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—— Abstract

Given a string T of length n over an alphabet ¥ C {1,2,..., no(l)} of size o, we are to preprocess
T so that given a range [4,j], we can return a representation of a shortest string over X that is
absent in the fragment T'[i] - - - T[j] of T. For any positive integer k € [1,loglog, n], we present an
O((n/k) - loglog, n)-size data structure, which can be constructed in O(nlog, n) time, and answers
queries in time O(loglog, k).
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1 Introduction

Range queries are a classic data structure topic [63, 13, 12]. In 1d, a range query ¢ =
f(A,i,7) on an array of n elements over some set U, denoted by A[l..n], takes two indices
1 <4 <j <n,afunction f defined over arrays of elements of U, and outputs f(A[i..j]) =
f(A[i], ..., Alj]). Range query data structures in 1d can thus be viewed as data structures
answering queries on a string in the internal setting, where U is the considered alphabet.

Asking internal queries on a string has received much attention in recent years. In the
internal setting, we are asked to preprocess a string T of length n over an alphabet 3 of
size o, so that queries about substrings of T' can be answered efficiently. Note that an
arbitrary substring of T' can be encoded in O(1) words of space by the indices i, j of an
occurrence of it as a fragment T[i]---T[j] = T[i..j] of T. Data structures for answering
internal queries are interesting in their own sake, but also have numerous applications in
the design of algorithms and (more sophisticated) data structures in stringology. Because
of these numerous applications, we usually place particular emphasis on the construction
time — other than on space/query-time tradeoffs, which is the main focus in the classic data
structure literature.

The most widely-used internal query is that of asking for the longest common prefix
of two suffixes T[i..n] and T[j..n] of T. The classic data structure for this problem [48]
consists of the suffix tree of T' [25] and a lowest common ancestor data structure [37] over the
suffix tree. It occupies O(n) space, it can be constructed in O(n) time, and it answers queries
in O(1) time. In the word RAM model of computation with word size ©(logn) bits the
construction time is not necessarily optimal. A sequence of works [61, 52, 14] has culminated
in the recent optimal data structure of Kempa and Kociumaka [40]: it occupies O(n/log, n)
space, it can be constructed in O(n/log, n) time, and it answers queries in O(1) time.
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Another fundamental problem in this setting is the internal pattern matching (IPM)
problem. It consists in preprocessing 1" so that we can efficiently compute the occurrences of
a substring U of T" in another substring V' of T'. For the decision version of the IPM problem,
Keller et al. [39] presented a data structure of nearly-linear size supporting sublogarithmic-
time queries. Kociumaka et al. [45] presented a data structure of linear size supporting
constant-time queries when the ratio between the lengths of V' and U is bounded by a constant.
The O(n)-time construction algorithm of the latter data structure was derandomised in [42].
In fact, Kociumaka et al. [45], using their efficient IPM queries as a subroutine, managed to
show efficient solutions for other internal problems, such as for computing the periods of a
substring (period queries, introduced in [44]), and for checking whether two substrings are
rotations of one another (cyclic equivalence queries). Other problems that have been studied
in the internal setting include string alignment [62, 18], approximate pattern matching [21],
dictionary matching [20, 19], longest common substring [4], counting palindromes [59], range
longest common prefix [3, 1, 49, 34], the computation of the lexicographically minimal
or maximal suffix, and minimal rotation [7, 41], as well as of the lexicographically kth
suffix [8]. We refer the interested reader to the Ph.D dissertation of Kociumaka [42], for a
nice exposition.

In this work, we extend this line of research by investigating the following basic internal
query, which, to the best of our knowledge, has not been studied previously. Given a string T’
of length n over an alphabet ¥ C {1,2,...,n%M}, preprocess T so that given a range [i, j],
we can return a shortest string over ¥ that does not occur in Ti..j]. The latter shortest
string is also known as a shortest absent word in the literature. We work on the standard
unit-cost word RAM model with machine word-size w = O(logn) bits. We measure the
space used by our algorithms and data structures in machine words, unless stated otherwise.
We assume that we have random access to 1" and so our algorithms return a constant-space
representation of a shortest string (a witness) consisting of a substring of T" and a letter. A
naive solution for this problem precomputes a table of size O(n?) that stores the answer for
every possible query [z, j]. Our main result is the following.

» Theorem 1. Given a string T of length n over an alphabet ¥ C {1,2,...,n°M} of
size o, for any positive integer k € [1,loglog, n|, we can construct a data structure of size
O((n/k) -loglog, n), in O(nlog, n) time, so that if query [a,b] is given, we can compute a
shortest string over 3 that does not occur in T'[a..b] in O(loglog, k) time.

By setting £ = 1 we get an O(nloglog, n)-size data structure with O(1) query time.

In the related range shortest unique substring problem, defined by Abedin et al. [2], the task
is to construct a data structure over 7' to be able to answer the following type of online queries
efficiently. Given a range [i, j], return a shortest string with exactly one occurrence (starting
position) in [¢,j]. Abedin et al. presented a data structure of size O(nlogn) supporting
O(log,, n)-time queries, where w = O(logn) is the word size. Additionally, Abedin et al. [2]
presented a data structure of size O(n) supporting O(y/nlog® n)-time queries, where € is an
arbitrarily small positive constant.

