
 1 

Incorporating Social Determinants of Health into 

Modelling of COVID-19 and other Infectious Diseases: A 

Baseline Socio-economic Compartmental Model 
 

Giorgos Galanis and Adam Hanieh 

 

 

Abstract 

 

The role of socio-economic conditions has been largely implicit in mathematical epidemiological 

models. However, measures to address the current pandemic, specifically the relevant 

interventions proposing physical distancing, have highlighted how social determinants affect 

contagion and mortality dynamics of COVID-19. For the most part, these social determinants are 

not present in either policy discussions or in relevant epidemiological models. We argue for the 

importance of incorporating relevant social determinants of health into the modelling dynamics 

of COVID-19, and show how global variation of these conditions may be integrated into relevant 

models. In doing so, we also highlight a key political economy aspect of reproduction dynamics 

in epidemics. 
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1. Introduction 

The extensive discussions around predictive modelling of SARS-CoV-2 (COVID-19) is 

commonly based on the use of mathematical epidemiological models. These largely originate in 

the work of Kermack and McKendrick (1927), and study the transition of individuals between 

different compartments that correspond to relevant health conditions. The simplest and most 

popular of these is the SIR model, which assumes that a given population is split between three 

compartments: Susceptible (S), Infected (I), and Recovered (R), where at every point in time 

some of the susceptible individuals become infected and some of the infected individuals 

recover. In the baseline version of the SIR model, immunity of the recovered is assumed, and as 

more people get infected the number of S diminishes, which eventually leads the contagion to die 

out.  

 

Models using this framework have been extended in different directions by dividing the 

population into additional compartments, adding stochasticity in the different transition 

probabilities and/or using an agent-based framework. For example, Prem et al. (2020) study the 

effects of physical distancing measures in Wuhan, China using an age-structured susceptible-

exposed-infected-removed (SEIR) model that includes the addition of an “exposed” 

compartment and the division of the population into 16 age categories. Kucharski et al. (2020) 

use a stochastic SEIR model to study the contagion dynamics in Wuhan and the transmission 

potential outside Wuhan. Klôh et al. (2020) use an agent-based model to assess interventions in 
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Rio de Janeiro, Brazil and Chang et al (2021) introduce mobility networks to an SEIR model and 

analyse the contagion dynamics across social groups.  In all cases of mathematical 

epidemiological models, the key focus remains the transition probabilities between different 

compartments, which are then used to analyse the contagion dynamics of a particular epidemic. 

 

Compartmental models have been the basis of a large part of COVID-19-related epidemiological 

research. In general, these models attempt to capture the combined interaction of a given viral 

epidemiology, the effects of relevant non-pharmaceutical interventions (NPIs), and the 

compliance of the public with these measures. They have guided much of the international policy 

response to COVID-19 (see McBryde et al. 2020 and Thomson, 2020) and have even garnered 

wider public media attention beyond epidemiological research circles. In this respect, the main 

NPIs under discussion have related to physical distancing between individuals. These types of 

policies aim to reduce the average number of contacts between individuals in close spatial 

proximity, which in turn, will lower on average the rate through which individuals get infected 

and hence the epidemic’s effective reproduction number (Paeng and Lee, 2017; Milner and 

Zhao, 2008; for example see Funk et al., 2010; Manfredi and D’Onofrio, 2013; Verelst et al., 

2016; Weston et al. 2018; Hauck, 2018; Di Guilmi et. al. 2020).  

 

It is our contention, however, that standard compartmental epidemiological models do not 

adequately consider the various social determinants of health that have a direct impact on the 

inequalities of health outcomes and the ability of populations to effectively comply with NPIs 

(McCartney et al 2019). Incorporating these social determinants into compartmental models can 

improve the predictive power and accuracy of modelling both with regards to contagion 
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dynamics and the severity of the relevant epidemic. Moreover, these can help us understand the 

impact of different social welfare regimes on the efficacy of a given set of NPIs.  

 

In what follows, we introduce a set of social determinants (SDs) that can be linked to relevant 

variables and used to assess the utility of various policy options. The focus of our discussion is 

on the global inequalities between high income and low-medium income countries (LMICs) 

although, as we note in the conclusion, the argument could be extended to examine inequalities 

within a single country or community. It is important to examine the situation of LMICs, due to 

the significant obstacles these countries face in implementing standard containment and 

mitigation policies (Ahmed et al. 2020). 

