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4 Lévy-Ito models for interest rates . . . . . . . . . . . . . . . . . . . . . 151
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1. Introduction

Pricing models driven by Lévy processes have been considered by many authors
[1, 16, 19, 22, 25, 26, 28, 35, 41, 56, 61, 75]. We are concerned here with a broader
family of pricing models, namely, the so-called Lévy-Ito models. Such models
are driven both by a Brownian motion and a Poisson random measure, where
the Poisson random measure is associated with an underlying Lévy process.
The Lévy-Ito class is general enough to include many familiar models as special
cases, such as models driven by Lévy processes, yet offers ample opportunity for
the creation of new models, while retaining substantial tractability.

The need for a systematic theory of Lévy-Ito models in finance is plain, for if
an asset price is driven by a Lévy process, then the price process of an option or
other derivative based on that asset cannot itself in general be represented by a
Lévy model, but it can typically be represented by a Lévy-Ito model, provided
that the payoff is reasonably well behaved; and as we know well [9, 64], most
securities and other financial assets, both corporate and sovereign, can be viewed
as complex options based on the cash flows associated with one or more simpler
underlying assets. Our intention in the material that follows is to present the
theory of Lévy-Ito models for asset pricing from a unified point of view, working
in the real-world measure and emphasizing the role of the excess rate of return.
We present a number of specific examples of tractable Lévy-Ito models, all
suitable for implementation, ranging across a variety of asset classes, including
equities, interest rates, and foreign exchange, illustrating the flexibility of the
modelling framework.

The structure of the article is as follows. In Section 2 we present a synopsis
of the Lévy-Ito calculus. The approach that we adopt is rigorous, but we try
to avoid abstractions and material unnecessary for financial applications. In
Section 3, we present a theory of risky assets driven by Lévy-Ito processes. We
assume the existence of a Lévy-Ito pricing kernel (state price density) of the
form (3.16), then in Proposition 1 we deduce the general form that the price
process of a risky asset takes in a Lévy-Ito market model. We comment on the
nature of the excess rate of return above the short rate of interest in a Lévy-Ito
setting, and in equation (3.38) we show that the excess rate of return per unit
of jump intensity can be expressed as the product of a random volatility and a
random market-price-of-risk for each admissible jump vector of the Lévy process
associated with the Poisson random measure.

In Section 4 we develop a theory of interest rate models in a Lévy-Ito frame-
work, and in Propositions 2 and 3 we work out expressions for the money market
account and the discount bond system in such a model. The resulting theory
is more general than the well-known interest rate models driven by Brownian
motion and pure-jump Lévy processes, yet remains tractable and suitable for
implementation. As an example of a Lévy-Ito interest rate model, in Section 5 we
present an extension of the Vasicek model to the Lévy-Ito category, summarized
in Proposition 4, generalizing results of [79, 18, 67, 17, 31] and others.

In Section 6 we show that the so-called “chaotic” interest rate models [44,
13, 71] lift naturally to the Lévy-Ito category. In particular, in Proposition 5, we
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show that the pricing kernel in a Lévy-Ito model for interest rates can be written
as the conditional variance of a random variable that admits a Wiener chaos
expansion. Then we work out explicit formulae for the discount bond prices
in a class of second-order chaos models. In Section 7 we specialize to the case
of so-called factorizable chaos models, and in Proposition 6 we show how such
models can be calibrated to an arbitrary initial interest-rate term structure.

Finally, in Section 8 we consider Lévy-Ito models for foreign exchange, and in
Proposition 7 we present a general expression for the exchange rate matrix for
any number of currencies in a Lévy-Ito setting. We conclude with an analysis
of the excess rates of returns that can be exhibited by reciprocal exchange rate
pairs in a multi-currency situation. We prove that in an N -currency geometric
Brownian model driven by n Brownian motions (N ≥ 2, n ≥ 2) one can choose
the market-price-of-risk vectors in such a way that the excess rate of return
above the interest-rate differential is strictly positive for each currency pair.
In the case of a two-currency model driven by a single Brownian motion this
result is known as Siegel’s paradox [8, 76], and here we have shown that the
Siegel condition can be satisfied for each exchange rate pair in a multi-currency
Brownian market model. We are also able to present examples of multi-currency
Lévy models in which the Siegel condition is satisfied. This leads us to conjecture
that the Siegel condition can be satisfied in any multi-currency Lévy-Ito model
with an appropriate choice of the risk-aversion functions.

2. Synopsis of Lévy-Ito calculus

We begin with an overview of the Lévy-Ito calculus, which acts as the work
horse of the theory, and give examples of typical calculations. Although many
of the ideas that follow are well known, it is not easy to locate any one treatment
elsewhere in the literature that offers a concise synopsis of the main results of
the theory required for applications to financial modelling. As a consequence
this material may be of interest in its own right along with the applications
discussed in later sections of the article.

In Lévy-Ito models, the prices of financial assets are driven collectively by
an n-dimensional Brownian motion together with a Poisson random measure
defined on R

n
0 × R

+. Here we write R
n
0 = R

n\{0} and R
+ denotes the non-

negative real numbers. If A and B are subsets of a set E, then we set A\B =
A ∩ Bc where Bc = {ω ∈ E : ω /∈ B}. We refer to R

n
0 as the state space of the

Poisson random measure. In the class of models with which we work, the Poisson
random measure is associated with a pre-specified n-dimensional Lévy process.
That is, we assume the existence of an underlying Lévy process of dimension
n, and we consider the Poisson random measure determined by this process.
We emphasize that the class of models driven by the Poisson random measure
associated with a Lévy process is much larger than the class of models driven
by the Lévy process itself. For simplicity, we first discuss the situation where
the Brownian motion and the Poisson random measure are each of dimension
one; the higher dimensional case can then be reconstructed by analogy with a
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slight adjustment of notation. When we model the price dynamics of a single
risky asset, we find that for some purposes a one-dimensional model will suffice;
but when we consider collections of assets, as one must for interest rates and
foreign exchange, then the need for Lévy-Ito models with higher-dimensional
state spaces becomes apparent.

We assume that the reader has some familiarity with the mathematical theory
of Lévy processes, as represented in works such as [2, 4, 11, 20, 31, 47, 51, 55, 57,
69, 70, 74, 77], and the applications of Lévy processes in finance theory. We fix a
probability space (Ω,F ,P) and let {ξt}t≥0 be a one-dimensional Lévy process.
In our notation for stochastic processes, curly brackets {·} signify an indexed
set of random variables. The index space is usually indicated explicitly when the
process is defined, but can be dropped later for brevity, unless we wish to draw
attention to the index set. Thus, we can now refer to the process {ξt}, since we
have already mentioned the index set {t ∈ R

+}. The same convention applies
to filtrations. It is often taken as part of the definition of Lévy process that
the process has the càdlàg property; that is to say, there exists a set Ω1 ∈ F
with P(Ω1) = 1 on which the sample paths of {ξt} are right-continuous with left
limits.

Let us write B(R) for the Borel sigma algebra generated by the open sets
of R. B(R+), B(R0) and B(R+

0 ) are defined similarly. It is well known that a
one-dimensional Lévy process {ξt} admits a so-called Lévy-Ito decomposition
([74], theorem 19.2) of the form

ξt = αt + βWt +

∫ t

0

∫
|x|∈(0,1)

x Ñ(dx, ds) +

∫ t

0

∫
|x|≥1

xN(dx, ds). (2.1)

Here α and β are constants, {Wt}t≥0 is a standard Brownian motion, and
{N(dx, dt)} is an independent Poisson random measure. {N(dx, dt)} is more
specifically the random measure on R0 ×R

+ defined for A ∈ B(R0), t ≥ 0 and
ω ∈ Ω1 (with Ω1 as above) by

N(A, [0, t], ω) = #{s ∈ [0, t] : Δξs(ω) ∈ A}, (2.2)

and we set N(A, [0, t], ω) = 0 for ω /∈ Ω1. Thus, for any outcome of chance
ω ∈ Ω1, the value of the random variable N(A, [0, t]) measures the number of
jumps occurring in the time interval [0, t] for which the jump size lies in the
set A. The so-called Lévy measure ν(A) associated with {N(dx, dt)} is then
defined for A ∈ B(R0) by

E [N(A, [0, t])] = ν(A) t . (2.3)

By a Lévy measure on R we mean a sigma-finite measure {ν(dx)} on (R,B(R)),
not necessarily finite, such that ν({0}) = 0 and∫

x

min (1, |x|2) ν(dx) < ∞ , (2.4)

where the integral is understood to be taken over R.
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For any set A ∈ B(R) let us write Ā for the closure of A. Then we say that
A ∈ B(R0) is bounded below if 0 /∈ Ā. For example, if 0 < a < b then (a, b)
and [a, b) are bounded below, as are (−b,−a) and (−b,−a]. If A is bounded
below, then N(A, [0, t]) < ∞ almost surely for all t ≥ 0, and ν(A) < ∞. The
compensated Poisson random measure Ñ(A, [0, t]) for such a set is defined by

Ñ(A, [0, t]) = N(A, [0, t])− ν(A) t. (2.5)

If the set A is bounded below and we let t vary we obtain a Poisson process
{N(A, [0, t])}t≥0 with rate ν(A); then {N(A, [0, t])−ν(A)t}t≥0 is the correspond-
ing compensated Poisson process. In the case of the compensated measure it is
customary to write

Ñ(dx, ds) = N(dx, ds)− ν(dx) ds , (2.6)

but it should be noted that the integral with respect to Ñ(dx, ds) in the third
term on the right side of (2.1) cannot in general be split into separate terms
by use of (2.6). Rather, the term as a whole is defined by a limiting procedure
([74], page 120). In particular, given any decreasing sequence {εn}n∈N such that
εn ∈ R

+
0 , ε1 < 1, εn ↓ 0, the sets {An}n∈N defined by An = {x : εn < |x| < 1}

are each bounded below. Then for each t > 0 we set∫ t

0

∫
|x|∈(0,1)

x Ñ(dx, ds) = lim
n→∞

∫ t

0

∫
An

x Ñ(dx, ds) . (2.7)

If for any given value of n we use (2.6) to work out the integral on the right hand
side of (2.7), the result is a square-integrable random variable Yn ∈ L2(Ω,F ,P).
Then we can show that {Yn} is a Cauchy sequence that converges to an element
Y ∈ L2(Ω,F ,P), and this is the definition of the integral on the left-hand side
of equation (2.7).

From the foregoing we see that if we specify a Lévy process on (Ω,F ,P), we
determine a Brownian motion {Wt} and a Poisson random measure {N(dx, dt)}
with Lévy measure {ν(dx)}. By a Lévy-Ito process on (Ω,F ,P) we mean a
process {Yt} of the form

Yt = Y0 +

∫ t

0

αs ds+

∫ t

0

βs dWs

+

∫ t

0

∫
|x|∈(0,1)

γs(x) Ñ(dx, ds) +

∫ t

0

∫
|x|≥1

δs(x)N(dx, ds). (2.8)

The integrands appearing in the various terms here have to satisfy certain con-
ditions to ensure that the relevant integrals are well defined. More specifically,
we require that {αt}t≥0, {βt}t≥0, {γt(x)}t≥0, |x|∈[0,1) and {δt(x)}t≥0, |x|∈[1,∞) are
predictable and that the following holds for all t ≥ 0:

P

[∫ t

0

(
|αs|+ β 2

s +

∫
|x|<1

γ 2
s (x) ν(dx)

)
ds < ∞

]
= 1. (2.9)
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Here we recall that a process {φt}t≥0 on a probability space (Ω,F ,P) with
filtration {Ft}t≥0 is said to be predictable if the map φ : R

+ × Ω → R is
measurable with respect to the so-called predictable σ-algebra P, which is the
σ-algebra generated by all left-continuous adapted processes on (Ω,F ,P). More
precisely, P is the σ-algebra generated by all maps of the form θ : R+×Ω → R

such that (a) for fixed ω ∈ Ω the map t �→ θt(ω) is left-continuous, and (b) for
fixed t ∈ R

+ the map ω �→ θt(ω) is Ft− measurable, where we define

Ft− = σ

⎛
⎝ ⋃

0≤s<t

Fs

⎞
⎠ . (2.10)

For map-valued processes, such as the processes {γt(x)} and {δt(x)} appear-
ing in the final two terms of (2.8), we need a somewhat more general definition.
Let A ∈ B(R) be the domain in R on which the maps are to be defined, which
could be R itself. The predictable σ-algebra PA is then defined to be the σ-
algebra generated by all maps of the form θ : A × R

+ × Ω → R such that (a)
for fixed t ∈ R

+ the map (x, ω) �→ θt(x, ω) is B(A)⊗ Ft− measurable, and (b)
for fixed x ∈ A and ω ∈ Ω the map t �→ θt(x, ω) is left-continuous.