Our Techniques

For clarity of exposition, in this overview, we skip the time-efficient construction algorithms
of our data structures and only describe how to compute the length of a shortest absent word
(without a witness) in T[a .. b]; note that this length is at most log, n. Let us also note that
the length of a shortest absent word of T' can be computed in O(n) time using the suffix
tree of T' [25]. It suffices to traverse the suffix tree of T' recording the shortest string-depth ¢,
where an implicit or explicit node has less than o outgoing edges.
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First approach: We precompute, for each position ¢ and for each length j € [1,log, n],
the ending position of the shortest prefix of T'[i..n] that contains an occurrence of each of
the o7 distinct words of length j. Then, a query for the length of a shortest absent word of
Tla..b] reduces to a predecessor query among the ending positions we have precomputed for
position a. By maintaining these O(log, n) ending positions in a fusion tree [32], we obtain
a data structure of size O(nlog, n) supporting queries in O(log,, logn) = O(1) time.

Second approach: We precompute, for each length j € [1,log, n], all minimal fragments of
T that contain an occurrence of each of the distinct o7 words of length j. As these fragments
are inclusion-free, we can encode them using two n-bit arrays storing their starting and
ending positions in 7', respectively. We thus require O(n) words of space in total over all js.
Observe that T'[a..b] does not have an absent word of length j if and only if it contains a
minimal fragment for length j; we can check this condition in O(1) time after augmenting
the computed bit arrays with succinet rank and select data structures [38]. Finally, due to
monotonicity (if T'[a..b] contains all strings of length j + 1 then T contains all strings of
length j), we can binary search for the answer in O(loglog, n) time.

Third approach: We rely on the following combinatorial observation: if the length of a
shortest absent word of a string X over ¥ is A, we need to prepend Q(c?! - \) letters to X
in order to obtain a string with a shortest absent word of length A + d. (For intuition, think
of | X| as a constant; then, we essentially need to prepend the de Bruijn sequence of order d
over ¥ to X in order to achieve the desired result.) This observation allows us to sparsify
the information we stored in our first approach: for each length j € [1,log, n], we use the
value (previously) stored for some position i for an interval of positions. We then maintain
a dynamic fusion tree over the stored values, which are now o(nlog, n) in total, and make
it persistent so that we can later query any version of it. As we will show, in the end we
get the correct answer up to a small additive error, which we then eliminate by utilising the
data structure developed in our second approach.

Let us remark that our partially persistent fusion trees allow us to obtain an alternative
time-optimal data structure for the weighted ancestors problem [26] when the input tree
of size n is of depth polylogarithmic in n. Such a data structure can be also easily derived
from [47, 36].

Other Related Work

Let us recall that a string S that does not occur in T is called absent from T', and if all its proper
substrings appear in 7' it is called a minimal absent word of T. It should be clear that every
shortest absent word is also a minimal absent word. Minimal absent words (MAWSs) are used
in many applications [60, 56, 29, 35, 15, 54, 24] and their theory is well developed [51, 28, 30],

also from an algorithmic and data structure point of view [50, 22, 9, 17, 16, 6, 33, 10, 23].

For example, it is well known that, given two strings X and Y, one has X =Y if and only if
X and Y have the same set of MAWs [51].

Paper Organization

Section 2 provides some preliminaries. The first approach is detailed in Section 3 and the
second one in Section 4. Section 5 provides the combinatorial foundations for the third
approach, which is detailed in Section 6.
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2 Preliminaries

An alphabet ¥ is a finite nonempty set whose elements are called letters. A string (or word)
S = S[1..n] is a sequence of length |S| = n over ¥.. The empty string ¢ is the string of
length 0. The concatenation of two strings S and T is the string composed of the letters
of S followed by the letters of T. It is denoted by S - T or simply by ST. The set of all
strings (including €) over ¥ is denoted by ¥*. The set of all strings of length k > 0 over ¥ is
denoted by ¥*. For 1 <i < j < n, S[i] denotes the ith letter of S, and the fragment S[i .. j]
denotes an occurrence of the underlying substring P = S[i] - -- S[j]. We say that P occurs at
(starting) position ¢ in S. P is called absent from S if it does not occur in S. A substring
S[i..j] is a suffix of S if j = n and it is a prefix of S if i = 1.
The following proposition is straightforward (as explained in Section 1).

» Proposition 2. Let T be a string of length n. A shortest absent word of T' can be computed
in O(n) time.

Given an array A of n items taken from a totally ordered set, the range minimum query
RMQu (¢4, 7) = argmin A[k] (with 1 < £ < k < r < n) returns the position of the minimal
element in A[¢..r]. The following result is known.

» Theorem 3 ([12]). Let A be an array of n integers. A data structure of size O(n) can be
constructed in O(n) time supporting RMQs on A in O(1) time.

We make use of rank and select data structures constructed over bit vectors. For a bit
vector H we define rank, (i, H) = |{k € [1,4] : H[k] = ¢}| and select,(i, H) = min{k € [1,n] :
rank,(k, H) = i}, for ¢ € {0,1}. The following result is known.

» Theorem 4 ([38, 53]). Let H be a bit vector of n bits. A data structure of o(n) additional
bits can be constructed in O(n) time supporting rank and select queries on H in O(1) time.

The static predecessor problem consists in preprocessing a set Y of integers, over an
ordered universe U, so that, for any integer € U one can efficiently return the predecessor
pred(z) := max{y € Y : y < z} of z in Y. The successor problem is defined analogously:
upon a queried integer x € U, the successor min{y € Y : y > z} of z in Y is to be returned.
Willard and Fredman designed the fusion tree data structure for this problem [32]. In the
dynamic variant of the problem, updates to Y are interleaved with predecessor and successor
queries. Patragcu and Thorup [57] presented a dynamic version of fusion trees, which, in
particular yields an efficient construction of this data structure.

