitrarily set 

sufficiently high that if a model has a best fit on these bounds, it is unlikely that the 

recovered model parameters accurately represent the learning method of the 

participant. To allow for numerical uncertainty from fitting, a boundary fit is 

considered to have occurred if a recovered parameter is within the smallest or 

largest 0.1% of a parameter’s support, the range of values over which it spans.  

Another criterion for evaluating the models is the quality of the fits, as described 

by the fit quality measures. This may take many forms, some of which are 

described in chapter 2.2 such as the log likelihood,  𝑓, in equation 2.3 or the 

normalised Bayes factor, 𝑓ℬ, in equation 2.11. These can be compared, along with a 

participant group level evaluation using the Group Bayes factor, defined in 

equation 2.9. However, a fitting measure becomes a cruder model evaluation 

criterion when it is used to recover parameters (Daw, 2011; Strathern, 1997). 

A more Bayesian approach to model comparison is discussed by Stephan, Penny, 

Daunizeau, Moran, & Friston (2009), who introduce a hierarchical Bayesian 
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approach that calculates an approximate probability distribution of likely model 

frequency across participants. This is modelled using a Dirichlet distribution 𝔇, also 

used in the Bayesian models in chapter 3.11. The model likelihoods, ω𝑘, for each 

model, 𝑘, are converged upon using the log model evidence, ℒ𝓃,𝑘, for each 

participant, 𝓃, as discussed in chapter 2.2. In our case this will be approximated 

using the BIC. As the log model evidence is used here as part of a larger 

formulation, the BIC must be constructed using the natural, or base ℯ, logarithm. 

By using this and a starting assumption that the model likelihoods are all initially 

equal, ω0 = [1,⋯ ,1] , a stable ω can be calculated by iteratively recalculating until 

convergence:  

𝑢𝓃,𝑘 = exp(ℒ𝓃,𝑘 +Ψ(ω𝑘) − Ψ(∑ω𝑘
𝑘

)) 

ϖ𝑘 =∑
𝑢𝓃,𝑘
∑ 𝑢𝓃,𝑘𝑘

𝒩

𝓃

 

ω = ω0 +ϖ 

where Ψ is the digamma function. From this the posterior expectation of the 

model frequencies can be calculated: 

𝐸𝐹𝑘 = 𝔼𝑘[𝔇(ω)] =
ω𝑘

∑ ω𝑖𝑖∈ℛ
 

Implementations of this are found in the MATLAB VBA toolbox (Daunizeau, Adam, 

& Rigoux, 2014; Daunizeau, Friston, & Kiebel, 2009). 

Parameters that should be similar across models will be assessed for the strength 

of their correlations across participants. An overall measure of correlation for a 

group of parameters can be calculated using Kendall’s W, otherwise known as 

Kendall’s coefficient of coefficient of concordance (Legendre, 2010). This is a rank-

based correlation measure that compares sets of values and returns a measure of 

their ranked agreement between 0 and 1, with 0 indicating no agreement. 

The fitted parameter values are also compared to other participant data collected, 

such as scores from the Eysenck Personality Questionnaire Revised, EPQ-R (S. B. G. 

Eysenck, H. J. Eysenck, & P. Barrett, 1985).   
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3 MODELS EXAMINED 

One starting point for these models is to consider learning from the perspective of 

reinforcements of beliefs. The simplest and most computationally efficient models 

for reinforcement learning (RL) are based on reward prediction error (RPE) 

(Rosenblatt, 1958, 1961; Sutton & Barto, 1998). These rely on updating the 

expected outcome, based on the discrepancy between the expected reward value 

for an action, given the presence of a particular stimulus, and the actual reward of 

that action. More formally, at trial t the expected outcome for the next trial, 𝐸𝑡+1 is 

calculated by updating the expectation from the current trialstep using the current 

reward, 𝐸𝑡 

𝐸𝑡+1 = 𝐸𝑡 +  α(𝑟𝑡 −  𝐸𝑡) 

with α as the learning rate, set between 0 and 1 inclusive. Therefore, a constant 

expected reward 𝐸𝑡+1 = 𝐸𝑡 is equivalent to an α = 0 and α = 1 results in an 

expected reward that matches the reward from the previous timestep, 𝐸𝑡+1 = 𝑟𝑡 

The simplicity of RL models is appealing, allowing for easy neuronal 

implementation (Rescorla & Wagner, 1972; Rosenblatt, 1961). However, when 

placed in undirected, delayed, real-world situations it can fail to identify causal 

links (Glimcher, 2011; Littman, 1994). Attempts to use RL models for some tasks 

can result in overly complex and rigid learning systems which negate the original 

advantages of RL (Sutton & Barto, 1998). Nonetheless, it is useful as the basis for 

many more detailed models, or in simple task contexts, such as those examined 

here. 

One significant limitation with these RL models is that they do not take into 

account the uncertainty surrounding an expectation. An expectation can be 

thought of as the average of all possible rewards, weighted by the likelihood of 

those rewards. By not describing the uncertainty in the likelihood of rewards for a 

given action, an RL model is in effect using a point function, or Dirac-delta function, 

to describe the distribution of likely rewards for the given action. In other words, 

RL models assume that there is no uncertainty surrounding an expectation. 
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Another class of models addresses this limitation by updating the likelihood of  

rewards using Bayesian inference (e.g., Knill & Pouget, 2004). These, Bayesian 

learning models have been shown to predict human actions, but frequently involve 

evaluations of high-dimensional integrals that are computationally demanding and 

ill-suited to implementation in neuronal architectures. Furthermore, the simpler 

ones tend to be prescriptive, not allowing for individual variability (Jones & Love, 

2011; Mathys, Daunizeau, Friston, & Stephan, 2011).  

This chapter will introduce most of the models that are examined, using a common 

mathematical structure and notation. After introducing a model’s features, a table 

will summarise the complete model. The models will be discussed and compared 

from a computational perspective. Further variations on these models were 

implemented as a response to the results of chapter 4. These are described in 

chapter 4.8. 

Figure 3-1 Three different representations of expectation based on different 

information. The Dirac delta function uses only one value and consequently has no 

uncertainty or tolerance for other possibilities. A normal distribution uses both the 

main value and a measure of uncertainty. The beta distribution uses the frequencies 

of each event to estimate a distribution of the event likelihoods 
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3.1 MODEL NOTATION 

The expression of the models has been normalised in such a way that the same 

symbols are used for comparable concepts. All the models have been updated so 

that they can cope with arbitrary numbers of possible actions, arbitrary numbers 

of stimulus cues and arbitrarily large positive real rewards. These are all features 

necessary for one or more of the tasks whose participant data will be fitted, as 

described in chapter 2.1.5. For a full list of the symbols used in this thesis, along 

with their uses, see Appendix I.  

The models are structured for tasks where participants are asked to learn causal 

links within repeated similar trials. Trials contain a description of the state of the 

pertinent environment, including the state of any stimulus cues and a description 

of which actions can be taken, as well as any reward from an action the participant 

may take during the trial. As these trials are considered to be self-contained, the 

models we will be examining will be model-free (Sutton & Barto, 1998). The term 

model-free is somewhat unclear, as it refers to whether the reward learning model 

builds a model of the task. That is to say, a model-free model will not attempt to 

identify causal relationships between sequences of trials, only between stimuli, 

actions and rewards within each trial. However, there is evidence that people 

identify causal links between trials, even when explicitly told that there are none 

(Plonsky, Teodorescu, & Erev, 2015). 

To aid the comprehension of these models, the display of models themselves has 

been broken into the sections described in chapter 2.1.4. The Reward expectation 

calculates the expected reward for each action. The Action choice calculates the 

probabilities of choosing each action, given the stimulus cues, and the chooses the 

action based on these probabilities. As the method of choosing of the action based 

on the action probabilities, P, has been separated from the models in the 

framework, as described in chapter 2.1.4, this is denoted in the model descriptions 

by the function 𝒞(𝑃). The Reward Prediction Error, or RPE, calculates the discrepancy 

between the actual reward and the expected reward. The Critic update calculates a 

new expected reward for each action-stimulus cue pair. The Actor update, when 
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there is one, calculates the new values used during the next trialstep to calculate 

the probabilities in the Action choice. 

3.2 Q-LEARNING 

One of the simplest of the reinforcement learning models is Q-learning (Watkins, 

1989). This uses the discrepancy between the expected reward and the actual 

reward to update the expected reward for the chosen action and the active 

stimulus cues. The impact of the update is controlled through a learning rate 

parameter α, ranging between 0, no impact, and 1, which effectively replaces the 

expected reward with whatever the last reward was. At both of these extremes we 

can consider that we have another, simpler, model which contains no learning. The 

update is also split between the active stimulus cues, such that the change across 

all cues is equal to the update if there were only one cue. At time t, for each action 

d from the set of possible actions, 𝒟𝑡, the expected reward for each action, V, is 

calculated by combining the expected rewards, E, for each of the active stimulus 

cues, s.  

𝑉𝑑, 𝑡 =∑ 𝑠𝑡𝐸𝑠,𝑑,𝑡
𝑠∈𝑆𝑡

 

Here, for completeness, we have allowed the cues to have not just a state, but a 

magnitude, although this will not be needed in any of the tasks looked at in later 

chapters. The probability of choosing a given action, 𝑃𝑑,𝑡 , is calculated using the 

Softmax function, a generalisation of the logistic function and sometimes called a 

Boltzmann distribution.  

𝑃𝑑,𝑡 =  
𝑒β𝑉𝑑,𝑡

∑ 𝑒β𝑉𝑖,𝑡𝑖∈𝒟𝑡

 

This uses an exploration-exploitation parameter, β, also commonly called the 

inverse temperature parameter or stochasticity parameter, to modulate the 

sensitivity to differences between expected reward values. If β = 0, all possible 

actions are equally likely to be chosen, regardless of any differences in expected 

rewards. In effect, there is no learning in this case. If β is very large, the action with 
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the largest expected reward will be by far the most likely, however small the 

advantage it has over the other actions.  

The updating of the expectation has been modified from that shown at the 

beginning of the chapter to allow learning to occur independently for different 

stimulus-cues. The learning rate is weighted by the magnitude of the stimulus cue, 

𝑠𝑡, compared to the total magnitude of all the stimulus cues, ‖𝑆𝑡‖ = ∑ 𝑠𝑡𝑠𝑡∈𝑆𝑡  

resulting in an update expectation function of the form:  

𝐸𝑠,𝑑,𝑡+1 =  𝐸𝑠,𝑑,𝑡 +
 𝛼𝑠𝑡
‖𝑆𝑡‖

𝛿𝑡 

Where δ𝑡 is defined as the difference between the reward received, 𝑟𝑡, and the 

expected reward for the chosen action, 𝑉𝑐𝑡,  

δ𝑡 = 𝑟𝑡 − 𝑉𝑐𝑡,𝑡  

The version proposed by Watkins (1989) adds to the reward prediction error a 

discounted maximum expected future reward given the stimulus cues of the 

following trialstep.  

δ𝑡 = 𝑟𝑡 − 𝑉𝑐𝑡,𝑡  + γmax𝑑
(𝑉𝑑,𝑡+1) 

This updates the expectation for the action chosen in the trialstep with the 

maximum expected reward for the following trialstep, weighted by a discount 

factor γ, ranging from between 0 and 1 inclusive. To do so, this is calculated as 

soon as the stimulus cues for the next trialstep are known and the necessary 

expected action rewards of the subsequent trial, 𝑉𝑑,𝑡+1, have been calculated. The 

only modification to the Q-learning model is therefore to include a second 

expectation update equation immediately following the calculation of 𝑉𝑑,𝑡+1.  

𝐸𝑠𝑡−1,𝑐𝑡−1, 𝑡+1 =  𝐸𝑠𝑡−1,𝑐𝑡−1,𝑡 +  
𝛼𝛾𝑠𝑡−1
‖𝑆𝑡−1‖

max
𝑑
(𝑉𝑑,𝑡) 

This does not impact the choice of action for the trialstep that has just started, as 

the action probabilities are calculated based on the expected rewards used in this 

update equation. 
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Stages at 𝑡 Q-learning (qLearn) 

Reward expectation 𝑉𝑑,𝑡  =∑ 𝑠𝑡𝐸𝑠,𝑑,𝑡
𝑠∈𝑆𝑡

 

Action choice 
𝑃𝑑,𝑡 =  

𝑒β𝑉𝑑,𝑡

∑ 𝑒β𝑉𝑖,𝑡𝑖∈𝒟𝑡

 

𝑐𝑡 = 𝒞(𝑃𝑡) 

RPE δ𝑡 = 𝑟𝑡 − 𝑉𝑐𝑡,  

Critic update 
𝐸𝑠,𝑑,𝑡+1 =  𝐸𝑠,𝑑,𝑡 +

 𝛼𝑠𝑡
‖𝑆𝑡‖

𝛿𝑡: 𝑑 = 𝑐𝑡 

𝐸𝑑,𝑡+1 =  𝐸𝑑,𝑡  : d ≠ 𝑐𝑡 

Actor update -- 

Table 3-1 The description of the Q-learning model, broken into the components used in 

the implementation. 

 

Stages at 𝑡 Q-learning future (qLearnF) 

Reward expectation 

𝑉𝑑,𝑡  =∑ 𝑠𝑡𝐸𝑠,𝑑,𝑡
𝑠∈𝑆𝑡

 

𝐸𝑠𝑡−1,𝑑, 𝑡+1 = 𝐸𝑠𝑡−1,𝑑,𝑡 +  
𝛼𝛾𝑠𝑡−1
‖𝑆𝑡−1‖

max
𝑑
(𝑉𝑑,𝑡) : 𝑑 = 𝑐𝑡−1 

𝐸𝑑,𝑡+1 =  𝐸𝑑,𝑡 : d ≠ 𝑐𝑡−1 

Action choice 
𝑃𝑑,𝑡 =  

𝑒β𝑉𝑑,𝑡

∑ 𝑒β𝑉𝑖,𝑡𝑖∈𝒟𝑡

 

𝑐𝑡 = 𝒞(𝑃𝑡) 

RPE δ𝑡 = 𝑟𝑡 − 𝑉𝑐𝑡,  

Critic update 
𝐸𝑠,𝑑,𝑡+1 =  𝐸𝑠,𝑑,𝑡 +  

 𝛼𝑠𝑡
‖𝑆𝑡‖

𝛿𝑡: 𝑑 = 𝑐𝑡 

𝐸𝑑,𝑡+1 =  𝐸𝑑,𝑡  : d ≠ 𝑐𝑡 

Actor update -- 

Table 3-2 The description of the Q-learning future model, broken into the components 

used in the implementation. 
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3.3 Q-LEARNING WITH 2 LEARNING RATE PARAMETERS 

RPE models can also be built to have separate excitatory and inhibitory pathways, 

in line with results described in chapter 1.1. Q-learning models can be adapted for 

this by using two learning rate parameters, α+ and α−, depending on if the RPE is 

positive or negative. When these are the same this simplifies to the Q-Learning 

model. 

Stages at 𝑡 Q-learning with 2 learning rate parameters (qLearn2) 

Reward expectation 𝑉𝑑,𝑡  =∑ 𝑠𝑡𝐸𝑠,𝑑,𝑡
𝑠∈𝑆𝑡

 

Action choice 
𝑃𝑑,𝑡 =  

𝑒β𝑉𝑑,𝑡

∑ 𝑒β𝑉𝑖,𝑡𝑖∈𝒟𝓉

 

𝑐𝑡 = 𝒞(𝑃𝑡) 

RPE δ𝑡 = 𝑟𝑡 − 𝑉𝑐𝑡,  

Critic update 
𝐸𝑠,𝑑,𝑡+1 =  𝐸𝑠,𝑑,𝑡 +

{
 

 
𝛼+𝑠𝑡
‖𝑆𝑡‖

𝛿𝑡 𝛿𝑡 > 0

 𝛼−𝑠𝑡
‖𝑆𝑡‖

𝛿𝑡 𝛿𝑡 < 0

: 𝑑 = 𝑐𝑡 

𝐸𝑑,𝑡+1 =  𝐸𝑑,𝑡  : d ≠ 𝑐𝑡 

Actor update -- 

Table 3-3 The description of the Q-learning model with two learning rate parameters, 

broken into the components used in the implementation. 

3.4 OPAL 

Collins & Frank (2014), proposed a way of modelling the ACC, by building on the 

idea of having separate excitatory and inhibitory pathways using RPE learning. This 

Opponent Actor Learning model (OpAL), shown in Table 3-5, uses simple 

reinforcement learning as a critic to calculate the RPE, with a learning rate of α𝐶𝑟𝑖𝑡. 

The actor is separated into two components, an excitatory (Go) and an inhibitory 

(Nogo) components, denoted G and N respectively in the equations. Both the 

excitatory and inhibitory components have the same structure and are both 

updated with each feedback using the RPE calculated in the critic. However, they 
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respond differently to the feedback, with the excitatory path increasing for positive 

reward differences and the inhibitory component decreasing for the same 

difference. They also use different learning rates, α𝐺 for the excitatory learning and 

α𝑁 for the inhibitory learning. Both also use their current strength as a weighting 

for their own update, a form of update known as three-factor Hebbian update.  

A version without the Hebbian element in the excitatory and inhibitory pathways 

was also created by Collins & Frank to demonstrate how the model would not work 

without it. They argue that without it their model cannot provide the same 

flexibility, nor account for the tendency for the excitatory and inhibitory 

components to discriminate between different action choice values over time. 

Having updated these excitatory and inhibitory components, they are then used to 

provide the likelihoods of actions. 

Stages at 𝑡 Opponent Actor Learning without Hebbian update (OpAL_H) 

Reward 

expectation 
𝑉𝑑,𝑡  =∑ 𝑠𝑡𝐸𝑠,𝑑,𝑡

𝑠∈𝑆𝑡

 

Action choice 

𝐴𝑑,𝑡
∗ =∑ 𝑠𝑡𝐴𝑠,𝑑,𝑡

𝑠∈𝑆𝑡

 

𝑃𝑑,𝑡 =  
𝑒β𝐴𝑑,𝑡

∗

∑ 𝑒β𝐴𝑖,𝑡
∗

𝑖∈𝒟𝑡

 

𝑐𝑡 = 𝒞(𝑃𝑡) 

RPE δ𝑡 = 𝑟𝑡 − 𝑉𝑐𝑡,  

Critic update 
𝐸𝑠,𝑑,𝑡+1 =  𝐸𝑠,𝑑,𝑡 +

 𝛼𝐶𝑠𝑡
‖𝑆𝑡‖

𝛿𝑡: 𝑑 = 𝑐𝑡 

𝐸𝑑,𝑡+1 =  𝐸𝑑,𝑡  : d ≠ 𝑐𝑡 

Actor update 

𝐺𝑠,𝑑,𝑡+1 =  𝐺𝑠,𝑑,𝑡 + 
 𝛼𝐺𝑠𝑡
‖𝑆𝑡‖

𝛿𝑡

𝑁𝑠,𝑑,𝑡+1 =  𝑁𝑠,𝑑,𝑡 − 
 𝛼𝑁𝑠𝑡
‖𝑆𝑡‖

𝛿𝑡

∶ 𝑑 = 𝑐𝑡 

𝐺𝑑,𝑡+1 =  𝐺𝑑,𝑡
𝑁𝑑,𝑡+1 =  𝑁𝑑,𝑡

 : d ≠ 𝑐𝑡 

𝐴𝑑,𝑡+1 =  (1 + ρ)𝐺𝑑,𝑡+1 − (1 − ρ)𝑁𝑑,𝑡+1 

Table 3-4 The description of the OpAL model without Hebbian update, broken into the 

components used in the implementation. 
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Stages at 𝑡 Opponent Actor Learning (OpAL) 

Reward expectation 𝑉𝑑,𝑡  =∑ 𝑠𝑡𝐸𝑠,𝑑,𝑡
𝑠∈𝑆𝑡

 

Action choice 

𝐴𝑑,𝑡
∗ =∑ 𝑠𝑡𝐴𝑠,𝑑,𝑡

𝑠∈𝑆𝑡

 

𝑃𝑑,𝑡 =  
𝑒β𝐴𝑑,𝑡

∗

∑ 𝑒β𝐴𝑖,𝑡
∗

𝑖∈𝒟𝑡

 

𝑐𝑡 = 𝒞(𝑃𝑡) 

RPE δ𝑡 = 𝑟𝑡 − 𝑉𝑐𝑡,  

Critic update 
𝐸𝑠,𝑑,𝑡+1 =  𝐸𝑠,𝑑,𝑡 +

 𝛼𝐶𝑠𝑡
‖𝑆𝑡‖

𝛿𝑡: 𝑑 = 𝑐𝑡 

𝐸𝑑,𝑡+1 =  𝐸𝑑,𝑡  : d ≠ 𝑐𝑡 

Actor update 

𝐺𝑠,𝑑,𝑡+1 =  𝐺𝑠,𝑑,𝑡 + 
 𝛼𝐺𝑠𝑡
‖𝑆𝑡‖

𝐺𝑠,𝑑,𝑡𝛿𝑡

𝑁𝑠,𝑑,𝑡+1 =  𝑁𝑠,𝑑,𝑡 − 
 𝛼𝑁𝑠𝑡
‖𝑆𝑡‖

𝑁𝑠,𝑑,𝑡𝛿𝑡

∶ 𝑑 = 𝑐𝑡 

𝐺𝑑,𝑡+1 =  𝐺𝑑,𝑡
𝑁𝑑,𝑡+1 =  𝑁𝑑,𝑡

 : d ≠ 𝑐𝑡 

𝐴𝑡+1 =  (1 + ρ)𝐺𝑑,𝑡+1 − (1 − ρ)𝑁𝑑,𝑡+1 

Table 3-5 The description of the OpAL model proposed by Collins & Frank (2014), broken 

into the components used in the implementation. 

This Hebbian update of OpAL can lead to instability, a point discussed in the 

appendix of (Collins & Frank, 2014). There they present a derivation demonstrating 

that this growth is bounded under stationary conditions, such that for G: 

log(𝐺𝑡+1) < log(𝐺𝑡=0) +
α𝐺
α𝐶
(𝐸𝑡+1 − 𝐸𝑡=0) 

3.1 

However, when fitting this model this bounding was found to be insufficient, as the 

growth rate in the actor learning is still sufficient for many parameter 

combinations for OpAL to result in overflow or underflow errors when fitting 

participant data with 80 trialsteps. To illustrate the speed of the growth, in Figure 

3-2, we can see the values of G resulting from growth from ten trialsteps in 

stationary conditions. Here, the same action is taken each time and the same 

reward, 0.5 is given. 𝐺𝑡=0 is set as 1. In the left graph we see how varying α𝐺 α𝐶⁄  can 

affect G, as result that could be expected from looking at equation 3.1. As under 
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static conditions increases in G are marked by N tending towards zero, we can 

consider that:  

𝐴𝑡+1 ≈  (1 + ρ)𝐺𝑡+1 

For a ρ = 1 and a β = 1 this would result, when estimating P in us calculating values 

of the order of 2 ∗ 1017 after only ten trialsteps. While this does require the fitting to 

be examining high values of α𝐺, low values of α𝐶 and 𝑟𝑡 𝐸𝑡⁄ = 10, this is not 

uncommon when fitting tasks where the reward distribution varies across the task. 

In the right graph of Figure 3-2, we can see in more detail how the discrepancy 

between the reward and the expectation of the reward can lead to rapid changes 

in the values of G and N under stationary conditions. 

It is also worth noting that because of the structure of this model, the performance 

assumptions made by Collins & Frank only work consistently with low values of r. 

As can be seen in  Figure 3-3, for large reward values the growth of G is more 

chaotic and unstable. For this reason, rewards when fitting the OpAL model will be 

scaled to the range [0,1]. 

Figure 3-2 The OpAL values for 𝐺 after the tenth successive trialstep with the same 

reward of 0.5. 𝐺𝑡=0 is set as 1. Left: How the relationship between 𝛼𝐺 and 𝛼𝐶 affects the 

growth of 𝐺. 𝐸𝑡=0 = 0.05. Right: How the value of 𝐸𝑡=0 affects the growth of 𝐺 across a 

range of 𝛼𝐶 with 𝛼𝐺 = 0.5. 
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To minimise the issues in fitting OpAL, while keeping its features, the model was 

modified to include an extra saturation term in the update of G and N:   

(1 −
𝐺

𝑀
) 

This model, OpALS, contains a new parameter in the saturation term, 𝑀, which acts 

as the largest value 𝐺 and 𝑁 can have, akin to including a maximal receptor 

occupancy. If this saturation term is to have a minimal impact on the model, then it 

must be as large as possible. This will therefore be a fixed value, dependent only 

on the implementation hardware and will not vary across participants. This results 

in it having a value around 50 in the Python framework. By taking the stationary 

model simulations shown for OpAL in Figure 3-2 and Figure 3-3 and reproducing 

them for OpALS with an 𝑀 = 10, we can see in Figure 3-4 and Figure 3-5 that the 

saturation term does have the desired effect while not changing the dynamics of 

the model. A value for 𝑀 of ten was chosen so that there would be some visible 

difference from the OpAL figures. 

As OpAL-H does not have the Hebbian term, it does not have the instability of 

OpAL, and so does not need to be adapted. 

 

 

Figure 3-3 The OpAL values for 𝐺 after the tenth successive trialstep with the same reward. 

𝐺𝑡=0 = 1 and 𝛼𝐺 = 0.5. Left: 𝐸𝑡=0 = 0.8𝑟 Right: 𝐸𝑡=0 = 1.85𝑟 



47 

 

 

 

 

 

Figure 3-4 The OpALS values for 𝐺 after the tenth successive trialstep with the same reward 

of 0.5. 𝐺𝑡=0 is set as 1 and 𝑀 = 10. Left: How the relationship between 𝛼𝐺 and 𝛼𝐶 affects the 

growth of 𝐺. 𝐸𝑡=0 = 0.05. Right: How the value of 𝐸𝑡=0 affects the growth of 𝐺 across a range 

of 𝛼𝐶, with 𝛼𝐺 = 0.5.  

Figure 3-5 The OpALS values for 𝐺 after the tenth successive trialstep with the same 

reward. 𝐺𝑡=0 = 1, 𝛼𝐺 = 0.5 and 𝑀 = 10. Left: 𝐸𝑡=0 = 0.8𝑟 Right: 𝐸𝑡=0 = 1.85𝑟 
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Stages at 𝑡 Opponent Actor Learning Saturated (OpALS) 

Reward expectation 𝑉𝑑,𝑡  =∑ 𝑠𝑡𝐸𝑠,𝑑,𝑡
𝑠∈𝑆𝑡

 

Action choice 

𝐴𝑑,𝑡
∗ =∑ 𝑠𝑡𝐴𝑠,𝑑,𝑡

𝑠∈𝑆𝑡

 

𝑃𝑑,𝑡 =  
𝑒β𝐴𝑑,𝑡

∗

∑ 𝑒β𝐴𝑖,𝑡
∗

𝑖∈𝒟𝑡

 

𝑐𝑡 = 𝒞(𝑃𝑡) 

RPE δ𝑡 = 𝑟𝑡 − 𝑉𝑐𝑡,  

Critic update 
𝐸𝑠,𝑑,𝑡+1 =  𝐸𝑠,𝑑,𝑡 +

 𝛼𝐶𝑠𝑡
‖𝑆𝑡‖

𝛿𝑡: 𝑑 = 𝑐𝑡 

𝐸𝑑,𝑡+1 =  𝐸𝑑,𝑡  : d ≠ 𝑐𝑡 

Actor update 

𝐺𝑠,𝑑,𝑡+1 =  𝐺𝑠,𝑑,𝑡 + 
 𝛼𝐺𝑠𝑡
‖𝑆𝑡‖

𝐺𝑠,𝑑,𝑡𝛿𝑡 (1 −
𝐺𝑠,𝑑,𝑡
𝑀

)

𝑁𝑠,𝑑,𝑡+1 =  𝑁𝑠,𝑑,𝑡 − 
 𝛼𝑁𝑠𝑡
‖𝑆𝑡‖

𝑁𝑠,𝑑,𝑡𝛿𝑡 (1 −
𝑁𝑠,𝑑,𝑡
𝑀

)

∶ 𝑑 = 𝑐𝑡 

𝐺𝑑,𝑡+1 =  𝐺𝑑,𝑡
𝑁𝑑,𝑡+1 =  𝑁𝑑,𝑡

 : d ≠ 𝑐𝑡 

𝐴𝑡+1 =  (1 + ρ)𝐺𝑑,𝑡+1 − (1 − ρ)𝑁𝑑,𝑡+1 

Table 3-6 The description of the OpAL model with a saturation component, broken into 

the components used in the implementation. 

3.5 TEMPORAL DIFFERENCE LEARNING 

The temporal difference model can be thought of as an extension of Q-learning 

that rewards actions that provide the best future rewards (Sutton, 1988; Sutton & 

Barto, 1998). This can be seen as an extension of the reward prediction error with 

a weighted extra component based on future rewards. The weightings, or discount 

factor, γ, are such that rewards that are further in the future are given less 

importance. This diminishing weighting, or discounting, changes by a factor of γ for 

each further trialstep. The resulting reward prediction error is: 

δ𝑡 = 𝑟𝑡 − 𝑉𝑐𝑡,𝑡  + γ𝑟𝑡+1 +  γ
2𝑟𝑡+2 +  γ

3𝑟𝑡+3 +⋯ = 𝑟𝑡 − 𝑉𝑐𝑡,𝑡  +∑ γ𝑖𝑟𝑡+𝑖

𝑖=∞

𝑖=1
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This transforms the nature of the expected reward, 𝑉𝑑,𝑡 from being a prediction of 

the reward at time 𝑡 to being a prediction of the future discounted rewards: 

𝑟𝑡 + γ𝑟𝑡+1 +  γ
2𝑟𝑡+2 +  γ

3𝑟𝑡+3 +⋯ = ∑ γ𝑖𝑟𝑡+𝑖

𝑖=∞

𝑖=0

 

We can therefore consider that the reward prediction for the subsequent trialstep 

is an approximation of the future rewards, transforming the reward prediction 

error to: 

δ𝑡 = 𝑟𝑡 − 𝑉𝑐𝑡,𝑡  + γ𝑉𝑐𝑡+1, 𝑡+1 

Here, 𝑉𝑐𝑡+1, +1 is calculated once the action has been chosen for the following 

trialstep. As the following action choice depends on the actions available in the 

next trialstep, as well as the stimulus cue values for the new trialstep, 𝑆𝑡, this part 

of the reward prediction error is deferred to the following trialstep.  

 

An alternative way of integrating temporal discounting is discussed by Daw & 

Touretzky (2002). Here, they choose to separate the expected reward into two 

Stages at 𝑡 Temporal difference learning (TD0) 

Reward expectation 𝑉𝑑,𝑡  =∑ 𝑠𝑡𝐸𝑠,𝑑,𝑡
𝑠∈𝑆𝑡

 

Action choice 

𝑃𝑑,𝑡 =  
𝑒β𝑉𝑑,𝑡

∑ 𝑒β𝑉𝑖,𝑡𝑖∈𝒟𝑡

 

𝑐𝑡 = 𝒞(𝑃𝑡) 

𝐸𝑠𝑡−1,𝑑, 𝑡+1 =  𝐸𝑠𝑡−1,𝑑,𝑡 +  
𝛼𝛾𝑠𝑡−1
‖𝑆𝑡−1‖

𝑉𝑐𝑡,𝑡 ∶ 𝑑 = 𝑐𝑡−1 

𝐸𝑑,𝑡+1 =  𝐸𝑑,𝑡  : d ≠ 𝑐𝑡−1 

RPE δ𝑡 = 𝑟𝑡 − 𝑉𝑐𝑡,𝑡  

Critic update 
𝐸𝑠,𝑑,𝑡+1 =  𝐸𝑠,𝑑,𝑡 +  

 𝛼𝑠𝑡
‖𝑆𝑡‖

𝛿𝑡 ∶ 𝑑 = 𝑐𝑡 

𝐸𝑑,𝑡+1 =  𝐸𝑑,𝑡 : d ≠ 𝑐𝑡 

Actor update -- 

Table 3-7 The description of the simplest version of the Temporal difference learning 

model, broken into the components used in the implementation. 
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parts: an average reward and a relative reward. The average reward, Δ𝑑,𝑡, is 

calculated in the same way as the expectation, with a learning rate parameter τ. 

Δ𝑑,𝑡+1 = Δ𝑑,𝑡 + τ(𝑟𝑡 − Δ𝑑,𝑡) 

The RPE calculation only uses the relative value of the expected future reward. This 

is done by removing the average reward from the RPE: 

δ𝑡 = 𝑟𝑡 − 𝑉𝑐𝑡,  + 𝑉𝑐𝑡+1, +1 − Δ𝑑,𝑡 

This relative difference calculation removes the need for the discount factor γ in 

other temporal difference learning models, while providing quite similar results 

(Tsitsiklis & Van Roy, 2002). 