Any process {θt(x)}t≥0, x∈A defined by a PA-measurable map θ : A× R
+ ×

Ω → R is said to be predictable. If θ is predictable, then the process t �→ θt(x)
is adapted for each x ∈ A.

For A ∈ B(R) we define P2(A,R
+) to be the set of all mappings (modulo

equivalence) of the form θ : A × R
+ × Ω → R such that {θt(x)} is predictable

and the condition

P

[∫ t

0

∫
A

θ 2
s (x) ν(dx) ds < ∞

]
= 1 (2.11)

holds for t ≥ 0. Two such processes are taken to be equivalent if they coincide
almost surely with respect to ν×Leb×P on R⊗R

+⊗Ω. Thus, if θ and θ′ are two
such maps, we say that they are equivalent if the set {(x, t, ω) ∈ R⊗ R

+ ⊗ Ω :
θ(x, t, ω) 
= θ′(x, t, ω)} is of measure zero with respect to ν × Leb × P. We
note, in particular, by virtue of (2.9), that the process {γt(x)} appearing in
equation (2.8) is in P2(A,R

+) for A = {x ∈ R : |x| < 1}.
In calculations, one often finds it convenient to write (2.8) in differential form.

Then the initial condition is implicit and we have

dYt = αt dt+ βt dWt +

∫
|x|∈(0,1)

γt(x) Ñ(dx, dt) +

∫
|x|≥1

δt(x)N(dx, dt).

(2.12)

The meaning of such a differential form comes from the corresponding integral
expression.

We proceed to consider a generalized version of Ito’s lemma applicable to
Lévy-Ito processes. First we recall the form that Ito’s lemma takes for a one-
dimensional semimartingale on a probability space (Ω,F ,P) with filtration
{Ft}t≥0 (Protter [70], theorem 32).
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Theorem 1. Let {Yt}t≥0 be a semimartigale. Let the map F : R → R admit a
continuous second derivative and write F ′(x) and F ′′(x) for the first and second
derivatives of F at x ∈ R. Then

F (Yt) = F (Y0) +

∫ t

0

F ′(Ys−) dYs +
1
2

∫ t

0

F ′′(Ys−) d[Y, Y ]cs

+
∑

0<s≤t

{F (Ys)− F (Ys−)−ΔYs F
′(Ys−)} . (2.13)

Here, for any process {Xt}t≥0 admitting left limits we set

Xt− = lim
s ↑ t

Xs 1(t > 0) +X0 1(t = 0), (2.14)

and we write ΔXt = Xt −Xt− for t ≥ 0. The time integrals are taken over the
interval (0, t]. We use the notation {[Y, Y ]t}t≥0 to denote the quadratic variation
process, defined by

[Y, Y ]t = Y 2
t − 2

∫ t

0

Ys− dYs. (2.15)

Since the quadratic variation is nondecreasing and has right continuous paths
such that Δ[Y, Y ]t = (ΔYt)

2, it can decomposed into a continuous part and a
discontinuous part, and we write {[Y, Y ]ct} for the continuous part.

Now let {Yt}t≥0 be a Lévy-Ito process given in the form (2.8). Some simplifi-
cation can be achieved in the expression for {F (Yt)}t≥0. First, we can separate
the continuous terms and the jump terms, and use familiar formulae from the
continuous version of Ito’s lemma. Then we can re-express the infinite sum over
the jumps of the process as an integral with respect to the Poisson random
measure, splitting the contributions from the small jumps and the large jumps.
The result is

F (Yt) = F (Y0) +

∫ t

0

[
αsF

′(Ys−) +
1
2 β

2
sF

′′(Ys−)
]
ds+

∫ t

0

βsF
′(Ys−) dWs

+

∫ t

0

∫
|x|∈(0,1)

γs(x)F
′(Ys−) Ñ(dx, ds)

+

∫ t

0

∫
|x|∈(0,1)

[F (Ys− + γs(x))− F (Ys−)− γs(x)F
′(Ys−)]N(dx, ds)

+

∫ t

0

∫
|x|≥1

[F (Ys− + δs(x))− F (Ys−)]N(dx, ds). (2.16)

The version of Ito’s formula given by (2.16) is valid for any Lévy-Ito process
and for any continuously twice differentiable function F .

For financial modelling we need a further assumption. This concerns the
infinite sum over the small jumps implicit in the penultimate term of (2.16).
The point is that for financial applications (and various other applications as
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well) we would like to have necessary and sufficient conditions for {F (Yt)} itself
to be a Lévy-Ito process. This means that we need to ensure that after some
rearrangement the integral with respect to the Poisson random measure over the
small jumps in the next to last term in (2.16) can be replaced with an integral
with respect to the compensated Poisson random measure.

First we observe that the integrand {γs(x)F ′(Ys−)} belongs to the class
P2{(−1, 1),R+}. This ensures that the integral in the antepenultimate term
of (2.16) is almost surely finite. Indeed, if we multiply any process {ηt(x)} ∈
P2{(−1, 1),R+} with a left-continuous adapted process {Xt} then the result
{Xt ηt(x)} also lies in P2{(−1, 1),R+}. Thus to ensure that the Poisson ran-
dom measure in the penultimate term can be compensated, it is necessary and
sufficient to assume that F and {Yt} taken together are such that

{F (Ys− + γs(x))− F (Ys−)} ∈ P2{(−1, 1),R+}. (2.17)

The effect of this condition is to moderate the impact of the small jumps in such
a way that the integral of F (Ys− + γs(x))− F (Ys−) is well defined with respect
to the compensated Poisson random measure. For (2.17) to hold it suffices that
either (a) F is bounded, or (b) {γt(x)} is locally bounded in the sense that for
all t > 0 it holds that

P

[
sup

0≤s≤t
sup

0≤|x|<1

|γs(x)| < ∞
]
= 1. (2.18)

From a modelling perspective assumption (2.18) is not unreasonably restrictive,
for it simply means that the jumps in the process {F (Yt)} are not unduly
sensitive to small jumps in the underlying Lévy process. With condition (2.17)
in hand, a further simplification results in the form of Ito’s lemma, which then
takes the following form.

Theorem 2. Let {Yt}t≥0 be a Lévy-Ito process of the form (2.8), let the map
F : R → R admit a continuous second derivative, and assume that (2.17) holds.
Then

F (Yt) = F (Y0) +

∫ t

0

[
αsF

′(Ys−) +
1
2 β

2
sF

′′(Ys−)
]
ds+

∫ t

0

βsF
′(Ys−) dWs

+

∫ t

0

∫
|x|<1

[F (Ys− + γs(x))− F (Ys−)− γs(x)F
′(Ys−)] ν(dx) ds

+

∫ t

0

∫
|x|∈(0,1)

[F (Ys− + γs(x))− F (Ys−)] Ñ(dx, ds)

+

∫ t

0

∫
|x|≥1

[F (Ys− + δs(x))− F (Ys−)] N(dx, ds). (2.19)

This is the version of Ito’s lemma proved in Applebaum [2], theorem 4.4.7,
and also (in a somewhat more general form) in Ikeda & Watanabe [47], theo-
rem 5.1. Going forward, we shall work with Ito’s lemma in this form, making
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the necessary assumptions without further comment. We observe that if {Yt}
is a Lévy-Ito process and if F is continuously twice-differentiable, then we find
that {F (Yt)} is a Lévy-Ito process. In more detail, we have

F (Yt)− F (Y0) =

∫ t

0

As ds+

∫ t

0

Bs dWs +

∫ t

0

∫
|x|∈(0,1)

Cs(x) Ñ(dx, ds)

+

∫ t

0

∫
|x|≥1

Ds(x)N(dx, ds), (2.20)

where we define

As =αs F
′(Ys−) +

1

2
β 2
s F ′′(Ys−)

+

∫
|x|<1

[F (Ys− + γs(x))− F (Ys−)− γs(x)F
′(Ys−)] ν(dx) ,

Bs = βs F
′(Ys−) , Cs(x) = F (Ys− + γs(x))− F (Ys−) ,

Ds(x) = F (Ys− + δs(x))− F (Ys−). (2.21)

In particular, it follows as a consequence of Theorem 2 that for all t ≥ 0 it holds
that

P

[∫ t

0

(
|As|+B 2

s +

∫
|x|<1

C 2
s (x) ν(dx)

)
ds < ∞

]
= 1. (2.22)

Note that in calculations it can be useful to write (2.19) in differential form,
and we have

dF (Yt) =
[
αt F

′(Yt−) +
1
2β

2
t F ′′(Yt−)

]
dt+ βt F

′(Yt−) dWt

+

∫
|x|<1

[F (Yt− + γt(x))− F (Yt−)− γt(x)F
′(Yt−)] ν(dx)dt

+

∫
|x|∈(0,1)

[F (Yt− + γt(x))− F (Yt−)] Ñ(dx, dt)

+

∫
|x|≥1

[F (Yt− + δt(x))− F (Yt−)] N(dx, dt) . (2.23)

Example 1. As a step towards the construction of a pricing model we consider
the problem of solving a stochastic differential equation of the form

dZt = Zt−

[
μt dt+

∫
|x|∈(0,1)

Γt(x)Ñ(dx, dt) +

∫
|x|≥1

Δt(x)N(dx, dt)

]
, (2.24)

given the processes {μt}t≥0, {Γt(x)}t≥0, |x|∈(0,1) and {Δt(x)}t≥0, |x|∈[1,∞) as in-
puts, along with a strictly positive initial value Z0. We assume that {μt} is
predictable and such that

P

[∫ t

0

|μs| ds < ∞
]
= 1 (2.25)
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for t ≥ 0, {Γt(x)} ∈ P2{(−1, 1),R+}, and {Δt(x)} is predictable. We also
assume that

P

[
sup

0≤s≤t
sup

0≤|x|<1

Γs(x) < ∞
]
= 1 (2.26)

and

P

[
inf

0≤s≤t
inf

0≤|x|<1
Γs(x) > −1

]
= 1, P

[
inf

0≤s≤t
inf

1≤|x|<∞
Δs(x) > −1

]
= 1

(2.27)

for t ≥ 0. The latter two conditions ensure that {Zt} will not jump to a negative
value or to a value that is arbitrarily close to zero; whereas (2.26) and the first
part of (2.27) ensure that {Γt(x)} is locally bounded, so we can apply Ito’s
formula to obtain

d logZt = μt dt+

∫
|x|<1

(
log (1 + Γt(x))− Γt(x)

)
ν(dx)dt

+

∫
|x|∈(0,1)

log (1 + Γt(x)) Ñ(dx, dt)+

∫
|x|≥1

log (1 + Δt(x)) N(dx, dt) .

(2.28)

Then the solution of (2.24) is given by

Zt = Z0 exp

{∫ t

0

μs ds+

∫ t

0

∫
|x|<1

(
log(1 + Γs(x))− Γs(x)

)
ν(dx) ds

}

× exp

{∫ t

0

∫
|x|∈(0,1)

log(1 + Γs(x)) Ñ(dx, ds)

}

× exp

{∫ t

0

∫
|x|≥1

log(1 + Δs(x))N(dx, ds)

}
. (2.29)

We remark, finally, that in applications, it is often convenient to write (2.29) in
the alternative form

Zt = Z0 exp

{∫ t

0

μs ds−
∫ t

0

∫
|x|<1

(
eγs(x) − 1− γs(x)

)
ν(dx)ds

}

× exp

{∫ t

0

∫
|x|∈(0,1)

γs(x)Ñ(dx, ds) +

∫ t

0

∫
|x|≥1

δs(x)N(dx, ds)

}
,

(2.30)

where γt(x) = log (1 + Γt(x)) and δt(x) = log (1 + Δt(x)).