» Theorem 5 ([32, 57]). Let Y be a set of at most n w-bit integers. A data structure of size
O(n) can be constructed in O(nlog,, n) time supporting insertions, deletions, and predecessor
queries on' Y in O(log,, n) time.

If |[U| = O(n), then, after an O(n)-time preprocessing, we can answer predecessor queries
in O(1) time. For each y € Y, we set the yth bit of an initially all-zeros |U|-size bit vector.
We then preprocess this bit vector as in Theorem 4. Then, a predecessor query for any
integer z can be answered in O(1) time due to the following readily verifiable formula:
pred(z) = select; (rank; (x)).

The main problem considered in this paper is formally defined as follows.

INTERNAL SHORTEST ABSENT WORD (ISAW)
Input: A string 7' of length n over an alphabet ¥ C {1,2,...,2°M} of size 0 > 1.
Output: Given integers a and b, with 1 < a < b < n, output a shortest string in >*

with no occurrence in T'[a .. b].
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If a = b then the answer is trivial. So, in what follows we assume that a < b. Let us
also remark that the output (shortest absent word) can be represented in O(1) space using:
either a range [i,7] C [1,n] and a letter a of X, such that the shortest string in ¥* with
no occurrence in T'[a..b] is T[i .. jla; or simply a range [i,j] C [1,n] such that the shortest
string in ¥* with no occurrence in T[a..b] is T[i .. j].

» Example 6. Given the string T = abaabaaabbabbbaaab and the range [a,b] = [8,14]
(shown in red), the only shortest absent word of T'[8..14] is T'[i..j] = T[7..8] = aa.

3 O(nlog,n) Space and O(1) Query Time

Let T be a string of length n. We define St (5) as the function counting the cardinality of the
set of length-j substrings of T'. This is known as the substring complexity function [27, 58].
Note that Sr(j) < n, for all j. We have the following simple fact.

» Fact 7. The length ¢ of a shortest absent word of a string T of length n over an alphabet
of size o is equal to the smallest j for which St(j) < o/ and hence £ € [1, |log, n]].

We denote the set of shortest absent words of T' by SAW . Recall that, by Proposition 2,
a shortest absent word of T' can be computed in O(n) time. We denote the length of the
shortest absent words of T by ¢. By Fact 7, ¢ < |log, n|. Since ¢ is an upper bound on the
length of the answer for any ISAW query on T', in what follows, we consider only lengths in
[1,¢ —1]. Let one such length be denoted by j. By constructing and traversing the suffix tree
of T, we can assign to each T'[i..i + j — 1] its lexicographic rank in ¥7. The time required
for each length j is O(n), since the suffix tree of T' can be constructed within this time [25].
Thus, the total time for all lengths j € [1,¢ — 1] is O(nlog, n) by Fact 7.

We design the following warm-up solution to the ISAW problem. For all j € [1,¢ — 1]
we store an array RNK; of n integers such that RNK;[i] is equal to the lexicographic rank
of T[i..i+j— 1] in ¥/. Then, given a range [a,b], in order to check if there is an absent
word of length j in T[a..b] we only need to compute the number of distinct elements in
RNK;la..b— j+1]. It is folklore that using a persistent segment tree, we can preprocess an
array A of n integers in O(nlogn) time so that upon a range query [a, b] we can return the
number of distinct elements in Afa..b] in O(logn) time. Thus, we could use this tool as a
black box for every array RNK; resulting, however, in Q(logn)-time queries. We improve
upon this solution as follows.

We employ a range minimum query (RMQ) data structure [12] over a slight modification
of RNK;. For each j, we have an auxiliary procedure checking whether all strings from 7
occur in Tfa..b] or not (i.e., it suffices to check whether any lexicographic rank is absent
from the corresponding range). Similar to the previous solution, we rank the elements of
Y7 by their lexicographic order. We append RNK; with all integers in [1,07]. Let this array
be APP;. By Fact 7, we have that |APP;| < 2n. Then, we construct an array PRE; of size
|APP;|: PRE;[i] stores the position of the rightmost occurrence of APP;[i] in APP;[1..3— 1]
(or 0 if such an occurrence does not exist). This can be done in O(n) time per j by sorting
the list of pairs (T[i..i 4+ j — 1],4), for all 4, using the suffix tree of T' to assign ranks for
T[i..i+ j — 1] and then radix sort to sort the list of pairs.

We now rely on the following fact.

» Fact 8. Sy, 4(j) = o7 if and only if min{ PRE;[i] : i € [b— j + 2, |PRE;|]} > a.
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the Ininimunm

Rel [ [ [ [T [T T T PTpIT T[]

ranks appended
to RNK

Figure 1 Illustration of the setting in Fact 8.

Proof. If the smallest element in PRE;[b—j+2..|PRE;|], say PRE;[k], is such that PRE;[k] >
a, then all ranks of elements in ¥/ occur in APP;[a..b— j + 1]. This is because all elements
(ranks) in ¥/ occur at least once after b — j + 2 (due to appending all integers in [1,07] to
RNK;), thus all must have a representative occurrence after b — j + 2. Inspect Figure 1 for
an illustration. (The opposite direction is analogous.) |

The following two examples illustrate the construction of arrays RNK;, APP;, and PRE;
as well as Fact 8.

