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We study the existence and stability of fundamental bright discrete solitons in a parity-time- (PT-) symmetric coupler composed
by a chain of dimers that is modelled by linearly coupled discrete nonlinear Schrödinger equations with gain and loss terms. We
use a perturbation theory for small coupling between the lattices to perform the analysis, which is then confirmed by numerical
calculations. Such analysis is based on the concept of the so-called anticontinuum limit approach. We consider the fundamental
onsite and intersite bright solitons. Each solution has symmetric and antisymmetric configurations between the arms.The stability
of the solutions is then determined by solving the corresponding eigenvalue problem. We obtain that both symmetric and
antisymmetric onsite mode can be stable for small coupling, in contrast to the reported continuum limit where the antisymmetric
solutions are always unstable. The instability is either due to the internal modes crossing the origin or the appearance of a quartet
of complex eigenvalues. In general, the gain-loss term can be considered parasitic as it reduces the stability region of the onsite
solitons. Additionally, we analyse the dynamic behaviour of the onsite and intersite solitons when unstable, where typically it is
either in the form of travelling solitons or soliton blow-ups.

1. Introduction

A system of equations is PT-symmetric if it is invariant
with respect to combined parity (P) and time-reversal (T)
transformations. The symmetry is interesting as it forms a
particular class of non-Hermitian Hamiltonians in quantum
mechanics [1], whichmay have a real spectrumup to a critical
value of the complex potential parameter, above which the
system is in the “brokenPT symmetry” phase [2–4].

The most basic configuration having PT symmetry is
a dimer, that is, a system of two coupled oscillators where
one of the oscillators has damping losses and the other one
gains energy from external sources. Considerably, dimers
are also the most important PT systems as the concept of
PT symmetry was first realised experimentally on dimers
consisting of two coupled optical waveguides [5, 6] (see also
the review [7] for PT symmetry in optical applications).
The experiments have been rapidly followed by many other
observations of PT symmetry in different branches of
physics, from mechanical to electrical analogues (see the
review [8]).

When nonlinearity is present in a PT system, one may
have nontrivial behaviours that do not exist in the linear case,
such as the presence of blow-up dynamics in the parameter
region of the unbroken phase in the linear counterpart [9–11].
When nonlinear dimers are put in arrays where elements
with gain and loss are linearly coupled to the elements of the
same type belonging to adjacent dimers, one can also obtain
a distinctive feature in the form of the existence of solutions
localized in space as continuous families of their energy
parameter [12]. The system therefore has two arms with each
arm described by a discrete nonlinear Schrödinger equation
with gain or loss. Here, we study the nonlinear localised
solutions, which loosely we also refer to as bright discrete
solitons, and their stability analytically and numerically.

In the continuous limit, the coupled equations without
gain-loss have been studied in [13–16], where it has been
shown that the system admits symmetric, antisymmetric,
and asymmetric solitons between the arms. Unstable asym-
metric solutions bifurcate from the symmetric ones through
a subcritical symmetry breaking bifurcation, which then
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become stable after a tangent (saddle-center) bifurcation.
When one adds a gain and loss term in each arm, one obtains
PT-symmetric couplers, which have been considered in
[17–22]. In the presence of the linear-gain and loss terms,
asymmetric solitons cease to exist, while antisymmetric soli-
tons are always unstable [20], even though those with small
amplitudes can live long due to weak underlying instability
[17]. Symmetric solitons can be stable in a similar fashion to
those in the system without gain-loss [20].

The stability of bright discrete solitons inPT-symmetric
couplers was discussed in [12] using variational methods,
where it was shown that symmetric onsite solutions can be
stable and there is a critical solution amplitude above which
the PT symmetry is broken. The case when the polarity of
the PT-symmetric dimers is staggered along the chain is
considered in [23].The same equations without gain and loss
were considered in [24] where the symmetric soliton loses
its stability through the symmetry-breaking bifurcation at a
finite value of the energy, similarly to that in the continuous
counterpart [13–16]. Recently, a similarPT chain of dimers
with a slightly different nonlinearity was derived [25] to
describe coupled chains of parametrically driven pendula as
a mechanical analogue of PT-symmetric systems [26]. The
stability of bright discrete solitons was established through
the applications of the Hamiltonian energy and an index
theorem. The nonlinear long-time stability of the discrete
solitons was also established using the Lyapunov method in
the asymptotic limit of a weak coupling between the pendula
[27].