Example 2. Next we consider the construction of exponential martingales in a
Lévy-Ito framework. For this purpose, instead of (2.24) we look at the modified
equation

dZt = Zt−

[∫
|x|∈(0,1)

Γt(x)Ñ(dx, dt) +

∫
|x|≥1

Δt(x)Ñ(dx, dt)

]
, (2.31)
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the difference being that there is no drift term and we use the compensated
Poisson random measure in both integrals. This opens up the possibility that
we can make {Zt} a local martingale and even a martingale. The treatment
of the |x| ∈ (0, 1) integral is just as in the previous example. In order for the
compensator term to be defined in the |x| ≥ 1 integral we require that

P

[∫ t

0

∫
|x|≥1

|Δs(x)| ν(dx) ds < ∞
]
= 1 , (2.32)

for all t ≥ 0. As a consequence of (2.32) we can then write (2.31) in the form

dZt = Zt−

[
−
∫
|x|≥1

Δt(x) ν(dx)dt

+

∫
|x|∈(0,1)

Γt(x)Ñ(dx, dt) +

∫
|x|≥1

Δt(x)N(dx, dt)

]
. (2.33)

But we see that (2.33) is of the form (2.24), with

μt = −
∫
|x|≥1

Δt(x) ν(dx) . (2.34)

It follows by equation (2.29) in Example 1 that the solution takes the form

Zt = Z0 exp

{∫ t

0

∫
|x|∈(0,1)

log(1 + Γs(x)) Ñ(dx, ds)

}

× exp

{∫ t

0

∫
|x|<1

(
log(1 + Γs(x))− Γs(x)

)
ν(dx) ds

}

× exp

{∫ t

0

∫
|x|≥1

log(1 + Δs(x))N(dx, ds)−
∫ t

0

∫
|x|≥1

Δs(x) ν(dx) ds)

}
.

(2.35)

Next, we observe that if the process {Δt(x)} also satisfies

P

[∫ t

0

∫
|x|≥1

| log(1 + Δs(x)) | ν(dx) ds < ∞
]
= 1 (2.36)

for t ≥ 0, then one can introduce a compensator into the stochastic integral for
|x| ≥ 1 as well, and the expression for {Zt} can be put into the symmetrical
form

Zt = Z0 exp

{∫ t

0

∫
|x|∈(0,1)

log(1 + Γs(x)) Ñ(dx, ds)

}

× exp

{∫ t

0

∫
|x|<1

(
log(1 + Γs(x))− Γs(x)

)
ν(dx) ds

}
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× exp

{∫ t

0

∫
|x|≥1

log(1 + Δs(x)) Ñ(dx, ds)

}

× exp

{∫ t

0

∫
|x|≥1

(
log(1 + Δs(x))−Δs(x)

)
ν(dx) ds

}
. (2.37)

But (2.36) is satisfied under the conditions that we have imposed, since∣∣ log(1 + Δs(x))
∣∣

≤
∣∣∣∣ log

(
1 + inf

0≤s≤t
inf

1≤|x|<∞
Δs(x)

) ∣∣∣∣1(Δs(x) ≤ 0) + Δs(x)1(Δs(x) > 0),

(2.38)

which follows by (2.27) and the inequality log(1 + x) ≤ x for x > −1. Then we
can write (2.37) in the form

Zt = Z0 exp

{∫ t

0

∫
|x|>0

log(1 + Σs(x)) Ñ(dx, ds)

}

× exp

{∫ t

0

∫
x

(
log(1 + Σs(x))− Σs(x)

)
ν(dx) ds

}
, (2.39)

where

Σt(x) = 1(|x| ∈ [0, 1)) Γt(x) + 1(|x| ≥ 1)Δt(x), (2.40)

and (2.31) takes the compact form

dZt = Zt−

∫
|x|>0

Σt(x)Ñ(dx, dt) . (2.41)

It follows that {Zt} is a local martingale, and since {Zt} is strictly positive a
sufficient condition to ensure that it is a martingale is that

E[Zt] = Z0 (2.42)

for all t ≥ 0. The solution (2.39) can also be written as

Zt = Z0 exp

{∫ t

0

∫
|x|>0

σs(x)Ñ(dx, ds)−
∫ t

0

∫
x

(
eσs(x) − 1− σs(x)

)
ν(dx) ds

}
(2.43)

where

σt(x) = log(1 + Σt(x)), (2.44)

and thus

dZt = Zt−

∫
|x|>0

(
eσs(x) − 1

)
Ñ(dx, dt) . (2.45)
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We observe in the case of a pure-jump Lévy-Ito process, the volatility ap-
pears in two distinct forms. We call {σt(x)}t≥0 the exponential volatility and
{Σt(x)}t≥0 the dynamical volatility. The condition (2.32) that we have imposed
on the dynamic volatility translates into an analogous condition on the expo-
nential volatility, namely

P

[∫ t

0

∫
|x|≥1

∣∣∣eσs(x) − 1
∣∣∣ ν(dx) ds < ∞

]
= 1. (2.46)

Since ν([1,∞)) < ∞, this condition can be simplified by use of the identity∣∣∣eσs(x) − 1
∣∣∣ = 1(σs(x) > 0)(eσs(x) − 1) + 1(σs(x) < 0)(1− eσs(x)) , (2.47)

and thus in place of (2.46) we can write

P

[∫ t

0

∫
|x|≥1

eσs(x) ν(dx) ds < ∞
]
= 1 . (2.48)

Thus we require the Lévy measure to satisfy a type of exponential moment
condition. Such conditions arise in Lévy models for asset pricing, so it is not
surprising to see similar conditions arising in the context of Lévy-Ito models.
Note that by (2.36) we also have

P

[∫ t

0

∫
|x|≥1

|σs(x) | ν(dx) ds < ∞
]
= 1 . (2.49)

3. Modelling framework for risky assets

We begin with a few general remarks about asset pricing, following which we in-
troduce a class of Lévy-Ito models for risky assets. Let (Ω,F ,P) be a probability
space equipped with a filtration {Ft}t≥0 satisfying the usual conditions, where
P is the real-world measure. We write Et[ · ] for conditional expectation with
respect to Ft under P. Equalities and inequalities between random variables
are generally understood to hold P-almost-surely. We write mFt for the space
of Ft-measurable R-valued random variables. Price processes are modelled by
semimartingales, denominated in units of a fixed base currency. In particular,
it will be assumed that price processes are càdlàg.

We assume the existence of a so-called pricing kernel, following the definition
of [14], by which we mean a semimartingale {πt}t≥0, satisfying (i) πt > 0 for
t ≥ 0, (ii) E [πt ] < ∞ for t ≥ 0, and (iii) lim inft→∞ E [πt] = 0. The pricing
kernel has the defining property that if an asset with price {St}t≥0 delivers a
single random nonnegative cash flow XT ∈ mFT at time T such that πTXT is
integrable, and if the asset derives its value entirely from that cash flow, then
its value at any time t ≥ 0 is given by

St = 1{t<T}
1

πt
Et[πTXT ] . (3.1)
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Note that the value of the asset drops to zero when the cash flow occurs and
remains at that value thereafter. It is known from Jobert & Rogers [53] that if
a pricing operator is linear and satisfies some reasonable consistency conditions
that impose a mild form of absence of arbitrage, then it is of the form (3.1).
More generally, in the case of an asset that delivers a stream of nonnegative
dividends we introduce a random measure Δ(dt) on R

+ with the property that
for any A ∈ B(R+) the total dividend paid over the time period A is given
by Δ(A). We require that Δ(A) < ∞ almost surely for any bounded interval
of time. Then for any asset with value (St)t≥0 and dividend Δ(dt), the pricing
kernel must be such that the deflated total value (S∗

t )t≥0, defined by

S∗
t = πtSt +

∫ t

0

πs Δ(ds) , (3.2)

is a martingale. If the so-called transversality condition

lim inf
t→∞

[πtSt] = 0 (3.3)

is satisfied, we say that the asset derives its value entirely from the dividend
stream, and a calculation shows that

St =
1

πt
Et

[∫ ∞

t

πs Δ(ds)

]
. (3.4)

If an asset derives its value from a cash flow XT at time T we have Δ(dt) =
XT δT (dt), where δT (dt) denotes the Dirac measure concentrated with unit mass
at time T . It is then a straightforward exercise using the martingale property
of the total deflated value (3.2) to show that (3.4) reduces to (3.1) in that case.

For many applications we find it convenient to assume the existence of a
unit-initialized money-market asset with value {Bt}t≥0 such that

Bt = exp

[∫ t

0

rs ds

]
, (3.5)

for some specified short rate {rt}t≥0 satisfying

P

[∫ t

0

|rs| ds < ∞
]
= 1, (3.6)

for t > 0. In that case it follows that the pricing kernel must be of the form

πt =
ρt
Bt

, (3.7)

where {ρt}t≥0 is a strictly positive martingale, and that the price of a generic
asset paying no dividend takes the form

St =
Btψt

ρt
, (3.8)
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where {ψt}t≥0 is a martingale. If the asset is of the limited liability type, then
{ψt} is strictly positive. An example of a risky asset that pays no dividend
is a foreign money market account, with its value quoted in units of the base
currency.

We are now in a position to introduce a Lévy-Ito market model driven by
an n-dimensional Brownian motion and an independent n-dimensional Poisson
random measure. The market filtration is taken henceforth to be generated
by these processes. The market consists of a money market account, a pricing
kernel, and one or more risky assets, all modelled by Lévy-Ito processes. The
short rate is an exogenously specified predictable process and the pricing kernel
is assumed to satisfy a dynamical equation of the form

dπt = −πt−

[
rt dt+ κt · dWt +

∫
|x|>0

Λt(x) Ñ(dx, dt)

]
. (3.9)

Here the predictable vector-valued process κ : R+ ×Ω → R
n can be interpreted

as the Brownian market price of risk and is taken to be such that

P

[∫ t

0

κ 2
s ds < ∞

]
= 1 . (3.10)

The predictable process {Λt(x)} can be interpreted as the market price of jump
risk for jumps of type x in the n-dimensional state space of the Poisson random
measure. We assume, with an obvious slight generalization of the discussion in
the previous section to higher dimensions, that {Λt(x)} ∈ P2{Bn,R+}, where
B
n denotes the interior of the unit ball in R

n. Thus we have

P

[∫ t

0

∫
|x|<1

Λ 2
s (x) ν(dx) ds < ∞

]
= 1 , (3.11)

where

|x|2 =

n∑
α=1

(xα)2. (3.12)

To ensure that we can apply Ito’s formula, we assume that

P

[
sup

0≤s≤t
sup

0≤|x|<1

|Λs(x)| < ∞
]
= 1 (3.13)

for t ≥ 0, and to ensure that the pricing kernel never drops abruptly to a
negative value or to a value that is arbitrarily close to zero we assume that

P

[
sup

0≤s≤t
sup

0≤|x|<∞
Λs(x) < 1

]
= 1 (3.14)
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for all t ≥ 0. As a first step towards ensuring that {ρt} will be martingale we
require that

P

[∫ t

0

∫
|x|≥1

|Λs(x)| ν(dx) ds < ∞
]
= 1 (3.15)

for all t ≥ 0. The solution to the stochastic equation for the pricing kernel satis-
fying these conditions can then be worked out using the methods of Examples 1
and 2, and we obtain

πt = exp

[
−
∫ t

0

rs ds−
∫ t

0

κs · dWs − 1
2

∫ t

0

κ 2
s ds

]

× exp

[
−
∫ t

0

∫
|x|>0

λs(x) Ñ(dx, ds)−
∫ t

0

∫
x

(
e−λs(x) − 1 + λs(x)

)
ν(dx) ds

]
,

(3.16)

where the map λ : Rn × R
+ × Ω → R introduced here is defined by

λt(x) = − log
(
1− Λt(x)

)
. (3.17)

Note that λt(x) > 0 if and only if Λt(x) > 0. We observe that (3.13) and (3.15)
ensure that the integrals appearing in (3.16) are well-defined and almost surely
finite. In particular, we find that {λt(x)} ∈ P2{Bn,R+}. It also holds that

P

[∫ t

0

∫
|x|≥1

e−λs(x) ν(dx) ds < ∞
]
= 1 (3.18)

and

P

[∫ t

0

∫
|x|≥1

|λs(x)| ν(dx) ds < ∞
]
= 1 (3.19)

for all t ≥ 0. One can then check that (3.14) and (3.17) imply that

P

[
sup

0≤s≤t
sup

0≤|x|<∞
λs(x) < ∞

]
= 1 (3.20)

for all t ≥ 0. As a consequence of (3.7), the dynamical equation satisfied by {ρt}
is

dρt = −ρt−

[
κt · dWt +

∫
|x|>0

Λt(x) Ñ(dx, dt)

]
, (3.21)

from which it follows that

ρt = exp

[
−
∫ t

0

κs · dWs − 1
2

∫ t

0

κ 2
s ds

]
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× exp

[
−
∫ t

0

∫
|x|>0

λs(x) Ñ(dx, ds)−
∫ t

0

∫
x

(
e−λs(x) − 1 + λs(x)

)
ν(dx) ds

]
,

(3.22)

and we observe that {ρt} is a local martingale. Then to impose the martingale
property we require E[ρt] = 1 for all t > 0. The martingale property imposes fur-
ther conditions on {κt} and {λs(x)} in the initial specification of the dynamics
of the pricing kernel at (3.9).

