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Abstract

This thesis focused on evaluating the capacity of models of human learning to
encapsulate the action choices of a range of individuals performing probabilistic

decision-making tasks.

To do so, an extensible evaluation framework, Tinker Taylor py (TTpy), was
developed in Python allowing models to be compared like-for-like across a range
of tasks. TTpy allows models, tasks and fitting methods to be added or replaced

without affecting the other parts of the simulation and fitting process.

Models were drawn from the reinforcement learning literature along with a few
similarly structured Bayesian learning models. The fitting assumed that the same

model was used throughout a task to make all the choices.

Using TTpy, significant uncertainty was found in parameter recovery for short,
simple tasks across a range of models. This was traced back to significant overlap
in the action sequences plausibly produced by different combinations of
parameters. Replacing softmax with epsilon greedy, as the way of calculating the
action choice probabilities, was found to improve parameter recovery in simulated

data.

Datasets from three existing unpublished probabilistic decision-making tasks were
examined. These datasets were chosen as they contained information on
extraversion for all their participants, their tasks were well established, and the
tasks had a gains-only promotion focus. Only one of the three tasks provided
models where most of the model participant fits had strong evidence that they

were better fits than uniform random action choices.

In light of the difficulties in parameter recovery for individual participants, the
unusual step was taken of averaging the recovered parameters across a subset of
the best performing and most consistently recovered models within the same
family. A significant correlation was found between this learning rate parameter
and the participant extraversion measure when the softmax parameter variance

was taken into account.
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1 OVERVIEW

Agents learn from their environments: they update their beliefs about the world by
integrating new environmentally-derived information with their prior knowledge
(Piaget, 1937). How this is done will vary from agent to agent, with multiple factors
coming into play, such as past experiences, risk aversiveness, sensitivity of senses
and many others. The ability to describe this behaviour, and its variation across
individuals would be a powerful tool for understanding not only how individuals
take in information, but equally how they choose to react to their environment. To
provide the clearest descriptions, providing a mathematical expression of it, allows
us to represent the variations in learning across individuals by way of variations in
model parameter values. By expressing the methods through which learning might
occur in a mathematical form, these models can be tested to see both what their
behaviour would be in different circumstances, and how they compare to real-

world behaviour.

This thesis focuses on evaluating models of human learning for probabilistic
decision-making tasks: tasks where participants learn from feedback or rewards
resulting from specific actions and stimulus cues. The most frequent modelling
approaches have focused on variations of reinforcement learning (Sutton & Barto,
1998). However, some studies comparing the performance of models have shown
Bayesian models to perform better (Stankevicius, Huys, Kalra, & Series, 2014). In
this work, simple models from both approaches are evaluated and compared, with
a focus on reinforcement learning methods. The capacity of these models to
explain participant responses is evaluated for tasks with a range of different
stimulus and action choice complexities. During their evaluation, issues were
identified in recovering accurate model parameters from participant data. Some
progress was made towards resolving these issues before a final evaluation of the

models was made across the available datasets.

To perform the model evaluations, a computational framework was built, written
in the programming language Python (Oliphant, 2007), allowing like-for-like

comparisons between the models. For this to be achieved, it was necessary to



describe a common set of features for both the models and the tasks the models
would be fitted against. For the models, the core of these come from our

understanding of the brain.

11 BASIS FOR MODELS

Learning from events involves numerous neurological systems: sensory, memory,
motor and cognitive. Learning how to respond in a probabilistic decision-making
task depends upon updating the predictions of action consequences. The phasic
activity of midbrain dopaminergic neurons has been shown to resemble a Reward
Prediction Error (RPE) signal (Schultz, 2000; Schultz, Dayan, & Montague, 1997;
Schultz & Dickinson, 2000). An RPE signal is positive for unexpectedly large rewards
and negative for unexpectedly small rewards, which in a dopaminergic neuron
equates to a brief increase or decrease in the firing rate relative to the tonic level.
When the synaptic strengths accurately encodes the expected reward from action
consequences, the RPE signal is zero (Glimcher, 2011). A detailed review of

dopamine and reward can be found in Schultz (2015).

Unfortunately, to date, within an individual the encoded value of a reward as it
reaches the dopaminergic pathways cannot be directly measured, only inferred
from observable behavioural choices (Schultz, 2016). These values can be shown to
be subjective and transitive (Lak, Stauffer, & Schultz, 2014), allowing us to consider
them to be consistent across the duration of a task for an individual, but

preventing us from assuming that all individuals will treat them the same way.

The RPE signal allows for more than just a simple updating of the action-
consequences. For example, the medial prefrontal cortex has separate excitatory
and inhibitory pathways corresponding to positive and negative RPE (Matsumoto,
Matsumoto, Abe, & Tanaka, 2007), suggesting that updating may differ for positive
and negative consequences. Alongside predictions of action consequences, it is
likely that the RPE is used to evaluate the level of uncertainty in the state of the

environment (Behrens, Woolrich, Walton, & Rushworth, 2007).



Prior to the RPE signal, midbrain dopaminergic neurons can be seen to encode a
salience signal (Schultz, 2016), before reward value has been fully assessed. The
models examined here assume that salient stimulus cues, available actions and
rewards have been identified and encoded before reaching the model. This allows
us to focus on predicted action consequences, choice of actions and updating of
an expected reward given an action.

Reward
(stimulus, object or event)

Sensory Value
component component
. ) Decision, action
Object Object Object and
identification detection valuation

reinforcement

Figure 1-1 Reward component breakdown, as described in Schultz (2016). The models

discussed in this thesis only examine the final box “Decision, action and reinforcement”

This updating of action consequences has been shown to vary between individuals
(Smillie, Cooper, & Pickering, 2011) as well as experience changes as people age
(Sojitra, Lerner, Petok, & Gluck, 2018). It is therefore preferable not to aggregate
results across individuals. Furthermore, these differences can be related to
phenotypes, a term | will use to refer to measurable properties of an individual that
vary slowly, if at all (Pickering & Pesola, 2014). These may be genetic in origin, but
not exclusively. Examples of phenotypes that have been examined in this context
are tendency to jump to conclusions (Cafferkey, Murphy, & Shevlin, 2013; Moore &
Sellen, 2006; Ziegler, Rief, Werner, Mehl, & Lincoln, 2008) and extraversion (Cooper,
Duke, Pickering, & Smillie, 2014; Pickering & Pesola, 2014).

Extraversion is associated with gregariousness, assertiveness, leadership,
sociability, high life satisfaction and impulsiveness (Wilt & Revelle, 2016). This has
been shown to be widely generalisable across cultures (McCrae & Allik, 2002). Links

between extraversion and reward learning were first proposed by Gray (1970) and



later developed through several lenses, described in detail by Smillie (2013), such
as incentive motivation (Depue & Collins, 1999) and reinforcement sensitivity
theory (Smillie, Pickering, & Jackson, 2006). Extraversion is generally measured
through the use of self-report questionnaires such as the Eysenck Personality
Questionnaire, EPQ (H. J. Eysenck, 1975). Any assessment of the relationship
between extraversion and reward learning are therefore harder to tease out, as
extraversion is based on the outcomes rather than any possible inputs to reward
learning (Smillie et al., 2006; Zuckerman, 2005). This is detailed in the review paper

by Wacker & Smillie (2015).

Holroyd and Coles (2002) proposed that the RPE might modulate an
electroencephalographic (EEG) signal from the medial frontal cortex ~200-300ms
after a feedback event, known as feedback-related negativity (FRN). Potts et al.
(2006) used a passive rewarding task to test this, where participants observed trials
with a sequence of two cues followed by a reward. The first cue predicted the
second cue 80% accurately and the second cue determined the reward 100% of
the time. Both the first and second cues were of the same form: either a gold bar,
the cue for a reward, or a lemon, the cue for no reward. Participants initially would
be expected to show FRN when the reward is shown but, once the relationship
between the second cue and the reward was established, the FRN would occur

after the second cue is presented.

By examining the FRN during this task, Potts et al. found that its response was
consistent with the phasic dopamine cell firing after a reward prediction error of
midbrain dopaminergic neurons (Schultz, 1998), with a positive response to
unpredicted rewards and a negative response when a reward did not occur as

predicted.

The amplitude difference between the response to an unpredicted reward and the
response to the absence of a predicted reward, known as a FRN difference wave or
Reward Positivity, can be used as a measure of overall RPE magnitude, as
decreases in the magnitude of the FRN difference waves correlate with decreases

in errors in the reward predictions (Eppinger, Kray, Mock, & Mecklinger, 2008).



The link between the FRN difference waves and extraversion was examined by
Smillie et al. (2011), who used the same passive task developed by Potts et al.
(2006). They found that the FRN difference wave was stronger for high extraverts,
more than one standard deviation above the mean score, than for low extraverts,
also known as introverts, with scores more than one standard deviation below the

mean.

This result was strengthened by Cooper et al. (2014) who found a positive
correlation (r=.36) between extraversion scores and the size of the Reward
Positivity. These findings were consolidated in a subsequent study (Smillie et al.,
2019) replicating the previous study with a larger sample, 100 participants
compared to 25, and once again finding a positive correlation (r=.26, p=.005),
indicating that Reward Positivity may be at least partly modulated by extraversion.
This in turn would suggest that extraversion could partly modulate the magnitude

of the RPE.

This thesis examined unpublished datasets of probabilistic reward learning tasks
of varying complexity where a standard questionnaire measure of extraversion
had been collected for each participant. This allowed an exploration of which

aspect of RPE-based reinforcement learning might be related to extraversion.



1.2 CONSIDERATIONS FOR MODELLING HUMAN LEARNING BEHAVIOUR

With the brain basis outlined above, it is possible to combine these with more
computational considerations to produce our requirements for modelling the
probabilistic decision-making tasks. Models of human learning can be evaluated by
their capacity to reproduce the responses made by participants (Daw, 2011; Daw &
Doya, 2006). In order to be able to identify learning within a participant’s actions,
the tasks must repeatedly present similar, simple situations, allowing both the
models and participants to build up an understanding of the underlying statistical
structure of rewards. The tasks should also contain many potential choice
sequences so that each participant can be uniquely identified by their choices. For
the situations to be simple, they must be Markovian, i.e. independent of each
other, such that the current stimulus cues and available actions completely

capture the probabilities of different consequences for each action (Haykin, 2009).

Any models that are to be considered ideally must be able to have their behaviour
modified to span the range of human decision-making behaviour, such as those
described in chapter 1.1. This would be achieved using parameters that can
express this diversity of learning behaviour, while also modelling a given person’s
behaviour accurately using the same parameter values across a range of tasks. For
us to be able to compare models across tasks, we assume that any participant

properties represented by model parameters are stable over short durations.

The models must also be flexible in their design, allowing them to be applied to a
variety of different types of tasks. Equally, models should also have the potential to
be extendable, so that they can be applied to tasks of different levels of
complexity; for example, tasks with a different number or type of stimuli, or where
a reward is or is not provided. Any model must also be computationally feasible by
brain-like systems. In this way, when the complexity of the task is increased there
will be less chance of finding parts of the model parameter-space whose
responses diverge from those provided by humans. This final requirement leads to
the idea that the model should not only be able to represent the variation in

human learning, but that the model parameters should be relatable to



phenotypes. From this, we are led to look for models that would be capable of

being implemented in the brain and map to identifiable structures in the brain.

Modifiable behaviour To represent the range of human decision-making behaviour
Flexible design Adaptable to different stimuli and decisions

Components map to  To maximise the chance of mapping to human behaviour
brain-like structures  across different task complexities.

Table 1-1: The core requirements for models to be considered along with its reason for

inclusion.

As the models will be compared to the decision-making performance of
participants, the focus of the models will be on those that can provide action
choices based on stimuli. Equally, to limit the complexity of these models, it was
decided to limit the models to those that are model-free: models where only action
values are learnt and not the structure of the task (Beierholm, Anen, Quartz, &
Bossaerts, 2011; Hampton, Bossaerts, & O'Doherty, 2006). Both model-based and
model-free are known to coexist (O’'Doherty, Lee, & McNamee, 2015), with
mechanisms in place to decide which takes priority at any given time (S. W. Lee,
Shimojo, & O'Doherty, 2014) and there are indications that even for simple tasks
model-based components are used in decision making (Dayan & Berridge, 2014).
In addition to this, while it is plausible that multiple learning models are running in
parallel in different brain systems, to reduce the complexity of the fitting it was
assumed that each participant used only one learning model throughout their task

run, but it was not necessary to assume that all participants used the same model.

Having established these requirements, there are a wide range of models that
could be considered: cognitive architectures (Sun, 2008), reinforcement learning
(Sutton & Barto, 1998), Bayesian models (Jones & Love, 2011) and

neural networks (J. X. Wang et al., 2018) among others. It was decided to focus on
reinforcement learning models along with some Bayesian models that could be

directly compared.



1.3 OUTLINE OF THESIS

This project aimed to develop tools for comparing the performance of probabilistic
decision-making models. The comparisons were performed with existing and to-
be-collected data gathered, from a series of probabilistic reasoning and learning
tasks. The primary research question was to identify the most appropriate and
powerful approach to modelling task performance, and its variation across

individuals.

The comparison of models across tasks and participants in an unbiased way, was
achieved in two ways: by using comparison metrics that consider the different
model complexities and by using consistent tools for all evaluations, modifying the
setup as little as possible when moving from one evaluation to another. For this, a
computational framework has been written in a way that allows a broad range of
models, experiment tasks and evaluation methods to be swapped in or out
without affecting the other parts. A unified way of interfacing the models to tasks
was implemented and applied to a range of different models, allowing their
different features to be compared more directly. This framework was implemented
in accordance with the recommendations of Eglen et al. (2016). It is described in
detail in chapter 2 along with the approaches used to fit the models to participant

data.

Potential models found in the existing literature were evaluated for their ease of
generalisation. Those that looked promising were translated into a common
mathematical form described in chapter 3. The models were then implemented
within the Python framework and validated, if possible, against either other
implementations of the same model or results from a published simulation. The
implementation also involved modifying the models such that they could be
applied to other, previously examined, experiments, allowing the model to be
fitted to the data from those experiments. As data from new tasks became
available, previously implemented models were extended to be compatible with
any new task features and then fitted to any new data. Finally, comparisons could
be made between models across experiments and data sets. The models in their

final form are presented in chapter 3.



During this process, simulated participant datasets were generated with a few of
the models to test the fitting process. This highlighted some issues with parameter
recoverability, with causes found both in fitting procedures and the inherent
recoverability of some models. Most notably, it was found that the use of a
SoftMax function to estimate action choice probabilities results in a significant loss
of information, hampering parameter recoverability. These issues were discussed

in chapter 4.

Datasets from various kinds of experiments were available for this project, both
from previous student projects at Goldsmiths and student project data from our
collaborators at other universities in Greenwich and Melbourne. Tasks were
limited to gains only promotion focused tasks. A promotion-focus provides
participants with a motivation to win points over the course of the experiment by
providing potential higher payoffs. Gains only refers to participants receiving no
losses as part of the task, just rewards and non-rewards. This avoids any need to
disentangle possible mechanisms for reward and punishment processing (Schultz,

2007).

One task that was initially examined was the “beads tasks” (see Moore & Sellen,
2006). In this task, participants are told about two jars, that contain white and black
beads, for example, Jar A is 85% black and Jar B is 85% white. In each trial, the
participant sees the colour of a bead drawn with replacement from one of the two
jars. Participants must then indicate their confidence that the beads are drawn
from jar A. This task essentially requires participants to compute the posterior
expectation of a black bead given the series of beads displayed to date, with the
confidence that the beads are drawn from jar A being a direct function of this
expectation. An initial exploration found that the information provided by
participants during this task was insufficient to uniquely identify model parameters

to participant responses. The fitting of this data was therefore abandoned.

A task with a slightly more complex reward was subsequently examined. The Decks
task is a modified version of the one used by Worthy, Maddox, & Markman (2007),
and similar to the IOWA gambling task (Bechara, Damasio, Damasio, & Anderson,

1994). Participants were presented each trial with two stimuli on a screen, one red

9



and one blue. These were said to be the top cards of two decks of cards 80 cards
long. In each trialstep participants choose a deck to take a ‘card’ from. They are
then shown the value of the card. Each card has a predetermined reward
associated with it, whose value was between one and ten. The objective was to
maximise the accumulated reward values. For this task, three sets of participant

data were available. The results of this dataset are discussed in chapter 6.

To evaluate the performance of models on tasks where the stimuli change, the
Weather task was used, a task based on one described by Gluck & Bower (1988)
and later adapted by Knowlton, Squire, & Gluck (1994). It asks participants to
associate a series of cues with one of two outcomes. One to three cue cards, from
a set of four cards, are presented to the participant in each trial. The participant
must decide which one of the two possible outcomes the displayed cards are most
likely associated with. Once the participant decides, they are then told if they were
correct or not. The cues each have a probabilistic relationship with the two
outcomes, with this version of the task having a novel probabilistic relationship,
with the probability of an outcome varying depending on the combination of cues
displayed. In the first phase of the task, the learning phase, participants are given
feedback on whether their choice was correct. In the second phase, the testing
phase, participants are not given any feedback. In total, there were 56 trials in the
learning phase and 14 test phase trials, with equal numbers of each of the 14 cue
combinations in each task phase. For this task, three sets of participant data were

available. The results of model fitting for these datasets is discussed in chapter 8.

For one of the Weather task datasets, participants were also asked to perform a
final task, known as the Probabilistic Selection task, based on the task as described
in Frank et al. (2007). For this task, participants are asked to learn the likelihood of
being rewarded for six different actions, each given its own symbol. In the first
phase of the task the actions are shown in three pairs with complementary reward
probabilities that differ for each pair (80:20, 70:30, 60:40). Participants are asked to
pick the most rewarding action, whereupon they are provided with a reward if
there is one. In the second stage of the task, the participant is again shown pairs of

symbols, but as well as repeating the original training pairs, there are novel pairs

10



made of symbols that were unpaired in the first stage. The participants are not

given any rewards in this second stage.

As the participants from this dataset are the same as one of the Weather task
ones, a comparison was made between the parameters recovered from the
Weather task fitting and the Probabilistic Selection task fitting. This comparison
tested our assumption that the model parameters are associated with stable

features of the participants. This is discussed in chapter 8.4.

Both the Weather task and the Probabilistic Selection task have multiple phases,
within which different models might dominate for a given individual (Frank et al.,
2007). The impact that selectively fitting might have on parameter recovery,

irrespective of the model chosen is discussed in chapter 5.

Changing stimulus cues  Static stimulus cues
Changing actions Probabilistic Selection task

Constant actions Weather task Decks task
Table 1-2 The tasks upon which the models were evaluated, classified by their use of

static or varying stimulus cues and static or varying action choices.

11



2 THESIS METHODOLOGY

To compare and evaluate the performance of learning models in identifying causal
links across events, it is necessary to take the mathematical descriptions of
proposed models and write them as computer code. This code will need to be
written in such a way that the model implementation can be used to fit participant
data and act as if it were a participant performing a task. Ideally, as the models are
used to fit participant data from across a range of tasks, it would be best to
implement each model only once. In this way, there are likely to be fewer mistakes
in the single implementation of each model than in multiple implementations,
thereby allowing us to trust our results more. However, it does require the model
to be written in such a way that it can flexibly adapt to a range of task types,
increasing the complexity of the model implementation. It also increases the
complexity of the code surrounding the model, as it will need to act as an interface
between the task and the model or the participant data being fitted and the model.
This work will therefore need model’s to be implemented using a common

structure and communicate with the tasks using a common interface.

One solution is to write a framework into which models, tasks and participant data
can be placed and interact in a consistent way (Eglen et al., 2016; Poldrack et al.,
2019). This can be done by writing a modular computer program such that the only
parts that change are the ones that have been explicitly asked to change. This has
two added benefits. As the models and tasks can be swapped without changing
the rest of the program, both must use consistent methods to communicate with
the rest of the program. While this does constrain their structures, it does
encourage clarity and consistency in the way they are described in code. The other
benefit is that by changing only small amounts of code each time, it becomes
possible to clearly identify any differences between models or between tasks. This

allows certainty in the information has been passed to and from the models.

12



2.1  DATA GENERATION AND ANALYSIS FRAMEWORK

The framework used in this thesis, Tinker Taylor py (TTpy), is composed of a series

of components, each designed to be modified independently of the others.

e Task implementation

e Model implementation

e Participant data loading

e Fitting method

e Structure for running an experiment with a model
e Structure for fitting models to participant data

e Structure for organising and managing all outputs
Fitting method

Fit quality
measure

Simulation Data fitting

~! Data recorder |€&t—

N, /

L

Figure 2-1 A diagram describing how the main components of the framework interact.
Oval framed components denote easily swappable parts. All parts can be modified.
Users can perform a simulation without fitting any data and data from a simulated task

can then be fitted, as denoted by the dotted line.

These components have been created in such a way as to make it clear how to
implement new versions that are compatible with all the existing components.
While this makes each new component slightly more complicated to write, it allows

existing components to interact with them immediately.

The framework has been written in the open source, interpreted, programming
language Python (Millman & Aivazis, 2011). Python has been chosen for its clarity,
its large number of packages, its availability on most operating systems, its already
widespread use for scientific modelling, including in Psychology, as well as my pre-
existing familiarity with the language. By writing the framework in Python any
researchers who are interested in running it can be sure that it will be able to run

on their computer. Also, when compared with other programming languages, they
13



are likely to have an easier time understanding and modifying the code regardless
of whether they are programming novices or those used to write in other

programming languages.

The code has been made available on the website bitbucket.org
(https://bitbucket.org/djhunt/pyHPDM) alongside documentation written
both as comments in the code but also as a set of webpages. The documentation

can also be found at https://pyhpdm.readthedocs.io.

The framework relies heavily on the scientific python, SciPy, library of packages
(Oliphant, 2007). The choice of Python allows access to a wide variety of libraries
written with scientific data analysis in mind. The libraries are largely platform
independent, allowing researchers using different computer systems to
collaborate and validate each other’s work. They are also mature and well
maintained, being regularly updated by many companies and volunteers.
Documentation for the framework is incorporated into the code and is written in
such a way as to be easily extracted into a set of searchable web pages using the
Sphinx library (Brandl et al., 2018). Tests for the code, to verify that it works as
expected, can be performed in two ways. Firstly, as models and experiments are
implemented, the results from previous papers can be replicated. Secondly, formal
tests can be implemented using the pytest library (Krekel, 2017). The framework
has been written using Python version 2.7, as the later Python versions 3.* did not

have all the necessary packages when this project was started.

Before running a simulation or data fitting, each of the necessary components is
initialised and these initialised components are then passed to the simulation/data
fitting routine. To aid with replication, this initialisation and passing of components

is typically written in a file that can be stored with the output.
211  Keeping track of each simulation/fitting

So that anyone using the framework can understand what happened during the
running of the framework and the progress of the program, a set of recorder and
displayer functions are provided in what is known in Python as a module. They
manage the saving, storing, logging and displaying of data from all parts of the
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framework. These functions are accessible through a recorder object (technically a
class instance) that is initialised during the initialisation phase and then passed to
the simulation or fitting modules. It is designed to provide a log of what went on
during the simulation as well as record all the data and graphs that were
produced. When correctly set up this provides, with very little user input, enough
information to replicate the findings and enough detail to understand what went

on during each task trial.

The model data is recorded in such a way that it can be treated as if it were
participant data. This allows simulated data to be generated and treated as test

ideal participants.
212  Task-model interactions

A participant's interaction with their environment in a repeated task can be
thought of as being broken down into three components during each task trial, or
trialstep: observation, action and consequences. This breakdown of a trialstep can
equally be true for the interaction of a model designed to replicate the
performance of a participant. To allow the models to be as general as possible, the
interface for a model should be simple and flexible enough for a model to cope
with trialsteps containing any combination of these three components, ideally
without being explicitly told what to expect, e.g. without knowing if there will be
consequences before an action is taken. In this way, the models will be able to
learn from a range of response sets (Kirsch, Lynn, Vigorito, & Miller, 2004), such as

classical and operant conditioning.

Observations can be thought of as the state of the environment, including the
state of any salient cues or indications of possible actions that can be taken.
Consequences can be thought of as either a representation of a reward, which can
be numerically represented for the model, or feedback as to what was the correct
action to take, or simply as a change of state in the environment, denoted by a
change in the salient cues. For the sake of simplicity, consequences that are a
change in the salient environmental cues will be considered as the observation for

the subsequent trialstep. Action is the active selection of a choice from a series of
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explicitly signalled options. For a participant, the choices may be outlined before
the start of a task if they do not change with each trialstep, at which point the only
cue is one denoting when it is necessary to perform an action. We can examine all
the possible combinations these elements would provide, as shown in Table 2-1.
Here, the term “actionable” is used to refer to cues that signal that an action is
available to be performed. Without these the model, or participant, would not

know that an action was expected during the trialstep.

Observation  Action Consequences

Stimulus
Stimulus +
actionable
Stimulus +
. Reward
actionable
Stimulus Reward
Actionable . Reward
Stimulus +
. Feedback
actionable
Actionable . Feedback

Table 2-1 The expanded list of all combinations of observations, actions and
consequences that can occur in one trialstep. Two are greyed out as they cannot be

distinguished from the others.

Two have been greyed out, as they are not useful here. Feedback/Reward on its
own is identical to a stimulus on its own and actions without a stimulus or

consequences cannot be learnt from, so can be ignored.

As we can consider feedback on what was the correct action to take as a form of
reward, the term “reward” will be used to refer to both when no distinction needs

to be made.
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One difficulty that needed to be addressed when creating this interface, was when
to update the model's expectations of action consequences. As the models and the
framework are designed for repeated tasks, where the task can be splitinto a
sequence of similar trialsteps, the final moment in the sequence of events for the
previous trialstep is the first moment of the first events in the following trialstep.
With that in mind, by condensing the list found in Table , as shown in Table 2-2, it
becomes clear that when there is a reward within a trialstep, the model
expectations can be updated when the reward is provided. In the other two cases,

the model expectations can be updated when the next observation occurs.

Another issue to resolve is how to cope with observation-action pairs that stop
getting rewards at the end, such as when there is a test phase in the task where no
feedback is given to the participant. These need to be treated differently from
tasks where the feedback is the next observation, i.e., the first or second rows in
Table 2-2. To prevent this, a dummy feedback is provided, signifying that there
were consequences, but that these are unknown. In this way, the model will not

learn from the trialstep, but can still correctly understand the trialstep structure.

Event combination Point at which model knows
Observation Action ~ Consequences  €nough to update expectations
Stimuli Next observation
Stimuli + actionable . Next observation
Stimuli + actionable . Reward Consequences
Stimuli Reward Consequences
Actionable . Reward Consequences

Table 2-2 The event combinations for a trialstep and their respective expectation update

times

213  Task descriptions

The aim of the way the tasks are structured is to be capable of simulating any
repeated observational, action-response, observation-action-feedback or
observation-reward tasks. To do so, each experiment task is written as its own

module and relies on a task template. In programming terminology, the task class
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inherits from a task class template. A task can provide stimuli, indicate which
actions can be taken and provide rewards. Its behaviour can be varied either
through some internal sequence generation or based on actions taken by a model.
Stimuli and rewards can have any number of components and can be
instantaneous or have a duration, although this feature is never used in the tasks
examined here. With this flexibility, it may be necessary to transform a stimulus or
reward into a form that the model is expecting. To do so, task interface functions
are used and are stored with each task. These are discussed further in chapter

2.1.4.

214  Model implementations

Models are implemented in a similar way to the tasks: with a module based on a
class template. The models are designed to receive stimuli, rewards and
participant action choices, and use these to update their reward expectations and
action choice probabilities. They can also make decisions based on these

evaluations.