Stages at 𝑡 Temporal relative difference learning (TDR) 

Reward expectation 𝑉𝑑,𝑡  =∑ 𝑠𝑡𝐸𝑠,𝑑,𝑡
𝑠∈𝑆𝑡

 

Action choice 

𝑃𝑑,𝑡 =  
𝑒β𝑉𝑑,𝑡

∑ 𝑒β𝑉𝑖,𝑡𝑖∈𝒟𝑡

 

𝑐𝑡 = 𝒞(𝑃𝑡) 

𝐸𝑠𝑡−1,𝑑, 𝑡+1 =  𝐸𝑠𝑡−1,𝑑,𝑡 +  
𝛼𝑠𝑡−1
‖𝑆𝑡−1‖

𝑉𝑐𝑡,𝑡 ∶ 𝑑 = 𝑐𝑡−1 

𝐸𝑑,𝑡+1 =  𝐸𝑑,𝑡 : d ≠ 𝑐𝑡−1 

RPE δ𝑡 = 𝑟𝑡 − 𝑉𝑐𝑡,𝑡  − Δ𝑑,𝑡 

Critic update 

Δ𝑑,𝑡+1 = Δ𝑑,𝑡 + τ(𝑟𝑡 − Δ𝑑,𝑡) 

𝐸𝑠,𝑑,𝑡+1 =  𝐸𝑠,𝑑,𝑡 +  
 𝛼𝑠𝑡
‖𝑆𝑡‖

𝛿𝑡 ∶ 𝑑 = 𝑐𝑡 

𝐸𝑑,𝑡+1 =  𝐸𝑑,𝑡  : d ≠ 𝑐𝑡  

Actor update -- 

Table 3-8 The description of the Temporal difference learning with relative update, 

broken into the components used in the implementation. 
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3.6 Q-LEARNING AUTOCORRELATION 

One aspect that is not examined in many reinforcement learning models is the 

influence that past choices have on the current choice (Lau & Glimcher, 2005). One 

model that attempts to address this is the Q-Learn autocorrelation model, as 

described by Daw (2011). Here, an extra component, κ, has been added to the 

action-choice probability calculation. The value of the parameter κ is zero unless 

the action-choice currently being calculated is the same as the one that was 

chosen in the previous trialstep, in which case the value can be anything in the 

range [−1,  1], with -1 signifying a strong anti-correlation and 1 a strong correlation. 

By multiplying the correlation factor by β, its significance is maintained 

independently of the value of β. 

 

Stages at 𝑡 Q-learning autocorrelation (qLearnCorr) 

Reward expectation 𝑉𝑑,𝑡  =∑ 𝑠𝑡𝐸𝑠,𝑑,𝑡
𝑠∈𝑆𝑡

 

Action choice 
𝑃𝑑,𝑡 =  

𝑒
β(𝑉𝑑,𝑡+κ(𝑑=𝑐𝑡−1))

∑ 𝑒
β(𝑉𝑖,𝑡+κ(𝑖=𝑐𝑡−1))

𝑖∈𝐷

 

𝑐𝑡 = 𝒞(𝑃𝑡) 

RPE δ𝑡 = 𝑟𝑡 − 𝑉𝑐𝑡,  

Critic update 
𝐸𝑠,𝑑,𝑡+1 =  𝐸𝑠,𝑑,𝑡 +  

 𝛼𝑠𝑡
‖𝑆𝑡‖

𝛿𝑡 ∶ 𝑑 = 𝑐𝑡 

𝐸𝑑,𝑡+1 =  𝐸𝑑,𝑡 : d ≠ 𝑐𝑡 

Actor update -- 

Table 3-9 The description of the Q-learning model with autocorrelation broken into the 

components used in the implementation. 

  



52 

3.7 Q-LEARNING-Ε 

Another approach to calculating the probabilities of a given action being the best 

action is using the ε-greedy function. Here, the actions with the highest expected 

reward are identified. The probabilities for those that do not have the maximum 

reward being chosen is 

P (𝑑|𝑉𝑑 < max
𝑑
𝑉𝑑) =

𝜀

‖𝒟𝑡‖
 

Where ‖𝒟𝑡‖ is the number of valid actions at time t. The resulting odds for one of 

those with the maximum expected reward being chosen is  

P (𝑑|𝑉𝑑 = max
𝑑
𝑉𝑑) =

1 − 𝜀

‖𝐵𝑡‖
+

𝜀

‖𝒟𝑡‖
 

Where ‖𝐵𝑡‖ is the number of valid actions that have the maximum expected 

reward at time t.  

This model was modified to include a form of autocorrelation, similar to that found 

in the Q-learning autocorrelation model. This is achieved using the same 

correlation parameter, κ, as used in the Q-learning autocorrelation model 

described in chapter 0. In that model, κ was a weight modifying the likelihood of a 

model being chosen depending on the if it was the same action that was chosen in 

the previous trialstep, or not. Positive values of κ would encourage a positive 

correlation and negative values of κ would encourage a negative correlation. The 

encouragement was made independent of the exploration-exploitation scaling 

parameter, β.  Here, the same result is created using a different formulation. The 

impact on the likelihoods is split into two types, with correlation of the same action 

as before and anti-correlation of different actions from before treated the same 

way, and the opposites treated another way, as described in Table 3-10.  

 𝐿𝑑 = 1 𝐿𝑑 = −1 

κ > 0 𝑃𝑑
∗ = 𝑃𝑑 + |κ|(1 − 𝑃𝑑) 𝑃𝑑

∗ = 𝑃𝑑 − |κ|𝑃𝑑 

κ < 0 𝑃𝑑
∗ = 𝑃𝑑 − |κ|𝑃𝑑 𝑃𝑑

∗ = 𝑃𝑑 + |κ|(1 − 𝑃𝑑) 

Table 3-10 An enumeration of the different correlation modifications to the likelihoods. 

Here, to make explicit the modifications, the magnitude of 𝜅 is used, |𝜅|. 
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Stages at 𝑡 Q-learning-ε (qLearnE) 

Reward expectation 𝑉𝑑,𝑡  =∑ 𝑠𝑡𝐸𝑠,𝑑,𝑡
𝑠∈𝑆𝑡

 

Action choice 

𝐵𝑑,𝑡 = {
1 𝑉𝑑,𝑡 = max

𝑑
𝑉𝑑,𝑡

0 𝑉𝑑,𝑡 < max
𝑑
𝑉𝑑,𝑡

  

𝑃𝑡 = (
1 − 𝜀

‖𝐵𝑡‖
)𝐵𝑡 +

𝜀

‖𝒟𝑡‖
 

𝑐𝑡 = 𝒞(𝑃𝑡) 

RPE δ𝑡 = 𝑟𝑡 − 𝑉𝑐𝑡,  

Critic update 
𝐸𝑠,𝑑,𝑡+1 =  𝐸𝑠,𝑑,𝑡 +  

 𝛼𝑠𝑡
‖𝑆𝑡‖

𝛿𝑡: 𝑑 = 𝑐𝑡 

𝐸𝑑,𝑡+1 =  𝐸𝑑,𝑡  : d ≠ 𝑐𝑡 

Actor update -- 

Table 3-11 The description of the Q-learning model using epsilon greedy, broken into 

the components used in the implementation. 

 

Stages at 𝑡 Q-learning-ε autocorrelation (qLearnECorr) 

Reward expectation 𝑉𝑑,𝑡  =∑ 𝑠𝑡𝐸𝑠,𝑑,𝑡
𝑠∈𝑆𝑡

 

Action choice 

𝐵𝑑,𝑡 = {
1 𝑉𝑑,𝑡 = max

𝑑
𝑉𝑑,𝑡

0 𝑉𝑑,𝑡 < max
𝑑
𝑉𝑑,𝑡

 

𝑃𝑡 = (
1 − 𝜀

‖𝐵𝑡‖
)𝐵𝑡 +

𝜀

‖𝒟𝑡‖
 

𝐿𝑑 = {
1 𝑑 = 𝑐𝑡−1
−1 𝑑 ≠ 𝑐𝑡−1

 

𝑃𝑑,𝑡
∗ = 𝑃𝑑,𝑡 + {

(1 − 𝑃𝑑,𝑡)κ𝐿𝑑 κ𝐿𝑑 > 0

𝑃𝑑,𝑡κ𝐿𝑑 κ𝐿𝑑 < 0
 

𝑐𝑡 = 𝒞(𝑃𝑡
∗) 

RPE δ𝑡 = 𝑟𝑡 − 𝑉𝑐𝑡,  

Critic update 
𝐸𝑠,𝑑,𝑡+1 =  𝐸𝑠,𝑑,𝑡 +  

 𝛼𝑠𝑡
‖𝑆𝑡‖

𝛿𝑡: 𝑑 = 𝑐𝑡 

𝐸𝑑,𝑡+1 =  𝐸𝑑,𝑡 : d ≠ 𝑐𝑡 

Actor update -- 

Table 3-12 The description of the Q-learning model epsilon greedy and with 

autocorrelation, broken into the components used in the implementation. 
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3.8 ACTOR-CRITIC 

To determine the benefit of separating the actor and the critic, a simple Q-learning 

model was proposed. This used the same reinforcement learning rule for both the 

actor and the critic, but allowed for different learning rates for each, α𝐶 and α𝐴 

respectively. This can also be thought of as a simplification of the OpAL without 

Hebbian learning, as it does not have separate excitatory and inhibitory 

components to the actor. A basic version was created with the common Softmax 

function for calculating the action choice probabilities, ACBasic, along with a 

version using the ε-greedy function used in the Q-learning ε model, ACE.  

Stages at 𝑡 Actor-critic (ACBasic) Actor-critic-ε (ACE) 

Reward 

expectation 
𝑉𝑑,𝑡 =∑ 𝑠𝑡𝐸𝑠,𝑑,𝑡

𝑠∈𝑆𝑡

 𝑉𝑑,𝑡 =∑ 𝑠𝑡𝐸𝑠,𝑑,𝑡
𝑠∈𝑆𝑡

 

Action choice 

𝐴𝑑,𝑡
∗ =∑ 𝑠𝑡𝐴𝑠,𝑑,𝑡

𝑠∈𝑆𝑡

 

𝑃𝑑,𝑡 =  
𝑒β𝐴𝑑,𝑡

∗

∑ 𝑒β𝐴𝑖,𝑡
∗

𝑖∈𝒟𝑡

 

𝑐𝑡 = 𝒞(𝑃𝑡) 

𝐴𝑑,𝑡 
∗ =∑ 𝑠𝑡𝐴𝑠,𝑑,𝑡

𝑠∈𝑆𝑡

 

𝐵𝑑 = {
1 𝐴𝑑,𝑡 

∗ = max
𝑑
𝐴𝑑,𝑡 
∗

0 𝐴𝑑,𝑡 
∗ < max

𝑑
𝐴𝑑,𝑡 
∗  

𝑃𝑡 = (
1 − 𝜀

‖𝐵𝑡‖
+

𝜀

‖𝒟𝑡‖
)𝐵 +

𝜀

‖𝒟𝑡‖
(1 − 𝐵) 

𝑐𝑡 = 𝒞(𝑃𝑡) 

RPE δ𝑡 = 𝑟𝑡 − 𝑉𝑐𝑡, 𝑡 δ𝑡 = 𝑟𝑡 − 𝑉𝑐𝑡, 𝑡 

Critic update 
𝐸𝑠,𝑑,𝑡+1 =  𝐸𝑠,𝑑,𝑡 +

 𝛼𝐶𝑠𝑡
‖𝑆𝑡‖

𝛿𝑡: 𝑑 = 𝑐𝑡 

𝐸𝑑,𝑡+1 =  𝐸𝑑,𝑡  : d ≠ 𝑐𝑡 

𝐸𝑠,𝑑,𝑡+1 =  𝐸𝑠,𝑑,𝑡 +
 𝛼𝐶𝑠𝑡
‖𝑆𝑡‖

𝛿𝑡: 𝑑 = 𝑐𝑡 

𝐸𝑑,𝑡+1 =  𝐸𝑑,𝑡 : d ≠ 𝑐𝑡 

Actor update 
𝐴𝑠,𝑑,𝑡+1 =  𝐴𝑠,𝑑,𝑡 +

 𝛼𝐴𝑠𝑡
‖𝑆𝑡‖

𝛿𝑡: 𝑑 = 𝑐𝑡 

𝐴𝑑,𝑡+1 =  𝐴𝑑,𝑡  : d ≠ 𝑐𝑡 

𝐴𝑠,𝑑,𝑡+1 =  𝐴𝑠,𝑑,𝑡 +
 𝛼𝐴𝑠𝑡
‖𝑆𝑡‖

𝛿𝑡: 𝑑 = 𝑐𝑡 

𝐴𝑑,𝑡+1 =  𝐴𝑑,𝑡  : d ≠ 𝑐𝑡 

Table 3-13 The description of the Actor-critic models using softmax and epsilon greedy, 

broken into the components used in the implementation. 

A cruder version of the ACE model was created with a less discerning critic. Here, 

the critic assesses whether the reward is higher than the average across actions, 

irrespective of the stimuli. Effectively, the critic is comparing the reward with a 

moving average of the reward. The actor is therefore learning not how the 

predictions compare to its expectations of reward for that action, but, indirectly, 

how the actions’ reward compares to those of all possible actions. 
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Stages at 𝑡 Actor-critic-ε-simplified (ACES) 

Reward expectation 𝑉𝑡 = 𝐸𝑡 

Action choice 

𝐴𝑑,𝑡 
∗ =∑ 𝑠𝑡𝐴𝑠,𝑑,𝑡

𝑠∈𝑆𝑡

 

𝐵𝑑 = {
1 𝐴𝑑,𝑡 

∗ = max
𝑑
𝐴𝑑,𝑡
∗

0 𝐴𝑑,𝑡 
∗ < max

𝑑
𝐴𝑑,𝑡 
∗   

𝑃𝑡 = (
1 − 𝜀

‖𝐵𝑡‖
)𝐵 +

𝜀

‖𝒟𝑡‖
 

𝑐𝑡 = 𝒞(𝑃𝑡) 

RPE δ𝑡 = 𝑟𝑡 − 𝑉𝑡 

Critic update 𝐸𝑡+1 =  𝐸𝑡 + αδ𝑡 

Actor update 
𝐴𝑠,𝑑,𝑡+1 =  𝐴𝑠,𝑑,𝑡 +

 𝑠𝑡
‖𝑆𝑡‖

𝛿𝑡: 𝑑 = 𝑐𝑡 

𝐴𝑑,𝑡+1 =  𝐴𝑑,𝑡  : d ≠ 𝑐𝑡 

Table 3-14 The description of the Actor-critic model with epsilon greedy simplified, 

broken into the components used in the implementation. 
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3.9 META Q-LEARNING 

Schweighofer & Doya (2003) proposed accounting for the uncertainty in the 

rewards by having an adaptive exploration-exploitation parameter, β, calculated 

based on the rate of change of average reward. An adapted version of the model 

proposed by is examined here. The model calculates a moving average for the 

reward with a learning rate parameter of τ: 

Δ𝑑,𝑡+1 = Δ𝑑,𝑡 + τ(𝑟𝑡 − Δ𝑑,𝑡) 

A moving average is also calculated for the moving average, with the same learning 

rate parameter: 

Δ𝑑,𝑡+1
∗ = Δ𝑑,𝑡

∗ + τ(Δ𝑑,𝑡 − Δ𝑑,𝑡
∗ ) 

The estimate of the appropriate β is based on the difference between these two 

moving averages, Δ and Δ∗.  

β𝑡+1 = 𝑒(Δ𝑡+1−Δ𝑡+1
∗ )   

Stages at 𝑡 Meta Q-learning (qLearnMeta) 

Reward expectation 𝑉𝑑,𝑡  =∑ 𝑠𝑡𝐸𝑠,𝑑,𝑡
𝑠∈𝑆𝑡

 

Action choice 
𝑃𝑑,𝑡 =  

𝑒β𝑡𝑉𝑑,𝑡

∑ 𝑒β𝑡𝑉𝑖,𝑡𝑖∈𝒟𝑡

 

𝑐𝑡 = 𝒞(𝑃𝑡) 

RPE δ𝑡 = 𝑟𝑡 − 𝑉𝑐𝑡,  

Critic update 

Δ𝑑,𝑡+1 = Δ𝑑,𝑡 + τ(𝑟𝑡 − Δ𝑑,𝑡) 

Δ𝑑,𝑡+1
∗ = Δ𝑑,𝑡

∗ + τ(Δ𝑑,𝑡 − Δ𝑑,𝑡
∗ ) 

β𝑡+1 = 𝑒(Δ𝑡+1−Δ𝑡+1
∗ )   

𝐸𝑠,𝑑,𝑡+1 =  𝐸𝑠,𝑑,𝑡 +  
 𝛼𝑠𝑡
‖𝑆𝑡‖

𝛿𝑡: 𝑑 = 𝑐𝑡 

𝐸𝑑,𝑡+1 =  𝐸𝑑,𝑡 : d ≠ 𝑐𝑡                

Actor update -- 

Table 3-15 The description of the Meta Q-learning model, broken into the components 

used in the implementation. 
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3.10  KALMAN FILTER 

The Kalman filter, as presented by Daw, O’Doherty, Dayan, Dolan, & Seymour 

(2006), attempts to estimate the uncertainty in the expected reward2. It uses this 

prediction uncertainty measure, σ𝑑,𝑡
2 , to define a learning rate, α𝑑,𝑡   

α𝑑,𝑡  =
σ𝑑,𝑡
2

σ𝑑,𝑡
2 + σα

2
 

Where σα
2  is the measurement uncertainty, which is considered a constant over the 

duration of a task and identical for all actions. This learning rate is used in a similar 

way to that of the Q-learning models to calculate an updated expectation, 𝐸̂𝑠,𝑑,𝑡: 

𝐸̂𝑠,𝑑,𝑡 =  𝐸𝑠,𝑑,𝑡 +
 𝛼𝑑,𝑡𝑠𝑡
‖𝑆𝑡‖

𝛿𝑡 

Now it is also necessary to update the uncertainty. For the chosen action, the 

updated uncertainty, σ̂𝑑,𝑡
2 , decreases at a rate proportional to the learning rate: 

σ̂𝑑,𝑡
2 = (1 − α𝑑,𝑡)σ𝑑,𝑡

2  

Having now incorporated the new knowledge from the events at time t, the model 

now tries to include information about the unknown and unmeasurable factors 

affecting the task events. In practice for this model, this takes the form of a drift 

towards a baseline value for the expected reward and a growth in the prediction 

uncertainty. The drift rate, λ, sets the drift towards the baseline expected reward, 

𝐸λ, as well as the uncertainty growth rate from a base uncertainty of σλ
2 .   

𝐸𝑠,𝑑,𝑡+1 = λ𝐸̂𝑠,𝑑,𝑡 + (1 − λ)𝐸λ 

σ𝑑,𝑡+1
2 = λ2σ̂𝑑,𝑡

2 + σλ
2  

As the baseline expectation is the one that will be used for the initial expectation, 

𝐸𝑠,𝑑,𝑡=0, we can update the equation to the form: 

𝐸𝑠,𝑑,𝑡+1 = λ𝐸̂𝑠,𝑑,𝑡 + (1 − λ)𝐸𝑠,𝑑,𝑡=0 

 

 

2 For a clear description of the derivation of the Kalman filter, a good starting point 

is (Faragher, 2012) 
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Stages at 𝑡 Q-learning Kalman (qLearnK) 

Reward 

expectation 
𝑉𝑑,𝑡 =∑ 𝑠𝑡𝐸𝑠,𝑑,𝑡

𝑠∈𝑆𝑡

 

Action choice 
𝑃𝑑,𝑡 =  

𝑒β𝑉𝑑,𝑡

∑ 𝑒β𝑉𝑖,𝑡𝑖∈𝒟𝑡

 

𝑐𝑡 = 𝒞(𝑃𝑡) 

RPE δ𝑡 = 𝑟𝑡 − 𝑉𝑐𝑡,  

Critic update 

α𝑑,𝑡  =
σ𝑑,𝑡
2

σ𝑑,𝑡
2 + σα

2
 

𝐸̂𝑠,𝑑,𝑡 = 𝐸𝑠,𝑑,𝑡 +
 𝛼𝑑,𝑡𝑠𝑡
‖𝑆𝑡‖

𝛿𝑡

𝜎̂𝑑,𝑡
2 = (1 − 𝛼𝑑,𝑡)𝜎𝑑,𝑡

2
∶ 𝑑 = 𝑐𝑡 

𝐸̂𝑠,𝑑,𝑡 = 𝐸𝑑,𝑡

𝜎̂𝑑,𝑡
2 = 𝜎𝑑,𝑡

2 ∶ 𝑑 ≠ 𝑐𝑡 

𝐸𝑠,𝑑,𝑡+1 = λ𝐸̂𝑠,𝑑,𝑡 + (1 − λ)𝐸𝑠,𝑑,𝑡=0 

σ𝑑,𝑡+1
2 = λ2σ̂𝑑,𝑡

2 + σλ
2

 

Actor update - 

Table 3-16 The description of the Q-learning Kalman model, broken into the 

components used in the implementation. 
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3.11 BAYESIAN 

The Kalman and meta Q-learning models described above attempt to represent 

the uncertainty of the expected reward by estimating a form of variance. In the 

cases where the reward can be thought of as feedback on which was the correct 

action, as described in chapter 2.1.2, this uncertainty can be thought of as the level 

of uncertainty in the model’s prediction. While the addition of an uncertainty 

estimate is an improvement, it is limited by the assumption that the underlying 

likelihood distribution is gaussian. One of the simplest ways of extending this to a 

more varied range of likelihood distributions is using the Beta distribution. 

The beta distribution can be used to express a family of different likelihood 

distributions using two parameters, often thought of as number of successes and 

number of failures, as shown in Figure 3-6. 

The result is that the distribution can be updated for each trial by updating the 

number of successes and failures.  

As tasks may have a more diverse range of consequences than success and 

failures, a Dirichlet distribution is used as a way of representing the distribution of 

Figure 3-6 A series of example distributions that can be produced using the Beta 

distribution. The legend shows the values of the two Beta distribution parameters 

necessary to produce the given shape of uncertainty distribution. 
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probabilities for each possible outcome. The Dirichlet is a form of the Beta 

distribution generalised for a larger number of categorical rewards than the two 

found with the Beta distribution. More formally, for a reward r, in the set of known 

possible rewards ℛ, the associated count parameter, ω𝑟,𝑡, will be updated by one 

for each occurrence: 

ω𝑟,𝑡+1 =  ω𝑟,𝑡 + 1 

For this model, 𝑟 will be restricted to a set of positive integer values. The likelihood 

of a reward of 𝑟 for the Dirichlet distribution 𝔇(ω) can be calculated as: 

𝔼𝑟[𝔇(ω)] =
ω𝑟

∑ ω𝑖𝑖∈ℛ
=
ω𝑟
ω0

 

With ω0 defined as: 

ω0 =∑ω𝑖
𝑖∈ℛ

 

From this, a Dirichlet distribution is constructed for each possible action. For action 

𝑑, the expected reward, 𝑉𝑑,𝑡, is the weighted sum of these likelihoods:  

𝑉𝑑,𝑡 = 𝔼[𝔇(ω𝑡)] = ∑
ω𝑟,𝑑,𝑡
ω0,𝑡

𝑟

𝑟∈ℛ

 

This can be extended for use with multiple stimulus-cues. To calculate the 

appropriate expected reward values, the count parameters can be stored 

separately for each stimulus cue, 𝑠, and then combined across rewards, weighted 

by the activation of each cue, 𝑠𝑡: 

𝑉𝑑,𝑡  = 𝔼[𝔇(∑ 𝑠𝑡𝜔𝑟,𝑠,𝑑,𝑡
𝑠∈𝑆𝑡

)] = ∑
∑ 𝑠𝑡𝜔𝑟,𝑠,𝑑,𝑡𝑠∈𝑆𝑡

∑ ∑ 𝑠𝑡𝜔𝑖,𝑠,𝑑,𝑡𝑠∈𝑆𝑡𝑖∈ℛ
𝑟

𝑟∈ℛ

 

To allow the learning rate to change between participants, the updating of the 

count parameters can be modified to use the same form of learning rate 

parameter as used in the Q-learning model, by modifying the increment of 1 to be 

an increment of α: 

𝜔𝑟,𝑠,𝑑,𝑡+1 = 𝜔𝑟,𝑠,𝑑,𝑡 +  𝛼 

However, the effect on the expected reward is less direct than with the Q-learning 

model, as the impact of an incremental update on the expected reward will vary 

depending on the size of ω0,𝑡 and the distribution of each 𝜔𝑟,𝑡. Figure 3-7 gives an 
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example of how a distribution 𝔇(ω𝑡 = [𝜔1,𝑡, 𝜔2,𝑡] = [2, 5]) can be updated to 𝔇(ω𝑡+1) 

with different increment sizes for 𝑟 = 2.  

 As for the Q-learning model, this update function can be modified for use with 

multiple stimulus cues: 

𝜔𝑟,𝑠,𝑑,𝑡+1 = 𝜔𝑟,𝑠,𝑑,𝑡 +
 𝛼𝑠𝑡
‖𝑆𝑡‖

 

Stages at 𝑡 Bayesian Probabilistic (BP) 

Reward expectation 𝑉𝑑,𝑡  = 𝔼 [𝔇(∑ 𝑠𝑡𝜔𝑟,𝑠,𝑑,𝑡
𝑠∈𝑆𝑡

)] 

Action choice 
𝑃𝑑,𝑡 =  

𝑒β𝑉𝑑,𝑡

∑ 𝑒β𝑉𝑖,𝑡𝑖∈𝒟𝑡

 

𝑐𝑡 = 𝒞(𝑃𝑡) 

RPE - 

Critic update 𝜔𝑟,𝑠,𝑑,𝑡+1 = 𝜔𝑟,𝑠,𝑑,𝑡 +
 𝛼𝑠𝑡
‖𝑆𝑡‖

∶ {
𝑑 = 𝑐𝑡
𝑟 = 𝑟𝑡

 

Actor update - 

Table 3-17 The description of the Bayesian probabilistic model, broken into the 

components used in the implementation. 

Figure 3-7 Examples of how different 𝛼 increments can affect the change in expected 

reward in a Dirichlet distribution. All the distributions began as 𝜔 = [𝜔1, 𝜔2] = [2,5] 

and the 𝛼 updated for reward 1, whose probability distributions are shown. 
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The variance of the distributions can be calculated in a similar way to the 

expectation: 

Var𝑟[𝔇(ω)] =
ω𝑟(ω0 −ω𝑟)

ω0
2(ω0 + 1)

 

This uncertainty can be used as an estimate of the need for exploration: it is more 

valuable to explore when there is high uncertainty than when the uncertainty is 

low. An estimate of the overall uncertainty can be calculated by summing all the 

variances: 

Var[𝔇(ω)] = ∑
ω𝑟(ω0 −ω𝑟)

ω0
2(ω0 + 1)𝑟∈ℛ

 

This can be extended as before for use with multiple stimulus-cues: 

𝜎𝑑,𝑡
2 =  Var [𝔇(∑ 𝑠𝑡𝜔𝑟,𝑠,𝑑,𝑡

𝑠∈𝑆𝑡

)] 

We can draw parallels to the use of β in the Q-learning model in chapter 3.2 by 

inverting σ𝑑,𝑡
2 :  

β𝑑,𝑡 =
1

σ𝑑,𝑡
2

 

To turn this into a form approximating that of β, a correction is necessary. The first 

step is to recognise that the largest uncertainty will be when the model has no 

information, at t = 0. β𝑑 can therefore be normalised as: 

β𝑑,𝑡 =
σ𝑑,∗
2

σ𝑑,𝑡
2

 

where σ𝑑,∗
2  is a normalising term that can be defined as the uncertainty from the 

initial prior values of reward occurrences, 𝜔𝑟,𝑠,𝑑,𝑡=0 , weighted by the current 

stimulus-cue weightings: 

𝜎𝑑,∗
2 = Var [𝔇(∑ 𝑠𝑡𝜔𝑟,𝑠,𝑑,𝑡=0

𝑠∈𝑆𝑡

)] 

At t = 0 this would leave a β𝑑,0 = 1. This is not quite what is needed for the tasks 

considered here, as there should be no initial preference for one action or another, 

which would be reflected by β𝑑,0 = 0, i.e. equal likelihood for all actions. This can be 

achieved by modifying the calculation of β𝑑 to be: 



63 

β𝑑,𝑡 =
σ𝑑,∗
2

σ𝑑,𝑡
2 − 1

 

Stages at 𝑡 Bayesian probabilistic volatility (BPV) 

Reward expectation 

𝑉𝑑,𝑡 = 𝔼 [𝔇(∑ 𝑠𝑡𝜔𝑟,𝑠,𝑑,𝑡
𝑠∈𝑆𝑡

)] 

𝜎𝑑,𝑡
2 = Var [𝔇(∑ 𝑠𝑡𝜔𝑟,𝑠,𝑑,𝑡

𝑠∈𝑆𝑡

)] 

Action choice 

𝜎𝑑,∗
2 = Var [𝔇(∑ 𝑠𝑡𝜔𝑟,𝑠,𝑑,𝑡=0

𝑠∈𝑆𝑡

)] 

𝛽𝑑 =
𝜎𝑑,∗
2

𝜎𝑑,𝑡
2
− 1 

𝑃𝑑,𝑡 =  
𝑒β𝑑𝑉𝑑,𝑡

∑ 𝑒β𝑖𝑉𝑖,𝑡𝑖∈𝒟𝑡

 

𝑐𝑡 = 𝒞(𝑃𝑡) 

RPE - 

Critic update 𝜔𝑟,𝑠,𝑑,𝑡+1 = 𝜔𝑟,𝑠,𝑑,𝑡 +
 𝛼𝑠𝑡
‖𝑆𝑡‖

∶ {
𝑑 = 𝑐𝑡
𝑟 = 𝑟𝑡

 

Actor update - 

Table 3-18 The description of the Bayesian probabilistic volatility model, broken into the 

components used in the implementation.  



64 

3.12 RANDOM 

To evaluate the performance of the models and calculate some of the fit quality 

measures described in chapter 2.2 a pure random model will be used for 

comparison (M. D. Lee et al., 2019). For each trial, the action choice probability, 𝑃𝑑,𝑡 

will be the same for all available actions: 

𝑃𝑑,𝑡 =  
1

‖𝒟𝑡‖
 

This can be extended by allowing a constant bias in the action choice probabilities. 

A series of 𝒟 parameters, denoted 𝜊𝑑, would each have values in the range [0, 1] 

and sum to 1.  This mean there are 𝒟 − 1 free parameters, which can be 

represented on a 𝒟 − 1 unit simplex. 

Stages at 𝑡 Random (random) Random biased (randomBias) 

Reward expectation -- -- 

Action choice 
𝑃𝑑,𝑡 =  

1

‖𝒟𝑡‖
 

𝑐𝑡 = 𝒞(𝑃𝑡) 

∑ 𝜊𝑑
𝑑∈𝒟

= 1 

𝑃𝑑,𝑡 =  
𝜊𝑑

∑ 𝜊𝑖𝑖∈𝒟𝑡

 

𝑐𝑡 = 𝒞(𝑃𝑡) 

RPE -- -- 

Critic update -- -- 

Actor update -- -- 

Table 3-19 The descriptions of the Random and Random biased models, broken into the 

components used in the implementation. 
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4 DISCERNING MODEL PARAMETERS IN REINFORCEMENT LEARNING 

Before evaluating the performance of models across tasks, it is worth 

understanding how noisy or uncertain the model fitting process is. Ideally, the 

models would be globally identifiable, i.e. each action sequence could only have 

been generated by one parameter combination (Moran, 2016). However, in a 

model where many parameter combinations will provide a non-zero probability for 

each available action to be chosen, there will be a finite probability for each of 

those parameter combinations to produce every sequence of actions. The 

evaluation of the capacity of a model to be fitted can be evaluated, for a given task, 

by asking: if I have data that I know was generated with specific parameter values, how 

likely am I to recover those parameter values when fitting that model to the data? 

(Heathcote, Brown, & Wagenmakers, 2015). This would be equivalent to baking a 

cake in one of a very large number of available cake moulds and then asking how 

likely is it that somebody else would be able to identify the cake mould used from 

those available.  

Reverdy & Leonard (2015) discuss formally the conditions under which a 

reinforcement learning model will be able to fit data from a given task. They 

demonstrate that with a certain kind of task and a sufficient task length, a 

reinforcement learning model is guaranteed to converge to the correct parameter 

values. While this is useful to know, it does not tell us if this convergence will be 

fast enough to be useful for real participant data, where the length of the task is 

limited by the capacity of participants to stay focused. 

The capacity of a model to be fitted can be tested by generating task data using a 

model with known parameter values. This generated data is then fitted to the 

same model. From this, the resulting recovered parameter values can be 

compared, along with the confidence of that fit, to the parameter values used to 

generate the data. Fitting the same data multiple times gives us an understanding 

of the capacity of a given fitting process to find the best parameter values. Multiple 

datasets are generated for the same parameter values to gain an understanding of 

how the variability of the data affects the quality of the fit. This variability will 
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compound the error found in the fitting process. By repeating this process over a 

range of parameter value combinations, an understanding can be gained of how 

the capacity to accurately recover the generating parameters varies for different 

model responses to the task.  

When a model is fitted with real participant data the question being asked is: given 

this model, what are the model parameter values that most closely resemble the 

performance of the participant for this model? The fitting process is not looking for 

the ‘correct’ model parameter values (Box, 1979), as the model will be, at best, an 

approximation of how the participant approached the task. Any error found in 

fitting the generated participant data will therefore be an underestimate of the 

error received when fitting a model with real participant data.  

Parameter recoverability for the Expectancy Valence (EV) model (Busemeyer & 

Stout, 2002) has been examined with the Iowa gambling task, a task similar to the 

Decks task examined in this thesis. Ahn et al. (2014) found satisfactory parameter 

recovery for an EV variant. Similarly, Ruud Wetzels, Vandekerckhove, Tuerlinckx, & 

Wagenmakers (2010) found that on average they were able to recover the 

parameters generated from 1000 sequences using the most commonly recovered 

parameter set from previous studies. However, the parameter recovery 

distribution had a large enough variance that recovery from individual task runs 

were not considered trustworthy. Lastly, Humphries, Bruno, Karpievitch, & 

Wotherspoon (2015) found poor parameter recovery when fitting both simulated 

and participant data, concluding  both that individual parameter recovery was 

poor and there was sufficient within-group variance that group estimates were 

questionable. 

Another approach to assessing parameter recoverability is to examine the 

performance of parameter values whose task performance was close to those of 

real participants. This was used to validate the three parameter Q-learning model 

(Halpern & Gureckis, 2013) used in Gureckis & Love (2009). While they found that 

those parameter values were accurately reproduced, all were on or very close to 

parameter values that effectively removed learning from the model, calling into 

question the effectiveness and validation of their fitting. 
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Since this study was performed, a new paper has come out examining the 

identifiability and recoverability of a few Q-learning models, including qLearn and 

qLearn2 (Spektor & Kellen, 2018). They found very poor recoverability and 

attempted to improve this using an empirical-prior parameter distributions 

(Gershman, 2016), with only marginal improvement. The results of this paper will 

be discussed further later in this chapter. 