We consider now a typical non-dividend paying limited-liability risky as-
set with price {St}t≥0 in a Lévy-Ito market with the pricing kernel {πt}, so
{πtSt}t≥0 is a strictly positive martingale. Writing ψt = πtSt let us assume that
the dynamics of {ψt}t≥0 take the form

dψt = ψt−

[
βt · dWt +

∫
|x|>0

Ψt(x) Ñ(dx, dt)

]
, (3.23)

for some predictable vector-valued process {βt} such that

P

[∫ t

0

β 2
s ds < ∞

]
= 1 , (3.24)

and for some predictable map-valued process {Ψt(x)} ∈ P2{Bn,R+}. We as-
sume that

P

[
sup

0≤s≤t
sup

0≤|x|<1

|Ψs(x)| < ∞
]
= 1 (3.25)

for t ≥ 0, and to ensure that {ψt} never drops abruptly to a negative value or
to a value that is arbitrarily close to zero we assume that

P

[
inf

0≤s≤t
inf

0≤|x|<∞
Ψs(x) > −1

]
= 1 (3.26)

for t ≥ 0. To ensure that the dynamics of {ψt} are well-defined for large jumps,
we require

P

[∫ t

0

∫
|x|≥1

|Ψs(x)| ν(dx) ds < ∞
]
= 1 (3.27)

for t ≥ 0. With these assumptions it follows that {ψt} takes the form

ψt =S0 exp

[∫ t

0

βs · dWs − 1
2

∫ t

0

β 2
s ds

]

× exp

[∫ t

0

∫
|x|>0

βs(x) Ñ(dx, ds)−
∫ t

0

∫
x

(
eβs(x) − 1− βs(x)

)
ν(dx) ds

]
.

(3.28)
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Here we have used the fact the π0 = 1 and we have set

βt(x) = log
(
1 + Ψt(x)

)
. (3.29)

We note, in particular, that {βt(x)} ∈ P2{Bn,R+} and that for all t ≥ 0 it
holds that

P

[∫ t

0

∫
|x|≥1

eβs(x) ν(dx) ds < ∞
]
= 1 (3.30)

and

P

[∫ t

0

∫
|x|≥1

|βs(x)| ν(dx) ds < ∞
]
= 1 (3.31)

and that for all t ≥ 0 it holds that

P

[
inf

0<s<t
inf

0≤|x|<∞
βs(x) > −∞

]
= 1. (3.32)

At this stage we are able to work out an explicit expression for the asset price
by taking the quotient (3.8). The result is as follows:

St =S0 Bt exp

[∫ t

0

(βs + κs) · dWs − 1
2

∫ t

0

β 2
s + 1

2

∫ t

0

κ 2
s ds

]

× exp

[∫ t

0

∫
|x|>0

(βs(x) + λs(x)) Ñ(dx, ds)

]

× exp

[
−
∫ t

0

∫
x

(
eβs(x) − 1− βs(x)

)
ν(dx) ds

]

× exp

[∫ t

0

∫
x

(
e−λs(x) − 1 + λs(x)

)
ν(dx) ds

]
. (3.33)

Defining σt = βt + κt and σt(x) = βt(x) + λt(x), we conclude that {St} takes
the form

St = S0 exp

[∫ t

0

(rs + λs σs) ds+

∫ t

0

σs · dWs − 1
2

∫ t

0

σ 2
s ds

]

× exp

[∫ t

0

∫
|x|>0

σs Ñ(dx, ds)−
∫ t

0

∫
x

[
e−λs(x)(eσs(x) − 1)− σs(x)

]
ν(dx) ds

]
.

(3.34)

This is the general form an asset price takes in a Lévy-Ito model. The input pro-
cesses {rt}, {λt} and {σt} are unconstrained apart from the conditions required
for their definition.
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Lemma 1. Writing Λt(x) = 1− e−λt(x) and Σt(x) = eσt(x) − 1, we have

P

[∫ t

0

∫
x

Λt(x) Σt(x) ν(dx) < ∞
]
= 1. (3.35)

Proof. We need to show that

P

[ ∫ t

0

∫
|x|<1

Λt(x) Σt(x) ν(dx)

+

∫ t

0

∫
|x|≥1

(1− e−λt(x))(eβt(x)+λt(x) − 1) ν(dx) < ∞
]
= 1. (3.36)

Since {Λt(x)} and {Σt(x)} are in P2{Bn,R+}, the Cauchy-Schwartz inequality
implies that the first term in the square brackets in (3.36) is finite almost surely.
Then as a consequence of (3.20) and (3.30) it follows that that the second term
is also finite almost surely.

After some simple rearrangement of (3.34) making use of (3.35), we obtain
the following:

Proposition 1. The price of a risky asset that pays no dividend in a general
Lévy-Ito model takes the form

St = S0 exp

[∫ t

0

(rs +Rs) ds+

∫ t

0

σs · dWs − 1
2

∫ t

0

σ 2
s ds

]

× exp

[∫ t

0

∫
|x|>0

log(1 + Σs(x))Ñ(dx, ds)

]

× exp

[
−
∫ t

0

∫
x

(Σs(x)− log(1 + Σs(x))) ν(dx) ds

]
, (3.37)

where {rt} is the interest rate, {Rt} is the excess rate of return above the interest
rate, and {σt} is the vector Brownian volatility. The excess rate of return is

Rt = κt · σt +

∫
x

Λt(x) Σt(x) ν(dx) , (3.38)

where {κt} is the vector Brownian market price of risk, {Λt(x)} is the market
price of jump risk, and {Σt(x)} is the dynamical jump volatility.

It may be helpful if we make a few interpretive remarks. First, we observe
that the risky asset satisfies the following dynamical equation:

dSt = St−

[
(rt +Rt) dt+ σt · dWt +

∫
|x|>0

Σt(x) Ñ(dx, dt)
]
. (3.39)

The dynamical volatility Σt(x) represents the riskiness of the asset. In particular,
Σt(x) determines the multiplicative factor by which the price of the asset jumps
if the jump at t in the underlying n-dimensional Lévy process is the vector x.
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Then Λt(x) is the market price of risk associated with x at time t. The product
Λt(x) Σt(x) is the excess rate of return per unit of jump intensity at x, and the
Lévy measure ν(dx) determines the jump intensity.

A sufficient condition for the excess rate of return to be strictly positive is
that the components of the vector processes σt and κt are positive for all t ≥ 0
and that Σt(x) > 0 and Λt(x) > 0 for all t ≥ 0 and all x ∈ R

n. Then the excess
rate of return is an increasing function of both the level of risk and level of
risk aversion. Proposition 1 extends analogous results known to hold for models
driven by Lévy processes [16, 60].

4. Lévy-Ito models for interest rates

Interest rate models driven by Lévy processes and other more general processes
with jumps have been considered by numerous authors in the past; see for
example [27, 29, 30, 6, 7, 34, 5, 40, 36, 14, 54] and references cited therein.
In what follows we look in detail at interest rate models of the Lévy-Ito type.
These models are of interest on account of their simplicity, tractability and their
suitability for implementation.

We begin with a few remarks about interest rate modelling in general. There
are several different ways of putting together interest rate models, depending
on the purpose of the model and on which ingredients of the model one regards
as primitives. This accounts for the various “approaches” to interest rate theory
that have been put forward over the last few decades. But even in the case of a
Brownian filtration the relationship of the various modelling frameworks is not
easy to summarize in a few words [42, 3, 46, 72, 52, 43].

We take the view that an interest-rate model consists of the following: (i) a
pricing kernel {πt}t≥0, (ii) a money market account {Bt}t≥0, and (iii) a system
of discount bonds {PtT }t≥0, T≥0 satisfying the relations governing risky assets
discussed in the Section 3. A unit discount bond with maturity T pays a dividend
of one unit of currency at T . Its value drops to zero at T and stays at that level
for all t > T . Thus,

lim
t ↑T

PtT = 1 (4.1)

and PtT = 0 for t ≥ T . Occasionally, it is useful to refer to the associated
discount function {P̄tT }0≤t≤T<∞, defined by P̄tT = PtT for 0 ≤ t < T < ∞ and
P̄TT = 1 for T ≥ 0. The discount function is not defined for t > T . One regards
PtT as being a price, whereas for each outcome of chance the discount factor
P̄tT is a pure number.

There are five processes that play key roles in the formulation of an interest
rate model of the Lévy-Ito type: the short rate {rt}, the market price of Brow-
nian risk {κt}, the market price of jump risk {Λt(x)}, the Brownian volatil-
ity structure {ωtT }, and the jump volatility structure {ΩtT (x)}. In so-called
short-rate models, the short rate and the market price of risk processes are the
“primitives”. Once these are specified, the remaining elements of the model can
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be worked out. In so-called volatility models, which have been popular with
practitioners, the discount bond volatility structures and the market price of
risk processes are the primitives, and from these we can work out the remaining
elements, such as the discount bond prices, the short rate, Libor rates, swap
rates, and so on.

Historically, in a Brownian context, short-rate models were the first to be
developed, in the 1970s and 1980s; volatility models came later, in the late 1980s
and on into the 1990s, in conjunction with the rise of interest rate derivatives
markets. A variant on the volatility model approach, dating from the late 1980s,
was to use the instantaneous forward rate volatilities as the primitives, along
with the market price of risk [39]. The resulting so-called HJM models were
highly influential in their day and had a transformative effect on the subject,
even though it can be difficult to argue on a practical basis why one would wish
to regard the unobservable instantaneous forward rate volatilities as primitives.
The so-called Libor market models, dating from the early and mid 1990s, also
fall into the volatility model category [12], and these too have been popular,
particularly for applications in industry.

A variation on the idea of the short-rate model also dating from the early
and mid 1990s was that of combining the short rate and the market price of risk
together to form a pricing kernel (or state-price density), and using that as the
primitive [21, 32, 73, 52].

From a broad perspective, short-rate models, volatility models, and pricing
kernel models are more or less equivalent, modulo technicalities. Where they dif-
fer is in the ease with which specific models can be developed, and in the facility
with which parametric and functional degrees of freedom can be incorporated
in order to calibrate the models to market data.

When it comes to the formulation of Lévy-Ito models for interest rates, it
will be convenient to begin with the volatility approach. This is because the
ideas that we have developed in the previous section concerning risky assets
can be carried over directly. We regard the discount bond volatility structures
as being given, along with the associated market prices of risk. Following the
scheme outlined in the previous section, including specification of the pricing
kernel according to equation (3.16), we treat each discount bond as a risky asset,
and for the dynamics of a T -maturity bond we write

dPtT = P−
tT

[(
rt + κt · ωtT +

∫
x

Λt(x) ΩtT (x) ν(dx)

)
dt

+ ωtT · dWt +

∫
|x|>0

ΩtT (x) Ñ(dx, dt)

]
. (4.2)

Here for convenience we write

P−
tT = lim

s ↑ t
PsT . (4.3)

The discount bond Brownian vector volatility structure and Poisson jump vol-
atility structure are denoted {ωtT } and {ΩtT (x)}, respectively. Then as a con-
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sequence of Proposition 1 we deduce that the discount bond system takes the
form

PtT =1(t < T )P0T exp

[∫ t

0

(rs +RsT ) ds+

∫ t

0

ωsT · dWs

]

× exp

[∫ t

0

∫
|x|>0

log(1 + ΩsT (x)) Ñ(dx, ds)

]

× exp

[
−1

2

∫ t

0

ω 2
sT ds−

∫ t

0

∫
x

(ΩsT (x)− log(1 + ΩsT (x))) ν(dx) ds

]
,

(4.4)

where the excess rate of return is given for t < T by

RtT = κt · ωtT +

∫
x

Λt(x) ΩtT (x) ν(dx) . (4.5)

We require that the volatility structures satisfy

lim
t ↑T

ωtT = 0, lim
t ↑T

ΩtT = 0 (4.6)

for each T > 0. It follows then from the maturity condition on the discount
bond and the definition of the unit-initialized money market account that we
have the following:

Proposition 2. In a Lévy-Ito interest rate model, let the vector market price of
Brownian risk {κt}, the vector Brownian volatility structure {ωtT }, the market
price of jump risk {Λt(x)}, and the jump volatility structure {ΩtT (x)} be given,
along with the initial term structure {P0t}t>0. Then the money market account
takes the form

Bt =(P0t)
−1 exp

[
−
∫ t

0

Rst ds−
∫ t

0

ωst · dWs

]

× exp

[
−
∫ t

0

∫
|x|>0

log(1 + Ωst(x))Ñ(dx, ds)

]

× exp

[
1
2

∫ t

0

ω 2
st ds+

∫ t

0

∫
x

(Ωst(x)− log(1 + Ωst(x))) ν(dx) ds

]
, (4.7)

where {Rst} is given by (4.5).