Models have three parts split off from the core of the model: stimulus formatting,
the decision making and the reward formatting. The motivation behind this is to
separate the learning from the peculiarities of the task, allowing the model to be
general and to be fitted into a range of different task types, even those the models
were never designed for. The models looked at so far all explicitly or implicitly have
these parts in a form that can be easily separated from the rest of the model. The
stimulus formatting and the reward formatting are considered task-specific
interface components. The decision making is much less likely to be task specific,
but if a task requires an action only under certain circumstances this will need to

be treated differently from those that expect an action for each trialstep.

The reward component receives the feedback from the task, as well as the model’s
chosen action. From this, the appropriate reward is constructed for the model. For
example, as will be seen in chapter 3, some models need the rewards to be
expressed in the range [0,1], while others can cope with arbitrary valued rewards.

Others consider task feedback from one action to be useful in updating their
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expectations for all the possible actions. Both requirements necessitate

transformations in task feedback across different models.

The stimulus processing component is designed to take the task stimulus and
transform it into the form expected by the learning modules. For example, the
stimulus cues might be arranged into the same representation found in the
memory of the learning modules. As there are potentially multiple different ways
of representing the stimulus data for a given model, care must be taken to retain
as much of the initial information as possible when transforming it for a model.
For example, for a task with two possible stimulus cues that are mutually exclusive,
they could be represented as a binary digit, with O representing one cue and 1 the
other. They could equally have multiple digits, all switching from 1 to 0 as the
stimulus cue changed or have some digits that kept a constant value regardless of
the cue currently available. Alternatively, the difference between the cues could be
stored, represented by their presence separately, with one digit for each cue, so
cue 1 could be represented by 10 and cue 2 by 01. It would also be possible to
assign a random sequence of digits to represent a cue, as is done with Semantic
pointers (Eliasmith, 2013). This allows other cues to be identified and incorporated
without modifying the structure of the learning. It also allows for identification of

relationships or similarities between cues to be learnt.

Given the nature of the tasks being examined, the models implemented in the
framework are passed stimuli with a distinct and binary digit for each possible

stimulus cue in the task, with 1 representing the presence of the cue and 0 its

absence.
Cue 1 Cue 2
Binary 0 1
Distinct 10 01
Repeated 11 00
Redundant 11 10
Semantic pointers 010101011 110111011

Table 2-3 Different representations for two mutually exclusive stimulus cues.
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The decision component receives the data relevant for a decision and then returns
a decision in the form of the action to be taken and structured information on how
likely different actions were. The information needed to make the decision can be
the last chosen action or the likelihoods of each action having the largest
expectation of reward. The method used to make the decisions can include
choosing randomly between the possible actions, weighted by their likelihoods,
choosing the currently most likely action, or choosing an action only once one of
the possible actions exceeds a certain threshold of likeliness. For the tasks
examined in later chapters, the decision choices will be based, unless otherwise
specified, on randomly choosing between the possible actions, weighted by their

likelihoods.
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Figure 2-2 A flow chart showing the general structure of the models. Here the stimulus
transformation, reward transformation and decision components are ignored.
Rectangular boxes are used to denote interactions with the model's environment and
ovals internal components. Dotted lines denote the integration of the Reward Prediction

Error (RPE) from the current trialstep into the model’s decision and prediction processes.

The core of the model has also been broken into a series of components, using the
notion of a reward prediction error and inspired by similar breakdowns such as
described by Schultz & Dickinson (2000) or Daw & Doya (2006) as shown in Figure
2-3. The general breakdown used within the framework and in subsequent
chapters can be seen in Figure 2-2. The stimulus affects the choice of next action
as well as the expected reward for each action. As the choice of next action may be
dependent on the expected reward for each action, the two sets of calculations
may overlap. Once an action is chosen and its expected reward has been

calculated, the feedback from this, equated as a reward, is compared to the
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predicted reward. The result of this comparison, known as a reward prediction error
(RPE) and often called a delta or 8, can then be used to update the values used to
calculate the expected reward and the chosen action. These elements can be
thought of as belonging to two broad categories: the actor and the critic. The actor
chooses what action to take, based on the information it has. The critic evaluates
how well reward predictions are matching up to actual rewards. In some models,
an action is chosen based on the reward predictions, so there is no clear

distinction between the actor and critic.

One final part that has been standardised across the models is the way in which
the expected rewards are stored within each model. This is rarely explicitly
discussed when presenting a model, so standardising this avoids adding another
potential ‘feature’ to each model that could affect the performance. For most tasks,

an expected reward will be stored for each action-stimulus cue pair, but this will

(i) Evaluate actions

Situation from sensors Assess reward, delay, risk
Ve Striatum, frontal and parietal cortex

Action candidate a b (
Plasticity
Value 3 > 10

(ii) Choose an action
Biased towards richest options
Same areas as (i) or downstream

|
C
Outside
world Action to effectors
10
\ . .
(iii) Learn from experience Prediction
Reward 12 Compare predicted and actual reward 2 |error
Dopaminergic error signal
J

The three basic stages of many reinforcement learning accounts of learned decision-

making. (i) Predict the rewards expected for candidate actions (here a, b, ¢) in the current

situation. (ii) Choose and execute one by comparing the predicted rewards. (iii) Finally,

learn from the reward prediction error to improve future decisions. Numbers indicate the

predicted action values, the obtained reward, and the resulting prediction error.

Figure 2-3 An example of model breakdown, adapted from (Daw & Doya, 2006)
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simplify for tasks where there is no variation in the stimuli, or no variation in the
actions available for each trialstep, as shown in Table 2-4. This has been chosen as

it is the simplest, memory efficient approach.

Event combination What each stored
Observation Action Consequences expectation relates to
Stimuli Stimulus
Stimuli +
. Stimulus cue, action pair
actionable
Stimuli +
. Reward Stimulus cue, action pair
actionable
Stimuli Reward Stimulus
Actionable . Reward Action

Table 2-4 The event combinations for a trialstep and their respective expectation

element meanings

215  Data for fitting

Data from past experiments can be imported and transformed into a common
data format. Python has libraries to read most common data formats, including
MATLAB .m files, XLSX, XLS and CSV. Tools were written using these libraries to

transform the recorded data into a list of records, one for each participant.

Each participant’s record would be stored as a dictionary, which is a collection of
labelled bits of data. The data stored in these collections can be things as simple as
the participant ID to a list of all of responses for the task. Currently, all the data is

imported before the fitting of any participants begins.

Data from simulated participants can be read in using the same methods as those

of real participants.

216  Fitting models to data

Fitting takes the sequence of events experienced by the participant and drives the
model through them with a range of different parameter values. For each

parameter combination a fit quality measure is used to transform this model
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experience into an assessment of how well the model, with the specific parameter
values, would have mimicked the same reactions to the task as the participant. The
lower the value the function returns, the better the fit and the closer the current

model and its parameters are to describing the participant data (Akaike, 1974).

To provide the events experienced by the participant, the fitting process needs all
the variables used to make the varying state experienced by the participant, as well
as the responses of the participant. To evaluate how well a model fits these
actions, we will also need to specify which variables processed by the model we
want to use for its evaluation. The varying state experienced by the participant is
composed of any stimuli, possible valid actions for the trialstep, the participant
actions and any subsequent feedback. We can extract the data necessary for this
from the recorded participant data. In certain tasks some of these will not change,

such as the stimuli. These can be marked as being unchanging.

Changing stimulus cues = Static stimulus cues

Changing actions Probabilistic Selection

Biased coins
Constant possible actions Decks
P Weather

Table 2-5 Examples of the tasks examined in this thesis and if they have varying stimuli
and varying possible actions. This table ignores any counterbalancing that may occur
with the presentation of the actions and cues to the participant. The tasks are described
in detail in chapter 4.2 for the Biased coins task, chapter 6 for the Decks task, chapter 7

for the Probabilistic Selection task and chapter 8 for the Weather task.

If some trials are not considered representative, then these can be excluded from
the fitting process. For example, the initial trialsteps in a task may be considered to
not be representative of how the participant reacts to a task, as the participant

may need some time to get used to the task.

As participant data for probabilistic decision-making tasks is inherently noisy, we
would like any fit quality measure to be able to provide similar fit qualities for
similarly likely action sequences and the same model parameters. This will allow us

to minimise one source of error in identifying model parameters associated with
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participants from one single sequence of actions in a task. To what degree this is

possible will be addressed in chapter 4.

2.16.1  Making the model “walk in the participant’s shoes”

During the fitting, we wish to identify the model parameters that maximise the
likelihood that the model would have taken the same action as the participant at
each trialstep. To do so, the model performs the task with a numerical
representation of the salient environmental information that the participant
experiences: stimulus cues and possible actions it can take, followed by any
feedback. The model is also constrained such that when it needs to make a choice,
it makes its own choice, and then this choice is overruled such that it continues
using the same action choice that the participant took in that trialstep. The
performance of the model is then evaluated using a fit quality function based on
the likelihood of the participant’s actual choices for the model, with the specified

parameters.

Excternal environment Model Participant override

Start

'

Stimulus & valid ——» Choose

Reward <«———— Participant action

|

Reward » Update

Figure 2-4 An overview of one trialstep in a task simulation during model fitting.
The model is fed the external environment, using the same trial components as
when the participant performed the task. Once the model has chosen an action it

has its action overwritten with that of the participant.

2162 Fitting method

When choosing the fitting method to use, only those that were implemented in
well tested, maintained and documented codebases were considered. This was
done to minimise the chance of there being any mistakes in their implementation,
but also to increase the chance that they had been properly optimised to run as

fast as possible. As the framework used for comparing the models is written in
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Python, the SciPy Python libraries were used to provide implementations of the
fitting algorithms. From these, two were investigated further; gradient descent and

evolutionary fitting.

Traditionally, gradient descent methods have been used for fitting participant data
to models (Sutton & Barto, 1998). These rely on calculating the direction of
maximum gradient and following it until reaching a minimal point. SciPy provides
suitable constrained fitters such as L-BFGS-B (Byrd, Lu, Nocedal, & Zhu, 1994),
truncated Newton algorithm (Nash, 1984) and Sequential Least SQuares
Programming (SLSQP) (Kraft, 1988). These provide similar results but tend to get
into difficulties with different fits. The default fitting method has therefore been to
try each fit using all the appropriate fitting algorithms provided. The best-fit

parameters are then returned.

Figure 2-5 An example of a two-parameter space where a gradient descent search will
not always find the global minimum. Here a function has its result shown as a
position in the vertical axis. The function value is also shown as a colour scale, with
dark purple being the lowest values and bright yellow the highest. There are two
minima in the bounded region shown here with the one closer to the viewer being the
lower of the two. By starting in some locations, the higher of the two minima will be
found, but not the lower, global minimum. The two example trajectories, marked in
black, show potential trajectories from two close starting points resulting in two

di t solutions.
ifferent solutions. 55



Gradient decent methods have an inherent difficulty as they only follow one path
through the parameter space. This makes their view of a complex parameter space
narrow and may mean they miss a global minimum, as they identified a local
minimum. One solution to this is to run the fit multiple times from different
starting points. To increase the chance of finding the correct fit, a grid of starting
parameters is used (Daw, 2011). Another issue is that gradient descent methods
inherently require the fit quality to vary across the parameter space in a
continuous way as well as requiring the gradient to also be continuous. This limits

the tasks they can be used for.

An alternative approach to fitting is to use evolutionary algorithms (Salomon,
1998). They have the advantage that they make very few assumptions about the
problem being optimised and can be used for fitting functions that are not locally
smooth or, as often in our case, there are many local minima. The underlying idea
is to iteratively sample a pre-chosen section of the parameter space, homing in on
the best minima found. In each iteration, a set of points is randomly chosen from
the parameter space, with the choice of locations weighted by the fit measure
values of all previously selected places. In so doing, future points are more likely to
be chosen clustered around previously identified areas with a good fit quality. New
sets of points are generated until the variance between all points in the last round
is below a specified threshold. As multiple potential solutions are looked at
simultaneously, they share their information, and consequently it takes less time

to perform the search than with gradient descent.

SciPy Python libraries have an implementation of an evolutionary algorithm based
on differential evolution (Storn & Price, 1997). The implementation does not allow
you to specify the initial fitting parameters, only the limits of the parameter space.
You can also specify that a grid of initial parameters is used, covering the

parameter space.

Unless specified, the fits in this study are performed with the evolutionary

algorithm.
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2.2 FIT QUALITY MEASURE

The aim for the fit quality is to capture in one value how well a model with specific
parameters can characterise the behaviour of a participant performing a specific
task. In so doing, we can draw from methods that have been designed to select a
model from a range of models, as well as methods for representing how well a

model represents a dataset (Burnham & Anderson, 2004).

To assess the model response, we use as our basis Maximum Likelihood Estimation
of the probability that the model, for a set of parameters, would provide the same
response as a participant. To calculate this, for each action of the participant takes,
¢;, a likelihood can be calculated that the model would have taken the same action,
p(c:). For a sequence of T actions taken by the participant, ¢;,c, ¢y = C, the

combined likelihood of such a sequence for a given model is:

T
p(e) = p(e) + = pler) = | [pleo
t=1
2.1
By taking the log of this, the product of these probabilities can be transformed into

a sum:
T T
L =log, (1_[ P(Q)) = Z logz(p(cr))
t=1 t=1

Here, log, is the base two logarithm, chosen to allow us to interpret the value more

2.2

easily. The conventional method of representing these equations is to present
them in the base of e. Changing to a representation in base 2 does not change the
overall results. Only the magnitude of the fit values is changed, not their relative
sizes. The effect of using base 2 is that when the model only had a 0.5 probability
of choosing the action that the participant chose, p(c;) = 0.5, then log,(0.5) = —1.
For a p(c;) = 1, thenlog,(1) = 0. For a p(c;) =0, then log,(0) = —co. The more
likely the model would be to take the same actions as the participant, the closer to

zero the overall values are.
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A more common form for this, and the one that will be used from now on
multiplies this by a factor of -2, which provides some benefits in later calculations

and makes all the values positive:

T
f= —ZZlogz(p(ct)) =-2L
t=1
2.3
For this, more likely the model would be to take the same actions as the
participant, the closer to zero the overall values are and the better fitting the
model is. An example of what these sequences might provide is shown in Table

2-6. In this case, model 2, with an f = 11.39, is the better model.

Participant

actions ¢;

Randomp(c;) 0.50 050 0.50 0.50 050 0.50 0.50 0.50 16.00
Model1p(c,) 050 0.56 0.60 063 035 0.70 0.71 0.72 1248
Model 2p(¢,) 050 091 095 095 0.05 1.00 1.00 1.00 11.39
Table 2-6 An example of how the fit quality values can vary across different models for

the same sequence of actions. Here, model 2 matches the participant's actions best.

It is important to understand if the parameters providing the best fit found by the
fitting process are significantly better than random. Using the structure above, we
can describe the likelihood estimate for the pure random model by assuming that
for a trialstep, t, each action available d; € D,, has equal probability of being
chosen:

1

p(dy) = D4l

with ||D;|| being the number of different actions available at time t. When this is

used in equation 2.3:

T
1
=2 g lo (—)
frand £ g2 ”Dt”

As T and D, do not depend on the model, this will be constant when fitting a model

to a set of data.
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To compare these two we begin by calculating the likelihood of the sequence of
actions C being created by the model we are testing, H,,,q, rather than being a

random sequence, H,,,q (Kass & Raftery, 1995).

For H,,.q the probability of H,.4 given that the participant has performed the
sequence of actions C, is called the posterior probability. From Bayes' theorem, this

is defined as:

p (C |Hmod)p(Hmod)
p(C)

p(Hmodlc) =

Where p(C|Hpoq) is the model's marginal likelihood, the likelihood that for a given
model, the sequence of actions C would be taken. p(H,,,q4) is the model's prior
probability. As we are only considering these two options as being the only

options:
p(Hrand) + p(Hmod) =1

From which we can rewrite the above equation’s denominator as:

b (C |Hmod)p(Hmod)

(HmodlC) =
P mod p(cleod)p(Hmod)+p(C|Hrand)p(Hrand)

By structuring p(Hyanq!C) in the same way, we can now compare the two

probabilities:

p(Hmod | C) _ p(C |Hmod)p(Hmod)
p(Hrandlc) p(ClHrand)p(Hrand)

From which we can define the Bayes factor as a likelihood ratio of the prior and

posterior odds (Kass & Raftery, 1995):

_ p(CIHmod) _ p(Hmodlc)p(Hrand)

B = =
p(ClHrand) p(Hrandlc)p(Hmod)

24
As the model has parameters, we can treat the probability of the data given to the

model as a function of those parameters, 6:

P(ClHpo) = j P(C16, Hno)P (61 Hoa)dO
2.5
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Which is also the probability of that sequence of actions prior to any data being
collected. We can also break down this probability as the product of probabilities

of actions for each trialstep:

T
p(Cleod) = 1_[ p(ctlct—lr €1, Hmod)
t=0

This is similar to equation 2.1, but in this case the probability that an action is
taken in a given trialstep is explicitly shown to have a dependence on the

previously chosen actions. By taking the log, we can rephrase this in the form of

the likelihood estimate for both hypotheses:

T
—210g2(p(C|H)) = —ZZ log, p(celce—1, €1, Hmoa) = f

t=0
2.6
From this, we can also define a fit quality difference (Raftery, 1995):
Af = frand _fmod
2.7

We use an approximation of the probability that the data was produced by a given
model, p(C|Hyoq), kKNnown as the Schwarz Bayesian information criterion, but more
commonly called the BIC (Raftery, 1995; Schwarz, 1978), to evaluate the fit quality
of the model. This uses a Taylor series expansion to approximate the Bayes factor.
If we assume that the model parameters are independent, the result is that the
model’'s maximum likelihood estimation is corrected by the number of parameters

in the model, ® = ||6]|, and the log of the number of trials, T.

T
fnot = BICmoq = @logy(T) =2 ) log, (p(cy))

t=1

From this, an equivalent to the fit quality difference defined in equation 2.7 can be

expressed as:

BICyirf = BICrana — BlCmoa
Where BICrana = frand @s the number of parameters in the random model, © = 0.

The model with the highest posterior probability is the one that minimizes BIC, 4.

As 0 is constant for the same model and ©log,(T) is constant for the same task,
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when fitting a model to a task ©log, (T)will be a constant. By taking the log of the

Bayes factor in equation 2.4:

p(Cleod)>
p(ClHrand)

—2log,(B) = —2log, <

Expanding out the log:
—2log,(B) = —21log,(p(ClHmoa)) + 21082(P(CHrana))

Where the right-hand side can be recognised as being in the form of the likelihood
estimates in equation 2.6, combined to form the fit quality difference defined in

equation 2.7:
2log,(B) = Af

This can also be expressed as:

B= 22
2.8
When examining the response of more than one participant’s performance, a
Group Bayes Factor (GBF) can be used to provide a crude measure of the relative
explanatory performance of two models for the " participants action sequences

(Klaas E. Stephan, Marshall, Penny, Friston, & Fink, 2007). The GBF is the product of

the Bayes factors for each participant:
»
o= [5.
n=1

The probability associated with this Bayes factor can be calculated as an odds

2.9

ratio. Using equation 2.4 and considering the prior probabilities for the two models

to be equal:

_ p(Hmodlc)

B =M@ "7
p(Hrandlc)

As these are the only two models being considered, p(HpodlC) =1 — p(HranalC)
(Kass & Raftery, 1995), so:

— p(Hmodlc)
1- p(Hmodlc)
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This can be rearranged to show that:

P(HmoalC) = 1151

While a Bayes factor is more informative than a BIC value, a Bayes factor increases
as the evidence for a model grows. For us to use a minimisation fitting technique,

such as those described in chapter 2.1.6.2, a modified version will need to be used.

The simplest is to invert equation 2.8:
—Af
B_l =2 2
As we will be using the same Bayes factor criteria across all comparisons, the B we

will use as a threshold will be a constant, B,,,;,. We can therefore express this as an

inequality, describing a parameter fit that is sufficiently different from random.

-Af
1> B2 2

To allow us to evaluate easily across tasks, we wish to transform the inverted
Bayes factor into a form that is independent of the number of trials being
evaluated. To do so, we used a variation of the pseudo-R? described by Frank,
Moustafa, Haughey, Curran, & Hutchison (2007). They evaluated their models using

a pseudo-R? of the form:

— _Af — fmod - frand — fmod _
f rand f rand f rand

R? 1

By transforming the Bayes factor in equation 2.8 to use this ratio we find:

-2 —Af Smod
'Bfrand = Zfrand = z(frand 1)
2.10
As before, this can be expressed this as an inequality, describing a parameter fit

that is sufficiently different from random.

2 (fmo
1 > Bminfrand z(franj_l)

When BIC approximations are used, this becomes:

2 (BICmod 1)
1> BminBICrandZ BICrand
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Raftery (1995), considers a Bayes factor greater than' 20 as suggesting strong
evidence for a model, and roughly equivalent to a probability of 0.95, although R.
Wetzels et al. (2011) suggest that a Bayes factor of 20 is much stricter than this.
Substituting the value of B,,;;, = 20 for the minimum Bayes factor that we will

accept, we can now minimize the data using a normalised Bayes factor of:

2 (BICmod 1)
fB = BminBICrandZ BICrand
2.11
In this form, a fit quality of 1 or below is equivalent to a B of B,,;,, or higher. This
can be rearranged by substituting equation 2.10 in to provide the B,,;, value

corresponding to the fz value:

—BICrand
B = Bminf;;;
As BIC,4nq is the same across participants for the experiments examined here, the

value of B can be calculated once the fitting has been completed.

One issue that we are not addressing here is that for the BIC to work, the statistical
model must be regular, which is defined as a model whose mapping from model
parameters to a probability distribution is one-to-one and whose Fisher
information matrix is positive definite. Models that violate one or both conditions
are called singular. Singular models cannot be approximated by a normal
distribution, forcing us to look elsewhere for our assessment of model fit (Friel,
McKeone, Oates, & Pettitt, 2017). One suggested alternative is the Widely
Applicable Bayesian Information Criterion, WBIC (Watanabe, 2012), which is a
generalisation of the BIC for all singular statistical models. However, it is common

for modellers to use the BIC without considering this aspect.

" Due to the way in which they are defined, Bayes factors are the same irrespective of the
base used for the exponents and logarithms. Therefore, e can be used in the place of 2 and
log, = In in the place of log, without affecting the choice of threshold Bayes factor.
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2.3 PARTICIPANT DATA

The participant data discussed in chapters 6, 7 and 8 were collected as part of
other research projects and repurposed for this thesis. The ethical approval for
collecting the participant data analysed in this thesis was deemed as sufficient and

approved by the Goldsmiths Psychology department Board of Ethics.

2.4  DATA ANALYSIS

The participant behavioural data is initially assessed using task-specific measures
to test that the participants have responded to the task manipulations and, if
possible, these are comparable to prior published examples where the task was

used.

Once participant data has been fitted, the models will be compared using several
criteria. The simplest of these is the number of successful fits. Any fits that reach
the parameter boundaries are considered failed fits, as a boundary fit removes a
parameter from the model, transforming it into a simpler model, with the
exception of the upper bounds of B, o, and o,, which have been arbitrarily set
sufficiently high that if a model has a best fit on these bounds, it is unlikely that the
recovered model parameters accurately represent the learning method of the
participant. To allow for numerical uncertainty from fitting, a boundary fit is
considered to have occurred if a recovered parameter is within the smallest or

largest 0.1% of a parameter’s support, the range of values over which it spans.

Another criterion for evaluating the models is the quality of the fits, as described
by the fit quality measures. This may take many forms, some of which are
described in chapter 2.2 such as the log likelihood, f, in equation 2.3 or the
normalised Bayes factor, f3, in equation 2.11. These can be compared, along with a
participant group level evaluation using the Group Bayes factor, defined in
equation 2.9. However, a fitting measure becomes a cruder model evaluation

criterion when it is used to recover parameters (Daw, 2011; Strathern, 1997).

A more Bayesian approach to model comparison is discussed by Stephan, Penny,

Daunizeau, Moran, & Friston (2009), who introduce a hierarchical Bayesian
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approach that calculates an approximate probability distribution of likely model
frequency across participants. This is modelled using a Dirichlet distribution D, also
used in the Bayesian models in chapter 3.11. The model likelihoods, w,, for each
model, k, are converged upon using the log model evidence, £,, ;, for each
participant, n, as discussed in chapter 2.2. In our case this will be approximated
using the BIC. As the log model evidence is used here as part of a larger
formulation, the BIC must be constructed using the natural, or base e, logarithm.
By using this and a starting assumption that the model likelihoods are all initially
equal, wg = [1,:-,1], a stable w can be calculated by iteratively recalculating until

convergence:

Upp = exp| L+ P(wy) =¥ (Z u)k>
k

N
un,k

Yk Uy k
n

W, =

W=wy+®

where ¥ is the digamma function. From this the posterior expectation of the

model frequencies can be calculated:

EFy = E[D(w)] = z-:fm-

Implementations of this are found in the MATLAB VBA toolbox (Daunizeau, Adam,
& Rigoux, 2014; Daunizeau, Friston, & Kiebel, 2009).

Parameters that should be similar across models will be assessed for the strength
of their correlations across participants. An overall measure of correlation for a
group of parameters can be calculated using Kendall's W, otherwise known as
Kendall's coefficient of coefficient of concordance (Legendre, 2010). This is a rank-
based correlation measure that compares sets of values and returns a measure of

their ranked agreement between 0 and 1, with 0 indicating no agreement.

The fitted parameter values are also compared to other participant data collected,
such as scores from the Eysenck Personality Questionnaire Revised, EPQ-R (S. B. G.

Eysenck, H. J. Eysenck, & P. Barrett, 1985).
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3 MODELS EXAMINED

One starting point for these models is to consider learning from the perspective of
reinforcements of beliefs. The simplest and most computationally efficient models
for reinforcement learning (RL) are based on reward prediction error (RPE)
(Rosenblatt, 1958, 1961; Sutton & Barto, 1998). These rely on updating the
expected outcome, based on the discrepancy between the expected reward value
for an action, given the presence of a particular stimulus, and the actual reward of
that action. More formally, at trial t the expected outcome for the next trial, E;, is
calculated by updating the expectation from the current trialstep using the current

reward, E;

Eiy1 = Ec+ a(y — Ep)

with a as the learning rate, set between 0 and 1 inclusive. Therefore, a constant
expected reward E;,, = E; is equivalentto an a = 0 and a = 1 results in an
expected reward that matches the reward from the previous timestep, E;,; = 1;
The simplicity of RL models is appealing, allowing for easy neuronal
implementation (Rescorla & Wagner, 1972; Rosenblatt, 1961). However, when
placed in undirected, delayed, real-world situations it can fail to identify causal
links (Glimcher, 2011; Littman, 1994). Attempts to use RL models for some tasks
can result in overly complex and rigid learning systems which negate the original
advantages of RL (Sutton & Barto, 1998). Nonetheless, it is useful as the basis for
many more detailed models, or in simple task contexts, such as those examined

here.

One significant limitation with these RL models is that they do not take into
account the uncertainty surrounding an expectation. An expectation can be
thought of as the average of all possible rewards, weighted by the likelihood of
those rewards. By not describing the uncertainty in the likelihood of rewards for a
given action, an RL model is in effect using a point function, or Dirac-delta function,
to describe the distribution of likely rewards for the given action. In other words,

RL models assume that there is no uncertainty surrounding an expectation.
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Figure 3-1 Three different representations of expectation based on different
information. The Dirac delta function uses only one value and consequently has no
uncertainty or tolerance for other possibilities. A normal distribution uses both the
main value and a measure of uncertainty. The beta distribution uses the frequencies

of each event to estimate a distribution of the event likelihoods

Another class of models addresses this limitation by updating the likelihood of
rewards using Bayesian inference (e.g., Knill & Pouget, 2004). These, Bayesian
learning models have been shown to predict human actions, but frequently involve
evaluations of high-dimensional integrals that are computationally demanding and
ill-suited to implementation in neuronal architectures. Furthermore, the simpler
ones tend to be prescriptive, not allowing for individual variability (Jones & Love,

2011; Mathys, Daunizeau, Friston, & Stephan, 2011).