In this chapter, an assessment will be made of how well parameters can be 

recovered in the best case: recovered by fitting the same model used to generate 

the data. This is evaluated at first using the simple qLearn model, across a range of 

different tasks. The source of fitting errors is investigated, and potential solutions 

are discussed and evaluated.  

4.1 MODEL-TASK DATA GENERATION  

For the initial exploration of the fitting error, the qLearn model described in 

chapter 3.2 was used, as it is one of the simplest and most widespread models, 

while still containing all the components found in more elaborate reinforcement 

learning models. To summarise, it is a two-parameter reinforcement learning 

model, updating only the parts associated with the chosen action and active 

stimulus-cues, with α as the learning rate. The action choice is performed based on 

probabilities calculated based on a softmax transformation of the reward 

expectations, with an exploration-exploitation parameter β. 

For each of the task variations examined in the rest of the study, a set of datasets 

were generated with the parameter value combinations from α =

 {0.1,  0.3,  0.5,  0.7,  0.9} and β =  {0.1,  0.3,  0.5,  0.7,  1,  2,  4,  8,  16}. For each 

combination, 30 experiment runs were generated. For the fitting, the model 

parameters were constrained to the ranges α = [0,1] and β =  [0,30]. The bounds 

for α are the valid range for the parameter. The lower bound for β is fixed by the 

parameter only being positively defined. The upper bound for β is more arbitrary. 

The true upper bound for β is positive infinity, but this is not a practical space to 

search.  
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By considering the impact of β in the Softmax, as seen in Figure 4-1, it can be seen 

that the impact of increasing β diminishes as β increases, such that the benefit in 

increasing the β support decreases as the support size increases. 16 was chosen as 

the largest generating β value, as our initial studies had seen changes in the range 

β =  [0,  5] and it was expected that 16 would be sufficiently above 5 to show if 

there were any trends at higher β. The parameter fitting upper bound of 30 was 

chosen to be far enough from the maximum β used to generate data to allow any 

Figure 4-1 Two slices of how the probability for action 0 varies for different action-

expectations, 𝑉0 , and different 𝛽. The only other action has a constant action-

expectation, 𝑉1 = 0.5. The grey lines on each plot show how the lines from the other plot 

interact with it, with the lines using the line marker type found in the key of the other plot. 

Top: 𝑃(𝑉0) across 𝑉0 for different 𝛽. Bottom: 𝑃(𝑉0) across 𝛽 for different 𝑉0. 
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distribution of fitting errors to be relatively unaffected by the boundary. This is 

slightly lower, but comparable to  Spektor and Kellen's 2018 study choice of 50.  

As described in chapter 2.1.1, the model data was recorded to files and then fitted 

in the same way as participant data. 

4.2 EVALUATION OF FITTING CAPACITY FOR A SIMPLE TASK: BIASED COINS TASK 

For most of this investigation a simple task called the Biased Coins task was used. 

This was designed to be a simplified version of the tasks that we later fit data for, 

in chapters 6, 7 and 8. Four distinct coins are shown to the participant. At the 

beginning of each trial, one of these is randomly chosen to be flipped. Before it is 

flipped, the chosen coin is shown to the participant and the participant guesses if it 

will land on one side or the other: ‘heads’ or ‘tails’. The participant is then told 

which side the coin landed on. This task can be thought of as a 4-armed bandit, 

where the participant does not choose the bandit pulled each trail, only predicts 

the outcome. The simulated participants are rewarded if they predicted the 

outcome correctly. This approach ensures that the simulated participants learn 

equally about each of the four coins. Without this, a rational participant would 

choose more frequently the coins for which they expected higher rewards. 

Each trial is performed 100 times, with the final 20 being performed without 

feedback. The final trials are performed in this way to match final trials of the 

Weather and the Probabilistic Selection tasks, where these trials without feedback 

are used to understand more about what the participants have learnt by the end 

Figure 4-2 The Biased coins task. At the beginning of each trial, from a set of distinct 

coins, one is randomly chosen to be shown to the participant. Before it is flipped the 

participant guesses if it will land on side 0 or side 1. The participant is then told, during 

the feedback trials, which side the coin landed on. Each coin has a different probability 

of landing on each side. 
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of the training phase, i.e. the final trial with feedback. Frank et al. (2007) also chose 

to fit the participant data exclusively on the trials without feedback, arguing that 

fitting only this part could lead to recovery of more accurate model parameters. 

This is discussed further in chapter 5. 

The probability of landing on one side or another varies from coin to coin, with two 

of the coins having an 80% chance of landing on side 0 and the other two a 20% 

chance of landing on side 0. For each generated dataset, the choice of coins and 

the side the ‘coins’ fall on is varied. This allows us to get a better estimate of the 

distribution of the noise in fitting, with not just the noise of the probabilistic 

decision making of the model but also the impact of the task sequence.   

4.2.1 Fits from generated data 

To begin looking at the error in the recovered model parameter values, for each 

generating parameter combination the fit quality values were plotted for each 

parameter combination explored. Figure 4-3 shows the fits from data generated 

with two different sets of model parameter values. For α = 0.7, β =  4 the best fit 

Figure 4-3 Parameter space plots showing the fitting process and results from the biased 

coins task with 100 trials, of which 20 are without feedback. The titles list the parameters, 

also marked by a black dot, from which the 30 datasets were generated. The red dots are the 

parameters of the best fit for each of the 30 generated datasets. The other dots show the 

search locations during the 30 evolutionary fitting processes, coloured using the base 10 log 

of the fit quality. The shape of the low fit value area in the parameter space can be seen to 

vary significantly with different generating parameter values.  
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parameter values (red dots) are clustered around the parameter values used to 

generate the data for the 30 datasets. However, they are spread across more than 

half the possible range for α. Looking at α = 0.1, β =  0.5 the best fit parameter 

values are spread around the edge of the examined parameter space, close to the 

α and β axes. The dots of other colours signify the other parameter combinations 

tested during the evolutionary fitting process, with the colour signifying the log 

base 10 of the fit quality value described in chapter 2.2. This allows us to see that 

while the distributions of best fit parameter values are quite different between the 

two graphs, one common feature is that both sets of best fit parameter values are 

found in ‘valleys’ of their respective fit quality values. 

Looking more generally, in Figure 4-5, it can be seen that the distributions of 

recovered parameter values varies depending on those used to generate the data. 

The distribution transforms as β increases from being one that follows the edges 

of the fitting parameter-space to one more grouped around a central point and 

finally stretching out in the direction of higher β. The changes in the means of 

these best fit parameter value distributions for each generating parameter 

combination, shown in Figure 4-6, also indicate that the fit for α becomes more 

accurate as β increases. Unsurprisingly, it also underscores how the changes in 

distribution are not well described by the mean and standard deviation.  

These plots are similar to those produced by Daw (2011), when compared with one 

of the fits from data generated with the parameters α = 0.3, β =  1, reproduced in 

Figure 4-4. The same shape of best fit region can be seen in the two plots, 

suggesting that Daw’s result is part of a larger pattern of results. 

The conclusion from these plots is that the fitting is only potentially reliable for 

certain generating parameter values. However, as the spread of best fits from 

those generating parameter values overlaps significantly with those around them, 

this does not allow us to treat any recovered parameter values in that region as 

reliable. 
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Figure 4-4 Left: A reproduction of figure 1 from Daw (2011) generated by fitting the Q-learning 

model. From the original figure description “Lighter colors denote higher data likelihood. The 

maximum likelihood estimate is shown as an “o” surrounded by an ellipse of one standard error 

(a region of about 90% confidence); the true parameters from which the data were generated are 

denoted by an ‘x’” Right: The results from fitting one of 30 generated datasets. The dataset was 

generated with 𝛼 = 0.3, 𝛽 =  1, marked by the black dot. The red dot is the recovered parameters. 

The background is coloured using the smoothed base 10 log of the fit quality measure. A white 

contour is shown of equal fit quality. 
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The same generated data can be fitted more than once and the recovered 

parameters can be compared, as shown in Figure 4-8. Variations can be seen 

between the two sets of recovered parameters. These are due to the evolutionary 

fitting process probabilistically choosing the locations of each rounds fit quality 

samples, as described in chapter 2.1.6.2, resulting in different parameter 

combinations being considered to be the recovered parameters each time the 

fitting is run. In the final round of fitting the selected sample of parameter sets will 

be in the vicinity of the globally identified best fit and the parameter sets will have 

Figure 4-6 The means and standard deviations of the best fit values for 𝛼 and 𝛽  for the 

data generated from the biased coins task with 100 trials, of which 20 are without 

feedback. The means are calculated for each pair of parameter values used to generate the 

data. The graphs are plotted with the parameter values increasing in order such that the 

parameter increasing the fastest is the one shown on the horizontal axis, and with the 

dotted line denoting the generating values of those parameters. Top: Means of 𝛼 Bottom: 

Means of 𝛽 
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sufficiently small variations in their associated fit quality values that they could all 

be candidates.  

While there are variations across fits in the best fit parameter values, the 

distributions are the same, suggesting that the area of best fit for the generating 

parameter combination is being consistently identified. By comparing the 

difference between the two sets of fits, in Figure 4-7, for α the majority of the 

generated data sets, the differences in the recovered parameters are less than 0.1, 

except for a few that jumped from one edge to the other. If this were real 

behavioural data, these edge fits would be considered bad fits and excluded, as 

they are in effect fitting to a model without a learning rate parameter. For β the 

size of the differences depends largely on the size of the parameter value used to 

generate the data. A good rule of thumb is that the differences are generally at 

least an order of magnitude smaller than the parameter value used to generate 

the data. This suggests that a participant’s action sequence is associated with 

specific recovered parameters. As the same action sequence could have been 

generated by numerous parameter sets, this is unsurprising and results in the 

model not being locally-identifiable (Schmittmann, Dolan, Raijmakers, & 

Batchelder, 2010; Spektor & Kellen, 2018).  

Figure 4-7 Histograms of the differences between two fits of the same data. The fits used 

are the same as shown in Figure 4-8. As most of the differences are very small, the bins are 

equally sized on a logarithmic scale (base 10). Both histograms have 50 bins. Left: For 𝛼 

the range is between 0.00001 and 1 Right: For 𝛽 the range is between 0.0001 and 30.  
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To see how the best fit parameter distributions varied with a longer task, data was 

generated for a longer version of the Biased Coins task, with 1600 trials of which 

100 at the end were without feedback. In Figure 4-9 the beginning of the 

convergence indicated by Reverdy & Leonard (2015) can be seen. However, even 

with this number of trials it is not possible for us to be certain about parameter 

value estimations outside of a small range. For us to therefore achieve usable 

predictions reliably, the tasks would need to be longer than 1600 trials, which is 

already much longer than those typically performed as human participants would 

fatigue and get bored over this timescale. 

To confirm that this is not caused by evolutionary fitting method, the same dataset 

was fitted using gradient descent and the resulting best fits, shown in Figure 4-10, 

have the same distributions as found with the evolutionary fitting. Focusing 

specifically on α = 0.7, β =  4, the best fit outside of the main ‘valley’ can still be 

seen. Given these plots, the fitting method, be that evolutionary fitting or gradient 

descent, can be ruled out as being the cause of the unusual best fit parameter 

distributions. 

To verify that these results were not caused by an error in the coding of the Python 

framework, a simplified version was written in MATLAB. As no evolutionary 

algorithm is available in the standard MATLAB package, the MATLAB function 

fmincon was used for the fitting (Waltz, Morales, Nocedal, & Orban, 2006). This uses 

gradient descent and is the standard MATLAB fitting function. As can be seen in 

Figure 4-11, the distribution of fits is similar to those found previously. By 

comparing it with Figure 4-10, it can be seen that the search patterns of the two 

gradient descent implementations are similar. From these results, it appears that 

that the Python framework is working as intended and can be ruled out as the 

cause of these fit distributions.    
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4.3 FITNESS CAPACITY FOR OTHER TASKS 

To see if this issue is related to the Biased Coins task, data was generated for two 

other tasks. 

The first is the Weather task, data for which is examined in chapter 8. This task is a 

step up in complexity to the biased coins task. The Weather task is a category 

learning task based on one described by Gluck & Bower (1988) and later adapted 

by Knowlton, Squire, & Gluck (1994). It asks participants to associate a series of 

cues with one of two outcomes. One to three cue cards, from a set of four cards, 

are presented to the participant in each trial. The participant must decide which 

one of the two possible outcomes the displayed cards are most likely associated 

with. Once the participant decides, they are then told if they were correct or not. 

The cues each have a probabilistic relationship with the two outcomes, with this 

this version of the task having novel probabilistic relationship, with the probability 

of an outcome varying depending on the combination of cues displayed, as 

described in Table 8-1. For example, if the first two cues are displayed, then the 

first outcome is guaranteed. If only one of them is displayed, then the first 

outcome will be the correct one 75% of the time. In the first phase of the task, the 

learning phase, participants are given feedback on if their choice was correct. In the 

second phase, the testing phase, participants are not given any feedback. The 

sequence of cues and the outcomes were fixed beforehand and is the third 

sequence shown in Figure 8-2, with 56 learning phase and 14 test phase trials, with 

equal numbers of each of the 14 cue combinations in each task phase.  

Figure 4-12 The Weather task consists of a series of trials where one to three cue 

cards, from a set of four cards, are presented to the participant. The participant must 

decide which of the two outcomes the cues are more likely to predict. 
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The Decks task provides a different type of probabilistic learning task, with no 

changes in stimuli and a wider range of reward. Data for this task is examined in 

chapter 6. It was based on a task used by Worthy, Maddox, & Markman (2007), and 

similar to the IOWA gambling task (Bechara et al., 1994). Participants were 

presented with two rectangles on a screen, one red and one blue. These were said 

to be the top cards of two decks of cards 80 cards long. Each ‘card’ has a 

predetermined reward associated with it, whose value was between one and ten. 

The objective was to maximise the accumulated card values by picking a card from 

one of the two decks each trial. The associated card value would then be shown to 

the participant. The sequences were kept the same throughout the task and there 

were not equal numbers of cards for each reward value. One of the decks was 

initially advantageous, but over the whole task provided lower rewards. The 

sequence can be seen in Figure 6-2. The card that was not chosen was not 

discarded, maintaining the number of available cards in each deck.  

Comparing the fitted Weather task data in Figure 4-14 and the fitted Decks task in 

Figure 4-15 with those previously seen, there are variations in the distributions of 

recovered parameters for all three tasks, with the same changes occurring in those 

distributions across the generating parameter values. Therefore, the issues 

observed appear to be largely similar for these three tasks, two of which will have 

behavioural data fitted later in this thesis.   

Figure 4-13 The Decks task consists of two decks of 80 cards. Each card has a value 

between one and ten. Participants choose during each trialstep which deck they 

thing will provide the most advantageous card, with an aim to accumulate the 

largest total card value. When a deck is chosen, the ‘top’ card from that deck is 

drawn, its associated reward is awarded to the participant and the card is 

discarded. 
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4.4 INDIVIDUAL FIT DISTRIBUTIONS 

To understand better what is going on in the model parameter fit distributions, the 

individual data fits were examined more closely. Figure 4-17 contains four fits from 

two different parameter value sets from the dataset generated for the Biased 

coins task examined in chapter 4.2. To help visualise what is occurring in the 

search for the minimum fit value, the figures only show the examined parameter 

value sets whose fit value was within 10% of the lowest value found. This gives us 

an understanding of the shape of the ‘valley’ containing the minimum. For α = 0.7, 

β =  4 we can see that the minimum value is surrounded by the lowest other 

values found. This suggests that despite the best fit parameter values in repeat 20 

being far from the generating parameter values, the recovered parameter values 

are in the middle of the minimal fit ‘valley’. Equally, when looking at the fit value 

‘valleys’ for α = 0.1, β =  0.5 we see that the lowest fit values are surrounding the 

recovered best fit value. For both sets of parameter values, the individual fit value 

‘valley’ bottoms are not necessarily surrounding the same areas but are clearly 

subsections of the valley produced when the fit values from all the fits are 

aggregated together. This suggests that we cannot treat each individual dataset 

generated with the same parameter values as having the same fit value parameter 

space shape. Compounding this issue is that these ‘valley subsections’ are not 

distributed around the true generating parameter values, as can be seen from 

Figure 4-6, reproduced in Figure 4-16, so even the average value is inaccurate 

when calculated from 30 runs of 100 trials. 

Figure 4-16 The means and standard deviations of the best fit values for 𝛼 and 𝛽 reproduced 

from Figure 4-6. Top: Means of 𝛼 Bottom: Means of 𝛽  
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Figure 4-17 Parameter space plots for four of the fits of data generated for the biased coin task 

with 100 trials, of which 20 are without feedback. The red dots are the parameters of the best fit 

for each of the simulated datasets. The titles list the parameters, also marked by a black dot, from 

which the dataset were simulated for that plot. The other dots show the search locations during 

the evolutionary fitting process, coloured using the fit quality. Only those whose values are within 

10% of the lowest fit value are shown, allowing us to have an idea of where the fit value ‘valley’ is 

situated.  
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4.5 DISTINGUISHABILITY OF PROBABILITY DISTRIBUTIONS 

The fit quality value is calculated, as discussed in chapter 2.2, based on an 

aggregate of the probabilities of the chosen actions. Ultimately, when fitting using 

a maximum likelihood estimate, we are trying to maximise the likelihood for the 

model to take the actions that were taken. However, from what we have seen in 

the fitting process, there is a degree of misidentification of the parameters that 

generated the participant’s actions. By looking at the expected rewards, 𝑉𝑑, 𝑡, and 

the resultant probabilities, 𝑃𝑑,𝑡, calculated using the softmax function for the 

actions that were taken in the generated data, it was hoped an insight could be 

gained into the difficulties in distinguishing the generating parameter values when 

fitting the generated data.  

This was examined for the qLearn model performing the Desk task, shown in 

Figure 4-18. As α increased, the range of expected rewards reached increased. This 

is unsurprising given that the largest change in expected reward increases with α; 

with an initial expected reward of 5.5 for each action, for α = 0.1 the largest change 

at the beginning is 0.1 ∗ (10 − 5.5) = 0.45, whereas for α = 0.9 it would be 0.9 ∗ (10 −

5.5) = 4.05. The result is that while it is possible to distinguish by eye the α = 0.1 

distribution from those of all the other α values tried here, this is not the case for 

the other values examined.  

As can be expected from the softmax function, increasing β resulted in the 

probabilities becoming more sensitive to small changes in expected rewards, with 

most of the probabilities for an action at high β becoming either 1 or 0. Conversely, 

for low β, the probability distribution is squashed around 0.5, as seen more clearly 

in Figure 4-19. The result is that the transformation of the information by β can be 

thought of as masking the effect of α, thereby leading to the loss in accuracy when 

fitting α for low or ‘high’ values of β. More generally, parameters that act in these 

earlier stages of the model operation, such as α for the Q-learning model, will be 

harder to fit.  

This can be seen most clearly by examining the mean value of the log probability 

of the chosen actions, shown in Figure 4-19. This is the mean value per trial of the 
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log likelihood used in the model fitting, which can be expressed using the notation 

of equation 2.3 in chapter 2.2 as f 2T⁄ . The change in this value across α is smaller 

than those across β. The consequences of this lack of distinguishability can be seen 

in the expected rewards when fitting the same model on the action choices, shown 

in Figure 4-20. In all three of these figures, visual distinguishability increases as α 

and β decrease. However, for low values of one parameter, the differences in the 

other are less pronounced. This may explain the “L” shaped distribution of 

recovered parameters seen earlier in the chapter.  

The probability distribution resultant from softmax is bimodal for β values near to 

or above 1. This is even more pronounced in the distribution of probabilities for 

the chosen action, which mixes the mirror image distributions of both actions. In 

none of these cases can these distributions be considered to come close to a 

normal distribution. 

The softmax can therefore be considered to reduce identifiability of both its own β 

parameter and those parameters affecting the expected rewards earlier in the 

model. This is exacerbated by a sloppiness in the parameters (Brown & Sethna, 

2003), as one parameter can compensate for the other, resulting in a negative 

covariance seen when fitting participant data in chapters 6.2.3, 7.2.3 and 8.2.3 and 

discussed in published works such as by Daw (2011). 
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Figure 4-18 A set of scatterplots showing the expected rewards for each trial, 𝑉𝑑, 𝑡, for each 

action choice taken by the qLearn model when performing the Decks task using the generating 

parameters listed on the axis. The task had 80 trials, all with feedback and used the same deck 

sequence throughout. The colours denote the probability of choosing action 1, 𝑃1. The grid of 

plots is arranged according to the parameter values of the generated data. Each plot contains 

the results from 30 runs of the task, so 2400 expected rewards.  
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Figure 4-19 The distributions of the probabilities of action 1, for each action that was taken by 

the qLearn model when performing the Decks task using the generating parameters listed on 

the axis. The task had 80 trials, all with feedback and used the same deck sequence 

throughout. The grid of plots is arranged according to the parameter values of the generated 

data. The colours denote the mean value of the log10 of probability of the action that were 

chosen during the task run. Using equation 2.3 from chapter 2.2, this is equivalent to 𝑓 2𝑇⁄  for 

a perfect fit. Each plot contains the results from 30 runs of the task.  
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Figure 4-20 A set of scatterplots showing the expected rewards for each trial, 𝑉𝑑, 𝑡, for each action 

choice taken by the qLearn model when performing the Decks task using the parameters recovered 

from the task sequences shown in Figure 4-18. The task had 80 trials, all with feedback and used the 

same deck sequence throughout. The colours denote the probability of choosing action 1, 𝑃1. The grid 

of plots is arranged according to the parameter values of the generated data. Each plot contains the 

results from 30 runs of the task, so 2400 expected rewards.  



92 

4.6 POTENTIAL SOLUTIONS TO DISTINGUISHING PARAMETER COMBINATIONS 

The analysis shows that for these tasks when fitting using a maximum likelihood 

estimate, the recovered parameter values are located in the valley of best fit for 

the model given the data provided. However, for our datasets generated with 

known model parameters, the generating model parameters for a single 

simulation are frequently not close to the best fit region. This is likely due to the 

loss of information resulting from identifying a model’s state using only the 

stochastic action choices. Several approaches were explored to reduce the noise 

when recovering model parameters.  

One approach is to identify the posterior probability of possible generating 

parameters given the recovered model parameters. This can be calculated for a 

given model and task using a brute force method: by examining the fitting 

progression, the parameter space can be estimated for a given task run. From this 

the shape of the parameter space can be inferred. Doing so with simulated data, 

generated using the same model parameters, multiple examples of different 

parameter spaces can be seen for the same initial parameters. This has been done 

in the analysis so far in this chapter. From these, it would be possible to calculate 

for all points in the parameter space a distribution of likelihoods of a given fit 

quality for given generating parameters.  This in turn would allow us to calculate 

the likelihood that the best fit can be found at each point in the parameter space. 

Having done this for one set of generating parameters, we could do the same for 

other combinations of parameters. This would provide us with the likelihoods for 

each generating parameter combination that the best fit would be found at a 

particular parameter combination. By combining these, it would be possible to 

generate a confidence estimate for each point in the parameter space. This was 

deemed too computationally intensive to be attempted without having a better 

idea of which models would turn out to be good models to fit to participant data.  

In generated task data, the sequence of actions chosen by the model does not 

represent the sequence of most likely actions for the model, as the action for each 

trialstep is randomly chosen, with the likelihood of each action being the action 

choice probability, 𝑃𝑑,𝑡. However, as during the fitting process this action sequence 
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is the only available information on the participant’s thought process, the aim 

becomes to uncover the parameters that are the most likely to produce that action 

sequence. If it were possible to fit using the sequence of the participant’s most 

likely actions, then the error in the parameter recovery would be diminished. One 

possible approach to achieving this would be to perturb the actual action 

sequence, thereby exploring the action space around the sequence. As the 

consequences of the actions cannot be changed, this perturbation would be 

limited to adding noise to the model’s action choice probabilities used to calculate 

the fit quality measure. By changing only a few of these at a given time, it would be 

possible to calculate a fit quality measure for the model parameters for a small 

region in the action sequence space. This was explored, but with no success. 

One approach proposed by Daw (2011), is to test a series of subjects sufficiently 

that it would be possible to get accurate estimates of their associated parameter 

values. The distributions of these parameter sets could then be used to generate 

prior probabilities for parameter combinations. While this might work, it would 

require significant effort and so would require confidence in the model being fitted 

to perform this.  

Daw (2011) also suggested that the Bayesian information criterion may in fact be 

biased when compared to another fit measure Akaike information criterion 

(Akaike, 1974). However, the common, simplified forms of both of these assume 

that the errors in the model fitting are normally and identically distributed (Pitt, 

Myung, & Zhang, 2002). As has been shown, the distribution of action probabilities 

is far from normally distributed and this may be affecting our ability to fit 

simulated, as well as real data. As discussed in chapter 2.2, a recently proposed 

alternative to the BIC that would resolve this issue without significantly increasing 

the complexity of the fitting is the Widely Applicable Bayesian Information 

Criterion, WBIC (Watanabe, 2012). While this was explored there were some issues 

in the implementation that were not resolved.  

Spektor & Kellen (2018) investigated how maximum a-posteriori (MAP) fitting could 

help improve parameter recovery. MAP weights the likelihood that parameters are 

the most likely using an estimate of the prior probabilities for each parameter 
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combination. This is opposed to maximum likelihood estimating (MLE), described 

in chapter 2.2, which treats all parameter combinations as equally likely, i.e. MLE is 

MAP with a uniform prior. Spektor & Kellen used an informative prior based on a 

Gaussian mixture model distribution of recovered parameters from a separate 

dataset, in an attempt to approximate the population distribution. Gershman 

(2016), reported some success with this method, but Spektor & Kellen did not find 

any improvement in parameter recovery in simulated data unless the prior 

matches the population distribution exactly. As the empirical priors are likely to 

have been created from recovered parameters that were themselves unreliable, 

Spektor & Kellen found that using a prior can reinforce the recovery issues. It 

therefore does not get us closer to an initial understanding of the parameter 

population distribution, but would help were one to be found.  

Another more drastic approach is to change the design of the tasks examined to 

maximise parameter recovery. Spektor & Kellen (2018), found three promising 

methods to improve recoverability: increasing the number of trials, increasing the 

number of available actions each trial and providing participants feedback for the 

actions they did not choose. As the datasets examined in this thesis were already 

collected, these options were not considered. 

In the previous section, softmax was identified as having a detrimental effect on 

the capacity of a model to accurately fit task data. One solution to this is to modify 

or replace softmax with a function that allows for better parameter recovery while 

still providing the opportunity for individual differences.  
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4.7 DISCERNIBILITY OF ALTERNATIVES TO SOFTMAX 

Having identified that the softmax function and its parameter β are a limiting 

factor to the recovery of model parameters, modifications to the softmax were 

examined for models based on Q-learning. The ones presented in chapter 3 are 

examined here: Q-learning autocorrelation, Meta Q-learning and Q-learning with 

epsilon greedy. 

4.7.1 Q-learning autocorrelation 

One small modification that could be made to the Q-learning model is to add an 

autocorrelation term, κ, to the action-choice probability calculation, as described in 

chapter 0.  

As can be seen in Figure 4-21, Figure 4-22 and Figure 4-23, for extreme values of κ, 

the parameter is not well recovered. We can also see that there is no improvement 

in the recovery of α and  β, so this does not act as a correction for the parameter 

recovery issues.  
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Figure 4-21 The means and standard deviations of the best fit values for 𝛼,  𝛽 and 𝜅  for the data 

generated from the biased coins task with 100 trials, of which 20 are without feedback. The means 

are calculated for each pair of parameter values used to generate the data. The dotted line denotes 

the generating values of those parameters. The graphs are plotted with the parameter values 

increasing in order such that the parameter increasing the fastest is the one shown on the horizontal 

axis. Top: The means of 𝛼 for different generating 𝛽 Middle: The means of 𝛽 for different generating 

𝛼 Bottom: The means of 𝜅 for different generating 𝛽.  
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Figure 4-23 A set of parameter space plots showing the fitting process and results from the biased 

coins task with 100 trials, of which 20 are without feedback. The grid of plots is arranged according to 

the parameter values of the generated data, also marked by a black dot in each subfigure. The red 

dots are the parameters of the best fit for each of the 30 generated datasets for each parameter 

combination of 𝛼,  𝛽 and 𝜅. The other dots show the search locations during the evolutionary fitting 

processes, coloured using the base 10 log of the fit quality.  
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4.7.2 Epsilon greedy 

An alternative approach is to replace the softmax-method of calculating action 

choice probabilities and replace it with an ε-greedy method, as described in 

chapter 3.7. As can be seen in Figure 4-24 and Figure 4-25, the recovery of the ε 

parameter is quite accurate, while the α parameter recovery is less accurate than 

that of ε, but still more than that seen in Figure 4-6 for the softmax. It is therefore a 

viable alternative to softmax that should be considered. 

  

Figure 4-24 The means and standard deviations of the best fit values for 𝛼 and 𝜀  for the data 

generated from the biased coins task with 100 trials, of which 20 are without feedback. The means 

are calculated for each pair of parameter values used to generate the data. The dotted line denotes 

the generating values of those parameters. The graphs are plotted with the parameter values 

increasing in order such that the parameter increasing the fastest is the one shown on the horizontal 

axis. Top: The means of 𝛼 for different generating 𝜀 Bottom: The means of 𝜀 for different generating 

𝛼. 



100 

 

 

 

  

Figure 4-25 A set of parameter space plots showing the best fit parameters resulting from 

fitting the biased coins task with 100 trials, of which 20 were without feedback. The grid 

of plots is arranged according to the parameter values of the generated data, also 

marked by a black dot in each subfigure. The red dots are the parameters of the best fit 

for each of the 30 generated datasets for each parameter combination. The other dots 

show the search locations during the evolutionary fitting processes, coloured using the 

base 10 log of the fit quality.  
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4.7.3 Meta Q-Learning 

The final option was the meta q-learning model, which uses τ as a learning rate for 

identifying the correct value of β. As can be seen in Figure 4-27 and Figure 4-26, the 

parameter recovery for τ is very poor for all parameter combinations, so this 

method is not useful for our purpose.  

Figure 4-26 The means and standard deviations of the best fit values for 𝛼 and 𝜏  for the data 

generated from the biased coins task with 100 trials, of which 20 are without feedback. The means 

are calculated for each pair of parameter values used to generate the data. The dotted line denotes 

the generating values of those parameters. The graphs are plotted with the parameter values 

increasing in order such that the parameter increasing the fastest is the one shown on the horizontal 

axis. Top: The means of 𝛼 for different generating 𝜏 Bottom: The means of 𝜏 for different generating 

𝛼. 
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Figure 4-27 A set of parameter space plots showing the best fit parameters resulting from 

fitting the biased coins task with 100 trials, of which 20 were without feedback. The grid 

of plots is arranged according to the parameter values of the generated data, also 

marked by a black dot in each subfigure. The red dots are the parameters of the best fit 

for each of the 30 generated datasets for each parameter combination.  
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4.8 ADDITIONAL MODELS TO ASSESS 

Based on the alternatives described in chapter 4.7, the only Softmax alternative 

that provided clearly better parameter recovery is the ε-greedy function. Here, the 

models discussed and implemented in chapter 3 are modified to take advantage of 

the ε-greedy function. These will be fitted alongside the original models in the 

following chapters. 

