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Abstract
The phase space of a relativistic system can be identified with the future tube
of complexified Minkowski space. As well as a complex structure and a sym-
plectic structure, the future tube, seen as an eight-dimensional real manifold, is
endowed with a natural positive-definite Riemannian metric that accommodates
the underlying geometry of the indefinite Minkowski space metric, together
with its symmetry group. A unitary representation of the 15-parameter group
of conformal transformations can then be constructed that acts upon the Hilbert
space of square-integrable holomorphic functions on the future tube. These
structures are enough to allow one to put forward a quantum theory of phase-
space events. In particular, a theory of quantum measurement can be formulated
in a relativistic setting, based on the use of positive operator valued measures,
for the detection of phase-space events, hence allowing one to assign proba-
bilities to the outcomes of joint space-time and four-momentum measurements
in a manifestly covariant framework. This leads to a localization theorem for
phase-space events in relativistic quantum theory, determined by the associated
Compton wavelength.
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1. Introduction

Starting with the pioneering work of Dirac [1], investigations of the Hamiltonian formula-
tion of space-time physics have been pursued by numerous authors. One of the motivations
behind such analysis has been that the mathematical structures of phase-space formalisms can
be highly amenable to a quantum-mechanical description. The naive formulation of a rela-
tivistic phase space as a kind of doubled-up Minkowski space with four position coordinates
and four momentum coordinates, while feasible in the classical theory, is not satisfactory as
a basis for relativistic quantum theory. Here we propose an alternative approach in which the
future tube of complexified Minkowski space is taken to be the phase space of a relativistic
system. Remarkably, this phase space comes naturally equipped with both the symplectic struc-
ture and the compatible Riemannian structure needed for the development of a fully covariant
relativistic quantum theory.

Let us write M for Minkowski space, by which we mean R
4 equipped with the usual flat

space-time metric gab with signature (+,−,−,−). For the positions of points x, y ∈ M relative
to an origin in M we write xa and ya, where a, b = 0, 1, 2, 3. We say that x and y are time-like,
space-like, or null separated according to whether gab(xa − ya)(xb − yb) is positive, negative,
or zero. In the time-like and null cases, the separation vector va = xa − ya is said to be future-
pointing or past-pointing according to whether v0 is positive or negative. Then by complex
Minkowski space CM we mean C4 equipped with the same metric tensor. The so-called future
tube Γ is the open submanifold of CM consisting of points that are of the form za = xa − ira,
where ra is time-like and future pointing. Thus for all za ∈ Γ it holds that gabrarb > 0 with
r0 > 0.

The future tube plays an important role in rigorous treatments of quantum field theory. In
particular, the Wightman functions—given by vacuum expectations of field operators—are
analytic in Γ, and one can reconstruct the field theory from the data of these expectation val-
ues [2–5]. The future tube contains no real space-time points; however, the so-called extended
future tube, consisting of points attainable by the action of the complex Lorentz group on Γ,
contains real points, called Jost points. One can then recover the field theory from the values
of the Wightman functions at Jost points [6]. Complexified Minkowski space also plays an
important role in the Penrose twistor program [7–9], as does the future tube. In twistor theory,
the complex projective space CP3 is divided into two parts, the upper and lower half of CP3,
separated by a five real dimensional hypersurfaceN5 of null twistors. The points of CM corre-
spond to complex projective lines in CP3. The points of Γ correspond to lines that lie entirely
in the top half of CP3.

In both twistor theory and quantum field theory, the complexification of Minkowski space,
natural as it may be, is introduced primarily to enable one to exploit the tools of complex
analysis in relation to the positive frequency condition on fields; and there is no direct physical
significance attached as such to the imaginary components of complex space-time points. Some
form of reality condition has to be brought into play to make the link to the physical ‘real’
spacetime.

From the view of the complex formulation of classical mechanics [10], it is natural to ask
whether the imaginary part of a point in Γ is related to the four momentum of a relativistic
system. In what follows we offer an affirmative answer to this question. This, in turn, allows us
to construct a Hilbert space of quantum states over the space-time phase space. The conformal
transformations of the underlying space-time phase space can then be represented explicitly
in terms of unitary operators acting on quantum states. We then formulate a measurement
postulate for the detection of the phase-space location of a relativistic event by identifying
the probability law for measurement outcomes along with an appropriate post-measurement
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transformation rule for the states. It is shown, in particular, that when the measurement outcome
yields a phase-space point, the state transforms into a coherent state of the conformal group,
centered at that point. The fact that coherent states are the most localized states in the Hilbert
space then leads to a localization bound which shows for systems of short Compton wavelength
that when an event is detected to have occurred at a specific phase-space point, the resulting
state will be highly localized in phase space.

The problem of relativistic quantum measurement has been investigated by many authors
(see e.g. [11–14] and references cited therein). It is often the case, however, that the measure-
ment postulates of nonrelativistic quantum theory are used in a relativistic setup to deduce
implications of the postulates, which is unsatisfactory, for what is required is a measurement
postulate in a relativistic setup, as we propose here.