In this work, we determine the eigenvalues of dis-
crete solitons in PT-symmetric couplers analytically using
asymptotic expansions. The computation is based on the so-
called method of weak coupling or anticontinuum limit. The
application of the method in the study of discrete solitons
was formulated rigorously in [28] for conservative systems.
It was then applied to PT-symmetric networks in [29, 30].
However, no explicit expression of the asymptotic series of
the eigenvalues for the stability of discrete solitons has been
presented before. Here, in addition to the asymptotic limit
of weak coupling between the dimers, we also propose to
consider expansions in the coefficient of the gain-loss terms.
In this case, explicit computations of the asymptotic series of
the eigenvalues become possible.

The manuscript is outlined as follows. In Section 2, we
present the mathematical model. In Section 3, we use per-
turbation theory for small coupling to analyse the existence
of fundamental localised solutions. Such analysis is based on
the concept of the so-called anticontinuum limit approach.
The stability of the solitons is then considered analytically
in Section 4 by solving a corresponding eigenvalue problem.
In this section, in addition to small coupling, the expansion
is also performed under the assumption of small coefficient
of the gain-loss term due to the nonsimple expression of the
eigenvectors of the linearised operator.The findings obtained
from the analytical calculations are then compared with the
numerical counterparts in Section 5. We also produce stabil-
ity regions for all the fundamental solitons numerically. In
this section, we present the typical dynamics of solitons in the
unstable parameter ranges by direct numerical integrations

of the governing equation. We present the conclusion in
Section 6.

2. Mathematical Model

The governing equations describing PT-symmetric chains
of dimers are of the form [12]

𝑢̇𝑛 = 𝑖𝜎 󵄨󵄨󵄨󵄨𝑢𝑛󵄨󵄨󵄨󵄨2 𝑢𝑛 + 𝑖𝜖Δ 2𝑢𝑛 + 𝛾𝑢𝑛 + 𝑖V𝑛,
V̇𝑛 = 𝑖𝜎 󵄨󵄨󵄨󵄨V𝑛󵄨󵄨󵄨󵄨2 V𝑛 + 𝑖𝜖Δ 2V𝑛 − 𝛾V𝑛 + 𝑖𝑢𝑛.

(1)

The derivative with respect to the evolution variable (i.e., the
propagation distance, if we consider their application in fiber
optics) is denoted by the overdot, 𝑢𝑛 = 𝑢𝑛(𝑡) and V𝑛 = V𝑛(𝑡)
are complex-valued wave function at site 𝑛 ∈ Z, 𝜖 > 0
is the constant coefficient of the horizontal linear coupling
(coupling constant between two adjacent sites), Δ 2𝑢𝑛 =(𝑢𝑛+1 − 2𝑢𝑛 + 𝑢𝑛−1) and Δ 2V𝑛 = (V𝑛+1 − 2V𝑛 + V𝑛−1) are the
discrete Laplacian term in one spatial dimension, the gain and
loss acting on complex variables 𝑢𝑛 and V𝑛 are represented
by the positive coefficient 𝛾; that is, 𝛾 > 0. The nonlinearity
coefficient is denoted by 𝜎, which can be scaled to +1without
loss of generality due to the case of focusing nonlinearity
that we consider. Bright discrete soliton solutions satisfy the
localisation conditions 𝑢𝑛, V𝑛 → 0 as 𝑛 → ±∞.

The focusing system has static localised solutions that can
be obtained from substituting

𝑢𝑛 = 𝐴𝑛𝑒𝑖𝜔𝑡,
V𝑛 = 𝐵𝑛𝑒𝑖𝜔𝑡 (2)

into (1) to yield the equations

𝜔𝐴𝑛 = 󵄨󵄨󵄨󵄨𝐴𝑛󵄨󵄨󵄨󵄨2 𝐴𝑛 + 𝜖 (𝐴𝑛+1 − 2𝐴𝑛 + 𝐴𝑛−1) − 𝑖𝛾𝐴𝑛
+ 𝐵𝑛,

𝜔𝐵𝑛 = 󵄨󵄨󵄨󵄨𝐵𝑛󵄨󵄨󵄨󵄨2 𝐵𝑛 + 𝜖 (𝐵𝑛+1 − 2𝐵𝑛 + 𝐵𝑛−1) + 𝑖𝛾𝐵𝑛 + 𝐴𝑛,
(3)

where 𝐴𝑛 and 𝐵𝑛 are complex-valued and the propagation
constant 𝜔 ∈ R.
3. Solutions of Weakly Coupled Equations

In the uncoupled limit, that is, when 𝜖 = 0, chain (1)
becomes the equations for the dimer. The static equation (3)
has been analysed in detail in [29, 31], where it was shown
that there is a relation between 𝜔 and 𝛾 above which there
is no time-independent solution to (3) (see also the analysis
below).When 𝜖 is nonzero, but small enough, the existence of
solutions emanating from the uncoupled limit can be shown
using the Implicit Function Theorem. The existence analysis
of [25] can be adopted here despite the slightly different
nonlinearity as the Jacobian of our system when uncoupled
shares a rather similar invertible structure (see also [29, 30]
that have the same nonlinearity in the governing equations
but different small coupling terms). However, below we will
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not state the theorem and instead derive the asymptotic series
of the solutions.