 

Stages at 𝑡 OpAL with epsilon greedy (OpALE) 

Reward expectation 𝑉𝑑,𝑡 =∑ 𝑠𝑡𝐸𝑠,𝑑,𝑡
𝑠∈𝑆𝑡

 

Action choice 

𝐴𝑑,𝑡
∗ = ∑ 𝑠𝑡𝐴𝑠,𝑑,𝑡

𝑠∈𝑆𝑡

 

𝐵𝑑,𝑡  = {
1 𝐴𝑑,𝑡 

∗ = max
𝑑
𝐴𝑑,𝑡 
∗

0 𝐴𝑑,𝑡 
∗ < max

𝑑
𝐴𝑑,𝑡 
∗  

𝑃𝑡 = (
1 − 𝜀

‖𝐵𝑡‖
)𝐵𝑡 +

𝜀

‖𝒟𝑡‖
 

𝑐𝑡 = 𝒞(𝑃𝑡) 

RPE δ𝑡 = 𝑟𝑡 − 𝑉𝑐𝑡,𝑡  

Critic update 
𝐸𝑠,𝑑,𝑡+1 =  𝐸𝑠,𝑑,𝑡 +

 𝛼𝐶𝑠𝑡
‖𝑆𝑡‖

𝛿𝑡: 𝑑 = 𝑐𝑡 

𝐸𝑑,𝑡+1 =  𝐸𝑑,𝑡  : d ≠ 𝑐𝑡  

Actor update 

𝐺𝑠,𝑑,𝑡+1 =  𝐺𝑠,𝑑,𝑡 + 
 𝛼𝐺𝑠𝑡
‖𝑆𝑡‖

𝐺𝑠,𝑑,𝑡𝛿𝑡

𝑁𝑠,𝑑,𝑡+1 =  𝑁𝑠,𝑑,𝑡 − 
 𝛼𝑁𝑠𝑡
‖𝑆𝑡‖

𝑁𝑠,𝑑,𝑡𝛿𝑡

∶ 𝑑 = 𝑐𝑡 

𝐺𝑑,𝑡+1 =  𝐺𝑑,𝑡
𝑁𝑑,𝑡+1 =  𝑁𝑑,𝑡

 : d ≠ 𝑐𝑡 

𝐴𝑡+1 =  (1 + ρ)𝐺𝑑,𝑡+1 − (1 − ρ)𝑁𝑑,𝑡+1 

Table 4-1 The description of the OpAL-ε model, broken into the components used in the 

implementation. 
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Stages at 𝑡 
OpAL with epsilon greedy without Hebbian 

update (OpAL_HE) 

Reward expectation 𝑉𝑑,𝑡 =∑ 𝑠𝑡𝐸𝑠,𝑑,𝑡
𝑠∈𝑆𝑡

 

Action choice 

𝐴𝑑,𝑡
∗ = ∑ 𝑠𝑡𝐴𝑠,𝑑,𝑡

𝑠∈𝑆𝑡

 

𝐵𝑑,𝑡 = {
1 𝐴𝑑,𝑡 

∗ = max
𝑑
𝐴𝑑,𝑡 
∗

0 𝐴𝑑,𝑡 
∗ < max

𝑑
𝐴𝑑,𝑡 
∗  

𝑃𝑡 = (
1 − 𝜀

‖𝐵𝑡‖
)𝐵𝑡 +

𝜀

‖𝒟𝑡‖
 

𝑐𝑡 = 𝒞(𝑃𝑡) 

RPE δ𝑡 = 𝑟𝑡 − 𝑉𝑐𝑡,𝑡  

Critic update 
𝐸𝑠,𝑑,𝑡+1 =  𝐸𝑠,𝑑,𝑡 +

 𝛼𝐶𝑠𝑡
‖𝑆𝑡‖

𝛿𝑡: 𝑑 = 𝑐𝑡 

𝐸𝑑,𝑡+1 =  𝐸𝑑,𝑡 : d ≠ 𝑐𝑡 

Actor update 

𝐺𝑠,𝑑,𝑡+1 =  𝐺𝑠,𝑑,𝑡 + 
 𝛼𝐺𝑠𝑡
‖𝑆𝑡‖

𝛿𝑡

𝑁𝑠,𝑑,𝑡+1 =  𝑁𝑠,𝑑,𝑡 − 
 𝛼𝑁𝑠𝑡
‖𝑆𝑡‖

𝛿𝑡

∶ 𝑑 = 𝑐𝑡 

𝐺𝑑,𝑡+1 =  𝐺𝑑,𝑡
𝑁𝑑,𝑡+1 =  𝑁𝑑,𝑡

 : d ≠ 𝑐𝑡 

𝐴𝑑,𝑡+1 =  (1 + ρ)𝐺𝑑,𝑡+1 − (1 − ρ)𝑁𝑑,𝑡+1 

Table 4-2 The description of the OpAL-ε model without Hebbian update, broken into the 

components used in the implementation. 
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Stages at 𝑡 OpAL Saturated with epsilon greedy (OpALSE) 

Reward expectation 𝑉𝑑,𝑡 =∑ 𝑠𝑡𝐸𝑠,𝑑,𝑡
𝑠∈𝑆𝑡

 

Action choice 

𝐴𝑑,𝑡
∗ = ∑ 𝑠𝑡𝐴𝑠,𝑑,𝑡

𝑠∈𝑆𝑡

 

𝐵𝑑,𝑡 = {
1 𝐴𝑑,𝑡 

∗ = max
𝑑
𝐴𝑑,𝑡 
∗

0 𝐴𝑑,𝑡 
∗ < max

𝑑
𝐴𝑑,𝑡 
∗  

𝑃𝑡 = (
1 − 𝜀

‖𝐵𝑡‖
)𝐵𝑡 +

𝜀

‖𝒟𝑡‖
 

𝑐𝑡 = 𝒞(𝑃𝑡) 

RPE δ𝑡 = 𝑟𝑡 − 𝑉𝑐𝑡,𝑡  

Critic update 
𝐸𝑠,𝑑,𝑡+1 =  𝐸𝑠,𝑑,𝑡 +

 𝛼𝐶𝑠𝑡
‖𝑆𝑡‖

𝛿𝑡: 𝑑 = 𝑐𝑡 

𝐸𝑑,𝑡+1 =  𝐸𝑑,𝑡 : d ≠ 𝑐𝑡 

Actor update 

𝐺𝑠,𝑑,𝑡+1 =  𝐺𝑠,𝑑,𝑡 + 
 𝛼𝐺𝑠𝑡
‖𝑆𝑡‖

𝐺𝑠,𝑑,𝑡𝛿𝑡 (1 −
𝐺𝑠,𝑑,𝑡
𝑀

)

𝑁𝑠,𝑑,𝑡+1 =  𝑁𝑠,𝑑,𝑡 − 
 𝛼𝑁𝑠𝑡
‖𝑆𝑡‖

𝑁𝑠,𝑑,𝑡𝛿𝑡 (1 −
𝑁𝑠,𝑑,𝑡
𝑀

)

∶ 𝑑 = 𝑐𝑡 

𝐺𝑑,𝑡+1 =  𝐺𝑑,𝑡
𝑁𝑑,𝑡+1 =  𝑁𝑑,𝑡

 : d ≠ 𝑐𝑡 

𝐴𝑡+1 =  (1 + ρ)𝐺𝑑,𝑡+1 − (1 − ρ)𝑁𝑑,𝑡+1 

Table 4-3 The description of the OpALS-ε model, broken into the components used in 

the implementation. 

Stages at 𝑡 Bayesian Probabilistic with epsilon greedy (BPE) 

Reward expectation 𝑉𝑑,𝑡 = 𝔼 [𝔇(∑ 𝑠𝑡𝜔𝑟,𝑠,𝑑,𝑡
𝑠∈𝑆𝑡

)] 

Action choice 

𝐵𝑑 = {
1 𝑉𝑑,𝑡 = max

𝑑
𝑉𝑑,𝑡

0 𝑉𝑑,𝑡 < max
𝑑
𝑉𝑑,𝑡

  

𝑃𝑡 = (
1 − 𝜀

‖𝐵𝑡‖
)𝐵𝑡 +

𝜀

‖𝒟𝑡‖
 

𝑐𝑡 = 𝒞(𝑃𝑡) 

RPE - 

Critic update 𝜔𝑟,𝑠,𝑑,𝑡+1 = 𝜔𝑟,𝑠,𝑑,𝑡 +
 𝛼𝑠𝑡
‖𝑆𝑡‖

∶ {
𝑑 = 𝑐𝑡
𝑟 = 𝑟𝑡

 

Actor update - 

Table 4-4 The description of the Bayesian probabilistic model with epsilon greedy, 

broken into the components used in the implementation. 
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Stages at 𝑡 Temporal difference learning with epsilon greedy (tdE) 

Reward 

expectation 
𝑉𝑑,𝑡 =∑ 𝑠𝑡𝐸𝑠,𝑑,𝑡

𝑠∈𝑆𝑡

 

Action choice 

𝐵𝑑,𝑡 = {
1 𝑉𝑑,𝑡 = max

𝑑
𝑉𝑑,𝑡

0 𝑉𝑑,𝑡 < max
𝑑
𝑉𝑑,𝑡

  

𝑃𝑡 = (
1 − 𝜀

‖𝐵𝑡‖
)𝐵𝑡 +

𝜀

‖𝒟𝑡‖
 

𝑐𝑡 = 𝒞(𝑃𝑡) 

𝐸𝑠𝑡−1,𝑑, 𝑡+1 =  𝐸𝑠𝑡−1,𝑑,𝑡 +  
𝛼𝛾𝑠𝑡−1
‖𝑆𝑡−1‖

𝑉𝑐𝑡,𝑡: 𝑑 = 𝑐𝑡−1 

𝐸𝑑,𝑡+1 =  𝐸𝑑,𝑡  : d ≠ 𝑐𝑡−1 

RPE δ𝑡 = 𝑟𝑡 − 𝑉𝑐𝑡,𝑡  

Critic update 
𝐸𝑠,𝑑,𝑡+1 =  𝐸𝑠,𝑑,𝑡 +  

 𝛼𝑠𝑡
‖𝑆𝑡‖

𝛿𝑡: 𝑑 = 𝑐𝑡 

𝐸𝑑,𝑡+1 =  𝐸𝑑,𝑡  : d ≠ 𝑐𝑡 

Actor update -- 

Table 4-5 The description of the simplest version of the Temporal difference learning 

with epsilon greedy model, broken into the components used in the implementation. 

Stages at 𝑡 
Q-learning-ε with 2 learning rate parameters 

(qLearn2E) 

Reward expectation 𝑉𝑑,𝑡 =∑ 𝑠𝑡𝐸𝑠,𝑑,𝑡
𝑠∈𝑆𝑡

 

Action choice 

𝐵𝑑,𝑡 = {
1 𝑉𝑑,𝑡 = max

𝑑
𝑉𝑑,𝑡

0 𝑉𝑑,𝑡 < max
𝑑
𝑉𝑑,𝑡

  

𝑃𝑡 = (
1 − 𝜀

‖𝐵𝑡‖
)𝐵𝑡 +

𝜀

‖𝒟𝑡‖
 

𝑐𝑡 = 𝒞(𝑃𝑡) 

RPE δ𝑡 = 𝑟𝑡 − 𝑉𝑐𝑡,𝑡  

Critic update 
𝐸𝑠,𝑑,𝑡+1 =  𝐸𝑠,𝑑,𝑡 +

{
 

 
𝛼+𝑠𝑡
‖𝑆𝑡‖

𝛿𝑡 𝛿𝑡 > 0

 𝛼−𝑠𝑡
‖𝑆𝑡‖

𝛿𝑡 𝛿𝑡 < 0

: 𝑑 = 𝑐𝑡 

𝐸𝑑,𝑡+1 =  𝐸𝑑,𝑡 : d ≠ 𝑐𝑡 

Actor update -- 

Table 4-6 The description of the Q-learning-ε model with two learning rate parameters, 

broken into the components used in the implementation. 
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4.9 COMPARISON TO BAYESIAN MODEL RECOVERY 

The issues that have been highlighted with some reinforcement learning models 

may explain why Bayesian models appear to perform better than reinforcement 

learning models when compared head to head, such as by Stankevicius, Huys, 

Kalra, & Seriès (2014). To see if this is the case, the parameter recovery 

performance for the simple Bayesian model is evaluated. This model, described in 

chapter 3.11, has the same parameters as the simple Q-Learning model discussed 

in this chapter, allowing a like-for-like comparison, where the only difference is the 

way in which the information is stored. The parameter recovery performance for 

this model, shown in Figure 4-28 and Figure 4-29, is similar to that seen for the Q-

learning model, shown in Figure 4-5 and Figure 4-6, suggesting that any differences 

in performance are unlikely to be due to differences in fitting errors. 

Figure 4-28 The means and standard deviations of the best fit values for 𝛼 and 𝛽  for the data 

generated from the biased coins task with 300 trials, of which 100 are without feedback. The means are 

calculated for each pair of generating parameter values. The dotted line denotes the generating values 

of those parameters. The graphs are plotted with the parameter values increasing in order such that 

the parameter increasing the fastest is the one shown on the horizontal axis. Top: The means of 𝛼 for 

different generating 𝜏 Bottom: The means of 𝛽 for different generating 𝛼.  
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4.10  DISCUSSION 

Here an examination was made of the performance of a standard model fitting 

method to accurately recover the parameter values from data generated with the 

same simple reinforcement learning model. Significant variability was found in the 

recovered parameter values and that the distribution of this variability changed as 

the generating parameter values changed. This has been shown to be consistent 

across two different codebases with two different fitting procedures. Repeated 

fitting of the same data with the same method has shown relatively negligible 

variation, suggesting that the error is not caused by poor identification of the 

global minimum, and so cannot be reduced by repeatedly fitting the data. As each 

action choice sequence could have been generated by many other parameter sets, 

this consistency suggests that a simple refinement to the fitting process will not be 

sufficient to accurately recover the parameters. 

The generation and subsequent fitting of data across a variety of different tasks 

showed some variation in the distribution of the fitted parameter values, but the 

underlying issue was still present in all of them. This suggests that were a prior 

distribution to be used to improve parameter recovery, it would have to be 

recalculated for each task-model pair. 

By looking at the chosen action probabilities for the generated data it became 

clear that the softmax β parameter is influencing the parameter recovery, biasing 

the fit value function to highlight parameter values with higher β as being better 

fits. Alternatives to the conventional softmax function were explored and 

compared, with the ε-greedy method found to be the most effective at providing 

discernible parameter values. Models were modified where possible to provide ε-

greedy versions that could be used to evaluate the performance of the models.  

Were this fitting approach to be used with this qLearn model on real participant 

data, where there is only one dataset, and so one fit, there would be sufficient 

uncertainty in the true parameter values as to not allow any conclusions to be 

drawn from them. This brings into question any cognitive learning results drawn 

from fitting individuals with a reinforcement learning model using a softmax, as 
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any such model will have the effects of its other parameters squashed by those of 

β. As not only the recovered parameters, but their distributions are affected by this 

effect, studies looking at group level effects are also affected by this issue, as also 

attested by Humphries, Bruno, Karpievitch, & Wotherspoon (2015) for the 

expectancy valence model and Spektor & Kellen (2018) for Q-learning models with 

one or more learning rate parameter.  

The simple Bayesian model, with the same parameters as the Q-learning model, 

exhibited similar issues to those found in the RL model, suggesting that the 

differences in performance seen between Q-learning and Bayesian models are not 

the result of different fitting errors. 

One qualifier to this modification was found by Nassar & Frank (2016), who 

compared softmax and ε-greedy and came to the conclusion that irrespective of 

which is used, if the same one is not used to both generate and fit the data, this 

will have a significant impact on the types of errors generated when estimating the 

fit quality and so on the errors in parameter recovery. They also note that all fitting 

of this kind assumes that the attention of the participant does not slip during the 

task, as this would result in action choices chosen using another model. These 

‘attentional lapse’ actions are not acknowledged by the fitting process and will add 

noise that cannot be estimated by the processes described here, but will have an 

impact on the accurate recovery of parameter values. 
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5 WHAT PARTS OF A TASK SHOULD BE FITTED AND WHEN? 

In the previous chapter, the quality of parameter recovery for a typical 

reinforcement learning model was shown to be poor across a range of tasks and 

fitting methods. Parameter recovery was shown to improve with more 

information, i.e. as the length of the task increased, with good parameter recovery 

in a simple task requiring several thousand trials, far more than it takes for people 

to build a model of the task dynamics.  

Previous studies have suggested that more accurate model parameters can be 

gained through fitting the model to a period of the task with no feedback, once the 

learning has occurred (Frank et al., 2007). They argued that fitting model 

parameters using the action choice probabilities from different parts of a task 

resulted in parameters that correlated with variations in different genes, 

suggesting that there were potentially two learning systems in play, a fast and a 

slow system. By fitting using the action choice probabilities from the first part of 

the task, the part with feedback, they argued that it was possible to identify a 

possible fast adapting learner, whereas by fitting using the model’s action choice 

probabilities once feedback had been removed led to identifying a potential slow 

learning mechanism. 

When considering this possibility, one issue to address is if the action choices for 

some parts of a task provide more information than others for fitting model 

parameters. For example, in a task with stochastic consequences that do not 

change over time, there will be an initial phase where the participant learns the 

expected feedback for each action. After which, the expected consequences will 

only be changing due to the variations in the task’s feedback. In this second phase, 

as shown in Figure 5-1, if the model’s learning rate is low, then the rate at which 

the model adapts to new information from the feedback is best identified during 

this initial exploratory phase, rather than by looking at the later action choices, as 

the changes in reward expectations due to the fluctuations from the varying 

feedback are small when the learning rate is low, resulting in barely perceptible 

changes in the action choice probabilities and so the distribution of chosen 
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actions. However, if the learning rate is high, the convergence of the expected 

consequences to a stable average value will be very short but will fluctuate more 

once it has converged, as the information from each new piece of feedback will 

have a much larger influence on the expectation of the next trial. From this we can 

also infer that during a task’s no-feedback phase, when a model no longer updates 

its knowledge of the task, a model will be more likely to have an accurate 

estimation of the expected consequences for a low learning rate than for a high 

learning rate. This can be seen from the smaller fluctuations in the estimated 

consequences for low learning rates during the post-convergence phase than for 

high learning rates, resulting a lower likelihood of the model having its estimation 

of the expected consequences be significantly different from that of the actual 

value for low learning rates. Therefore, during the no-feedback phase, the more 

the distribution of actions deviate from those that would result from an accurate 

estimate of the consequences, the more likely the higher learning rates are for the 

model.  

As was seen in chapter 4.5, the size of the exploration-exploitation parameter in 

the softmax can also have a significant impact on the capacity to discern the 

underlying action-choice likelihoods. For high values of β, both small and large 

differences in the expected rewards are treated almost identically, resulting in 

Figure 5-1 A toy example of how the learning rate in a simple Q-learning model affects the 

expected reward. The feedback, 𝑟 ∈ {0, 1} is randomly chosen such that the expected reward 

should be 0.5, which is also the initial expected reward, i.e. the model has converged on the 

expected reward and is now fluctuating due to noise in the feedback. The no feedback portion, 

beginning on trial 50, has no updating of the expected reward.  
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similar behaviour to that seen for high α in simple reinforcement learning models 

such as Q-learning. 

The models discussed in this thesis choose actions in the same way during the no-

feedback portions of a task as for the feedback portions of the task: by choosing 

their next action randomly based on the action probability weightings. This 

approach is assumed in the discussion above. However, it is also possible that a 

person would use a winner takes all approach, where the most likely action is 

always taken. This would be equivalent to calculating the action probability 

weightings using 𝛽 = ∞. As the weighted probabilistic approach encompasses 

both, it will be assumed for the rest of the chapter.  

This chapter looks at how the quality of parameter recovery varies when fitting 

with the action choice probabilities from different parts of a task, and if this varies 

across models and across tasks. This is examined for the toy task used in chapter 

4, the Biased coins task, as well as the two other tasks being examined in this 

thesis that have a period of no feedback: the Probabilistic Selection task and the 

Weather task. The Decks task is not examined as it does not have a no feedback 

portion and the likelihoods of different feedback varies across the task. 

The fitting of three tasks was examined with the Q-learning model, as described in 

chapter 3.2, and the Q-learn-ε model, as described in chapter 3.7. For each task, a 

set of datasets was generated with the parameter value combinations from α =

{0.1,  0.3,  0.5,  0.7,  0.9}, β = {0.1,  0.3,  0.5,  0.7,  1,  2,  4,  8,  16} and ε =

{0.1,  0.3,  0.5,  0.7,  0.9}. For each combination, 30 task runs were generated. The 

model parameters were constrained during fitting to the ranges α = [0,1],  𝛽 =

 [0,30] and 𝜀 = [0,1].  

As has been seen in the previous chapter, the number of trials is an important 

factor in determining the quality of fits. Typically, the phase without feedback at 

the end of a task is kept quite short. However, in this analysis, both the parts with 

and without feedback will need to be of comparable length for us to be able to 

perform like-for-like comparisons. From past experience, for the tasks examined 
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here with stable rewards, it tends to take less than 100 trialsteps for both 

participants and models to converge on stable expected rewards.  Based on this, 

the tasks are broken into three blocks of 100 trialsteps: the “First” 100, where 

convergence occurs, the “Final” 100 after convergence but still with feedback, and a 

last 100 trialsteps, “None”, where there is no feedback. With this we can also add 

two other blocks: “Feedback”, containing the 200 trials where the participant has 

feedback, and “All” the 300 trials, both with and without feedback. In all these five 

blocks, the model will perform the whole task before its performance is evaluated 

using the chosen block. This can be seen diagrammatically in Figure 5-2. 

  

Figure 5-2 The task can be thought of as a series of trials, with each trial transition 

represented here as a vertical bar. For each trial the participant is either given 

feedback, denoted by “::”, or no feedback, denoted as “-“. The model performs the 

whole task before the performance of a model-parameter combination is evaluated. 

For each trial, the model’s probability for the participant’s chosen action is known. 

From the sequence of these probabilities, a subset can be chosen to evaluate the 

performance of this model with these parameters. Five of these subsets, labelled in 

this diagram, are being evaluated here. “All” uses all the task trials, “None” uses only 

the task trials with no feedback, “Feedback” uses only the task trials with feedback, 

“First” uses the first half of the task trials with feedback and “Final” uses the second 

half of the task trials with feedback. 
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In chapter 4, it was shown that for the qLearn model many of the recovered 

parameters from the same generating parameters were spread across the full 

length of the parameter’s support, the range over which the parameter is allowed 

to vary. Therefore, a useful baseline for comparing the errors in fits is to examine 

the distribution of errors that would be found if the recovered parameters were to 

be uniformly distributed across the whole parameter support. Figure 5-3 shows, 

for different generating parameter values, what a mean error would look like in 

this case. The maximal error of 50% of the support is at the extremities and the 

minimal error, of 25% of the support is in the middle. Any parameter recovery 

errors below this level would suggest a better than random parameter recovery. 

Figure 5-3 The mean absolute difference between numbers randomly picked 

between [0, 1] using a uniform random number generator, denoted 𝜃𝑓𝑖𝑡, and a range 

of values, acting as fake generating values, across the parameter support, [0, 1], 

denoted 𝜃𝑔𝑒𝑛. One million numbers were drawn with a uniform random number 

generator and compared to values between 0 and 1 increasing in 0.005 increments, 

acting as the  𝜃𝑔𝑒𝑛.  



116 

5.1 BIASED COINS 

To provide a link to the discussion in chapter 4, the fitting performance for the 

Biased coins task was examined. Four distinct coins are shown to the participant. 

At the beginning of each trial, one of these is randomly chosen to be flipped and 

the chosen coin is identified to the participant. Before it is flipped the participant 

guesses if it will land on side 0 or side 1. The participant is then told, during the 

feedback trials, which side the coin landed on.  

The probability of landing on one side or another varies from coin to coin, with two 

of the coins having an 80% chance of landing on side 0 and the other two a 20% 

chance of landing on side 0. For each generated dataset, the choice of coins and 

the side the ‘coins’ fall on is varied. This allows us to get a better estimate of the 

distribution of the noise in fitting, with not just the noise of the probabilistic 

decision making of the model but also the impact of the random task sequence.   

The mean recovered parameters for each qLearn model generating parameter set 

are shown in Figure 5-5. The worst parameter recovery was provided when using 

only the no-feedback, None, parts of the task, while recovery using trials with 

feedback, First and Final, provide noticeably better fits, especially when recovering 

𝛼 from data generated with low 𝛼 and high 𝛽. When fitting data generated with a 

high 𝛽, there is a significant increase in the error in recovering 𝛽, with an error of 

half the parameter support for those recovered using the trials within the Final and 

None ranges. The parameter recovery error of 𝛼 decreases as the generating 𝛽 

Figure 5-4 The Biased coins task. At the beginning of each trial, from a set of distinct 

coins, one is randomly chosen to be shown to the participant. Before it is flipped the 

participant guesses if it will land on side 0 or side 1. The participant is then told, 

during the feedback trials, which side the coin landed on. Each coin has a different 

probability of landing on each side.  
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increases and increases for low 𝛽 as the generating 𝛼 increases. For low 𝛽 values 

and 𝛼 > 0.1, the 𝛼 values are recovered worse than if they were randomly selected 

from a uniform distribution. For high 𝛽 values, the 𝛽 recovery is worse than if it 

were randomly selected from a uniform distribution. However, as a positively 

skewed distribution is a more reasonable prior for 𝛽, the uniform random average 

error is an underestimate of what could be expected.  

As expected from chapter 4, doubling and tripling the number of trials used to 

recover parameters from the data does improve the accuracy, but this 

improvement is proportionally lower than the increase in trials. It is not clear if the 

All performance would have improved were all the 300 trials to be with feedback, 

Figure 5-5 A plot of the mean absolute difference between the generating and recovered 

parameter values for the qLearn model performing the Biased coins task and fitted using the 

action choice probabilities for selected sections of the task, labelled as "All" (black), “Feedback” 

(red), “First” (green), “Final” (orange) and “None” (blue). Each point is the mean across 30 

generated task runs with the same generating parameter values, listed on the horizontal axis. 

The error bars are the based on the standard error of the mean. The points are ordered by 

increasing generating parameter values, with 𝛽 increasing before 𝛼. Top: The 𝛼 parameter 

values. Bottom: The 𝛽 parameter values.  
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but the relatively poor performance in fitting with only the no feedback section of 

the task does suggest that this would be the case. 

With the qLearnE model in Figure 5-6, the parameters recovered using None are 

noticeably worse when fitting 𝛼, especially for those generated with low and high 

values of 𝛼. This is especially noticeable when comparing the recovered 

parameters from Feedback to those from All, which are almost identical, 

suggesting that there is little value in having a portion of the task with no feedback. 

However, there is a difference when recovering 𝜀, especially for parameters 

recovered from data generated with values of 𝜀 around 0.5, where the errors tend 

to be largest. 

Comparing the recovered parameters from the two models, the most striking 

difference is that the errors for 𝛼 increase as the generating 𝜀 values increase with 

the qLearnE model, when the opposite is true for qLearn with the β parameter. 

This may be due to the inverse roles 𝜀 and β perform in their respective functions. 

The parameter fit errors are smaller for 𝛼 when generating and fitting with the 

qLearnE model, which is in line with what was expected from chapter 4. This 

difference continues when comparing the errors found with β and 𝜀 relative to the 

sizes of the supports for the two parameters: up to 50% of the support for β and 

up to 10% for 𝜀. 
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Figure 5-6 A plot of the mean absolute difference between the generating and recovered 

parameter values for the qLearnE model performing the Biased coins task and fitted using 

the action choice probabilities for selected sections of the task, labelled as "All" (black), 

“Feedback” (red), “First” (green), “Final” (orange) and “None” (blue). Each point is the mean 

across 30 generated task runs with the same generating parameter values, listed on the 

horizontal axis. The error bars are the based on the standard error of the mean. The points 

are ordered by increasing generating parameter values, with 𝜀 increasing before 𝛼. Top: The 

𝛼 parameter values. Bottom: The 𝜀 parameter values. 
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5.2 PROBABILISTIC SELECTION TASK  

This is based on the task as described in Frank et al. (2007). In the first stage of the 

task, the participant is shown a series of pairs of symbols and asked to pick which 

of the two will give the reward. They are then told if they are correct. In this version 

there are three pairs, each with their own unique symbols. The pairs have 

normalised probabilities of providing a reward: (80%, 20%), (70%, 30%) and (60%, 

40%). In the second stage of the task, the participant is again shown pairs of 

symbols, but the pairs are made up of symbols that were unpaired in the first 

stage. The participants are not given any feedback as to their performance in this 

second stage. As for the previous task, new data is generated for each run of the 

task. No attempt at counterbalancing has been made when generating the data. 

For this task, Figure 5-8 shows that the qLearn model generating parameters are 

most accurately recovered when fitted over the no-feedback phase of the task. As 

expected, the fits performed using more of the task, All and Feedback, do recover 

the parameters better, although there is minimal difference despite the increase in 

trials for All. This underlines that the improvement in accuracy in recovering 

parameters over the no feedback region is minimal. For low 𝛽 values and 𝛼 > 0.1, 

the 𝛼 values are recovered worse than if they were randomly selected from a 

uniform distribution. When compared to the results from fitting the biased coins 

Figure 5-7 The Probabilistic Selection task. Participants are shown pairs of characters, from 

a set of six, and asked to pick the correct one. Each character has a different likelihood of 

being correct. During the initial learning phase, the characters are shown three pairs, with 

complementary reward likelihoods, multiple times and participants are given feedback. In 

the test phase, participants are presented with every combination of pairs of characters 

but are not given feedback.  



121 

task in Figure 5-5, the distribution in fitting errors for 𝛼 and β are similar, with β 

errors increasing and the 𝛼 errors decreasing as the generating β increases.   

With the qLearnE model, shown in Figure 5-9, most of the difference can be found 

in the recovery of 𝛼, where the errors steadily increase as both 𝛼 and ε increase, 

with the exception of when fitting using the None section of the task, where there 

is less variation in the error size across the parameters and with an average 

recovery error size higher than almost all of the other error fits. For the 𝜀 fits, the 

largest errors are found in the middle of the 𝜀 parameter range. Overall, this gives 

the impression that for the recovery of 𝛼 the no feedback region hinders as much 

Figure 5-8 A plot of the mean absolute difference between the generating and recovered 

parameter values for the qLearn model performing the Probabilistic Selection task and fitted 

using the action choice probabilities for selected sections of the task, labelled as "All" (black), 

“Feedback” (red), “First” (green), “Final” (orange) and “None” (blue). Each point is the mean across 

30 generated task runs with the same generating parameter values, listed on the horizontal axis. 

The error bars are the based on the standard error of the mean. The points are ordered by 

increasing generating parameter values, with 𝛽 increasing before 𝛼. Top: The 𝛼 parameter 

values. Bottom: The 𝛽 parameter values.  
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as it helps the recovery accuracy, as there is little difference between All and 

Feedback across all generating parameters despite the 50% increase in trials used 

to fit the model. This hindrance is not seen in the parameter recovery accuracy for 

𝜀, where all three short fitting sections were shown to recover the parameters 

similarly well. 

Figure 5-9 A plot of the mean absolute difference between the generating and recovered 

parameter values for the qLearnE model performing the Probabilistic Selection task and 

fitted using the action choice probabilities for selected sections of the task, labelled as "All" 

(black), “Feedback” (red), “First” (green), “Final” (orange) and “None” (blue). Each point is the 

mean across 30 generated task runs with the same generating parameter values, listed on 

the horizontal axis. The error bars are the based on the standard error of the mean. The 

points are ordered by increasing generating parameter values, with 𝜀 increasing before 𝛼. 

Top: The 𝛼 parameter values. Bottom: The 𝜀 parameter values. 
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5.3 WEATHER TASK 

Having seen that there were differences across tasks in the usefulness of fitting 

parts of a task, it made sense to examine the performance of the Weather task 

that will be examined in more detail in chapter 8. The Weather task is a category 

learning task based on one described by Gluck & Bower (1988) and later adapted 

by Knowlton, Squire, & Gluck (1994). It asks participants to associate a series of 

cues with one of two outcomes. One to three cue cards, from a set of four cards, 

are presented to the participant in each trial. The participant must decide which 

one of the two possible outcomes the displayed cards are most likely associated 

with. Once the participant decides, they are then told if they were correct or not. 

The cues each have a probabilistic relationship with the two outcomes, with this 

this version of the task having novel probabilistic relationship, with the probability 

of an outcome varying depending on the combination of cues displayed, as 

described in Table 8-1. For example, if the first two cues are displayed, then the 

first outcome is guaranteed. If only one of them is displayed, then the first 

outcome will be the correct one 75% of the time. Across the whole task, the first 

two cues having a 64% chance of being associated with the first outcome and the 

second two having the inverse. In the first phase of the task, the learning phase, 

participants are given feedback on if their choice was correct. In the second phase, 

the testing phase, participants are not given any feedback. For this task, the 

sequence of cues and the feedback were kept the same for all participants, with 

200 learning phase trials and 100 test phase trials.  

Figure 5-10 The Weather task consists of a series of trials where one to three cue cards, 

from a set of four cards, are presented to the participant. The participant must decide 

which of the two outcomes the cues are more likely to predict.  
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With the qLearn model, shown in Figure 5-11, the fitting errors are similar in 

distribution to those found for the Probabilistic Selection task. As before, there is 

minimal difference between the recovery of parameters using all the tasks 

responses and those using only those from the parts with feedback. For low β 

values and 𝛼 > 0.1, the 𝛼 values are recovered worse than if they were randomly 

selected from a uniform distribution.  

For the qLearnE model, show in Figure 5-12, there is very little difference in the ε 

recovery errors when fitting using any of the three short sections of the task.  

Figure 5-11 A plot of the mean absolute difference between the generating and recovered 

parameter values for the qLearn model performing the Weather task and fitted using the action 

choice probabilities for selected sections of the task, labelled as "All" (black), “Feedback” (red), 

“First” (green), “Final” (orange) and “None” (blue). Each point is the mean across 30 generated 

task runs with the same generating parameter values, listed on the horizontal axis. The error 

bars are the based on the standard error of the mean. The points are ordered by increasing 

generating parameter values, with 𝛽 increasing before 𝛼. Top: The 𝛼 parameter values. Bottom: 

The 𝛽 parameter values.  
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However, variation is seen in the fitting of 𝛼, where the parameter recovery using 

the no feedback portion provides the largest errors and the smallest errors by 

fitting the post-convergence action feedback portion of the task. From this, it 

appears that parameter recovery benefits most from maximising the portion of 

the task with feedback, as this improved the recovery of 𝛼.  

Figure 5-12 A plot of the mean absolute difference between the generating and recovered 

parameter values for the qLearnE model performing the Probabilistic Selection task and fitted 

using the action choice probabilities for selected sections of the task, labelled as "All" (black), 

“Feedback” (red), “First” (green), “Final” (orange) and “None” (blue). Each point is the mean 

across 30 generated task runs with the same generating parameter values, listed on the 

horizontal axis. The error bars are the based on the standard error of the mean. The points 

are ordered by increasing generating parameter values, with 𝜀 increasing before 𝛼. Top: The 𝛼 

parameter values. Bottom: The 𝜀 parameter values.  
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5.4 DISCUSSION 

This chapter examined how the accuracy in the recovery of parameters varies 

when fitting using different portions of a task and how this variation changes 

across a range of tasks.  This was done for two models: qLearn and qLearnE.  

 To provide an indication of the trends found in the results, the overall mean 

parameter recovery error values have been reproduced in Table 5-1. In this case, 

the mean errors in 𝛼 range between 10-30% of the support size compared to 

between 4-11% for β and 𝜀. This is in line with the results from chapter 4 that the 

parameters later in the model’s trial calculations would be easier to recover. The 

mean errors for β are the same size as those of 𝜀, but the variation in these errors 

is much larger for β, which is in line with the result in chapter 4 that ε-greedy 

allows for more consistent parameter recovery than the softmax function. 

The no feedback portion of the task was found to only be helpful for parameter 

recovery in the Probabilistic Selection task, where the no feedback portion 

provided different stimulus-cue pairs to those in the feedback portion. This 

suggests that the noise typically found in a no-feedback testing phase might be 

reduced by having the testing phase have trials that ask different questions from 

those in the learning phase. In this case this was done by asking the participant to 

make the same type of choices, between two options, but in this phase the options 

were paired differently.  