This chapter will introduce most of the models that are examined, using a common
mathematical structure and notation. After introducing a model's features, a table
will summarise the complete model. The models will be discussed and compared
from a computational perspective. Further variations on these models were
implemented as a response to the results of chapter 4. These are described in

chapter 4.8.
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3.1  MODEL NOTATION

The expression of the models has been normalised in such a way that the same
symbols are used for comparable concepts. All the models have been updated so
that they can cope with arbitrary numbers of possible actions, arbitrary numbers
of stimulus cues and arbitrarily large positive real rewards. These are all features
necessary for one or more of the tasks whose participant data will be fitted, as
described in chapter 2.1.5. For a full list of the symbols used in this thesis, along

with their uses, see Appendix I.

The models are structured for tasks where participants are asked to learn causal
links within repeated similar trials. Trials contain a description of the state of the
pertinent environment, including the state of any stimulus cues and a description
of which actions can be taken, as well as any reward from an action the participant
may take during the trial. As these trials are considered to be self-contained, the
models we will be examining will be model-free (Sutton & Barto, 1998). The term
model-free is somewhat unclear, as it refers to whether the reward learning model
builds a model of the task. That is to say, a model-free model will not attempt to
identify causal relationships between sequences of trials, only between stimuli,
actions and rewards within each trial. However, there is evidence that people
identify causal links between trials, even when explicitly told that there are none

(Plonsky, Teodorescu, & Erev, 2015).

To aid the comprehension of these models, the display of models themselves has
been broken into the sections described in chapter 2.1.4. The Reward expectation
calculates the expected reward for each action. The Action choice calculates the
probabilities of choosing each action, given the stimulus cues, and the chooses the
action based on these probabilities. As the method of choosing of the action based
on the action probabilities, P, has been separated from the models in the
framework, as described in chapter 2.1.4, this is denoted in the model descriptions
by the function ¢(P). The Reward Prediction Error, or RPE, calculates the discrepancy
between the actual reward and the expected reward. The Critic update calculates a

new expected reward for each action-stimulus cue pair. The Actor update, when
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there is one, calculates the new values used during the next trialstep to calculate

the probabilities in the Action choice.

3.2 (-LEARNING

One of the simplest of the reinforcement learning models is Q-learning (Watkins,
1989). This uses the discrepancy between the expected reward and the actual
reward to update the expected reward for the chosen action and the active
stimulus cues. The impact of the update is controlled through a learning rate
parameter o, ranging between 0, no impact, and 1, which effectively replaces the
expected reward with whatever the last reward was. At both of these extremes we
can consider that we have another, simpler, model which contains no learning. The
update is also split between the active stimulus cues, such that the change across
all cues is equal to the update if there were only one cue. At time t, for each action
d from the set of possible actions, D,, the expected reward for each action, V, is
calculated by combining the expected rewards, E, for each of the active stimulus

cues, s.

Va,e = Z StEsat
SESt

Here, for completeness, we have allowed the cues to have not just a state, but a
magnitude, although this will not be needed in any of the tasks looked at in later
chapters. The probability of choosing a given action, P, is calculated using the
Softmax function, a generalisation of the logistic function and sometimes called a
Boltzmann distribution.

e BVd,t

Pac= g7
, Vi
YieD, ePVic

This uses an exploration-exploitation parameter, B, also commonly called the
inverse temperature parameter or stochasticity parameter, to modulate the
sensitivity to differences between expected reward values. If B = 0, all possible
actions are equally likely to be chosen, regardless of any differences in expected

rewards. In effect, there is no learning in this case. If B is very large, the action with
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the largest expected reward will be by far the most likely, however small the

advantage it has over the other actions.

The updating of the expectation has been modified from that shown at the
beginning of the chapter to allow learning to occur independently for different
stimulus-cues. The learning rate is weighted by the magnitude of the stimulus cue,
s¢, compared to the total magnitude of all the stimulus cues, |[S¢|| = X,es, St

resulting in an update expectation function of the form:

E — Eg 4t
s,d,t+1 s,d,t ”St” t
Where §; is defined as the difference between the reward received, r;, and the

expected reward for the chosen action, I,

8 =1 — Vet

The version proposed by Watkins (1989) adds to the reward prediction error a
discounted maximum expected future reward given the stimulus cues of the

following trialstep.

Sy =1m— Vct,t + ym;lx(vd,tﬂ)

This updates the expectation for the action chosen in the trialstep with the
maximum expected reward for the following trialstep, weighted by a discount
factor y, ranging from between 0 and 1 inclusive. To do so, this is calculated as
soon as the stimulus cues for the next trialstep are known and the necessary
expected action rewards of the subsequent trial, V; ;,1, have been calculated. The
only modification to the Q-learning model is therefore to include a second
expectation update equation immediately following the calculation of V4.

aysSe—
ESt—th—p t+1 = ESt—th—pf 1Sl m;lX(Vd,t)

This does not impact the choice of action for the trialstep that has just started, as
the action probabilities are calculated based on the expected rewards used in this

update equation.
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Stages att Q-learning (gLearn)

Reward expectation Var = Z StEsa
SESt
eBVd,t
- i Pot= o=
Action choice " Yiep, Vit
¢t = C(Py)
RPE =1 -V,

asg
» E = Esq¢ +—=0p:d =c
Critic update SAEHL T ESAE Tt ‘
Eqey1= Eqr:d# ¢
Actor update --
Table 3-1 The description of the Q-learning model, broken into the components used in

the implementation.

Stages att Q-learning future (qLearnF)
Var = Z StEsat
SESt
Reward expectation aySe—1

Est—l;d; t+1 = ESt_1,d,t + S—maX(Vd,t) d = Ce—1
IS¢l

Egey1= Eqp:d # ¢y

eBVd,t
. . Ppp= ———
Action choice " Yiep ePVic
ct = C(Py)
RPE St == T't - ]/Ct'
as;

E = Esq¢+ ——0:d=c
Critic update S AT ‘

Eqes1= Eqr:d#c

Actor update --
Table 3-2 The description of the Q-learning future model, broken into the components

used in the implementation.
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3.3 (Q-LEARNING WITH 2 LEARNING RATE PARAMETERS

RPE models can also be built to have separate excitatory and inhibitory pathways,
in line with results described in chapter 1.1. Q-learning models can be adapted for
this by using two learning rate parameters, a* and a~, depending on if the RPE is

positive or negative. When these are the same this simplifies to the Q-Learning

model.
Stages at t Q-learning with 2 learning rate parameters (qLearn2)
Reward expectation Var = Z StEsart
SESt
eBVd,t
Action choice Pax = Yien, ePVit
ct = C(Py)
RPE 8 =1 =V,
ats;
—X5, 6,>0
E _ + L lISel d=c
Critic update sdt+l = Esdt T g7, ' t
TS 6 6, <0
t

Eqey1= Egqr:d # ¢

Actor update --
Table 3-3 The description of the Q-learning model with two learning rate parameters,

broken into the components used in the implementation.

34  0rAL

Collins & Frank (2014), proposed a way of modelling the ACC, by building on the
idea of having separate excitatory and inhibitory pathways using RPE learning. This
Opponent Actor Learning model (OpAL), shown in Table 3-5, uses simple
reinforcement learning as a critic to calculate the RPE, with a learning rate of oc,;.
The actor is separated into two components, an excitatory (Go) and an inhibitory
(Nogo) components, denoted G and N respectively in the equations. Both the
excitatory and inhibitory components have the same structure and are both

updated with each feedback using the RPE calculated in the critic. However, they
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respond differently to the feedback, with the excitatory path increasing for positive
reward differences and the inhibitory component decreasing for the same
difference. They also use different learning rates, a, for the excitatory learning and
ay for the inhibitory learning. Both also use their current strength as a weighting

for their own update, a form of update known as three-factor Hebbian update.

A version without the Hebbian element in the excitatory and inhibitory pathways
was also created by Collins & Frank to demonstrate how the model would not work
without it. They argue that without it their model cannot provide the same
flexibility, nor account for the tendency for the excitatory and inhibitory
components to discriminate between different action choice values over time.
Having updated these excitatory and inhibitory components, they are then used to

provide the likelihoods of actions.

Stages att  Opponent Actor Learning without Hebbian update (OpAL_H)

Reward
. Var = StEsat
expectation SES;

* —
Age = § StAsa
SESt

Action choice 3 ebBAat
Par = v _pa,
Diep, €' it
¢t = C(Py)
RPE S =1.—V,,
AcSt

E = Esqr t 7o 0d=c
Critic update SEEL T ESA T 5| ‘
Eqey1= Egqr:d # ¢

_ QagSt
Gsaee1 = Gsar T m&
t 9 —
N N ayse o <0
Actor update sdi T st s,

Ga1 = Gap
Ngty1 = Ngi

Ager1= 1+ p)Gars1 — A= p)Ngrn
Table 3-4 The description of the OpAL model without Hebbian update, broken into the

1d # ¢,

components used in the implementation.
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Stages att

Reward expectation

Opponent Actor Learning (OpAL)

Var = z StEga¢
SESt

* —
Age = E s StAsat
SE t

Action choice p ePAat
dt — B
diep, €' it
ce = C(Py)
RPE S =1~V
xcSt

Eyqen = Esqe+—otbpd=c
Critic update S N AT ‘

Egty1= Eqe:d # ¢
agGSt
GS,d,t+1 = GS,d,t + ”S ” GS,d,t(St
t

St td =¢

N, = N — ——N.4:0
ACtOF u pdate s,d,t+1 s,d,t ”St ” s,d,tt

Garr1 = Gay
Ngts1= Ngi

Apy1= 1+ p)Gaer1 — A= p)Ngea
Table 3-5 The description of the OpAL model proposed by Collins & Frank (2014), broken

:d?‘:Ct

into the components used in the implementation.

This Hebbian update of OpAL can lead to instability, a point discussed in the
appendix of (Collins & Frank, 2014). There they present a derivation demonstrating

that this growth is bounded under stationary conditions, such that for G:

log(Ge41) <log(Ge=o) +Z—2 (Et+1 — Et=0)

3.1
However, when fitting this model this bounding was found to be insufficient, as the
growth rate in the actor learning is still sufficient for many parameter
combinations for OpAL to result in overflow or underflow errors when fitting
participant data with 80 trialsteps. To illustrate the speed of the growth, in Figure
3-2, we can see the values of G resulting from growth from ten trialsteps in
stationary conditions. Here, the same action is taken each time and the same
reward, 0.5 is given. G, is set as 1. In the left graph we see how varying o;/a. can

affect G, as result that could be expected from looking at equation 3.1. As under
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static conditions increases in G are marked by N tending towards zero, we can

consider that:
Arpr = (14 p)Gpryq

For a p =1and a B =1 this would result, when estimating P in us calculating values
of the order of 2 x 10V after only ten trialsteps. While this does require the fitting to
be examining high values of ag, low values of a; and r,/E; = 10, this is not
uncommon when fitting tasks where the reward distribution varies across the task.
In the right graph of Figure 3-2, we can see in more detail how the discrepancy
between the reward and the expectation of the reward can lead to rapid changes

in the values of G and N under stationary conditions.

It is also worth noting that because of the structure of this model, the performance
assumptions made by Collins & Frank only work consistently with low values of r.
As can be seen in Figure 3-3, for large reward values the growth of G is more
chaotic and unstable. For this reason, rewards when fitting the OpAL model will be

scaled to the range [0,1].
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Figure 3-2 The OpAL values for G after the tenth successive trialstep with the same
reward of 0.5. G, is set as 1. Left: How the relationship between a; and a. affects the
growth of G. E;—y = 0.05. Right: How the value of E._, affects the growth of G across a

range of a. with a;z = 0.5.
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Figure 3-3 The OpAL values for G after the tenth successive trialstep with the same reward.

Gi—o = 1 and a; = 0.5. Left: E,_, = 0.87 Right: E,_, = 1.85r

To minimise the issues in fitting OpAL, while keeping its features, the model was

modified to include an extra saturation term in the update of G and N:

(-3

This model, OpALS, contains a new parameter in the saturation term, M, which acts
as the largest value G and N can have, akin to including a maximal receptor
occupancy. If this saturation term is to have a minimal impact on the model, then it
must be as large as possible. This will therefore be a fixed value, dependent only
on the implementation hardware and will not vary across participants. This results
in it having a value around 50 in the Python framework. By taking the stationary
model simulations shown for OpAL in Figure 3-2 and Figure 3-3 and reproducing
them for OpALS with an M = 10, we can see in Figure 3-4 and Figure 3-5 that the
saturation term does have the desired effect while not changing the dynamics of
the model. A value for M of ten was chosen so that there would be some visible

difference from the OpAL figures.

As OpAL-H does not have the Hebbian term, it does not have the instability of

OpAL, and so does not need to be adapted.
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Figure 3-4 The OpALS values for G after the tenth successive trialstep with the same reward
of 0.5. G,—q is set as 1and M = 10. Left: How the relationship between a; and a. affects the

growth of G. E,_y = 0.05. Right: How the value of E,_, affects the growth of G across a range

Ofac, Wlth Ag = 0.5.
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Figure 3-5 The OpALS values for G after the tenth successive trialstep with the same

reward. Gi—og = 1, ag = 0.5and M = 10. Left: E,_, = 0.8r Right: E,_, = 1.85r
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Stages att Opponent Actor Learning Saturated (OpALS)

Reward expectation Var = Z i StEsat
SE t

* —
Age = § StAsat
SESt

Action choice p eBAat
d,t - *
Diep, €' it
ce = C(Py)
RPE §c=1,—V,,
AcSt

o E =E 4. +—-6:d=c
Critic update SAEHLT EAE T IS, |t ‘

Eqes1= Eqe:d #ce

aGSt Gsat
GS,d,l‘+1 = Gs,d,t + ”S ” GS,d,tSt (1 - )
t

M, d=c
= NSt Nege\ ¢
Actor update Ns,ae+1 = Nsar— AT Ns,a,66¢ (1 - T)

Gair1 = Gay
Ng¢r1= Ng

A= A+ p)Gaee1 — A= pINg 1

Table 3-6 The description of the OpAL model with a saturation component, broken into

id # ¢

the components used in the implementation.

3.5  TEMPORAL DIFFERENCE LEARNING

The temporal difference model can be thought of as an extension of Q-learning
that rewards actions that provide the best future rewards (Sutton, 1988; Sutton &
Barto, 1998). This can be seen as an extension of the reward prediction error with
a weighted extra component based on future rewards. The weightings, or discount
factor, y, are such that rewards that are further in the future are given less
importance. This diminishing weighting, or discounting, changes by a factor of y for

each further trialstep. The resulting reward prediction error is:

L=00
8 =1 — Vet ¥ Yo+ ert+2 + Y3rt+3 +oe=r Ve + Z Yirt+i
i=1
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This transforms the nature of the expected reward, V,;, from being a prediction of

the reward at time t to being a prediction of the future discounted rewards:
=00

T Y + ert+2 + Y37't+3 toe = z YiT't+i
i=0

We can therefore consider that the reward prediction for the subsequent trialstep

is an approximation of the future rewards, transforming the reward prediction

error to:

8 =1 — Vet ¥ YVe 0 th

Here, V.. . . is calculated once the action has been chosen for the following

t+1 t
trialstep. As the following action choice depends on the actions available in the
next trialstep, as well as the stimulus cue values for the new trialstep, S;, this part

of the reward prediction error is deferred to the following trialstep.

Stages at t Temporal difference learning (TDO)
Reward expectation Vae = 2 StEsa
SESt
eBVd,t
Pip= ——r
@ Yiep, PVt
Action choice ¢t = C(P)
aySe—1

Es, ate1= Es_jat+ 7o Vet * d=c
IS¢l
Eqep1= Eqr:d # ceq
RPE e =1t — Vet

as;

E = FE + —0,:d=c
Critic update SAE T BT s, ‘

Eqey1= Eqr:d# ¢

Actor update --

Table 3-7 The description of the simplest version of the Temporal difference learning
model, broken into the components used in the implementation.
An alternative way of integrating temporal discounting is discussed by Daw &

Touretzky (2002). Here, they choose to separate the expected reward into two
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parts: an average reward and a relative reward. The average reward, Ay, is

calculated in the same way as the expectation, with a learning rate parameter t.
Dgry1 = Dgr + T(Tt - Ad,t)
The RPE calculation only uses the relative value of the expected future reward. This

is done by removing the average reward from the RPE:

S8 =1 — Ve,, ¥ Ve, +1— Bay

This relative difference calculation removes the need for the discount factor y in
other temporal difference learning models, while providing quite similar results

(Tsitsiklis & Van Roy, 2002).

Stages at t Temporal relative difference learning (TDR)
Reward expectation Var = Z StEsart
SESt

eBVd,t

Pd = S e

! YieD, ePVie

Action choice ce = C(P)

aS¢—1

Es, yat+1= Es,art yo— Vet d = Ce
IS¢l

Egts1= Eqp:d # ¢y
RPE 8t =1¢ = Vet —Day

Agry1 = Dgr + T(Tt - Ad,t)
as
Critic update Esgrv1 = Esae t ||S_T|6t td =c¢;
t

Eqes1= Eqe:d# ¢

Actor update --

Table 3-8 The description of the Temporal difference learning with relative update,

broken into the components used in the implementation.

50



3.6 Q-LEARNING AUTOCORRELATION

One aspect that is not examined in many reinforcement learning models is the

influence that past choices have on the current choice (Lau & Glimcher, 2005). One

model that attempts to address this is the Q-Learn autocorrelation model, as

described by Daw (2011). Here, an extra component, k, has been added to the

action-choice probability calculation. The value of the parameter k is zero unless

the action-choice currently being calculated is the same as the one that was

chosen in the previous trialstep, in which case the value can be anything in the

range [—1, 1], with -1 signifying a strong anti-correlation and 1 a strong correlation.

By multiplying the correlation factor by B, its significance is maintained

independently of the value of .

Stages att

Reward expectation

Action choice

RPE

Critic update

Actor update

Pd,t =

Q-learning autocorrelation (gLearnCorr)

Var = Z StEsat
SES

t

eB(Vd,t"'K(d:Ct—l))

Yien eB(Vi,t"'K(i:Ct—l))
¢t = C(P)

&y =1 — 7%

asg

Esat1 = Esae + m5t td =
t
Eqes1= Eqr:d # ¢

Table 3-9 The description of the Q-learning model with autocorrelation broken into the

components used in the implementation.
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3.1 Q-LEARNING-E

Another approach to calculating the probabilities of a given action being the best
action is using the e-greedy function. Here, the actions with the highest expected
reward are identified. The probabilities for those that do not have the maximum

reward being chosen is

P(d|Vd < mG?XVd) = ”Dit”

Where ||D;|| is the number of valid actions at time t. The resulting odds for one of
those with the maximum expected reward being chosen is

1_
P (d]Va = maxv, ) = HB_j * ||z§t||

Where ||B;|| is the number of valid actions that have the maximum expected

reward at time t.

This model was modified to include a form of autocorrelation, similar to that found
in the Q-learning autocorrelation model. This is achieved using the same
correlation parameter, x, as used in the Q-learning autocorrelation model
described in chapter 0. In that model, x was a weight modifying the likelihood of a
model being chosen depending on the if it was the same action that was chosen in
the previous trialstep, or not. Positive values of k would encourage a positive
correlation and negative values of k would encourage a negative correlation. The
encouragement was made independent of the exploration-exploitation scaling
parameter, 8. Here, the same result is created using a different formulation. The
impact on the likelihoods is split into two types, with correlation of the same action
as before and anti-correlation of different actions from before treated the same

way, and the opposites treated another way, as described in Table 3-10.

Ld == 1 Ld = —1
k>0 P;:Pd‘l'lKl(l—Pd) P&k:Pd—lKIPd
k<0 Py = Pg — [Py Py =Py + |x|(1—=Py)
Table 3-10 An enumeration of the different correlation modifications to the likelihoods.

Here, to make explicit the modifications, the magnitude of k is used, |k|.
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Stages att

Reward expectation

Action choice

RPE

Critic update

Q-learning-¢ (qLearnk)

Var = Z StEsat
SESt

1 Ve =maxVy,,
By: = o4
5 {0 Vae < maxVy,

1—¢
p=(—)3 PR
EUNIBA T D

¢t = C(P)

8 =1 — 7%

as;
Esate1 = Esqr + 5o=6d =¢
IS¢l

Eqev1 = Eqr:d # ¢

Actor update --
Table 3-11 The description of the Q-learning model using epsilon greedy, broken into

the components used in the implementation.

Stages att Q-learning-€ autocorrelation (qLearnECorr)

Var = Z StEsa¢
SESt

1 Vi =maxVy;,
By: = co_a
e {0 Var < max Var

1—¢ £
R e P

Reward expectation

I Bl 1D |l
Action choice p f d= ct_lt
@ {—1 d+ Ce—1
1—Py)kLy ®Lg >0
Pt . =p ( d,t d d
G +{ PyixlLy kLg < 0
¢t = C(Pf)
RPE =1 —V,

as;
Eogrs1 = Eoqr + —58:d=c
Critic update Ea N T T ‘
Eqes1= Eqr:d #c¢

Actor update --

Table 3-12 The description of the Q-learning model epsilon greedy and with

autocorrelation, broken into the components used in the implementation.



3.8  Actor-CRiTIC

To determine the benefit of separating the actor and the critic, a simple Q-learning

model was proposed. This used the same reinforcement learning rule for both the

actor and the critic, but allowed for different learning rates for each, ar and ay4

respectively. This can also be thought of as a simplification of the OpAL without

Hebbian learning, as it does not have separate excitatory and inhibitory

components to the actor. A basic version was created with the common Softmax

function for calculating the action choice probabilities, ACBasic, along with a

version using the e-greedy function used in the Q-learning € model, ACE.

Stages att

Reward
expectation

Action choice

RPE

Critic update

Actor update

Actor-critic (ACBasic)

Var = Z StEsat
SESt

* —
Ay = Z < StAsat
s€e

t
e BAd,t

AcSt

ES,d,L‘+1 = Esdt: + o= ”S ” 6t d=
t

Egty1= Eqe:d # ¢

_ QaySt
AS,d,t+1 - ASdt P T ”S ” 6t d=
t
Agir1 = Ageid # ¢

P—(l_£+ £ )B+ £
ENIBA T D 1Dl

As,d,t+1 =

Actor-critic-€ (ACE)

Var = Z StEsat
SESt

* —
Age = E StAsat
SES;
* _ *
B 1 Ay = m(?XAd,t
d = * *
0 Ag: < m;xAd’t

¢t = C(Py)
8 =1 — Ve, t

AcSt

Es,d,t+1 = Esdt + = ”S ” 6t d=
t

Egty1= Eqp:d # ¢,

A4St
Op:d =
ISl

Ages1 = Agrid # ¢

Asdt+

(1

Ct

Ct

- B)

Table 3-13 The description of the Actor-critic models using softmax and epsilon greedy,

broken into the components used in the implementation.

A cruder version of the ACE model was created with a less discerning critic. Here,

the critic assesses whether the reward is higher than the average across actions,

irrespective of the stimuli. Effectively, the critic is comparing the reward with a

moving average of the reward. The actor is therefore learning not how the

predictions compare to its expectations of reward for that action, but, indirectly,

how the actions’ reward compares to those of all possible actions.
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Stages at t Actor-critic-e-simplified (ACES)

Reward expectation V, = E;

* —
Age = § StAsat
SES:
* —_ *
1 Ad,t = m&’iXAd_t
Bd =

Action choice 0 A < m‘?xAj;,t

p, = (l _ 5)3 b
ERNTIAT D, ||

¢t = C(Py)
RPE 8t — Tt - Vt
Critic update Eiy1 = E; +ad;

St
A = Asgqr +7o6:d =c
Actor update e ‘
Agrv1 = Age:d # ¢
Table 3-14 The description of the Actor-critic model with epsilon greedy simplified,

broken into the components used in the implementation.



3.9  META Q-LEARNING

Schweighofer & Doya (2003) proposed accounting for the uncertainty in the
rewards by having an adaptive exploration-exploitation parameter, B, calculated
based on the rate of change of average reward. An adapted version of the model
proposed by is examined here. The model calculates a moving average for the

reward with a learning rate parameter of
Dgrv1=Dqr + T(rt - Ad,t)

A moving average is also calculated for the moving average, with the same learning

rate parameter:
Afi,t+1 = A:i,t + T(Ad,t - A:i,t)

The estimate of the appropriate f is based on the difference between these two

moving averages, A and A*.

Bry1 = e(Bes1—A741)
Stages att Meta Q-learning (qLearnMeta)
Reward expectation Var = Z StEsa
SESt
p eBtVat
0 9 d,t
Action choice Yiep, ePeVic
ct = C(Py)
RPE 6 =1 — Vg,
Agry1 = Bgr + T(Tt - Ad,t)
at+1 =g+ T(Ad,t - ti,t)
. — o(Ary1—A7
Critic update Best = e(Ber=Ain)

as;
Esat1 = Esar + S_5t: d=c
IS¢l

Eqes1= Eqr:d # ¢

Actor update --

Table 3-15 The description of the Meta Q-learning model, broken into the components

used in the implementation.
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3.10  KALMAN FILTER

The Kalman filter, as presented by Daw, O'Doherty, Dayan, Dolan, & Seymour
(2006), attempts to estimate the uncertainty in the expected reward?. It uses this

prediction uncertainty measure, ¢4, to define a learning rate, a,

2
Og,t

Agt = >
, 2
Gd,t + 0%

Where o2 is the measurement uncertainty, which is considered a constant over the
duration of a task and identical for all actions. This learning rate is used in a similar

way to that of the Q-learning models to calculate an updated expectation, E 4,
~ A tSt
Esar = Esae + o0
s,d,t s,d,t ”St” t
Now it is also necessary to update the uncertainty. For the chosen action, the

updated uncertainty, 6%, decreases at a rate proportional to the learning rate:
~2 2
Oqt = (1 - ad,t)cd,t

Having now incorporated the new knowledge from the events at time t, the model
now tries to include information about the unknown and unmeasurable factors
affecting the task events. In practice for this model, this takes the form of a drift
towards a baseline value for the expected reward and a growth in the prediction
uncertainty. The drift rate, A, sets the drift towards the baseline expected reward,

E,, as well as the uncertainty growth rate from a base uncertainty of o%.
Egqtr1 = Mgqe + (1= NEy
G%l,t+1 = lz&fu + 0%

As the baseline expectation is the one that will be used for the initial expectation,

E; qt=0, We can update the equation to the form:

Es,d,t+1 = )\Es,d,t + (1 - A)Es,d,tzo

2 For a clear description of the derivation of the Kalman filter, a good starting point
is (Faragher, 2012)
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Stages att
Reward
expectation

Action choice

RPE

Critic update

Actor update

Table 3-16 The description of the Q-learning Kalman model, broken into the

Q-learning Kalman (gLearnK)

Var = z StEsa
SESt

eBVd,t
Pyt
DieD, ePVie
¢t = C(P)
&y =1 — Ve,
2
o = Oq,t
d,t — 2 2
0,5, T 0%

N Ay St
E =F +——94
st st (ISl ¢ td=c

6{%,15 f (1 - ad,t)‘fé,t

Es,d,t = Ed,t
e 5 tdFE
Ogt = 04

Egate1 = MEsqe + (1= DEg 40
2 22 2
Ogt+1 = A“0g, + 03

components used in the implementation.
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3.11  BAVESIAN

The Kalman and meta Q-learning models described above attempt to represent
the uncertainty of the expected reward by estimating a form of variance. In the
cases where the reward can be thought of as feedback on which was the correct
action, as described in chapter 2.1.2, this uncertainty can be thought of as the level
of uncertainty in the model's prediction. While the addition of an uncertainty
estimate is an improvement, it is limited by the assumption that the underlying
likelihood distribution is gaussian. One of the simplest ways of extending this to a

more varied range of likelihood distributions is using the Beta distribution.

The beta distribution can be used to express a family of different likelihood
distributions using two parameters, often thought of as number of successes and

number of failures, as shown in Figure 3-6.