Using perturbation expansion, solutions of the coupler
(3) for small coupling constant 𝜖 can be expressed analytically
as

𝐴𝑛 = 𝐴(0)𝑛 + 𝜖𝐴(1)𝑛 + ⋅ ⋅ ⋅ ,
𝐵𝑛 = 𝐵(0)𝑛 + 𝜖𝐵(1)𝑛 + ⋅ ⋅ ⋅ .

(4)

By substituting the above expansions into (3) and collecting
the terms in successive powers of 𝜖, one obtains at O(1) and
O(𝜖), respectively, the equations
𝐴(0)𝑛 = 𝐵(0)𝑛 (𝜔 − 𝐵(0)𝑛 𝐵∗(0)𝑛 − 𝑖𝛾) ,
𝐵(0)𝑛 = 𝐴(0)𝑛 (𝜔 − 𝐴(0)𝑛 𝐴∗(0)𝑛 + 𝑖𝛾) , (5)

𝐴(1)𝑛 = 𝐵(1)𝑛 (𝜔 − 2𝐵(0)𝑛 𝐵∗(0)𝑛 − 𝑖𝛾) − 𝐵(0)𝑛 2𝐵∗(1)𝑛 − Δ 2𝐵(0)𝑛 ,
𝐵(1)𝑛 = 𝐴(1)𝑛 (𝜔 − 2𝐴(0)𝑛 𝐴∗(0)𝑛 + 𝑖𝛾) − 𝐴(0)𝑛 2𝐴∗(1)𝑛

− Δ 2𝐴(0)𝑛 .
(6)

It is well-known that there are two natural fundamental
solutions representing bright discrete solitons that may exist
for any 𝜖, from the anticontinuum to the continuum limit,
that is, an intersite (two-excited-site) and onsite (one-excited-
site) bright discrete mode. Here, we will limit our study to
these two fundamental modes.

3.1. Intersite Soliton. In the uncoupled limit, the mode struc-
tures 𝐴(0)𝑛 and 𝐵(0)𝑛 for the intersite soliton are of the form

𝐴(0)𝑛 = {{{
𝑎̂0𝑒𝑖𝜙𝑎 𝑛 = 0, 1,
0 otherwise,

𝐵(0)𝑛 = {{{
𝑏̂0𝑒𝑖𝜙𝑏 𝑛 = 0, 1,
0 otherwise,

(7)

with [31]

𝑎̂0 = 𝑏0 = √𝜔 ∓ √1 − 𝛾2,
sin (𝜙𝑏 − 𝜙𝑎) = 𝛾,

(8)

which is an exact solution of (5). Note that (8) will have no
real solution when |𝛾| > 1. This is the broken region of
PT-symmetry. The parameter 𝜙𝑎 can be taken as 0, due
to the gauge phase invariance of the governing equation (1)
and henceforth 𝜙𝑏 = arcsin 𝛾 and 𝜋 − arcsin 𝛾. The former
phase corresponds to the so-called symmetric configuration
between the arms, while the latter is called antisymmetric
one. Herein, we also refer to the symmetric and antisym-
metric soliton as soliton I and II, respectively. Equation (8)
informs us that 𝜔 > √1 − 𝛾2 > 0 and 𝜔 > −√1 − 𝛾2 are the
necessary conditions for solitons I and II, respectively.

For the first-order correction due to the weak coupling,
writing 𝐴(1)𝑛 = 𝑎̃𝑛,1𝑒𝑖𝜙𝑎 and 𝐵(1)𝑛 = 𝑏𝑛,1𝑒𝑖𝜙𝑏 and substituting
them into (6) will yield

𝑎̃𝑛,1 = 𝑏𝑛,1 =
{{{{{{{{{{{{{

1(2𝑎̂0) 𝑛 = 0, 1,
1̂𝑎0 𝑛 = −1, 2,
0 otherwise.

(9)

Equations (4), (7), (8), and (9) are the asymptotic expan-
sion of the intersite solitons. One can continue the same
calculation to obtain higher order corrections. Here, we limit
ourselves to the first-order correction only, which is sufficient
to determine the leading order behaviour of the eigenvalues
later.