Overall, the parameter recovery errors were found to be lower for the Weather 

task. One possible reason for this is that it is the only task where the relationship 

between the action and the feedback was less clear, as there were varying 

numbers of interacting stimulus-cues. This increased complexity might make it 

easier to tease out the differences between different parameter combinations on 

repeated trials. 

One limitation in using the models described in chapters 3 and 4 is that they 

assume that the action choice probabilities cannot change during the no feedback 

portion of the tasks. However, there are indications that even when people are not 

provided with feedback for their actions, they may still update their reward  
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expectations, reinforcing those that they have chosen and discounting those they 

have chosen not to choose (Lieberman, Ochsner, Gilbert, & Schacter, 2001). 

It should be reiterated that this chapter is only discussing parameter recovery, not 

the appropriateness of models. As discussed at the beginning of the chapter, it is 

plausible that there are multiple learning models or policies being used 

simultaneously, each of which dominate under different circumstances, such as 

when certain kinds of feedback, such as corrective or rewarding, are provided or 

withheld (Frank et al., 2007). If the assumption when recovering model parameters 

is that a participant is using the same model for the feedback and the no feedback 

parts of the task, then there is no benefit, for parameter recovery accuracy, to 

having a no feedback part of the task. However, if there is a possibility that 

participants may be using a different model, or different model parameters, for 

when there is and is not feedback, then these should be fitted separately, with the 

awareness that this will impact the accuracy of the parameters recovered.  

  Biased coins Probabilistic Selection Weather 

  qLearn qLearnE qLearn qLearnE qLearn qLearnE 

First 
𝛼 0.23 ± 0.01 0.20 ± 0.01 0.23 ± 0.01 0.20 ± 0.01 0.22 ± 0.01 0.15 ± 0.01 

β 𝜀⁄  2.98 ± 0.15 0.06 ± 0.00 2.88 ± 0.13 0.10 ± 0.00 2.05 ± 0.10 0.07 ± 0.00 

Final 
𝛼 0.23 ± 0.01 0.22 ± 0.01 0.23 ± 0.01 0.20 ± 0.01 0.21 ± 0.01 0.12 ± 0.01 

β 𝜀⁄  2.81 ± 0.15 0.06 ± 0.00 2.32 ± 0.12 0.11 ± 0.00 1.55 ± 0.08 0.07 ± 0.00 

None 
𝛼 0.27 ± 0.01 0.30 ± 0.01 0.21 ± 0.01 0.30 ± 0.01 0.22 ± 0.01 0.17 ± 0.01 

β 𝜀⁄  3.22 ± 0.16 0.07 ± 0.00 2.22 ± 0.12 0.11 ± 0.00 1.86 ± 0.10 0.06 ± 0.00 

Feedback 
𝛼 0.20 ± 0.01 0.17 ± 0.01 0.18 ± 0.01 0.19 ± 0.01 0.19 ± 0.01 0.10 ± 0.01 

β 𝜀⁄  1.84 ± 0.11 0.05 ± 0.00 1.62 ± 0.09 0.08 ± 0.00 1.02 ± 0.06 0.05 ± 0.00 

All 
𝛼 0.18 ± 0.01 0.16 ± 0.01 0.17 ± 0.01 0.17 ± 0.01 0.17 ± 0.01 0.08 ± 0.01 

β 𝜀⁄  1.54 ± 0.10 0.04 ± 0.00 1.34 ± 0.09 0.06 ± 0.00 0.85 ± 0.05 0.04 ± 0.00 

Table 5-1 The means and standard error of the means for the absolute parameter recovery 

errors across all generating parameter values. These are shown for each trialstep fitting region, 

parameter, task and model. The colours signify the relative size of the errors from low (dark 

blue) through to very high (dark red). The relative sizes are evaluated across trialstep fitting 

regions for the same parameter, same task and same model, i.e. each column and each 

parameter are treated separately. 
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6 DECKS TASK 

The first task used for evaluating model performance was the Decks task, a 

modified version of the one used by Worthy, Maddox, & Markman (2007), and 

similar to the IOWA gambling task (Bechara et al., 1994). Participants were 

presented each trial with two stimuli on a screen, one red and one blue. These 

were said to be the top ‘cards’ of two decks of cards 80 cards long. Each ‘card’ had 

a predetermined reward associated with it, whose value was between one and ten. 

The objective was to maximise the accumulated card values, with the chance to 

enter a lottery for a prize, described below, if the participant collected more than 

450 points across the experiment. For each pair of cards, the participants chose 

one. The card that was not chosen was not discarded, maintaining the number of 

available cards in each deck. This version of the task was therefore what Worthy et 

al. refer to as a gain only version of their task under the promotion focussed 

motivational framing. A promotion-focus serves to motivate participants to win 

points by providing a potential higher payoff if enough points were accumulated 

over the course of the experiment.  

Throughout the experiment, a fixed card value sequence was kept for both decks, 

shown in Figure 6-2, and there were not equal numbers of cards for each reward 

value. One of the decks was initially advantageous, but overall worse. It provided 

an average of eight points over the first thirty cards drawn from that deck, five 

points for the following twenty and two for the final thirty cards. The other deck 

Figure 6-1 The Decks task consists of two decks of 80 cards. Each card has a value 

between one and ten. Participants choose during each trialstep which deck they thing 

will provide the most advantageous card, with an aim to accumulate the largest total 

card value.  When a deck is chosen, the ‘top’ card from that deck is drawn, its associated 

reward is awarded to the participant and the card is discarded. 
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became steadily better and then reverted to providing low payouts just at the end, 

with an average of three points for the first twenty, an average of seven over the 

following fifty cards and an average of three for the final ten cards.  

Since the deck that was initially advantageous became less advantageous later on, 

this meant that participants who wanted to reach 450 points would have to select 

at least 25 cards from the initially poorer deck and at least 3 cards from the initially 

Figure 6-2 The rewards received for choosing each card in the two decks. The black lines 

show the average rewards for each deck in each of their payoff “phases”.  

Figure 6-3 The total number of points won as more cards are chosen from deck 2 across 

the 80 trials of the task. The points for each card are those shown in Figure 6-2. 450 

points were necessary to qualify for the bonus reward, as shown by the pink dotted line.  
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better deck to be able to reach this total, as shown in Figure 6-3. The task therefore 

required the participant to explore, or sample, both decks even when a decision on 

the better deck was made, as the best deck to choose changed as more cards were 

chosen. Those participants who initially favoured deck 2 are given two 

encouragements to explore deck 1: the reduction in average reward after 30 cards 

and a second reduction after 50 cards. The second of these reductions results in 

an average reward that is lower than that of deck 1 at any point.  

6.1 DATA PROPERTIES 

The results from three different undergraduate student research projects were 

available for analysis, each with different sets of participants, and all run with the 

same version of the task. Studied 1 and 2 were conducted at Goldsmiths and study 

3 was conducted at the University of Greenwich. The lottery prize for the two 

Goldsmiths studies was £50 and at Greenwich the prize was £20. A detailed 

description of these studies can be found in Pickering (2011). In total, there were 

166 participants. 

Checks were performed on the sample characteristics to verify the suitability of 

combining the three datasets together. An overview of the participants for the 

three studies can be seen in Table 6-1. We can see that all three studies had about 

the same number of participants. The age range was higher for the third study, 

where participants 75% of participants were under the age of 33, whereas for the 

other studies 75% of participants were under the age of 23 and 24 respectively. 

The gender distribution of all three studies, shown in Table 6-2, is very similar 

across studies, with 70% of participants being female. 

 Study 
Total 

number 
Mean 

Standard 

deviation 
Distribution 

Age 

Combined 166 25 10  
1   54 23   8  
2   55 24   8  
3   57 29 11  

Table 6-1 A description of the age of the participants in the three Decks task studies. 



131 

Table 6-2 An overview of the genders of the participants in the three Decks task studies. 

In each study the EPQ-R was given to each participant. The focus for this chapter 

will be on the Extraversion scale, as this personality trait has been linked to 

variations in the sensitivity to reward, discussed in chapter 1.1. The results in Table 

6-3 show the results of the EPQ-R tests that were administered. They show similar 

results across the studies. The results from tables Table 6-1, Table 6-2 and Table 

6-3, suggest that the data from these experiments can be combined for more 

power, as the underlying samples are similar. 

 Study 
Total 

number 
Mean 

Standard 

deviation 
Distribution 

EPQ-R 

Extraversion 

Combined 166 15.5 4.9  
1   54 16.2 4.9  
2   55 14.9 4.6  
3   57 15.3 5.3  

EPQ-R 

Psychoticism 

Combined 166   7.8 3.8  
1   54   8.2 3.9  
2   55   7.2 3.5  
3   57   7.8 3.9  

EPQ-R 

Neuroticism 

Combined 166 12.9 5.5  
1   54 12.8 5.5  
2   55 12.8 5.5  
3   57 13.0 5.5  

EPQ-R 

Li scale 

Combined 166   7.8 3.8  
1   54   7.5 3.7  
2   55   7.3 3.4  
3   57   8.6 4.0  

Table 6-3 The EPQ-R participant properties for the three Decks tasks studies. 

The participants’ performance was generally very similar across the three studies, 

as seen in Table 6-4, with participants having similar distributions of card picks 

from the better deck. The number of points won also had a consistent bimodal 

distribution, with peaks around 400 and 470 points. This reinforces the idea that 

the data from the three studies can be combined to provide a dataset with greater 

power. 

 Study 
Total 

number 

Percentage of 

men 

Percentage of 

women 

Gender 

Combined 166 29 71 

1   54 30 70 

2   55 27 73 

3   57 28 72 
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Table 6-4 An overview of the performance of the participants across the three Decks 

tasks studies. The target number of points for the participants was 450, which required 

a minimum of 25 cards selected from the better deck and no more than 78 to 

accumulate a point total of more than 450. 

Based on these results, the data was considered acceptable to be analysed as one 

dataset. As the three datasets produced very similar results, it seems likely that 

these are typical samples of British psychology undergraduates who signed up for 

research studies for course credit.  

As extraversion will be compared later to model parameters, a comparison was 

made between each participant’s measured extraversion and the points they won 

during this task. A Pearson correlation found a -0.04 correlation (p=0.64, 

BF10=0.11), showing that extraversion was unlikely to be an indicator of the 

number of points won. 

 Study 
Total 

number 
Mean 

Standard 

deviation 
Distribution 

Number of 

cards from 

good deck 

Combined 166   25 11  
1   54   27 11  
2   55   25   8  
3   57   23 12  

Points won 

Combined 166 446 36  
1   54 450 34  
2   55 447 36  
3   57 440 38  

Figure 6-4 The proportion of deck 2 choices for each dataset for each trialstep.  
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There was a tendency for participants to select more cards from deck 2 at the start 

of the task, once a difference had been identified between the two decks, and 

select more from deck 1 as the task continued, as shown in Figure 6-4. This 

tendency can also be seen to be similar across the three datasets. A Bayesian 

paired samples t-test was used to compare the means of the first and last 40 trials, 

as the differences between them can be seen, in Table 6-5, to be significantly non-

normal, using the Shapiro-Wilk test of normality. The t-test found very strong 

evidence that there was a difference in the average action choices between the 

first and second 40 trials, shown in Figure 6-5. This suggests that the task did 

perform as designed: participants identified the need to switch from mostly 

selecting from deck 2 at the start of the task to mostly selecting from deck 1 by the 

end. This difference in the average action choices between the first and second 40 

trials did not correlate with extraversion r= -0.09, p=0.27, BF10=0.18. 

 

 

Study Shapiro-Wilk Bayesian Paired samples t-test 
W p Bayes factor 

Combined 0.98 0.02 3.8 x 1024 

1 0.94 0.01 3.8 x 1012 

2 0.96 0.07 2.8 x 109 

3  0.96 0.09 8.6 x 102 

Table 6-5 The results of the Shapiro-Wilk test of normality and the Bayesian 

paired samples t-test for each of the datasets, along with the combined dataset. 

Figure 6-5 The proportion of deck 2 choices for each dataset the mean values across the 

first and second 40 trials. The standard errors of the means were comparable or smaller 

to the symbol sizes, so have been omitted.  
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All but two of the participants selected cards from both decks. These two 

participants were excluded from the rest of the analysis. 

One final way of evaluating the performance of the participants is to see their state 

at key payoff transition points in the task, marked by the change in average payoff 

for selecting cards from that deck. The two that most participants can be expected 

to have gone through are the first decrease in Deck 2 payoffs after 30 card 

selections from that deck, and the significant increase in Deck 1 average card 

payoffs after 20 Deck 1 card selections. Figure 6-6 shows the number of cards had 

been taken from the other deck before reaching these transition points, and so the 

number of cards remaining to be chosen. The 20th card from Deck 1 can be seen to 

have been chosen quite late in the task by many of the participants, with 48 others 

never selecting this card at all. A total of 75 participants had chosen at least 74 

cards before reaching the 20th Deck 1 card and so were continuing to choose Deck 

2 cards when their average payoff was less than those of Deck 1. Furthermore, 

those participants would have had very little opportunity to identify the increase in 

average payoffs that occurs in Deck 1 after the 20th card. The 30th card in Deck 2 

was chosen quite quickly by most of the participants, suggesting that all but a few 

identified Deck 2 as providing the highest average rewards with a modal number 

of cards selected from deck 1 of 4. This, along with the results from Figure 6-4, 

Figure 6-6 The graph shows the number of choices each participant had taken from a 

given deck, before reaching the first payoff transition point in the other deck, as 

shown in Figure 6-2, namely left: 30 cards from Deck 2 right: 20 cards from Deck 1. 

This can also be thought of as “Upon having chosen 30 cards from Deck 2 (left) or 20 

cards from Deck 1 (right) how many cards had each participant taken from the other 

deck?” The red vertical dashed lines mark the mean number of cards chosen.  
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suggests that Deck 2 was quickly identified as the deck providing the best initial 

rewards, but as these rewards decreased cards were more frequently sampled 

from Deck 1. The task therefore performed as expected. 

6.2 FITTING THE MODELS TO THE DATA 

As the rewards in this task had values in the range [1, 10], within the models, the 

initial expected reward for both choices were set to 5. The upper bounds for 

infinitely bounded model parameters were truncated. The softmax β parameter 

was limited to 30, the Kalman model parameters 𝜎𝛼
2 and 𝜎𝜆

2 were limited to 150 and 

the OpALS and OpALSE saturation parameters 𝑀 were set to 20 and 49 

respectively. Participants were fitted over their full task action sequence.  

TD0, qLearnF, ACBasic, and the OpAL models have features that caused numerical 

overflows for rewards larger than 1. For these models, the rewards were scaled to 

the range [0.1,1] and the initial expected reward was accordingly modified to 0.5. 

In spite of this, during the fitting process, the model OpAL experienced numerical 

overflows for certain parameter combinations, as discussed in chapter 3.4. A 

model choosing randomly would have a probability of 0.5 for each action choice. 

The parameter combinations where there has been an overflow are treated as 

worse than random fits. For these, a probability of 0.4 was returned for each action 

choice. If these provided a plateau of global minima, then the model could be 

discarded as being a worse representation of the participant’s actions than a 

purely random model.   

6.2.1 Boundary recovered parameters 

The crudest measure of acceptable model fits is to measure the number of them 

that fail to recover valid parameters, i.e. a parameter combination that does not 

intersect with any of the parameter validity boundaries. To account for numerical 

errors in the fitting, a boundary, or edge, fit is defined as a recovered if the 

parameter is within 0.1% of either side of its range. This was chosen to be close 

enough to the boundaries to be unlikely to interfere with good parameter 

recovery, while still accounting for the approximate nature of numerical fitting. 
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The results from fitting the Decks dataset, in Figure 6-7, show the proportion of 

participants with recovered parameters on the edge of the parameter boundaries. 

The proportions are generally below 15%, with the ε-greedy models having a 

significantly lower proportion of boundary parameter values of around or below 

5%. This suggests that ε-greedy does provide better parameter recover than 

SoftMax, as was discussed in chapter 4. In spite of the very broad parameter 

ranges places on the qLearnK model, still 35% of the participant’s sets of recovered 

parameters included at least one boundary parameter value, suggesting that this 

model is very poorly fitted. 

 

 

Figure 6-7 The proportion of the 166 participants fitted to each model whose fits had at 

least one recovered parameter within 0.1% of its boundary. The models have been 

grouped into those using softmax (top) and those using epsilon-greedy (bottom). 
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6.2.2 Goodness of model fits 

A model’s performance can be compared using a Bayes factor, as described in 

chapter 2.2, by comparing its performance to that of another model, such as a 

random choice model. The Decks task encourages participants to learn to prefer 

choosing one deck for the first half of the task and then switch preference. The 

randomBias model can be used to capture any participant’s tendency to prefer one 

deck more than another, while not accounting for any switch in preference they 

might perform. It therefore acts in this instance as a stricter, non-learning, baseline 

than the pure random model. To simplify the comparison with other task datasets 

in chapters 7 and 8, the initial performance comparisons will use the random 

choice model. 

For the Decks task dataset, the performance can be seen, for the Bayes factor, in 

Figure 6-8, and for the normalised Bayes factor, in Figure 6-9. What is most striking 

is how models of the same class (Q-learning, Bayesian, OpAL) appear to perform, 

on average, similarly to each other. The Bayes-inspired models appear to perform 

Figure 6-8 The distribution of the values of the fit quality Bayes factor from fitting the 

Decks dataset when compared to a pure random model. The dashed vertical line marks 

a Bayes factor of 20. Values above 20 have strong evidence that the model can match 

the participant’s actions better than a pure random model.  
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the worst, with the majority of participant fits not having strong evidence, as 

defined in chapter 2.2, that they are better than a purely random model. The OpAL 

derived models also frequently provide poor fits. Better fits are recovered for the 

variations on the qLearn model, with the majority of participants fits having strong 

evidence of being better compared to a purely random model.  

The Bayes factor values for each participant’s model fits can be compared between 

models, as shown in Figure 6-10. In this figure, identical Bayes factors for the same 

participant will be located along the diagonal line in each miniplot. This parity 

between Bayes factors is the case for almost all participants when comparing, for 

example, the OpAL and the OpALS models, also shown expanded in Figure 6-11. If 

one model fits a participant better than another model, then the participant will be 

shown away from the diagonal line. For example, the qLearn model fits have  

Figure 6-9 The distribution of the values of the fit quality normalised Bayes factor from 

fitting the Decks dataset when compared to a pure random model. Fits with values below 1 

have a Bayes factor of over 20, so have strong evidence that the model can match the 

participant’s actions better than a pure random model. 
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Figure 6-10 A comparison between models of the Bayes factor values for each participant 

when compared to a pure random model. Both the horizontal and vertical axes of each 

model comparison use a log scale ranging from 10−10 to 1023. The horizontal and vertical 

lines denote a Bayes factor of 20 and the diagonal line follows the line of equal value for 

both axes. The dots are coloured with the inter-model Bayes factor, such that a Bayes 

factor of 20 signifies that there is strong evidence that the vertical model fits better the 

participant’s actions than the horizontal model.  
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stronger evidence than those of OpAL_H, as they are on the qLearn side of the 

diagonal line. Nevertheless, they are still related, as most of the dots form a line 

that is parallel to the diagonal line of equal Bayes factor. The further away a dot is 

from the diagonal line, the greater the difference in the Bayes factors of the two 

models for that participant data. The horizontal and vertical lines mark a Bayes 

factor of 20 for the fit of the model axis they intersect with, i.e. the vertical axis 

model fit values are associated with the horizontal dashed line. Therefore, for most 

participants, the Bayes factor values for the BPV model relative to a pure random 

model are lower than 20, whereas most participants for the qLearnECorr model 

have values higher than 20. This results in the dots in their comparative plot not 

only to be mostly on the qLearnECorr side of the diagonal line, but also beyond the 

vertical dotted line.  

The relative difference between model fits be expressed as a between-model 

Bayes value, calculated using the model fit BIC values by taking inspiration from 

equations 2.4 and 2.8 in chapter 2.2, so that: 

ℬ =  2
BIC𝑚𝑜𝑑𝑒𝑙 1−BIC𝑚𝑜𝑑𝑒𝑙 2

2  

Figure 6-11 A selection of expanded miniplots from Figure 6-10.  
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These are shown in Figure 6-10 by the colour of each participant’s dot, with the 

vertical model as model 2 and the horizontal model as model 1. Therefore, the 

participant dots with a Bayes factor of 20 or higher, coloured blue, have strong 

evidence that the vertical model is a better fit for the participant’s actions than the 

horizontal model. Conversely, with a Bayes factor of 1/20 or lower, coloured red, 

there is strong evidence that the horizontal model is a better fit for the 

participant’s actions than the vertical model. The median values for each inter-

model comparison are shown in Figure 6-12.  From both figures, it can be seen, for 

example, that qLearnECorr fits the participants better than BPV. There are 

occasions where Figure 6-12 can be misleading, such as when comparing qLearn 

and qLearnECorr, where Figure 6-12 suggests there is somewhat strong evidence 

Figure 6-12 The median inter-model Bayes values for the Decks dataset participant 

fits. High values signify that the model on the vertical axis had a lower BIC value, and 

so a better match of the participant’s actions, than the horizontal axis model.  
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that qLearn fits the participants better, whereas Figure 6-10 shows that there is 

strong evidence that qLearn and qLearnECorr each fit different participants.  

One striking result is how strong the correlations are between different model 

Bayes factors for the same participants, as shown by the distributions forming 

lines in Figure 6-10 and Figure 6-11. This suggests that the actions of some 

participants are better fitted by these models than the actions of others. 

Another approach to comparing the model’s performance is to examine the 

expectation of the model frequencies, 𝐸𝐹, as discussed in chapter 2.4. This assess 

the relative frequencies with which two models could have generated participant 

data in the dataset. The probability that this relative frequency is above chance is 

estimated using the protected exceedance probability (Rigoux, Stephan, Friston, & 

Daunizeau, 2014). Both the expectation of the model frequencies and the related 

protected exceedance probability were calculated using the VBA toolbox 

(Daunizeau et al., 2014). This used as inputs the BIC values calculated for each 

model’s fit to each participant’s task action sequence. These comparisons can be 

seen in Figure 6-13. This reinforces our previous conclusion that the BP models 

were unlikely to have generated the participant data and that the qLearn model 

has the strongest evidence, followed by qLearnCorr. 
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Figure 6-13 The expectation of the model frequencies (EF) and the associated protected 

exceedance probabilities (pEP) for model pairs. Each pair of circles shows the EF and pEP 

for the vertical axis model relative to that of the horizontal axis model. The outer, larger 

circle is the EF and the inner circle is the pEP. Both are scaled between [0,1]. 



144 

By comparing the points won by each participant against the Bayes factor of their 

model fit, it was found that each model had a significant, Bonferroni corrected, 

negative correlation: participants who won the most points had the weakest 

evidence compared to a pure random model and the participants with the fewest 

points were fitted with strong evidence for the models. One of the clearest of the 

relationships is for the biased random model, shown in Figure 6-14. This provides 

further evidence that using the biased random model as the baseline for the Decks 

task will provide a stricter baseline than the pure random model, while still not 

having any learning components. 

Using this new baseline for model performance, the relationship between points 

won and the Bayes factor of their model fit, shown in Figure 6-15, is no longer so 

clear. The remaining models did not have strong evidence for their explanations of 

the majority of both the highest (above 485) and lowest (below 425) points earning 

participants, but the models had stronger evidence for the middle points earning 

participants. The distinction between the high and medium points earners is quite 

marked. Figure 6-3 shows that this represents a selection of between 9 and 44 

deck 2 cards. As this transition is in the same place across models, it suggests that 

participants who managed to gain more than 485 points were doing so using 

methods of exploration and preference switching that are not properly captured 

by these models. In this respect, the Bayesian models do seem to capture the 

participant’s responses more consistently, even if it is not well captured. 

Figure 6-14 A comparison of the points won by each participant vs the model fit Bayes factors 

for the biased random model. The vertical line marks 450 points and the horizontal line a 

Bayes factor of 20, above which the model fits have more than strong evidence that they are 

better than the pure random model. 
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Figure 6-16 shows that using the biased random model as the baseline, compared 

to the pure random model baseline in Figure 6-8, has spread out the participant fit 

Bayes factors, with the exception of the Bayesian models whose fits have more 

consistent Bayes factors. This difference in treatment can be understood using the 

model comparisons in Figure 6-10, where the Bayesian model fits can be seen to 

closely match those of the randomBias model. 

Figure 6-15 A comparison of the points won by each participant vs the model fit Bayes factors for 

each of the models. The vertical lines mark 450 and 485 points and the horizontal line a Bayes factor 

of 20. The models are labelled above each plot. The star denotes a Bonferroni corrected Spearman’s 

rank correlation with a p <0.05 
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When removing all the edge fits found in chapter 6.2.1, the distributions of fit 

qualities do not change significantly, suggesting that model fits that result in 

parameters recovered at a boundary do not have particularly higher or lower fit 

quality values than others.  

To provide an estimate of the number of participant fits that may be considered 

good fits, we can use the proportion of participants with a fit that has a Bayes 

factor of 20 or more, and with recovered parameters not on the edge of the 

parameter boundaries. The proportion of participants with not good fits, for each 

model, can be seen in Figure 6-17. With these two criteria combined, the difference 

in performance between the ε-greedy and SoftMax models disappears. The Bayes 

models are the worst fitted, with almost 100% of participants rejected by our 

criteria. The best good fit proportions are from the qLearn model variants that 

have between 35-45% of rejected fits. 

Figure 6-16 The distribution of the values of the fit quality Bayes factor from fitting the Decks 

dataset when compared to the biased random model. The dashed vertical line marks a Bayes 

factor of 20. Values above 20 have strong evidence that the model can match the participant’s 

actions better than the biased random model. 
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Figure 6-17 The proportion of the 166 fits where at least one recovered parameter 

was within 0.1% of its boundary and the Bayes factor of the fit was below 20 when 

compared to the biased random model. 



148 

6.2.3 Parameter correlations 

If the recovered model parameters are identifying a feature of a participant’s 

learning and decision-making process then we would expect that in different 

models the same parameter, performing the same task, would have very similar 

values. The correlations between parameters across models should therefore be 

high for parameters performing the same role in different models and low 

between parameters performing different roles, especially those in the same 

model. In this section, the correlations of the three most common parameters are 

examined: α, β and ε. A plot of the full comparison between model parameters can 

be seen in Appendix II. The correlations for the learning rate parameter, α, shown 

in Figure 6-18, need to be broken down further, as learning rates are used for 

learning various estimators.  

One such group is the Q-learning class of models, with only one learning rate 

parameter and without separate actor and critic components, as described in 

chapters 3.2, 3.5, 0 and 4.8. Collectively, their correlations result in a Kendall’s W, a 

measure of collective concordance, of 0.64, which suggests some correlation, but 

not a very strong one. Looking at the individual model parameter pair correlations, 

shown in Figure 6-19, it can be seen that all the correlations are positive, but there 

is significant variation in their strength. The correlations between the critic 𝛼 

parameters, also shown in Figure 6-19, show a similar pattern, albeit with slightly 

weaker correlations.  

As with α, correlations could be expected for the α+ and α− parameters found in 

the OpAL models and qLearn2 variants. However, as can be seen in Figure 6-20, 

there are no correlations within these groups of parameters, with Kendall’s W 

values of around 0.15. This is surprising, given the similarity of the OpAL models 

and equally surprising for the qLearn2 models. This may due to the difficulty in 

teasing apart the influence of the α+ and α− parameters. However, the correlations 

between these parameters within each model are also not high in the case of the 

qLearn2 models (0.27 for qLearn2 and 0.16 for qLearn2E) nor for the OpAL models 

(values ranging from -0.03 and 0.2). 
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Figure 6-18 The correlations between recovered 𝛼 parameter values from the Decks task 

participants. A dark blue oval pointing to the top right signifies a strong positive correlation, a white 

circle no correlation and a dark red oval pointing to the top left signifies a strong negative 

correlation.  
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Figure 6-19 The correlations between recovered parameter values from the Decks task 

participants. A dark blue oval pointing to the top right signifies a strong positive correlation, a 

white circle no correlation and a dark red oval pointing to the top left signifies a strong 

negative correlation. Left: The critic learning rate parameters, 𝛼, in the critic only q-learning 

models Right: The critic learning rates from models with both actor and critic learning rates. 

Figure 6-20 The correlations between recovered parameter values from the Decks task 

participants. A dark blue oval pointing to the top right signifies a strong positive correlation, a 

white circle no correlation and a dark red oval pointing to the top left signifies a strong negative 

correlation. Left: The learning rate for positive rewards Right: The learning rate for negative 

rewards. 
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The same analysis was performed for the β and ε parameters, as shown in Figure 

6-21 and Figure 6-22. The recovered ε parameters have strong correlations, as 

shown by the Kendall’s W value across the models of 0.88. This contrasts with the 

large number of weak correlations for β, with a Kendall’s W of 0.27, acting as 

further indications that the ε-greedy function provides more consistent parameter 

recovery than that of SoftMax. The only β  parameters that are strongly correlated 

to each other are those for the Q-learning class of models shown in Figure 6-19.  

The variations in similarity between recovered parameter values could be 

explained by differences in a model’s capacity to accurately express the 

Figure 6-21 The correlations between recovered parameter values from the Decks task 

participants. A dark blue oval pointing to the top right signifies a strong positive correlation, 

a white circle no correlation and a dark red oval pointing to the top left signifies a strong 

negative correlation. Left: The 𝛽 parameters for the Q-learning models Right: The 𝛽 

parameters in all models. 



152 

performance of each participant, i.e. how close they are to a ‘true’ model of how a 

participant is choosing their next action. Those models that express the 

participant’s performance less well will have less difference between their fits of 

‘good’ and ‘bad’ parameter values, resulting in there being greater noise in their 

final recovered parameters.  

Another possible cause of variation in similarity is that some models are harder to 

fit participant action sequences to than others, due to differences in the 

complexity of their structure or the number of parameters they contain. Fitting 

model parameters to data is well known to result in correlated errors between 

fitted model parameters (Schmiedek, Oberauer, Wilhelm, Süss, & Wittmann, 2007). 

In chapter 4, the distribution of errors in parameter recovery for the qLearn model 

parameters α and β suggested that the recovery process resulted in the 

parameters being inversely correlated. For this Decks task dataset, the correlation 

was found to be -0.5, which matches with the previous results. By contrast, for 

Figure 6-22 The correlations between recovered parameter values from the Decks 

task participants for models with an 𝜀 parameter. A dark blue oval pointing to the 

top right signifies a strong positive correlation, a white circle no correlation and a 

dark red oval pointing to the top left signifies a strong negative correlation.  
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qLearnE, the correlation between α and ε was found to be 0.22, which adds 

evidence to ε-greedy being more recoverable than the SoftMax.  

From the assessment of recovered parameter correlations in this section, the 

number of parameters does not seem to have a high predictive power on the 

strength of correlations between parameters, as models with comparable number 

of parameters, such as the Q-learning, actor critic and Bayesian inspired models do 

not have similar parameter correlational strengths. However, the structure of the 

model does appear to have an influence on the likelihood of having correlated 

model parameter values, with the Q-learning class of models having more 

consistent recovery of parameters and those with ε-greedy having their ε 

parameter more consistently recovered than their β parameter counterparts. This 

provides further evidence that epsilon greedy performs better than softmax for 

consistently modelling participant actions. 

6.3 MODEL PARAMETER RELATIONSHIPS TO EXTRAVERSION 

Having established how successful these models are at reflecting the variations in 

actions of the different participants, it was possible to examine if there were a 

correlation between the recovered α parameter and a measure of the extraversion 

phenotype. As established in chapter 1.1, extraversion is likely to modulate the 

magnitude of the RPE. This would indicate a possible correlation could be found 

between extraversion and the learning rate parameter α (Pickering & Pesola, 2014). 

Pickering in unpublished analyses had shown a correlation for the first of the three 

datasets between α  in the Q-learning model and the extraversion measure of EPQ-

R. It was therefore of interest to compare the extraversion measures for the 

participants to the fitted parameter values for Q-learning class of models, with only 

one learning rate parameter and without separate actor and critic components, 

shown in Figure 6-19 (left). These are: qLearnCorr, qLearnECorr, qLearnE, qLearnF, 

qLearn, td0, tdE and tdr.  

In chapter 4, the model parameter recovery was shown to be noisy for α under 

ideal conditions. To minimise the model recovery noise, the mean of the α values 

was calculated for each participant from those recovered from the Q-learning class 
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of models. A Spearman's rank correlation was performed between the mean α 

value for each participant and the participant’s measured extraversion value of 

EPQ-R. 

As in the previous section it was noted that there were, in many of the models, 

correlations between model parameters from the same model, the correlations 

between the recovered α parameter and the extraversion measure were also 

performed with the β or ε parameter variation accounted for. As the models either 

had a β or ε parameter, means of α were also calculated for those models with a β 

parameter and for those with an ε parameter. Estimates of those models mean β 

and ε parameters were also calculated for each participant. Partial correlations 

were performed between the extraversion measure and each of these α 

parameter estimates. 

As seen in chapter 6.2.2, there was only strong evidence for some of the recovered 

model parameter combinations being a better explanation of the participant 

actions than those of the biased random model. Equally, in chapter 6.2.1, it was 

seen that some of the recovered model parameter combinations were very close 

to parameter boundaries. A subset of recovered α parameters, with both strong 

evidence for a recovered model parameter combination and a lack of boundary 

collisions, were used to calculate a mean α value for each participant. In the same 

way, mean values of α parameter estimates were also calculated separately for 

those models using softmax or ε-greedy. Equally, estimates were calculated for 

both the β parameter and ε parameters of those models. These were then used to 

calculate the partial correlations between the extraversion measure and the α 

parameter estimates.  

In total this resulted in six correlations between participant estimates of α and the 

extraversion measure of EPQ-R, shown in Table 6-6. It is notable that all of these 

show a negative correlation between α and EPQ-R extraversion and that the 

correlations all become stronger when the parameter estimates were only 

calculated using parameter sets that both had strong evidence and a lack of 

boundary values. This correlation strengthened slightly when limited to models 

using softmax and with the corresponding β values partialled out. This 
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strengthening was seen both when using all parameter sets and when using only 

the parameter sets that both had strong evidence and a lack of boundary values.  