The result is that the distribution can be updated for each trial by updating the

number of successes and failures.
As tasks may have a more diverse range of consequences than success and
failures, a Dirichlet distribution is used as a way of representing the distribution of

— w=(1,1) w= (4,8) w= (15, 1) w= (75, 25)
-==- w= (20, 12) - w= (1,15) —:= w= (50, 50)

Figure 3-6 A series of example distributions that can be produced using the Beta
distribution. The legend shows the values of the two Beta distribution parameters

necessary to produce the given shape of uncertainty distribution.
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probabilities for each possible outcome. The Dirichlet is a form of the Beta
distribution generalised for a larger number of categorical rewards than the two
found with the Beta distribution. More formally, for a reward r, in the set of known
possible rewards R, the associated count parameter, w,.,, will be updated by one

for each occurrence:

Wre41 = Wpe +1
For this model, r will be restricted to a set of positive integer values. The likelihood
of a reward of r for the Dirichlet distribution D(w) can be calculated as:

Wy Wy

Yierw; W

E. [D(w)] =

With w, defined as:
Wo = Z w;
iER
From this, a Dirichlet distribution is constructed for each possible action. For action
d, the expected reward, V,,, is the weighted sum of these likelihoods:

‘*)r,d,t
Wo,t

Var = E[D(wp)] =

TeER
This can be extended for use with multiple stimulus-cues. To calculate the
appropriate expected reward values, the count parameters can be stored
separately for each stimulus cue, s, and then combined across rewards, weighted
by the activation of each cue, s;:

Zsest StWrs,dt
Var =E [9 <z Stwr,s,d,t>] = z Sy r
SESt IER LiSES: StWis,d,t

TER

To allow the learning rate to change between participants, the updating of the
count parameters can be modified to use the same form of learning rate
parameter as used in the Q-learning model, by modifying the increment of 1 to be

an increment of a:
Wrsdt+l = Wrsatr T

However, the effect on the expected reward is less direct than with the Q-learning
model, as the impact of an incremental update on the expected reward will vary

depending on the size of w,, and the distribution of each w,,. Figure 3-7 gives an
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example of how a distribution D(w, = [wy, wa] = [2,5]) can be updated to D(w,;)

with different increment sizes for r = 2.

As for the Q-learning model, this update function can be modified for use with

multiple stimulus cues:

+ asg
w = w _—
r,s,d,t+1 r,s,d,t ”St ”

— a=0.00,E[®(w;)]=1.71
-—- a=0.25E[®(w;)]=1.72
------ a=0.50, E[®(w;)]=1.73
—= a=0.75E[®(w;)]=1.74

a=1.00,E[D(w;)]=1.75

0.0 0.2 0.4 0.6 0.8 1.0
Figure 3-7 Examples of how different a increments can affect the change in expected

reward in a Dirichlet distribution. All the distributions began as w = [w;, w;] = [2,5]

and the a updated for reward 1, whose probability distributions are shown.

Stages at t Bayesian Probabilistic (BP)
Reward expectation Var =E [CD (z stwr,&d’t)]
SESt
P eBVd,t
Action choice - Yiep, €Vt
¢t = C(Py)
RPE -
el _ ast . d = Ct
Critic update Wrsdt+l = Wrsde T ”S_t” ) {T‘ =1

Actor update -

Table 3-17 The description of the Bayesian probabilistic model, broken into the

components used in the implementation.
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The variance of the distributions can be calculated in a similar way to the

expectation:

Wy (‘*)O - (Dr)

Var, [D(w)] = o2 (0g + 1)
0

This uncertainty can be used as an estimate of the need for exploration: it is more
valuable to explore when there is high uncertainty than when the uncertainty is
low. An estimate of the overall uncertainty can be calculated by summing all the

variances:

Wy ((.00 - (‘)r)

Var[D(w)] = 2, u)%(u)o D

This can be extended as before for use with multiple stimulus-cues:

ng,t = Var|D Z StWr st
SESt

We can draw parallels to the use of g in the Q-learning model in chapter 3.2 by

. . 2 .
inverting o3 ,:

—

Bat =——
Oat

To turn this into a form approximating that of B, a correction is necessary. The first
step is to recognise that the largest uncertainty will be when the model has no

information, at t = 0. B, can therefore be normalised as:

2
B = o
dt — 2
Ogt

where 63, is a normalising term that can be defined as the uncertainty from the
initial prior values of reward occurrences, w, s 4¢=0 , Weighted by the current

stimulus-cue weightings:

2 _
Ogs+« = Var [b Z StWy s d,t=0 ]
SESt

At t = 0 this would leave a B, = 1. This is not quite what is needed for the tasks
considered here, as there should be no initial preference for one action or another,
which would be reflected by B, , = 0, i.e. equal likelihood for all actions. This can be

achieved by modifying the calculation of B, to be:
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Stages att

Reward expectation

Action choice

RPE

Critic update

Actor update

2
04 «

Bd,t= 2 -
O-d,t_l

Bayesian probabilistic volatility (BPV)

Vd,t = IE

@ <Z Stwr,s,d,t>]
SESt
aé't = Var [33 <Z stwr_s,d,t>]
SESt

2 _
04, = Var |D Z StWr,s,d,t=0
SESt

2
— O-d'*
Bd ) -1
Odt
eBaVas

 Yiep, efiVir
ct = C(Py)

Pyt

w = w +—ast'{d=Ct
r,s,d,t+1 r,s,d,t ”St” r=r1n

Table 3-18 The description of the Bayesian probabilistic volatility model, broken into the

components used in the implementation.
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3.12  RANDOM

To evaluate the performance of the models and calculate some of the fit quality
measures described in chapter 2.2 a pure random model will be used for
comparison (M. D. Lee et al., 2019). For each trial, the action choice probability, P,
will be the same for all available actions:

1

Py = —
T Dl

This can be extended by allowing a constant bias in the action choice probabilities.
A series of D parameters, denoted o4, would each have values in the range [0, 1]
and sum to 1. This mean there are D — 1 free parameters, which can be

represented on a D — 1 unit simplex.

Stages att Random (random) Random biased (randomBias)

Reward expectation -- -

Action choice Pax = D, |l Py, = _Oa
c; = C(P;) ' 2ieD, 0i
ce = C(Py)
RPE . -

Critic update -- --

Actor update -- --

Table 3-19 The descriptions of the Random and Random biased models, broken into the

components used in the implementation.
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4 DISCERNING MODEL PARAMETERS IN REINFORGEMENT LEARNING

Before evaluating the performance of models across tasks, it is worth
understanding how noisy or uncertain the model fitting process is. Ideally, the
models would be globally identifiable, i.e. each action sequence could only have
been generated by one parameter combination (Moran, 2016). However, in a
model where many parameter combinations will provide a non-zero probability for
each available action to be chosen, there will be a finite probability for each of
those parameter combinations to produce every sequence of actions. The
evaluation of the capacity of a model to be fitted can be evaluated, for a given task,
by asking: if | have data that | know was generated with specific parameter values, how
likely am | to recover those parameter values when fitting that model to the data?
(Heathcote, Brown, & Wagenmakers, 2015). This would be equivalent to baking a
cake in one of a very large number of available cake moulds and then asking how
likely is it that somebody else would be able to identify the cake mould used from

those available.

Reverdy & Leonard (2015) discuss formally the conditions under which a
reinforcement learning model will be able to fit data from a given task. They
demonstrate that with a certain kind of task and a sufficient task length, a
reinforcement learning model is guaranteed to converge to the correct parameter
values. While this is useful to know, it does not tell us if this convergence will be
fast enough to be useful for real participant data, where the length of the task is

limited by the capacity of participants to stay focused.

The capacity of a model to be fitted can be tested by generating task data using a
model with known parameter values. This generated data is then fitted to the
same model. From this, the resulting recovered parameter values can be
compared, along with the confidence of that fit, to the parameter values used to
generate the data. Fitting the same data multiple times gives us an understanding
of the capacity of a given fitting process to find the best parameter values. Multiple
datasets are generated for the same parameter values to gain an understanding of

how the variability of the data affects the quality of the fit. This variability will
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compound the error found in the fitting process. By repeating this process over a
range of parameter value combinations, an understanding can be gained of how
the capacity to accurately recover the generating parameters varies for different

model responses to the task.

When a model is fitted with real participant data the question being asked is: given
this model, what are the model parameter values that most closely resemble the
performance of the participant for this model? The fitting process is not looking for
the ‘correct’ model parameter values (Box, 1979), as the model will be, at best, an
approximation of how the participant approached the task. Any error found in
fitting the generated participant data will therefore be an underestimate of the

error received when fitting a model with real participant data.

Parameter recoverability for the Expectancy Valence (EV) model (Busemeyer &
Stout, 2002) has been examined with the lowa gambling task, a task similar to the
Decks task examined in this thesis. Ahn et al. (2014) found satisfactory parameter
recovery for an EV variant. Similarly, Ruud Wetzels, Vandekerckhove, Tuerlinckx, &
Wagenmakers (2010) found that on average they were able to recover the
parameters generated from 1000 sequences using the most commonly recovered
parameter set from previous studies. However, the parameter recovery
distribution had a large enough variance that recovery from individual task runs
were not considered trustworthy. Lastly, Humphries, Bruno, Karpievitch, &
Wotherspoon (2015) found poor parameter recovery when fitting both simulated
and participant data, concluding both that individual parameter recovery was
poor and there was sufficient within-group variance that group estimates were

questionable.

Another approach to assessing parameter recoverability is to examine the
performance of parameter values whose task performance was close to those of
real participants. This was used to validate the three parameter Q-learning model
(Halpern & Gureckis, 2013) used in Gureckis & Love (2009). While they found that
those parameter values were accurately reproduced, all were on or very close to
parameter values that effectively removed learning from the model, calling into

question the effectiveness and validation of their fitting.
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Since this study was performed, a new paper has come out examining the
identifiability and recoverability of a few Q-learning models, including gLearn and
glLearn2 (Spektor & Kellen, 2018). They found very poor recoverability and
attempted to improve this using an empirical-prior parameter distributions
(Gershman, 2016), with only marginal improvement. The results of this paper will

be discussed further later in this chapter.

In this chapter, an assessment will be made of how well parameters can be
recovered in the best case: recovered by fitting the same model used to generate
the data. This is evaluated at first using the simple gLearn model, across a range of
different tasks. The source of fitting errors is investigated, and potential solutions

are discussed and evaluated.

41  MODEL-TASK DATA GENERATION

For the initial exploration of the fitting error, the gLearn model described in
chapter 3.2 was used, as it is one of the simplest and most widespread models,
while still containing all the components found in more elaborate reinforcement
learning models. To summarise, it is a two-parameter reinforcement learning
model, updating only the parts associated with the chosen action and active
stimulus-cues, with «a as the learning rate. The action choice is performed based on
probabilities calculated based on a softmax transformation of the reward

expectations, with an exploration-exploitation parameter §.

For each of the task variations examined in the rest of the study, a set of datasets
were generated with the parameter value combinations from o =

{0.1, 0.3, 0.5, 0.7, 0.9} and B = {0.1, 0.3, 0.5, 0.7, 1, 2, 4, 8, 16}. For each
combination, 30 experiment runs were generated. For the fitting, the model
parameters were constrained to the ranges a = [0,1] and 8 = [0,30]. The bounds
for a are the valid range for the parameter. The lower bound for § is fixed by the
parameter only being positively defined. The upper bound for B is more arbitrary.
The true upper bound for g is positive infinity, but this is not a practical space to

search.
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By considering the impact of B in the Softmax, as seen in Figure 4-1, it can be seen
that the impact of increasing B diminishes as B increases, such that the benefit in
increasing the B support decreases as the support size increases. 16 was chosen as
the largest generating B value, as our initial studies had seen changes in the range
B = [0, 5] and it was expected that 16 would be sufficiently above 5 to show if
there were any trends at higher B. The parameter fitting upper bound of 30 was

chosen to be far enough from the maximum B used to generate data to allow any
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Figure 4-1 Two slices of how the probability for action 0 varies for different action-

expectations, V, , and different B. The only other action has a constant action-

expectation, V, = 0.5. The grey lines on each plot show how the lines from the other plot
interact with it, with the lines using the line marker type found in the key of the other plot.

Top: P(V,) across V, for different g. Bottom: P(V,) across B for different V. 63



distribution of fitting errors to be relatively unaffected by the boundary. This is

slightly lower, but comparable to Spektor and Kellen's 2018 study choice of 50.

As described in chapter 2.1.1, the model data was recorded to files and then fitted

in the same way as participant data.

4.2 EVALUATION OF FITTING CAPACITY FOR A SIMPLE TASK: BIASED COINS TASK

For most of this investigation a simple task called the Biased Coins task was used.
This was designed to be a simplified version of the tasks that we later fit data for,
in chapters 6, 7 and 8. Four distinct coins are shown to the participant. At the
beginning of each trial, one of these is randomly chosen to be flipped. Before it is
flipped, the chosen coin is shown to the participant and the participant guesses if it
will land on one side or the other: ‘heads’ or ‘tails’. The participant is then told
which side the coin landed on. This task can be thought of as a 4-armed bandit,
where the participant does not choose the bandit pulled each trail, only predicts
the outcome. The simulated participants are rewarded if they predicted the
outcome correctly. This approach ensures that the simulated participants learn
equally about each of the four coins. Without this, a rational participant would

choose more frequently the coins for which they expected higher rewards.

Head

> > Tail

Figure 4-2 The Biased coins task. At the beginning of each trial, from a set of distinct
coins, one is randomly chosen to be shown to the participant. Before it is flipped the
participant guesses if it will land on side 0 or side 1. The participant is then told, during
the feedback trials, which side the coin landed on. Each coin has a different probability
of landing on each side.

Each trial is performed 100 times, with the final 20 being performed without
feedback. The final trials are performed in this way to match final trials of the
Weather and the Probabilistic Selection tasks, where these trials without feedback

are used to understand more about what the participants have learnt by the end
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of the training phase, i.e. the final trial with feedback. Frank et al. (2007) also chose
to fit the participant data exclusively on the trials without feedback, arguing that
fitting only this part could lead to recovery of more accurate model parameters.

This is discussed further in chapter 5.

The probability of landing on one side or another varies from coin to coin, with two
of the coins having an 80% chance of landing on side 0 and the other two a 20%
chance of landing on side 0. For each generated dataset, the choice of coins and
the side the ‘coins’ fall on is varied. This allows us to get a better estimate of the
distribution of the noise in fitting, with not just the noise of the probabilistic

decision making of the model but also the impact of the task sequence.

421  Fits from generated data

To begin looking at the error in the recovered model parameter values, for each
generating parameter combination the fit quality values were plotted for each

parameter combination explored. Figure 4-3 shows the fits from data generated
with two different sets of model parameter values. For a = 0.7, B = 4 the best fit

alpha: 0.7 beta: 4.0 alpha: 0.1 beta: 0.5

O ety & W, QBRI INsTEe, BE T 0 5 T
° B sy A S A T

alpha

Figure 4-3 Parameter space plots showing the fitting process and results from the biased
coins task with 100 trials, of which 20 are without feedback. The titles list the parameters,
also marked by a black dot, from which the 30 datasets were generated. The red dots are the
parameters of the best fit for each of the 30 generated datasets. The other dots show the
search locations during the 30 evolutionary fitting processes, coloured using the base 10 log
of the fit quality. The shape of the low fit value area in the parameter space can be seen to

vary significantly with different generating parameter values.
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parameter values (red dots) are clustered around the parameter values used to
generate the data for the 30 datasets. However, they are spread across more than
half the possible range for a. Looking at a = 0.1, B = 0.5 the best fit parameter
values are spread around the edge of the examined parameter space, close to the
a and B axes. The dots of other colours signify the other parameter combinations
tested during the evolutionary fitting process, with the colour signifying the log
base 10 of the fit quality value described in chapter 2.2. This allows us to see that
while the distributions of best fit parameter values are quite different between the
two graphs, one common feature is that both sets of best fit parameter values are

found in ‘valleys’ of their respective fit quality values.

Looking more generally, in Figure 4-5, it can be seen that the distributions of
recovered parameter values varies depending on those used to generate the data.
The distribution transforms as B increases from being one that follows the edges
of the fitting parameter-space to one more grouped around a central point and
finally stretching out in the direction of higher B. The changes in the means of
these best fit parameter value distributions for each generating parameter
combination, shown in Figure 4-6, also indicate that the fit for « becomes more
accurate as B increases. Unsurprisingly, it also underscores how the changes in

distribution are not well described by the mean and standard deviation.

These plots are similar to those produced by Daw (2011), when compared with one
of the fits from data generated with the parameters a = 0.3, = 1, reproduced in
Figure 4-4. The same shape of best fit region can be seen in the two plots,

suggesting that Daw's result is part of a larger pattern of results.

The conclusion from these plots is that the fitting is only potentially reliable for
certain generating parameter values. However, as the spread of best fits from
those generating parameter values overlaps significantly with those around them,
this does not allow us to treat any recovered parameter values in that region as

reliable.
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a: 0.3 B: 1.0 repeat: 28

1.0
0.8 114
1.12

0.6
5 1.10
0.4 108
1.06

0.2

0.0

0 05 1 1.5 2 0.00 0.25 0.50 0.75 100 1.25 150 1.75 2.00

B
Figure 4-4 Left: A reproduction of figure 1 from Daw (2011) generated by fitting the Q-learning

model. From the original figure description “Lighter colors denote higher data likelihood. The
maximum likelihood estimate is shown as an “0” surrounded by an ellipse of one standard error
(a region of about 90% confidence); the true parameters from which the data were generated are
denoted by an x” Right: The results from fitting one of 30 generated datasets. The dataset was
generated with @ = 0.3, B = 1, marked by the black dot. The red dot is the recovered parameters.
The background is coloured using the smoothed base 10 log of the fit quality measure. A white

contour is shown of equal fit quality.
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Figure 4-6 The means and standard deviations of the best fit values for a and B for the
data generated from the biased coins task with 100 trials, of which 20 are without
feedback. The means are calculated for each pair of parameter values used to generate the
data. The graphs are plotted with the parameter values increasing in order such that the
parameter increasing the fastest is the one shown on the horizontal axis, and with the
dotted line denoting the generating values of those parameters. Top: Means of « Bottom:

Means of B

The same generated data can be fitted more than once and the recovered
parameters can be compared, as shown in Figure 4-8. Variations can be seen
between the two sets of recovered parameters. These are due to the evolutionary
fitting process probabilistically choosing the locations of each rounds fit quality
samples, as described in chapter 2.1.6.2, resulting in different parameter
combinations being considered to be the recovered parameters each time the
fitting is run. In the final round of fitting the selected sample of parameter sets will

be in the vicinity of the globally identified best fit and the parameter sets will have
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sufficiently small variations in their associated fit quality values that they could all

be candidates.

While there are variations across fits in the best fit parameter values, the
distributions are the same, suggesting that the area of best fit for the generating
parameter combination is being consistently identified. By comparing the
difference between the two sets of fits, in Figure 4-7, for a the majority of the
generated data sets, the differences in the recovered parameters are less than 0.1,
except for a few that jumped from one edge to the other. If this were real
behavioural data, these edge fits would be considered bad fits and excluded, as
they are in effect fitting to a model without a learning rate parameter. For g the
size of the differences depends largely on the size of the parameter value used to
generate the data. A good rule of thumb is that the differences are generally at
least an order of magnitude smaller than the parameter value used to generate
the data. This suggests that a participant’s action sequence is associated with
specific recovered parameters. As the same action sequence could have been
generated by numerous parameter sets, this is unsurprising and results in the
model not being locally-identifiable (Schmittmann, Dolan, Raijmakers, &

Batchelder, 2010; Spektor & Kellen, 2018).

10~ 1073 1072 1071 10° 1074 1073 1072 1071 109 10t
lag — a1 [Bo — B

Figure 4-7 Histograms of the differences between two fits of the same data. The fits used
are the same as shown in Figure 4-8. As most of the differences are very small, the bins are
equally sized on a logarithmic scale (base 10). Both histograms have 50 bins. Left: For

the range is between 0.00001 and 1 Right: For 8 the range is between 0.0001 and 30.
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To see how the best fit parameter distributions varied with a longer task, data was
generated for a longer version of the Biased Coins task, with 1600 trials of which
100 at the end were without feedback. In Figure 4-9 the beginning of the
convergence indicated by Reverdy & Leonard (2015) can be seen. However, even
with this number of trials it is not possible for us to be certain about parameter
value estimations outside of a small range. For us to therefore achieve usable
predictions reliably, the tasks would need to be longer than 1600 trials, which is
already much longer than those typically performed as human participants would

fatigue and get bored over this timescale.

To confirm that this is not caused by evolutionary fitting method, the same dataset
was fitted using gradient descent and the resulting best fits, shown in Figure 4-10,
have the same distributions as found with the evolutionary fitting. Focusing
specifically on a = 0.7, B = 4, the best fit outside of the main ‘valley’ can still be
seen. Given these plots, the fitting method, be that evolutionary fitting or gradient
descent, can be ruled out as being the cause of the unusual best fit parameter

distributions.

To verify that these results were not caused by an error in the coding of the Python
framework, a simplified version was written in MATLAB. As no evolutionary
algorithm is available in the standard MATLAB package, the MATLAB function
fmincon was used for the fitting (Waltz, Morales, Nocedal, & Orban, 2006). This uses
gradient descent and is the standard MATLAB fitting function. As can be seen in
Figure 4-11, the distribution of fits is similar to those found previously. By
comparing it with Figure 4-10, it can be seen that the search patterns of the two
gradient descent implementations are similar. From these results, it appears that
that the Python framework is working as intended and can be ruled out as the

cause of these fit distributions.
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4.3  FITNESS CAPACITY FOR OTHER TASKS

To see if this issue is related to the Biased Coins task, data was generated for two

other tasks.

The first is the Weather task, data for which is examined in chapter 8. This task is a
step up in complexity to the biased coins task. The Weather task is a category
learning task based on one described by Gluck & Bower (1988) and later adapted
by Knowlton, Squire, & Gluck (1994). It asks participants to associate a series of
cues with one of two outcomes. One to three cue cards, from a set of four cards,
are presented to the participant in each trial. The participant must decide which
one of the two possible outcomes the displayed cards are most likely associated
with. Once the participant decides, they are then told if they were correct or not.
The cues each have a probabilistic relationship with the two outcomes, with this
this version of the task having novel probabilistic relationship, with the probability
of an outcome varying depending on the combination of cues displayed, as
described in Table 8-1. For example, if the first two cues are displayed, then the
first outcome is guaranteed. If only one of them is displayed, then the first
outcome will be the correct one 75% of the time. In the first phase of the task, the
learning phase, participants are given feedback on if their choice was correct. In the
second phase, the testing phase, participants are not given any feedback. The
sequence of cues and the outcomes were fixed beforehand and is the third
sequence shown in Figure 8-2, with 56 learning phase and 14 test phase trials, with

equal numbers of each of the 14 cue combinations in each task phase.

o
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Figure 4-12 The Weather task consists of a series of trials where one to three cue

-
aQ
\\

cards, from a set of four cards, are presented to the participant. The participant must

decide which of the two outcomes the cues are more likely to predict.
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The Decks task provides a different type of probabilistic learning task, with no
changes in stimuli and a wider range of reward. Data for this task is examined in
chapter 6. It was based on a task used by Worthy, Maddox, & Markman (2007), and
similar to the IOWA gambling task (Bechara et al., 1994). Participants were
presented with two rectangles on a screen, one red and one blue. These were said
to be the top cards of two decks of cards 80 cards long. Each ‘card’ has a
predetermined reward associated with it, whose value was between one and ten.
The objective was to maximise the accumulated card values by picking a card from
one of the two decks each trial. The associated card value would then be shown to
the participant. The sequences were kept the same throughout the task and there
were not equal numbers of cards for each reward value. One of the decks was
initially advantageous, but over the whole task provided lower rewards. The
sequence can be seen in Figure 6-2. The card that was not chosen was not

discarded, maintaining the number of available cards in each deck.

> 0

Figure 4-13 The Decks task consists of two decks of 80 cards. Each card has a value
between one and ten. Participants choose during each trialstep which deck they
thing will provide the most advantageous card, with an aim to accumulate the
largest total card value. When a deck is chosen, the ‘top’ card from that deck is
drawn, its associated reward is awarded to the participant and the card is

discarded.

Comparing the fitted Weather task data in Figure 4-14 and the fitted Decks task in
Figure 4-15 with those previously seen, there are variations in the distributions of
recovered parameters for all three tasks, with the same changes occurring in those
distributions across the generating parameter values. Therefore, the issues
observed appear to be largely similar for these three tasks, two of which will have

behavioural data fitted later in this thesis.

82



“Aonb 31f ay1 Jo Soj 01 aspq ayi Suisn Painojod ‘sassaroad unif Aibuoianjora g ayl Surinp sUoiILIO|

Y2JD3Ss aYy) MOYS SI0P JaY10 Ay UOIIDUIQUIOD J3awniod yo0a 1of S1asbop Paiptauas 0s ayl fo yana oS 1f 15aq ay3 o siarawp.nd ay) b syop pPaJ
ayJ "a4n3Ifgns yooa ui 10p %20|q b AQ paxiow 0S|D ‘DIBP PaLIaUIS Y] Jo SanjA Ja3awniod 3yl 03 Suip40320 Pagupn.tip si s3ojd Jo pLis ay  HIpqpPaa)
1NOYIM 240 | Y21ym Jo “S|pLIY 0/ YIM XS0 JdYIDAM 3yl wodf synsal pub ssazxoad duniif aya suimoys siojd aonds uajawniod fo 13s v |-t i8I

091 '®13q 0'8 :e13q 0'v ‘eeq 0°Z eeq 01 :eeq L0 ®1Rq S0 :ewq €0 ‘e1q T'0:e1Rq
)8

£°0 reydje
1°0 ‘eydje

€0 reyde

S'0 ‘eydje

B
k=)
g
@
o9
“

£°0 ‘eydje

60 ‘eydje

83



01

ST

0z

sz4

0€ 4

1°0 ‘eydje

£'0 reydje

' teydje

£°0 ‘eydje

60 reydie

091 ‘2129 08 ‘e1eq

-

o
g L W
\fu.

0'p 1199

. RONE KH

SR “n.n. 4

o 0qe
u_.r.uﬁo.:
Y

r A

0°Z ‘eRq 01 :e1q

0z

Aonb 11f ayy fo Soj 0 asbqg ayy Suisn pPainojod ‘sassaload Suinif
AIpuoiInjoAa € ayl Surinp SUOIINI0J Y24D3AS Y1 MOYS SI0P JaYy10 Y[ "U0IDUIqUIOD 4a3awnind Yyana Jof S1aspinp paiblauasd 0f ayl fo yana Jof i
153q ay3 Jo sia1awpand ay) 240 S10p pad 3yl ‘a4nSIfqns yd0a ui Jop ¥20/q b Aq payJow 0S[b ‘DIOP PapIauas ayl Jo sanjpA Ja3awnind 3yl 03 Suip40I2D
padup.io si syo/d o plig ayy ‘S|l 08 YIM }SbI S¥22J Yyl wolf synsas pup ssadoud uiif ayr Suimoys syojd acnds Jajawnind 0 13S v G |-t a4nSI{

L0 e38q

fEh A

)
B L

R
J,v.»