3.2. Onsite Soliton. For the onsite soliton, that is, a one-
excited-site discrete mode, one can perform the same com-
putations to obtain the mode structure of the form

𝐴(0)𝑛 = {{{
𝑎̂0𝑒𝑖𝜙𝑎 𝑛 = 0,
0 otherwise,

𝐵(0)𝑛 = {{{
𝑏0𝑒𝑖𝜙𝑏 𝑛 = 0,
0 otherwise,

(10)

with (8). After writing 𝐴(1)𝑛 = 𝑎̃𝑛,1𝑒𝑖𝜙𝑎 and 𝐵(1)𝑛 = 𝑏̃𝑛,1𝑒𝑖𝜙𝑏 , the
first order correction from (6) is given by

𝑎̃𝑛,1 = 𝑏𝑛,1 = {{{
1̂𝑎0 𝑛 = 0, ±1,
0 otherwise. (11)

4. Stability Analysis

After we find discrete solitons, their linear stability is then
determined by solving a corresponding linear eigenvalue
problem. To do so, we introduce the linearisation ansatz𝑢𝑛 = (𝐴𝑛 + 𝜖̃(𝐾𝑛 + 𝑖𝐿𝑛)𝑒𝜆𝑡)𝑒𝑖𝜔𝑡 and V𝑛 = (𝐵𝑛 + 𝜖̃(𝑃𝑛 +𝑖𝑄𝑛)𝑒𝜆𝑡)𝑒𝑖𝜔𝑡, |𝜖̃| ≪ 1, and substitute this into (1) to obtain
the linearised equations at O(𝜖̃):

𝜆𝐾𝑛 = − (𝐴2𝑛 − 𝜔) 𝐿𝑛 − 𝜖 (𝐿𝑛+1 − 2𝐿𝑛 + 𝐿𝑛−1) + 𝛾𝐾𝑛
− 𝑄𝑛,
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𝜆𝐿𝑛 = (3𝐴2𝑛 − 𝜔)𝐾𝑛 + 𝜖 (𝐾𝑛+1 − 2𝐾𝑛 + 𝐾𝑛−1) + 𝛾𝐿𝑛
+ 𝑃𝑛,

𝜆𝑃𝑛 = − (R (𝐵𝑛)2 + 3I (𝐵𝑛)2 − 𝜔)𝑄𝑛
− 𝜖 (𝑄𝑛+1 − 2𝑄𝑛 + 𝑄𝑛−1)
− (2R (𝐵𝑛)I (𝐵𝑛) + 𝛾) 𝑃𝑛 − 𝐿𝑛,

𝜆𝑄𝑛 = (3R (𝐵𝑛)2 +I (𝐵𝑛)2 − 𝜔)𝑃𝑛
+ 𝜖 (𝑃𝑛+1 − 2𝑃𝑛 + 𝑃𝑛−1)
+ (2R (𝐵𝑛)I (𝐵𝑛) − 𝛾)𝑄𝑛 + 𝐾𝑛,

(12)

which have to be solved for the eigenvalue 𝜆 and the
corresponding eigenvector [{𝐾𝑛}, {𝐿𝑛}, {𝑃𝑛}, {𝑄𝑛}]𝑇. As the
stabilitymatrix of the eigenvalue problem (12) is real valued,𝜆
and −𝜆 are also eigenvalues with corresponding eigenvectors[{𝐾𝑛}, {𝐿𝑛}, {𝑃𝑛}, {𝑄𝑛}]𝑇 and [{𝐾𝑛}, {−𝐿𝑛}, {𝑃𝑛}, {−𝑄𝑛}]𝑇 with𝛾 → −𝛾, respectively. Therefore, we can conclude that the
solution 𝑢𝑛 is (linearly) stable only when R(𝜆) = 0 for all
eigenvalues 𝜆.
4.1. Continuous Spectrum. The spectrum of (12) will consist
of continuous spectrum and discrete spectrum (eigenvalue).
To investigate the former, we consider the limit 𝑛 → ±∞,
introduce the plane-wave ansatz 𝐾𝑛 = 𝑘̂𝑒𝑖𝑘𝑛 , 𝐿𝑛 = 𝑙̂𝑒𝑖𝑘𝑛 , 𝑃𝑛 =𝑝̂𝑒𝑖𝑘𝑛 , and 𝑄𝑛 = 𝑞̂𝑒𝑖𝑘𝑛 , 𝑘 ∈ R, and substitute the ansatz into
(12) to obtain

𝜆
[[[[[[
[

𝑘̂
𝑙̂
𝑝̂
𝑞̂

]]]]]]
]
= [[[[[
[

𝛾 𝜉 0 −1
−𝜉 𝛾 1 0
0 −1 −𝛾 𝜉
1 0 −𝜉 −𝛾

]]]]]
]

[[[[[[
[

𝑘̂
𝑙̂
𝑝̂
𝑞̂

]]]]]]
]
, (13)

where 𝜉 = 𝜔 − 2𝜖(cos 𝑘 − 1). The equation can be solved
analytically to yield the dispersion relation