Participant model fit 

parameters used 

All Good edge & Bayes 

𝜌 (DF) p 𝜌 (DF) p 

Q-learning models -0.091 (161) 0.251 -0.204 (123) 0.023 

Q-learning models with 𝛽 -0.176 (158) 0.026 -0.283 (116) 0.002 

Q-learning models with 𝜀 -0.021 (158) 0.795 -0.150 (109) 0.115 

Table 6-6 The correlations between each participant’s averaged Q-learning model 

parameter 𝛼 and the extraversion measure of EPQ-R. The 𝛼, 𝛽 and 𝜀 values in these 

correlations are averaged, for each participant, across the relevant subset of models. 

Partial correlations were used for the 𝛽 and 𝜀 subsets whereas the others were 

simple correlations. 

6.4 DISCUSSION 

The Decks task tested participant’s capacity to learn about changing payoffs. On 

average, the 166 participants were found to have adequately identified both the 

deck with the highest initial payoff and the need to switch decks as the task 

progressed.  

The models were evaluated for their performance in producing the same action 

choices as those of the participants, with the baseline for their fit quality being set 

as the performance of the biased random model. Models were fitted on all the 

action choice trials performed by each participant. 

The model fit accuracy varied by type of model, with those based on Q-learning 

providing some of the best fits, notably qLearn, qLearnCorr and qLearnCorrE, and 

the OpAL and Bayesian inspired models providing some of the worst.  

Participant fits were found to be highly correlated between models, with some 

participants consistently being well fitted and others consistently badly fitted. 

Goodness of model fits was found to be inversely correlated with points won in the 

task when compared to a pure random model, but not the biased random model, 

which was able to explain most of this correlation. While most models provided 
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strong evidence, as defined in chapter 2.2, that they explained the majority of 

participant actions better than the biased random model, those participants who 

performed well in the task had weaker Bayes factors. This suggests that the 

models were good at representing the participants with the less successful 

strategies, but not those with the most successful strategies, suggesting that there 

are elements of the strategies of the most successful subjects that cannot be 

encapsulated by these models. 

The ε-greedy parameters were recovered consistently across all models and more 

consistently than the β parameter from equivalent models using SoftMax. The only 

consistently recovered β parameters were those of Q-learning variants. The α 

parameters were inconsistently recovered, with the critic learning rates best 

recover. The strength of correlations between α parameters was found to be 

related to the type of model, as had been seen with the fit quality. 

The most consistent α critic learning rates were found to negatively correlate with 

the extraversion measure. This could suggest that extraversion is correlated with 

decreasing sensitivity to errors in expected rewards, which would result in 

extraverts learning more slowly than introverts for the same RPE. If this were the 

case, in probabilistic rewarding tasks, such as this one, it would suggest that 

extraverts would be less sensitive to the reward variability and more able to 

identify changes in average reward values, as demonstrated in Figure 5-1. 

Pickering & Pesola (2014) suggested that α could correspond to the density of 

some dopamine receptors controlling dopaminergic-mediated reinforcement 

learning. Given the negative correlation between extraversion and α and the 

positive correlation between extraversion and RPE magnitude, the impact on 

learning remains unclear. As the extraversion measure did not correlate with the 

points won nor the difference in the average action choices between the first and 

second 40 trials, this correlation with α would not be identifiable without modelling 

the participants learning process. 

It is worth noting that these results reflect the performance of the models only as 

implemented. There may be other implementations that would perform differently 

with slight tweaks in their implementation.   
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7 PROBABILISTIC SELECTION TASK 

The second task used was a version of the Probabilistic Selection task, first used by 

Frank, Seeberger, & O’Reilly (2004). The dataset discussed in this chapter was 

collected using a version of the task taken from Frank et al. (2007). Participants are 

shown a series of pairs of Hiragana characters, from the possible set of six 

characters, and asked to pick which of the two is the ‘correct symbol’. The 

participant was given four seconds to respond for each trial. If no response was 

made, the trial was marked as not completed and the task moved on to the next 

trial. In this model fitting and analysis, these incomplete trials have not been 

included. Participants were given ten practice trials before starting the learning 

phase with another set of two Kanji symbols, one of which was the correct choice 7 

out of the ten trials. In the first part of the task, the learning trials, the six characters 

were shown in three pairs, with complementary reward probabilities: {A:80%, B: 

20%}, {C:70%, D: 30%}, {E:60%, F: 40%}. They were then told if they were correct. 

The learning phase was broken into blocks of 60 trials, with 20 trials for each 

character pair and 10 trials for each special arrangement for each character pair 

(e.g. AB and BA). For each correct choice, the participant won 5 pence and their 

cumulative winnings was shown after each trial. At the end of a block of trials, the 

proportion of correct responses was calculated for each character pair. If the 

Figure 7-1 The Probabilistic Selection task. Participants are shown pairs of characters, 

from a set of six, and asked to pick the correct one. Each character has a different 

likelihood of being correct. During the initial learning phase, the characters are shown 

three pairs, with complementary reward likelihoods, multiple times and participants 

are given feedback. In the test phase, participants are presented with every 

combination of pairs of characters but are not given feedback. 
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participants success rate exceeded a specified threshold for one of the pairs (AB > 

65% correct, CD > 60% correct and EF > 55% correct) then participants moved on to 

the test phase of the task. If not, they performed another block of 60 trials, with 

the character pairs presented in a different trial sequence. A maximum of six 

blocks of learning phase trials could be given to a participant before moving them 

on to the test phase. In the participant data examined in this chapter, participants 

received no more than four blocks of learning phase trials. In the second stage of 

the task, the test trials, the participants were again shown pairs of characters, but 

in this case all possible combinations of the six characters were shown. The 

participants were not given any feedback as to their performance. The test phase 

comprised of 60 trials, with 4 examples of each of the 15 character-pair 

combinations and 2 trials with each special arrangement for each character pair. 

The same sequence was used for each of the participants and they continued to be 

paid for each correct response, with their cumulative winnings shown to them at 

the end of the task. The sequence of character pairs and the order in which 

characters were shown on the screen varied quasi-randomly but was fixed across 

participants. An example sequence is shown in Figure 7-2 with one block of 

learning trials and the test trials. The characters used for A and B were exchanged 

for half the participants to eliminate the possibility that any association was due to 

their shape. 

Figure 7-2 The characters (cues) displayed during each trial. The ovals indicate which 

cues were visible for each of the 60 learning trials and 60 test trials. The red oval 

denotes the correct, rewarded, cue and the blue oval the incorrect, unrewarded, trial. 

The black dotted line marks the transition from learning trials to test trials. 
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7.1 DATA PROPERTIES 

The dataset contains 71 participants, of which 19 were men, collected at 

Goldsmiths, University of London as part of a masters project. The participant’s 

ages ranged from 19 to 59 years, with a mean age of 26 years and a standard 

deviation of 7.5 years. No participants had past familiarity of Hiragana characters. 

Before the data collection, the intention was that all three character pair success 

criteria would have to be met before participants could move on to the test phase. 

Instead, due to a coding error in the task program, participants could move on to 

the test phase if they met at least one of the criteria. As the criteria for the EF trials 

was barely above chance (EF > 55% correct), even if participants chose at random it 

was possible for them to only have one block of learning trials. Had the learning 

criteria been correctly used, only 5 of the 71 participants would have had only one 

block of learning trials. As it was, 56 participants had only one block of learning 

trials. However, only 5 of the 15 participants who had more learning trials 

improved their choices as they performed more trials. Comparing the performance 

of the participants with more blocks of learning trials, there was no indication that 

the extra trials resulted in an improvement in performance for AB t(31.77)= 0.21, 

p= 0.83, CD t(26.01)= 1.16, p= 0.25 or EF t(30.88)= 0.79, p= 0.43. It is likely that those 

participants who were selected to have more blocks of learning trials performed 

below average in their understanding of the task in the first trial block. The extra 

blocks of learning trials may therfore have brought their understanding of the task  

to the level of the other participants. 

One measure of participant’s performance is to see if they changed their choice 

behaviour when moving from the learning phase to the test phase, where there 

was a lack of feedback and trials with new character pairings. Their character 

choices for the same character pairs can be compared between the test and 

learning phases, where the learning phase performance is evaluated across all 

blocks of learning trials a participant performed. For all three character pairs there 

was no significant change in the distributions of choice behaviour when moving 

from the learning phase to the test phase t(70)= -1.78, p= 0.08 for AB, t(70)= -1.15, 

p= 0.25 for CD and t(70)= -0.24, p= 0.81 for EF. Looking at the proportion of 
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character A, C and E choices in the test and learning phases for each participant, 

shown in Figure 7-3, correlations between the two phases were found for the 

characters C (r=0.31, p= 0.01) and E (r=0.62, p< 0.001), but not for character A 

(r=0.20, p= 0.10). Taken together, these results suggest that most participants were 

Figure 7-3 A comparison of the choices in the learning and test phases for the AB character 

pair choice trials (top), the CD character pair choice trials (bottom left) and for the EF 

character pair choice trials (bottom right). As in each pair the choice of one character resulted 

in the other character not being chosen, so the proportions are those of the more rewarded 

character in each pair, namely A, C and E. For each phase, the mean is shown as a dotted line 

and the range one standard deviation from the mean is shown as a grey bar. The participant 

dots are coloured to show the number of 60 trial rounds of learning they were given.  
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maintaining  similar character choice proportions in the two phases, but that this 

became less the case the greater the difference in reward rates between the 

charaters in the pair. These figures also support the conclusion that the 

participants with more blocks of learning trials were not necessarily increasing 

their learning performance substancially from these extra training blocks.  

A common measure of participant performance in past papers has been to look at 

the choices of characters A and B in the test phase new pairings (Frank et al., 2007, 

2004; Simon, Howard, & Howard, 2010; Slagter, Georgopoulou, & Frank, 2015; 

Sojitra et al., 2018). As character A is the most likely of all the characters to return a 

reward, participants who have learnt this association would be expected to choose 

character A whenever it is presented in the test phase. The converse is true for 

character B. From this, choose A is calculated as the proportion of times character A 

was chosen when available in the test phase and when the other option was not 

character B. Equally, avoid B is calculated as the proportion of times character B 

was not chosen when available and when the other option was not character A. 

Figure 7-4 The relative distributions of participants performance with the measure of 

choose A and avoid B. The means are shown as black dashed lines and the grey bars 

around them denote one standard deviation. The colours of each point show the 

number of rounds each participant was given in the learning phase.  
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Participants on average chose A 52% of the time and avoided B 60% of the time 

Choose A was not found to be correlated with avoid B (r=0.03, p= 0.82), as can be 

seen in Figure 7-4. The number of block of learning trials did not affect participant’s 

performance at learning choose A t(69)= 0.21, p= 0.83 or avoid B t(69)= -0.26, p= 

0.79. Comparing participant’s performance on these metrics with their EPQ-R 

extraversion scores found no correlation for either choose A (r=0.18, p= 0.19) or 

avoid B (r=0.01, p= 0.93). However, if a choose A outlier is removed, 2.44 standard 

deviations away from the mean and with a choose A value of 0, the correlation 

with extraversion greatly improves (r=0.23, p=0.056).  

 The participant’s success at learning in this task can be compared to past studies 

with similar character reward rates, as shown in Table 7-1.  Participants in this 

dataset performed slightly less well than those from other studies. However, they 

were given fewer learning trials than in the one study (Simon et al., 2010) that 

reported the number of learning trials performed by participants. The other 

published studies (Frank et al., 2007, 2004; Slagter et al., 2015) used the same 

procedure as Simon et al., while the current study used a weaker set of criteria for 

moving from the learning phase to the test phase. It is therefore very likely that the 

3 other published studies also gave more learning phase trials than the current 

study. 
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Table 7-1 The mean participant choose A and avoid B values for each sample group in a 

series of studies, including this one. When available, the average number of trials each 

participant had in the learning phase is recorded. 

Study 
Participant 

sample group 

Average number 

of learning trials 
Choose A Avoid B 

Current students 71 ± 35 0.52 ± 0.21 0.60 ± 0.18 

(Simon et al., 2010) 
college 139 ± 22 0.80 ± 0.30 0.64 ± 0.60 

old 169 ± 25 0.67 ± 0.55 0.71 ± 0.40 

(Slagter et al., 2015)  
low sEBR 

- 
0.63 + 0.60 0.86 + 0.30 

high sEBR 0.69 + 0.60 0.71 + 0.60 

(Frank et al., 2007) 

T/T 

- 

0.69 ± 0.05 0.78 ± 0.04 

C/C, C/T 0.73 ± 0.03 0.67 ± 0.03 

A/A 0.76 ± 0.03 0.67 ± 0.04 

G/G, G/A 0.67 ± 0.05 0.74 ± 0.04 

met/met, 

val/met 
0.76 ± 0.06 0.74 ± 0.06 

val/val 0.71 ± 0.03 0.69 ± 0.03 

(Frank et al., 2004) 

PD on 

- 

0.79 ± 0.05 0.58 ± 0.11 

PD off 0.65 ± 0.07 0.82 ± 0.08 

seniors 0.68 ± 0.07 0.63 ± 0.07 
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Another measure of participant performance has been to examine how frequently 

participants in the learning phase stick with the same character choice after a 

rewarded trial, called Win-stay, or switch after an unrewarded trial, called Lose-shift. 

As can be seen for Win-stay in Figure 7-5 and for Lose-shift in Figure 7-6, the 

participants do on average learn to ignore rewarding trials of action B and ignore 

unrewarded trials of action A as the task progresses. This progression is clearest in 

the AB trials and becomes steadily less clear as the difference in rewards 

decreases between the pair of characters. The distributions of probabilities in 

Figure 7-5 For the first four blocks of 15 trials in the learning phase, the distribution of 

participant Win-stay probabilities, i.e. the probability after receiving a reward of choosing 

the same action the next time it is presented. The mean for each block is marked by a thin 

blue line, one standard deviation around the mean is denoted by the pale blue bar. 
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these groups of 15 trials should be taken as being noisy as the number of trials 

with each character pair varied between each group of 15, as shown in Figure 7-2. 

For example, in the last 15 trials, there were only two trials with the AB character 

pair. As Win-stay or Lose-shift cannot be calculated for the final character pair, only 

one trial was used to calculate the probabilities for those characters in the last 15 

trials. 

Win-stay and Lose-shift can be calculated using the first 15 trials, as was done by  

Frank et al. (2007), who found that after the first 15 trials “individual negative 

Figure 7-6 For the first four blocks of 15 trials in the learning phase, the distribution of 

participant Lose-shift probabilities, i.e. the probability after receiving no reward of not 

choosing the same action the next time it is presented. The mean for each block is marked 

by a thin blue line, one standard deviation around the mean is denoted by the pale blue bar. 
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feedback experiences became less informative”.  Simon et al. (2010) used the Frank 

et al. study as the basis for their choice to use the first 60 trials, arguing that the 

“effects of feedback from individual trials can be assessed more clearly, before 

learning of the probabilities across trials has occurred”. That most of the learning 

has been completed, for an average participant, within the first 60 trials can be 

seen in Figure 7-5 and Figure 7-6. In Table 7-2 the Win-stay and Lose-shift values 

from these two studies are reported along with aggregate values from this study, 

calculated across the first 60 trials and averaging the results for all the characters. 

The values we calculated are lower than those presented in the other studies. 

However, it is not clear from the descriptions given in these papers if the reported 

figures were averaged over all characters, over all characters that could be 

expected to have the same trend, such as A, C and E, or if these are just calculated 

using character A. In all three cases the results from this study would not match 

those from the other studies.  

Study 
Participant 

sample group 

Calculation 

method 
Win-stay Lose-shift 

Current students First block (60) 0.29 ± 0.21 0.31 ± 0.26 

(Simon et al., 2010) 
college 

First block (60) 
0.83 ± 0.30 0.33 ± 0.5 

old 0.75 ± 0.20 0.36 ± 0.3 

(Frank et al., 2007) 

T/T 

First 5 trials of 

each type, 15 

trials total 

0.68 + 0.06 0.49 + 0.05 

C/C, C/T 0.69 + 0.03 0.49 + 0.03 

A/A 0.69 ± 0.04 0.51 ± 0.03 

G/G, G/A 0.71 ± 0.04 0.49 ± 0.06 

met/met, 

val/met 
0.68 ± 0.03 0.52 ± 0.02 

val/val 0.76 ± 0.05 0.41 ± 0.05 

Table 7-2 The mean participant Win-stay and Lose-shift values for each sample group in 

a series of studies, including this one. The trials used to calculate these figures has also 

been recorded. 
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7.2 FITTING THE MODELS TO THE DATA 

As the task rewards were either 0 or 1, within the models, the initial expected 

reward for both choices were set to 0.5. The upper bounds for infinitely bounded 

model parameters were truncated. The softmax β parameter was limited to 30, the 

Kalman model parameters 𝜎𝛼
2 and 𝜎𝜆

2 were limited to 150 and the OpALS and 

OpALSE saturation parameters 𝑀 were set to 10 and 49 respectively. The models 

were fitted to the participant’s actions over both the learning and test phases.  

During the fitting process, the models qLearnF, td0, tdr and OpAL experienced 

numerical overflows for certain parameter combinations, as discussed for OpAL in 

chapter 3.4. The parameter combinations where there has been an overflow are 

treated as worse than random fits, that have a probability of 0.5 for each action 

choice. For fits with overflows, a probability of 0.4 was returned for each action 

choice. If these provided a plateau of global minima, then the model could be 

discarded as being a worse representation of the participant’s actions than a 

purely random model.   

7.2.1 Boundary recovered parameters 

The crudest measure of acceptable model fits is to measure the number of them 

that intersect with any of the parameter validity boundaries. In almost all cases a 

boundary parameter value is equivalent to removing an element of a model, 

thereby reducing it to a simpler model. To account for numerical errors in the 

fitting, a boundary, or edge, fit is considered to have occurred if the parameter is 

within 0.1% of either side of its range. This was chosen to be close enough to the 

boundaries to be unlikely to interfere with good parameter recovery, while still 

accounting for the approximate nature of numerical fitting. 

The results from fitting the Probabilistic Selection dataset, in Figure 7-7, show the 

proportion of participants with at least one recovered model parameter on the 

edge of the parameter boundaries. Participants with boundary fits range from 1% 

to 37% of the sample, with no discernible pattern linking the number of edge fits 

and the type of model or number of parameters. 
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7.2.2 Goodness of model fits 

A model’s performance at fitting a participant’s actions can be compared using a 

Bayes factor; comparing its performance to that of the random choice model, as 

described in chapter 2.2. For the Probabilistic Selection task dataset, using a Bayes 

factor of 20 as a criterion for strong evidence, as defined in chapter 2.2, for a 

model fit, 34 of the 71 participants had strong evidence for at least one model 

fitting their actions well.  This can be seen in Figure 7-8, and using the normalised 

Bayes factor, in Figure 7-9. As with the Decks task in chapter 6.2.2, there does 

appear to be a similarity in Bayes factor value distributions within model classes, 

with the OpAL models having the weakest evidence that they are better than a 

purely random model, each having strong evidence for at most 17 participants. 

The Bayesian inspired models have some of the strongest evidence, with BPV 

having strong evidence for better  

Figure 7-7 The proportion of the 71 participants fitted to each model whose fits had at least 

one recovered parameter within 0.1% of its boundary. The models have been grouped into 

those using softmax (top) and those using epsilon-greedy (bottom). 
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Figure 7-8 The distribution of the values of the fit quality Bayes factor from fitting the 

Probabilistic Selection dataset when compared to a pure random model. The dashed line 

marks a Bayes factor of 20, above which there is strong evidence for the model. On the right 

are the Group Bayes Factors for the model, defined in equation 2.9. 

Figure 7-9 The distribution of the values of the fit quality normalised Bayes factor from 

fitting the Probabilistic Selection dataset when compared to a pure random model. Fits with 

values below 1 have a Bayes factor of over 20, so have strong evidence that the model can 

match the participant’s actions better than a pure random model. 
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fitting 26 participants. As this task asks participants to learn a preference for some 

characters over others, the randomBias model could be expected to fit participant 

actions better than a pure random model. However, this does not appear to be the 

case for most participants, with only 27 participant fits having a Bayes factor above 

20, the most for any model. Models on average had around 15 participant fits with 

a Bayes factor above 20, with six participants having strong evidence for at least 20 

of the 25 models and two of the participants for all 25. 

The Bayes factor values for each participant’s model fits can be compared between 

models, as shown in Figure 7-11. In this figure, identical Bayes factors for the same 

participant are located along the diagonal line in each small plot. This is the case 

for almost all participants when comparing, for example, the OpAL and the OpALS 

models, as shown more clearly in Figure 7-10. If one model fits a participant 

consistently better than another model, then the participant will be shown away 

from the diagonal line. For example, the qLearn model fits have stronger evidence 

than those of OpAL_H, as they are on the qLearn side of the diagonal line. 

Nevertheless, they are still related, as most of the dots form a line that is parallel to 

the diagonal line of equal Bayes factor. The further away a dot is from the diagonal 

line, the greater the difference in the Bayes factors of the two models for that 

Figure 7-10  A selection of expanded miniplots from Figure 7-11 
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participant data. The horizontal and vertical lines mark a Bayes factor of 20 for the 

fit of the model axis they intersect with, i.e. the vertical axis model fit values are 

associated with the horizontal dashed line. Therefore, for most participants, the 

Bayes factor values for the tdr model relative to a pure random model are lower 

than 20, whereas the Bayes factor values of the randomBias model have a broad 

range of values relative to the pure random model. This results in the dots in their 

Figure 7-11 A comparison between models of the Bayes factor values for each 

participant when compared to a pure random model. Both the horizontal and vertical 

axes of each model comparison use a log scale ranging from 10−5 to 1018. The 

horizontal and vertical lines denote a Bayes factor of 20 and the diagonal line follows 

the line of equal value for both axes. The dots are coloured with the inter-model Bayes 

factor, such that a Bayes factor of 20 signifies that there is strong evidence that the 

vertical model fits better the participant’s actions than the horizontal model. 
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comparative plot not only being mostly on the randomBias side of the diagonal 

line, but also beyond the vertical dashed line. 

The relative difference between model fits be expressed as a between-model 

Bayes value, calculated using the model fit BIC values by taking inspiration from 

equations 2.4 and 2.8 in chapter 2.2, so that: 

ℬ =  2
BIC𝑚𝑜𝑑𝑒𝑙 1−BIC𝑚𝑜𝑑𝑒𝑙 2

2  

These are shown in Figure 7-11 by the colour of each participant’s dot, with the 

vertical model as model 2 and the horizontal model as model 1. Therefore, the 

participant dots with a Bayes factor of 20 or higher, coloured blue, have strong 

evidence that the vertical model is a better fit for the participant’s actions than the 

horizontal model. Conversely, with a Bayes factor of 1/20 or lower, coloured red, 

there is strong evidence that the horizontal axis model is a better fit for the 

participant’s actions than the vertical axis model. The median values for each inter-

model comparison are shown in Figure 7-12.  This highlights the poor performance 

of the OpAL models, especially OpAL_H and OpAL_HE, and qLearnK to fit 

participant data on this task. BPV can be seen to perform better than all the other 

models, with BP performing better than or equal to the remaining models. There 

are occasions where Figure 7-12 can be misleading, such as when it suggests that 

there is somewhat strong evidence for qLearnECorr to fit the participants better 

than OpAL_H, with a median inter-model Bayes factor of 113, whereas Figure 7-11 

shows that there is strong evidence that qLearnECorr and OpAL_H each fit 

different participants well. Equally randomBias has strong evidence for fitting 

some participants better than BP or BPV, but for other participants, the opposite is 

true. These are shown in a larger form in Figure 7-13. 

Another approach to comparing the model’s performance is to examine the 

expectation of the model frequencies, 𝐸𝐹, as discussed in chapter 2.4. This assess 

the relative frequencies with which two models could have generated participant 

data in the dataset. The probability that this relative frequency is above chance is 

estimated using the protected exceedance probability (Rigoux et al., 2014). Both 

the expectation of the model frequencies and the related protected exceedance 

probability were calculated using the VBA toolbox (Daunizeau et al., 2014). This 
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used as inputs the BIC values calculated for each model’s fit to each participant’s 

task action sequence. These comparisons can be seen in Figure 7-14. This 

reinforces our previous conclusion that the BPV model has the strongest evidence, 

but also marks qLearn as being more successful than was previously apparent. 

 

 

Figure 7-12 The median inter-model Bayes values for the Probabilistic Selection dataset 

participant fits. High values signify that the model on the vertical axis had a lower BIC 

value, and so a better match of the participant’s actions, than the horizontal axis model. 
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Comparing the test phase participant action choice measure, choose A and avoid B 

with the Bayes factors of model fits relative to a pure random model, no significant 

correlations were found with avoid B after Bonferroni correcting. However, many 

were found with choose A, show in Figure 7-15. This suggests that there are strong 

correlations between the participant’s understanding of the information given to 

them during the task, measured through choose A, and the capacity of models to 

fit a participant’s actions better than the pure random model. This, in spite of both 

poor participant performance at the task and poor model fits, indicates that 

participant actions can, to some degree, be captured by these models when the 

participant is learning during the task.  

Similar correlations were performed between the model fit Bayes factors and 

extraversion, but no correlations were found, even when ignoring any Bonferroni 

corrections. 

When removing all the edge fits found in chapter 7.2.1, the distributions of fit 

qualities do not change significantly, suggesting that model fits that result in 

parameters recovered at a boundary do not have particularly higher or lower fit 

quality values than others.  

Figure 7-13 A selection of expanded miniplots from Figure 7-11 
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Figure 7-14 The expectation of the model frequencies (EF) and the associated protected 

exceedance probabilities (pEP) for model pairs. Each pair of circles shows the EF and 

pEP for the vertical axis model relative to that of the horizontal axis model. The outer, 

larger circle is the EF and the inner circle is the pEP. Both are scaled between [0,1]. 
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To provide an estimate of the number of participant fits that may be considered to 

have good fits, we can use the proportion of participants with a fit that has a Bayes 

factor of 20 or more, and with recovered parameters not on the edge of the 

parameter boundaries. The proportion of participants with not good fits, for each 

model, can be seen in Figure 7-16. While all of these models had less than half of 

their participants with good fits, the best performing models are randomBias and 

BPV, which contrasts with the Decks task, where the BP models performed the 

worst. 

Figure 7-15 Participant test phase proportion of choosing character A compared to the 

model fit Bayes factor when compared to a pure random model. The star denotes a 

Bonferroni corrected Spearman’s rank correlation with a p <0.05 
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7.2.3 Parameter correlations 

If the recovered model parameters are identifying a feature of a participant’s 

learning and decision-making process then we would expect that in different 

models the same parameter, performing the same task, would have very similar 

values. The correlations between parameters across models should therefore be 

high for parameters performing the same role in different models and low 

between parameters performing different roles, especially those in the same 

model. In this section, the correlations of the three most common parameters are 

examined: α, β and ε. A plot of the full comparison between model parameters can 

be seen in Appendix II. The correlations for the learning rate parameter, α, shown 

in Figure 7-17, need to be broken down further, as learning rates are used for 

learning various estimators. Contrasting these with those in the Decks task, Figure 

6-18, the correlations are overall weaker. 

Figure 7-16 The proportion of the 71 fits where at least one recovered parameter was 

within 0.1% of its boundary and the Bayes factor of the fit was below 20 when 

compared to the pure random model. 



178 

One subgroup of α parameters is those of the Q-learning class of models, with only 

one learning rate parameter and without separate actor and critic components, as 

described in chapters 3.2, 3.5, 0 and 4.8. Collectively, their correlations result in a 

Kendall’s W, a measure of collective concordance of 0.31, which suggests a weak 

correlation, half the strength of that found in the Decks task, 0.642 (Figure 6-19). 

Looking at the individual model parameter pair correlations, shown in Figure 7-18, 

it can be seen that the correlations are mostly positive, with some weakly negative 

correlations. However, the strong correlations are all positive. The correlations 

between the critic 𝛼 parameters, also shown in Figure 7-18, show a similar pattern, 

albeit with more strong correlations.  

As with α, correlations could be expected for the α+ and α− parameters found in 

the OpAL models and qLearn2 variants. However, as can be seen in Figure 7-19, 

there are no correlations within these groups parameters, with Kendall’s W values 

of 0.20 for the α+ and 0.16 for the α−. This is surprising, given the similarity of the 

OpAL models and equally surprising for the qLearn2 models. However, it is notable 

that the same strong correlations have been found between the OpAL and OpALS 

α+ and α− in both this task dataset and that of the Decks task. Once again, the 

correlations between these parameters within each model are also quite low in the 

case of the qLearn2 models (0.07 for qLearn2 and 0.03 for qLearn2E) and for the 

OpAL models (values ranging from -0.2 and 0.1), suggesting that these weak 

correlations are not due to the difficulty in teasing apart the influence of the α+ 

and α− parameters. 
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Figure 7-17 The correlations between recovered 𝛼 parameter values from the Probabilistic 

stimulus task participants. A dark blue oval pointing to the top right signifies a strong 

positive correlation, a white circle no correlation and a dark red oval pointing to the top 

left signifies a strong negative correlation.  
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Figure 7-18 The correlations between recovered parameter values from the Probabilistic stimulus 

task participants. A dark blue oval pointing to the top right signifies a strong positive correlation, 

a white circle no correlation and a dark red oval pointing to the top left signifies a strong 

negative correlation. Left: The critic learning rate parameters, 𝛼, in the critic only q-learning 

models Right: The critic learning rates from models with both actor and critic learning rates. 

Figure 7-19 The correlations between recovered parameter values from the Probabilistic 

stimulus task participants. A dark blue oval pointing to the top right signifies a strong positive 

correlation, a white circle no correlation and a dark red oval pointing to the top left signifies a 

strong negative correlation. Left: The learning rate for positive rewards Right: The learning 

rate for negative rewards. 
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The same analysis was performed for the β and ε parameters, as shown in Figure 

7-20 and Figure 7-21. The recovered ε parameters have strong correlations, as 

shown by the Kendall’s W value across the models of 0.78. This contrasts with the 

large number of weak correlations for β, with a Kendall’s W of 0.33, acting as 

further indications that the ε-greedy function provides more consistent parameter 

recovery than that of SoftMax. The only β parameters that are strongly correlated 

to each other are those for the Q-learning class of models shown in Figure 7-20, 

with a combined Kendall’s W of 0.61, dragged down by the consistently weak 

correlations of the β parameter in tdr with the other model β parameters.  

Figure 7-20 The correlations between recovered parameter values from the Probabilistic 

stimulus task participants. A dark blue oval pointing to the top right signifies a strong 

positive correlation, a white circle no correlation and a dark red oval pointing to the top 

left signifies a strong negative correlation. Top right: The 𝛽 parameters for the Q-learning 

models Bottom left: The 𝛽 parameters in all models. 
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The weakness in correlations between parameters that perform essentially the 

same function in different models might be explained by differences in the 

capacity of each model to match the performance of each participant. A model 

that struggles to explain the actions of most participants will have less difference 

between fit quality measure of different parameter combinations, resulting in 

more noise in the final fits.  

Another potential source of noise may stem from differences in model 

complexities resulting in varying difficulties in fitting models. Models with more 

parameters or more layers, i.e. more degrees of freedom, will require more 

information to fit as accurately as simpler models. This could explain the poor 

performance of the OpAL and qLearnK models that have the most parameters. It 

could also explain the surprisingly poor performance of the biased random model, 

relative to the pure random model, as for this task the biased random model had 

six parameters, one for each character. 

One confounding factor in describing a models degrees of freedom is that 

recovered model parameters are known to be correlated (Schmiedek et al., 2007). 

Figure 7-21 The correlations between recovered parameter values from the Probabilistic 

stimulus task participants for models with an 𝜀 parameter. A dark blue oval pointing to 

the top right signifies a strong positive correlation, a white circle no correlation and a 

dark red oval pointing to the top left signifies a strong negative correlation.  
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In chapter 4, the distribution of errors in parameter recovery for the qLearn model 

parameters α and β suggested that the recovery process resulted in the 

parameters being inversely correlated. For this task dataset, the correlation was 

found to be -0.42, matching previous results. By contrast, for qLearnE, the 

correlation between α and ε was found to be 0.22, which adds evidence to ε-greedy 

being more recoverable than the SoftMax parameter β. However, models with 

large numbers of parameters. Such as randomBias, shown in Figure 7-22, do not 

show strong correlations between any of the parameters, suggesting that these 

correlations have the potential to be more pronounced in models with only two or 

three parameters. 

 

Figure 7-22 The correlations between recovered parameter values from the Probabilistic 

stimulus task participants for the model randomBias. A dark blue oval pointing to the 

top right signifies a strong positive correlation, a white circle no correlation and a dark 

red oval pointing to the top left signifies a strong negative correlation.  
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7.3 MODEL PARAMETER RELATIONSHIPS TO EXTRAVERSION 

Having found correlations between model fits and choose A, but not between 

model fits and extraversion, an examination was made of a possible relationship 

between the recovered α parameter and a measure of the extraversion 

phenotype. Such a correlation was found with the Decks task datasets, in chapter 

6.3. As the extraversion measure of EPQ-R was also recorded for this dataset, the 

same analysis could be performed here as had been for the Decks dataset, 

comparing the extraversion measures for the participants to the fitted parameter 

values for Q-learning class of models, with only one learning rate parameter and 

without separate actor and critic components, shown in Figure 7-18 (left). These 

are: qLearnCorr, qLearnECorr, qLearnE, qLearnF, qLearn, td0, tdE and tdr. The 

mean of the α values was calculated for each participant from those recovered 

from the Q-learning class of models. A Spearman's rank correlation was performed 

between the mean α value for each participant and the participant’s measured 

extraversion value of EPQ-R. 

To remove some of the noise from this correlation, those fits that did not have 

strong evidence of being better than a pure random model or who had one or 

more parameter close to their parameter boundaries were removed before 

calculating the mean α values for each participant. 