Substituting (4.7) into (4.4), we obtain the following general representation
of interest rates in a Lévy-Ito setting:

Proposition 3. In a Lévy-Ito interest rate model, let the vector market price of
Brownian risk {κt}, the vector Brownian volatility structure {ωtT }, the market
price of jump risk {Λt(x)}, and the jump volatility structure {ΩtT (x)} be given,
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along with the initial term structure {P0t}t>0. Then the price of a unit discount
bond with maturity T takes the form

PtT = 1(t < T )P0tT exp

[∫ t

0

κt · (ωsT − ωst) ds

]

× exp

[∫ t

0

∫
x

Λs(x) (ΩsT (x)− Ωst(x)) ν(dx) ds

]

× exp

[∫ t

0

(ωsT − ωst) · dWs − 1
2

∫ t

0

(ω 2
sT − ω 2

st) ds

]

× exp

[∫ t

0

∫
|x|>0

log

(
1 + ΩsT (x)

1 + Ωst(x)

)
Ñ(dx, ds)

]

× exp

[
−
∫ t

0

∫
x

(
ΩsT (x)− Ωst(x)− log

(
1 + ΩsT (x)

1 + Ωst(x)

))
ν(dx) ds

]
,

(4.8)

where P0tT = P0T /P0t denotes the forward price made at time 0 for purchase
at time t of a unit T -maturity bond.

Thus we see that once the initial term structure, the market price of risk
processes, and the volatility structures have been specified, the money market
account and the discount bond prices are determined. To propose a specific
interest rate model one needs to choose a parametric form for the market prices
of risk and the volatility structures sufficiently general to allow one to calibrate
the model to the initial term structure and to an appropriate range of liquid
market prices for interest rate options, futures contracts, and other derivatives.
The resulting fully calibrated model can then be used both in simulation studies
for risk management and investment analysis, as well as for pricing and trading
complex derivatives. The Lévy-Ito models have an advantage over Lévy models
and Brownian models in that the functional freedom available for calibration in
the Lévy-Ito case is much more flexible.

5. Vasicek model of the Lévy-Ito type

As a non-trivial example of a Lévy-Ito interest rate model derived via the short-
rate method, we construct a Vasicek model of the Lévy-Ito type. In the Lévy-Ito
Vasicek model, the short rate {rt}t≥0 is taken to be a mean-reverting process of
the Ornstein-Uhlenbeck (OU) type, satisfying a stochastic differential equation
of the form

drt = k(θ − rt) dt− κ(t) dWt −
∫
|x|>0

σ(x, t) Ñ(dx, dt) , (5.1)

where x ∈ R
n. The strictly positive constants k and θ denote the mean reversion

rate and the mean reversion level. We assume that the deterministic function
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κ : R+ → R
+ satisfies ∫ t

0

κ2(s) ds < ∞ , (5.2)

for all t > 0, and that the left-continuous deterministic function σ : Rn ×R
+ →

R
+ satisfies∫ t

0

∫
|x|<1

σ2(x, s) ν(dx) ds < ∞ ,

∫ t

0

∫
|x|≥1

exp

[
1

k
σ(x, s)

]
ν(dx) ds < ∞ ,

(5.3)

for all t > 0. The initial value of the short rate is r0 and the initial value of
the money market account is unity. In a more general version of the model we
could also let k and θ be functions of time, but for simplicity we keep these
parameters constant. To ease the notation further going forward, we omit the
Brownian term. This term can be easily restored. The risk aversion process is
taken to be a left-continuous deterministic function λ : Rn × R

+ → R
+ chosen

such that∫ t

0

∫
|x|<1

λ2(x, s) ν(dx) ds < ∞ ,

∫ t

0

∫
|x|≥1

λ(x, s) ν(dx) ds < ∞ , (5.4)

for t > 0. Then the strictly positive process {Mt}t≥0 defined by

Mt = exp

[
−
∫ t

0

∫
|x|>0

λ(x, s) Ñ(dx, ds)

−
∫ t

0

∫
x

(
e−λ(x,s) − 1 + λ(x, s)

)
ν(dx) ds

]
(5.5)

is a martingale, and the stochastic differential equation (5.1) can be solved to
give

rt = θ + (r0 − θ) e−kt −
∫ t

0

∫
|x|>0

ek(s−t)σ(x, s) Ñ(dx, ds) . (5.6)

We observe that the mean of rt is θ+ (r0 − θ) e−kt and that for the variance we
have

Var [rt] =

∫ t

0

∫
x

e2k(s−t)σ2(x, s) ν(dx) ds. (5.7)

To obtain explicit formulae for the money market account (3.5) and the
pricing kernel (3.7), we require an expression for the integrated short rate,

It =

∫ t

0

rs ds . (5.8)
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This can be obtained by integrating (5.1) directly and rearranging the result.
We get

It = θt− 1

k
(rt − r0)−

1

k

∫ t

0

∫
|x|>0

σ(x, s) Ñ(dx, ds) . (5.9)

It follows that the money market account is given by

Bt = exp

[
θt− 1

k
(rt − r0)−

1

k

∫ t

0

∫
|x|>0

σ(x, s) Ñ(dx, ds)

]
, (5.10)

and that the pricing kernel can be expressed in the form

πt = exp

[
−θt+

1

k
(rt − r0)

]
exp

[∫ t

0

∫
|x|>0

(
1

k
σ(x, s)− λ(x, s)

)
Ñ(dx, ds)

]

× exp

[
−
∫ t

0

∫
x

(
e−λ(x,s) − 1 + λ(x, s)

)
ν(dx) ds

]
. (5.11)

Armed with these expressions, we proceed to derive an expression for the price
of a discount bond using the well-known discount-bond valuation formula of
Constantinides [21]:

PtT = 1{t < T} 1

πt
Et[πT ] . (5.12)

The conditional expectation of πT is given by

Et[πT ] = exp

[
−θT − 1

k

(
1− e−kT

)
(r0 − θ)

]

× exp

[
−
∫ T

0

∫
x

(
e−λ(x,s) − 1 + λ(x, s)

)
ν(dx) ds

]

× exp

[∫ t

0

∫
|x|>0

(
1

k

(
1− ek(s−T )

)
σ(x, s)− λ(x, s)

)
Ñ(dx, ds)

]

× E

[
exp

∫ T

t

∫
|x|>0

(
1

k

(
1− ek(s−T )

)
σ(x, s)− λ(x, s)

)
Ñ(dx, ds)

]
,

(5.13)

for t < T , which if we introduce the short rate takes the simpler form

Et[πT ] = exp

[
−θT − 1

k
(r0 − θ) +

1

k
e−k(T−t)(rt − θ)

]

× exp

[
−
∫ T

0

∫
x

(
e−λ(x,s) − 1 + λ(x, s)

)
ν(dx) ds

]
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× exp

[∫ t

0

∫
|x|>0

(
1

k
σ(x, s)− λ(x, s)

)
Ñ(dx, ds)

]

× E

[
exp

∫ T

t

∫
|x|>0

(
1

k

(
1− ek(s−T )

)
σ(x, s)− λ(x, s)

)
Ñ(dx, ds)

]
.

(5.14)

Then dividing by our expression (5.11) for the pricing kernel, one sees that there
is some cancelation and we obtain

1

πt
Et[πT ] = exp

[
−θ(T − t)− 1

k

(
1− e−k(T−t)

)
(rt − θ)

]

× exp

[
−
∫ T

t

∫
x

(
e−λ(x,s) − 1 + λ(x, s)

)
ν(dx) ds

]

× E

[
exp

∫ T

t

∫
|x|>0

(
1

k

(
1− ek(s−T )

)
σ(x, s)− λ(x, s)

)
Ñ(dx, ds)

]
.

(5.15)

It remains to work out the expectation in the third term. Now, for any deter-
ministic left-continuous process {f(x, t)}t≥0, x∈Rn satisfying

∫ t

0

∫
|x|<1

f2(x, s) ν(dx) ds < ∞ (5.16)

and ∫ t

0

∫
|x|≥1

ef(x,s) ν(dx) ds < ∞ ,

∫ t

0

∫
|x|≥1

|f(x, s)| ν(dx) ds < ∞ , (5.17)

for t ≥ 0, we can make use of the so-called exponential formula

Et

[
exp

∫ T

t

∫
|x|>0

f(x, s) Ñ(dx, ds)

]

= exp

[∫ T

t

∫
x

(
ef(x,s) − 1− f(x, s)

)
ν(dx) ds

]
. (5.18)

Therefore, if for each fixed T > 0 we define

fT (x, s) =
1

k

(
1− ek(s−T )

)
σ(x)− λ(x) (5.19)

for 0 ≤ s ≤ T , then by (5.3) and (5.4) we obtain

Et

[
exp

[∫ T

t

∫
|x|>0

fT (x, s) Ñ(dx, ds)

]]



158 G. Bouzianis et al.

= exp

[∫ T

t

∫
x

(
efT (x,s) − 1− fT (x, s)

)
ν(dx) ds

]
. (5.20)

Finally, using (5.15), (5.19), and (5.20), we arrive at the following:

Proposition 4. In a Lévy-Ito interest rate model for which the short rate of
interest {rt} satisfies an Ornstein-Uhlenbeck equation with mean reversion rate
k, with mean reversion level θ, with deterministic jump risk aversion {λ(x, t)},
and with deterministic jump volatility {σ(x, t)}, the discount bond system is
given for 0 ≤ t < T by

logPtT = −(T − t) θ +
1

k

(
1− ek(t−T )

)
(θ − rt)

+

∫ T

t

∫
x

[(
exp

[
1

k

(
1− ek(s−T )

)
σ(x, s)

]
− 1

)
e−λ(x,s)

− 1

k

(
1− ek(s−T )

)
σ(x, s)

]
ν(dx) ds . (5.21)

Thus, by use of a pricing kernel we have obtained the price of a unit discount
bond in the Lévy-Ito Vasicek model, generalizing results of [67, 17, 79, 18]. The
extra freedom provided by λ(x, t) and σ(x, t) gives the model extra flexibility for
fitting it to market data. An interesting features of the Lévy-Ito Vasicek model
is that by allowing risk aversion to vary as a function of jump size and time
one can let agents be, for example, much more risk-averse to negative jumps
than to positive jumps, while allowing for the possibility that the degree of risk
aversion for various jump levels may change as time passes. Such behavioral
characteristics can be accommodated into Lévy-Ito models. The so-called Lévy-
Vasicek models [67, 17, 31], obtained by setting n = 1 with λ(x, t) = λx and
σ(x, t) = σx for λ, σ ∈ R, constitute a more specialized class, and do not allow
for the possibility of showing different levels of risk aversion or volatility for
different jump sizes and time frames. In a Lévy-Vasicek model, once we reinstate
the Brownian term, the dynamical equation satisfied by the short rate takes the
form

drt = k(θ − rt) dt− κ dWt − σ dξt , ξt =

∫ t

0

∫
|x|>0

x Ñ(dx, ds) . (5.22)

It should be evident that the Lévy-Ito Vasicek model can be generalized by
restoring the Brownian term and incorporating a deterministic time dependence
in the mean reversion rate and the mean reversion level in the spirit of [45, 50].

6. Lévy-Ito chaos models for interest rates

The rather broad class of Lévy-Ito interest rate models that we investigate in this
section arises as an example of the use of the pricing kernel method and has the
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defining property that the pricing kernel can be expressed as the conditional
variance of an F∞-measurable square-integrable random variable. Now, it is
well known ([66], page 164) that the conditional variance of a square-integrable
random variable on a filtered probability space is a potential of type D. This
property makes such a process a viable candidate for consideration as a pricing
kernel [32, 73]. We shall be concerned in what follows with the more subtle
matter of determining the class of models for which the pricing kernel admits a
conditional variance representation. It is known that a large class of Brownian
interest rate models can be constructed with this property [71, 44, 13]. Here we
address the construction of a more general class of conditional variance models,
incorporating jumps.