2. Relativistic mechanics

We begin by reviewing the cotangent bundle approach to relativistic mechanics [15–18]. The
phase space is taken to be the cotangent bundle of Minkowski space, where the cotangent
vectors in the fibre over a point in Minkowski space are identified with the momentum four-
vectors that the particle might possess. The bundle is an eight-dimensional manifold T∗

M, with
base coordinates xa and fibre coordinates pa. We form the canonical one-form θ = padxa on
T∗M along with its exterior derivative, the associated symplectic form ω = dpa ∧ dxa. Given a
smooth function H : T∗M→ R we then write Hamilton’s equations for a dynamical trajectory

s ∈ R
+ �→ {xa(s), pa(s)} ∈ T∗

M (1)

in the form

dxa

ds
=

∂H
∂pa

and
dpa

ds
= − ∂H

∂xa
, (2)

and we call H(xa, pa) the Hamiltonian function. As before, we let gab = diag(+1,−1,−1,−1)
be the metric on the base space M, which we can use to raise and lower indices on the fibre
elements as well. Then we can write (xa, pa) = (xa, gab pb) and put Hamilton’s equations in the
more symmetrical form

dxa

ds
= gab ∂H

∂pb
and

dpa

ds
= −gab ∂H

∂xb
. (3)

The cotangent-bundle approach works well for characterizing the dynamics of typical mechan-
ical systems in space-time. To convince oneself it suffices to explore a few examples.

Example 1: free particle. The Hamiltonian is taken to be

H = [gab pa pb]1/2. (4)

Then H will be a constant of the motion which we identify as the mass m. The phase space is
foliated by surfaces of constant H, and as an initial condition we choose {xa(0), pa(0)} to lie
on the surface H = m. Hamilton’s equation (3) imply

mẋa = pa, ṗa = 0. (5)

The phase-space trajectory is given by

xa(s) = xa(0) + s m−1 pa(0), pa(s) = pa(0), (6)
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corresponding to a geodesic motion in Minkowski space subject to the specified initial
conditions.

Example 2: charged particle in an electromagnetic field. Let the charge be q and write
Aa(x) for the electromagnetic four-potential. With the familiar minimal coupling, we extend
the previous example by taking the Hamiltonian to be of the form

H =
[
gab(pa − qAa)(pb − qAb)

]1/2
. (7)

We foliate the phase space with surfaces of constant H, identifying the value of H with the
mass of the particle. Hamilton’s equations give

mẋa = (pa − qAa), ṗa = qẋc∇aAc, (8)

where ∇a = ∂/∂xa. Further differentiation leads to the Lorentz force law

mẍa = qFab ẋb, Fab = ∇aAb −∇bAa. (9)

Example 3: relativistic two-body problem with a force of mutual attraction. Let us write xa,
ya, Xa, Ya for the space-time positions and momenta of the two particles, setting

qa =
1
2

(xa − ya), (10)

along with

Pa = Xa + Ya, Qa = Xa − Ya. (11)

To model a central force we project qa onto the space-like hypersurface orthogonal to the total
momentum Pa to measure the separation of the two particles. Since Pa is time-like, the resulting
‘internal’ coordinate ξa defined by

ξa = qa − qcPc

PcPc
Pa (12)

is space-like. Thus ξaξ
a � 0 and for the potential we set

V(ξa) = Φ(− ξaξ
a), (13)

for some function Φ : R+\{0}→ R in C1(0,∞). For example, for a harmonic oscillator we
set Φ(u) = ku where k ∈ R

+. For a Coulomb potential set Φ(u) = −e1e2u−1/2, where e1, e2

are the charges of the particles. For a gravitational potential, set Φ(u) = Gm1m2u−1/2, and so
on. Consider now a pair of particles interacting via the potential V . We write

X2 = m 2
1 + V , Y2 = m 2

2 + V , (14)

where X2 = XaXa and Y2 = YaYa, and m1, m2 are the rest masses. These conditions imply

1
2

(P2 + Q2) − 2V = m 2
1 + m 2

2 , PcQ
c = m 2

1 − m 2
2 . (15)

Hence for the Hamiltonian we set

H =

(
1
2

(P2 + Q2) − 2V

)1/2

. (16)
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Since H will be a constant of the motion, we choose the initial conditions so that {ra(0), qa(0)}
lies on the surface

H = [m 2
1 + m 2

2 ]1/2. (17)

Hamilton’s equations show that PcQc is also a constant of the motion, so we set

PcQ
c = m 2

1 − m 2
2 , (18)

thus fixing the two masses. A calculation then shows that

d2ξa

ds2
= − 1

m 2
1 + m 2

2

Φ′(−ξcξ
c) ξa, (19)

where Φ′(u) = dΦ(u)/du. Since the right side is a function of ξa, we can solve for ξa(s),
which in turn allows us to determine the phase-space trajectory. For example, in the case of an
oscillator, we have Φ′ = k, so we obtain

ξa(s) = αa cos(ωs) + βa sin(ωs), (20)

where αa, βa are constant spacelike vectors such that αa = ξa(0) and ωβa = ξ̇a(0), with ω2 =
k/(m 2

1 + m 2
2 ).

Despite the merits of these examples, there are limitations to the effectiveness of the cotan-
gent bundle approach as a foundation for the theory of relativistic dynamics. For a start, there is
no intrinsic mechanism to prevent the momentum from becoming space-like or past-pointing.
This problem can be avoided in specific examples, such as the ones above, but it is undesirable
that one should have to manage the situation on an ad hoc basis. The cotangent bundle approach
also poses problems when we look at field theories, since the cotangent bundle does not admit
a natural complex structure. In particular, there is no general recipe for combining position and
momentum in a linear way, allowing one to write complex expressions of the form xa + ipa.
Such variables arise in the quantization of oscillators, but in that case there is a dimensional
constant that allows one to modify the expressions to produce terms of the same dimension-
ality. If the constants of nature at ones disposal are the speed of light and Planck’s constant,
then one cannot convert a quantity with units of momentum to one with units of length. Fur-
ther, the interpretation of the parameter s as a proper time in the cotangent bundle approach is
ambiguous when many particles are involved.