𝜆2 = 4𝜖𝜔 (cos 𝑘 − 1) − 4𝜖2 (cos 𝑘 − 1)2 − 𝜔2 − 1 + 𝛾2
± (4𝜖 (cos 𝑘 − 1) − 2𝜔)√1 − 𝛾2. (14)

The continuous spectrum is therefore given by 𝜆 ∈±[𝜆1−, 𝜆2−] and 𝜆 ∈ ±[𝜆1+, 𝜆2+] with the spectrum bound-
aries

𝜆1± = 𝑖√1 − 𝛾2 + 𝜔2 ± 2𝜔√1 − 𝛾2,
𝜆2±
= 𝑖√1 − 𝛾2 + 8𝜖𝜔 + 16𝜖2 + 𝜔2 + 2√1 − 𝛾2 (±𝜔 − 4𝜖),

(15)

obtained from (14) by setting 𝑘 = 0 and 𝑘 = 𝜋 in the equation.
4.2. Discrete Spectrum. Following theweak-coupling analysis
as in Section 3, we will as well use similar asymptotic
expansions to solve the eigenvalue problem (12) analytically;
that is, we write

◻ = ◻(0) + √𝜖◻(1) + 𝜖◻(2) + ⋅ ⋅ ⋅ , (16)

with ◻ = 𝜆,𝐾𝑛, 𝐿𝑛, 𝑃𝑛, 𝑄𝑛. We then substitute the expansions
into the eigenvalue problem (12).

At order O(1), one will obtain the stability equation for
the dimer, which has been discussed for a general value of 𝛾
in [31]. The expression of the eigenvalues is simple, but the
expression of the corresponding eigenvectors is not, which
makes the result of [31] rather impractical to use. Therefore,
here we limit ourselves to the case of small |𝛾| and expand (16)
further as

◻(𝑗) = ◻(𝑗,0) + 𝛾◻(𝑗,1) + 𝛾2◻(𝑗,2) + ⋅ ⋅ ⋅ , (17)

𝑗 = 0, 1, 2, . . .. Hence, we have two small parameters, that
is, 𝜖 and 𝛾, that are independent of each other. For the sake
of presentation, the detailed calculations are shown in the
Appendix. Here we will only cite the final results.

4.2.1. Intersite Soliton I. The intersite soliton I (i.e., the
symmetric intersite soliton) has three pairs of eigenvalues for
small 𝜖 and 𝛾. One pair bifurcate from the zero eigenvalue.
They are asymptotically given by

𝜆 = √𝜖(2√𝜔 − 1 + 𝛾2
(2√𝜔 − 1) + ⋅ ⋅ ⋅) + O (𝜖) ,

𝜆 =
{{{{{{{{{{{

(2√𝜔 − 2 − 𝛾2 𝜔 − 42√𝜔 − 2 + ⋅ ⋅ ⋅ ) + 𝜖 (√𝜔 − 2 − 𝛾2
𝜔

4√𝜔 − 2 + ⋅ ⋅ ⋅ ) + O (𝜖)3/2 ,
(2√𝜔 − 2 − 𝛾2 𝜔 − 42√𝜔 − 2 + ⋅ ⋅ ⋅ ) + 𝜖(

1√𝜔 − 2 − 𝛾2
𝜔

4 (𝜔 − 2)3/2 + ⋅ ⋅ ⋅ ) + O (𝜖)3/2 .

(18)
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Figure 1: Eigenvalues of intersite soliton I with 𝜔 = 1.2, 𝛾 = 0 (a, b) and 0.5 (c, d). Dots are from the numerics and solid lines are the
asymptotic approximations in Section 4.2.1. The collection of dots forming black regions in the right column corresponds to the continuous
spectrum.
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Figure 2: The same as in Figure 1 with 𝛾 = 0 (a) and 𝛾 = 0.5 (b), but for 𝜔 = 5.2. In this case, all the eigenvalues are real.
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Figure 3: The spectra of intersite soliton II with 𝜔 = 5.2 (a, b, c) and 8.2 (d, e, f) and 𝛾 = 0.5. The most left panels are the spectra in the
complex plane for 𝜖 = 1. (b, c, e, f) The eigenvalues as a function the coupling constant. Solid blue curves are the asymptotic approximations.