To reduce the potential of any intra-model correlations between α and β or ε 

affecting the correlations, separate means were also calculated for the subset of 

models with a β parameter and for those with an ε parameter. This split is 

especially important as the correlations between α and β, and α and ε are in the 

opposite directions, negative for α and β and positive for α and ε. Estimates of 

those models mean β and ε parameters were also calculated for each participant. 

Partial correlations were performed between the extraversion measure and each 

of these α parameter estimates. 

In total this resulted in six correlations between participant estimates of α and the 

extraversion measure of EPQ-R, shown in Table 7-3. These show a negative 

correlation between α and extraversion for the well recovered α values and 



185 

positive correlations when all recovered values are used. The α values calculated 

from models with β and only good model fits was the only one to have a significant 

Bonferroni-corrected correlation, as was the case for the Decks task dataset.  

Participant model fit 

parameters used 

All Good edge & Bayes 

𝜌 (DF) p 𝜌 (DF) p 

Q-learning models 0.071 (71) 0.558 -0.060 (24) 0.781 

Q-learning models with 𝛽 0.143 (68) 0.237 -0.703 (18) 0.001 

Q-learning models with 𝜀 0.024 (68) 0.845 -0.145 (14) 0.592 

Table 7-3 The correlations between each participant’s averaged Q-learning model 

parameter 𝛼 and the extraversion measure of EPQ-R. The 𝛼, 𝛽 and 𝜀 values in these 

correlations are averaged, for each participant, across the relevant subset of models. 

The 𝛽 and 𝜀 subset correlations were partial correlations whereas the others 

were simple correlations. 

7.4 DISCUSSION 

The Probabilistic Selection task tests participant’s capacity to apply an 

understanding of reward likelihoods from pairs of characters to novel pairs of 

those characters. The 71 students were found to have not been given sufficient 

trials to fully learn the reward likelihoods in the initial pairings before being shown 

the new pairings. This can be seen in participant’s weaker performance at choose 

A and avoid B than in published studies with this task, where participants 

performed more learning phase trials. Extraversion, as measured by the EPQ-R, 

was not found to correlate with choose A, avoid B.  

The models were evaluated for their performance in producing the same action 

choices as those of the participants, with the baseline for their fit quality being set 

as the performance of the pure random model. The model fits were performed on 

all the action choice trials performed in the learning and test phases by each 

participant. None of the models provided significantly better fits for all the 

participants than the pure random model. The model fit accuracy varied by type of 
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model, with the randomBias and Bayesian inspired models providing some of the 

best fits, notably BPV. The OpAL models provided the worst fits.  

Correlations were found for most models between fit quality and choose A, 

suggesting that were the participants to be given more trials, which would be 

expected to improve choose A performance, it is likely that many of these models 

would fit the participant’s actions better than the pure random model.  

α parameters were inconsistently recovered with most being weakly correlated. 

The ε-greedy parameters were found to be recovered quite consistently across all 

the models and much more consistently than the β parameter from equivalent 

models using softmax. The strength of correlations between β parameters was 

found to be related to the type of model. The most consistently recovered β 

parameters were those of the Bayesian and Q-learning variants.  

A strong correlation was found for the participants who were well fitted by at least 

one Q-learning model using softmax and their EPQ-R extraversion measure. 

Although this correlation was with a very small sample of participants, N=18, this 

was the same correlation and direction as was found in the larger sample of 

participants with the Decks task, N=116, further suggesting that this correlation 

between α and extraversion might be a real effect. 

It is worth noting that these results reflect the performance of the models only as 

implemented. There may be other implementations of the same models that 

perform better or worse with slight tweaks to their implementation, to their 

starting parameter values or their parameter upper bounds. 
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8 WEATHER TASK 

The Weather task is a category learning task based on one described by Gluck & 

Bower (1988) and later adapted by Knowlton, Squire, & Gluck (1994). It asks 

participants to associate a series of cues with one of two outcomes. One to three 

cue cards, from a set of four cards, are presented to the participant in each trial. 

The participant must decide which one of the two possible outcomes the displayed 

cards are most likely associated with. Once the participant decides, they are then 

told if they were correct or not. The cues each have a probabilistic relationship 

with the two outcomes, with this this version of the task having novel probabilistic 

relationship, with the probability of an outcome varying depending on the 

combination of cues displayed, as described in Table 8-1. For example, if the first 

two cues are displayed, then the first outcome is guaranteed. If only one of them is 

displayed, then the first outcome will be the correct one 75% of the time. Across 

the whole task, the first two cues having a 64% chance of being associated with the 

first outcome and the second two having the inverse.  

In the first phase of the task, the learning phase, participants are given feedback on 

if their choice was correct. In the second phase, the testing phase, participants are 

not given any feedback. The sequence of cues and the outcomes were fixed 

beforehand and are shown in Figure 8-2. The learning phase contains four 

examples of each of 14 possible cue pairs, totalling 56 trials. The test phase 

contains one example of each of the 14 possible cue pairs.  

Figure 8-1 The Weather task consists of a series of trials where one to three cue cards, 

from a set of four cards, are presented to the participant. The participant must decide 

which of the two outcomes the cues are more likely to predict.  
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Cue group type 
Most likely outcome for each 

active cue combination 

Probability of most 

likely outcome 

Same pair 
1100 -> action 1 

0011 -> action 2 
1 

Single 

1000 -> action 1 

0100 -> action 1 

0010 -> action 2 

0001 -> action 2 

0.75 

Triple cues 

1110 -> action 1 

1101 -> action 1 

1011 -> action 2 

0111 -> action 2 

0.75 

Opposing pair 

1010 -> either action 

1001 -> either action 

0110 -> either action 

0101 -> either action 

0.5 

Table 8-1 The probabilities of most likely outcome for each possible combination of 

cues. These are grouped by type of combination. 

The cues and outcomes were presented in two different forms: in its traditional 

form as a Weather prediction task, shown in Figure 8-1, and as a disease prediction 

task. The Weather prediction task used abstract symbol cards for the prediction of 

sunshine and rain. The disease prediction form had participants predicting 

incidences of two fictitious diseases, Merlitis and Calditis, based on four symptoms 

or cues: skin rash, vomiting, fever and dry cough. There was no difference in cue 

sequence between the two forms of the study. Participants did not have time limits 

on trial responses.  

The datasets were collected using a computer program created using Microsoft 

DOS for the pilot and then recreated in MATLAB for the other datasets. 

Participant’s pressed the “c” or “m” keys to express their choice of outcome in trial. 

During the learning phase participants were rewarded for correct predictions with 

“Well Done!” printed on the screen and a monetary reward, which varied between 

studies. During the test phase participants did not receive feedback but did 
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continue to receive the monetary reward without it being displayed to them. It was 

then delivered to them at the end of the task.  

Figure 8-2 The sequence of cues shown to the participants during each trial. From top to bottom 

these were used in the Australian dataset, the Goldsmiths dataset and the two sequences used 

in the pilot. The ovals indicate which cues were visible for each of the 56 learning trials and 14 

test trials. The colour of the cue ovals in the feedback block denote which of the two 

weathers/diseases were predicted by the cues in that trial. The black dotted line marks the 

transition from learning trials to test trials.  
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8.1 DATA PROPERTIES 

For this task, three sets of participant data were available. The first dataset was a 

pilot study performed in 1999 at St. George’s Hospital Medical School with 40 

students performing an active version of the task, where participants are explicitly 

asked to provide their prediction for each trialstep. The results of this study are 

discussed further in (Pickering, 2004). For the subsequent two datasets, the 

participants performed both the active version of the task and a passive, 

observational version, where they observe during the learning phase and only 

respond during the testing phase. The first dataset, collected at Goldsmiths, 

university of London, recruited 71 participants from the undergraduate psychology 

students. The final dataset, collected at the University of Melbourne in Australia, 

recruited 124 participants from the local general public through social media 

platforms and notice boards. These were paid AU$15 for their participation. Only 

the active form of the task will be examined here. 

Each correct response was rewarded with the feedback ‘Well Done!’ and with a 

monetary incentive of AU$0.10 in the Australian study or £0.1 in the Goldsmiths 

study and £0.02 in the pilot study. This was displayed on the trial feedback screen. 

While feedback was not provided in the testing phase, participants did continue to 

receive the same renumeration for the correct responses without it being 

displayed to them until the end of the test phase.  

As the datasets were collected using the same version of the task, they were 

analysed together. In total there were 233 participants with ages from 18 to 59, 

with a distribution shown in Figure 8-3. 131 identified as female, 100 male and 2 

other. 

Figure 8-3 The distribution of participant ages for all three datasets.  
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One participant chose the same action for all but one of their action choices. This 

participant will therefore be excluded from the rest of this analysis. 

The participants did not favour one option over another, with the distribution of 

average action choices across the datasets having a mean of 0.51, standard 

deviation of 0.08 and skew of 0.33. When grouped by type of cue group, as 

described in Table 8-1, participants can be seen, in Figure 8-4, to have mostly 

learnt the relationship between the cue combinations and the outcomes, as the 

same pair cue stimuli have more frequent best responses than the single cue 

stimuli or the triple cue stimuli, and the opposing pair cues were treated as 

unbiased random. Significant positive correlations were found between 

participant’s performance at learning the optimal responses for one type of cue 

group and another. Unsurprisingly, there were no correlations between the 

opposing cue pair group and any of the others. However, differences were found 

between the distributions of all these cue groups. Those of same pair cue group 

were higher than those of the single cue group t(413)=3.47, p=6.26e-4, the single 

cue group were higher than those of triple cue group t(464)=2.44, p=1.54e-2 and 

triple cue group were higher than those of opposing pair cue group t(446)=8.81, 

p=2.84e-16. It is notable that there was a difference between the single and triple 

cue groups, as their reward probabilities were identical. These learnt outcome 

relationships will be revisited when discussing the model fit qualities in chapter 

8.2.2.  

No significant correlations were found between extraversion as measured by the 

EPQ-R and a participant’s frequency of best responses for a given cue group.  
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Figure 8-4 A pair plot of the proportion choices made by each participant that matches 

with the most likely outcome, for each type of cue combination, described in Table 8-1, 

in the trials with such a combination. The black dotted vertical line in the histograms 

denotes the mean and the pale blue bar surrounding it covers one standard deviation 

around the mean. The grey lines through the scatterplots are the linear regression lines, 

shown only for significant correlations (p < 0.001). 
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8.2 FITTING THE MODELS TO THE DATA 

As the task rewards were either 0 or 1, within the models, the initial expected 

reward for both choices were set to 0.5. The upper bounds for infinitely bounded 

model parameters were truncated. The softmax β parameter was limited to 30, the 

Kalman model parameters 𝜎𝛼
2 and 𝜎𝜆

2 were limited to 150 and the OpALS and 

OpALSE saturation parameters 𝑀 were set to 49. The models were fitted to the 

participant’s actions over both the learning and test phases.  

During the fitting process, the models qLearnF, td0, tdr and OpAL and qLearnMeta 

experienced numerical overflows for certain parameter combinations, as 

discussed for OpAL in chapter 3.4. The parameter combinations where there has 

been an overflow are treated as worse than random fits, that have a probability of 

0.5 for each action choice. For fits with overflows, a probability of 0.4 was returned 

for each action choice. If these provided a plateau of global minima, then the 

model could be discarded as being a worse representation of the participant’s 

actions than a purely random model.  tdE took too long to fit for certain 

participants and exceeded the maximum number of fitting iterations allowed. In 

these cases, the recovered parameter set is the best fitting one found so far. 

8.2.1 Boundary recovered parameters 

The crudest measure of acceptable model fits is to measure the number of them 

that intersect with any of the parameter validity boundaries. In almost all cases a 

boundary parameter value is equivalent to removing an element of a model, 

thereby reducing it to a simpler model. To account for numerical errors in the 

fitting, a boundary, or edge, fit is considered to have occurred if the parameter is 

within 0.1% of either side of its range. This was chosen to be close enough to the 

boundaries to be unlikely to interfere with good parameter recovery, while still 

accounting for the approximate nature of numerical fitting. 
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The results from fitting the Weather task datasets, in Figure 8-5, show the 

proportion of participants with recovered parameters on the edge of the 

parameter boundaries. The number of participants whose fits contained boundary 

parameter values varied across the different models from 1% to 33% of the 

sample, with the epsilon-greedy models having fewer, no more than 9%. There was 

no discernible pattern linking the number of edge fits and the type of learning in 

the model or the number of parameters.  

Figure 8-5 The proportion of the 234 participants fitted to each model whose fits had at least 

one recovered parameter within 0.1% of its boundary. The models have been grouped into 

those using softmax (top) and those using epsilon-greedy (bottom). 
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8.2.2 Goodness of model fits 

 A model’s performance at fitting a participant’s actions can be compared using a 

Bayes factor; comparing its performance to that of the random choice model, as 

described in chapter 2.2. For the Weather task dataset, using a Bayes factor of 20 

as a criterion for strong evidence for a model fit, 100 of the 234 participants had 

strong evidence for at least one model fitting their actions well. This can be seen in 

Figure 8-7, and using the normalised Bayes factor, in Figure 8-6. As with the Decks 

task in chapter 6.2.2 and the Probabilistic Selection task in 7.2.2, there does appear 

to be a similarity in Bayes factor value distributions within model classes, with the 

OpAL models having the weakest evidence that they are better than a purely 

random model, each having strong evidence for at most 31 participants. The 

Bayesian inspired models have some of the strongest evidence, with BPV having 

strong evidence for better fitting 77 participants. As the stimulus cues in this task 

are evenly balanced in their associated correct action choices, the randomBias 

Figure 8-6 The distribution of the values of the fit quality Bayes factor from fitting the 

Probabilistic Selection dataset when compared to a pure random model. The dashed line marks 

a Bayes factor of 20, above which there is strong evidence for the model. On the right are the 

Group Bayes Factors for the model, defined in equation 2.9. 
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model would be expected to perform not much better than a pure random model 

and in fact, only 6 participants fits had a Bayes factor above 20. Models on average 

had around 40 participant fits with a Bayes factor above 20, with 18 participants 

having strong evidence for at least 20 of the 25 models. 

Figure 8-7 The distribution of the values of the fit quality normalised Bayes factor from fitting 

the Probabilistic Selection dataset when compared to a pure random model. Fits with values 

below 1 have a Bayes factor of over 20, so have strong evidence that the model can match the 

participant’s actions better than a pure random model. 
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The Bayes factor values for each participant’s model fits can be compared between 

models, as shown in Figure 8-9. In this figure, identical Bayes factors for the same 

participant are located along the diagonal line in each small plot. This is the case 

for almost all participants when comparing, for example, the OpAL and the OpALS 

models, as shown more clearly in Figure 8-8. If one model fits a participant 

consistently better than another model, then the participant will be shown away 

from the diagonal line. For example, the qLearn model fits have stronger evidence 

than those of OpAL_H, as they are on the qLearn side of the diagonal line. 

Nevertheless, they are still related, as most of the dots form a line that is parallel to 

the diagonal line of equal Bayes factor. The further away a dot is from the diagonal 

line, the greater the difference in the Bayes factors of the two models for that 

participant data. The horizontal and vertical lines mark a Bayes factor of 20 for the 

fit of the model axis they intersect with, i.e. the vertical axis model fit values are 

Figure 8-8 A selection of expanded miniplots from Figure 8-9 
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associated with the horizontal dashed line. Therefore, for most participants, the 

Bayes factor values for the randomBias model relative to a pure random model 

are lower than 20, whereas the Bayes factor values of the tdE model have a broad 

range of values relative to the pure random model. This results in the dots in their 

Figure 8-9 A comparison between models of the Bayes factor values for each participant when 

compared to a pure random model. Both the horizontal and vertical axes of each model comparison 

use a log scale ranging from 10−5 to 1018. The horizontal and vertical lines denote a Bayes factor of 

20 and the diagonal line follows the line of equal value for both axes. The dots are coloured with the 

inter-model Bayes factor, such that a Bayes factor of 20 signifies that there is strong evidence that 

the vertical model fits better the participant’s actions than the horizontal model. 
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comparative plot not only being mostly on the tdE side of the diagonal line, but 

also beyond the horizontal dashed line. 

The relative difference between model fits be expressed as a between-model 

Bayes value, calculated using the model fit BIC values by taking inspiration from 

equations 2.4 and 2.8 in chapter 2.2, so that: 

ℬ =  2
BIC𝑚𝑜𝑑𝑒𝑙 1−BIC𝑚𝑜𝑑𝑒𝑙 2

2  

These are shown in Figure 8-9 by the colour of each participant’s dot, with the 

vertical model as model 2 and the horizontal model as model 1. Therefore, the 

participant dots with a Bayes factor of 20 or higher, coloured blue, have strong 

evidence that the vertical model is a better fit for the participant’s actions than the 

horizontal model. Conversely, with a Bayes factor of 1/20 or lower, coloured red, 

there is strong evidence that the horizontal axis model is a better fit for the 

participant’s actions than the vertical axis model. The median values for each inter-

model comparison are shown in Figure 8-10.  This highlights the poor performance 

of the OpAL models, especially OpAL_H and OpAL_HE, and qLearnK to fit 

participant data on this task. BPV can be seen to perform better than all the other 

models. There are occasions where Figure 8-10 can be misleading, such as when it 

suggests that there is somewhat strong evidence for BP to fit the participants 

better than OpALE, with a median inter-model Bayes factor of 64, whereas Figure 

8-9 shows that there is strong evidence that OpALE and BP each fit different 

participants well.  

Another approach to comparing the model’s performance is to examine the 

expectation of the model frequencies, 𝐸𝐹, as discussed in chapter 2.4. This assess 

the relative frequencies with which two models could have generated participant 

data in the dataset. The probability that this relative frequency is above chance is 

estimated using the protected exceedance probability (Rigoux et al., 2014). Both 

the expectation of the model frequencies and the related protected exceedance 

probability were calculated using the VBA toolbox (Daunizeau et al., 2014). This 

used as inputs the BIC values calculated for each model’s fit to each participant’s 

task action sequence. These comparisons can be seen in Figure 8-11. This 
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reinforces our previous conclusion that the BPV model has the strongest evidence, 

followed by qLearn and qLearnE. 

When removing all the edge fits found in chapter 8.2.1, the distributions of fit 

qualities do not change significantly, suggesting that model fits that result in 

parameters recovered at a boundary do not have particularly higher or lower fit 

quality values than others.  

 

 

Figure 8-10 The median inter-model Bayes values for the Probabilistic Selection dataset 

participant fits. High values signify that the model on the vertical axis had a lower BIC 

value, and so a better match of the participant’s actions, than the horizontal axis model. 
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To provide an estimate of the number of participant fits that may be considered to 

have good fits, we can use the proportion of participants with a fit that has a Bayes 

factor of 20 or more, and with recovered parameters not on the edge of the 

parameter boundaries. The proportion of participants with not good fits, for each 

model, can be seen in Figure 8-12. While all of these models had fewer than half of 

their participants with good fits, the best performing models are the qLearn 

variants and BPV. The success of the qLearn variants was found with both the 

Decks task, in chapter 6.2.2, and the Probabilistic Selection task, in chapter 7.2.2 

Figure 8-11 The expectation of the model frequencies (EF) and the associated protected 

exceedance probabilities (pEP) for model pairs. Each pair of circles shows the EF and 

pEP for the vertical axis model relative to that of the horizontal axis model. The outer, 

larger circle is the EF and the inner circle is the pEP. Both are scaled between [0,1]. 
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and the success of the BPV model was also seen in the Probabilistic Selection task, 

but not the Decks task. 

Participant’s model fit quality was compared to the frequency with which they 

predicted the correct outcome when presented with a same pair cue stimuli, in 

Figure 8-13 finding that there is a strong correlation across almost all models. As 

correlations had been found in chapter 8.1 between participant’s frequency of 

good responses to different cue groups, by transitivity this correlation can be 

extended to the other cue groups. This suggests that only those participants who 

learnt the relationships between cues and outcomes were well fitted by the 

majority of models. Accurate parameter recovery could therefore be expected for 

versions of the task where more participant actions were well fitted to models.  

Figure 8-12 The proportion of the 234 participants fitted to each model whose fits had at 

least one recovered parameter within 0.1% of its boundary and the Bayes factor of the fit 

was below 20 when compared to the pure random model. The models have been 

grouped into those using softmax (top) and those using epsilon-greedy (bottom). 



203 

8.2.3 Parameter correlations 

If the recovered model parameters are identifying a feature of a participant’s 

learning and decision-making process then we would expect that in different 

models the same parameter, performing the same task, would have very similar 

values. The correlations between parameters across models should therefore be 

high for parameters performing the same role in different models and low 

between parameters performing different roles, especially those in the same 

model. In this section, the correlations of the three most common parameters are 

Figure 8-13 Proportion of same pair cues stimuli choices made by each participant that 

matches with the most likely outcome, as described in Table 8-1, compared to the model fit 

Bayes factor when compared to a pure random model. The star denotes a Bonferroni corrected 

Spearman’s rank correlation with a p <0.05. The pink dashed line denotes a Bayes factor of 20. 
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examined: α, β and ε. A plot of the full comparison between model parameters can 

be seen in Appendix II. The correlations for the learning rate parameter, α, shown 

in Figure 8-14, need to be broken down further, as learning rates are used for 

learning various estimators. Overall, these are of similar strength to those found 

for the Probabilistic Selection task, Figure 7-17, and weaker than those found for 

the Decks task, Figure 6-18.  

One subgroup of α parameters is those of the Q-learning class of models, with only 

one learning rate parameter and without separate actor and critic components, as 

described in chapters 3.2, 3.5, 0 and 4.8. Collectively, their correlations result in a 

Kendall’s W, a measure of collective concordance, of 0.47, which suggests a weak 

correlation, but stronger than that of the Probabilistic Selection task, 0.31 and 

weaker than that of the Decks task, 0.68. Looking at the individual model 

parameter pair correlations, shown in Figure 8-15 they have a similar arrangement 

of strong and weak correlations to those found for both of the previous datasets, 

Figure 6-19 and Figure 7-18. The correlations between the critic 𝛼 parameters, also 

shown in Figure 8-15, show a similar strength distribution, albeit with a higher 

lower bound of correlation strength. 

As with α, correlations could be expected for the α+ and α− parameters found in 

the OpAL models and qLearn2 variants. However, as can be seen in Figure 8-16, 

there are only weak correlations within these groups parameters, with Kendall’s W 

values of 0.20 for the α+ and 0.15 for the α−. This is surprising, given the similarity 

of the OpAL models and equally surprising for the qLearn2 models, but has been 

consistent across the three tasks, with the Decks Kendall’s W values of 0.16 for α+ 

and 0.15 for α− and the Probabilistic Selection task Kendall’s W values of 0.20 for 

the α+ and 0.16 for the α−. This consistency continues with the parameter pairs 

that have strong and weak correlations, such as OpAL and OpALS α+ and α−. Once 

again, the correlations between parameters within each model are also quite low 

for both qLearn2 models (-0.02 for qLearn2 and 0.03 for qLearn2E) and for the 

OpAL models (values ranging from -0.25 and 0.1). It is therefore unlikely that these 

weak correlations are due to a difficulty in teasing apart the influence of the α+ and 

α− parameters. 
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Figure 8-14 The correlations between recovered 𝛼 parameter values from the Weather 

task participants. A dark blue oval pointing to the top right signifies a strong positive 

correlation, a white circle no correlation and a dark red oval pointing to the top left 

signifies a strong negative correlation. 
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Figure 8-15 The correlations between recovered parameter values from the Weather task 

participants. A dark blue oval pointing to the top right signifies a strong positive correlation, a 

white circle no correlation and a dark red oval pointing to the top left signifies a strong 

negative correlation. Left: The critic learning rate parameters, 𝛼, in the critic only q-learning 

models Right: The critic learning rates from models with both actor and critic learning rates. 

Figure 8-16 The correlations between recovered parameter values from the Weather task 

participants. A dark blue oval pointing to the top right signifies a strong positive correlation, a 

white circle no correlation and a dark red oval pointing to the top left signifies a strong 

negative correlation. Left: The learning rate for positive rewards Right: The learning rate for 

negative rewards. 
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The same analysis was performed for the β and ε parameters, as shown in Figure 

8-17 and Figure 8-18. The recovered ε parameters have strong correlations, as 

shown by the Kendall’s W value across the models of 0.90. This contrasts with the 

large number of weak correlations for β, with a Kendall’s W of 0.37, acting as 

further indications that the ε-greedy function provides more consistent parameter 

recovery than that of SoftMax. The only β parameters that are strongly correlated 

to each other are those for the Q-learning class of models shown in Figure 8-17, 

with a combined Kendall’s W of 0.74 

Figure 8-17 The correlations between recovered parameter values from the Weather task 

participants. A dark blue oval pointing to the top right signifies a strong positive 

correlation, a white circle no correlation and a dark red oval pointing to the top left 

signifies a strong negative correlation. Top right: The 𝛽 parameters for the Q-learning 

models Bottom left: The 𝛽 parameters in all models. 
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The degree of variability in correlation strengths between parameters performing 

similar tasks in different models may be explained by the differences in the 

capacity of models to fit the performance of the participants. A model that 

struggles to adequately explain the actions of most participants will have similar 

log likelihood values for different parameter combinations, resulting in more noise 

in the final recovered parameter values. 

Another potential source of noise may stem from differences in model 

complexities resulting in varying difficulties in fitting models. Models with more 

parameters or more layers, i.e. more degrees of freedom, will require more 

information to fit as accurately as simpler models. This could explain the poor 

performance of the OpAL and qLearnK models that have the most parameters.  

One confounding factor in describing a models degrees of freedom is that 

recovered model parameters are known to be correlated (Schmiedek et al., 2007). 

Figure 8-18 The correlations between recovered parameter values from the 

Weather task participants for models with an 𝜀 parameter. A dark blue oval 

pointing to the top right signifies a strong positive correlation, a white circle no 

correlation and a dark red oval pointing to the top left signifies a strong negative 

correlation. 
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In chapter 4, the distribution of errors in parameter recovery for the qLearn model 

parameters α and β suggested that the recovery process resulted in the 

parameters being inversely correlated. For this task dataset, the correlation was 

found to be -0.45, matching previous results. By contrast, for qLearnE, the 

correlation between α and ε was found to be 0.22, which adds evidence to ε-greedy 

being more recoverable than the SoftMax parameter β. However, models with 

large numbers of parameters. Such as OpALS, shown in Figure 7-22, do not show 

strong correlations between any of the parameters, suggesting that these 

correlations have the potential to be more pronounced in models with only two or 

three parameters. 

Figure 8-19 The correlations between recovered parameter values from 

the Weather task participants for the model OpALS. A dark blue oval 

pointing to the top right signifies a strong positive correlation, a white 

circle no correlation and a dark red oval pointing to the top left signifies a 

strong negative correlation. 
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8.3 MODEL PARAMETER RELATIONSHIPS TO EXTRAVERSION 

Having found correlations between the recovered α parameter and a measure of 

the extraversion phenotype with the Decks task datasets, in chapter 6.3, and with 

the Probabilistic Selection task, in chapter 7.3, this was also examined for the 

Weather task. As the extraversion measure of EPQ-R was also recorded for this 

dataset, the same analysis could be performed here as had been for the others: 

comparing the extraversion measures for each of the participants to the combined 

fitted parameter values for Q-learning class of models, with only one learning rate 

parameter and without separate actor and critic components, shown in Figure 8-15 

(left). These are: qLearnCorr, qLearnECorr, qLearnE, qLearnF, qLearn, td0, tdE and 

tdr. The mean of the α values was calculated for each participant from those 

recovered from the Q-learning class of models. A Spearman's rank correlation was 

performed between the mean α value for each participant and the participant’s 

measured extraversion value of EPQ-R. 

To remove some of the noise from this correlation, those fits that did not have 

strong evidence of being better than a pure random model or who had one or 

more parameters close to their parameter boundaries were removed before 

calculating the mean α values for each participant. 

To reduce the potential of any intra-model correlations between α and β or ε 

affecting the correlations, separate means were also calculated for the subset of 

models with a β parameter and for those with an ε parameter. This split is 

especially important as the correlations between α and β, and α and ε are in the 

opposite directions, negative for α and β and positive for α and ε. Estimates of 

those models mean β and ε parameters were also calculated for each participant. 

Partial correlations were performed between the extraversion measure and each 

of these α parameter estimates. 

In total this resulted in six correlations between participant estimates of α and the 

extraversion measure of EPQ-R, shown in Table 8-2. These show some weak 

positive and negative correlations between α and extraversion. The α values 

calculated from models with β had the strongest correlations and this improved 
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when only good model fits were included, as was found with the previous two task 

datasets. However, unlike those task datasets, none of the correlations were 

significant.  

Participant model fit 

parameters used 

All Good edge & Bayes 

𝜌 (DF) p 𝜌 (DF) p 

Q-learning models 0.032 (235) 0.622 0.050 (97) 0.625 

Q-learning models with 𝛽 -0.088 (232) 0.177 -0.171 (82) 0.120 

Q-learning models with 𝜀 0.072 (232) 0.275 -0.069 (78) 0.543 

Table 8-2 The correlations between each participant’s averaged Q-learning model 

parameter 𝛼 and the extraversion measure of EPQ-R. The 𝛼, 𝛽 and 𝜀 values in these 

correlations are averaged, for each participant, across the relevant subset of models.  

The 𝛽 and 𝜀 subset correlations were partial correlations whereas the others 

were simple correlations. 

8.4 PARAMETER RECOVERY ACROSS TASKS 

One of the key assumptions underlying this thesis was that model parameters 

represent stable properties of participant’s probabilistic learning and decision-

making processes, as discussed in chapter 1.2. This can be tested by assessing the 

consistency of recovered parameters for the same participants across different 

tasks. The participants who performed the Probabilistic Selection task also 

performed the Weather task, allowing their recovered parameters to be compared, 

as shown in Figure 8-20. If these recovered parameter values are similar, a plot of 

the recovered parameter values would be expected to form a diagonal line from 

the lowest parameter values (bottom left) to the highest (top right) of a subfigure. 

For these datasets, parameter recovery does not seem to be consistent across 

tasks for any of the model parameters examined. The strongest correlation 

between recovered parameters across tasks is found for 𝜀 in OpALSE, with 

spearman rank 0.34 (p=0.004). This can be seen in an expanded subfigure in Figure 

8-21. As in both task datasets strong correlations were found between the same 

parameters in different models, notably those of 𝜀, seen in Figure 7-21 and Figure 

8-18, it could be argued that the issue is not poor parameter recovery. 
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Figure 8-20 A comparison of the recovered parameters for the same participants across the 

Weather and Probabilistic Selection tasks. Each sub-figure plots recovered values for a parameter 

from a given model, with the values recovered from the Weather task shown on the horizontal 

axis and those of the Probabilistic Selection task on the vertical axis. The visible axes range are 

the same as the support used when fitting the model parameter being plotted. The diagonal 

dotted line follows the line of equal parameter value. 
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Figure 8-21 A selection of subfigures, from Figure 8-20, comparing the recovered 

parameters for the same participants across the Weather and Probabilistic Selection 

tasks. The visible axes range are the same as the support used when fitting the model 

parameter being plotted. The diagonal dotted line follows the line of equal parameter 

value.  
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However, as was seen in chapter 4.4, fitting an action sequence with a model 

recovers the same parameter values consistently, even when these are not close to 

the generating parameters. It is therefore plausible that the recovered values in 

these two datasets are overfitted to the particular participant action sequence, due 

to the low number of trials and small number of action choices each trial. This is 

further supported by the low Bayes factors for the model fits compared to the 

pure random model, suggesting that there is not enough evidence to consider 

these recovered parameters as accurate.  

This is supported by the results of chapter 5, where it was found that the recovery 

of the 𝛼 for qLearn and qLearnE were worse, under certain generating 𝛽 and 𝜀 

values, than if they had been randomly chosen from a uniform distribution. This 

was despite the action sequences being longer than those used in the participant 

datasets: 300 trials compared to 120 for the Probabilistic Selection task and 70 for 

the Weather task.  

If the low Bayes factors were an indication of the poor recovered parameter 

correlation between tasks, it would be expected that those models with the 

strongest evidence would have the highest correlations. Looking at the models 

with the strongest evidence compared to a pure random model, BPV, qLearn and 

qLearnE, shown in expanded subfigures in Figure 8-21, does not provide much 

support for this, as their respective parameter correlations are still low.  

One way of quantifying how poor the correlations are is by comparing the 

relationship between the recovered parameters to our ideal: a linear relationship 

with an intercept of zero. This can be done by calculating the sum of squared 

residuals (SSR). To make these easier to interpret, before calculating the residuals, 

the parameter values will be normalised to the support [0,1], i.e. for 𝛽 values will 

be transformed from ranging between [0,30] to between [0,1]. Comparing the SSR 

for qLearn and qLearnE, as shown in Table 8-3, the residuals are found to be 

smaller for qLearnE than qLearn. This is consistent with the improved parameter 

recovery of epsilon greedy found in chapter 4.7.2, suggesting that improved 

parameter recovery does result in a stronger linear correlation. 
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 𝛼 𝛽/𝜀 

qLearn 19.5 15.2 

qLearnE 13.4 4.6 

Table 8-3 The normalised sum of squared residuals when compared to a best fit line of 

equal parameter values 

A comparison can also be made of each participant’s average recovered model 

parameter values calculated for the comparisons with extraversion in chapters 7.3 

and 8.3, shown in Figure 8-22. These do not show any stronger correlations than 

those of the individual recovered model parameters for the two tasks. 

  

Figure 8-22 A comparison of the combined recovered model parameters for the same 

participants across the Weather and Probabilistic Selection tasks. Each sub-figure 

plots the combined recovered values for a parameter, with the values recovered from 

the Weather task shown on the horizontal axis and those of the Probabilistic 

Selection task on the vertical axis. The visible axes range are the same as the support 

used when fitting the model parameter being plotted. The diagonal dotted line 

follows the line of equal parameter value. 
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8.5 DISCUSSION 

The Weather task tests participant’s ability to learn how different combinations of 

stimulus cues affects the likelihood of each outcome. Three sets of data had 

previously been collected by two different groups of researchers using the same 

version of the task. These sets of data were analysed together, and models were 

fitted to them. The participants as a whole learnt the relationship between the 

different types of stimulus cue groups. Their success at this determined how easily 

the models were able to find model parameters to represent their behaviour. 