What is the best way forward? Many authors have considered the problems arising with rel-
ativistic phase spaces, both for classical theories and quantum theories [19–23]. Our approach
incorporates ideas drawn from all of these, and from geometric quantum mechanics as well
[24–30]. We also look closely at the role of probability in the course of our development of a
relativistic theory of quantum measurement based on the geometry of the future tube.

3. Back to the future tube

That there is an appropriate map from the cotangent bundle to the future tube is not immediately
apparent, but a dimensional argument will lead the way. In order for us to be able to regard
xa − ira as a complex phase-space variable in a relativistic context we shall require ra to have
units of inverse momentum. Then if we multiply ra by Planck’s constant we obtain a vector with
units of position that can be combined with xa. Specifically, we consider the Kelvin inversion

ra = �pa/(pcpc), pa = �ra/(rara). (21)
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This transformation maps the cone of time-like future-pointing Minkowski space vectors into
itself. Thus we have

� gab ∂

∂pb
= rcrc

(
gab − 2 rarb

rcrc

)
∂

∂rb
(22)

and

1
�

gab
dpa

ds
=

1
rcrc

(
gab −

2 rarb

rcrc

)
dra

ds
. (23)

Now define a symmetric tensor hab with inverse kab by setting

hab = − 1
rcrc

(
gab −

2 rarb

rcrc

)
, kab = −rcr

c

(
gab − 2 rarb

rcrc

)
. (24)

Then kab hbc = δa
c , and a straightforward calculation shows that Hamilton’s equations on the

future tube take the form

�
dxa

ds
= −kab ∂H

∂rb
and �

dra

ds
= kab ∂H

∂xb
. (25)

That the signs in (25) are reversed in comparison with (3) is an artefact of the convention that
defines the future tube by points of the form xa − ira with ra time-like and future-pointing.
But what is not so obvious, and comes perhaps as a surprise, is that the quadratic form hab is
positive definite, thus defining a Riemannian metric on the future tube, given by

ds2 = hab (dxa dxb + dra drb). (26)

As a consequence we see that the arc-length along a smooth curve can be taken as a canonical
parameterization of the phase-space trajectory. In particular, in situations where two or more
particles are interacting, the phase space of the system as a whole can be taken to be the product
of the phase spaces of the individual systems, with an overall positive definite metric, thus
leading to a natural way of synchronizing the dynamics of the constituents.

4. Relativistic phase-space geometry

As a number of authors have pointed out, there are several distinct but ultimately equivalent
ways of arriving at the geometrical structure of the future tube [31–41]. Building on these
works, we pursue here an alternative approach to the geometry of Γ that ties in naturally
with quantum measurement theory. We begin with the Hilbert space H = L2(Γ,O) of square-
integrable holomorphic functions on the future tube. If we let f, g be elements of H, then for
their inner product we write

〈ḡ | f 〉 =
∫
Γ

f (z) ḡ(̄z) dμz, (27)

where

dμz =
1
16

d4z d4z̄ (28)

denotes the usual Lebesgue measure on Γ. The fact that such functions constitute a Hilbert
space is nontrivial, for it is not immediately obvious that any Cauchy sequence in L2(Γ,O)
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converges to an element of L2(Γ,O). That such convergence holds follows as a consequence
of a well-known bound [42], which states that for any compact subset Q ⊂ Γ there exists a
constant CQ such that for all φ ∈ L2(Γ,O) we have

sup
z∈Q

|φ(z)| � CQ ‖φ‖, (29)

where

‖φ‖ =

(∫
Γ

φ(z) φ̄(̄z) dμz

)1/2

. (30)

Now let {φn}n∈N be an orthonormal basis for H so that
∫
Γ

φn(z) φ̄m(̄z) dμz = δn
m. (31)

We introduce the Bergman kernel [43, 44] on Γ by setting

K(z, w̄) =
∑

n

φ̄n(w̄)φn(z), (32)

which is independent of the choice of orthonormal basis. Thus K(z, w̄) is holomorphic in z and
antiholomorphic in w, and for any holomorphic function f ∈ H we evidently have∫

Γ

K(z, w̄) f (w) dμw = f (z). (33)

We thus see that the Bergman kernel acts as an identity operator or reproducing kernel on H.
In particular, for all x, y, z ∈ Γ we have the identity∫

y
K(x, ȳ) K(y, z̄) dμy = K(x, z̄). (34)

Now consider a smooth curve

γ : σ ∈ [0, 1] �→ wσ ∈ Γ. (35)

For each value of the parameter σ the function ψσ : Γ→ C defined by

ψσ(z) = K(z, w̄σ) (36)

is holomorphic and square integrable. It follows that ψσ describes a curve in H as σ varies, so
we can work out the length along γ by use of the Fubini–Study metric [25, 32]:

ds2 =

∫
dψσ(z) dψ̄σ (̄z) dμz∫
ψσ(z) ψ̄σ (̄z) dμz

−
∣∣ ∫

dψσ(z) ψ̄σ (̄z) dμz

∣∣ 2

( ∫
ψσ(z) ψ̄σ (̄z) dμz

) 2 . (37)

A calculation then shows that

ds2 =
∂2 log K(w, w̄)

∂wa ∂w̄b
dwa dw̄b. (38)

Thus, the Fubini–Study metric on H induces a Kähler metric on Γ. This is the so-called
Bergman metric [44]. The ideas involved with the Bergman kernel and the associated met-
ric can be elucidated by considering the elementary example of a bounded domain C

+ of C
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defined by i(z − z̄) > 0. Writing z = x − ir, the domain can be expressed as the half plane for
which r > 0. Thus C+ can be thought of as representing a one-dimensional future tube, i.e.
a phase space in zero space dimensions, with only time and energy. An example of a set of
orthonormal functions on C+ is given by