S0 :eeq €0 :e1q T'0:e1Rq

1°0 ‘eydje

£°0 ‘eydje

' -eyde

L0 ‘eydje

60 reydje

84



44 INDIVIDUAL FIT DISTRIBUTIONS

To understand better what is going on in the model parameter fit distributions, the
individual data fits were examined more closely. Figure 4-17 contains four fits from
two different parameter value sets from the dataset generated for the Biased
coins task examined in chapter 4.2. To help visualise what is occurring in the
search for the minimum fit value, the figures only show the examined parameter
value sets whose fit value was within 10% of the lowest value found. This gives us
an understanding of the shape of the ‘valley’ containing the minimum. For a = 0.7,
B = 4 we can see that the minimum value is surrounded by the lowest other
values found. This suggests that despite the best fit parameter values in repeat 20
being far from the generating parameter values, the recovered parameter values
are in the middle of the minimal fit ‘valley’. Equally, when looking at the fit value
‘valleys’ for a = 0.1, B = 0.5 we see that the lowest fit values are surrounding the
recovered best fit value. For both sets of parameter values, the individual fit value
‘valley’ bottoms are not necessarily surrounding the same areas but are clearly
subsections of the valley produced when the fit values from all the fits are
aggregated together. This suggests that we cannot treat each individual dataset
generated with the same parameter values as having the same fit value parameter
space shape. Compounding this issue is that these ‘valley subsections’ are not
distributed around the true generating parameter values, as can be seen from

Figure 4-6, reproduced in Figure 4-16, so even the average value is inaccurate

when calculated from 30 runs of 100 trials.

Figure 4-16 The means and standard deviations of the best fit values for a and B reproduced

from Figure 4-6. Top: Means of a Bottom: Means of
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Figure 4-17 Parameter space plots for four of the fits of data generated for the biased coin task
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4.5  DISTINGUISHABILITY OF PROBABILITY DISTRIBUTIONS

The fit quality value is calculated, as discussed in chapter 2.2, based on an
aggregate of the probabilities of the chosen actions. Ultimately, when fitting using
a maximum likelihood estimate, we are trying to maximise the likelihood for the
model to take the actions that were taken. However, from what we have seen in
the fitting process, there is a degree of misidentification of the parameters that
generated the participant’s actions. By looking at the expected rewards, V; ¢, and
the resultant probabilities, P, calculated using the softmax function for the
actions that were taken in the generated data, it was hoped an insight could be
gained into the difficulties in distinguishing the generating parameter values when

fitting the generated data.

This was examined for the gLearn model performing the Desk task, shown in
Figure 4-18. As a increased, the range of expected rewards reached increased. This
is unsurprising given that the largest change in expected reward increases with «;
with an initial expected reward of 5.5 for each action, for a = 0.1 the largest change
at the beginning is 0.1 * (10 — 5.5) = 0.45, whereas for a = 0.9 it would be 0.9 * (10 —
5.5) = 4.05. The result is that while it is possible to distinguish by eye the a = 0.1
distribution from those of all the other a values tried here, this is not the case for

the other values examined.

As can be expected from the softmax function, increasing g resulted in the
probabilities becoming more sensitive to small changes in expected rewards, with
most of the probabilities for an action at high 8 becoming either 1 or 0. Conversely,
for low B, the probability distribution is squashed around 0.5, as seen more clearly
in Figure 4-19. The result is that the transformation of the information by g can be
thought of as masking the effect of «, thereby leading to the loss in accuracy when
fitting o for low or ‘high’ values of B. More generally, parameters that act in these
earlier stages of the model operation, such as a for the Q-learning model, will be

harder to fit.

This can be seen most clearly by examining the mean value of the log probability

of the chosen actions, shown in Figure 4-19. This is the mean value per trial of the
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log likelihood used in the model fitting, which can be expressed using the notation
of equation 2.3 in chapter 2.2 as f/2T. The change in this value across a is smaller
than those across B. The consequences of this lack of distinguishability can be seen
in the expected rewards when fitting the same model on the action choices, shown
in Figure 4-20. In all three of these figures, visual distinguishability increases as «
and B decrease. However, for low values of one parameter, the differences in the
other are less pronounced. This may explain the “L" shaped distribution of

recovered parameters seen earlier in the chapter.

The probability distribution resultant from softmax is bimodal for 8 values near to
or above 1. This is even more pronounced in the distribution of probabilities for
the chosen action, which mixes the mirror image distributions of both actions. In
none of these cases can these distributions be considered to come close to a

normal distribution.

The softmax can therefore be considered to reduce identifiability of both its own 8
parameter and those parameters affecting the expected rewards earlier in the
model. This is exacerbated by a sloppiness in the parameters (Brown & Sethna,
2003), as one parameter can compensate for the other, resulting in a negative
covariance seen when fitting participant data in chapters 6.2.3, 7.2.3 and 8.2.3 and

discussed in published works such as by Daw (2011).
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Figure 4-18 A set of scatterplots showing the expected rewards for each trial, V4 , for each

action choice taken by the qLearn model when performing the Decks task using the generating

parameters listed on the axis. The task had 80 trials, all with feedback and used the same deck

sequence throughout. The colours denote the probability of choosing action 1, Py. The grid of

plots is arranged according to the parameter values of the generated data. Each plot contains

the results from 30 runs of the task, so 2400 expected rewards.
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4.6  POTENTIAL SOLUTIONS TO DISTINGUISHING PARAMETER COMBINATIONS

The analysis shows that for these tasks when fitting using a maximum likelihood
estimate, the recovered parameter values are located in the valley of best fit for
the model given the data provided. However, for our datasets generated with
known model parameters, the generating model parameters for a single
simulation are frequently not close to the best fit region. This is likely due to the
loss of information resulting from identifying a model’s state using only the
stochastic action choices. Several approaches were explored to reduce the noise

when recovering model parameters.

One approach is to identify the posterior probability of possible generating
parameters given the recovered model parameters. This can be calculated for a
given model and task using a brute force method: by examining the fitting
progression, the parameter space can be estimated for a given task run. From this
the shape of the parameter space can be inferred. Doing so with simulated data,
generated using the same model parameters, multiple examples of different
parameter spaces can be seen for the same initial parameters. This has been done
in the analysis so far in this chapter. From these, it would be possible to calculate
for all points in the parameter space a distribution of likelihoods of a given fit
quality for given generating parameters. This in turn would allow us to calculate
the likelihood that the best fit can be found at each point in the parameter space.
Having done this for one set of generating parameters, we could do the same for
other combinations of parameters. This would provide us with the likelihoods for
each generating parameter combination that the best fit would be found at a
particular parameter combination. By combining these, it would be possible to
generate a confidence estimate for each point in the parameter space. This was
deemed too computationally intensive to be attempted without having a better

idea of which models would turn out to be good models to fit to participant data.

In generated task data, the sequence of actions chosen by the model does not
represent the sequence of most likely actions for the model, as the action for each
trialstep is randomly chosen, with the likelihood of each action being the action

choice probability, P, .. However, as during the fitting process this action sequence
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is the only available information on the participant's thought process, the aim
becomes to uncover the parameters that are the most likely to produce that action
sequence. If it were possible to fit using the sequence of the participant’'s most
likely actions, then the error in the parameter recovery would be diminished. One
possible approach to achieving this would be to perturb the actual action
sequence, thereby exploring the action space around the sequence. As the
consequences of the actions cannot be changed, this perturbation would be
limited to adding noise to the model's action choice probabilities used to calculate
the fit quality measure. By changing only a few of these at a given time, it would be
possible to calculate a fit quality measure for the model parameters for a small

region in the action sequence space. This was explored, but with no success.

One approach proposed by Daw (2011), is to test a series of subjects sufficiently
that it would be possible to get accurate estimates of their associated parameter
values. The distributions of these parameter sets could then be used to generate
prior probabilities for parameter combinations. While this might work, it would
require significant effort and so would require confidence in the model being fitted

to perform this.

Daw (2011) also suggested that the Bayesian information criterion may in fact be
biased when compared to another fit measure Akaike information criterion
(Akaike, 1974). However, the common, simplified forms of both of these assume
that the errors in the model fitting are normally and identically distributed (Pitt,
Myung, & Zhang, 2002). As has been shown, the distribution of action probabilities
is far from normally distributed and this may be affecting our ability to fit
simulated, as well as real data. As discussed in chapter 2.2, a recently proposed
alternative to the BIC that would resolve this issue without significantly increasing
the complexity of the fitting is the Widely Applicable Bayesian Information
Criterion, WBIC (Watanabe, 2012). While this was explored there were some issues

in the implementation that were not resolved.

Spektor & Kellen (2018) investigated how maximum a-posteriori (MAP) fitting could
help improve parameter recovery. MAP weights the likelihood that parameters are

the most likely using an estimate of the prior probabilities for each parameter
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combination. This is opposed to maximum likelihood estimating (MLE), described
in chapter 2.2, which treats all parameter combinations as equally likely, i.e. MLE is
MAP with a uniform prior. Spektor & Kellen used an informative prior based on a
Gaussian mixture model distribution of recovered parameters from a separate
dataset, in an attempt to approximate the population distribution. Gershman
(2016), reported some success with this method, but Spektor & Kellen did not find
any improvement in parameter recovery in simulated data unless the prior
matches the population distribution exactly. As the empirical priors are likely to
have been created from recovered parameters that were themselves unreliable,
Spektor & Kellen found that using a prior can reinforce the recovery issues. It
therefore does not get us closer to an initial understanding of the parameter

population distribution, but would help were one to be found.

Another more drastic approach is to change the design of the tasks examined to
maximise parameter recovery. Spektor & Kellen (2018), found three promising
methods to improve recoverability: increasing the number of trials, increasing the
number of available actions each trial and providing participants feedback for the
actions they did not choose. As the datasets examined in this thesis were already

collected, these options were not considered.

In the previous section, softmax was identified as having a detrimental effect on
the capacity of a model to accurately fit task data. One solution to this is to modify
or replace softmax with a function that allows for better parameter recovery while

still providing the opportunity for individual differences.

94



4.1  DISCERNIBILITY OF ALTERNATIVES TO SOFTMAX

Having identified that the softmax function and its parameter § are a limiting
factor to the recovery of model parameters, modifications to the softmax were
examined for models based on Q-learning. The ones presented in chapter 3 are
examined here: Q-learning autocorrelation, Meta Q-learning and Q-learning with

epsilon greedy.
411  Q-learning autocorrelation

One small modification that could be made to the Q-learning model is to add an
autocorrelation term, k, to the action-choice probability calculation, as described in

chapter 0.

As can be seen in Figure 4-21, Figure 4-22 and Figure 4-23, for extreme values of k,
the parameter is not well recovered. We can also see that there is no improvement
in the recovery of a and B, so this does not act as a correction for the parameter

recovery issues.
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Figure 4-21 The means and standard deviations of the best fit values for a, B and k for the data
generated from the biased coins task with 100 trials, of which 20 are without feedback. The means
are calculated for each pair of parameter values used to generate the data. The dotted line denotes
the generating values of those parameters. The graphs are plotted with the parameter values
increasing in order such that the parameter increasing the fastest is the one shown on the horizontal
axis. Top: The means of a for different generating g Middle: The means of B for different generating

a Bottom: The means of k for different generating B.
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Figure 4-23 A set of parameter space plots showing the fitting process and results from the biased
coins task with 100 trials, of which 20 are without feedback. The grid of plots is arranged according to
the parameter values of the generated data, also marked by a black dot in each subfigure. The red
dots are the parameters of the best fit for each of the 30 generated datasets for each parameter
combination of a, B and k. The other dots show the search locations during the evolutionary fitting

processes, coloured using the base 10 log of the fit quality.



412  Epsilon greedy

An alternative approach is to replace the softmax-method of calculating action
choice probabilities and replace it with an e-greedy method, as described in
chapter 3.7. As can be seen in Figure 4-24 and Figure 4-25, the recovery of the €
parameter is quite accurate, while the a parameter recovery is less accurate than

that of g, but still more than that seen in Figure 4-6 for the softmax. It is therefore a

viable alternative to softmax that should be considered.

Figure 4-24 The means and standard deviations of the best fit values for a and ¢ for the data
generated from the biased coins task with 100 trials, of which 20 are without feedback. The means
are calculated for each pair of parameter values used to generate the data. The dotted line denotes
the generating values of those parameters. The graphs are plotted with the parameter values
increasing in order such that the parameter increasing the fastest is the one shown on the horizontal
axis. Top: The means of « for different generating e Bottom: The means of ¢ for different generating

a.
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Figure 4-25 A set of parameter space plots showing the best fit parameters resulting from
fitting the biased coins task with 100 trials, of which 20 were without feedback. The grid
of plots is arranged according to the parameter values of the generated data, also
marked by a black dot in each subfigure. The red dots are the parameters of the best fit
for each of the 30 generated datasets for each parameter combination. The other dots
show the search locations during the evolutionary fitting processes, coloured using the

base 10 log of the fit quality.
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413  Meta Q-Learning

The final option was the meta g-learning model, which uses t as a learning rate for
identifying the correct value of B. As can be seen in Figure 4-27 and Figure 4-26, the
parameter recovery for tis very poor for all parameter combinations, so this

method is not useful for our purpose.

0.9- Generating &
—— Mean fitted a

0.9- e Generating T A

—— Mean fitted T

0.7~

0.2~

. . , . , ,
o o? o o o o

Figure 4-26 The means and standard deviations of the best fit values for « and © for the data
generated from the biased coins task with 100 trials, of which 20 are without feedback. The means
are calculated for each pair of parameter values used to generate the data. The dotted line denotes
the generating values of those parameters. The graphs are plotted with the parameter values
increasing in order such that the parameter increasing the fastest is the one shown on the horizontal
axis. Top: The means of « for different generating T Bottom: The means of t for different generating
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of plots is arranged according to the parameter values of the generated data, also
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for each of the 30 generated datasets for each parameter combination.
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48  ADDITIONAL MODELS TO ASSESS

Based on the alternatives described in chapter 4.7, the only Softmax alternative
that provided clearly better parameter recovery is the e-greedy function. Here, the
models discussed and implemented in chapter 3 are modified to take advantage of
the e-greedy function. These will be fitted alongside the original models in the

following chapters.

Stages att OpAL with epsilon greedy (OpALE)
Reward expectation Var = ZSEStStEs,d,t
Ay = Z StAsat
SES;

1 Ay, = m;le*d,t
Action choice Bar =

0 Ay < m;le*d,t

P Lt P
BT T IDl
ce = C(Py)
RPE 8 =1 — Vet
s Esdt+1=Esdt+@5t:d=Ct
Critic update " IS

Eqev1= Eqe:d # ¢

_ aGSt 5
Gsat1 = Gsar + mGs,d,t ¢
t . —
N =N INSt 8 =
1= _ SNt
Actor update S+ SEE IS STt
Gatr1 = Gar dc

Nger1= Nt © t

A= A+ p)Gaee1 — A= p)Ngt1q

Table 4-1 The description of the OpAL-€ model, broken into the components used in the

implementation.
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OpAL with epsilon greedy without Hebbian

Stages att
& update (OpAL_HE)
Reward expectation Vae = Z StEsart
SESt
Ay = Z StAsae
SES:

1 A, = m(?XA’C‘Lt
Action choice Bar =

* *
0 Ag: < m(?XAd,t

P —(1_8>B 4
ENIBAY T D

¢t = C(Py)
RPE 8 =1 — Vet
E Eyge+ L35 . g
Critic update SAEHL T ESAE T s |t ‘

Eges1= Eqr:d#c

agSe
Gsai1 = Gsart+ ”S—t”5t
Negoos = Nogq— WSt 075
Actor update S A
Garr1 = Gay
Ngts1 = Nay

Ager1= A+ p)Gaeer — A= p)Ngen
Table 4-2 The description of the OpAL-¢ model without Hebbian update, broken into the

:diCt

components used in the implementation.
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Stages att OpAL Saturated with epsilon greedy (OpALSE)

Reward expectation Vae = Z StEsart
SESt
Ay = Z StAsat
SESt

1 Ay, = maxAy,;
By, = ood
N0 Ay, < m&’:IXA:Lt

P = (1—6)3 €
t ”Bt” Al Il

=C(P)

Action choice

RPE 8 =1 —Ve,r

AcSt
E = Es4qt +--06p:d =
Critic update sl = Bsde T roe @ = C

Egty1= Eqe:d# ¢,

st G
Gsa1 = Gsar+ 7o IS, sat5t( ST>
d - Ct
N, = Ny — — 0N, 4.8 (1_M>
Actor update sadt+l = Hsdt = o[ Neatot M
Garr1 = Gay
:d#c
Ng¢y1= Ngi¢* t

Apy1= 1+ p)Garr1 — A= pINg e
Table 4-3 The description of the OpALS-€ model, broken into the components used in

the implementation.
Stages att Bayesian Probabilistic with epsilon greedy (BPE)

Reward expectation Var =E [D (Z Stwr,s,a,t>]
SESt

1 Vi =maxV;,
By = o4
d {0 Vae <maxVqe

Action choice (1 — 5) £
=(—)B + —
EAIBA T Dl
ce = C(P)
RPE -
g aSt d =€
Critic update Wrsdt+l = Orsde T o AT : {T = rtt
t

Actor update -
Table 4-4 The description of the Bayesian probabilistic model with epsilon greedy,

broken into the components used in the implementation.
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Stages att Temporal difference learning with epsilon greedy (tdE)

Reward
. Var = StEsat
expectatlon SES:

1 Vd t = max Vd t
Bg: = ' d '
at {0 Vae < max Ve,

P, = (l_ 5)3 +—
CONIBA/ T NIDl
ce =C(P)
aysSe-1
Est_l,d, t+1 = ESt_l,d,t + ”S 1” VCt,t: d = Ct—l
t_

Action choice

Egri1= Eqp:d # ¢y

RPE 8 =1 — Vet

as;
Esqen = Esar+ etbpid =c
Critic update S SR T Thes ‘
Eqep1 = Eqe:d # ¢

Actor update --

Table 4-5 The description of the simplest version of the Temporal difference learning

with epsilon greedy model, broken into the components used in the implementation.

Q-learning-€ with 2 learning rate parameters

Stages att
(qLearn2E)
Reward expectation Var = Z StEsat
SES;:
1 Vi =maxVy,
By = e
at {0 Vae < max Ve,
Action choice 1-¢
P, = (—)B +—
CONIB T D
ct = C(P)
RPE O =1 = Ve,
ats
(—t5t 6t > O
P N N dec
Critic update SA T Bsdt T g7 s, ' t
—||S i 6 6; <0
t

Eges1= Eqr:d # ¢

Actor update --

Table 4-6 The description of the Q-learning-¢ model with two learning rate parameters,

broken into the components used in the implementation.
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49  COMPARISON TO BAYESIAN MODEL RECOVERY

The issues that have been highlighted with some reinforcement learning models
may explain why Bayesian models appear to perform better than reinforcement
learning models when compared head to head, such as by Stankevicius, Huys,
Kalra, & Seriés (2014). To see if this is the case, the parameter recovery
performance for the simple Bayesian model is evaluated. This model, described in
chapter 3.11, has the same parameters as the simple Q-Learning model discussed
in this chapter, allowing a like-for-like comparison, where the only difference is the
way in which the information is stored. The parameter recovery performance for
this model, shown in Figure 4-28 and Figure 4-29, is similar to that seen for the Q-
learning model, shown in Figure 4-5 and Figure 4-6, suggesting that any differences

in performance are unlikely to be due to differences in fitting errors.
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Figure 4-28 The means and standard deviations of the best fit values for a and B for the data
generated from the biased coins task with 300 trials, of which 100 are without feedback. The means are
calculated for each pair of generating parameter values. The dotted line denotes the generating values
of those parameters. The graphs are plotted with the parameter values increasing in order such that
the parameter increasing the fastest is the one shown on the horizontal axis. Top: The means of « for

different generating t Bottom: The means of B for different generating a.
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410 DiscussioN

Here an examination was made of the performance of a standard model fitting
method to accurately recover the parameter values from data generated with the
same simple reinforcement learning model. Significant variability was found in the
recovered parameter values and that the distribution of this variability changed as
the generating parameter values changed. This has been shown to be consistent
across two different codebases with two different fitting procedures. Repeated
fitting of the same data with the same method has shown relatively negligible
variation, suggesting that the error is not caused by poor identification of the
global minimum, and so cannot be reduced by repeatedly fitting the data. As each
action choice sequence could have been generated by many other parameter sets,
this consistency suggests that a simple refinement to the fitting process will not be

sufficient to accurately recover the parameters.

The generation and subsequent fitting of data across a variety of different tasks
showed some variation in the distribution of the fitted parameter values, but the
underlying issue was still present in all of them. This suggests that were a prior
distribution to be used to improve parameter recovery, it would have to be

recalculated for each task-model pair.

By looking at the chosen action probabilities for the generated data it became
clear that the softmax B parameter is influencing the parameter recovery, biasing
the fit value function to highlight parameter values with higher g as being better
fits. Alternatives to the conventional softmax function were explored and
compared, with the e-greedy method found to be the most effective at providing
discernible parameter values. Models were modified where possible to provide e-

greedy versions that could be used to evaluate the performance of the models.

Were this fitting approach to be used with this gLearn model on real participant
data, where there is only one dataset, and so one fit, there would be sufficient
uncertainty in the true parameter values as to not allow any conclusions to be
drawn from them. This brings into question any cognitive learning results drawn

from fitting individuals with a reinforcement learning model using a softmax, as
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any such model will have the effects of its other parameters squashed by those of
B. As not only the recovered parameters, but their distributions are affected by this
effect, studies looking at group level effects are also affected by this issue, as also
attested by Humphries, Bruno, Karpievitch, & Wotherspoon (2015) for the
expectancy valence model and Spektor & Kellen (2018) for Q-learning models with

one or more learning rate parameter.

The simple Bayesian model, with the same parameters as the Q-learning model,
exhibited similar issues to those found in the RL model, suggesting that the
differences in performance seen between Q-learning and Bayesian models are not

the result of different fitting errors.

One qualifier to this modification was found by Nassar & Frank (2016), who
compared softmax and g-greedy and came to the conclusion that irrespective of
which is used, if the same one is not used to both generate and fit the data, this
will have a significant impact on the types of errors generated when estimating the
fit quality and so on the errors in parameter recovery. They also note that all fitting
of this kind assumes that the attention of the participant does not slip during the
task, as this would result in action choices chosen using another model. These
‘attentional lapse’ actions are not acknowledged by the fitting process and will add
noise that cannot be estimated by the processes described here, but will have an

impact on the accurate recovery of parameter values.
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5 WHAT PARTS OF A TASK SHOULD BE FITTED AND WHEN?

In the previous chapter, the quality of parameter recovery for a typical
reinforcement learning model was shown to be poor across a range of tasks and
fitting methods. Parameter recovery was shown to improve with more
information, i.e. as the length of the task increased, with good parameter recovery
in a simple task requiring several thousand trials, far more than it takes for people

to build a model of the task dynamics.

Previous studies have suggested that more accurate model parameters can be
gained through fitting the model to a period of the task with no feedback, once the
learning has occurred (Frank et al., 2007). They argued that fitting model
parameters using the action choice probabilities from different parts of a task
resulted in parameters that correlated with variations in different genes,
suggesting that there were potentially two learning systems in play, a fast and a
slow system. By fitting using the action choice probabilities from the first part of
the task, the part with feedback, they argued that it was possible to identify a
possible fast adapting learner, whereas by fitting using the model’s action choice
probabilities once feedback had been removed led to identifying a potential slow

learning mechanism.

When considering this possibility, one issue to address is if the action choices for
some parts of a task provide more information than others for fitting model
parameters. For example, in a task with stochastic consequences that do not
change over time, there will be an initial phase where the participant learns the
expected feedback for each action. After which, the expected consequences will
only be changing due to the variations in the task’s feedback. In this second phase,
as shown in Figure 5-1, if the model's learning rate is low, then the rate at which
the model adapts to new information from the feedback is best identified during
this initial exploratory phase, rather than by looking at the later action choices, as
the changes in reward expectations due to the fluctuations from the varying
feedback are small when the learning rate is low, resulting in barely perceptible

changes in the action choice probabilities and so the distribution of chosen
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actions. However, if the learning rate is high, the convergence of the expected
consequences to a stable average value will be very short but will fluctuate more
once it has converged, as the information from each new piece of feedback will
have a much larger influence on the expectation of the next trial. From this we can
also infer that during a task’s no-feedback phase, when a model no longer updates
its knowledge of the task, a model will be more likely to have an accurate
estimation of the expected consequences for a low learning rate than for a high
learning rate. This can be seen from the smaller fluctuations in the estimated
consequences for low learning rates during the post-convergence phase than for
high learning rates, resulting a lower likelihood of the model having its estimation
of the expected consequences be significantly different from that of the actual
value for low learning rates. Therefore, during the no-feedback phase, the more
the distribution of actions deviate from those that would result from an accurate
estimate of the consequences, the more likely the higher learning rates are for the

model.

As was seen in chapter 4.5, the size of the exploration-exploitation parameter in
the softmax can also have a significant impact on the capacity to discern the
underlying action-choice likelihoods. For high values of 3, both small and large

differences in the expected rewards are treated almost identically, resulting in

ack

60

100- essese o o o6 o eesees sesees 08 e
07s. L7 Boh R oA R WS S T e
coso. &7 ENMAMR ML S TR O INUAA T
025 | No feedb
0.00- ‘
0 10 20 30 40 50
r — a:01 - a: 0.25 - a: 0.5 a:0.75 a:

Figure 5-1 A toy example of how the learning rate in a simple Q-learning model affects the

expected reward. The feedback, r € {0,1} is randomly chosen such that the expected reward

should be 0.5, which is also the initial expected reward, i.e. the model has converged on the

expected reward and is now fluctuating due to noise in the feedback. The no feedback portion,

beginning on trial 50, has no updating of the expected reward.
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similar behaviour to that seen for high a in simple reinforcement learning models

such as Q-learning.

The models discussed in this thesis choose actions in the same way during the no-
feedback portions of a task as for the feedback portions of the task: by choosing
their next action randomly based on the action probability weightings. This
approach is assumed in the discussion above. However, it is also possible that a
person would use a winner takes all approach, where the most likely action is
always taken. This would be equivalent to calculating the action probability
weightings using g = oo. As the weighted probabilistic approach encompasses

both, it will be assumed for the rest of the chapter.

This chapter looks at how the quality of parameter recovery varies when fitting
with the action choice probabilities from different parts of a task, and if this varies
across models and across tasks. This is examined for the toy task used in chapter
4, the Biased coins task, as well as the two other tasks being examined in this
thesis that have a period of no feedback: the Probabilistic Selection task and the
Weather task. The Decks task is not examined as it does not have a no feedback

portion and the likelihoods of different feedback varies across the task.

The fitting of three tasks was examined with the Q-learning model, as described in
chapter 3.2, and the Q-learn-e model, as described in chapter 3.7. For each task, a
set of datasets was generated with the parameter value combinations from o =
{0.1, 0.3, 0.5, 0.7, 0.9}, B = {0.1, 0.3, 0.5, 0.7, 1, 2, 4, 8, 16} and € =

{0.1, 0.3, 0.5, 0.7, 0.9}. For each combination, 30 task runs were generated. The
model parameters were constrained during fitting to the ranges a = [0,1], B =

[0,30] and ¢ = [0,1].

As has been seen in the previous chapter, the number of trials is an important
factor in determining the quality of fits. Typically, the phase without feedback at
the end of a task is kept quite short. However, in this analysis, both the parts with
and without feedback will need to be of comparable length for us to be able to

perform like-for-like comparisons. From past experience, for the tasks examined
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Figure 5-2 The task can be thought of as a series of trials, with each trial transition

represented here as a vertical bar. For each trial the participant is either given
feedback, denoted by “::”, or no feedback, denoted as “-". The model performs the
whole task before the performance of a model-parameter combination is evaluated.
For each trial, the model’s probability for the participant’s chosen action is known.
From the sequence of these probabilities, a subset can be chosen to evaluate the
performance of this model with these parameters. Five of these subsets, labelled in
this diagram, are being evaluated here. "All” uses all the task trials, “None” uses only
the task trials with no feedback, “Feedback” uses only the task trials with feedback,
“First” uses the first half of the task trials with feedback and “Final” uses the second
half of the task trials with feedback.

here with stable rewards, it tends to take less than 100 trialsteps for both
participants and models to converge on stable expected rewards. Based on this,
the tasks are broken into three blocks of 100 trialsteps: the “First” 100, where
convergence occurs, the “Final” 100 after convergence but still with feedback, and a
last 100 trialsteps, “None”, where there is no feedback. With this we can also add
two other blocks: “Feedback”, containing the 200 trials where the participant has
feedback, and “All” the 300 trials, both with and without feedback. In all these five
blocks, the model will perform the whole task before its performance is evaluated

using the chosen block. This can be seen diagrammatically in Figure 5-2.