 

Our argument builds upon the Social Determinants of Health (SDH) literature, which emphasises 

the necessity of viewing health outcomes as a social phenomenon that demand a broad range of 

intersectoral initiatives (Solar and Irwin 2010; Krieger 2017). Social determinants of health are 

understood as the wider conditions in which people are born, live, and age. They encompass a 

variety of factors such as socioeconomic conditions, access to education and employment, the 

quality of urban and physical environments, robustness of social support networks, and access to 

health care (Adler and Stewart 2010; Gottlieb et al 2019). The insights of the SDH literature 

have had a demonstrable impact on the development of health policy at the global level. By and 

large, however, the various social determinants identified in this literature have not been 

incorporated into epidemiological modelling. This remains a significant gap in both 

understanding and addressing the differential vulnerabilities associated with pandemics such as 

COVID-19.   
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In this paper we address this gap, proposing a framework within the broad field of social 

epidemiology (Berkman and Kawachi 2000). We analyse how three SDs - conditions of 

employment, conditions of housing, and access and quality of health infrastructures - might 

affect the different transition rates between the various compartments in compartmental epidemic 

models. Our starting point is a version of the Susceptible Infected Recovered Deceased (SIRD) 

model, which we extend to allow the aforementioned SDs to influence the transition probabilities 

from Susceptible to Infected and from Infected to Deceased respectively. We have chosen this 

model as it is the simplest framework which includes the relevant compartments for the three 

SDs mentioned. However, we should note that our analysis could be easily extended to models 

which include more compartments and other characteristics, for example, different age cohorts as 

in Prem et al. (2020). 

 

Our choice of SDs draws upon key factors that have been highlighted in the SDH literature 

(Rolfe et al 2020; Braveman and Gottlieb 2014; Solar and Irwin 2010) but should be understood 

as merely illustrative of our broader argument. We recognise that a different range of SDs could 

be utilised, and also that social determinants of health are significantly co-constituted and 

mutually-reinforce one another (see the discussion of Solar and Irwin 2010, pp. 20-42). As our 

focus is on the social aspects that can be included in a mathematical epidemiological model, our 

starting point is the simplest possible model where we can add the social variables. We should 

note however, that the same intuition can hold even if complexity is added through the inclusion 

of more compartments, age cohorts and/or stochastic dynamics. Our contribution is twofold. By 

directly relating compartmental transition rates to quantifiable SDs, we are able to improve the 
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estimations of contagion dynamics of COVID-19. Second, we provide the basic structure of a 

framework that can be used to analyse the effects of SDs on epidemiological modelling for other 

infectious diseases. 

2. An SIRD Model 

For completeness we first present an SIRD model which will be extended in the next section. 

Assume a population of N individuals who at any point in time 𝑡, are split between: Susceptible 

(𝑆𝑡 ), Infected (𝐼𝑡 ), Recovered (𝑅𝑡), and Deceased (𝐷𝑡) with  

𝑆𝑡 + 𝐼𝑡 + 𝑅𝑡 + 𝐷𝑡 = 𝑁.   

Here we assume that all infected individuals are also infectious during the time that they are 

infected. While infected can be split into exposed but not infectious, on one hand, and infectious, 

on the other (this extension corresponds to the SEIRD model), this would not provide any 

additional insights with regards to our argument. This is because SDs would only influence the 

transition from susceptible to exposed and not affect the transition from exposed to infectious.   

 

The key dynamics of the model follow the idea that as individuals get infected the number of 

susceptible people decreases, and also that the more that people are infected at any point in time 

the easier it will be for the average susceptible individual to get infected. We also allow for a 

fraction 𝜀 of the recovered individuals to become susceptible per time step. This is captured by 

the following equation: 

𝑆𝑡+1 = 𝑆𝑡 + 𝜀 𝑅𝑡 − 𝛽(𝑆𝑡  + 𝜀 𝑅𝑡)𝐼𝑡 /𝑁,  (1) 

 



 7 

Where 𝛽 captures the average number of contacts per individual at each time step, times the 

probability of getting infected if meeting an infected individual and is known as the infection 

rate. Note that 0 ≤ 𝜀 ≤ 1 such that if 𝜀 = 0 it is equivalent to assuming that all recovered 

individuals become immune, which means that (1) would become  

𝑆𝑡+1 = 𝑆𝑡 − 𝛽𝑆𝑡 𝐼𝑡 /𝑁. 