The setup is as follows. We consider the Lévy-Ito model for the pricing kernel
{πt}t≥0 formulated as in Section 3. For simplicity we suppress the Brownian
dependence of this process. We assume that the interest rate {rt}t≥0 is strictly
positive and that the model supports the existence of a floating rate note paying
the short rate of interest on a unit principal on a continuous basis in perpetuity.
The value of such a note is unity. Thus, we have St = 1 for all t ≥ 0 and
Δ(dt) = rt dt, and by the valuation formula (3.4) we have

1 =
1

πt
Et

[∫ ∞

t

rsπs ds

]
. (6.1)

The intuition behind the pricing formula is that if interest is paid on a unit
principal on a continuous basis, then the account will accumulate in value on an
exponential basis. This leads to the standard expression for a continuous money
market account. But if the interest is paid out continuously as a dividend, then
the account itself must remain constant in value, and we are led to (6.1). It
follows from the foregoing considerations that the pricing kernel can be expressed
as a conditional expectation of the form

πt = Et

[∫ ∞

t

rsπs ds

]
. (6.2)

Such a relation holds in any pricing kernel model with positive interest admit-
ting a floating rate note [44, 13, 71]. In particular, we can take as our basic
assumption the condition that

E

[∫ ∞

0

rsπs ds

]
< ∞ , (6.3)

where the integrand is strictly positive. Now suppose that a process {γt(x)} is
predictable and satisfies

P

[∫ t

0

∫
x

γs(x)
2 ν(dx) ds < ∞

]
= 1 . (6.4)

Then the process {Xt} defined by

Xt =

∫ t

0

∫
|x|>0

γs(x) Ñ(dx, ds) (6.5)
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is a local martingale. If additionally

E

[∫ t

0

∫
x

γs(x)
2 ν(dx) ds

]
< ∞ (6.6)

for all t ≥ 0, then {Xt} is a square-integrable martingale with mean zero, and
we have

E
[
X 2

t

]
= E

[∫ t

0

∫
x

γs(x)
2 ν(dx) ds

]
. (6.7)

Then if

E

[∫ ∞

0

∫
x

γs(x)
2 ν(dx) ds

]
< ∞ , (6.8)

we find that the limit X∞ = limt→∞ Xt exists almost surely, that the random
variable X∞ is square-integrable, and that the martingale {Xt} is closed by
X∞. Thus, we conclude that if a predictable process {γt(x)} is such that (6.8)
holds, then the integral

X∞ =

∫ ∞

0

∫
|x|>0

γs(x) Ñ(dx, ds) (6.9)

is well-posed and

E
[
X 2

∞
]
< ∞. (6.10)

Returning to the construction of a pricing kernel, we consider a special case
of the preceding, for which the predictable process defined by

γt(x) =
1 ∧ |x|√∫

x
(1 ∧ |x|2) ν(dx)

√
rs−πs− (6.11)

satisfies (6.8) as a consequence of (6.3). It is then evident that the random
variable

X∞ =
1√∫

x
(1 ∧ |x|2) ν(dx)

∫ ∞

0

∫
|x|>0

√
rs−πs− (1 ∧ |x|) Ñ(dx, ds) , (6.12)

is F∞-measurable and square-integrable, where

F∞ = σ

⎛
⎝ ⋃

0≤t<∞
Ft

⎞
⎠ . (6.13)

We proceed to calculate the conditional variance of X∞, which is defined by

Vart[X∞] = Et

[
(X∞ − Et[X∞])2

]
. (6.14)
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To work out (6.14), we use the conditional Ito isometry for Poisson random
measure to obtain

Et

⎡
⎣(∫ ∞

t

∫
|x|>0

γs(x) Ñ(dx, ds)

)2
⎤
⎦ = Et

[∫ ∞

t

∫
x

γ 2
s (x) ν(dx) ds

]
, (6.15)

which holds under (6.8). A calculation making use of (6.12), (6.14) and (6.15)
then gives

Vart [X∞] = Et

[∫ ∞

t

rsπs ds

]
, (6.16)

and we see that the conditional variance of the random variable (6.12) is a
pricing kernel of the form (6.2). Thus, we have established the following:

Proposition 5. In a positive interest rate model driven by the Poisson random
measure associated with an n-dimensional Lévy process and supporting the ex-
istence of a continuous floating rate note, the pricing kernel can be expressed as
the conditional variance of a square-integrable F∞-measurable random variable.

We refer to the setup just described as a conditional variance representation
of the pricing kernel. This leads us to non-trivial extensions of results obtained
in the Brownian case in [44, 13, 71, 37, 78, 38], which we now proceed to discuss.

It is well known that in the case of a probability space equipped with the
filtration generated by a standard Brownian motion in n dimensions any square-
integrable F∞-measurable random variable admits a so-called Wiener chaos
expansion [80, 48]. The chaos expansion expresses the random variable in the
form of a convergent sum of multiple stochastic integrals, where the k-th term
involves an integrand given by a function of k time variables defined on a trian-
gular domain, satisfying a square-integrability condition.

This property extends to the case when the filtration is generated by a Poisson
random measure in n dimensions [49, 68, 59], in which case the k-th term of the
chaos expansion involves an integrand given by a function of k time variables
and k space variables, each such space integration being over a copy of the state
space of the Poisson random measure. As a consequence, the random variable
X∞ associated with the pricing kernel in any interest rate model of the Lévy-
Ito type admits a chaos expansion, providing that the model supports a floating
rate note that pays out interest on a continuous basis in perpetuity. If the chaos
expansion admits terms only up to order j, then we say that we have a general
j-th order chaos model. If the expansion consists exclusively of the term of order
j, then we say that we have a pure j-th order chaos model.

As an example of the resulting scheme, we shall present the form taken by
the discount bonds in a general second-order chaos model driven by Poisson
random measure. In this case we are given a pair of deterministic functions

{φs(x)}0≤s<∞, x∈Rn , {φs s1(x, x1)}0≤s1≤s<∞, x∈Rn, x1∈Rn (6.17)
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satisfying ∫ ∞

s=0

∫
x

φ 2
s (x) ν(dx) ds < ∞ , (6.18)

and ∫ ∞

s=0

∫
x

∫ s

s1=0

∫
x1

φ 2
s s1(x, x1) ν(dx1) ds1 ν(dx) ds < ∞. (6.19)

These two functions are used to define an F∞-measurable random variable given
by

X∞ =

∫ ∞

s=0

∫
|x|>0

φs(x) Ñ(dx, ds)

+

∫ ∞

s=0

∫
|x|>0

∫ s

s1=0

∫
|x1|>0

φs s1(x, x1) Ñ(dx1, ds1) Ñ(dx, ds), (6.20)

where we have x ∈ R
n and x1 ∈ R

n. The first step in the determination of the
associated interest rate model is to calculate the conditional variance of X∞.
The pricing kernel is

πt = Et

[
(X∞ − Et[X∞])2

]
. (6.21)

A calculation that includes breaking the time integration and making use of the
independent increments property gives

It =

∫ ∞

s=t

∫
|x|>0

φs(x) Ñ(dx, ds)

+

∫ ∞

s=t

∫
|x|>0

∫ s

s1=0

∫
|x1|>0

φs s1(x, x1) Ñ(dx1, ds1) Ñ(dx, ds) , (6.22)

where It = X∞ − Et[X∞]. Then we break the s1 integration at t to obtain

It =

∫ ∞

s=t

∫
|x|>0

(
φs(x) +

∫ t

s1=0

∫
|x1|>0

φs s1(x, x1) Ñ(dx1, ds1)

)
Ñ(dx, ds)

+

∫ ∞

s=t

∫
|x|>0

∫ s

s1=t

∫
|x1|>0

φs s1(x, x1) Ñ(dx1, ds1) Ñ(dx, ds) . (6.23)

Forming the square of (6.23) we get

I2t = ζt + ηt + 2θt, (6.24)

where

ζt =

(∫ ∞

s=t

∫
|x|>0

(
φs(x)+

∫ t

s1=0

∫
|x1|>0

φs s1(x, x1) Ñ(dx1, ds1)

)
Ñ(dx, ds)

)2

,

(6.25)
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ηt =

(∫ ∞

s=t

∫
|x|>0

∫ s

s1=t

∫
|x1|>0

φs s1(x, x1) Ñ(dx1, ds1) Ñ(dx, ds)

)2

, (6.26)

θt =

∫ ∞

s=t

∫
|x|>0

(
φs(x) +

∫ t

s1=0

∫
|x1|>0

φs s1(x, x1) Ñ(dx1, ds1)

)
Ñ(dx, ds)

×
∫ ∞

s=t

∫
|x|>0

∫ s

s1=t

∫
|x1|>0

φs s1(x, x1) Ñ(dx1, ds1) Ñ(dx, ds) . (6.27)

Then taking the conditional expectation of the above three terms and making
use of the Ito isometry for Poisson random measure we have

Et[ζt] =

∫ ∞

s=t

∫
|x|>0

(
φs(x) +

∫ t

s1=0

∫
|x1|>0

φs s1(x, x1) Ñ(dx1, ds1)

)2

ν(dx)ds,

(6.28)

Et[ηt] =

∫ ∞

s=t

∫
|x|>0

Et

⎡
⎣(∫ s

s1=t

∫
|x1|>0

φs s1(x, x1) Ñ(dx1, ds1)

)2
⎤
⎦ ν(dx)ds,

(6.29)

Et[θt] =

∫ ∞

s=t

∫
|x|>0

(
φs(x) +

∫ t

s1=0

∫
|x1|>0

φs s1(x, x1) Ñ(dx1, ds1)

)

× Et

[∫ s

s1=t

∫
|x1|>0

φs s1(x, x1) Ñ(dx1, ds1)

]
ν(dx)ds . (6.30)

We observe that (6.29) can be simplified further by use of the Ito isometry and
that (6.30) vanishes. Thus, the pricing kernel takes the following form:

πt =

∫ ∞

s=t

∫
x

(
φs(x) +

∫ t

s1=0

∫
|x1|>0

φs s1(x, x1) Ñ(dx1, ds1)

)2

ν(dx) ds

+

∫ ∞

s=t

∫
x

∫ s

s1=t

∫
x1

φ 2
s s1(x, x1) ν(dx1) ds1 ν(dx) ds. (6.31)

This formula allows one to work out expressions for the discount bond prices,
the short rate, and the market price of risk. Now, the price at time t of a bond
with maturity T is given by the standard valuation formula (5.12). A calculation
making use of (6.15) then shows that

Et [πT ] =

∫ ∞

s=T

∫
x

(
φs(x) +

∫ t

s1=0

∫
|x1|>0

φs s1(x, x1) Ñ(dx1, ds1)

)2

ν(dx) ds

+

∫ ∞

s=T

∫
x

∫ s

s1=t

∫
x1

φ 2
s s1(x, x1) ν(dx1) ds1 ν(dx) ds . (6.32)
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Then by inserting (6.31) and (6.32) into (5.12), we are able to determine the
bond price explicitly in the general second-order chaos model. Similar results
can be obtained for higher order levels in the chaos expansion and Brownian
terms can be added in as well.