114



In chapter 4, it was shown that for the gLearn model many of the recovered
parameters from the same generating parameters were spread across the full
length of the parameter’s support, the range over which the parameter is allowed
to vary. Therefore, a useful baseline for comparing the errors in fits is to examine
the distribution of errors that would be found if the recovered parameters were to
be uniformly distributed across the whole parameter support. Figure 5-3 shows,
for different generating parameter values, what a mean error would look like in
this case. The maximal error of 50% of the support is at the extremities and the
minimal error, of 25% of the support is in the middle. Any parameter recovery

errors below this level would suggest a better than random parameter recovery.
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egen
Figure 5-3 The mean absolute difference between numbers randomly picked
between [0, 1] using a uniform random number generator, denoted 6, and a range
of values, acting as fake generating values, across the parameter support, [0, 1],
denoted 6.,,. One million numbers were drawn with a uniform random number

generator and compared to values between 0 and 1 increasing in 0.005 increments,

acting as the 6yen,.
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5.1 BIASED COINS

To provide a link to the discussion in chapter 4, the fitting performance for the
Biased coins task was examined. Four distinct coins are shown to the participant.
At the beginning of each trial, one of these is randomly chosen to be flipped and
the chosen coin is identified to the participant. Before it is flipped the participant
guesses if it will land on side 0 or side 1. The participant is then told, during the

feedback trials, which side the coin landed on.

The probability of landing on one side or another varies from coin to coin, with two
of the coins having an 80% chance of landing on side 0 and the other two a 20%
chance of landing on side 0. For each generated dataset, the choice of coins and
the side the ‘coins’ fall on is varied. This allows us to get a better estimate of the
distribution of the noise in fitting, with not just the noise of the probabilistic

decision making of the model but also the impact of the random task sequence.

The mean recovered parameters for each gLearn model generating parameter set
are shown in Figure 5-5. The worst parameter recovery was provided when using
only the no-feedback, None, parts of the task, while recovery using trials with
feedback, First and Final, provide noticeably better fits, especially when recovering
a from data generated with low a and high g. When fitting data generated with a
high B, there is a significant increase in the error in recovering B, with an error of
half the parameter support for those recovered using the trials within the Final and

None ranges. The parameter recovery error of a decreases as the generating

Head

> > Tail

Figure 5-4 The Biased coins task. At the beginning of each trial, from a set of distinct
coins, one is randomly chosen to be shown to the participant. Before it is flipped the
participant guesses if it will land on side 0 or side 1. The participant is then told,
during the feedback trials, which side the coin landed on. Each coin has a different
probability of landing on each side.
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increases and increases for low B as the generating a increases. For low g values
and a > 0.1, the a values are recovered worse than if they were randomly selected
from a uniform distribution. For high g values, the B recovery is worse than if it
were randomly selected from a uniform distribution. However, as a positively
skewed distribution is a more reasonable prior for g, the uniform random average

error is an underestimate of what could be expected.

As expected from chapter 4, doubling and tripling the number of trials used to
recover parameters from the data does improve the accuracy, but this

improvement is proportionally lower than the increase in trials. It is not clear if the

All performance would have improved were all the 300 trials to be with feedback,

mean | @it — Agen| mean |Brit — Bgenl
All 0.18+0.01 1.54+0.10
Feedback 0.20+0.01 1.84+0.11
0.23+0.01 2.81+£0.15
First 0.23+0.01 2.98+0.15
None 0.27+0.01 3.22+0.16
randomly recovered 0.33 12.64

Figure 5-5 A plot of the mean absolute difference between the generating and recovered
parameter values for the gLearn model performing the Biased coins task and fitted using the
action choice probabilities for selected sections of the task, labelled as "All" (black), “Feedback”
(red), “First” (green), “Final” (orange) and “None” (blue). Each point is the mean across 30
generated task runs with the same generating parameter values, listed on the horizontal axis.
The error bars are the based on the standard error of the mean. The points are ordered by
increasing generating parameter values, with B increasing before a. Top: The a parameter

values. Bottom: The  parameter values.
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but the relatively poor performance in fitting with only the no feedback section of

the task does suggest that this would be the case.

With the gLearnE model in Figure 5-6, the parameters recovered using None are
noticeably worse when fitting «, especially for those generated with low and high
values of a. This is especially noticeable when comparing the recovered
parameters from Feedback to those from All, which are almost identical,
suggesting that there is little value in having a portion of the task with no feedback.
However, there is a difference when recovering ¢, especially for parameters
recovered from data generated with values of € around 0.5, where the errors tend

to be largest.

Comparing the recovered parameters from the two models, the most striking
difference is that the errors for @ increase as the generating ¢ values increase with
the gLearnE model, when the opposite is true for gLearn with the f parameter.
This may be due to the inverse roles € and B perform in their respective functions.
The parameter fit errors are smaller for @ when generating and fitting with the
gLearnE model, which is in line with what was expected from chapter 4. This
difference continues when comparing the errors found with § and ¢ relative to the
sizes of the supports for the two parameters: up to 50% of the support for g and

up to 10% for e.
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Figure 5-6 A plot of the mean absolute difference between the generating and recovered
parameter values for the gLearnE model performing the Biased coins task and fitted using
the action choice probabilities for selected sections of the task, labelled as "All" (black),
“Feedback” (red), “First” (green), “Final” (orange) and “None” (blue). Each point is the mean
across 30 generated task runs with the same generating parameter values, listed on the
horizontal axis. The error bars are the based on the standard error of the mean. The points

are ordered by increasing generating parameter values, with € increasing before a. Top: The

a parameter values. Bottom: The ¢ parameter values.
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5.2 PROBABILISTIC SELECTION TASK

This is based on the task as described in Frank et al. (2007). In the first stage of the
task, the participant is shown a series of pairs of symbols and asked to pick which
of the two will give the reward. They are then told if they are correct. In this version
there are three pairs, each with their own unique symbols. The pairs have
normalised probabilities of providing a reward: (80%, 20%), (70%, 30%) and (60%,
40%). In the second stage of the task, the participant is again shown pairs of
symbols, but the pairs are made up of symbols that were unpaired in the first
stage. The participants are not given any feedback as to their performance in this
second stage. As for the previous task, new data is generated for each run of the

task. No attempt at counterbalancing has been made when generating the data.

A/l 3 P

Figure 5-7 The Probabilistic Selection task. Participants are shown pairs of characters, from

3B 2 ;

a set of six, and asked to pick the correct one. Each character has a different likelihood of
being correct. During the initial learning phase, the characters are shown three pairs, with
complementary reward likelihoods, multiple times and participants are given feedback. In
the test phase, participants are presented with every combination of pairs of characters
but are not given feedback.

For this task, Figure 5-8 shows that the gLearn model generating parameters are
most accurately recovered when fitted over the no-feedback phase of the task. As
expected, the fits performed using more of the task, All and Feedback, do recover
the parameters better, although there is minimal difference despite the increase in
trials for All. This underlines that the improvement in accuracy in recovering
parameters over the no feedback region is minimal. For low g values and a > 0.1,
the a values are recovered worse than if they were randomly selected from a

uniform distribution. When compared to the results from fitting the biased coins
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task in Figure 5-5, the distribution in fitting errors for « and § are similar, with 8

errors increasing and the a errors decreasing as the generating B increases.

With the gLearnE model, shown in Figure 5-9, most of the difference can be found
in the recovery of @, where the errors steadily increase as both a and € increase,
with the exception of when fitting using the None section of the task, where there
is less variation in the error size across the parameters and with an average
recovery error size higher than almost all of the other error fits. For the ¢ fits, the
largest errors are found in the middle of the € parameter range. Overall, this gives

the impression that for the recovery of a the no feedback region hinders as much
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B N N O N N R N N RN L
dgen .Bgsn
mean |@sit — Agen| mean |Bfit — Bgen|
All 0.17£0.01 1.34+0.09
Feedback 0.18+0.01 1.62+0.09
0.23£0.01 2.32+0.12
First 0.23+£0.01 2.88+0.13
None 0.21+0.01 2.22+0.12
randomly recovered 0.33 12.64

Figure 5-8 A plot of the mean absolute difference between the generating and recovered
parameter values for the gLearn model performing the Probabilistic Selection task and fitted
using the action choice probabilities for selected sections of the task, labelled as "All" (black),
“Feedback” (red), “First” (green), “Final” (orange) and “None” (blue). Each point is the mean across
30 generated task runs with the same generating parameter values, listed on the horizontal axis.
The error bars are the based on the standard error of the mean. The points are ordered by
increasing generating parameter values, with B increasing before a. Top: The a parameter
values. Bottom: The B parameter values.
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as it helps the recovery accuracy, as there is little difference between All and
Feedback across all generating parameters despite the 50% increase in trials used
to fit the model. This hindrance is not seen in the parameter recovery accuracy for
e, where all three short fitting sections were shown to recover the parameters

similarly well.
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Figure 5-9 A plot of the mean absolute difference between the generating and recovered
parameter values for the gLearnE model performing the Probabilistic Selection task and
fitted using the action choice probabilities for selected sections of the task, labelled as "All"
(black), “Feedback” (red), “First” (green), “Final” (orange) and “None” (blue). Each point is the
mean across 30 generated task runs with the same generating parameter values, listed on
the horizontal axis. The error bars are the based on the standard error of the mean. The
points are ordered by increasing generating parameter values, with € increasing before a.

Top: The a parameter values. Bottom: The € parameter values.
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5.3 WEATHER TASK

Having seen that there were differences across tasks in the usefulness of fitting
parts of a task, it made sense to examine the performance of the Weather task
that will be examined in more detail in chapter 8. The Weather task is a category
learning task based on one described by Gluck & Bower (1988) and later adapted
by Knowlton, Squire, & Gluck (1994). It asks participants to associate a series of
cues with one of two outcomes. One to three cue cards, from a set of four cards,
are presented to the participant in each trial. The participant must decide which
one of the two possible outcomes the displayed cards are most likely associated
with. Once the participant decides, they are then told if they were correct or not.
The cues each have a probabilistic relationship with the two outcomes, with this
this version of the task having novel probabilistic relationship, with the probability
of an outcome varying depending on the combination of cues displayed, as
described in Table 8-1. For example, if the first two cues are displayed, then the
first outcome is guaranteed. If only one of them is displayed, then the first
outcome will be the correct one 75% of the time. Across the whole task, the first
two cues having a 64% chance of being associated with the first outcome and the
second two having the inverse. In the first phase of the task, the learning phase,
participants are given feedback on if their choice was correct. In the second phase,
the testing phase, participants are not given any feedback. For this task, the
sequence of cues and the feedback were kept the same for all participants, with

200 learning phase trials and 100 test phase trials.
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Figure 5-10 The Weather task consists of a series of trials where one to three cue cardes,

from a set of four cards, are presented to the participant. The participant must decide

which of the two outcomes the cues are more likely to predict.
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With the gLearn model, shown in Figure 5-11, the fitting errors are similar in
distribution to those found for the Probabilistic Selection task. As before, there is
minimal difference between the recovery of parameters using all the tasks
responses and those using only those from the parts with feedback. For low
values and a > 0.1, the a values are recovered worse than if they were randomly

selected from a uniform distribution.

For the gLearnE model, show in Figure 5-12, there is very little difference in the €

recovery errors when fitting using any of the three short sections of the task.
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First 0.22+0.01 2.05%+0.12
None 0.22+0.01 1.86x0.10
randomly recovered 0.33 12.64

Figure 5-11 A plot of the mean absolute difference between the generating and recovered
parameter values for the gLearn model performing the Weather task and fitted using the action
choice probabilities for selected sections of the task, labelled as "All" (black), “Feedback” (red),
“First” (green), “Final” (orange) and “None” (blue). Each point is the mean across 30 generated
task runs with the same generating parameter values, listed on the horizontal axis. The error
bars are the based on the standard error of the mean. The points are ordered by increasing
generating parameter values, with B increasing before a. Top: The a parameter values. Bottom:

The B parameter values.
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However, variation is seen in the fitting of a, where the parameter recovery using
the no feedback portion provides the largest errors and the smallest errors by
fitting the post-convergence action feedback portion of the task. From this, it
appears that parameter recovery benefits most from maximising the portion of

the task with feedback, as this improved the recovery of a.
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Figure 5-12 A plot of the mean absolute difference between the generating and recovered
parameter values for the gLearnE model performing the Probabilistic Selection task and fitted
using the action choice probabilities for selected sections of the task, labelled as "All" (black),
“Feedback” (red), “First” (green), “Final” (orange) and “None” (blue). Each point is the mean
across 30 generated task runs with the same generating parameter values, listed on the
horizontal axis. The error bars are the based on the standard error of the mean. The points
are ordered by increasing generating parameter values, with e increasing before a. Top: The a

parameter values. Bottom: The € parameter values.
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5.4  DiscussIoN

This chapter examined how the accuracy in the recovery of parameters varies
when fitting using different portions of a task and how this variation changes

across a range of tasks. This was done for two models: gLearn and gLearnE.

To provide an indication of the trends found in the results, the overall mean
parameter recovery error values have been reproduced in Table 5-1. In this case,
the mean errors in a range between 10-30% of the support size compared to
between 4-11% for g and ¢. This is in line with the results from chapter 4 that the
parameters later in the model's trial calculations would be easier to recover. The
mean errors for B are the same size as those of ¢, but the variation in these errors
is much larger for B, which is in line with the result in chapter 4 that e-greedy

allows for more consistent parameter recovery than the softmax function.

The no feedback portion of the task was found to only be helpful for parameter
recovery in the Probabilistic Selection task, where the no feedback portion
provided different stimulus-cue pairs to those in the feedback portion. This
suggests that the noise typically found in a no-feedback testing phase might be
reduced by having the testing phase have trials that ask different questions from
those in the learning phase. In this case this was done by asking the participant to
make the same type of choices, between two options, but in this phase the options

were paired differently.

Overall, the parameter recovery errors were found to be lower for the Weather
task. One possible reason for this is that it is the only task where the relationship
between the action and the feedback was less clear, as there were varying
numbers of interacting stimulus-cues. This increased complexity might make it
easier to tease out the differences between different parameter combinations on

repeated trials.

One limitation in using the models described in chapters 3 and 4 is that they
assume that the action choice probabilities cannot change during the no feedback
portion of the tasks. However, there are indications that even when people are not
provided with feedback for their actions, they may still update their reward
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Biased coins Probabilistic Selection Weather

glLearn glLearnk gLearn glLearnk glLearn glLearnk
' a 0.23+0.01 0.20 £ 0.01 0.20 £ 0.01 0.15+0.01
First B/e 2.98+0.15 0.06 +0.00 0.10 £ 0.00 -
e a 0.23+0.01 0.22 £0.01 0.20+0.01 0.21+0.01 0.12+0.01

B/e 2.81+0.15 0.06 +0.00 2.32+0.12

0.21 £ 0.01
None

2.22+0.12
a 0.20+0.01

155+008

186+O10 0.06 + 0.00
0.19+0.01 0.19+0.01 0.10 +0.01
008+000 005+000

Feedback
005+000

Table 5-1 The means and standard error of the means for the absolute parameter recovery
errors across all generating parameter values. These are shown for each trialstep fitting region,
parameter, task and model. The colours signify the relative size of the errors from low (dark
blue) through to very high (dark red). The relative sizes are evaluated across trialstep fitting
regions for the same parameter, same task and same model, i.e. each column and each

parameter are treated separately.

expectations, reinforcing those that they have chosen and discounting those they

have chosen not to choose (Lieberman, Ochsner, Gilbert, & Schacter, 2001).

It should be reiterated that this chapter is only discussing parameter recovery, not
the appropriateness of models. As discussed at the beginning of the chapter, it is
plausible that there are multiple learning models or policies being used
simultaneously, each of which dominate under different circumstances, such as
when certain kinds of feedback, such as corrective or rewarding, are provided or
withheld (Frank et al., 2007). If the assumption when recovering model parameters
is that a participant is using the same model for the feedback and the no feedback
parts of the task, then there is no benefit, for parameter recovery accuracy, to
having a no feedback part of the task. However, if there is a possibility that
participants may be using a different model, or different model parameters, for
when there is and is not feedback, then these should be fitted separately, with the

awareness that this will impact the accuracy of the parameters recovered.
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6 DECKS TASK

The first task used for evaluating model performance was the Decks task, a
modified version of the one used by Worthy, Maddox, & Markman (2007), and
similar to the IOWA gambling task (Bechara et al., 1994). Participants were
presented each trial with two stimuli on a screen, one red and one blue. These
were said to be the top ‘cards’ of two decks of cards 80 cards long. Each ‘card’ had
a predetermined reward associated with it, whose value was between one and ten.
The objective was to maximise the accumulated card values, with the chance to
enter a lottery for a prize, described below, if the participant collected more than
450 points across the experiment. For each pair of cards, the participants chose
one. The card that was not chosen was not discarded, maintaining the number of
available cards in each deck. This version of the task was therefore what Worthy et
al. refer to as a gain only version of their task under the promotion focussed
motivational framing. A promotion-focus serves to motivate participants to win
points by providing a potential higher payoff if enough points were accumulated

over the course of the experiment.

> 6

Figure 6-1 The Decks task consists of two decks of 80 cards. Each card has a value
between one and ten. Participants choose during each trialstep which deck they thing
will provide the most advantageous card, with an aim to accumulate the largest total
card value. When a deck is chosen, the ‘top’ card from that deck is drawn, its associated

reward is awarded to the participant and the card is discarded.

Throughout the experiment, a fixed card value sequence was kept for both decks,
shown in Figure 6-2, and there were not equal numbers of cards for each reward
value. One of the decks was initially advantageous, but overall worse. It provided
an average of eight points over the first thirty cards drawn from that deck, five

points for the following twenty and two for the final thirty cards. The other deck
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Figure 6-2 The rewards received for choosing each card in the two decks. The black lines

Deck 2 reward

show the average rewards for each deck in each of their payoff “phases”.

became steadily better and then reverted to providing low payouts just at the end,
with an average of three points for the first twenty, an average of seven over the

following fifty cards and an average of three for the final ten cards.

Since the deck that was initially advantageous became less advantageous later on,
this meant that participants who wanted to reach 450 points would have to select

at least 25 cards from the initially poorer deck and at least 3 cards from the initially
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cards from deck 2
Figure 6-3 The total number of points won as more cards are chosen from deck 2 across
the 80 trials of the task. The points for each card are those shown in Figure 6-2. 450

points were necessary to qualify for the bonus reward, as shown by the pink dotted line.
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better deck to be able to reach this total, as shown in Figure 6-3. The task therefore
required the participant to explore, or sample, both decks even when a decision on
the better deck was made, as the best deck to choose changed as more cards were
chosen. Those participants who initially favoured deck 2 are given two
encouragements to explore deck 1: the reduction in average reward after 30 cards
and a second reduction after 50 cards. The second of these reductions results in

an average reward that is lower than that of deck 1 at any point.

6.1  DATA PROPERTIES

The results from three different undergraduate student research projects were
available for analysis, each with different sets of participants, and all run with the
same version of the task. Studied 1 and 2 were conducted at Goldsmiths and study
3 was conducted at the University of Greenwich. The lottery prize for the two
Goldsmiths studies was £50 and at Greenwich the prize was £20. A detailed
description of these studies can be found in Pickering (2011). In total, there were

166 participants.

Checks were performed on the sample characteristics to verify the suitability of
combining the three datasets together. An overview of the participants for the
three studies can be seen in Table 6-1. We can see that all three studies had about
the same number of participants. The age range was higher for the third study,
where participants 75% of participants were under the age of 33, whereas for the
other studies 75% of participants were under the age of 23 and 24 respectively.
The gender distribution of all three studies, shown in Table 6-2, is very similar

across studies, with 70% of participants being female.

Total Standard

Study number Mean deviation Distribution
' Combined 166 25 10 h
A 1 54 23 8 h_
g€ | 55 24 8 b .
3 57 29 11 o ..

Table 6-1 A description of the age of the participants in the three Decks task studies.
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Total Percentage of Percentage of

Study
number men women
\ Combined 166 29 71
Gender = | >4 30 70
2 55 27 73
3 57 28 72

Table 6-2 An overview of the genders of the participants in the three Decks task studies.
In each study the EPQ-R was given to each participant. The focus for this chapter
will be on the Extraversion scale, as this personality trait has been linked to
variations in the sensitivity to reward, discussed in chapter 1.1. The results in Table
6-3 show the results of the EPQ-R tests that were administered. They show similar
results across the studies. The results from tables Table 6-1, Table 6-2 and Table
6-3, suggest that the data from these experiments can be combined for more

power, as the underlying samples are similar.

Study Total Mean Staﬁdqrd Distribution
number deviation
Combined 166 15.5 4.9 e
EPQ-R 1 54 16.2 49 e ¥
Extraversion 2 55 14.9 4.6 - el
3 57 15.3 5.3 —J el
Combined 166 7.8 3.8 = -
EPQ-R 1 54 8.2 3.9 .
Psychoticism 2 55 7.2 3.5 sl
3 57 7.8 3.9 .
Combined 166 12.9 5.5 e |1 i
EPQ-R 1 54 12.8 5.5 Lallhbisl
Neuroticism 2 55 12.8 5.5 T I
3 57 13.0 55 T Y
Combined 166 7.8 3.8 ol
EPQ-R 1 54 7.5 3.7 1
Li scale 2 55 7.3 3.4 o
3 57 8.6 4.0 ot ..

Table 6-3 The EPQ-R participant properties for the three Decks tasks studies.

The participants’ performance was generally very similar across the three studies,
as seen in Table 6-4, with participants having similar distributions of card picks
from the better deck. The number of points won also had a consistent bimodal
distribution, with peaks around 400 and 470 points. This reinforces the idea that
the data from the three studies can be combined to provide a dataset with greater

power.
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Study Total Mean Stal?dqrd Distribution
number deviation
Number of Combined 166 25 11 s
d 1 54 27 11 W
cards from 2 55 25 8 L
good deck 3 57 23 12 L
Combined 166 446 36 N
Poi 1 54 450 34 annnl .
oints won 2 55 447 36 i .
3 57 440 38 Mok b,

Table 6-4 An overview of the performance of the participants across the three Decks

tasks studies. The target number of points for the participants was 450, which required

a minimum of 25 cards selected from the better deck and no more than 78 to

accumulate a point total of more than 450.

Based on these results, the data was considered acceptable to be analysed as one

dataset. As the three datasets produced very similar results, it seems likely that

these are typical samples of British psychology undergraduates who signed up for

research studies for course credit.

As extraversion will be compared later to model parameters, a comparison was

made between each participant's measured extraversion and the points they won

during this task. A Pearson correlation found a -0.04 correlation (p=0.64,

BF10=0.11), showing that extraversion was unlikely to be an indicator of the

number of points won.
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Figure 6-4 The proportion of deck 2 choices for each dataset for each trialstep.
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There was a tendency for participants to select more cards from deck 2 at the start
of the task, once a difference had been identified between the two decks, and
select more from deck 1 as the task continued, as shown in Figure 6-4. This
tendency can also be seen to be similar across the three datasets. A Bayesian
paired samples t-test was used to compare the means of the first and last 40 trials,
as the differences between them can be seen, in Table 6-5, to be significantly non-
normal, using the Shapiro-Wilk test of normality. The t-test found very strong
evidence that there was a difference in the average action choices between the
first and second 40 trials, shown in Figure 6-5. This suggests that the task did
perform as designed: participants identified the need to switch from mostly
selecting from deck 2 at the start of the task to mostly selecting from deck 1 by the
end. This difference in the average action choices between the first and second 40

trials did not correlate with extraversion r=-0.09, p=0.27, BF10=0.18.

Study Shapiro-Wilk Bayesian Paired samples t-test
w p Bayes factor
Combined 0.98 0.02 3.8x10%
1 0.94 0.01 3.8x 10"
2 0.96 0.07 2.8x10°
3 0.96 0.09 8.6 x 107

Table 6-5 The results of the Shapiro-Wilk test of normality and the Bayesian

paired samples t-test for each of the datasets, along with the combined dataset.
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Figure 6-5 The proportion of deck 2 choices for each dataset the mean values across the

first and second 40 trials. The standard errors of the means were comparable or smaller

to the symbol sizes, so have been omitted.
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All but two of the participants selected cards from both decks. These two

participants were excluded from the rest of the analysis.

One final way of evaluating the performance of the participants is to see their state
at key payoff transition points in the task, marked by the change in average payoff
for selecting cards from that deck. The two that most participants can be expected
to have gone through are the first decrease in Deck 2 payoffs after 30 card
selections from that deck, and the significant increase in Deck 1 average card
payoffs after 20 Deck 1 card selections. Figure 6-6 shows the number of cards had
been taken from the other deck before reaching these transition points, and so the
number of cards remaining to be chosen. The 20" card from Deck 1 can be seen to
have been chosen quite late in the task by many of the participants, with 48 others
never selecting this card at all. A total of 75 participants had chosen at least 74
cards before reaching the 20" Deck 1 card and so were continuing to choose Deck
2 cards when their average payoff was less than those of Deck 1. Furthermore,
those participants would have had very little opportunity to identify the increase in
average payoffs that occurs in Deck 1 after the 20™ card. The 30%" card in Deck 2
was chosen quite quickly by most of the participants, suggesting that all but a few
identified Deck 2 as providing the highest average rewards with a modal number

of cards selected from deck 1 of 4. This, along with the results from Figure 6-4,
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number of deck 1 choices number of deck 2 choices

Figure 6-6 The graph shows the number of choices each participant had taken from a
given deck, before reaching the first payoff transition point in the other deck, as
shown in Figure 6-2, namely left: 30 cards from Deck 2 right: 20 cards from Deck 1.
This can also be thought of as “Upon having chosen 30 cards from Deck 2 (left) or 20
cards from Deck 1 (right) how many cards had each participant taken from the other

deck?” The red vertical dashed lines mark the mean number of cards chosen.
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suggests that Deck 2 was quickly identified as the deck providing the best initial
rewards, but as these rewards decreased cards were more frequently sampled

from Deck 1. The task therefore performed as expected.

6.2  FITTING THE MODELS TO THE DATA

As the rewards in this task had values in the range [1, 10], within the models, the
initial expected reward for both choices were set to 5. The upper bounds for
infinitely bounded model parameters were truncated. The softmax 3 parameter
was limited to 30, the Kalman model parameters ¢Z and o7 were limited to 150 and
the OpALS and OpALSE saturation parameters M were set to 20 and 49

respectively. Participants were fitted over their full task action sequence.

TDO, gLearnF, ACBasic, and the OpAL models have features that caused numerical
overflows for rewards larger than 1. For these models, the rewards were scaled to
the range [0.1,1] and the initial expected reward was accordingly modified to 0.5.
In spite of this, during the fitting process, the model OpAL experienced numerical
overflows for certain parameter combinations, as discussed in chapter 3.4. A
model choosing randomly would have a probability of 0.5 for each action choice.
The parameter combinations where there has been an overflow are treated as
worse than random fits. For these, a probability of 0.4 was returned for each action
choice. If these provided a plateau of global minima, then the model could be
discarded as being a worse representation of the participant’s actions than a

purely random model.