The models were evaluated for their performance in producing the same action 

choices as those of the participants, with the baseline for their fit quality being set 

as the performance of the pure random model. The model fits were performed on 

all the action choice trials performed in the learning and test phases by each 

participant. Overall, the models fitted the participant data poorly, with only the 

best performing participants providing models with strong evidence, as defined in 

chapter 2.2, of a better fit than that of a pure random model. The most successful 

models were BPV, qLearn and qLearnE. The OpAL models provided the worst fits. 

α parameters were inconsistently recovered with most being weakly correlated 

with each other. The ε-greedy parameters were found to be recovered quite 

consistently across all the models and much more consistently than the β 

parameter from equivalent models using softmax. The correlation strength 

between recovered β values across models was found to be related to the type of 

model. The most consistently recovered β parameters were those of the Bayesian 

and Q-learning variants.  

No significant correlations were found when comparing an aggregate α calculated 

from those from Q-learning models and the EPQ-R extraversion measure. The 

strongest correlation found was for the participants who had strong evidence for 

at least one Q-learning model using softmax. This correlation was in the same 

direction as was found in previous two tasks, further suggesting that this 

correlation between α and extraversion might be a real effect. 
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For the participants who had performed both the Weather task and the 

Probabilistic Selection task, their recovered parameters were compared across 

tasks. Surprisingly, no correlations were found. However, as the parameter 

recovery was very noisy for all models in both tasks this conclusion should not be 

taken as evidence against there being underlying stable properties.  

It is worth noting that these results reflect the performance of the models only as 

implemented. There may be other implementations of the same models that 

perform better or worse with slight tweaks to their implementation, to their 

starting parameter values or their parameter upper bounds. All of the models here 

had their learning of expected rewards organised per action-cue pair, so 

relationships between cues were never captured. It is likely that changing this 

method of storing the expected feedback would change the capacity of the models 

to identify task features, thereby providing scope for more participant learning 

features to be captured. 
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9 DISCUSSION AND FUTURE DIRECTIONS 

This thesis aimed to evaluate models of human learning for probabilistic decision-

making tasks. To do so, an evaluation framework, Tinker Taylor py (TTpy), was 

developed in Python allowing models to be compared like-for-like across a range 

of tasks. Models were drawn from the reinforcement learning literature along with 

a few similarly structured Bayesian learning models.  

Datasets from three existing unpublished probabilistic decision-making tasks were 

examined. These tasks had a gains-only promotion focus: where the rewards only 

increased, and the overall task motivation was to maximise the received reward. 

The Decks task tested participant’s capacity to learn about changing payoffs. The 

Probabilistic Selection task tests participant’s capacity to learn and then apply an 

understanding of reward likelihoods from pairs of characters to novel pairs of 

those same characters. The Weather task tests participant’s ability to learn how 

different combinations of stimulus cues affects the likelihood of a pair of 

outcomes. The models were fitted on all the task action choices trials performed 

by each participant. The fitting therefore assumed that the same model was used 

throughout a task to make all the choices.  

9.1 RECOVERING ACCURATE MODEL PARAMETERS 

An assessment was made of the capacity for standard model fitting methods to 

accurately recover model parameters using simulated data generated with the 

same model. Significant variability was found in recovery of parameters for the 

qLearn model across a range of common probabilistic decision-making tasks. This 

result was consistent when tested with both gradient descent and evolutionary 

fitting methods and was replicated in a MATLAB implementation of the framework. 

This error in parameter recovery did decrease as the number of trials increased. 

However, the identifiability between generating parameters still did not reach 

usable levels for task lengths of 1600 trials, which would be unsuitable for human 

participants without them getting fatigued or bored. As participants were shown to 

have learnt the task reward probabilities for the tasks examined here within the 
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first 100 trials this underscores that fitting participant data requires significantly 

more information than participants, or models, need to learn simple task 

relationships.  

As the distribution of parameter recovery errors varied from task to task and 

model to model, any prior distribution used to improve parameter recovery would 

have to be recalculated for each model-task pair, significantly reducing its 

usefulness. There was little or no variation when an action sequence was fitted 

multiple times, suggesting that the variability was not due to poor identification of 

the global minimum. A parameter set can generate many action sequences for a 

given task and those action sequences could themselves be generated by 

numerous different model parameter sets. Therefore, the most likely explanation 

is that the action-sequence was being fit to the parameters that are the most likely 

to generate the action sequence. Where there is very little difference in the 

likelihoods between potential generating parameters, the difference between the 

fit measures for these parameters became equally small, resulting in the ‘valleys’ 

discussed in chapter 4.2.1. As different action sequences have different likelihoods 

of being generated by each parameter set, the location of the valley will differ for 

action sequences generated by the same parameter set and can sometimes not 

overlap. 

By looking at the chosen action probabilities for the generated data it became 

clear that the softmax β parameter was influencing the parameter recovery, 

biasing the fit value function to highlight parameter values with higher β as being 

better fits. Alternatives to the conventional softmax function were explored and 

compared, with the epsilon greedy method found to be the most effective of those 

tested at providing discernible parameter values. Models were modified where 

possible to provide ε-greedy versions that could be used to evaluate the 

performance of the models.  

From these results, epsilon greedy was found to have lower errors in parameter 

recovery then the simulated participant data when it was generated with the same 

model. Nassar & Frank (2016) simulated then fitted data with both epsilon greedy 

and softmax. They found that, irrespective of which is used, if the same one is not 
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used to both generate and fit the data this will have a significant impact on the 

types of errors generated when recovering parameters. Therefore, another source 

of uncertainty when interpreting recovered parameters from participant data is a 

potential discrepancy between the method used to transform expected action 

rewards into action probabilities in the model and those used by the participants.  

Nassar & Frank also note that all fitting of this kind assumes that the attention of 

the participant does not slip during the task, as this would result in action choices 

chosen using another model. These ‘attentional lapse’ actions are not 

acknowledged by the fitting process and will add noise that cannot be estimated 

by the processes described here, and so will have an impact on the accurate 

recovery of parameter values. 

Simple probabilistic decision-making tasks, such as those studied in this thesis with 

a small number of trials and only two action options per trial, cannot, with 

conventional fitting techniques, be used to recover accurate model parameter 

values for individual participants. Fitting single task runs provides such uncertainty 

in the true parameter values that no conclusions can be drawn from the recovered 

parameter values. This issue was found in the models examined, including the 

Bayesian inspired models. The use of softmax rather than epsilon greedy was 

found to exacerbate the difficulties in recovering accurate model parameter 

values. The results found in chapter 8.4 underscore the difficulties in parameter 

recovery, where the model parameters recovered for participants who performed 

both the Weather and Probabilistic Selection tasks were compared with no 

significant correlations found between the same model parameters across tasks. 

This is somewhat surprising given how established these decision-making tasks 

are.  

The errors in mean recovered parameters, as seen in chapter 5 for tasks of 300 

trials, ranged between 10-30% of the support size for 𝛼 and 4-11% for β and 𝜀. The 

distribution of the β and 𝜀 errors found a larger spread for β than for 𝜀, which was 

previously seen in chapter 4. Since the recovered parameters are the best fit for 

the action sequence, a greater spread implies a lower identifiability between 

parameter values. This in turn results in greater uncertainty for any distributions of 
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recovered parameters, and any studies that look at group level effects will be 

affected by this issue. This conclusion is supported by the work of Humphries, 

Bruno, Karpievitch, & Wotherspoon (2015) for the expectancy valence model and 

Spektor & Kellen (2018) for Q-learning models with one or more learning rate 

parameter. The errors in the mean recovered parameters still resulted in a general 

trend that followed the generating parameters. The recovered parameters from 

such tasks could therefore, in large datasets, be used to identify correlations with 

other parameters. 

The model fits were noted in chapter 2.2 as violating some of the assumptions 

underlying the BIC. Using other fitting approaches such as Markov chain Monte 

Carlo (MCMC), or Variational Bayes, used by the MATLAB VBA toolbox (Daunizeau 

et al., 2014), it is hoped that this would allow easier calculations of free energy 

(Klaas Enno Stephan et al., 2009) and WBIC (Watanabe, 2012) fit quality measures. 

This could be integrated using the PyMC3 (Salvatier, Wiecki, & Fonnesbeck, 2016) 

or Stan (Carpenter et al., 2017) implementations.  

The no feedback “test” phase of the task was found to only be helpful for 

parameter recovery in the Probabilistic Selection task, which provides different 

stimulus-cue pairs in the no-feedback phase to the feedback phase. This additional 

information outweighed the hindrance caused by the lack of change to the model 

action choice probabilities during this phase. With no feedback there is no reward 

prediction error, so the models do not update. However, people are known to 

update their reward expectations even when not provided with feedback 

(Lieberman et al., 2001). This fitting consideration is separate from the discussion 

concerning the possibility that there might be multiple learning models or policies 

being used simultaneously, each of which dominate under different circumstances, 

such as when certain kinds of feedback (corrective, rewarding etc.) are provided or 

withheld (Frank et al., 2007). If such cases are being investigated then the feedback 

and no feedback portions should be fitted separately, with the acceptance that 

there will be an impact on the accuracy of the parameters recovered. 
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9.2 MODEL PERFORMANCE AT FITTING PARTICIPANT DATA 

The models discussed and developed in chapters 3 and 4.8 were fitted to the 

participant data from all three tasks. The Weather task and Probabilistic Selection 

tasks used as their Bayes factor comparison the pure random model, described in 

chapter 3.12, which treats all possible actions as having the same probability of 

being chosen and consequently has no free parameters. The Decks task used the 

biased random model, also described in chapter 3.12, which assumes that the 

probabilities of actions are the same across trials, but vary across actions. The 

action choice probabilities are recovered for each participant from their action 

choice trial frequencies, resulting in 𝒟 − 1 free parameters. 

The model fit qualities were similar for models that had many of the same 

components. The OpAL models performed poorly relative to the other models in 

all three tasks. The qLearn model was one of the best performing in all three tasks. 

The Bayesian models, especially BPV, performed very well on both the Weather 

task and the Probabilistic Selection task. This suggests that when compared to 

reinforcement learning models with identical parameters the Bayesian models, 

which store more information, can perform better than basic reinforcement 

learning models. That this was not the case for the Decks task may be due to these 

models taking longer to adapt to changes in the task reward probabilities. 

While the epsilon greedy variants of models provided fewer edge fits, there was no 

indication in any of the datasets that epsilon greedy provided better evidence than 

those models using softmax, despite the previously discussed improved accuracy 

in recovering parameters from epsilon greedy versions of the models.  

Participant fit quality values were found to be highly correlated between models, in 

Figure 6-10, Figure 7-11 and Figure 8-9, with some participants consistently being 

well fitted and others consistently worse fitted. This could suggest that some 

participants were using a model similar to several of the models being fitted in this 

thesis, while other participants were using models which was quite distinct from all 

the models examined in this research. 
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In each of the three reward prediction tasks, a task performance measure has 

been correlated with the model fit Bayes factors of most models, as seen in Figure 

7-15, Figure 8-13 and in the discussion surrounding Figure 6-14 and Figure 6-15. 

For the Weather and Probabilistic Selection tasks only the most successful 

participants were the most well captured, whereas for the Decks task, the most 

successful participants were the least well captured. This suggests that there are 

elements of the participant behaviour and strategies that are not encapsulated by 

these models in their current form. 

This analysis would need to be extended to a greater range of tasks before strong 

conclusions could be drawn on the relative performance of models. For example, 

none of these tasks provided an opportunity for models, such as those based on 

temporal difference learning, to demonstrate the value of their additional features 

above those of a simple qLearn model. With the TTpy framework that has been 

developed, extending this analysis will only require fitting the collected data for 

any new tasks. 

Across all the tasks, the ε-greedy parameters were found to be recovered 

consistently across all the models and much more consistently than the β 

parameter from equivalent models using softmax. The only consistently recovered 

β parameters were those of the Q-learning variants. α parameters were 

inconsistently recovered, with the best recoveries from the critic learning rates. 

The correlation between participant recovered α parameters was found to be 

related to the type of model, as had been seen with the fit quality. 

If the correlations between model parameters were reduced, it is likely that the 

correlations of the same parameters in different models would improve. One 

method that has been proposed to do so is the Bayesian Expectation-Maximisation 

method of calculating a fit (Huys et al., 2011). Another approach would be to fit 

against the free energy as explained by Klaas Enno Stephan et al. (2009). 

To strengthen the model comparisons for each participant, Bayesian Model 

Averaging (BMA) could be used (Hoeting, Madigan, Raftery, & Volinsky, 1999). This 

model probability measure uses the best fit quality measure from each model, 

weighted by the model probability given the participant’s actions. It therefore 
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provides a more balanced perspective on the relative likelihood that each model 

best encapsulates the participant’s actions. However, this requires integrating over 

each model-data parameter space to estimate the probability that the data would 

be produced by a model give the possible parameter combinations. This 

calculation can be approximated in conjunction with MCMC (Fragoso, Bertoli, & 

Louzada, 2018) or more directly with Variational Bayes (Beal, 2003; Daunizeau et 

al., 2009), necessitating a change in the fitting routines used before it can be 

considered. The changes necessary to use these techniques were discussed in 

chapter 9.1. 

A more formal combined approach to both the recovery of accurate model 

parameters and the evaluation of the relative performance of models is to use 

Hierarchical Bayesian inference (HBI) (Piray, Dezfouli, Heskes, Frank, & Daw, 2019). 

This builds upon the Bayesian model selection used in this thesis, discussed in 

chapter 2.4, fitting participants with the Variational Bayes method. Like maximum 

a-posteriori (MAP) fitting, discussed in chapter 4.6, this uses a prior distribution to 

help fit participant data. Unlike MAP, HBI does not assume that all participants use 

the same model, an assumption that distorts the prior probability distribution. 

Instead, HBI repeatedly recreates the prior distribution for each model parameter 

based on the parameter values from participant’s likely to have been using that 

model. The probability that a given participant used each model under 

consideration is then recalculated, which in turn is used to calculate model weights 

and the next set of parameter prior distributions. This continues until 

convergence. As with BMA, this would necessitate changing the fitting routines and 

rethinking how the fitting of multiple models is performed in the TTpy framework.  

As has been stressed across this thesis, the comparative performance of the 

models reflects only their performance as implemented. There may be other 

implementations of the same models that perform better or worse with slight 

tweaks that do not change their principal features. These tweaks could be as 

simple as changing the starting action-stimulus cue reward values or a parameter’s 

upper bounds. Alongside the analysis in chapter 4.1, an informal exploration of 
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how the upper bound of 𝛽 affected parameter recovery for the Decks task did 

show some small variations in recovered parameters but no clear improvement. 

Furthermore, all the models here had their learning of expected rewards 

organised per action-cue pair, hindering the capture of any relationships between 

cues, such as those found in the Weather task. While encodings, such as 

conjunction coding, have been used for Weather task variants (Shohamy, Myers, 

Kalanithi, & Gluck, 2008), the version of the task used here was constructed such 

that the probability of an action being the correct one could be entirely captured 

by a linear combination of the predictive properties of each cue present: i.e. the 

conjunction of cues did not signify anything more than the sum of the individual 

cues present. Nonetheless, it is possible that changing this method of storing the 

expected feedback would change the capacity of the models to identify task 

features, thereby providing scope for more participant learning features to be 

captured.  This could potentially be achieved by drawing upon the work on 

representation learning (Niv, 2019) or Semantic pointers (Eliasmith, 2013). 

While epsilon greedy does result in more consistently recovered model 

parameters, it does have some less desirable properties, such as a lack of 

differentiability of the function, unlike softmax. Several alternatives to softmax and 

e-greedy have been proposed and should be explored, notably Mellowmax (Asadi 

& Littman, 2017) , e-softmax (Nassar & Frank, 2016),  Value-Difference Based 

Exploration (Tokic, 2010; Tokic & Palm, 2011) and those discussed in the review 

paper by Schulz & Gershman (2019). These can be easily incorporated as model 

variants into the TTpy framework and compared to the current models. 

Equally, it would have been informative to match every softmax model with an 

epsilon greedy equivalent, notably qLearnF and tdr are missing an epsilon greedy 

equivalent and ACES is missing a softmax equivalent. The legibility of the results 

would have been improved if the implementations of the softmax based OpAL 

models had a similar form to that of 𝜀 and 𝜌 in the OpALE models, as presented by 

Collins & Frank (2014). This would allow a like-for-like comparison of the impact of 

softmax and epsilon greedy on parameter recovery in the OpAL models.  
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One limitation in the models was the assumption that all participants experienced 

the rewards in the same way. Participants’ experience of rewards was also 

assumed to not change as the task progressed. This seemed a reasonable 

assumption as the tasks examined were relatively short and involved a relatively 

small number of rewards. For the Weather and Probabilistic Selection tasks, the 

nominal rewards were fixed to a constant reward per trial. It was also assumed 

that for the Decks task, where the rewards ranged from 1 to 10, the magnitude of 

the rewards as experienced was a simple linear function of the points won on each 

trial. Pickering & Pesola (2014) explored a reinforcement learning model in which 

the size of the experienced reward could vary across participants. The accurate 

recovery of associated parameters results in subtle issues of distinguishability with 

those of the learning rate (Pickering & Powell, unpublished observations). The 

capacity to modulate the reward, or more generally change the utility function 

(Ludvig, Madan, McMillan, Xu, & Spetch, 2018) was built into the TTpy framework in 

such a way that it could be easily incorporated into any model without modifying 

them. The analysis will be performed beyond the work of this thesis. 

Another modification to the models that could improve model fits is to reduce the 

precision and range of values within the models by only using fixed point numbers. 

Fixed point calculations have been used successfully in DNNs (Courbariaux & 

David, 2015; N. Wang, Choi, Brand, Chen, & Gopalakrishnan, 2018) and in some 

spiking neuron models, such as the SpiNNaker Project (Furber, Galluppi, Temple, & 

Plana, 2014). It is possible that the artefacts resulting from lower precision 

calculations, and parameter values, could result in better descriptions of the 

participant exploratory behaviour. 

  



227 

9.3 LEARNING RATE RELATIONSHIP WITH EXTRAVERSION 

Based on prior indications that the recovered participant learning rate parameter α 

could be linked to extraversion (Pickering & Pesola, 2014), an examination was 

made of their relationship. To reduce the noise from parameter recovery 

discussed in chapter 9.1, we chose to take the novel step of aggregating together 

the recovered α parameters from the Q-learning models with only one learning 

rate. This subset of models was found to have the most consistent recovered 

parameters. The models used were: qLearnCorr, qLearnECorr, qLearnE, qLearnF, 

qLearn, td0, tdE and tdr. This was then used in a comparison with the EPQ-R 

extraversion measure available for the participants from all the tasks. As strong 

correlations had been found between α and 𝛽, and weaker correlations between α 

and 𝜀, partial correlations were also performed between the learning rate and 

extraversion. Finally, equivalent correlations were calculated for an average 

learning rate calculated only from the recovered parameters that were not edge 

fits and whose model fit Bayes factor was over 20. 

Across the three datasets, the strongest correlations, and the only Bonferroni 

corrected significant correlations, were found for the recovered learning rates 

from participants who were well fitted by at least one of the models that used 

softmax. This negative partial correlation can also be seen when the recovered 

parameters and extraversion scores from all three datasets are concatenated and 

analysed together, as shown in Table 9-1. The consistency of this significant 

correlation despite poor model recovery for two of the task datasets suggests that 

it should be explored further.  

This result points to extraversion being correlated with decreasing sensitivity to 

errors in expected rewards, which would result in extraverts learning more slowly 

than introverts for the same RPE. If this were the case, in probabilistic rewarding 

tasks such as the ones examined here, it would suggest that extraverts would be 

less sensitive to the reward variability and more able to identify changes in average 

reward values than introverts. From this, extroverts would be expected to perform 

better in tasks where there is greater variability in feedback. 
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Participant model fit 

parameters used 

All Good edge & Bayes 

𝜌 (DF) p 𝜌 (DF) p 

Q-learning models -0.006 (466) 0.902 -0.068 (244) 0.291 

Q-learning models with 𝛽 -0.053 (463) 0.250 -0.207 (222) 0.002 

Q-learning models with 𝜀 0.058 (463) 0.209 -0.010 (207) 0.890 

Table 9-1 Using the data from all the task datasets, the correlations between each 

participant’s averaged Q-learning model parameter 𝛼 and the extraversion measure of 

EPQ-R. The 𝛼, 𝛽 and 𝜀 values in these correlations are averaged, for each participant, 

across the relevant subset of models.  The 𝛽 and 𝜀 subset correlations were partial 

correlations whereas the others were simple correlations. As the data from the 

Weather and Probabilistic Selection tasks were poorly fitted, just over half of the “Good 

edge and Bayes” participants came from the Decks task datasets. 

Pickering & Pesola (2014) suggest that α could correspond to the density of certain 

kinds of dopamine receptors controlling dopaminergic-mediated reinforcement 

learning. Given the negative correlation between extraversion and α and the 

positive correlation between extraversion and RPE magnitude, the impact on 

learning remains unclear. 

Across all three tasks, only one measure of task performance correlated with 

extraversion: choose A in the Probabilistic Selection task. Without modelling, the 

correlation between extraversion and the learning rate, as expressed through α, 

would not be identifiable. This illustrates the potential value of model-based 

analyses of tasks over standard simple performance measures. 
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9.4 EXTENSIONS OF THE COMPUTATIONAL FRAMEWORK 

This model evaluation framework sets the groundwork for future evaluation of 

more complex models and tasks. It has been written with a great amount of 

flexibility, much of it unused in these tasks. For example, arbitrary numbers of 

actions and stimulus cues are allowed, and no restrictions are imposed on the 

forms of the stimuli or feedback, allowing this to be used for both continuous time 

and instantaneous trialsteps, although the current model implementations are 

written for instantaneous trialsteps. The models also have the capacity to be 

extended to adapt to the introduction of new stimulus cues, actions or feedback 

elements during a task. Equally it can be used to fit competitive tasks and, with a 

little tweaking, simulate those tasks as well, such as the Dice decision task (Schulze, 

van Ravenzwaaij, & Newell, 2015).The task themselves can have a mix of forms of 

feedback, notably a reward, the correct answer, no feedback or the next trial state. 

While the SciPy gradient descent and evolutionary fitting methods have been used 

throughout this thesis, the framework allows for any suitable fitting library to be 

used as a backend. 

This framework was initially written at a time when Python 3 was not fully 

supported by many Python libraries. As of 2020, Python 2.7 will not be supported 

by most Python libraries, including those used in this framework. An urgent task 

will be to modify the code to work with Python 3. Much of the code has been 

written with this transition in mind, so this is not expected to be difficult.  

It is hoped that by publishing this research framework, researchers will be able to 

use, and reference, verified, preregistered, versions of common models that can 

be compared to their new model ideas (M. D. Lee et al., 2019). This could be 

enhanced by using standard task datasets that provide known baselines of model 

performance.  

Several models are planned to be included in the suite of available models, notably 

more Bayesian models (Hampton et al., 2006; Mathys et al., 2011; Solway & 

Botvinick, 2012), other reinforcement learning models (Alexander & Brown, 2011; 

Steingroever, Wetzels, & Wagenmakers, 2016) and drift diffusion models 
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(Fontanesi, Gluth, Spektor, & Rieskamp, 2019; Pedersen, Frank, & Biele, 2016) 

among others. 

The analysis of the performance of models fitting to a task or dataset could be 

extended by integrating tools such as the VBA toolbox (Daunizeau et al., 2014) or 

other model comparative methods such as (Piray et al., 2019).  

Models themselves could also have their brain-complexity quantified. This could 

be achieved, for example, by evaluating the complexity of representing a model in 

a spiking neural network.  

The scripting interface creates a high knowledge bar for using this. A graphical 

interface would make the framework more accessible without removing access to 

the current text interface. Initially this could be produced for simple tasks such as 

running simulations and fitting data that do not require additions to the 

framework. Another approach would be to create task translators, such that tasks 

written in OpenAI Gym (Brockman et al., 2016) or PsychoPy (Peirce et al., 2019) can 

be performed by the encoded models, allowing a more direct match between the 

forms in which tasks are typically written and those of the framework.  

Finally, the framework has been written in such a way that multiple models could 

be used concurrently in a task, either united in some form of policy based model, 

or separately in cooperative or adversarial tasks (Buşoniu, Babuška, & De Schutter, 

2010; Hunt, 2012; Littman, 1994; Silva & Costa, 2019). The latter would allow for 

another approach to measuring the validity of models by evaluating emergent task 

state properties to those found in real situations.  
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9.5 RECOMMENDATIONS FOR IMPROVING IDENTIFIABILITY FROM TASKS 

Based on the conclusions of this thesis, there are some areas in the design of 

repeated decision-making tasks that have been identified as impacting on 

participant data model fitting and analysis. From these, a series of 

recommendations can be drawn:  

• Providing more than two choices to participants during each trial will help 

distinguish between an expected optimal choice and a random choice or 

exploratory choice. This will allow for more insight into participant’s thinking 

without increasing the number of trials. 

• Task test phases, where participant’s learnt preferences are examined 

without feedback, only provide a benefit if the trials contain novel variations 

of previously learnt relationships. Unusual probabilistic rewards at the end 

of a learning phase can result in a misunderstanding, or suboptimal 

encoding, of action-stimulus-cue relationships that will continue throughout 

the trials without feedback. Novel trials provide new insights into the 

participant’s perceived action-stimulus-cue relationships and task decision 

making processes that are less affected by unusual final feedback.  

• The identifiability of participant behaviour can be improved by increasing 

the number of trials in the learning phase of a task. In the Probabilistic 

Selection task 15 trials character-pair combination was found to be too little 

for most participants to learn which to choose, as was 14 trials per stimulus 

cue in the Weather task. In the decks task, where the stimuli and action 

choices were the same throughout, participant’s proportion of choices for 

the initially advantageous choice peaked at around 25 trials. A good starting 

point would therefore be a minimum of 25 trials for each stimulus. More 

may be necessary for tasks where there are more than two choices per trial. 

As was seen in chapter 4, this will not be a sufficient number of trials to 

recover model parameters accurately with the methods used here, only to 

allow participants to begin to express their learnt action preferences. 

Furthermore, increasing the number of trials needs to be balanced with the 

risk that a participant’s concentration slips or they become disengaged with 
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the task, especially for long tasks with similar trials. Such disengagement 

would result in the participant no longer using the model they had 

previously used, and so making the fitting of the original model more 

difficult. 

• When a task is being designed, simulating potential participant behaviour 

provides a useful sanity check that participants will behave in the expected 

way, without the need for costly and time-consuming pilot studies. Through 

this, variations of a task can be quickly compared using conventional 

measures of task performance, such as points scored or ratios of chosen 

actions. These simulated participants can also be fitted to examine how the 

different task design choices impact model parameter recoverability. As the 

purpose of this assessment is not to optimise a task for a given model, the 

model simulation and subsequent fitting would need to be performed with 

only one model. Ideally, the model should be as simple as possible, i.e. have 

as few parameters and features, while still able to learn the necessary task 

action preferences. For example, for the Decks, Biased coins and 

Probabilistic Selection tasks the qLearn model would be a good candidate.  

• For individual differences researchers, this thesis provides some 

encouragement that fitting formal models to participant data is a viable 

method for finding relationships with traits that cannot be seen with 

traditional ways of scoring performance. Here, a link was tentatively drawn 

between extraversion and the recovered learning rate parameter from 

some Q-learning models, which was not evident from the traditional ways 

of scoring learning performance.  
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Appendix I.  NOTATION SUMMARY 
Symbol 

𝑲 The set of all models, 𝑘 ∈  𝐾 

𝓝 The set of participants who have performed a task sequence, 𝓃 ∈ 𝒩 

𝑻 The set of all trialsteps, 𝑡 ∈ 𝑇 

Fitting values and functions 

𝓑 The Bayes factor 

𝓑𝒎𝒊𝒏 The minimum Bayes factor considered to provide strong evidence 

𝑩𝑰𝑪𝒎𝒐𝒅 The Bayesian information criterion for the model 

𝑩𝑰𝑪𝒓𝒂𝒏𝒅 The Bayesian information criterion for the random model 

𝑩𝑰𝑪𝒅𝒊𝒇𝒇 The difference, 𝐵𝐼𝐶𝑟𝑎𝑛𝑑  −  𝐵𝐼𝐶𝑚𝑜𝑑 

𝒄𝒕 The chosen action at time 𝑡 

𝑪 The sequence of actions, 𝑐1, 𝑐2⋯𝑐𝑇 

𝒅𝒕 An action available at time 𝑡 

𝓓 The set of actions available 

𝓓𝒕 The set of actions available at time 𝑡 

‖𝓓𝒕‖ The number of different actions available at time 𝑡 

𝑬𝑭 The expectation of the model frequencies 

𝒇 The maximum likelihood value 

𝒇𝓑 The Normalised Bayes factor fit quality 

𝒇mod The maximum likelihood value for the model 

𝒇rand The maximum likelihood value for the random choices 

𝚫𝒇 
The difference between the maximum likelihood value of the 

random and model choices 

𝑯 A hypothesis 

𝑯mod 
The hypothesis that the action sequence can be explained by the 

model 

𝑯rand 
The hypothesis that the action sequence can be explained by 

random choices 

𝓛 The log model evidence 

𝒑( ∗ ) The probability of ∗ 

𝒑𝒕 
The probability that the model would provide the same response as 

the participant at time 𝑡 
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𝑹𝟐 The pseudo-𝑅2 

𝚯 The number of parameters in a model, Θ = ‖𝜃‖ 

Model values and functions 

𝓢 The stimulus cues pertinent to the experiment 

𝑺𝒕 The stimulus cues available during the trialstep 𝑡 

𝒔 A stimulus cue 

𝒔𝒕 The value of the stimulus cue 𝑠 at time 𝑡 

𝑫 The sequence of actions over time range 𝑇  

𝒅 An available action  

𝑽 The expected rewards for each action  

𝑬 The expectation values for each action-stimulus cue 

𝒓 The reward value 

𝑹 The maximum reward 

𝓡 The possible rewards  

𝑰 Reward impact on all possible actions 

𝜹 The reward prediction error 

𝑨 The actor values for each action-stimulus cue 

𝑨∗ The actor values for each action 

𝑷 Probability of each action   

𝓒(𝑷) 
The action choice function. The chosen action, 𝑐𝑡 is chosen based on 

the probability of each action at time 𝑡, 𝑃𝑡 

𝑮 The Go value for each action-stimulus cue  

𝑵 The Nogo value for each action-stimulus cue 

𝑩𝒅 Likely highest reward action, 𝐵𝑑 ∈ {0,1} 

𝚫 The average reward 

𝚫∗ The average of the average reward Δ 

𝝈𝟐 The prediction uncertainty measure 

𝝈̂𝟐 The updated prediction uncertainty measure 

𝑬̂ The updated expectation values for each action-stimulus cue 

𝝎 The Dirichlet distribution count parameter, 𝜔 ∈ ℝ≥0 

𝕯 The Dirichlet function 

𝚿 The Digamma function 
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Model parameters 

𝜽 The set of all parameters in a model 

𝜶 The learning rate parameter, 𝛼 ∈ [0,1] 

𝜶𝑪 The critic learning rate parameter, 𝛼𝐸 ∈ [0,1] 

𝜶𝑨 The actor learning rate parameter, 𝛼𝐴 ∈ [0,1] 

𝜶+ The positive reward learning rate parameter, 𝛼+ ∈ [0,1] 

𝜶− The negative reward learning rate parameter, 𝛼− ∈ [0,1] 

𝜶𝑮 The Go learning rate parameter, 𝛼𝐺 ∈ [0,1] 

𝜶𝑵 The No-go learning rate parameter, 𝛼𝑁 ∈ [0,1] 

𝜷 
The exploration-exploitation parameter, otherwise known as the 

inverse temperature parameter, 𝛽 ∈ ℝ≥0 

𝜺 The likelihood of a non-optimal choice being made, 𝜀 ∈ [0,1] 

𝑬𝝀 The baseline expected reward, 𝐸𝜆 ∈ ℝ≥0 

𝜸 The time discounting parameter, 𝛾 ∈ [0,1] 

𝜿 The autocorrelation parameter, 𝜅 ∈ [−1,1] 

𝑴 The maximal absolute value allowed for Go or Nogo, 𝑀 ∈ ℝ≥0 

𝝄 The biased random probability for a given action choice, 𝜊 ∈ [0,1] 

𝝆 The Go-Nogo actor asymmetry, 𝜌 ∈ [0,1] 

𝝈𝜶
𝟐  Learning rate uncertainty measurement, 𝜎𝛼

2 ∈ ℝ≥0 

𝝈𝝀
𝟐 The baseline drift rate uncertainty, 𝜎𝜆

2 ∈ ℝ≥0 

𝝉 The learning rate parameter, 𝜏 ∈ [0,1] 

𝛌 The drift rate, 𝜆 ∈ ℝ≥0 
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Appendix II. MODEL PARAMETER CORRELATIONS 

i.  DECKS TASK DATASET 

Figure II - 1 The correlations between recovered parameter values from the Decks task participants. A 

dark blue oval pointing to the top right signifies a strong positive correlation, a white circle no 

correlation and a dark red oval pointing to the top left signifies a strong negative correlation. 
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ii. PROBABILISTIC SELECTION TASK DATASET 

 

 

Figure II - 2 The correlations between recovered parameter values from the Probabilistic Selection task 

participants. A dark blue oval pointing to the top right signifies a strong positive correlation, a white 

circle no correlation and a dark red oval pointing to the top left signifies a strong negative correlation. 
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iii. WEATHER TASK 

 

Figure II - 3 The correlations between recovered parameter values from the Weather task participants. A 

dark blue oval pointing to the top right signifies a strong positive correlation, a white circle no 

correlation and a dark red oval pointing to the top left signifies a strong negative correlation. 
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