φn(z) = 2

√
n
π

(i + z)n−1

(i − z)n+1
, (39)

from which one can easily verify that the corresponding Bergman kernel takes the form

KC+ (z, w̄) =
∞∑

n=1

φn(z) φ̄n(w̄) = − 1
π(z − w̄)2

. (40)

The associated Bergman metric is then the usual hyperbolic metric of the half plane. Note that
under the map w = f(z) given by the Cayley transform

f (z) =
i + z
i − z

, (41)

points of C+ are mapped invertibly to points of the unit disk |w| < 1, which is the so-called
Poincaré disk D. The orthonormal basis elements are then mapped to

φn(w) =

√
n
π

wn−1, (42)

and a short calculation shows that the kernel function becomes

KD(z, w̄) =
1

π(1 − zw̄)2
. (43)

In the case of the future tube, the Bergman kernel can be worked out explicitly, and we have

K(z, w̄) =

(
23 · 4!
π4

)
1

[gab(za − w̄a)(zb − w̄b)]4
. (44)

Note that similar to case of the half plane C+, the future tube can be mapped to a ‘unit ball’
domain B, which acts as the higher-dimensional analogue of the Poincaré disk D. Specifically,
if we write the points of Γ in the 2 × 2 matrix form

Ẑ = z0 Î + z1σ̂x + z2σ̂y + z3σ̂z, (45)

where Î denotes the 2 × 2 identity matrix and σ̂x , σ̂y, σ̂z are the Pauli matrices, the future tube
is defined by the condition that

Î − Ẑ†Ẑ > 0, (46)

where the inequality here means that the left side is a positive-definite matrix. The Cayley
transform of the future tube in this representation is given by

W = i(̂I − Ẑ) (̂I + Ẑ)−1, (47)

which is the analogue of (41) for the half plane. With this transformation in mind, the numer-
ical factor V4 = π4/(23 · 4!) appearing in (44) can then be seen as arising from the Euclidean
volume of the ball domain [45]. In the literature of the future tube, it is common to adopt

8



J. Phys. A: Math. Theor. 54 (2021) 235304 D C Brody and L P Hughston

the characterization in terms of B, since this allows for a somewhat simpler treatment of the
group-theoretic analysis associated with conformal transformations [31–37]. However, for in
the consideration of quantum theory we find it more transparent to work directly with the stan-
dard characterization of the future tube as the domain Γ in complexified Minkowski space. In
particular, for its Bergman metric, substitution of (44) into (38) gives

∂2 log K(z, z̄)
∂za ∂ z̄b

= hab, (48)

where hab turns out to be none other than the metric (24) that we introduced earlier using the
Kelvin transformation. Since a Bergman metric is fully determined by the complex analytic
structure of the underlying domain, it follows that hab admits the symmetry group of Γ, which
is the 15-parameter conformal group of Minkowski space. These phase-space symmetries are
generated by Hamiltonian flows on Γ.

5. Quantum states

Going forward, now let u, v, w, x, y, z denote points ofΓ. Having introduced the Hilbert spaceH
of holomorphic functions on Γ, we are now in a position to build a quantum theory. A general
state will be a density matrix ρ(y, z̄) ∈ L2(Γ,O) × L2(Γ, Ō). For such a state, we require the
following: (a) that ρ(y, z̄) = ρ̄(̄z, y), (b) that ρ(y, z̄) should be positive, that is to say

∫
ᾱ(ȳ) ρ(y, z̄)α(z) dμy dμz � 0 (49)

for α(z) ∈ L2(Γ,O), and (c) that it should have unit trace,

∫
K(z, ȳ) ρ(y, z̄) dμy dμz =

∫
ρ(z, z̄) dμz = 1. (50)

A state is then said to be pure if ρ(y, z̄) = ξ(y) ξ̄(̄z) for some holomorphic function ξ ∈ L2(Γ,O)
with unit norm. We observe that for both pure and mixed states the ‘diagonal’ function ρ(z, z̄)
takes the form of a probability density on Γ. That a probability density function on phase space
arises naturally in the present context is significant, since the construction of such densities in
configuration-space models for relativistic quantum mechanics is known to be problematic.

The interpretation of a density matrix is that it represents the quantum state of a relativis-
tic event. Such an event is accompanied by position and momentum data. The fact that wave
functions are holomorphic then prohibits the possibility that they can be concentrated with
arbitrarily high precision in a given region of phase space. This follows from the fundamen-
tal inequality (29). Many aspects of the theory can be understood as being analogous to the
Bargmann–Segal construction in nonrelativistic quantum mechanics [46, 47].

6. Space-time transformations

It is natural to enquire how space-time transformations are represented in H. That is, we are
interested in constructing a unitary representation of the action of the Poincaré group P(Γ) on
Γ. Such transformations are of the form

P : za �→ La
b zb + Ba, (51)

9
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where Ba is a real four vector and La
b satisfies

gabLa
cLb

d = gcd. (52)

A family of unitary operators {ÛP, P ∈ P(Γ)} generating Poincaré transformations through
the action ÛP : H→H can then be seen to take the form

U(x, ȳ) = K(La
b xb + Ba, ȳa), (53)

where K(x, ȳ) is the Bergman kernel (44). To see that the operator Û thus defined is unitary,
it suffices to show that ÛÛ† = 𝟙̂, where on account of (32) the identity operator 𝟙̂ here in the
phase-space coordinate representation is given by the kernel function. Then by (53) we have

Ū(y, x̄) = K(ya, La
b x̄b + Ba), (54)

and it follows from (33) and (52) that
∫

U(x, ȳ) Ū(y, z̄) dμy =

∫
K(Lx + B, ȳ) K(y, Lz̄ + B) dμy

= K(Lx + B, Lz̄ + B)

=

(
23 · 4!
π4

)
1

[gab(La
c xc − La

c z̄c)(Lb
d xd − Lb

d z̄d)]4

= K(x, z̄), (55)

as desired. It is also apparent that ÛP′ÛP = ÛP′P for all P, P′ ∈ P(Γ), so we conclude that (53)
gives a unitary representation of the Poincaré group on the Hilbert space H = L2(Γ,O).