6.21  Boundary recovered parameters

The crudest measure of acceptable model fits is to measure the number of them
that fail to recover valid parameters, i.e. a parameter combination that does not
intersect with any of the parameter validity boundaries. To account for numerical
errors in the fitting, a boundary, or edge, fit is defined as a recovered if the
parameter is within 0.1% of either side of its range. This was chosen to be close
enough to the boundaries to be unlikely to interfere with good parameter

recovery, while still accounting for the approximate nature of numerical fitting.
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The results from fitting the Decks dataset, in Figure 6-7, show the proportion of
participants with recovered parameters on the edge of the parameter boundaries.
The proportions are generally below 15%, with the e-greedy models having a
significantly lower proportion of boundary parameter values of around or below
5%. This suggests that e-greedy does provide better parameter recover than
SoftMax, as was discussed in chapter 4. In spite of the very broad parameter
ranges places on the gLearnK model, still 35% of the participant’s sets of recovered
parameters included at least one boundary parameter value, suggesting that this

model is very poorly fitted.
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Figure 6-7 The proportion of the 166 participants fitted to each model whose fits had at

least one recovered parameter within 0.1% of its boundary. The models have been

grouped into those using softmax (top) and those using epsilon-greedy (bottom).
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6.2.2  Goodness of model fits

A model's performance can be compared using a Bayes factor, as described in
chapter 2.2, by comparing its performance to that of another model, such as a
random choice model. The Decks task encourages participants to learn to prefer
choosing one deck for the first half of the task and then switch preference. The
randomBias model can be used to capture any participant’s tendency to prefer one
deck more than another, while not accounting for any switch in preference they
might perform. It therefore acts in this instance as a stricter, non-learning, baseline
than the pure random model. To simplify the comparison with other task datasets
in chapters 7 and 8, the initial performance comparisons will use the random

choice model.

For the Decks task dataset, the performance can be seen, for the Bayes factor, in
Figure 6-8, and for the normalised Bayes factor, in Figure 6-9. What is most striking
is how models of the same class (Q-learning, Bayesian, OpAL) appear to perform,

on average, similarly to each other. The Bayes-inspired models appear to perform
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Figure 6-8 The distribution of the values of the fit quality Bayes factor from fitting the
Decks dataset when compared to a pure random model. The dashed vertical line marks
a Bayes factor of 20. Values above 20 have strong evidence that the model can match

the participant’s actions better than a pure random model.
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the worst, with the majority of participant fits not having strong evidence, as
defined in chapter 2.2, that they are better than a purely random model. The OpAL
derived models also frequently provide poor fits. Better fits are recovered for the
variations on the gLearn model, with the majority of participants fits having strong

evidence of being better compared to a purely random model.

The Bayes factor values for each participant's model fits can be compared between
models, as shown in Figure 6-10. In this figure, identical Bayes factors for the same
participant will be located along the diagonal line in each miniplot. This parity
between Bayes factors is the case for almost all participants when comparing, for
example, the OpAL and the OpALS models, also shown expanded in Figure 6-11. If
one model fits a participant better than another model, then the participant will be

shown away from the diagonal line. For example, the gLearn model fits have
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Figure 6-9 The distribution of the values of the fit quality normalised Bayes factor from

fitting the Decks dataset when compared to a pure random model. Fits with values below 1
have a Bayes factor of over 20, so have strong evidence that the model can match the

participant’s actions better than a pure random model.

138



gLearnMeta |

qLearn
tdO

NN
%

s
ARCROR

randomBlas:}%‘__ S e ,;,. ,ﬁ : e
> > Q@ O © e
0O 0 T T O e
@ m > > > > > D
Q wn B = — | | =
v, % n T T m
I} i .

o

g

Q
o)
o

-
=
>
N

SUOTITEC TR o N N

kS

wOW NN

aoee
5

J10D3ud eaqb:i. “-ﬁ

Juseab 1

Q

=
(]
Q
=
>
m

yul ea-lb:‘:&"" 3 N
elopuleatb k ”& "% 1;»??]

-
Qo
—
0]
Q
=
=]

108

105
3
102 ©
3
o
&
10°1 5
Q
<
™
0n
10~4
10-7
o A
= 'g'g
e = =B

Figure 6-10 A comparison between models of the Bayes factor values for each participant

when compared to a pure random model. Both the horizontal and vertical axes of each

model comparison use a log scale ranging from 10710 to 1023, The horizontal and vertical

lines denote a Bayes factor of 20 and the diagonal line follows the line of equal value for

both axes. The dots are coloured with the inter-model Bayes factor, such that a Bayes

factor of 20 signifies that there is strong evidence that the vertical model fits better the

participant’s actions than the horizontal model.
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Figure 6-11 A selection of expanded miniplots from Figure 6-10.

stronger evidence than those of OpAL_H, as they are on the gLearn side of the
diagonal line. Nevertheless, they are still related, as most of the dots form a line
that is parallel to the diagonal line of equal Bayes factor. The further away a dot is
from the diagonal line, the greater the difference in the Bayes factors of the two
models for that participant data. The horizontal and vertical lines mark a Bayes
factor of 20 for the fit of the model axis they intersect with, i.e. the vertical axis
model fit values are associated with the horizontal dashed line. Therefore, for most
participants, the Bayes factor values for the BPV model relative to a pure random
model are lower than 20, whereas most participants for the gLearnECorr model
have values higher than 20. This results in the dots in their comparative plot not
only to be mostly on the qLearnECorr side of the diagonal line, but also beyond the

vertical dotted line.

The relative difference between model fits be expressed as a between-model
Bayes value, calculated using the model fit BIC values by taking inspiration from

equations 2.4 and 2.8 in chapter 2.2, so that:

BICmodel 1=BICmodel 2
2

B=12
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These are shown in Figure 6-10 by the colour of each participant’s dot, with the
vertical model as model 2 and the horizontal model as model 1. Therefore, the
participant dots with a Bayes factor of 20 or higher, coloured blue, have strong
evidence that the vertical model is a better fit for the participant’'s actions than the
horizontal model. Conversely, with a Bayes factor of 1/20 or lower, coloured red,
there is strong evidence that the horizontal model is a better fit for the
participant’s actions than the vertical model. The median values for each inter-
model comparison are shown in Figure 6-12. From both figures, it can be seen, for
example, that gLearnECorr fits the participants better than BPV. There are
occasions where Figure 6-12 can be misleading, such as when comparing qLearn
and gLearnECorr, where Figure 6-12 suggests there is somewhat strong evidence
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fits. High values signify that the model on the vertical axis had a lower BIC value, and

so a better match of the participant’s actions, than the horizontal axis model.
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that qLearn fits the participants better, whereas Figure 6-10 shows that there is

strong evidence that gLearn and gLearnECorr each fit different participants.

One striking result is how strong the correlations are between different model
Bayes factors for the same participants, as shown by the distributions forming
lines in Figure 6-10 and Figure 6-11. This suggests that the actions of some

participants are better fitted by these models than the actions of others.

Another approach to comparing the model’s performance is to examine the
expectation of the model frequencies, EF, as discussed in chapter 2.4. This assess
the relative frequencies with which two models could have generated participant
data in the dataset. The probability that this relative frequency is above chance is
estimated using the protected exceedance probability (Rigoux, Stephan, Friston, &
Daunizeau, 2014). Both the expectation of the model frequencies and the related
protected exceedance probability were calculated using the VBA toolbox
(Daunizeau et al., 2014). This used as inputs the BIC values calculated for each
model’s fit to each participant’s task action sequence. These comparisons can be
seen in Figure 6-13. This reinforces our previous conclusion that the BP models
were unlikely to have generated the participant data and that the gLearn model

has the strongest evidence, followed by gLearnCorr.
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Figure 6-13 The expectation of the model frequencies (EF) and the associated protected
exceedance probabilities (pEP) for model pairs. Each pair of circles shows the EF and pEP
for the vertical axis model relative to that of the horizontal axis model. The outer, larger

circle is the EF and the inner circle is the pEP. Both are scaled between [0,1].
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By comparing the points won by each participant against the Bayes factor of their
model fit, it was found that each model had a significant, Bonferroni corrected,
negative correlation: participants who won the most points had the weakest
evidence compared to a pure random model and the participants with the fewest
points were fitted with strong evidence for the models. One of the clearest of the
relationships is for the biased random model, shown in Figure 6-14. This provides
further evidence that using the biased random model as the baseline for the Decks
task will provide a stricter baseline than the pure random model, while still not

having any learning components.

Using this new baseline for model performance, the relationship between points
won and the Bayes factor of their model fit, shown in Figure 6-15, is no longer so
clear. The remaining models did not have strong evidence for their explanations of
the majority of both the highest (above 485) and lowest (below 425) points earning
participants, but the models had stronger evidence for the middle points earning
participants. The distinction between the high and medium points earners is quite
marked. Figure 6-3 shows that this represents a selection of between 9 and 44
deck 2 cards. As this transition is in the same place across models, it suggests that
participants who managed to gain more than 485 points were doing so using
methods of exploration and preference switching that are not properly captured
by these models. In this respect, the Bayesian models do seem to capture the

participant’s responses more consistently, even if it is not well captured.
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Figure 6-14 A comparison of the points won by each participant vs the model fit Bayes factors
for the biased random model. The vertical line marks 450 points and the horizontal line a
Bayes factor of 20, above which the model fits have more than strong evidence that they are
better than the pure random model.
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Figure 6-16 shows that using the biased random model as the baseline, compared
to the pure random model baseline in Figure 6-8, has spread out the participant fit
Bayes factors, with the exception of the Bayesian models whose fits have more
consistent Bayes factors. This difference in treatment can be understood using the
model comparisons in Figure 6-10, where the Bayesian model fits can be seen to

closely match those of the randomBias model.
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Figure 6-15 A comparison of the points won by each participant vs the model fit Bayes factors for

each of the models. The vertical lines mark 450 and 485 points and the horizontal line a Bayes factor
of 20. The models are labelled above each plot. The star denotes a Bonferroni corrected Spearman’s

rank correlation with a p <0.05
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When removing all the edge fits found in chapter 6.2.1, the distributions of fit
qualities do not change significantly, suggesting that model fits that result in
parameters recovered at a boundary do not have particularly higher or lower fit

quality values than others.

To provide an estimate of the number of participant fits that may be considered
good fits, we can use the proportion of participants with a fit that has a Bayes
factor of 20 or more, and with recovered parameters not on the edge of the

parameter boundaries. The proportion of participants with not good fits, for each

model, can be seen in Figure 6-17. With these two criteria combined, the difference

in performance between the e-greedy and SoftMax models disappears. The Bayes
models are the worst fitted, with almost 100% of participants rejected by our
criteria. The best good fit proportions are from the gLearn model variants that

have between 35-45% of rejected fits.
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Figure 6-16 The distribution of the values of the fit quality Bayes factor from fitting the Decks

dataset when compared to the biased random model. The dashed vertical line marks a Bayes

factor of 20. Values above 20 have strong evidence that the model can match the participant’s

actions better than the biased random model.
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compared to the biased random model.
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6.2.3  Parameter correlations

If the recovered model parameters are identifying a feature of a participant's
learning and decision-making process then we would expect that in different
models the same parameter, performing the same task, would have very similar
values. The correlations between parameters across models should therefore be
high for parameters performing the same role in different models and low
between parameters performing different roles, especially those in the same
model. In this section, the correlations of the three most common parameters are
examined: a, B and . A plot of the full comparison between model parameters can
be seen in Appendix Il. The correlations for the learning rate parameter, a, shown
in Figure 6-18, need to be broken down further, as learning rates are used for

learning various estimators.

One such group is the Q-learning class of models, with only one learning rate
parameter and without separate actor and critic components, as described in
chapters 3.2, 3.5, 0 and 4.8. Collectively, their correlations result in a Kendall's W, a
measure of collective concordance, of 0.64, which suggests some correlation, but
not a very strong one. Looking at the individual model parameter pair correlations,
shown in Figure 6-19, it can be seen that all the correlations are positive, but there
is significant variation in their strength. The correlations between the critic a
parameters, also shown in Figure 6-19, show a similar pattern, albeit with slightly

weaker correlations.

As with «, correlations could be expected for the a* and a~ parameters found in
the OpAL models and gLearn2 variants. However, as can be seen in Figure 6-20,
there are no correlations within these groups of parameters, with Kendall's W
values of around 0.15. This is surprising, given the similarity of the OpAL models
and equally surprising for the gLearn2 models. This may due to the difficulty in
teasing apart the influence of the at and a~ parameters. However, the correlations
between these parameters within each model are also not high in the case of the
glLearn2 models (0.27 for gLearn2 and 0.16 for gLearn2E) nor for the OpAL models

(values ranging from -0.03 and 0.2).
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Figure 6-18 The correlations between recovered a parameter values from the Decks task
participants. A dark blue oval pointing to the top right signifies a strong positive correlation, a white

circle no correlation and a dark red oval pointing to the top left signifies a strong negative

correlation.
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Figure 6-19 The correlations between recovered parameter values from the Decks task
participants. A dark blue oval pointing to the top right signifies a strong positive correlation, a
white circle no correlation and a dark red oval pointing to the top left signifies a strong
negative correlation. Left: The critic learning rate parameters, a, in the critic only q-learning

models Right: The critic learning rates from models with both actor and critic learning rates.
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Figure 6-20 The correlations between recovered parameter values from the Decks task
participants. A dark blue oval pointing to the top right signifies a strong positive correlation, a
white circle no correlation and a dark red oval pointing to the top left signifies a strong negative
correlation. Left: The learning rate for positive rewards Right: The learning rate for negative

rewards.
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The same analysis was performed for the B and € parameters, as shown in Figure
6-21 and Figure 6-22. The recovered € parameters have strong correlations, as
shown by the Kendall's W value across the models of 0.88. This contrasts with the
large number of weak correlations for §, with a Kendall's W of 0.27, acting as
further indications that the e-greedy function provides more consistent parameter
recovery than that of SoftMax. The only B parameters that are strongly correlated

to each other are those for the Q-learning class of models shown in Figure 6-19.

The variations in similarity between recovered parameter values could be

explained by differences in a model's capacity to accurately express the
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Figure 6-21 The correlations between recovered parameter values from the Decks task
participants. A dark blue oval pointing to the top right signifies a strong positive correlation,
a white circle no correlation and a dark red oval pointing to the top left signifies a strong
negative correlation. Left: The B parameters for the Q-learning models Right: The

parameters in all models.
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Figure 6-22 The correlations between recovered parameter values from the Decks

task participants for models with an € parameter. A dark blue oval pointing to the

top right signifies a strong positive correlation, a white circle no correlation and a

dark red oval pointing to the top left signifies a strong negative correlation.
performance of each participant, i.e. how close they are to a ‘true’ model of how a
participant is choosing their next action. Those models that express the
participant’s performance less well will have less difference between their fits of
‘sood’ and ‘bad’ parameter values, resulting in there being greater noise in their

final recovered parameters.

Another possible cause of variation in similarity is that some models are harder to
fit participant action sequences to than others, due to differences in the
complexity of their structure or the number of parameters they contain. Fitting
model parameters to data is well known to result in correlated errors between
fitted model parameters (Schmiedek, Oberauer, Wilhelm, Suss, & Wittmann, 2007).
In chapter 4, the distribution of errors in parameter recovery for the gLearn model
parameters a and B suggested that the recovery process resulted in the
parameters being inversely correlated. For this Decks task dataset, the correlation

was found to be -0.5, which matches with the previous results. By contrast, for
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gLearnkE, the correlation between o and & was found to be 0.22, which adds

evidence to e-greedy being more recoverable than the SoftMax.

From the assessment of recovered parameter correlations in this section, the
number of parameters does not seem to have a high predictive power on the
strength of correlations between parameters, as models with comparable number
of parameters, such as the Q-learning, actor critic and Bayesian inspired models do
not have similar parameter correlational strengths. However, the structure of the
model does appear to have an influence on the likelihood of having correlated
model parameter values, with the Q-learning class of models having more
consistent recovery of parameters and those with e-greedy having their €
parameter more consistently recovered than their § parameter counterparts. This
provides further evidence that epsilon greedy performs better than softmax for

consistently modelling participant actions.

6.3  MODEL PARAMETER RELATIONSHIPS TO EXTRAVERSION

Having established how successful these models are at reflecting the variations in
actions of the different participants, it was possible to examine if there were a
correlation between the recovered a parameter and a measure of the extraversion
phenotype. As established in chapter 1.1, extraversion is likely to modulate the
magnitude of the RPE. This would indicate a possible correlation could be found
between extraversion and the learning rate parameter a (Pickering & Pesola, 2014).
Pickering in unpublished analyses had shown a correlation for the first of the three
datasets between «a in the Q-learning model and the extraversion measure of EPQ-
R. It was therefore of interest to compare the extraversion measures for the
participants to the fitted parameter values for Q-learning class of models, with only
one learning rate parameter and without separate actor and critic components,
shown in Figure 6-19 (left). These are: gLearnCorr, gLearnECorr, gLearnk, qLearnF,

gLearn, td0, tdE and tdr.

In chapter 4, the model parameter recovery was shown to be noisy for a under
ideal conditions. To minimise the model recovery noise, the mean of the a values
was calculated for each participant from those recovered from the Q-learning class
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of models. A Spearman's rank correlation was performed between the mean a
value for each participant and the participant's measured extraversion value of

EPQ-R.

As in the previous section it was noted that there were, in many of the models,
correlations between model parameters from the same model, the correlations
between the recovered a parameter and the extraversion measure were also
performed with the B or € parameter variation accounted for. As the models either
had a B or € parameter, means of a were also calculated for those models with a
parameter and for those with an € parameter. Estimates of those models mean
and e parameters were also calculated for each participant. Partial correlations
were performed between the extraversion measure and each of these a

parameter estimates.

As seen in chapter 6.2.2, there was only strong evidence for some of the recovered
model parameter combinations being a better explanation of the participant
actions than those of the biased random model. Equally, in chapter 6.2.1, it was
seen that some of the recovered model parameter combinations were very close
to parameter boundaries. A subset of recovered a parameters, with both strong
evidence for a recovered model parameter combination and a lack of boundary
collisions, were used to calculate a mean a value for each participant. In the same
way, mean values of a parameter estimates were also calculated separately for
those models using softmax or e-greedy. Equally, estimates were calculated for
both the B parameter and € parameters of those models. These were then used to
calculate the partial correlations between the extraversion measure and the a

parameter estimates.

In total this resulted in six correlations between participant estimates of a and the
extraversion measure of EPQ-R, shown in Table 6-6. It is notable that all of these
show a negative correlation between a and EPQ-R extraversion and that the
correlations all become stronger when the parameter estimates were only
calculated using parameter sets that both had strong evidence and a lack of
boundary values. This correlation strengthened slightly when limited to models

using softmax and with the corresponding 8 values partialled out. This
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strengthening was seen both when using all parameter sets and when using only

the parameter sets that both had strong evidence and a lack of boundary values.

Participant model fit All Good edge & Bayes
parameters used p (DF) P o (DF) p
Q-learning models -0.091 (161)  0.251  -0.204 (123) 0.023

Q-learning models with g | -0.176 (158)  0.026 | -0.283(116) 0.002

Q-learning models with € | -0.021 (158) 0.795 | -0.150(109)  0.115
Table 6-6 The correlations between each participant’s averaged Q-learning model

parameter a and the extraversion measure of EPQ-R. The a, B and € values in these
correlations are averaged, for each participant, across the relevant subset of models.
Partial correlations were used for the B and & subsets whereas the others were

simple correlations.

6.4  DiScussioN

The Decks task tested participant’'s capacity to learn about changing payoffs. On
average, the 166 participants were found to have adequately identified both the
deck with the highest initial payoff and the need to switch decks as the task

progressed.

The models were evaluated for their performance in producing the same action
choices as those of the participants, with the baseline for their fit quality being set
as the performance of the biased random model. Models were fitted on all the

action choice trials performed by each participant.

The model fit accuracy varied by type of model, with those based on Q-learning
providing some of the best fits, notably gLearn, gLearnCorr and gLearnCorrE, and

the OpAL and Bayesian inspired models providing some of the worst.

Participant fits were found to be highly correlated between models, with some
participants consistently being well fitted and others consistently badly fitted.
Goodness of model fits was found to be inversely correlated with points won in the
task when compared to a pure random model, but not the biased random model,

which was able to explain most of this correlation. While most models provided
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strong evidence, as defined in chapter 2.2, that they explained the majority of
participant actions better than the biased random model, those participants who
performed well in the task had weaker Bayes factors. This suggests that the
models were good at representing the participants with the less successful
strategies, but not those with the most successful strategies, suggesting that there
are elements of the strategies of the most successful subjects that cannot be

encapsulated by these models.

The e-greedy parameters were recovered consistently across all models and more
consistently than the B parameter from equivalent models using SoftMax. The only
consistently recovered B parameters were those of Q-learning variants. The «
parameters were inconsistently recovered, with the critic learning rates best
recover. The strength of correlations between a parameters was found to be

related to the type of model, as had been seen with the fit quality.

The most consistent a critic learning rates were found to negatively correlate with
the extraversion measure. This could suggest that extraversion is correlated with
decreasing sensitivity to errors in expected rewards, which would result in
extraverts learning more slowly than introverts for the same RPE. If this were the
case, in probabilistic rewarding tasks, such as this one, it would suggest that
extraverts would be less sensitive to the reward variability and more able to

identify changes in average reward values, as demonstrated in Figure 5-1.

Pickering & Pesola (2014) suggested that a could correspond to the density of
some dopamine receptors controlling dopaminergic-mediated reinforcement
learning. Given the negative correlation between extraversion and a and the
positive correlation between extraversion and RPE magnitude, the impact on
learning remains unclear. As the extraversion measure did not correlate with the
points won nor the difference in the average action choices between the first and
second 40 trials, this correlation with « would not be identifiable without modelling

the participants learning process.

It is worth noting that these results reflect the performance of the models only as
implemented. There may be other implementations that would perform differently

with slight tweaks in their implementation.
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1 PROBABILISTIC SELECTION TASK

The second task used was a version of the Probabilistic Selection task, first used by
Frank, Seeberger, & O'Reilly (2004). The dataset discussed in this chapter was
collected using a version of the task taken from Frank et al. (2007). Participants are
shown a series of pairs of Hiragana characters, from the possible set of six
characters, and asked to pick which of the two is the ‘correct symbol'. The
participant was given four seconds to respond for each trial. If no response was
made, the trial was marked as not completed and the task moved on to the next
trial. In this model fitting and analysis, these incomplete trials have not been
included. Participants were given ten practice trials before starting the learning
phase with another set of two Kanji symbols, one of which was the correct choice 7
out of the ten trials. In the first part of the task, the learning trials, the six characters
were shown in three pairs, with complementary reward probabilities: {A:80%, B:
20%}, {C:70%, D: 30%}, {E:60%, F: 40%}. They were then told if they were correct.
The learning phase was broken into blocks of 60 trials, with 20 trials for each
character pair and 10 trials for each special arrangement for each character pair
(e.g. AB and BA). For each correct choice, the participant won 5 pence and their
cumulative winnings was shown after each trial. At the end of a block of trials, the

proportion of correct responses was calculated for each character pair. If the
< ?
b :

Figure 7-1 The Probabilistic Selection task. Participants are shown pairs of characters,

from a set of six, and asked to pick the correct one. Each character has a different
likelihood of being correct. During the initial learning phase, the characters are shown
three pairs, with complementary reward likelihoods, multiple times and participants
are given feedback. In the test phase, participants are presented with every

combination of pairs of characters but are not given feedback.
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participants success rate exceeded a specified threshold for one of the pairs (AB >
65% correct, CD > 60% correct and EF > 55% correct) then participants moved on to
the test phase of the task. If not, they performed another block of 60 trials, with
the character pairs presented in a different trial sequence. A maximum of six
blocks of learning phase trials could be given to a participant before moving them
on to the test phase. In the participant data examined in this chapter, participants
received no more than four blocks of learning phase trials. In the second stage of
the task, the test trials, the participants were again shown pairs of characters, but
in this case all possible combinations of the six characters were shown. The
participants were not given any feedback as to their performance. The test phase
comprised of 60 trials, with 4 examples of each of the 15 character-pair
combinations and 2 trials with each special arrangement for each character pair.
The same sequence was used for each of the participants and they continued to be
paid for each correct response, with their cumulative winnings shown to them at
the end of the task. The sequence of character pairs and the order in which
characters were shown on the screen varied quasi-randomly but was fixed across
participants. An example sequence is shown in Figure 7-2 with one block of
learning trials and the test trials. The characters used for A and B were exchanged

for half the participants to eliminate the possibility that any association was due to

their shape.
learning trials test trials

AN e N W
SSULJUR UL R T T 1 O B O 1
ORI I I N ) L A AN R N AR
Sl W W
S AR I N VWO v
SO U LR LRI 1 1 1O A 1 I

trial
Figure 7-2 The characters (cues) displayed during each trial. The ovals indicate which
cues were visible for each of the 60 learning trials and 60 test trials. The red oval
denotes the correct, rewarded, cue and the blue oval the incorrect, unrewarded, trial.

The black dotted line marks the transition from learning trials to test trials.
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1.1 DATA PROPERTIES

The dataset contains 71 participants, of which 19 were men, collected at
Goldsmiths, University of London as part of a masters project. The participant’s
ages ranged from 19 to 59 years, with a mean age of 26 years and a standard

deviation of 7.5 years. No participants had past familiarity of Hiragana characters.

Before the data collection, the intention was that all three character pair success
criteria would have to be met before participants could move on to the test phase.
Instead, due to a coding error in the task program, participants could move on to
the test phase if they met at least one of the criteria. As the criteria for the EF trials
was barely above chance (EF > 55% correct), even if participants chose at random it
was possible for them to only have one block of learning trials. Had the learning
criteria been correctly used, only 5 of the 71 participants would have had only one
block of learning trials. As it was, 56 participants had only one block of learning
trials. However, only 5 of the 15 participants who had more learning trials
improved their choices as they performed more trials. Comparing the performance
of the participants with more blocks of learning trials, there was no indication that
the extra trials resulted in an improvement in performance for AB t(31.77)= 0.21,
p=0.83, CD t(26.01)= 1.16, p= 0.25 or EF t(30.88)= 0.79, p= 0.43. It is likely that those
participants who were selected to have more blocks of learning trials performed
below average in their understanding of the task in the first trial block. The extra
blocks of learning trials may therfore have brought their understanding of the task

to the level of the other participants.

One measure of participant’s performance is to see if they changed their choice
behaviour when moving from the learning phase to the test phase, where there
was a lack of feedback and trials with new character pairings. Their character
choices for the same character pairs can be compared between the test and
learning phases, where the learning phase performance is evaluated across all
blocks of learning trials a participant performed. For all three character pairs there
was no significant change in the distributions of choice behaviour when moving
from the learning phase to the test phase t(70)= -1.78, p= 0.08 for AB, t(70)=-1.15,

p=0.25 for CD and t(70)=-0.24, p= 0.81 for EF. Looking at the proportion of
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character A, C and E choices in the test and learning phases for each participant,
shown in Figure 7-3, correlations between the two phases were found for the
characters C (r=0.31, p=0.01) and E (r=0.62, p< 0.001), but not for character A

(r=0.20, p= 0.10). Taken together, these results suggest that most participants were
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Figure 7-3 A comparison of the choices in the learning and test phases for the AB character
pair choice trials (top), the CD character pair choice trials (bottom left) and for the EF
character pair choice trials (bottom right). As in each pair the choice of one character resulted
in the other character not being chosen, so the proportions are those of the more rewarded
character in each pair, namely A, C and E. For each phase, the mean is shown as a dotted line
and the range one standard deviation from the mean is shown as a grey bar. The participant

dots are coloured to show the number of 60 trial rounds of learning they were given.
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maintaining similar character choice proportions in the two phases, but that this
became less the case the greater the difference in reward rates between the
charaters in the pair. These figures also support the conclusion that the
participants with more blocks of learning trials were not necessarily increasing

their learning performance substancially from these extra training blocks.

A common measure of participant performance in past papers has been to look at
the choices of characters A and B in the test phase new pairings (Frank et al., 2007,
2004; Simon, Howard, & Howard, 2010; Slagter, Georgopoulou, & Frank, 2015;
Sojitra et al., 2018). As character A is the most likely of all the characters to return a
reward, participants who have learnt this association would be expected to choose
character A whenever it is presented in the test phase. The converse is true for
character B. From this, choose A is calculated as the proportion of times character A
was chosen when available in the test phase and when the other option was not
character B. Equally, avoid B is calculated as the proportion of times character B

was not chosen when available and when the other option was not character A.