» Example 9 (Construction). Let T' = abaabaaabbabbbaaab and ¥ = {a,b}. The set SAWp
of shortest absent words of T' over X, each of length ¢ = 4, is {aaaa, abab, baba, bbbb}.
Arrays RNK;, APP;, and PRE;, for all j € [1,£ — 1], are as follows: For instance, RNK[15] =

7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
T a b a a b a a a b b a b b b a a a b

RNK; |2 2 1 1 2 1 1 1 2 2 1 2 2 2 1 1 1 2

APP; 1 2 1 1 2 1 1 1 2 2 1 2 2 2 1 1 1 2 1 2

PRE; o o0 1 3 2 4 6 7 5 9 8 10 12 13 11 15 16 14 17 18

RNK: [ 2 3 1 2 3 1 1 2 4 3 2 4 4 3 1 1 2

APP, 2 3 1 2 3 1 1 2 4 3 2 4 4 3 1 1 2 1 2 3 4

PRE2 o 0 o 1 2 3 6 4 0 5 8 9 12 10 7 15 11 16 17 14 13

RNK; | 3 5 2 3 5 i1 2 4 7 6 4 8 7 5 1

APP;3 3 5 2 3 5 1 2 4 7 6 4 8 7 5 1 1 2 3 4 5 6 7 8
PRE3 o o o0 1 2 0 3 0O O O 8 O 9 5 &6 15 16 4 11 14 10 13 12

APP3[15] = 1 denotes that the lexicographic rank of aa in %2 is 1; and PRE3[15] = 7 denotes
that the previous rightmost occurrence of aa is at position 7.

» Example 10 (Fact 8). Let [a,b] = [7,11] and j = 2 (see Example 9). The smallest element in
{PRE;3[11],...,PRE3[21]} is PRE3[15] = 7 > a = 7, which corresponds to rank APP5[15] = 1.
Indeed all other ranks 2, 3,4 have at least one occurrence within APP5[7..11] =1,2,4,3,2.

To apply Fact 8, we construct an RMQ data structure over PRE;. By Theorem 3 it takes
O(n) time and space and answers RMQs in O(1) time. This results in O(nf) = O(nlog, n)
preprocessing time and space for all j.

For querying, let us observe that o7 — S7la. 4)(j), for any T,a,b and increasing j, is
non-decreasing. We can thus apply binary search on j to find the smallest length j such
that Stja. 4(j) < 07. This results in O(logl) = O(loglog, n) query time. We obtain the
following proposition (retrieving a witness shortest absent word is detailed later).

» Proposition 11. Given a string T of length n over an alphabet ¥ C {1,2,... ,no(l)} of
size o, we can construct a data structure of size O(nlog, n) in O(nlog, n) time, so that if
query [a, b] is given, we can compute a shortest string over ¥ that does not occur in T|a . . b
in O(loglog, n) time.
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We further improve the query time via employing fusion trees as follows. We create a 2d
array FTR[1..¢ — 1][1..n] of integers, where

FTR[j][¢] = min{PRE;[i — j + 2],..., PRE;[|PRE;|]},

for all j € [1,£— 1] and i € [1,n]. Intuitively, FTR[j][¢] is the rightmost index of T such that
T[FTR[j][¢] .. 4] contains all strings of length j over X.

Array FTR can be constructed in O(nf) = O(nlog, n) time by scanning each array
PRE; from right to left maintaining the minimum. Within the same complexities we also
maintain satellite information specifying the index k € [i — j + 2, |PRE;|] where the range
minimum FTR[j][{] came from in the sub-array PRE;[i — j +2..|PRE;|]. We then construct
n fusion trees, one for every collection of ¢ — 1 integers in FTR[1..¢ — 1][¢]. This takes total
preprocessing time and space O(nf) = O(nlog, n) by Theorem 5. Given the range query
[a,b], we need to find the smallest j € [1,¢ — 1] such that FTR[j][b] < a. By Theorem 5, we
find where the predecessor of a lies in FTR[1..¢ — 1][8] in O(log,, £) time, where w is the
word size; this time cost is O(1) since w = O(logn).

We finally retrieve a witness shortest absent word as follows. If there is no j < ¢ such
that FTR[j][b] < a, then we output any shortest absent word of length ¢ of T arbitrarily. If
such a j < £ exists, by the definition of FTR[j], we output T[FTR[;][b] .. FTR[j][0] +j — 1] if
FTR[j][b] > 0 or T'[k..k + j — 1] if FTR[j][b] = 0, where k is the index of PRE;, where the
minimum came from. Inspect the following illustrative example.

» Example 12 (Querying). We construct array FTR for T' from Example 9. For a given |[a, b]
we look up column b, and find the topmost entry whose value is less than a. If all entries
have values greater than or equal to a, we output any element from SAWp arbitrarily.

7 i1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
T a b a a b a a a b b a b b b a a a b
FTR[l] o 1 2 2 4 5 5 5 8 8 10 11 11 11 14 14 14 17
FTR[Q] o o o0 o o o o o o 5 7 7T T T T 11 11 13
FTR[S] o o 0 o o 0O O O O O O o 0 4 4 4 4 4

If [a, b] = [3, 14] then no entry in column b = 14 is less than a = 3, which means the length
of the shortest absent word is 4; we output one from {aaaa, abab, baba, bbbb} arbitrarily. If
[a,b] = [5,14] then FTR[3][14] = 4 < 5 so the length of a shortest absent word of T'[5..14] is
3; a shortest absent word is T[FTR[3][14] .. FTR([3][14] +3 — 1] = T[4..6] = aba.

If [a,b] = [7,9], FTR[2][9] = 0 < 7 so the length of a shortest absent word is
2; a shortest absent word is T[k..k + j — 1] = T[9..10] = bb because FTR[2][9] =
min{PRE»[9], ..., PRE3[|PREz|]} = PRE3[9] = 0 tells us that the minimum in this range came
from index k = 9.

We obtain the following result.