4.2.2. Intersite Soliton II. The intersite soliton II, that is, the
intersite soliton that is antisymmetric between the arms, has
three pairs of eigenvalues given by

𝜆 = √𝜖(2√𝜔 + 1 − 𝛾2
(2√𝜔 + 1) + ⋅ ⋅ ⋅) + O (𝜖) ,

𝜆 =
{{{{{{{{{{{{{{{

𝑖(2√𝜔 + 2 − 𝛾2 𝜔 + 42√𝜔 + 2 + ⋅ ⋅ ⋅ ) − 𝑖𝜖 (√𝜔 + 2 + 𝛾2
3𝜔4 + 35𝜔3 + 136𝜔2 + 208𝜔 + 108
8√𝜔 + 2 (𝜔3 + 6𝜔2 + 12𝜔 + 8) + ⋅ ⋅ ⋅ ) + O (𝜖)3/2 ,

𝑖 (2√𝜔 + 2 − 𝛾2 𝜔 + 42√𝜔 + 2 + ⋅ ⋅ ⋅ ) + 𝑖𝜖 (
1√𝜔 + 2 + 𝛾2

𝜔4 + 21𝜔3 + 104𝜔2 + 184𝜔 + 108
8√𝜔 + 2 (𝜔3 + 6𝜔2 + 12𝜔 + 8) + ⋅ ⋅ ⋅ ) + O (𝜖)3/2 .

(19)

4.2.3. Onsite Soliton I. The onsite soliton has only one
eigenvalue for small 𝜖 given asymptotically by

𝜆 = (2√𝜔 − 2 − 𝛾2 𝜔 − 42√𝜔 − 2 + ⋅ ⋅ ⋅)
+ 𝜖( 2√𝜔 − 2 − 𝛾2

𝜔
2 (𝜔 − 2)3/2 + ⋅ ⋅ ⋅) + ⋅ ⋅ ⋅ .

(20)

4.3. Onsite Soliton II. As for the second type of the onsite
soliton, we have

𝜆 = 𝑖 (2√𝜔 + 2 − 𝛾2 𝜔 + 4√𝜔 + 2 + ⋅ ⋅ ⋅)
+ 2𝑖𝜖 ( 1√𝜔 + 2 − 𝛾2

𝜔
(𝜔 + 2)3/2 + ⋅ ⋅ ⋅) + ⋅ ⋅ ⋅ .

(21)
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Figure 4: (a, c) The spectrum of onsite soliton I in the complex plane for 𝜖 = 0.2. (b, d) The eigenvalue as a function of the coupling and its
approximation from Section 4.2.3. (a–d) are for 𝜔 = 1.2 and 5.2, respectively. Here, 𝛾 = 0.1.

5. Numerical Results

We have solved the steady-state equation (3) numerically
using a Newton-Raphson method and analysed the stability
of the numerical solution by solving the eigenvalue prob-
lem (12). Here we will compare the analytical calculations
obtained above with the numerical results.

First, we consider the discrete intersite soliton I. We show
in Figure 1 the spectrum of the soliton as a function of the
coupling constant 𝜖 for 𝜔 = 1.2 and 𝛾 = 0, 0.5. On the
real axis, one can observe that there is only one unstable
eigenvalue that bifurcates from the origin. As the coupling
increases, the bifurcating eigenvalue enters the origin again
when 𝜖 → ∞. Hence, in that limit we obtain a stable soliton I
(i.e., a stable symmetric soliton).Thedynamics of the nonzero
eigenvalues as a function of the coupling constant is shown
in the right panels of the figure, where one can see that the
eigenvalues are on the imaginary axis and simply enter the
continuous spectrum as 𝜖 increases.

In Figure 2, we plot the eigenvalues for 𝜔 large enough.
Here, in the uncoupled limit, all the three pairs of eigenvalues
are on the real axis. As the coupling increases, two pairs go
back toward the origin, while one pair remains on the real
axis (not shown here). In the continuum limit 𝜖 → ∞,
we therefore obtain an unstable soliton I (i.e., an unstable
symmetric soliton).

In both figures, we also plot the approximate eigenvalues
in solid (blue) curves, where good agreement is obtained for
small 𝜖.

From numerical computations, we conjecture that if in
the limit 𝜖 → 0 all the nonzero eigenvalues 𝜆 satisfy 𝜆2 > 𝜆21−
(see (15)), then we will obtain unstable soliton I in the contin-
uum limit 𝜖 → ∞. However, when in the anticontinuum limit𝜖 → 0 all the nonzero eigenvalues 𝜆 satisfy 𝜆21+ < 𝜆2 < 𝜆22−,
we may either obtain a stable or an unstable soliton I in the
continuum limit.
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Figure 5: The same as in Figure 4, but for onsite soliton II with 𝜔 = 5.2 (a, b) and 8.2 (c, d). (a, c) are with 𝜖 = 1.
Next, we consider intersite solitons II (i.e., antisymmetric