1.0-@ ® |
eo | o
c: eove
0.8- 1 @ °
o o o: ® o
° 0 90 e oo
D 06---2-a--t00E oo ______
e e o000 .:o ° o
o) o (e oo
> o0 X °
© 0.4 o0 : °
1 °
[
°
0.2- = 1 round .:
B 2 rounds I
3 rounds :
O.O'I 4r0‘und5 | : | | |
0.0 0.2 0.4 0.6 0.8 1.0
choose A

Figure 7-4 The relative distributions of participants performance with the measure of
choose A and avoid B. The means are shown as black dashed lines and the grey bars
around them denote one standard deviation. The colours of each point show the

number of rounds each participant was given in the learning phase.
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Participants on average chose A 52% of the time and avoided B 60% of the time
Choose A was not found to be correlated with avoid B (r=0.03, p= 0.82), as can be
seen in Figure 7-4. The number of block of learning trials did not affect participant’s
performance at learning choose A t(69)= 0.21, p= 0.83 or avoid B t(69)= -0.26, p=
0.79. Comparing participant's performance on these metrics with their EPQ-R
extraversion scores found no correlation for either choose A (r=0.18, p= 0.19) or
avoid B (r=0.01, p= 0.93). However, if a choose A outlier is removed, 2.44 standard
deviations away from the mean and with a choose A value of 0, the correlation

with extraversion greatly improves (r=0.23, p=0.056).

The participant’s success at learning in this task can be compared to past studies
with similar character reward rates, as shown in Table 7-1. Participants in this
dataset performed slightly less well than those from other studies. However, they
were given fewer learning trials than in the one study (Simon et al., 2010) that
reported the number of learning trials performed by participants. The other
published studies (Frank et al., 2007, 2004; Slagter et al., 2015) used the same
procedure as Simon et al., while the current study used a weaker set of criteria for
moving from the learning phase to the test phase. It is therefore very likely that the
3 other published studies also gave more learning phase trials than the current

study.
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Participant  Average number .
Study P & : . Choose A Avoid B
sample group of learning trials
Current students 71+ 35 0.52 +0.21 0.60 +0.18
college 139+ 22 0.80 +£0.30 0.64 +£0.60
(Simon et al., 2010)
old 169 £ 25 0.67 £ 0.55 0.71 £0.40
low sEBR 0.63+0.60 0.86 +0.30
(Slagter et al., 2015) -
high sEBR 0.69 +0.60 0.71 +0.60
T/T 0.69 + 0.05 0.78 £ 0.04
C/C, C/T 0.73+0.03 0.67 £0.03
A/A 0.76 £ 0.03 0.67 £ 0.04
(Frank et al., 2007) -
G/G, G/A 0.67 + 0.05 0.74 £ 0.04
met/met, 076 £0.06  0.74+0.06
val/met
val/val 0.71 £0.03 0.69 £ 0.03
PD on 0.79 + 0.05 0.58 +0.11
(Frank et al., 2004) PD off - 0.65 + 0.07 0.82 +£0.08
seniors 0.68 + 0.07 0.63 £ 0.07

Table 7-1 The mean participant choose A and avoid B values for each sample group in a

series of studies, including this one. When available, the average number of trials each

participant had in the learning phase is recorded.
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Another measure of participant performance has been to examine how frequently
participants in the learning phase stick with the same character choice after a
rewarded trial, called Win-stay, or switch after an unrewarded trial, called Lose-shift.
As can be seen for Win-stay in Figure 7-5 and for Lose-shift in Figure 7-6, the
participants do on average learn to ignore rewarding trials of action B and ignore
unrewarded trials of action A as the task progresses. This progression is clearest in
the AB trials and becomes steadily less clear as the difference in rewards

decreases between the pair of characters. The distributions of probabilities in
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Figure 7-5 For the first four blocks of 15 trials in the learning phase, the distribution of
participant Win-stay probabilities, i.e. the probability after receiving a reward of choosing
the same action the next time it is presented. The mean for each block is marked by a thin

blue line, one standard deviation around the mean is denoted by the pale blue bar.
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these groups of 15 trials should be taken as being noisy as the number of trials
with each character pair varied between each group of 15, as shown in Figure 7-2.
For example, in the last 15 trials, there were only two trials with the AB character
pair. As Win-stay or Lose-shift cannot be calculated for the final character pair, only
one trial was used to calculate the probabilities for those characters in the last 15

trials.

Win-stay and Lose-shift can be calculated using the first 15 trials, as was done by

Frank et al. (2007), who found that after the first 15 trials “individual negative
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Figure 7-6 For the first four blocks of 15 trials in the learning phase, the distribution of
participant Lose-shift probabilities, i.e. the probability after receiving no reward of not
choosing the same action the next time it is presented. The mean for each block is marked

by a thin blue line, one standard deviation around the mean is denoted by the pale blue bar.
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feedback experiences became less informative”. Simon et al. (2010) used the Frank

et al. study as the basis for their choice to use the first 60 trials, arguing that the

“effects of feedback from individual trials can be assessed more clearly, before

learning of the probabilities across trials has occurred”. That most of the learning

has been completed, for an average participant, within the first 60 trials can be

seen in Figure 7-5 and Figure 7-6. In Table 7-2 the Win-stay and Lose-shift values

from these two studies are reported along with aggregate values from this study,

calculated across the first 60 trials and averaging the results for all the characters.

The values we calculated are lower than those presented in the other studies.

However, it is not clear from the descriptions given in these papers if the reported

figures were averaged over all characters, over all characters that could be

expected to have the same trend, such as A, Cand E, or if these are just calculated

using character A. In all three cases the results from this study would not match

those from the other studies.

Participant Calculation . .
Study p Win-stay  Lose-shift
sample group method

Current students First block (60) 0.29+0.21 0.31+0.26
college 0.83+0.30 0.33+0.5

(Simon et al., 2010) First block (60)
old 0.75+0.20 0.36 +0.3
T/T 0.68 +0.06 0.49 +0.05
c/C, T 0.69+0.03 0.49+0.03
A/A First 5 trialsof 0.69+0.04 0.51+0.03

(Frank et al., 2007) each type, 15
G/G, G/A trials total  0-71+0.04 0.49+0.06
met/met, 0.68+0.03 0.52+0.02

val/met

val/val 0.76 £0.05 0.41 £0.05

Table 7-2 The mean participant Win-stay and Lose-shift values for each sample group in

a series of studies, including this one. The trials used to calculate these figures has also

been recorded.
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1.2 FITTING THE MODELS TO THE DATA

As the task rewards were either 0 or 1, within the models, the initial expected
reward for both choices were set to 0.5. The upper bounds for infinitely bounded
model parameters were truncated. The softmax 3 parameter was limited to 30, the
Kalman model parameters o2 and o7 were limited to 150 and the OpALS and
OpALSE saturation parameters M were set to 10 and 49 respectively. The models

were fitted to the participant's actions over both the learning and test phases.

During the fitting process, the models gLearnF, tdO, tdr and OpAL experienced
numerical overflows for certain parameter combinations, as discussed for OpAL in
chapter 3.4. The parameter combinations where there has been an overflow are
treated as worse than random fits, that have a probability of 0.5 for each action
choice. For fits with overflows, a probability of 0.4 was returned for each action
choice. If these provided a plateau of global minima, then the model could be
discarded as being a worse representation of the participant’s actions than a

purely random model.

121  Boundary recovered parameters

The crudest measure of acceptable model fits is to measure the number of them
that intersect with any of the parameter validity boundaries. In almost all cases a
boundary parameter value is equivalent to removing an element of a model,
thereby reducing it to a simpler model. To account for numerical errors in the
fitting, a boundary, or edge, fit is considered to have occurred if the parameter is
within 0.1% of either side of its range. This was chosen to be close enough to the
boundaries to be unlikely to interfere with good parameter recovery, while still

accounting for the approximate nature of numerical fitting.

The results from fitting the Probabilistic Selection dataset, in Figure 7-7, show the
proportion of participants with at least one recovered model parameter on the
edge of the parameter boundaries. Participants with boundary fits range from 1%
to 37% of the sample, with no discernible pattern linking the number of edge fits

and the type of model or number of parameters.
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Figure 7-7 The proportion of the 71 participants fitted to each model whose fits had at least

one recovered parameter within 0.1% of its boundary. The models have been grouped into

those using softmax (top) and those using epsilon-greedy (bottom,).

12.2  Goodness of model fits

A model's performance at fitting a participant’s actions can be compared using a
Bayes factor; comparing its performance to that of the random choice model, as
described in chapter 2.2. For the Probabilistic Selection task dataset, using a Bayes
factor of 20 as a criterion for strong evidence, as defined in chapter 2.2, for a
model fit, 34 of the 71 participants had strong evidence for at least one model
fitting their actions well. This can be seen in Figure 7-8, and using the normalised
Bayes factor, in Figure 7-9. As with the Decks task in chapter 6.2.2, there does
appear to be a similarity in Bayes factor value distributions within model classes,
with the OpAL models having the weakest evidence that they are better than a
purely random model, each having strong evidence for at most 17 participants.
The Bayesian inspired models have some of the strongest evidence, with BPV

having strong evidence for better
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Figure 7-8 The distribution of the values of the fit quality Bayes factor from fitting the

Probabilistic Selection dataset when compared to a pure random model. The dashed line
marks a Bayes factor of 20, above which there is strong evidence for the model. On the right

are the Group Bayes Factors for the model, defined in equation 2.9.
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Figure 7-9 The distribution of the values of the fit q;ality normalised Bayes factor from
fitting the Probabilistic Selection dataset when compared to a pure random model. Fits with
values below 1 have a Bayes factor of over 20, so have strong evidence that the model can

match the participant’s actions better than a pure random model.
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fitting 26 participants. As this task asks participants to learn a preference for some
characters over others, the randomBias model could be expected to fit participant
actions better than a pure random model. However, this does not appear to be the
case for most participants, with only 27 participant fits having a Bayes factor above
20, the most for any model. Models on average had around 15 participant fits with
a Bayes factor above 20, with six participants having strong evidence for at least 20

of the 25 models and two of the participants for all 25.

The Bayes factor values for each participant’'s model fits can be compared between
models, as shown in Figure 7-11. In this figure, identical Bayes factors for the same
participant are located along the diagonal line in each small plot. This is the case
for almost all participants when comparing, for example, the OpAL and the OpALS
models, as shown more clearly in Figure 7-10. If one model fits a participant
consistently better than another model, then the participant will be shown away
from the diagonal line. For example, the gLearn model fits have stronger evidence
than those of OpAL_H, as they are on the gLearn side of the diagonal line.
Nevertheless, they are still related, as most of the dots form a line that is parallel to
the diagonal line of equal Bayes factor. The further away a dot is from the diagonal

line, the greater the difference in the Bayes factors of the two models for that
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Figure 7-10 A selection of expanded miniplots from Figure 7-11
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Figure 7-11 A comparison between models of the Bayes factor values for each
participant when compared to a pure random model. Both the horizontal and vertical
axes of each model comparison use a log scale ranging from 107> to 108, The
horizontal and vertical lines denote a Bayes factor of 20 and the diagonal line follows
the line of equal value for both axes. The dots are coloured with the inter-model Bayes
factor, such that a Bayes factor of 20 signifies that there is strong evidence that the

vertical model fits better the participant’s actions than the horizontal model.

participant data. The horizontal and vertical lines mark a Bayes factor of 20 for the
fit of the model axis they intersect with, i.e. the vertical axis model fit values are
associated with the horizontal dashed line. Therefore, for most participants, the
Bayes factor values for the tdr model relative to a pure random model are lower
than 20, whereas the Bayes factor values of the randomBias model have a broad

range of values relative to the pure random model. This results in the dots in their

171



comparative plot not only being mostly on the randomBias side of the diagonal

line, but also beyond the vertical dashed line.

The relative difference between model fits be expressed as a between-model
Bayes value, calculated using the model fit BIC values by taking inspiration from

equations 2.4 and 2.8 in chapter 2.2, so that:

BICmodel 1=BICmodel 2
2

B=2
These are shown in Figure 7-11 by the colour of each participant’s dot, with the
vertical model as model 2 and the horizontal model as model 1. Therefore, the
participant dots with a Bayes factor of 20 or higher, coloured blue, have strong
evidence that the vertical model is a better fit for the participant’s actions than the
horizontal model. Conversely, with a Bayes factor of 1/20 or lower, coloured red,
there is strong evidence that the horizontal axis model is a better fit for the
participant’s actions than the vertical axis model. The median values for each inter-
model comparison are shown in Figure 7-12. This highlights the poor performance
of the OpAL models, especially OpAL_H and OpAL_HE, and glLearnK to fit
participant data on this task. BPV can be seen to perform better than all the other
models, with BP performing better than or equal to the remaining models. There
are occasions where Figure 7-12 can be misleading, such as when it suggests that
there is somewhat strong evidence for gLearnECorr to fit the participants better
than OpAL_H, with a median inter-model Bayes factor of 113, whereas Figure 7-11
shows that there is strong evidence that qLearnECorr and OpAL_H each fit
different participants well. Equally randomBias has strong evidence for fitting
some participants better than BP or BPV, but for other participants, the opposite is

true. These are shown in a larger form in Figure 7-13.

Another approach to comparing the model’s performance is to examine the
expectation of the model frequencies, EF, as discussed in chapter 2.4. This assess
the relative frequencies with which two models could have generated participant
data in the dataset. The probability that this relative frequency is above chance is
estimated using the protected exceedance probability (Rigoux et al., 2014). Both
the expectation of the model frequencies and the related protected exceedance
probability were calculated using the VBA toolbox (Daunizeau et al., 2014). This
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used as inputs the BIC values calculated for each model’s fit to each participant’s
task action sequence. These comparisons can be seen in Figure 7-14. This
reinforces our previous conclusion that the BPV model has the strongest evidence,

but also marks glLearn as being more successful than was previously apparent.
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Figure 7-12 The median inter-model Bayes values for the Probabilistic Selection dataset
participant fits. High values signify that the model on the vertical axis had a lower BIC

value, and so a better match of the participant’s actions, than the horizontal axis model.
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Figure 7-13 A selection of expanded miniplots from Figure 7-11

Comparing the test phase participant action choice measure, choose A and avoid B
with the Bayes factors of model fits relative to a pure random model, no significant
correlations were found with avoid B after Bonferroni correcting. However, many
were found with choose A, show in Figure 7-15. This suggests that there are strong
correlations between the participant's understanding of the information given to
them during the task, measured through choose A, and the capacity of models to
fit a participant’s actions better than the pure random model. This, in spite of both
poor participant performance at the task and poor model fits, indicates that
participant actions can, to some degree, be captured by these models when the

participant is learning during the task.

Similar correlations were performed between the model fit Bayes factors and
extraversion, but no correlations were found, even when ignoring any Bonferroni

corrections.

When removing all the edge fits found in chapter 7.2.1, the distributions of fit
qualities do not change significantly, suggesting that model fits that result in
parameters recovered at a boundary do not have particularly higher or lower fit

quality values than others.
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Bonferroni corrected Spearman’s rank correlation with a p <0.05

To provide an estimate of the number of participant fits that may be considered to
have good fits, we can use the proportion of participants with a fit that has a Bayes
factor of 20 or more, and with recovered parameters not on the edge of the
parameter boundaries. The proportion of participants with not good fits, for each
model, can be seen in Figure 7-16. While all of these models had less than half of
their participants with good fits, the best performing models are randomBias and
BPV, which contrasts with the Decks task, where the BP models performed the

worst.
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within 0.1% of its boundary and the Bayes factor of the fit was below 20 when

compared to the pure random model.

12.3  Parameter correlations

If the recovered model parameters are identifying a feature of a participant's
learning and decision-making process then we would expect that in different
models the same parameter, performing the same task, would have very similar
values. The correlations between parameters across models should therefore be
high for parameters performing the same role in different models and low
between parameters performing different roles, especially those in the same
model. In this section, the correlations of the three most common parameters are
examined: a, B and . A plot of the full comparison between model parameters can
be seen in Appendix Il. The correlations for the learning rate parameter, a, shown
in Figure 7-17, need to be broken down further, as learning rates are used for
learning various estimators. Contrasting these with those in the Decks task, Figure

6-18, the correlations are overall weaker.
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One subgroup of a parameters is those of the Q-learning class of models, with only
one learning rate parameter and without separate actor and critic components, as
described in chapters 3.2, 3.5, 0 and 4.8. Collectively, their correlations result in a
Kendall's W, a measure of collective concordance of 0.31, which suggests a weak
correlation, half the strength of that found in the Decks task, 0.642 (Figure 6-19).
Looking at the individual model parameter pair correlations, shown in Figure 7-18,
it can be seen that the correlations are mostly positive, with some weakly negative
correlations. However, the strong correlations are all positive. The correlations
between the critic « parameters, also shown in Figure 7-18, show a similar pattern,

albeit with more strong correlations.

As with «, correlations could be expected for the a* and a~ parameters found in
the OpAL models and glLearn2 variants. However, as can be seen in Figure 7-19,
there are no correlations within these groups parameters, with Kendall's W values
of 0.20 for the a* and 0.16 for the a~. This is surprising, given the similarity of the
OpAL models and equally surprising for the gLearn2 models. However, it is notable
that the same strong correlations have been found between the OpAL and OpALS
a and o~ in both this task dataset and that of the Decks task. Once again, the
correlations between these parameters within each model are also quite low in the
case of the gLearn2 models (0.07 for gLearn2 and 0.03 for gLearn2E) and for the
OpAL models (values ranging from -0.2 and 0.1), suggesting that these weak
correlations are not due to the difficulty in teasing apart the influence of the o*

and o~ parameters.
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Figure 7-17 The correlations between recovered a parameter values from the Probabilistic
stimulus task participants. A dark blue oval pointing to the top right signifies a strong

positive correlation, a white circle no correlation and a dark red oval pointing to the top

left signifies a strong negative correlation.
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Figure 7-18 The correlations between recovered parameter values from the Probabilistic stimulus
task participants. A dark blue oval pointing to the top right signifies a strong positive correlation,
a white circle no correlation and a dark red oval pointing to the top left signifies a strong
negative correlation. Left: The critic learning rate parameters, a, in the critic only q-learning

models Right: The critic learning rates from models with both actor and critic learning rates.
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Figure 7-19 The correlations between recovered parameter values from the Probabilistic
stimulus task participants. A dark blue oval pointing to the top right signifies a strong positive
correlation, a white circle no correlation and a dark red oval pointing to the top left signifies a

strong negative correlation. Left: The learning rate for positive rewards Right: The learning

rate for negative rewards.
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The same analysis was performed for the B and € parameters, as shown in Figure
7-20 and Figure 7-21. The recovered € parameters have strong correlations, as
shown by the Kendall's W value across the models of 0.78. This contrasts with the
large number of weak correlations for §, with a Kendall's W of 0.33, acting as
further indications that the e-greedy function provides more consistent parameter
recovery than that of SoftMax. The only B parameters that are strongly correlated
to each other are those for the Q-learning class of models shown in Figure 7-20,
with a combined Kendall's W of 0.61, dragged down by the consistently weak

correlations of the B parameter in tdr with the other model B parameters.
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Figure 7-20 The correlations between recovered parameter values from the Probabilistic
stimulus task participants. A dark blue oval pointing to the top right signifies a strong
positive correlation, a white circle no correlation and a dark red oval pointing to the top
left signifies a strong negative correlation. Top right: The B parameters for the Q-learning

models Bottom left: The B parameters in all models.
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Figure 7-21 The correlations between recovered parameter values from the Probabilistic
stimulus task participants for models with an € parameter. A dark blue oval pointing to
the top right signifies a strong positive correlation, a white circle no correlation and a
dark red oval pointing to the top left signifies a strong negative correlation.
The weakness in correlations between parameters that perform essentially the
same function in different models might be explained by differences in the
capacity of each model to match the performance of each participant. A model
that struggles to explain the actions of most participants will have less difference
between fit quality measure of different parameter combinations, resulting in

more noise in the final fits.

Another potential source of noise may stem from differences in model
complexities resulting in varying difficulties in fitting models. Models with more
parameters or more layers, i.e. more degrees of freedom, will require more
information to fit as accurately as simpler models. This could explain the poor
performance of the OpAL and gLearnK models that have the most parameters. It
could also explain the surprisingly poor performance of the biased random model,
relative to the pure random model, as for this task the biased random model had

six parameters, one for each character.

One confounding factor in describing a models degrees of freedom is that

recovered model parameters are known to be correlated (Schmiedek et al., 2007).

182



In chapter 4, the distribution of errors in parameter recovery for the gLearn model
parameters a and B suggested that the recovery process resulted in the
parameters being inversely correlated. For this task dataset, the correlation was
found to be -0.42, matching previous results. By contrast, for gLearnE, the
correlation between a and € was found to be 0.22, which adds evidence to e-greedy
being more recoverable than the SoftMax parameter B. However, models with
large numbers of parameters. Such as randomBias, shown in Figure 7-22, do not
show strong correlations between any of the parameters, suggesting that these
correlations have the potential to be more pronounced in models with only two or

three parameters.
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Figure 7-22 The correlations between recovered parameter values from the Probabilistic
stimulus task participants for the model randomBias. A dark blue oval pointing to the
top right signifies a strong positive correlation, a white circle no correlation and a dark

red oval pointing to the top left signifies a strong negative correlation.
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1.3 MODEL PARAMETER RELATIONSHIPS TO EXTRAVERSION

Having found correlations between model fits and choose A, but not between
model fits and extraversion, an examination was made of a possible relationship
between the recovered a parameter and a measure of the extraversion
phenotype. Such a correlation was found with the Decks task datasets, in chapter
6.3. As the extraversion measure of EPQ-R was also recorded for this dataset, the
same analysis could be performed here as had been for the Decks dataset,
comparing the extraversion measures for the participants to the fitted parameter
values for Q-learning class of models, with only one learning rate parameter and
without separate actor and critic components, shown in Figure 7-18 (left). These
are: gLearnCorr, gLearnECorr, gLearnE, gLearnF, gLearn, td0, tdE and tdr. The
mean of the a values was calculated for each participant from those recovered
from the Q-learning class of models. A Spearman's rank correlation was performed
between the mean a value for each participant and the participant’'s measured

extraversion value of EPQ-R.

To remove some of the noise from this correlation, those fits that did not have
strong evidence of being better than a pure random model or who had one or
more parameter close to their parameter boundaries were removed before

calculating the mean a values for each participant.

To reduce the potential of any intra-model correlations between a and B or
affecting the correlations, separate means were also calculated for the subset of
models with a B parameter and for those with an e parameter. This split is
especially important as the correlations between a and 8, and a and € are in the
opposite directions, negative for a and g and positive for a and e. Estimates of
those models mean B and € parameters were also calculated for each participant.
Partial correlations were performed between the extraversion measure and each

of these a parameter estimates.

In total this resulted in six correlations between participant estimates of a and the
extraversion measure of EPQ-R, shown in Table 7-3. These show a negative

correlation between a and extraversion for the well recovered « values and
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positive correlations when all recovered values are used. The a values calculated
from models with g and only good model fits was the only one to have a significant

Bonferroni-corrected correlation, as was the case for the Decks task dataset.

Participant model fit All Good edge & Bayes
parameters used p (DF) p p (DF) p
Q-learning models 0.071 (71) 0.558 -0.060 (24) 0.781

Q-learning models with g | 0.143 (68) 0.237 | -0.703(18)  0.001
Q-learning models with € | 0.024 (68) 0.845 -0.145 (14) 0.592

Table 7-3 The correlations between each participant’s averaged Q-learning model
parameter a and the extraversion measure of EPQ-R. The a, B and € values in these
correlations are averaged, for each participant, across the relevant subset of models.
The B and € subset correlations were partial correlations whereas the others

were simple correlations.

1.4 DiSCUsSION

The Probabilistic Selection task tests participant’s capacity to apply an
understanding of reward likelihoods from pairs of characters to novel pairs of
those characters. The 71 students were found to have not been given sufficient
trials to fully learn the reward likelihoods in the initial pairings before being shown
the new pairings. This can be seen in participant's weaker performance at choose
A and avoid B than in published studies with this task, where participants
performed more learning phase trials. Extraversion, as measured by the EPQ-R,

was not found to correlate with choose A, avoid B.

The models were evaluated for their performance in producing the same action
choices as those of the participants, with the baseline for their fit quality being set
as the performance of the pure random model. The model fits were performed on
all the action choice trials performed in the learning and test phases by each
participant. None of the models provided significantly better fits for all the

participants than the pure random model. The model fit accuracy varied by type of
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model, with the randomBias and Bayesian inspired models providing some of the

best fits, notably BPV. The OpAL models provided the worst fits.

Correlations were found for most models between fit quality and choose A,
suggesting that were the participants to be given more trials, which would be
expected to improve choose A performance, it is likely that many of these models

would fit the participant’s actions better than the pure random model.

a parameters were inconsistently recovered with most being weakly correlated.
The e-greedy parameters were found to be recovered quite consistently across all
the models and much more consistently than the § parameter from equivalent
models using softmax. The strength of correlations between 3 parameters was
found to be related to the type of model. The most consistently recovered B

parameters were those of the Bayesian and Q-learning variants.

A strong correlation was found for the participants who were well fitted by at least
one Q-learning model using softmax and their EPQ-R extraversion measure.
Although this correlation was with a very small sample of participants, N=18, this
was the same correlation and direction as was found in the larger sample of
participants with the Decks task, N=116, further suggesting that this correlation

between a and extraversion might be a real effect.

It is worth noting that these results reflect the performance of the models only as
implemented. There may be other implementations of the same models that
perform better or worse with slight tweaks to their implementation, to their

starting parameter values or their parameter upper bounds.
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8 WEATHER TASK

The Weather task is a category learning task based on one described by Gluck &
Bower (1988) and later adapted by Knowlton, Squire, & Gluck (1994). It asks
participants to associate a series of cues with one of two outcomes. One to three
cue cards, from a set of four cards, are presented to the participant in each trial.
The participant must decide which one of the two possible outcomes the displayed
cards are most likely associated with. Once the participant decides, they are then
told if they were correct or not. The cues each have a probabilistic relationship
with the two outcomes, with this this version of the task having novel probabilistic
relationship, with the probability of an outcome varying depending on the
combination of cues displayed, as described in Table 8-1. For example, if the first
two cues are displayed, then the first outcome is guaranteed. If only one of them is
displayed, then the first outcome will be the correct one 75% of the time. Across
the whole task, the first two cues having a 64% chance of being associated with the

first outcome and the second two having the inverse.

In the first phase of the task, the learning phase, participants are given feedback on
if their choice was correct. In the second phase, the testing phase, participants are
not given any feedback. The sequence of cues and the outcomes were fixed
beforehand and are shown in Figure 8-2. The learning phase contains four
examples of each of 14 possible cue pairs, totalling 56 trials. The test phase

contains one example of each of the 14 possible cue pairs.

Figure 8-1 The Weather task consists of a series of trials where one to three cue cards,
from a set of four cards, are presented to the participant. The participant must decide

which of the two outcomes the cues are more likely to predict.
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Most likely outcome for each  Probability of most
Cue group type
active cue combination likely outcome

. 1100 -> action 1
Same pair 1
0011 -> action 2
1000 -> action 1
. 0100 -> action 1
Single 0.75
0010 -> action?2
0001 -> action?2
1110 -> action 1
. 1101 -> action 1
Triple cues 0.75
1011 -> action 2
0111 -> action 2
1010 -> either action
. . 1001 -> either action
Opposing pair 0.5
0110 -> either action
0101 -> either action

Table 8-1 The probabilities of most likely outcome for each possible combination of

cues. These are grouped by type of combination.

The cues and outcomes were presented in two different forms: in its traditional
form as a Weather prediction task, shown in Figure 8-1, and as a disease prediction
task. The Weather prediction task used abstract symbol cards for the prediction of
sunshine and rain. The disease predict