» Theorem 13. Given a string T of length n over an alphabet ¥ C {1,2,..., no(l)} of size o,
we can construct a data structure of size O(nlog, n) in O(nlog, n) time, so that if query
[a,b] is given, we can compute a shortest string over X that does not occur in T[a..b] in
O(1) time.
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4 O(n) Space and O(loglog, n) Query Time

» Definition 14 (Order-j Fragment). Given a string T over an alphabet of size o and an
integer j, V is called an order-j fragment of T if and only if V is a fragment of T and
Sv(j) = 0. V is further called a minimal order-j fragment of T if Sy(j) < o’ and
Sz(j) <ol forU=V[1..|V|=1] and Z=V[2..]V]].

In particular, minimal order-j fragments are pairwise not included in each other. The
following fact follows directly.

» Fact 15. Given a string T of length n over an alphabet of size o and an integer j we have
O(n) minimal order-j fragments. Moreover, an arbitrary fragment F of T has Sg[j] = o7 if
and only if it contains at least one of these minimal fragments.

For each j € [1,log, n], we consider all minimal order-j fragments T, separately. We
encode the minimal order-j fragments of 1" using two bit vectors SP; and EP;, standing for
starting positions and ending positions. Inspect the following example.

» Example 16. We consider T from Example 9 and j = 2.

7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
T a b a a b a a a b b a b b b a a a b
APP, |2 3 1 2 3 1 1 2 4 3 2 4 4 3 1 1 2 1 2 3 4
PREs o o o 1 2 3 6 4 0 5 8 9 12 10 7 15 11 16 17 14 13
SPo o o o o 1t o0 1 o O O 1 0 1 O O O O O
EP, o o o o o o o o o 1t 1t o0 O O O 1 o0 1

For instance, SP3[13] = 1 and EP5[18] = 1 denote the minimal order-2 fragment V =
T[13..18] = bbaaab.

We construct a rank and select data structure on SP; and EP;, for all j € [1,£ — 1]
supporting O(1)-time queries. The overall space is O(n) by Theorem 4 and Fact 7.

Let us now explain how this data structure enables fast computation of absent words of
length j. Given a range [a,b], by Fact 15, we only need to find whether T[a..b] contains
a minimal order-j fragment. We can do this in O(1) time using one rank and two select
queries: ¢ = ranky(a — 1,SP;) 4+ 1; and select; (¢, SP;) and select; (¢, EP;).

» Example 17. We consider T, SPy and EP5 from Example 16. Let [a, b] = [5,14]. We have
t = ranky(a—1,SP3)+1 = ranky (4,SP2)+1 = 1, select (¢, SP2) = select; (1,SP2) =5 < b =14
and select; (t, EP2) = select; (1, EP3) = 10 < b = 14, which means T'[5, 14] contains a minimal
order-2 fragment.

Let us now describe a time-efficient construction of SP; and EP;. We use arrays PRE;
and APP; of T, which are constructible in O(n) time (see Section 3). Recall that PRE;[i]
stores the starting position of the rightmost occurrence of rank APP;[:] in APP;[1..4i—1] (or
0 if such an occurrence does not exist). We apply Fact 8 as follows. We start with all bits of
SP; and EP; unset. Then, for each b € [1,n] for which PRE;[b — j + 1] < min{PRE;[{] : i €
[b—j+2,|PRE;[]} = a, we set the bth bit of EP; and the ath bit of SP;. This can be done
online in a right-to-left scan of PRE; in O(n) time.

» Example 18. We consider T', SPy and EP5 from Example 16. We start by setting b =n = 18
and scan PRE; from right to left: we have a = 13 because min{PRE;[21] =13 : 4 € [18,21]} >
a = 13. This gives fragment T[13..18]. Then we set b =n —1 = 17 and have a = 11 because
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min{PRE»[21] = 13 : i € [17,20]} > a = 11. This gives fragment T[11..17]. Then we set
b=mn—2=16 and have a = 11 because min{PRE3[21] = 13 : i € [16,19]} > a = 11. This
gives fragment T[11..16]. At this point note that T'[11..17] contains T[11..16], and so
T[11..17] is removed as it is non-minimal.

» Lemma 19. SP; and EP; can be constructed in O(n) time.

For all j, the construction time is O(nf) = O(nlog, n) by Theorem 4, Lemma 19, and
Fact 7. We obtain the following lemma.

» Lemma 20. Given a string T of length n over an alphabet ¥ C {1,2,...,n°M} of size o,
we can construct a data structure of size O(n) in O(nlog, n) time, so that if query (3, [a,b])
is given, we can check in O(1) time whether there is any string in ¥’ that does not occur in
Tla..b], and if so return such a string.

We can now apply Lemma 20 using binary search on j to find the smallest length j such
that Sy, 4](j) < 7. This results in O(log ¢) = O(loglog, n) query time by Fact 7. It should
now be clear that when we find the j corresponding to the length of a shortest absent word,

we can output the length-j suffix of the leftmost minimal order-; fragment starting after a.

Note that outputting this suffix is correct by the definition of minimal order-j fragments.

» Example 21. We consider T, SP5 and EP5 from Example 16. Let [a,b] = [2,7]. The length
of a shortest absent word of T'[2..7] is 2. We output bb, which is the length-2 suffix of the
leftmost minimal order-2 fragment T'[5..10] = baaabb starting after a = 2.

We obtain the following result.

» Theorem 22. Given a string T of length n over an alphabet 2 C {1,2,...,n0(1)} of
size o, we can construct a data structure of size O(n) in O(nlog, n) time, so that if query
[a,b] is given, we can compute a shortest string over ¥ that does not occur in Tla..b] in
O(loglog, n) time.