While the latter special case follows the assumption of the recent models for COVID-19 (for 

example see Prem et al., 2020 or Kucharski et al., 2020), it is known that immunity may last for 

only a short period (Iwasaki, 2020). Furthermore, while our motivation is the current pandemic, 

our contribution aims to be more general. For these two reasons we use a more general form of 

the standard SIRD model. 

 

The simple framework that we use as our starting point here, assumes random mixing between 

the individuals within the population. This means that the probability of getting infected if 

susceptible (𝛽(𝑆𝑡  + 𝜀 𝑅𝑡)𝐼𝑡) is the product of 𝛽 with the number of susceptible and infected 

individuals and is the same across susceptible individuals. Physical distancing measures will 

have an effect of reducing the contact between susceptible and infected individuals hence 

reducing 𝛽.  

 

Equation (2) shows that the number of infected individuals in a given period is equal to the 

number that were infected the previous period plus the newly infected, minus a fraction of 

infected who have either recovered or become deceased: 

𝐼𝑡+1 =  𝐼𝑡 + 𝛽(𝑆𝑡  + 𝜀 𝑅𝑡)𝐼𝑡/𝑁 − 𝛾𝐼𝑡,  (2) 
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where 𝛾 captures the fraction of infected individuals who, per time step change compartment and 

move to recovered or deceased, hence 𝛾 can be understood as the inverse infection period. Put 

differently, 1/𝛾 captures the average period that individuals stay infected for some time before 

“moving” to the next compartment, thus, higher 𝛾 corresponds to a shorter infection period. The 

initial severity of the spread of the disease is given by 𝑅0 =
𝛽

𝛾
 also known as the basic 

reproduction number. The basic reproduction number refers to the time before any measures are 

imposed; and gives the information of how many individuals are expected to be infected by a 

single infected person. After measures have been imposed, we refer to the effective reproduction 

number which we denote by 𝑅𝑒. 

 

Let 𝛿 capture the case fatality ratio or CFR (the share of infected individuals which become 

deceased) and 1 − 𝛿 the share that recover after being infected, such that the evolution of the 

number of recovered and deceased individuals is given by the following equations: 

𝑅𝑡+1 = (1 − 𝜀)𝑅𝑡  + 𝛾(1 − 𝛿)𝐼𝑡 ,  (3) 

𝐷𝑡+1 = 𝐷𝑡 + 𝛾𝛿 𝐼𝑡.    (4) 

 

Equation (3) states that in every period the number of recovered is increased by the number 

infected who recovered but is decreased by a fraction 𝜀 of recovered individuals who become 

susceptible again. Equation (4) captures the evolution of the number of deceased individuals. 

 

The system of equations (1)-(4) capture the dynamics of COVID for given values of 𝛽, 𝛾, 𝛿 and 

𝜀.  However, as we demonstrate in the next section, both the speed of contagion of COVID-19 

and its mortality rate will be significantly influenced by SDs. This means that 𝛽 and 𝛿 can be 
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understood as functions of different SDs that can be quantified and explicitly included in future 

analysis. While we acknowledge that the same could be true for 𝛾, which, as we have mentioned, 

in this framework captures the inverse of the period being infected and infectious, we treat it here 

as in the standard epidemiological modelling literature.   

3. Social Determinants 

 

As noted, a large number of social determinants have been identified and explored in the 

literature as important factors in shaping health outcomes. It has further been observed that these 

factors are directly influenced by patterns of social stratification and social hierarchy, including 

class, income status, gender, and race/ethnicity (Solar and Irwin 2010; Braveman and Gottlieb 

2014).  Nonetheless, while there exists a wide range of possible SDH that could be incorporated 

into epidemiological modelling, we have selected three of the most commonly discussed with a 

clear and explicit bearing on the infection rate and on the CFR. We briefly discuss these SDs, 

their global variability, and their potential impact on the pandemic.  