More generally, a representation of the full 15-parameter conformal group can also be iden-
tified by use of the kernel function. To see this, we consider first the four-dimensional subgroup
S(Γ) of special conformal transformations, given by

S : za �→ za + z2λa

1 + 2λ·z + λ2z2
, (56)

where λa is a real four-vector, and we write λ · z = gabλ
azb, λ2 = gabλ

aλb, and z2 = gabzazb.
The transformation (56) is obtained by applying an inversion za �→ za/(gbcz

bzc), then shifting
the result by λa, and finally applying a further inversion. The unitary operator ÛS generating
such a transformation on states in H is given by

U(x, ȳ) =
1

(1 + 2λ·x + λ2x2)4
K

(
xa + x2λa

1 + 2λ·x + λ2x2
, ȳ

)
. (57)

To see that ÛS defines a unitary representation of the group S(Γ) on H, we let S ∈ S(Γ) be
parameterized by λa and S′ ∈ S(Γ) be parameterized by μa, and consider the action of ÛS′ÛS

on a generic state ψ(x) ∈ H. A calculation gives

ÛS′ÛS ψ(x) =
1

(1 + 2ν ·x + ν2x2)4
ψ

(
xa + x2νa

1 + 2ν ·x + ν2x2

)
, (58)

where νa = λa + μa, and it follows that ÛS′ ÛS = ÛS′ S. The remaining component of the
conformal group is the one-parameter dilatation groupD(Γ), which consists of transformations
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of the form D : za �→ Λza, where Λ is a strictly positive real number. It should be apparent that
the unitary operator generating a dilatation with parameter Λ is

U(x, ȳ) = Λ4 K(Λxa, ȳa). (59)

The corresponding action of a dilatation on a state ψ(z) ∈ H is thus D : ψ(z) �→ Λ4ψ(Λz), and
we see that (59) defines a unitary representation of the dilatation group on L2(Γ,O).

The idea that we exploit in arriving at explicit phase-space representations for unitary oper-
ators is the fact that on a Hilbert space with a reproducing kernel, every operator admits an
integral representation [43]. Thus, for example, the generator of the space-time translation
za → za + ba, where ba is a real four-vector, is given by baP̂a, where P̂a = i�∂/∂xa is the four-
momentum operator; but the four momentum operator P̂a admits the following phase-space
representation:

Pa(z, w̄) = − 3 · 29 � i
π4

gab(zb − w̄b)
[gab(za − w̄a)(zb − w̄b)]5

. (60)

7. Quantum measurements

To make sense of the notion of quantum detection in a relativistic setting we need positive
operator-valued measures [48–50]. In the present context a POVM can be formed by taking
a collection Φ of positive operators {φA(y, z̄)}A∈B on phase space labelled by elements of the
Borel σ-algebra B(Γ) generated by the open subsets of Γ. We require Φ to have the follow-
ing properties: (a) φA(y, z̄) is positive for each A ∈ B, (b) φΓ(y, z̄) = K(y, z̄), and (c) for any
countable collection of disjoint sets {An}n∈N in B with union A = ∪n∈N An it holds that

φA(x, z̄) =
∑

n

φAn(x, z̄). (61)

We consider now a measurement operation appropriate for detecting the location of an event
in phase space. The POVM is defined by

φA(x, z̄) =
∫

y∈A
K(x, ȳ) K(y, z̄) dμy, A ∈ B. (62)

The recorded outcome of such a measurement will be a measurable set A in phase space: for
instance, the detection of a particle in a certain space-time region, accompanied by a four-
momentum taking values in a certain range. One can have in mind, for example, the detection
of a cosmic ray. By (33) and (62), the probability that the event lies in the set A ∈ B is

P(A) =
∫
φA(y, z̄) ρ(z, ȳ) dμy dμz =

∫
z∈A

ρ(z, z̄) dμz. (63)

We see, in particular, in accordance with our earlier discussion, that ρ(z, z̄) is the probability
density for the outcome, and hence that the expectation value of any measurable function F :
Γ→ R is given by the integral

E[F] =
∫

F(z, z̄) ρ(z, z̄) dμz, (64)

which is well-defined and finite providing that∫
|F(z, z̄) | ρ(z, z̄) dμz < ∞. (65)

11
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Once a measurement has been performed and the outcome recorded, the state of the system
changes. To model this we require a transformation operator of the Krauss type [51, 52]:

TA(u, v, x̄, ȳ) =
∫
w∈A

K(u, w̄) K(v, w̄) K(w, x̄) K(w, ȳ)
K(w, w̄)

dμw. (66)

One can verify directly that the partial trace of the state transformation operator generates the
POVM. That is, we have∫

TA(x, y, ȳ, z̄) dμy = φA(x, z̄) (67)

for each A ∈ B. Now suppose that the system is initially in the state ρin(y, v̄). Then after the
measurement we find that