5 Combinatorial Insights

A positive integer p is a period of a string S if S[i] = S[¢ + p] for all i € [1,]S] — p]. We refer
to the smallest period as the period of the string. Let us state the periodicity lemma, one of
the most elegant combinatorial results on strings.

» Lemma 23 (Periodicity Lemma (weak version) [31]). If a string S has periods p and q such
that p+ q < |S|, then gcd(p, q) is also a period of S.

» Lemma 24. If all strings in {WU : U € ¥} for W # & occur in some string S, then
S| > W] o*/4,

Proof. Let p be the period of W, and let a € ¥ be such so that the period of Wa is also p.

All strings WbZ for a letter b # a and Z € %! must occur in S. Let A = {WU : U €
YEM\{WaZ : Z € £¥71}, and note that it is of size o¥ — ¥~ > o /2. The following claim
immediately implies the statement of the lemma.

> Claim. Let ¢ and j be starting positions of occurrences of different strings WU, WV € A
in S, respectively. Then, we have |j —i| > |[W|/2.
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Proof. Let us assume, without loss of generality, that j > i. Further, let us assume towards
a contradiction that j — i < |[W]/2. Then, j — i is a period of W and p+ j — i < |W| since
p < j —i. Therefore, due to the periodicity lemma (Lemma 23), j — ¢ must be divisible by
the period p of W. Hence, U starts with the letter a and WU ¢ A, a contradiction. <

This concludes the proof of this lemma. |

» Lemma 25. If a shortest absent word of a string Y is of length A, then the length of a
shortest absent word of XY is in [A, A + max{10,4 + log, (| X|/A)}].

Proof. Let W and W’ be shortest absent words of Y and XY, respectively. Further, let
d = |W'| — |W|. In order to have d > 0, all strings WU for U € 3¢~ must occur in XY,
and hence in X - Y[1..|WU| — 1], since none of them occurs in Y. Lemma 24 implies
that | X| +A+d > X\-0%1/4. Then, since A + d < 2\d for any positive integers A, d, we
have | X| > A - (¢97!/4 — 2d). Assuming that d > 10, and since o > 2, we conclude that
|X| > \-0?71/8. Consequently, log, (8/X|/\) + 1 > d. Since log, 8 < 3 we get the claimed
bound. |

» Lemma 26. If a shortest absent word of XY is of length m, a shortest absent word of Y
is of length \, and | X| < m -7, for a positive integer 7 > 16, then m — X < 10 + 2log, 7.

Proof. From Lemma 25 we have A € [m — max{10,4 + log, (| X|/A)},m]. If max{10,4 +
log, (|X|/A)} = 10, then m — A < 10 and we are done.
In the complementary case, since | X| < m -7, we get the following:

A>m—log,(m-7/\) —4 <= X >m+log, A —log, m —log, 7 — 4.

In particular, A > m —log, m — log, 7 — 4.

From the above, if m <7, then m — A <4+ 2log, 7.

In what follows we assume that m > 7 > 16. Rearranging the original equation, and
since log, (+) is an increasing function and A > m — log, m — log, 7 — 4, we have

m

m—)\§4+loga(m-7//\)§4+logo( )—i—logor

m —log, m —log, 7 —4

§4+10gg( o

1 .
m210g6m4> +log, T
Then, we have m —2log, m—4 > m/5 since, for any o > 2, 4z /5—2log, x —4 is an increasing
function on [16, 00) and positive for = 16. Hence, m — XA <4 +1log, 5+ log, 7 < 7+ log, 7.
By combining the bounds on m — X\ we get the claimed bound. |

6 O(nloglog, n) Space and O(1) Query Time

Recall that we denote by ¢ the length of a shortest absent word of T'. We start by constructing
the 2d array FTR[1..£—1][1..n] from Section 3 in time O(nf) = O(nlog, n). Further recall
that FTR[5][¢] is the rightmost index of T  such that T'[FTR[j][i]..] contains all strings of
length j over ¥. Then, to answer a query [a,b], it suffices to find the smallest j such that
FTR[j][b] < a. We do this by finding where the predecessor of a lies in FTR[1..¢ — 1][b]. To
this end, we construct n fusion trees: one per FTR[1..¢ — 1][i], resulting in a data structure
of size ©(nf) = O(nlog, n) with O(1) query time.
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The main idea in this section is to rather maintain a collection of lazy dynamic fusion
trees going from position n to 1, and apply the combinatorial lemmas from Section 5 to
answer the query. Using the lazy dynamic fusion trees, for a parameter 7, we will compute

an interval of size ©(log, 7) that contains the length of a shortest absent word of T'[a. . b].

Then we will perform binary search employing Lemma 20 to compute the desired length and
output a shortest absent word.

6.1 Lazy FTR Arrays

With lazy we mean that instead of array FTR, we consider array
LFTR[j][7] = FTR[j][i + ((n — ) (mod 7 - j))],

for an integer parameter 7 > 16. We will later set 7 to be some function of n — the reader
may think of it as a constant. Intuitively, for an integer k, we use the value FTR[j][n—7-j- k]
for 7 - j positions, namely for LFTR[j][¢], i € (n—7-j-(k—1),n —7-j-k]. Overall, the
number of values that we consider is

Z 7”L.:O<nloglog0n).
T

jel,e—1] T

Inspect Figure 2 in this regard.

° ° ° ° ° ° ° l ° ° o o 1
1 2 --- n—11 n—4 n

Figure 2 For simplicity, we have set 7 = 1. The black dots represent the entries stored in
LFTR[1..5][n — 11..n] and the red line represents LFTR[1..5][n — 4].