 

SD1: Conditions of employment. Unemployment and levels of precarious, low-paid and 

temporary work are widely recognised in the SDH literature as an important determinant of 

health outcomes (Stringhini et al 2010; Bartley et al 2015), and public debates around how best 

to respond to COVID-19 have illustrated the mutually-reinforcing relationship between effective 

NPIs and conditions of employment. Calls for people to self-isolate when symptomatic – or the 

enforcement of longer periods of mandatory lockdowns – are economically challenging for those 

who cannot easily shift their work online, service sector employees who work in zero-hour 
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contracts, or those engaged in other kinds of short-term employment contracts. Availability of 

sick pay, childcare, and other forms of employment support also impact the ability of people to 

comply with NPIs (Chin et al 2020). As a result, conditions of employment bear directly on the 

degree of social contact between people (hence affecting the infection rate 𝛽) as well as the CFR. 

Recognising the fundamental consequences of these work patterns for public health, many 

European governments have announced far reaching financial packages to support those made 

unemployed or forced to stay at home during this crisis (HM Government 2020). 

 

However, in contrast to high income countries, most states around the world do not have the 

capacity to provide similar levels of financial support. According to the OECD (2019), around 

70% of all employment in developing and emerging countries takes place in the informal sector, 

where labour is unregulated, intermittent, and poorly remunerated. There is substantial variation 

in informality across regions, ranging from 86% in Africa to around 68% in the Middle East, 

Asia and the Pacific, and 40% in the Americas (OECD 2019). In these conditions, it is very 

difficult to implement effective physical distancing through longer periods of lockdown and 

social isolation because the majority of the population depends upon immediate daily wages for 

survival and lacks any savings. Indeed, as part of their COVID-19 strategy for developing 

countries, the International Labour Organization (ILO) has acknowledged that ‘physical 

distancing measures’ are an ‘impossible choice for informal economy workers’ (ILO April 

2020). These problems are compounded by the fact that there will almost certainly be very large 

increases in the numbers of ‘working poor’ as a direct result of the pandemic – creating a 

mutually-reinforcing feedback cycle between the pandemic and deleterious conditions of 

employment (Dimarco et al 2020). All of these features of LMIC labour markets have an impact 
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on 𝛽 and 𝛿 and, as we demonstrate below, can be incorporated into epidemiological modelling of 

the virus.  

 

SD2: Conditions of Housing. Conditions of housing encompass issues such as overcrowding and 

sub-standard buildings, lack of access to safe drinking water and other utilities, ineffective waste 

disposal, poor quality sanitation infrastructure and inadequate provision of affordable and quality 

housing stock. The SDH literature has illustrated a clear relationship between housing and 

deleterious social health outcomes (Krieger and Higgens 2002; Rolfe et al 2020, Kang et al 

2020). This is a global issue, but it is one that particularly impacts the estimated 1-1.6 billion 

people who live in slums and informal housing, a figure that represents around one-quarter of the 

world’s urban population (Habitat for Humanity 2020). Indeed, for some cities in the developing 

world, the number of people living in slums can reach up to 80% of the total population (WHO 

2020). 

 

Moreover, as with conditions of employment, poor housing conditions present severe obstacles 

for populations attempting to physically distance or undertake quarantine or self-isolation (UN 

Habitat 2020). Overcrowded and informal housing typically consists of multiple families sharing 

single dwellings, and intergenerational family units that can bring vulnerable populations into 

close contact with potential sources of infection. Shared and substandard infrastructures 

including water, sewage and sanitation, present further potential vectors of infection, a potential 

that is exacerbated due to high population density and the poor quality of this infrastructure. As a 

result, conditions of housing can directly impact both the infection rate (𝛽) and the CFR (𝛿). 
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SD3: Access to and quality of health infrastructure One of the key concerns raised in the global 

response to COVID-19 has been access to and overall quality of public health systems, including 

the availability of hospital beds, adequately trained nurses and doctors, equipment (such as 

ventilators and oxygen), and the ability of hospitals to scale up critical care capacity. The 

question of critical care capacity has been particularly prominent in the case of COVID-19, due 

to the rapid and very large surge in serious and critical cases that typically require hospital 

admission as a result of the virus. Addressing these capacity issues in order to alleviate potential 

pressure on hospital infrastructure has been a central facet of strategies to ‘flatten the curve’ 

(Ferguson et al., 2020).  