ρout(u, x̄) =

∫
TA(u, v, x̄, ȳ) ρin(y, v̄) dμv dμy∫

TA(z, v, z̄, ȳ) ρin(y, v̄) dμv dμy dμz
, (68)

which represents the transformed state that results when the measurement determines that
the phase-space event lies in the set A ∈ B. Substituting (66) in (68), and making use of the
reproducing property (33), we deduce that

ρout(u, x̄) =

∫
z∈AΨz(u, x̄) ρin(z, z̄) dμz∫

z∈Aρin(z, z̄) dμz
, (69)

where

Ψz(u, x̄) =
K(u, z̄) K(z, x̄)

K(z, z̄)
(70)

is the density matrix associated with the normalized wave function

ψz(u) =
K(u, z̄)

[K(z, z̄)]1/2
. (71)

Then in the limit that the recorded outcome shrinks to a phase-space point, we find that

ρout(u, x̄) = Ψz(u, x̄). (72)

In what follows we shall refer to a pure state of the form (71) as a coherent state with focus z.
We observe, in particular, that by virtue of (44) we have

ψz(u) =
8
√

3
π2

[gab(za − z̄a)(zb − z̄b)]2

[gab(ua − z̄a)(ub − z̄b)]4
. (73)

We can also refer to a pure density matrix of the form (70) as a coherent state, and we note that
the family of such density matrices satisfies a completeness relation of the form

∫
z
Ψz(x, ȳ) K(z, z̄) dμz = K(x, ȳ). (74)

That such a relation should hold is characteristic of the properties of coherent states [53, 54]
and follows from the fundamental identity (34), as does the structure of the POVM given by
(62). It is interesting then to note that the coherent states arising in the present context are in
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one-to-one correspondence with the so-called ‘elementary states’ that arise in the theory of
zero rest mass fields [9].

The foregoing analysis shows that when the measurement apparatus detects that an event
has taken place in a region A of phase space, the output state will in general be a mixed state,
given by the weighted average of the coherent state Ψz(u, x̄) over z ∈ A with respect to the
renormalized density

ρA(z, z̄) =
ρin(z, z̄)∫

y∈Aρin(y, ȳ) dμy
. (75)

If, however, the record shows a specific phase-space point z as the result, then the output den-
sity matrix will be the coherent state Ψz(u, x̄) parameterized by z. At the other extreme, if the
measurement is performed but the outcome is not recorded, then the focus is smeared over the
whole of the phase space, representing a decoherence effect, and we obtain

ρout(u, x̄) =
∫

Ψz(u, x̄) ρin(z, z̄) dμz. (76)

8. Properties of coherent states

On the matter of the interpretation of the coherent states, we remark that the family of coherent
states {ψz(u)} parameterized by z ∈ Γ is Poincaré invariant in the sense that under the unitary
transformation (53) one has

Ûψz(u) = ψw(u), (77)

where wa = La
b zb − Ba. In other words, the action of the unitary representation of the Poincaré

transformation on a coherent state ψz(u) focussed at z ∈ Γ is the coherent state ψw(u) focussed
at w, where w is the result of the corresponding inverse Poincaré transformation on z.

More generally, one can show that manifold of coherent states is invariant under the action
of the 15-parameter conformal group. To see this, consider first the dilatation group. From
(59) we see that Ûψz(u) = ψw(u), where wa = Λ−1za. Thus, the action of the dilatation on a
coherent state ψz(u) focussed at the phase-space point z is a coherent state ψw(u) focussed at
w, where w is the result of the corresponding inverse dilatation on z.

The action of the special conformal transformations on a coherent state is a little more subtle.
Writing Ûλ for the unitary operator (57), we find that

Ûλψz(u) =
8
√

3
π2

[(z − z̄)·(z − z̄)]2

(1 + 2λ·u + λ2u2)4

[(
u + u2λ

1 + 2λ · u + λ2u2
− z̄

)

·
(

u + u2λ

1 + 2λ · u + λ2u2
− z̄

)]−4

. (78)

A calculation then gives

(
u + u2λ

1 + 2λ · u + λ2u2
− z̄

)
·
(

u + u2λ

1 + 2λ · u + λ2u2
− z̄

)

=
1 − 2λ·z̄ + λ2 z̄2

1 + 2λ·u + λ2u2
[(u − w̄)·(u − w̄)] , (79)
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where

wa =
za − z2λa

1 − 2λ·z + λ2z2
. (80)

Thus the terms involving (1 + 2λ · u + λ2u2) appearing in (78) cancel, and we obtain

Ûλψz(u) =
8
√

3
π2

[(z − z̄)·(z − z̄)]2

(1 − 2λ·z̄ + λ2 z̄2)4

1
[(u − w̄)·(u − w̄)]4

. (81)

In fact, the right side of (81) is a phase-shifted version of the coherent state ψw(u) centred at
the phase-space point w:

Ûλψz(u) = eiθ 8
√

3
π2

[(w − w̄)·(w − w̄)]2

[(u − w̄)·(u − w̄)]4
, (82)

where the phase shift θ is given by

θ =
1
2i

log

[
1 − 2λ·z + λ2z2

1 − 2λ·z̄ + λ2z̄2

]
=

1
2i

log

[
z2w̄2

z̄2w2

]
. (83)

In other words, the result of the action of a special conformal transformation on a coherent
state ψz(u) focussed at z is a coherent state ψw(u) focussed at w with a phase shift θ, where w
is the result of the action of the corresponding inverse special conformal transformation on z.
Since the physical state of a system is defined up to an overall phase (or, equivalently, the phase
factor drops out if we consider the action of a conformal transformation on a pure-state density
matrix), we deduce that the manifold of coherent states is invariant under the 15-parameter
conformal group.