intersite solitons). Shown in Figure 3 is the spectrum of the
discrete solitons for two values of 𝜔. In both cases, there is
an eigenvalue bifurcating from the origin. For the smaller
value of 𝜔 (Figures 3(a)–3(c)), we have the condition that
all the nonzero eigenvalues 𝜆 satisfy 𝜆2 < 𝜆22− in the anti-
continuum limit 𝜖 → 0.The collision between the eigenvalues
and the continuous spectrum as the coupling increases
creates complex eigenvalues. In the second case using larger𝜔 (Figures 3(d)–3(f)), the nonzero eigenvalues 𝜆 satisfy 𝜆2 >𝜆21− when 𝜖 = 0. Even though not seen in the figure, the
collision between one of the nonzero eigenvalues and the con-
tinuous spectrum also creates a pair of complex eigenvalues.
Additionally, in the continuum limit both values of 𝜔 as well
as the other values of the parameter that we computed for this
type of discrete solitons yield unstable solutions.

We also study onsite solitons. Shown in Figures 4 and 5 is
the stability of discrete solitons types I and II, respectively.

Figure 4(a) shows that for (𝜔−√1 − 𝛾2) small enough we
will obtain stable discrete solitons. For coupling constant 𝜖

small, we indeed show it through our analysis depicted as the
blue solid line. Numerically, we obtain that this soliton is also
stable in the continuum limit 𝜖 → ∞. However, when 𝜔 is
large enough compared to √1 − 𝛾2, even though initially in
the uncoupled limit the nonzero eigenvalue 𝜆 satisfies 𝜆2 <𝜆22−, onemay obtain an exponential instability (i.e., instability
due to a real eigenvalue). Figure 4(c) shows the case when the
discrete soliton is already unstable even in the uncoupled
limit due to the nonzero eigenvalue that is already real-valued.

Figure 5 shows that the antisymmetric solitons are
generally unstable due to a quartet of complex eigenvalues,
as shown in Figures 5(a) and 5(c). When the coupling is
increased further, therewill be an eigenvalue bifurcating from±𝜆1− that will move towards the origin and later becomes a
pair of real eigenvalues.These solitons are also unstable in the
continuum limit.

Unlike intersite discrete solitons that are always unstable,
onsite discrete solitons may be stable. In Figure 6, we present
the (in)stability region of the two types of discrete solitons in
the (𝜖, 𝜔)-plane for three values of the gain-loss parameter 𝛾.
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Figure 6: The stability region of the onsite soliton type I (a) and II (b) in the (𝜖, 𝜔)-plane for several values of 𝛾. The solutions are unstable
above the curves in panel (a) and between the curves in panel (b).

Discrete solitons are unstable above the curves in panel (a)
and between the curves in panel (b). Indeed as wementioned
before, for soliton I there is a critical 𝜔 that depends on 𝛾
below which the soliton is stable in the continuum limit,
while soliton II is always unstable in that limit. Another
difference between the two figures is that the stability curves
in Figure 6(a) generally correspond to an eigenvalue crossing
the origin that becomes real-valued, while the curves in the
other panel are due to the appearance of a quartet of complex
eigenvalues. In general, we obtain that the gain-loss term can
be parasitic as it reduces the stability region of the discrete
solitons.

Finally, we present in Figure 7 the time dynamics of some
of the unstable solutions shown in the previous figures. What
we obtain is that typically there are two kinds of dynamics,
that is, in the form of travelling discrete solitons or solution
blow-ups. The first type was the typical dynamics of the
intersite soliton I.The second dynamics is typical for the other
types of unstable discrete solitons.

6. Conclusion

We have presented a systematic method to determine the
stability of discrete solitons in a PT-symmetric coupler
by computing the eigenvalues of the corresponding linear
eigenvalue problem using asymptotic expansions. We have
compared the analytical results that we obtained with numer-
ical computations, where good agreement is obtained. From
the numerics, we have also established the mechanism of
instability as well as the stability region of the discrete
solitons. The application of the method in higher dimen-
sional PT-symmetric couplers (see, e.g., [32]) is a natural

extension of the problem that is addressed for future work.
Additionally, we also address the computation of eigenvalues
of discrete solitons in the neighbourhood of broken PT-
symmetry as future investigations.