Discussions around these issues have largely concentrated on the health systems of high-income 

countries. It is essential to note, however, that health systems in much of the rest of the world 

have significantly less capacity than developed countries (Murthy et al 2015; Martinez-Alvarez 

et al 2020; Sousa et al 2020). These intra-country inequalities in health systems directly bear on 

the ability of states to provide effective treatment support for hospitalised COVID-19 patients 

(for example, through adequate access to drugs or ICU capacity). The pressures on health 

systems in LMICs are further compounded by the significant disease burden related to other 

‘comorbidities of poverty’ in many of the world’s poorest countries (IPN 2004; Hansen and 

Paintsil 2016; Yang et al 2020; Shiau et al 2020). Moreover, in situations where hospital and 

primary care settings lack effective PPE or the financial and administrative capacity to 

implement adequate physical distancing measures, health systems can also become important 

sites for increased exposure and thus infection. Taken together, these factors indicate how access 

and quality of health infrastructure can significantly determine both the infection rate and  the 

CFR.  
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In summary, the three SDs discussed here all have a direct bearing on the CRF and infection rate 

variables. They are also significantly connected to patterns of social hierarchy and degrees of 

social marginalisation and exclusion observed across different parts of the world. In this sense, 

incorporating these (and potentially other) SDs into epidemiological modelling can help 

elucidate the interaction between health outcomes and other forms of social policy, including the 

health implications of various social welfare regimes.  

4. A Baseline Socio-economic Compartmental Model 

Integrating employment conditions into a compartmental epidemiological model can show that 

higher levels of employment insecurity, informality, and poverty will directly impact the efficacy 

of physical distancing measures.  Below, we formally express the effects of each of the SDs to 𝛽 

and 𝛿 through and we also introduce relevant functional forms which allow us to incorporate the 

SDs into the SIRD model of section 3. 

 

4.1 Integration of Social Determinants 

 

Let the variable 𝑐1 capture SD1, such that higher values of 𝑐1 correspond to higher levels of 

informal work, poverty, inequality etc.,  𝑐2 capture SD2, such that higher values of 𝑐2 correspond 

to worse conditions of housing and  𝑐3  capture SD3 such that higher values of 𝑐3 mean better 

access to health and better quality of health infrastructure. Then based on the analysis of the 

previous section both the infection rate  𝛽 is and the CFR 𝛿  are functions of 𝑐1, 𝑐2 and 𝑐3, with   

𝜕𝛽

𝜕𝑐𝑖
> 0 and  

𝜕𝛿

𝜕𝑐𝑖
> 0, for i=1,2  

and  
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𝜕𝛽

𝜕𝑐3
< 0 and  

𝜕𝛿

𝜕𝑐3
< 0.     

 

The conditions state that that the higher the value for 𝑐1 and 𝑐2 the higher the infection rate and 

CFR. The opposite is true for 𝑐3, which has a negative effect on both the infection rate and CFR.  

 

4.2 Total effects 

 

The previous assumptions capture the key elements of the relationship between SDs and the 

probabilities of moving between different compartments within the SIRD framework presented 

in the previous section. While the specific functional form of the two parameters with respect to 

𝑐1, 𝑐2 and 𝑐3would be different across countries and is an empirical question outside the scope of 

this study, we can assume for simplicity a linear form which satisfies the previous assumptions: 

𝛽 = 𝛽0 + 𝑎1 𝑐1 + 𝑎2𝑐2  −  𝑎3𝑐3, (5) 

 

and 

𝛿 = 𝛿0 +𝑏1𝑐1+𝑏2𝑐2 − 𝑏3𝑐3, (6) 

where 𝑎1 , 𝑎2 , 𝑎3, 𝑏1, 𝑏2, 𝑏3 > 0 capture the relative importance of SD1, SD2 and SD3 on 𝛽 and 

𝛿 respectively; and could be empirically estimated for different countries using different 

indicators (e.g.labour force engaged in informal work fir SD1, proportion of the population 

living in slums or informal dwellings and/or average housing density for SD2 and ICU beds per 

capita for SD3) The parameters 𝛽0 and 𝛿0 capture the rest of the factors which influence the two 

rates and are not (directly) influenced by SDs. While for 𝛿0 it is natural to assume that it depends 
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mainly on the epidemiological characteristics of the disease, 𝛽0 also depends on the NPIs in 

place. 