In calculations, it turns out to be convenient in many situations to work with Fourier trans-
forms. In fact, there are some remarkable identities that turn out to be useful in this connection.
The Fourier transform of an element ψ ∈ L2(Γ,O) is defined by

Ψ(pa) =
∫
Γ

exp (ipaz̄a)ψ(za) dμz. (84)

The inverse Fourier transform is then given by

ψ(za) =
1

8π5

∫
V+

exp (−ipaza)
(

pb pb
)2

Ψ(pa) d4 p, (85)

where the integration is over the interior of the forward cone defined by

V+ = {pa : pa pa > 0, p0 > 0}. (86)

The argument for (85) can be sketched as follows. Let I(za) denote the outcome of the integral
appearing on the right-hand side of (85). If we substitute (84) into the formula for I(za), we get

I(za) =
1

8π5

∫
V+

exp (−ipaza)
(

pb pb
)2

∫
Γ

exp (ipaw̄a)ψ(wa) dμw d4 p. (87)

Then, reversing the order of integration, we have

I(za) =
1

8π5

∫
Γ

[∫
V+

exp (−ipaza)
(

pb pb
)2

exp (ipaw̄a) d4 p

]
ψ(wa) dμw. (88)
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Now, the inner integral can be carried out explicitly, and we obtain

1
8π5

∫
V+

exp (−ipaza)
(

pb pb
)2

exp (ipaw̄a) d4 p = K(z, w̄), (89)

where the Bergman kernel is defined as in (44). An application of the reproducing property
(33) then shows that I(za) = ψ(za), and thus we obtain (85), the Fourier inversion formula.

Alternatively, suppose that we are given a map Ψ : V+ → C on the positive cone such that
∫

V+

(
pb pb

)2 |Ψ(pa)|2 d4 p < ∞, (90)

and we define a holomorphic function ψ : Γ→ C by use of (85). Let J(pa) denote the outcome
of the integral appearing on the right side of (84). Then for J(pa) we obtain

J(pa) =
1

8π5

∫
Γ

exp (ipaz̄a)
∫

V+
exp (−iqaza)

(
qbqb

)2
Ψ(qa) d4q dμz

=
1

8π5

∫
V+

[∫
Γ

exp (ipaz̄a − iqaza) dμz

] (
qbqb

)2
Ψ(qa) d4q. (91)

Let us consider the inner integration first. Writing za = xa − ira with xa real, and with ra

timelike and future pointing, we have

ipaz̄a − iqaza = i(pa − qa)xa − (pa + qa)ra. (92)

Since dμu = d4xd4r, we find that the x-integration over Minkowski space gives a delta function.
Thus setting ξa = pa + qa we have

∫
Γ

exp (ipaz̄a − iqaza) dμz = (2π)4 δ4(pa − qa)
∫

V+
exp (−ξara) d4r. (93)

For the r-integration, we can pass to spherical coordinates. Then if we set ξ2 = (ξ1)2 + (ξ2)2 +
(ξ3)2 and R2 = (r1)2 + (r2)2 + (r3)2, because ra is time-like we find

∫
V+

exp (−ξara) d4r =

∞∫
r0=0

r0∫
R=0

π∫
θ=0

2π∫
φ=0

exp
(
−ξ0r0 + ξR cos θ

)

× R2dr0 dR sin θ dθ dφ. (94)

Because ra is future pointing, the integrals can now be performed explicitly to give
∫

V+
exp (−ξara) d4r =

8π
(ξaξa)2

, (95)

from which it follows that
∫
Γ

exp (ipaz̄a − iqaza) dμz =
8π5

(qaqa)2
δ4(pa − qa). (96)

Inserting this expression back into (91) we immediately see that the result of the integral is
given by Ψ(pa).
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By a similar argument it follows from (89) that if Ψ(p) is the Fourier transform of a square-
integrable holomorphic function ψ(z), and Φ(p) is the Fourier transform of a square-integrable
holomorphic function φ(z), then we have a Parseval identity of the form∫

Γ

ψ(za) φ̄(̄za) dμz =
1

8π5

∫
V+

Ψ(p) (pa pa)2 Φ̄(p) d4 p. (97)

In the case of a coherent state ψz(u) with focus z ∈ Γ, a calculation shows that its Fourier
transform is given by

Ψz(pa) =
8
√

3
π2

[
gab(za − z̄a)(zb − z̄b)

]2
exp(īza pa). (98)

Now writing za = xa − ira, we have za − z̄a = −2ira, so

Ψz(pa) =
27
√

3
π2

(rara)2 e−ra pa
eixa pa

. (99)

This relation shows that as za varies the Fourier component Ψz(pa) behaves like a plane wave
in Minkowski space that has been extended into the future tube, but is damped exponentially
for large ra. We notice, in particular, that when ra is large, corresponding to the case where
focal point lies in a low-mass region of Γ, the damping of the high-energy Fourier components
is significant.

9. Phase-space localization

With a view to getting a better understanding of the degree of localization in phase space that
might be achievable in such a detection experiment, let us consider properties of the coherent
states in more detail.

For each choice of the focal point z ∈ Γ, the associated coherent state is represented by
the normalized wave function ψz(u). Now, if |φ〉 ∈ L2(H,O) is any other normalized state, we
have the Cauchy–Schwartz inequality

〈ψz |φ 〉 〈φ |ψz 〉 � 1. (100)

It then follows immediately from (33), (71) and (100) that

φ(z) φ̄(̄z) � K(z, z̄) (101)

for all z ∈ Γ, which shows that the amplitude of any pure state at a phase-space point z is
bounded by the amplitude at z of the coherent state with focus z.