Appendix

Analytical Calculation

As mentioned in Section 4.2, to solve the eigenvalue problem
(12) analytically we expand the eigenvalue and eigenvector
asymptotically as

◻ = ◻(0) + √𝜖◻(1) + 𝜖◻(2) + ⋅ ⋅ ⋅ , (A.1)

with ◻ = 𝜆,𝐾𝑛, 𝐿𝑛, 𝑃𝑛, 𝑄𝑛.
Performing the expansion in 𝜖, at O(𝜖0), we obtain the

following set of equations:

𝜆(0)V(0)𝑛 =
[[[[[[[[[
[

𝛾 𝜔 − 𝐴(0)𝑛 2 0 −1
3 (𝐴(0)𝑛 )2 − 𝜔 𝛾 1 0

0 −1 𝑘1 𝑘2
1 0 𝑘3 −𝑘1

]]]]]]]]]
]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑀0

V(0)𝑛 , (A.2)
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Figure 7: The typical dynamics of the instability of the discrete solitons in the previous figures. Here, 𝛾 = 0.5 and 𝜖 = 1. Depicted in (a–h)
are |𝑢𝑛|2 and |V𝑛|2, respectively. (a–h) The dynamics of intersite soliton I with 𝜔 = 1.2, intersite soliton II with 𝜔 = 5.2, and onsite solitons I
and II both with 𝜔 = 5.2.
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where

V(𝑗)𝑛 =
[[[[[[
[

𝐾(𝑗)𝑛
𝐿(𝑗)𝑛
𝑃(𝑗)𝑛
𝑄(𝑗)𝑛

]]]]]]
]
,

𝑘1 = − (2R (𝐵(0)𝑛 )I (𝐵(0)𝑛 ) + 𝛾) ,
𝑘2 = 𝜔 −R (𝐵(0)𝑛 )2 − 3I (𝐵(0)𝑛 )2 ,
𝑘3 = 3R (𝐵(0)𝑛 )2 +I (𝐵(0)𝑛 )2 − 𝜔.

(A.3)

At O(𝜖1/2) and O(𝜖1), we obtain
𝜆(0)V(1)𝑛 = 𝑀0V(2)𝑛 − 𝜆(1)V(0)𝑛 , (A.4)

𝜆(0)𝑀0 = 𝑀0V(2)𝑛 − 𝜆(1)V(1)𝑛 − 𝜆(2)V(0)𝑛

+
[[[[[[
[

0 2 (1 − 𝐴(0)𝑛 𝐴(1)𝑛 ) 0 0
6𝐴(0)𝑛 𝐴(1)𝑛 − 2 0 0 0

0 0 𝑘4 2 + 𝑘50 0 𝑘6 − 2 −𝑘4

]]]]]]
]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑀1

V(0)𝑛

+ [[[[[
[

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

]]]]]
]
(V(1)𝑛+1 + V(1)𝑛−1) ,

(A.5)

where

𝑘4 = −2 (R (𝐵(0)𝑛 )I (𝐵(1)𝑛 ) +R (𝐵(1)𝑛 )I (𝐵(0)𝑛 )) ,
𝑘5 = −2 (R (𝐵(0)𝑛 )R (𝐵(1)𝑛 ) + 3I (𝐵(0)𝑛 )I (𝐵(1)𝑛 )) ,
𝑘6 = 2 (3R (𝐵(0)𝑛 )R (𝐵(1)𝑛 ) +I (𝐵(0)𝑛 )I (𝐵(1)𝑛 )) .

(A.6)

The steps of finding the coefficients 𝜆(𝑗) of the asymptotic
expansions, 𝑗 = 0, 1, 2, . . ., are as follows:

(i) Solve the eigenvalue problem (A.2), which is a 4 × 4
system of equations, for 𝜆(0) and V(0)𝑛 .

(ii) Determine 𝜆(1) by taking the vector inner product
of both sides of (A.4) with the null-space of the
Hermitian transpose of the block matrix that consists
of (𝑀0−𝜆(0)𝐼4) along the diagonal, where 𝐼4 is the 4×4
identity matrix.

(iii) Solve (A.4) for V(1)𝑛 .

(iv) Determine 𝜆(2) by taking the vector inner product
of both sides of (A.5) with the null-space of the
Hermitian transpose of the block matrix that consists
of (𝑀0 − 𝜆(0)𝐼4).

Theprocedure repeats if onewould like to calculate the higher
order terms.

The leading order eigenvalue 𝜆(0) of (A.2) has been solved
in [31]. However, the expression of the corresponding eigen-
vector V(0)𝑛 was very lengthy, that makes it almost impractical
to be used to determine the higher order corrections of 𝜆(𝑗).
Therefore, in every equation at order O(𝜖ℓ) obtained from
(12), we also expand the variables in 𝛾, that is,

𝑀𝑗 = 𝑀𝑗,0 + 𝛾𝑀𝑗,1 + 𝛾2𝑀𝑗,2 = ⋅ ⋅ ⋅ ,
◻(𝑗) = ◻(𝑗,0) + 𝛾◻(𝑗,1) + 𝛾2◻(𝑗,2) + ⋅ ⋅ ⋅ , (A.7)

where again ◻ = 𝜆, V𝑛, and obtain equations at order
O(𝛾ℓ̂). The steps to determine 𝜆(𝑗,𝑘) and V(𝑗,𝑘)𝑛 are the same as
mentioned above.
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