7. Factorizable second-order chaos models

As a special case of the second-order chaos model one can consider what we
call factorizable models, corresponding to the situation where the deterministic
second-order chaos coefficient factorizes into a product of the form

φs s1(x, x1) = βs(x) γs1(x1) . (7.1)

Under this simplifying assumption, the pricing kernel takes the form

πt =

∫ ∞

s=t

∫
x

φ2
s(x) ν(dx) ds+

∫ ∞

s=t

∫
x

β2
s (x) ν(dx)

∫ s

s1=t

∫
x1

γ2
s1(x1) ν(dx1) ds1 ds

+ 2

∫ ∞

s=t

∫
x

φs(x)

∫ t

s1=0

∫
|x1|>0

βs(x) γs1(x1) Ñ(dx1, ds1) ν(dx) ds

+

∫ ∞

s=t

∫
x

(∫ t

s1=0

∫
|x1|>0

βs(x) γs1(x1) Ñ(dx1, ds1)

)2

ν(dx) ds. (7.2)

If we split the integration with respect to s1 in the first term this gives

πt =

∫ ∞

s=t

∫
x

φ2
s(x) ν(dx) ds

+

∫ ∞

s=t

∫
x

β2
s (x) ν(dx)

(∫ s

s1=0

∫
x1

γ2
s1(x1) ν(dx1)

−
∫ t

s1=0

∫
x1

γ2
s1(x1) ν(dx1) ds1

)
ds

+ 2

∫ ∞

s=t

∫
x

φs(x)βs(x) ν(dx) ds

∫ t

s1=0

∫
|x1|>0

γs1(x1) Ñ(dx1, ds1)

+

∫ ∞

s=t

∫
x

(∫ t

s1=0

∫
|x1|>0

βs(x) γs1(x1) Ñ(dx1, ds1)

)2

ν(dx) ds. (7.3)

Then we find that the pricing kernel is linear combination of a pair of martin-
gales. More precisely, if we define the process {Mt}t≥0 by setting

Mt =

∫ t

s1=0

∫
|x1|>0

γs1(x1) Ñ(dx1, ds1) , (7.4)

we find that {Mt} is a square-integrable martingale for which the associated
predictable quadratic variation process {Qt}t≥0 is given by

Qt =

∫ t

s1=0

∫
x1

γ 2
s1(x1) ν(dx1) ds1 . (7.5)
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Then one can check that the process {M 2
t − Qt}t≥0 is also a martingale, and

that the pricing kernel takes the form

πt = At +Bt Mt + Ct (M
2
t −Qt) , (7.6)

where the deterministic coefficients At, Bt and Ct are defined as follows:

At =

∫ ∞

t

∫
x

φ 2
s (x) ν(dx) ds

+

∫ ∞

t

∫
x

β 2
s (x) ν(dx)

∫ s

s1=0

∫
x1

γ 2
s1(x1) ν(dx1) ds1 ds ,

Bt = 2

∫ ∞

t

∫
x

φs(x)βs(x) ν(dx) ds , Ct =

∫ ∞

t

∫
x

β 2
s (x) ν(dx) ds . (7.7)

Taking the conditional expectation of πT , and using the martingale condition,
we obtain

Et[πT ] = AT +BT Mt + CT (M2
t −Qt) . (7.8)

Equations (7.6) and (7.8) then show that the bond price is given by a rational
function of Mt. More specifically, we see that PtT takes the form of a ratio of a
pair of quadratic polynomials in Mt with deterministic coefficients:

PtT = 1{t < T} AT +BT Mt + CT (M2
t −Qt)

At +Bt Mt + Ct (M2
t −Qt)

. (7.9)

Alternatively, one can view the bond price as being given by a linear rational
function of a pair of martingales. Remarkably, the structure of the bond price
system is identical to that arising in the factorizable second-order Brownian
chaos model [71, 44, 13], which also exhibits a linear rational structure.

We proceed to consider the calibration of the factorizable second-order chaos
model to market data. The first requirement that one can impose on any inter-
est rate model with freely specifiable time-dependent degrees of freedom is that
we should be able to calibrate the model to an arbitrarily specified initial yield
curve. Thus, in the present context we assume that the initial discount func-
tion {P̄0t}t≥0 is given in the form of a strictly decreasing function admitting a
continuous first derivative. The problem is to choose the deterministic functions
{φt(x)}, {βt(x)}, {γt(x)} in such a way that for t ≥ 0 we have

P̄0t = At /A0 . (7.10)

First, we notice that we can rescale {φt(x)} and {βt(x)} by a common constant
factor, without changing the resulting bond prices, in such a way that A0 = 1.
Once this is done, we must choose the renormalized functions {φt(x)}, {βt(x)},
{γt(x)} so that

P̄0t =

∫ ∞

t

∫
x

φ 2
s (x) ν(dx) ds
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+

∫ ∞

t

[∫
x

β 2
s (x)ν(dx)

∫ s

s1=0

∫
x1

γ 2
s1(x1)ν(dx1) ds1

]
ds. (7.11)

The next step is to differentiate each side of this equation with respect to t and
define the instantaneous forward rate

f0t = −d log P̄0t

dt
. (7.12)

Then the calibration condition takes the form

f0t P̄0t =

∫
x

φ 2
t (x) ν(dx) +

∫
x

β 2
t (x) ν(dx)

∫ t

0

∫
x1

γ 2
s1(x1) ν(dx1) ds1. (7.13)

Let us regard the function {γt(x)} as being a freely specifiable functional degree
of freedom of the model satisfying limt→∞ ht < ∞ and ht > 0 for t > 0, where

ht =

∫ t

0

∫
x1

γ 2
s1(x1) ν(dx1) ds1. (7.14)

Then we set θ2t (x) = β2
t (x)ht. The problem is thus to find {φt(x)} and {θt(x)}

such that

f0t P̄0t =

∫
x

[
φ 2
t (x) + θ 2

t (x)
]
ν(dx) (7.15)

for all t ≥ 0. This equation can be solved by setting

φ 2
t (x) = f0t P̄0t pt(x) , θ 2

t (x) = f0t P̄0t qt(x) , (7.16)

where the functions {pt(x)} and {qt(x)} are taken to be non-negative and such
that ∫

x

[ pt(x) + qt(x) ] ν(dx) = 1, (7.17)

for all t ≥ 0. The existence of functions satisfying (7.17) can be shown by

pt(x) =
p (1 ∧ x2)∫

x
(1 ∧ x2) ν(dx)

, qt(x) =
q (1 ∧ x2)∫

x
(1 ∧ x2) ν(dx)

, (7.18)

where p and q are positive constants such that p+q = 1; but clearly one can also
find more general functions satisfying (7.17). With these conditions imposed we
have satisfied (7.15). In summary, therefore, we have established the following:

Proposition 6. In a factorizable second-order chaos model, let the initial in-
stantaneous forward rate curve be given as a non-negative continuous function
{f0t}. Then a solution for the calibration of the model to this initial data is ob-
tained by letting {γt(x)} be given freely, defining {ht} as in (7.14), and letting
{φt(x)} and {βt(x)} be given by

φ2
t (x) = f0t P̄0t pt(x) , β2

t (x) =
1

ht
f0t P̄0t qt(x) , (7.19)

where {pt(x)} and {qt(x)} are non-negative and satisfy (7.17).



Lévy-Ito models in finance 167

The remaining functional degrees of freedom can be then used to calibrate
the model to the prices of other market instruments by methods similar to
those employed in [78, 38] in the Brownian case. One can also use the Lévy
measure itself as a functional degree of freedom for the purpose of calibration,
as discussed for example in [10].

8. Lévy-Ito models for foreign exchange

We consider a system of exchange rates {F ij
t }t≥0 for N currencies (i, j =

1, . . . , N). Here F ij
t denotes the price at time t of one unit of currency i expressed

in units of currency j. As in our earlier considerations, we let N(dx, dt) denote
the Poisson random measure associated with an underlying n-dimensional Lévy
process with Lévy measure ν(dx). Typically, we require that n ≥ N −1 in order
to ensure that the model has sufficient freedom. The idea is that we fix one
of the currencies as a base currency (or “domestic” currency) and we consider
the dynamics of the prices of the N − 1 remaining currencies when these prices
are expressed in units of the base currency. Therefore, we would like the state
space of the Lévy-Ito process to be at least of dimension N − 1. For instance,
in the case of three currencies, an underlying two-dimensional Lévy process is
the necessary minimal structure.

To construct the general form of the exchange rate matrix we model a system
of N pricing kernels {πi

t}t≥0, one for each currency, by setting

πi
t = πi

0 exp

[
−
∫ t

0

ris ds−
∫ t

0

∫
|x|>0

λi
s(x) Ñ(dx, ds)

−
∫ t

0

∫
x

(
e−λi

s(x) − 1 + λi
s(x)

)
ν(dx) ds

]
. (8.1)

Here we have suppressed the n-dimensional Brownian component of the Lévy-
Ito process; the general case including the Brownian terms can be easily recon-
structed. The same conditions are imposed on each of the pricing kernels here
that were imposed on the pricing kernel in Section 3, except that here it will be
convenient to give each pricing kernel a distinct initial value. The idea of having
a pricing kernel for each currency is that the pricing kernel for a given currency
can be used to value assets that are priced in that currency. If two economies
based on separate currencies are economically independent, then we would ex-
pect the corresponding pricing kernels to be independent in the probabilistic
sense. In reality, of course, the major economies are interdependent in various
complex ways, so in general we expect the pricing kernels associated with var-
ious currencies to exhibit correlations. Then the fundamental property of the
exchange rate matrix is that for each currency pair the relevant component of
the matrix is given by the ratio of the pricing kernels associated with the two
currencies [33, 73, 58]. More precisely, we have

F ij
t = πi

t /π
j
t . (8.2)
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We are then led to the following:

Proposition 7. In a general Lévy-Ito setting, the exchange rate matrix takes
the form

F ij
t = F ij

0 exp

[∫ t

0

(rjs − ris +Rij
s ) ds+

∫ t

0

∫
|x|>0

σij
s (x) Ñ(dx, ds)

]

× exp

[
−
∫ t

0

∫
x

(
eσ

ij
s (x) − 1− σij

s (x)
)
ν(dx) ds

]
, (8.3)

with initial exchange rate F ij
0 = πi

0 /π
j
0, where the excess rate of return is

Rij
t =

∫
x

(
eσ

ij
t (x) − 1

)(
1− e−λj

t(x)
)
ν(dx) , (8.4)

and for the exchange rate volatility one has

σij
t (x) = λj

t (x)− λi
t(x) . (8.5)

Proof. If we combine (8.1) and (8.2), a straightforward calculation gives

F ij
t = F ij

0 exp

[∫ t

0

(rjs − ris) ds+

∫ t

0

∫
|x|>0

σij
s (x) Ñ(dx, ds)

]

× exp

[
−
∫ t

0

∫
x

(
e−λi

s(x) − e−λj
s(x) + λi

s(x)− λj
s(x)

)
ν(dx) ds

]
.

(8.6)

Next we observe that by (3.18) and (3.20) it holds that

P

[∫ t

0

∫
|x|≥1

e−λi
s(x) ν(dx) ds < ∞

]
= 1 , P

[
sup

0≤s≤t
sup

0≤|x|<∞
λi
s(x) < ∞

]
= 1

(8.7)

for i = 1, . . . , n, from which we deduce that

P

[∫ t

0

∫
|x|≥1

eλ
j
s(x)−λi

s(x) ν(dx) ds < ∞
]
= 1 , (8.8)

for i, j = 1, . . . , n. It follows that Rij
t < ∞ almost surely for i, j = 1, . . . , n and

for all t ≥ 0, and hence we can regroup the terms in (8.6) to obtain (8.3).

In particular, one sees from Proposition 7 that once the short rates and the
risk aversion processes have been specified for each of the currencies, along
with the initial exchange rates, then the exchange rate dynamics are completely
determined. It is interesting to observe that for each pair of currencies the
exchange rate volatility decomposes into a pair of terms, one for each of the
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two currencies. The significance of this fact is that it seems that one cannot
model exchange rate volatility “directly” by simply positing an ad hoc form for
{σij

t (x)}. There is, of course, a substantial literature devoted to attempts at
modelling exchange rate volatility, and it has to be said that much of this is
carried out without taking into account the risk aversion functions associated
with each currency and the decomposition given by equation (8.5). We claim
that such investigations are more natural if the modelling is pursued at the level
of the individual risk aversion functions for the various currencies.

We turn now to consider the excess rate of return, which in a pure-jump Lévy-
Ito model for foreign exchange takes the form (8.4). It is interesting to ask if it is
possible for Rij

t to be positive for all currency pairs. If a model has this property,
we say that it satisfies the Siegel condition. Siegel [76] appears to have been
the first to identify the seemingly paradoxical fact that in a stochastic model
it is consistent, for example, for the EUR-USD exchange rate and the USD-
EUR exchange rate to exhibit positive excess rates of return simultaneously,
even though the exchange rates are inverses of one another. The problem of
determining whether it is possible for Rij

t to be positive for all currency pairs in
a setting with N currencies involves showing that N (N − 1) different exchange
rates have positive excess rates of return. The intuition is that if any of these
rates were to show a negative excess rate of return, then investors would sell off
the overpriced currency until a new price level was reached with the property
that the excess rate of return was no longer negative.

We prove the existence of N -currency models of the Lévy type in which all
N (N−1) excess rates of return are strictly positive. The argument is non-trivial
even in the Brownian case, so we consider that first. Then we look at a model
involving n identical copies of a given Lévy process. Next we construct a class of
N -currency Merton-type models, i.e. compound Poisson with Gaussian jumps.
Finally, we consider an N -currency model driven by an n-dimensional general-
ization of the variance gamma process. Based on these examples we conjecture
that the Siegel condition can be satisfied in a broad class of Lévy-Ito models.