We implement LFTR array using a collection of 1d arrays that occupy O((n/7)-loglog, n)
space in total and allow O(1)-time access to LFTR[j][¢] for any j,i. Specifically, we store in
array R, for all j € [1,£— 1] and in decreasing order of ¢, the entries FTR[j][i] withn —i =0
(mod 7 - j). Then, we have LFTR[j][i] = R;[1 + [(n —14)/(7 - 5)]]

» Fact 27. LFTR[j][i] > FTR[j][i], for all i, ;.

Proof. It follows by the definition of LFTR and the fact that FTR[j][¢] is monotonically
non-decreasing for increasing ¢ and fixed j. |

Note that the fact that FTR[1..¢—1][¢] is decreasing for all ¢ allowed us to use predecessor
queries in our previous solution. We prove an analogous, slightly weaker, statement for LFTR.

» Lemma 28. Let j1,j2 € [1,£—1] such that jo — j1 > 10+ 2log, 7, and suppose that 7 > 16.
Then, for all i, LFTR[j1][i] > LFTR[j2][4].

6:11

CPM 2021



6:12

Internal Shortest Absent Word Queries

Proof. Let X; = T[LFTR[j1][i] + 1..¢]. Then, X;Y; has a shortest absent word of length j,
for some Y7 with |V1]| < 7-j.

Let Xy = T[LFTR[jo][¢] + 1..¢]. Then, X5Y5 has a shortest absent word of length js, for
some Yo with |Ya| < 7 - jo.

Note that ||Ya| — |Y1|| < 7 - jo.

Suppose, towards a contradiction, that LFTR[j1][¢] < LFTR[j2][¢], and hence |X;| > | X2|.
Then, we must have |Y3| > |Y3| as otherwise XoY5 would be a substring of X;Y; and its
shortest absent word cannot be longer than the one of X;Y;. Let Yo = Y1V, with |V| < 7 jo.

Then, we have that a shortest absent word of X;Ys is of length at least j,, since
XoY; is a suffix of X1Y5. By Lemma 26 applied to X1Ys = XYV and XY, we have
J2 — 71 < 10 4 2log, 7, a contradiction. |

In particular, Lemma 28 tells us that in column ¢ of LFTR, we cannot have too many
values that are equal. More formally, for each j, we have O(log, 7) indices j' # j such that
LFTR[j][¢] = LFTR[4][{]. Our goal is to have, for every position ¢, a snapshot of one of
our dynamic fusion trees to contain as keys the entries of LFTR[1..¢ — 1][¢]. The satellite
information (value) of key LFTR[j][¢] is a bit vector of size £ — 1 bits. For each key, we
maintain the corresponding lengths j in the bit vector. Whenever a key is returned, we can
also return the largest of the lengths j stored in the bit vector: it corresponds to the highest
set bit. In the next subsection we show the following result.

» Lemma 29. We can preprocess LFTR in O((n/7) - loglog, n) time and space to answer
predecessor and successor queries over LFTR[1..¢ — 1][i], for any i € [1,n], in O(1) time.

We denote by top(a,b) the largest j such that LFTR[5][b] is equal to the successor of a in
LFTR[1..Z — 1][b)].

» Lemma 30. Given LFTR, after O((n/7) -loglog, n) time and space preprocessing, we can
answer top(a,b) queries in O(1) time.

Proof. At preprocessing, construct the data structure underlying Lemma 29. Upon a query
top(a,b), answer a successor query for a in LFTR[1..¢ — 1][b] using this data structure.
For the corresponding bit vector, we find the highest set bit in O(1) time, thus retrieving
top(a, b). <

Our data structure mainly relies on what we show next using Lemma 26: the sought
answer is “close” to top(a,b). Let us denote the length of a shortest absent word of T[c. . b]
by £jcp) and the length of a shortest absent word of T'[a..b] by {44

By the definition of top(a,b), we have that for some ¢ = LFTR[top(a,b)]|[b] > a and a
prefix X of T[b+ 1..n] with |X| < top(a,b) - 7, the length of a shortest absent word of
Tlc..b]X is top(a, b) +1. By Lemma 26, top(a,b) — €[5 < 10+2log, 7. Thus lj4 4 > llcp) >
top(a,b) — 10 — 2log,, 7.

In addition, we have LFTR[top(a, b)][b] > a > LFTR[j][b], for all j > top(a, b)+10+2log,, T,
by Lemma 28 and the definition of top(a, b). Hence, £, 3 < top(a,b)+11+42log, 7 by Fact 27.

Thus, the sought answer £, 3 is in [top(a,b) — 10 — 2log, 7,top(a,b) 4 11+ 2log, 7]. We
employ Lemma 20 to perform binary search over this interval in O(loglog,, 7) time — after an
O(n)-time preprocessing. Recall that Lemma 20 also gives us a witness shortest absent word.

We thus arrive at the main result of this paper, by setting 7 = 15 + k, for any positive
integer k € [1,loglog, n].
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» Theorem 1. Given a string T of length n over an alphabet ¥ C {1,2,...,n°M} of
size o, for any positive integer k € [1,loglog, n|, we can construct a data structure of size
O((n/k) -loglog, n), in O(nlog, n) time, so that if query [a,b] is given, we can compute a
shortest string over X that does not occur in T[a..b] in O(loglog, k) time.

In particular, we get the following tradeoffs:
an O(nloglog, n)-size data structure with O(1) query time (for k = 1);
an O(n)-size data structure with O(loglog, loglog, n) query time (for k = |loglog, n]).