Hence the coherent states are the most sharply peaked states, and the peak of a coherent
state occurs at its focus. It thus makes sense that if the measurement outcome takes the form of
a specific point in phase space, then the transformed state should be peaked as much as possible
at that point, and hence a coherent state with that peak, as we obtained in (72).

An interesting physical interpretation of the inequality (101) can be deduced if we write
Im(za) = −ra and make use of the phase-space correspondence (21). It follows from (44) that

K(z, z̄) =
3

4 π4 �8

(
gab pa pb

)4
. (102)

Then if we let

Mz =
(
gab pa pb

)1/2
(103)
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denote the mass associated with the phase-space point za, we can write (101) in the form of a
localization bound on the probability density. In particular, we obtain

ρ(z, z̄) � 3
4 π4 �8

M 8
z , (104)

which shows that states cannot be localized very sharply in regions of phase space with low
mass, but that for higher mass a much greater degree of localization can be achieved.

We can thus think of (104) as a localization theorem for relativistic quantum theory. Suppose
that a phase-space event of a relativistic system is characterized by a pure state φ(z). Then the
probability of detecting the event is determined by the normalized density function

ρ(z, z̄) = φ(z) φ̄(̄z). (105)

The localization theorem shows that the maximum value that the density function can take, at
any given point in the eight-dimensional phase space, is

ρmax(z, z̄) =
3

4 π4 λ̄ 8
z

, (106)

where λ̄z denotes the reduced Compton wavelength associated with the phase-space point z.
Now, if an event is detected to have occurred at a specific phase-space point z, then the resulting
output wave function will be given by the corresponding coherent state, for which the bound
in (104) is saturated. Since the density function ρ(z, z̄) has to integrate to unity over the phase
space, one is thus able to conclude that for a system of short Compton wavelength the event
will be highly localized in phase space. It follows that we can view the coherent states as repre-
senting in some sense the most ‘classical’ type of state that can be formed over the relativistic
phase space.

To gain further intuition about the nature of localization, let us consider an example in
which the state of the system is given by a holomorphic wave function |ξ〉 which we take
to be normalized, and an experimentalist wishes to determine whether a localized event at a
phase space point z can be detected. Since this is a ‘yes–no’ type of question, a projective
measurement is appropriate, and accordingly we consider the projection operator

Π̂z = |ψz〉 〈ψz|, (107)

where |ψz〉 denotes a normalized coherent state focussed at the point z. Here as an aid to intu-
ition we introduce the usual bra-ket notation and we add ‘hats’ to operators. Then |ξ〉 can be
split uniquely into a part that is localized at z and a part that is orthogonal to |ψz〉, so

| ξ〉 = |ψz〉 〈ψz| ξ〉 + (𝟙̂− Π̂z)| ξ〉. (108)

In fact, it is not difficult to show that if a holomorphic function θ(u) ∈ L2(H,O) is orthogonal
to a coherent state ψz(u) with focal point z, then θ(u) vanishes at the focal point. Thus, we can
say in a meaningful sense that any state that is orthogonal to a coherent sate with focus z is
delocalized away from the focal point.

If the outcome of the projective measurement is affirmative, then, by the usual Lüders-type
rules for projective measurements [55], the transformed state will be the localized state ψz(u).
Otherwise, we obtain the delocalized wave function given by the uniquely determined relative
state. In particular, if the initial state is given by the holomorphic function ξ(u) then the outcome
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of a projective measurement based on the projection operator associated with the coherent state
|ψz〉 will be affirmative with probability

p = 〈ψz| ξ 〉〈 ξ|ψz〉 =
ξ(z) ξ̄(̄z)
K(z, z̄)

. (109)

Now suppose that the wave function |ξ〉 is itself a coherent state, centred at the phase-space
point w = x − ir. Then we have |ξ〉 = |ψw〉, and the probability p of obtaining a ‘yes’ outcome
in a projective measurement involving the projection operator Π̂z with z = x′ − ir′ is given by
|〈ψw|ψz〉|2. A calculation shows that

p =

[
(w − w̄) · (w − w̄) (z − z̄) · (z − z̄)
(w − z̄) · (w − z̄) (z − w̄) · (z − w̄)

] 4

, (110)

which can be viewed as a cross ratio between the four points wa, za, w̄a and z̄a. In fact, it is
well known that the transition probability between two pure states in nonrelativistic quantum
mechanics admits a natural geometric interpretation as a cross ratio between points in complex
projective space [29].

But in the present context what is surprising is that the cross ratio involves points in complex
Minkowski space. It is a straightforward exercise to verify that the cross ratio is conformally
invariant and hence a fortiori Poincaré invariant.

10. Discussion

In summary, we have shown that the future tube possesses a phase-space geometry appropriate
both for (a) formulation of a consistent Hamiltonian mechanics for relativistic systems, and
(b) construction of a quantum theory of space-time events. In particular, the Hilbert space of
square-integrable holomorphic functions on the future tube can be interpreted as the pure state
space of relativistic quantum mechanics. The resulting structure is rich enough to allow for the
development of a manifestly covariant theory of measurement for the detection of phase-space
events. The theory incorporates a natural transformation rule for the quantum state after the
measurement, a concept that has hitherto been lacking in relativistic quantum theory. We are
also able to gain some understanding of the extent to which relativistic events can be localized.
An upper bound for the phase-space probability density can be determined, which is inversely
proportional to the eighth power of the Compton wavelength. The upper bound is achieved
at any given point in phase space by the probability density associated with the phase-space
coherent state that has its focal point at that point.
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