 

We should highlight at this point that the linear form of equations (5) and (6) is a reasonable 

assumption given the focus of the paper on inequalities across countries. However, if the focus 

would have been within country inequalities, it would have been important to also allow for 

network effects related to heterogeneity in transmission (for example see Chang et al, 2021, 

Hébert-Dufresne et al, 2021) which may also make superspreading events more likely in 

particular communities.  

 

Equations (1)-(6) define a baseline (simple) version of what we can call a socio-economic 

compartmental (SEC) model.  

 

Given equation (5) the first implication of our baseline SEC model is that the basic reproduction 

number will be  

𝑅0 =
𝛽0 +𝑎1 𝑐1+𝑎2𝑐2− 𝑎3𝑐3

𝛾 
.    (7) 

 

This shows the effect of two of the SDs to the main variable related to the transmissibility of the 

virus. Equation (7) also shows that improving SDs will require ceteris paribus lower levels of 

NPIs to reduce the effective reproduction number 𝑅𝑒 , such that Re < 1. This means that 

improving SDs will not only have a direct effect on people’s wellbeing but will also have an 

overall positive effect through leading to a lower 𝑅0 and 𝑅𝑒. Furthermore, given the high 

economic costs of NPIs, an improvement of SIs will also have economic benefits. Again here, 
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there might also be indirect network effects which may or may not influence the reproduction 

number (Hébert-Dufresne et al, 2021). 

5. Conclusion 

 

We have shown how three SDs potentially impact the transmission dynamics and severity of 

COVID-19 across different countries and indicated how these conditions could be integrated into 

standard SIR-type modelling of the disease.  

 

The approach presented here, can be extended in at least five broad directions.  

 

First, using available data regarding relevant SDs and also the data regarding the contagion 

dynamics of COVID-19 across countries, it is possible to more closely quantify the effects of the 

various SDs. This would contribute towards: (i) having a better understanding of the importance 

of SDs with regards to infections and deaths (ii) estimating the economic benefits of improving 

relevant SDs and (iii) running policy simulations using the SEC model to analyse the health 

effects of different policies.  

 

Second, our particular selection of SDs should not be understood as the only possible relevant 

factors that could be included in compartmental models. Even though our preceding analysis has 

been largely focused on differences in socio-economic conditions between poorer and richer 

countries; the same approach could also be used to model the impact of social differentiation 

within individual countries. Issues such as gender and racial inequalities, educational disparities, 
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levels of government expenditure on social services, etc. all bear directly on 𝛽 and 𝛿; and could 

also be incorporated into a social compartmental model. Furthermore, as heterogeneity in 

transmission as a result of SD may also make superspreading events more likely in particular 

communities, the study of social inequalities while incorporating network effects across social 

groups along the lines of Chang et al (2021) and Hébert-Dufresne et al (2021) is a particularly 

interesting research avenue within this theme.  

 

Third, in line with the SDH literature, our argument can help model the potential effect of 

different social welfare regimes on the progress and consequences of pandemics such as 

COVID-19. At a policy level, we can better understand the effect of various efforts to tackle 

inequality and social exclusion across the world, including, for example, policies aimed at 

reducing employment precarity (SD1), better provision of public housing (SD2), and improving 

access to public health (SD3).  

 

Fourth, a key contribution here has been to highlight the social components of the models 

typically used to analyse the epidemic, as well as introduce the basic structure of what we have 

classified as a global social compartmental model. Given the focus of this paper, we have used 

one of the most basic compartmental models, namely the SIRD, as the basis of our analysis. Our 

approach can be extended into other compartmental models that include more compartments 

and/or other structures like age cohorts (Prem et al,, 2020) and/or social groups (Albi et al, 

2020a, b) in order to take into account other relevant characteristics of an epidemic and be able 

to also analyse in detail within country and other intra-group inequalities.  
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Finally, in this baseline framework, we have assumed that the duration of the period when 

individuals are infected and infectious is not influenced by SDs. However, we understand that 

this may not always be the case, hence another research direction can be to investigate the effects 

of SDs both with regards to the infection period of individuals and the period that they are 

infectious. 
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