6.2 Partially Persistent Fusion Trees (using Fusion Trees)

We now describe the construction of the fusion trees over the LFTR array, which under-
lies Lemma 29. We provide the description for answering predecessor queries but it can
be trivially adapted for successor queries. We will make our fusion trees “static partially
persistent”: for each position i € [1,n], we will be able to answer predecessor queries in the
version of the fusion tree corresponding to LFTR[1..¢ — 1][4].

Recall that we work in the word RAM model. For implementing partially persistent
fusion trees, we view each memory cell as a collection of pairs of values and timestamps; a
timestamp indicates when the respective value was written in the cell. (This is a standard
persistence trick, see e.g. [55].) For each cell, we want to construct a predecessor data
structure over the timestamps to simulate these operations. The key idea is that, in each
such cell, we would like to keep the number of updates small so as to employ fusion trees for
implementing it as a predecessor data structure. Let us stress that the latter fusion trees
should not be confused with the partially persistent fusion trees we construct over the LFTR
array for our problem.

We now process 1" from right to left to construct the collection of partially persistent fusion
trees. For each position of T'; we perform the updates as per the LFTR array. Specifically,
for position n, we initialise the partially persistent fusion tree with keys LFTR[1..¢ — 1][n].
Then, for position ¢ from n — 1 to 1, for all j € [1,¢ — 1], such that (n —4) (mod 7-j) =0,
we remove key LFTR[j][¢ 4+ 7 - j] and insert key LFTR[j][i]. However, after processing every
7 -logn/loglogn positions of T', and hence 3., ,_4)(7logn/loglogn)/(7 - j) = ©(logn)
updates have been performed, we create a completely new instance of a partially persistent
fusion tree. We initialise this new instance with the LFTR values of the currently unprocessed
position of T'. Let us note that the O(log, n) time cost for reinitialisation amortises, because
we can charge it to the ©(logn) O(1)-time updates we have previously performed. For each
position i of T, we store the timestamp t(i) at which its processing ended and a pointer to
the partially persistent fusion tree of the collection corresponding to it.

Upon a query [a,b], we wish to find the smallest j such that LFTR[j][b] < a. We thus
need to find where the predecessor of a lies in LFTR[1..¢ — 1][b]. We retrieve the partially
persistent fusion tree and ask the query, using timestamp ¢(b). Note that each memory
access performed by the query requires O(1) time, as it translates to a predecessor query in
a fusion tree with O(logn) keys; and there are O(1) such accesses because this is a (partially
persistent) fusion tree with O(log, n) keys. The query thus takes O(1) time.

6.3 Weighted Ancestor Data Structure for Shallow Trees

A tree is a weighted tree if it is a rooted tree with an integer weight on each node v, denoted
by w(v), such that the weight of the root is zero and w(u) < w(v) if u is the parent of v. We
say that a node v is a weighted ancestor at depth ¢ of a node u if v is the highest ancestor of
u with weight of at least 6. The problem of constructing a data structure to answer weighted
ancestor queries was introduced by Farach and Muthukrishnan in [26].
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After O(n)-time preprocessing, weighted ancestor queries for nodes of a weighted tree T of
size n with integer weights from a universe [1.. U] can be answered in O(loglog U) time [26, 5].
Later, it was shown that a dynamic variant of the weighted ancestors problem admits a
solution with the same time bounds as those for dynamic predecessor structures [47, 36].
Further, Kopelowitz et al. [46] introduced another O(n)-size data structure that achieves
faster query time in many special cases. For the offline version, Kociumaka et al. [43] showed
how to answer a batch of ¢ weighted ancestor queries in the optimal O(n + ¢) time.

The weighted ancestors problem has numerous applications if the input tree is a suffix
tree of some string; see [36] for a nice exposition of these applications. In this context, the
weighted ancestors problem translates to preprocessing the suffix tree of a string T[1..n], so
that, given ¢ and j, we can retrieve the implicit or explicit node corresponding to substring
T[i..j]. Observe that, since the weighted ancestor is a generalisation of the predecessor
problem, it cannot admit better bounds. Nevertheless, the problem on suffix trees is a
special case of the general problem. This led to the challenge of solving the problem on suffix
trees in O(n) preprocessing time and O(1) query time [26]. Gawrychowski et al. [36] partly
settled this question by presenting an O(n)-size data structure with O(1) query time; the
construction time, however, is superlinear in n. Very recently, Belazzougui et al. [11] have
settled this question by presenting an O(n)-size data structure for weighted ancestors in
suffix trees with O(1) query time and an O(n)-time construction algorithm.

Given a tree T of size n and depth d, we can do the following trick to reduce the weighted
ancestors problem to O(n/d) instances on trees of both size and depth O(d): Cut along
every dth root-to-leaf path in 7, and duplicate its nodes and edges. Then, we can apply
the result of Kopelowitz and Lewenstein [47, 36] to each of the O(n/d) smaller trees. In the
specific case of d = logo(l) n, this gives an O(n)-size data structure that answers weighted
ancestor queries in O(1) time. By applying the machinery we have developed in the previous
subsection, we achieve the same result for this special case in an alternative way. For each
of the O(n/d) trees of size and depth O(d), we perform a depth-first traversal, maintaining
a partially persistent fusion tree that when visiting node v stores the weights of all (weak)
ancestors of v. We obtain the following corollary for shallow trees.

» Corollary 31. Let T be a weighted tree of size n and depth d = logo(l) n, with weights
polynomial in n. We can preprocess T in O(n) time so that weighted ancestor queries on T
can be answered in O(1) time.
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