Geometric Brownian motion model In the Brownian case we let {F ij
t }

denote a set of exchange rates between N currencies (i = 1, . . . , N) driven by
a family of n independent Brownian motions. The pricing kernel for currency i
is taken to be of the form

πi
t = πi

0 exp
[
−ri t− λi ·Wt − 1

2 λ
i · λi t

]
, (8.9)

where ri is the interest rate for currency i, λi is a vector in R
n for each value

of i, and {Wt} is a Brownian motion taking values in R
n. The dot denotes the

usual inner product between vectors in R
n. It follows from (8.2) that

F ij
t = F ij

0 exp
[
(rj − ri) t+Rij t+ σij ·Wt − 1

2 σ
ij · σij t

]
, (8.10)

where σij = λj − λi and Rij = σij · λj . Thus, the question is whether we can
choose the λi (i = 1, . . . , N) in such a way that for all i, j (i 
= j) one has(

λj − λi
)
· λj > 0. (8.11)
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The answer turns out to be yes, as the following construction shows. Let λi

(i = 1, . . . , N) be a set of N distinct vectors, each of the same length, so we
have λi · λi = L2 for some fixed length L > 0, for all i. Then for each pair i, j
(i 
= j) we have

λi · λj = L2 cos θij , (8.12)

where θij is the angle between the two vectors. We have assumed that the N
equal-length vectors are distinct, so θij 
= 0 for each pair i, j (i 
= j). As a
consequence we see that cos θij < 1 for each such pair, and this leads to the
result (8.11). Thus we have demonstrated the existence of N -currency geometric
Brownian motion models for which the Siegel condition holds for each currency
pair. More generally, we have shown that for any N ≥ 2 one can construct non-
trivial arbitrage-free foreign exchange models with the property that the excess
rate of return is positive for each of the N(N − 1) exchange rates.

Independent copies of a Lévy process As another example, based on
a suggestion made by an anonymous reviewer, let {Xi

t}, i = 1, . . . , N , be a
collection of N independent identical copies of a Lévy process {Xt}. We assume
that {Xt} admits exponential moments and hence that we can form the Lévy
exponent

ψ(α) =
1

t
logE [exp(αXt)] (8.13)

for α in some nontrivial interval containing the origin. Then we form a set of N
independent pricing kernels {πi

t} of the form

πi
t = πi

0 exp
[
−ri t− λXi

t − ψ(−λ) t
]
. (8.14)

Hence, for the associated exchange rate system we have

F ij
t = F ij

0 exp
[
(rj − ri) t+Rij t+ λ(Xj

t −Xi
t)− (ψ(λ) + ψ(−λ)) t

]
, (8.15)

where Rij = ψ(λ) + ψ(−λ) for all i, j (i 
= j). Thus all of the excess rates
of return are the same. Moreover, since Xj

t − Xi
t has mean zero for each cur-

rency pair, it follows by Jensen’s inequality that the excess rates of return are
positive. Thus we have an N -currency model driven by N Lévy processes with
the property that the excess rate of return is positive for each currency pair.
This example is a bit odd in the sense that all of the market prices of risk are
the same and all of the exchange rate volatilities are the same. Nevertheless, it
demonstrates the principle that the Siegel condition can hold consistently across
all currency pairs in an multi-currency Lévy market. If the Lévy process here
happens to be a Brownian motion, then the present example reduces to a special
case of the previous example.

Merton model We proceed to consider an N -currency model driven by an
(N−1)-dimensional pure-jump process of the Merton type [65]. It will suffice to
show the details of a three-currency model driven by a two-dimensional Merton
process; the reader will be able to supply the straightforward generalization
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to the N -currency situation. Thus, we consider a two-dimensional compound
Poisson process given by a pair of processes of the form

ξ1t =

Nt∑
κ=1

Xκ , ξ2t =

Nt∑
κ=1

Yκ , (8.16)

where the (Xκ)κ∈N constitute an independency of identically distributed random
variables, the (Yκ)κ∈N constitute another such independency, and {Nt}t≥0 is an
independent Poisson process. For fixed κ, the random variables Xκ and Yκ are
not necessarily independent, and for a typical such pair X,Y we write

φ(α, β) = E
[
eαX+β Y

]
, (8.17)

under the assumption that the moment generating function is finite for a non-
trivial range of values of α and β. The associated bivariate Lévy exponent is
then defined by

ψ(α, β) =
1

t
logE

[
eα ξ1t+β ξ2t

]
, (8.18)

and a calculation shows that

ψ(α, β) = m [φ(α, β)− 1] , (8.19)

wherem is the intensity of the underlying Poisson process. Thus, in this example
the jump times of the two processes coincide, but the jump sizes are random
and generally distinct. In the case of a Merton-type model, we have X,Y ∼
N(μ1, μ2, σ1, σ2, ρ), and hence

ψ(α, β) = m
[
exp

(
αμ1 + β μ2 +

1
2 α

2 σ2
1 +

1
2 β

2 σ2
2 + αβ σ1 σ2 ρ

)
− 1

]
. (8.20)

We introduce the vectors

ξt =
(
ξ1t , ξ

2
t

)
(8.21)

and

λ1 = (a1, b1) , λ2 = (a2, b2) , λ3 = (a3, b3) . (8.22)

For the pricing kernels associated with the three currencies we set

πi
t = πi

0 exp
[
−ri t− λi · ξt − ψ

(
λi
)
t
]
, (8.23)

for i = 1, 2, 3. The exchange rate matrix is then given by

F ij
t = F ij

0 exp
[(
rj − ri

)
t+Rij t+

(
λj − λi

)
· ξt − ψ

(
λj − λi

)
t
]
, (8.24)

where

Rij = ψ
(
λj − λi

)
+ ψ

(
−λj

)
− ψ

(
−λi

)
. (8.25)

It follows by (8.20) and (8.25) that to establish the existence of a three-currency
pure-jump model satisfying the Siegel condition it suffices to show that one can
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choose the parameters of the bivariate normal distribution along with the three
vectors {λi}i=1,2,3 so that

e(λ
j−λi)μT + 1

2 (λ
j−λi)C (λj−λi)

T

+ e−λj μT + 1
2 (λ

j)C (λj)
T

> e−λi μT + 1
2 (λ

i)C (λi)
T

+ 1 , (8.26)

where μ = (μ1, μ2), ( · )T denotes the transpose operation, and C is the co-
variance matrix of the N(μ1, μ2, σ1, σ2, ρ) distribution. To construct an explicit
example, let us assume that μ1 = 0, μ2 = 0, σ1 = 1, σ2 = 1, and ρ = 0. Then
condition (8.26) takes the form

e
1
2 [(aj − ai)

2 +(bj − bi)
2] + e

1
2 (a

2
j + b2j) > e

1
2 (a

2
i + b2i ) + 1 , (8.27)

where ai = (a1, a2, a3) and bi = (b1, b2, b3). The inequality (8.27) is manifestly
satisfied if we choose the vectors {λi}i=1,2,3 so that they are distinct and of
equal length; that is to say,

λ1 
= λ2, λ1 
= λ3, λ2 
= λ3, (8.28)

and ∥∥λ1
∥∥ =

∥∥λ2
∥∥ =

∥∥λ3
∥∥ . (8.29)

For then we have
a2i + b2i = a2j + b2j (8.30)

for each currency pair, but also

(aj − ai)
2 + (bj − bi)

2 > 0 , (8.31)

and hence (8.27). Thus we have demonstrated the existence of a non-trivial
three-currency finite-activity pure-jump Lévy model satisfying the Siegel condi-
tion for all six exchange rates. The corresponding construction for any number
of currencies is similar.

Variance-gamma model An interesting example of an infinite activity Lévy
process leading to a foreign exchange model satisfying the Siegel condition for
any number of currencies can be obtained as follows. We present the three-
currency case in full. First, let us recall a few details of the theory of the
variance-gamma process [61, 62, 63]. Let {Γt}t≥0 be a gamma process for which
the parameters are chosen such that E [Γt] = t, and Var [Γt] = t/m. We shall
refer to such a process as a standard gamma subordinator with intensity m, fol-
lowing [15, 16]. For further aspects of the gamma process see [23, 24, 81]. Then
by a variance-gamma process with intensity m, we mean a process {ξt}t≥0 of the
form ξt = WΓt , where {Wt}t≥0 is a standard Brownian motion and {Γt}t≥0 is
an independent standard gamma subordinator with intensity m. It is a straight-
forward exercise to check that

ψ(α) = −m log

(
1− α2

2m

)
, (8.32)
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for α such that
−

√
2m < α <

√
2m. (8.33)

In what follows we consider a three-currency exchange-rate system driven by
a generalization of the variance-gamma process. Let {Xt}t≥0, and {Yt}t≥0 be
independent Brownian motions, let {Γt}t≥0 be an independent standard gamma
subordinator with intensity m, and set

ξ1t = XΓt , ξ2t = YΓt . (8.34)

Then the vector {ξ1t , ξ2t }t≥0 is a two-dimensional Lévy process, and the associ-
ated Lévy exponent is given by

ψ(α, β) = −m log

(
1− α2 + β2

2m

)
, (8.35)

for α, β such that
0 ≤ α2 + β2 < 2m. (8.36)

Let us define the vector ξt as in equation (8.21), the vectors {λi}i=1,2,3 as in
equation (8.22), and {πi

t}i=1,2,3 as in equation (8.23). Then the exchange rate
matrix is given by (8.24), and the excess rate of return is given by (8.25). It
should be evident by virtue of (8.36) that in order for the pricing kernels to be
well defined the risk aversion vectors must be such that∥∥λi

∥∥ <
√
2m, (8.37)

for i = 1, 2, 3. To construct a class of models satisfying the Siegel condition, we
proceed thusly. Fix m, and let the vectors {λi}i=1,2,3 be distinct and of equal
length. It follows immediately that for each currency pair we have ψ

(
−λi

)
=

ψ
(
−λj

)
. Then the excess rate of return for each currency pair is well defined

and strictly positive if and only if ψ
(
λj − λi

)
> 0 , for all i, j such that i 
= j,

or equivalently

−m log

(
1−

(
λj − λi

)2
2m

)
> 0. (8.38)

Since the risk aversion vectors have been assumed to be distinct, it follows that
Rij > 0 for any currency pair if and only if∥∥λi − λj

∥∥ <
√
2m. (8.39)

Now, writing L for the common length of the risk aversion vectors, we have

(
λi − λj

)2
= 2L2 (1− cos θij), (8.40)

where θij denotes the angle between λi and λj . Hence, Rij > 0 if and only if

cos θij > 1− m

L2
. (8.41)



174 G. Bouzianis et al.

On the other hand, since L <
√
2m by (8.37), a sufficient condition to ensure

that the excess rate of return is positive for each currency pair is

cos θij >
1
2 , (8.42)

that is to say, that the angle between each of the risk aversion vectors is less
than sixty degrees. With this choice, we have thus shown the existence of a
three-currency infinite activity Lévy model satisfying the Siegel condition for
all six exchange rates. In fact, if

L2 < 1
2 m, (8.43)

then the risk aversion vectors can be at any angle relative to each other and
the Siegel condition will hold. The extension of the argument to four or more
currencies is straightforward.
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[5] Biagini, F. & Härtel, M. 2014 Behaviour of long-term yields in a Lévy term
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in asset pricing models. International Journal of Theoretical and Applied
Finance 22 (1), 195008:1–18. MR3923093

[11] Boyarchenko, S. I. & Levendorskii, S. Z. (2002) Non-Gaussian Merton-
Black-Scholes Theory. Singapore: World Scientific Publishing Company.
MR1904936

[12] Brace, A., Gaterek, D. & Musiela, M. (1996) The market model of interest
rate dynamics. In: Vasicek and Beyond (L. P. Hughston, ed.) chapter 19,
pages 305–326. London: Risk Publications. MR1446645

[13] Brody, D. C. & Hughston, L. P. (2004) Chaos and coherence: a new frame-
work for interest rate modelling. Proceedings of the Royal Society A 460,
85–110. MR2052257

[14] Brody, D. C. & Hughston, L. P. (2018) Social discounting and the long rate
of interest. Mathematical Finance 28, 306–334. MR3758925

[15] Brody, D. C., Hughston, L. P. & Macrina, A. (2008) Dam rain and cumula-
tive gain. Proceedings of the Royal Society A 464, 1801–1822. MR2403129

[16] Brody, D. C., Hughston, L. P. & Mackie, E. (2012) General theory of ge-
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arbitrage and completeness. Finance and Stochastics 9, 67–88. MR2210928

[30] Eberlein, E. & Ozkan, F. (2005) The Lévy Libor model. Finance and
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